]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/btrfs/volumes.c
btrfs: clean the old superblocks before freeing the device
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/iocontext.h>
24#include <linux/capability.h>
25#include <linux/ratelimit.h>
26#include <linux/kthread.h>
27#include <linux/raid/pq.h>
28#include <linux/semaphore.h>
29#include <linux/uuid.h>
30#include <asm/div64.h>
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
37#include "raid56.h"
38#include "async-thread.h"
39#include "check-integrity.h"
40#include "rcu-string.h"
41#include "math.h"
42#include "dev-replace.h"
43#include "sysfs.h"
44
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
136static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144DEFINE_MUTEX(uuid_mutex);
145static LIST_HEAD(fs_uuids);
146struct list_head *btrfs_get_fs_uuids(void)
147{
148 return &fs_uuids;
149}
150
151static struct btrfs_fs_devices *__alloc_fs_devices(void)
152{
153 struct btrfs_fs_devices *fs_devs;
154
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167}
168
169/**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179{
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192}
193
194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195{
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
203 kfree(device);
204 }
205 kfree(fs_devices);
206}
207
208static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210{
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219}
220
221void btrfs_cleanup_fs_uuids(void)
222{
223 struct btrfs_fs_devices *fs_devices;
224
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
230 }
231}
232
233static struct btrfs_device *__alloc_device(void)
234{
235 struct btrfs_device *dev;
236
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255}
256
257static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
259{
260 struct btrfs_device *dev;
261
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 return dev;
266 }
267 }
268 return NULL;
269}
270
271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272{
273 struct btrfs_fs_devices *fs_devices;
274
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280}
281
282static int
283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286{
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317}
318
319static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321{
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331}
332
333/*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
344static noinline void run_scheduled_bios(struct btrfs_device *device)
345{
346 struct bio *pending;
347 struct backing_dev_info *bdi;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_pending_bios *pending_bios;
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
355 unsigned long limit;
356 unsigned long last_waited = 0;
357 int force_reg = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
368
369 bdi = blk_get_backing_dev_info(device->bdev);
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
373
374loop:
375 spin_lock(&device->io_lock);
376
377loop_lock:
378 num_run = 0;
379
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
384 */
385 if (!force_reg && device->pending_sync_bios.head) {
386 pending_bios = &device->pending_sync_bios;
387 force_reg = 1;
388 } else {
389 pending_bios = &device->pending_bios;
390 force_reg = 0;
391 }
392
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
395 WARN_ON(pending && !tail);
396
397 /*
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
401 *
402 * device->running_pending is used to synchronize with the
403 * schedule_bio code.
404 */
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
407 again = 0;
408 device->running_pending = 0;
409 } else {
410 again = 1;
411 device->running_pending = 1;
412 }
413
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
416
417 spin_unlock(&device->io_lock);
418
419 while (pending) {
420
421 rmb();
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
424 */
425 if ((num_run > 32 &&
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
432 goto loop_lock;
433 }
434
435 cur = pending;
436 pending = pending->bi_next;
437 cur->bi_next = NULL;
438
439 /*
440 * atomic_dec_return implies a barrier for waitqueue_active
441 */
442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
445
446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447
448 /*
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
451 *
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
454 * we add more
455 */
456 if (pending_bios == &device->pending_sync_bios) {
457 sync_pending = 1;
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
461 sync_pending = 0;
462 }
463
464 btrfsic_submit_bio(cur);
465 num_run++;
466 batch_run++;
467
468 cond_resched();
469
470 /*
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
473 * run instead
474 */
475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 fs_info->fs_devices->open_devices > 1) {
477 struct io_context *ioc;
478
479 ioc = current->io_context;
480
481 /*
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
485 *
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
489 */
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 (last_waited == 0 ||
493 ioc->last_waited == last_waited)) {
494 /*
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
499 */
500 last_waited = ioc->last_waited;
501 cond_resched();
502 continue;
503 }
504 spin_lock(&device->io_lock);
505 requeue_list(pending_bios, pending, tail);
506 device->running_pending = 1;
507
508 spin_unlock(&device->io_lock);
509 btrfs_queue_work(fs_info->submit_workers,
510 &device->work);
511 goto done;
512 }
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
517 sync_pending = 0;
518 }
519 }
520
521 cond_resched();
522 if (again)
523 goto loop;
524
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
527 goto loop_lock;
528 spin_unlock(&device->io_lock);
529
530done:
531 blk_finish_plug(&plug);
532}
533
534static void pending_bios_fn(struct btrfs_work *work)
535{
536 struct btrfs_device *device;
537
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
540}
541
542
543void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544{
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
547
548 if (!cur_dev->name)
549 return;
550
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
552 int del = 1;
553
554 if (fs_devs->opened)
555 continue;
556 if (fs_devs->seeding)
557 continue;
558
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561 if (dev == cur_dev)
562 continue;
563 if (!dev->name)
564 continue;
565
566 /*
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
571 */
572 rcu_read_lock();
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
575 rcu_read_unlock();
576 if (!del)
577 break;
578 }
579
580 if (!del) {
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
586 } else {
587 fs_devs->num_devices--;
588 list_del(&dev->dev_list);
589 rcu_string_free(dev->name);
590 kfree(dev);
591 }
592 break;
593 }
594 }
595}
596
597/*
598 * Add new device to list of registered devices
599 *
600 * Returns:
601 * 1 - first time device is seen
602 * 0 - device already known
603 * < 0 - error
604 */
605static noinline int device_list_add(const char *path,
606 struct btrfs_super_block *disk_super,
607 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608{
609 struct btrfs_device *device;
610 struct btrfs_fs_devices *fs_devices;
611 struct rcu_string *name;
612 int ret = 0;
613 u64 found_transid = btrfs_super_generation(disk_super);
614
615 fs_devices = find_fsid(disk_super->fsid);
616 if (!fs_devices) {
617 fs_devices = alloc_fs_devices(disk_super->fsid);
618 if (IS_ERR(fs_devices))
619 return PTR_ERR(fs_devices);
620
621 list_add(&fs_devices->list, &fs_uuids);
622
623 device = NULL;
624 } else {
625 device = __find_device(&fs_devices->devices, devid,
626 disk_super->dev_item.uuid);
627 }
628
629 if (!device) {
630 if (fs_devices->opened)
631 return -EBUSY;
632
633 device = btrfs_alloc_device(NULL, &devid,
634 disk_super->dev_item.uuid);
635 if (IS_ERR(device)) {
636 /* we can safely leave the fs_devices entry around */
637 return PTR_ERR(device);
638 }
639
640 name = rcu_string_strdup(path, GFP_NOFS);
641 if (!name) {
642 kfree(device);
643 return -ENOMEM;
644 }
645 rcu_assign_pointer(device->name, name);
646
647 mutex_lock(&fs_devices->device_list_mutex);
648 list_add_rcu(&device->dev_list, &fs_devices->devices);
649 fs_devices->num_devices++;
650 mutex_unlock(&fs_devices->device_list_mutex);
651
652 ret = 1;
653 device->fs_devices = fs_devices;
654 } else if (!device->name || strcmp(device->name->str, path)) {
655 /*
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
662 * different name. or
663 * b. The missing-disk-which-was-replaced, has
664 * reappeared now.
665 *
666 * We must allow 1 and 2a above. But 2b would be a spurious
667 * and unintentional.
668 *
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
673 */
674
675 /*
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
680 */
681 if (!fs_devices->opened && found_transid < device->generation) {
682 /*
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
688 */
689 return -EEXIST;
690 }
691
692 name = rcu_string_strdup(path, GFP_NOFS);
693 if (!name)
694 return -ENOMEM;
695 rcu_string_free(device->name);
696 rcu_assign_pointer(device->name, name);
697 if (device->missing) {
698 fs_devices->missing_devices--;
699 device->missing = 0;
700 }
701 }
702
703 /*
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
707 * (as above).
708 */
709 if (!fs_devices->opened)
710 device->generation = found_transid;
711
712 /*
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
715 */
716 if (ret > 0)
717 btrfs_free_stale_device(device);
718
719 *fs_devices_ret = fs_devices;
720
721 return ret;
722}
723
724static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725{
726 struct btrfs_fs_devices *fs_devices;
727 struct btrfs_device *device;
728 struct btrfs_device *orig_dev;
729
730 fs_devices = alloc_fs_devices(orig->fsid);
731 if (IS_ERR(fs_devices))
732 return fs_devices;
733
734 mutex_lock(&orig->device_list_mutex);
735 fs_devices->total_devices = orig->total_devices;
736
737 /* We have held the volume lock, it is safe to get the devices. */
738 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739 struct rcu_string *name;
740
741 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 orig_dev->uuid);
743 if (IS_ERR(device))
744 goto error;
745
746 /*
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
749 */
750 if (orig_dev->name) {
751 name = rcu_string_strdup(orig_dev->name->str,
752 GFP_KERNEL);
753 if (!name) {
754 kfree(device);
755 goto error;
756 }
757 rcu_assign_pointer(device->name, name);
758 }
759
760 list_add(&device->dev_list, &fs_devices->devices);
761 device->fs_devices = fs_devices;
762 fs_devices->num_devices++;
763 }
764 mutex_unlock(&orig->device_list_mutex);
765 return fs_devices;
766error:
767 mutex_unlock(&orig->device_list_mutex);
768 free_fs_devices(fs_devices);
769 return ERR_PTR(-ENOMEM);
770}
771
772void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773{
774 struct btrfs_device *device, *next;
775 struct btrfs_device *latest_dev = NULL;
776
777 mutex_lock(&uuid_mutex);
778again:
779 /* This is the initialized path, it is safe to release the devices. */
780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781 if (device->in_fs_metadata) {
782 if (!device->is_tgtdev_for_dev_replace &&
783 (!latest_dev ||
784 device->generation > latest_dev->generation)) {
785 latest_dev = device;
786 }
787 continue;
788 }
789
790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 /*
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
800 */
801 if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 continue;
803 }
804 }
805 if (device->bdev) {
806 blkdev_put(device->bdev, device->mode);
807 device->bdev = NULL;
808 fs_devices->open_devices--;
809 }
810 if (device->writeable) {
811 list_del_init(&device->dev_alloc_list);
812 device->writeable = 0;
813 if (!device->is_tgtdev_for_dev_replace)
814 fs_devices->rw_devices--;
815 }
816 list_del_init(&device->dev_list);
817 fs_devices->num_devices--;
818 rcu_string_free(device->name);
819 kfree(device);
820 }
821
822 if (fs_devices->seed) {
823 fs_devices = fs_devices->seed;
824 goto again;
825 }
826
827 fs_devices->latest_bdev = latest_dev->bdev;
828
829 mutex_unlock(&uuid_mutex);
830}
831
832static void __free_device(struct work_struct *work)
833{
834 struct btrfs_device *device;
835
836 device = container_of(work, struct btrfs_device, rcu_work);
837 rcu_string_free(device->name);
838 kfree(device);
839}
840
841static void free_device(struct rcu_head *head)
842{
843 struct btrfs_device *device;
844
845 device = container_of(head, struct btrfs_device, rcu);
846
847 INIT_WORK(&device->rcu_work, __free_device);
848 schedule_work(&device->rcu_work);
849}
850
851static void btrfs_close_bdev(struct btrfs_device *device)
852{
853 if (device->bdev && device->writeable) {
854 sync_blockdev(device->bdev);
855 invalidate_bdev(device->bdev);
856 }
857
858 if (device->bdev)
859 blkdev_put(device->bdev, device->mode);
860}
861
862static void btrfs_close_one_device(struct btrfs_device *device)
863{
864 struct btrfs_fs_devices *fs_devices = device->fs_devices;
865 struct btrfs_device *new_device;
866 struct rcu_string *name;
867
868 if (device->bdev)
869 fs_devices->open_devices--;
870
871 if (device->writeable &&
872 device->devid != BTRFS_DEV_REPLACE_DEVID) {
873 list_del_init(&device->dev_alloc_list);
874 fs_devices->rw_devices--;
875 }
876
877 if (device->missing)
878 fs_devices->missing_devices--;
879
880 btrfs_close_bdev(device);
881
882 new_device = btrfs_alloc_device(NULL, &device->devid,
883 device->uuid);
884 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885
886 /* Safe because we are under uuid_mutex */
887 if (device->name) {
888 name = rcu_string_strdup(device->name->str, GFP_NOFS);
889 BUG_ON(!name); /* -ENOMEM */
890 rcu_assign_pointer(new_device->name, name);
891 }
892
893 list_replace_rcu(&device->dev_list, &new_device->dev_list);
894 new_device->fs_devices = device->fs_devices;
895
896 call_rcu(&device->rcu, free_device);
897}
898
899static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
900{
901 struct btrfs_device *device, *tmp;
902
903 if (--fs_devices->opened > 0)
904 return 0;
905
906 mutex_lock(&fs_devices->device_list_mutex);
907 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
908 btrfs_close_one_device(device);
909 }
910 mutex_unlock(&fs_devices->device_list_mutex);
911
912 WARN_ON(fs_devices->open_devices);
913 WARN_ON(fs_devices->rw_devices);
914 fs_devices->opened = 0;
915 fs_devices->seeding = 0;
916
917 return 0;
918}
919
920int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921{
922 struct btrfs_fs_devices *seed_devices = NULL;
923 int ret;
924
925 mutex_lock(&uuid_mutex);
926 ret = __btrfs_close_devices(fs_devices);
927 if (!fs_devices->opened) {
928 seed_devices = fs_devices->seed;
929 fs_devices->seed = NULL;
930 }
931 mutex_unlock(&uuid_mutex);
932
933 while (seed_devices) {
934 fs_devices = seed_devices;
935 seed_devices = fs_devices->seed;
936 __btrfs_close_devices(fs_devices);
937 free_fs_devices(fs_devices);
938 }
939 /*
940 * Wait for rcu kworkers under __btrfs_close_devices
941 * to finish all blkdev_puts so device is really
942 * free when umount is done.
943 */
944 rcu_barrier();
945 return ret;
946}
947
948static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
949 fmode_t flags, void *holder)
950{
951 struct request_queue *q;
952 struct block_device *bdev;
953 struct list_head *head = &fs_devices->devices;
954 struct btrfs_device *device;
955 struct btrfs_device *latest_dev = NULL;
956 struct buffer_head *bh;
957 struct btrfs_super_block *disk_super;
958 u64 devid;
959 int seeding = 1;
960 int ret = 0;
961
962 flags |= FMODE_EXCL;
963
964 list_for_each_entry(device, head, dev_list) {
965 if (device->bdev)
966 continue;
967 if (!device->name)
968 continue;
969
970 /* Just open everything we can; ignore failures here */
971 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
972 &bdev, &bh))
973 continue;
974
975 disk_super = (struct btrfs_super_block *)bh->b_data;
976 devid = btrfs_stack_device_id(&disk_super->dev_item);
977 if (devid != device->devid)
978 goto error_brelse;
979
980 if (memcmp(device->uuid, disk_super->dev_item.uuid,
981 BTRFS_UUID_SIZE))
982 goto error_brelse;
983
984 device->generation = btrfs_super_generation(disk_super);
985 if (!latest_dev ||
986 device->generation > latest_dev->generation)
987 latest_dev = device;
988
989 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
990 device->writeable = 0;
991 } else {
992 device->writeable = !bdev_read_only(bdev);
993 seeding = 0;
994 }
995
996 q = bdev_get_queue(bdev);
997 if (blk_queue_discard(q))
998 device->can_discard = 1;
999
1000 device->bdev = bdev;
1001 device->in_fs_metadata = 0;
1002 device->mode = flags;
1003
1004 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1005 fs_devices->rotating = 1;
1006
1007 fs_devices->open_devices++;
1008 if (device->writeable &&
1009 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1010 fs_devices->rw_devices++;
1011 list_add(&device->dev_alloc_list,
1012 &fs_devices->alloc_list);
1013 }
1014 brelse(bh);
1015 continue;
1016
1017error_brelse:
1018 brelse(bh);
1019 blkdev_put(bdev, flags);
1020 continue;
1021 }
1022 if (fs_devices->open_devices == 0) {
1023 ret = -EINVAL;
1024 goto out;
1025 }
1026 fs_devices->seeding = seeding;
1027 fs_devices->opened = 1;
1028 fs_devices->latest_bdev = latest_dev->bdev;
1029 fs_devices->total_rw_bytes = 0;
1030out:
1031 return ret;
1032}
1033
1034int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1035 fmode_t flags, void *holder)
1036{
1037 int ret;
1038
1039 mutex_lock(&uuid_mutex);
1040 if (fs_devices->opened) {
1041 fs_devices->opened++;
1042 ret = 0;
1043 } else {
1044 ret = __btrfs_open_devices(fs_devices, flags, holder);
1045 }
1046 mutex_unlock(&uuid_mutex);
1047 return ret;
1048}
1049
1050void btrfs_release_disk_super(struct page *page)
1051{
1052 kunmap(page);
1053 put_page(page);
1054}
1055
1056int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1057 struct page **page, struct btrfs_super_block **disk_super)
1058{
1059 void *p;
1060 pgoff_t index;
1061
1062 /* make sure our super fits in the device */
1063 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1064 return 1;
1065
1066 /* make sure our super fits in the page */
1067 if (sizeof(**disk_super) > PAGE_SIZE)
1068 return 1;
1069
1070 /* make sure our super doesn't straddle pages on disk */
1071 index = bytenr >> PAGE_SHIFT;
1072 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1073 return 1;
1074
1075 /* pull in the page with our super */
1076 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1077 index, GFP_KERNEL);
1078
1079 if (IS_ERR_OR_NULL(*page))
1080 return 1;
1081
1082 p = kmap(*page);
1083
1084 /* align our pointer to the offset of the super block */
1085 *disk_super = p + (bytenr & ~PAGE_MASK);
1086
1087 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1088 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1089 btrfs_release_disk_super(*page);
1090 return 1;
1091 }
1092
1093 if ((*disk_super)->label[0] &&
1094 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1095 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1096
1097 return 0;
1098}
1099
1100/*
1101 * Look for a btrfs signature on a device. This may be called out of the mount path
1102 * and we are not allowed to call set_blocksize during the scan. The superblock
1103 * is read via pagecache
1104 */
1105int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1106 struct btrfs_fs_devices **fs_devices_ret)
1107{
1108 struct btrfs_super_block *disk_super;
1109 struct block_device *bdev;
1110 struct page *page;
1111 int ret = -EINVAL;
1112 u64 devid;
1113 u64 transid;
1114 u64 total_devices;
1115 u64 bytenr;
1116
1117 /*
1118 * we would like to check all the supers, but that would make
1119 * a btrfs mount succeed after a mkfs from a different FS.
1120 * So, we need to add a special mount option to scan for
1121 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1122 */
1123 bytenr = btrfs_sb_offset(0);
1124 flags |= FMODE_EXCL;
1125 mutex_lock(&uuid_mutex);
1126
1127 bdev = blkdev_get_by_path(path, flags, holder);
1128 if (IS_ERR(bdev)) {
1129 ret = PTR_ERR(bdev);
1130 goto error;
1131 }
1132
1133 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1134 goto error_bdev_put;
1135
1136 devid = btrfs_stack_device_id(&disk_super->dev_item);
1137 transid = btrfs_super_generation(disk_super);
1138 total_devices = btrfs_super_num_devices(disk_super);
1139
1140 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1141 if (ret > 0) {
1142 if (disk_super->label[0]) {
1143 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1144 } else {
1145 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1146 }
1147
1148 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1149 ret = 0;
1150 }
1151 if (!ret && fs_devices_ret)
1152 (*fs_devices_ret)->total_devices = total_devices;
1153
1154 btrfs_release_disk_super(page);
1155
1156error_bdev_put:
1157 blkdev_put(bdev, flags);
1158error:
1159 mutex_unlock(&uuid_mutex);
1160 return ret;
1161}
1162
1163/* helper to account the used device space in the range */
1164int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1165 u64 end, u64 *length)
1166{
1167 struct btrfs_key key;
1168 struct btrfs_root *root = device->dev_root;
1169 struct btrfs_dev_extent *dev_extent;
1170 struct btrfs_path *path;
1171 u64 extent_end;
1172 int ret;
1173 int slot;
1174 struct extent_buffer *l;
1175
1176 *length = 0;
1177
1178 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1179 return 0;
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
1184 path->reada = READA_FORWARD;
1185
1186 key.objectid = device->devid;
1187 key.offset = start;
1188 key.type = BTRFS_DEV_EXTENT_KEY;
1189
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto out;
1193 if (ret > 0) {
1194 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1195 if (ret < 0)
1196 goto out;
1197 }
1198
1199 while (1) {
1200 l = path->nodes[0];
1201 slot = path->slots[0];
1202 if (slot >= btrfs_header_nritems(l)) {
1203 ret = btrfs_next_leaf(root, path);
1204 if (ret == 0)
1205 continue;
1206 if (ret < 0)
1207 goto out;
1208
1209 break;
1210 }
1211 btrfs_item_key_to_cpu(l, &key, slot);
1212
1213 if (key.objectid < device->devid)
1214 goto next;
1215
1216 if (key.objectid > device->devid)
1217 break;
1218
1219 if (key.type != BTRFS_DEV_EXTENT_KEY)
1220 goto next;
1221
1222 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1223 extent_end = key.offset + btrfs_dev_extent_length(l,
1224 dev_extent);
1225 if (key.offset <= start && extent_end > end) {
1226 *length = end - start + 1;
1227 break;
1228 } else if (key.offset <= start && extent_end > start)
1229 *length += extent_end - start;
1230 else if (key.offset > start && extent_end <= end)
1231 *length += extent_end - key.offset;
1232 else if (key.offset > start && key.offset <= end) {
1233 *length += end - key.offset + 1;
1234 break;
1235 } else if (key.offset > end)
1236 break;
1237
1238next:
1239 path->slots[0]++;
1240 }
1241 ret = 0;
1242out:
1243 btrfs_free_path(path);
1244 return ret;
1245}
1246
1247static int contains_pending_extent(struct btrfs_transaction *transaction,
1248 struct btrfs_device *device,
1249 u64 *start, u64 len)
1250{
1251 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1252 struct extent_map *em;
1253 struct list_head *search_list = &fs_info->pinned_chunks;
1254 int ret = 0;
1255 u64 physical_start = *start;
1256
1257 if (transaction)
1258 search_list = &transaction->pending_chunks;
1259again:
1260 list_for_each_entry(em, search_list, list) {
1261 struct map_lookup *map;
1262 int i;
1263
1264 map = em->map_lookup;
1265 for (i = 0; i < map->num_stripes; i++) {
1266 u64 end;
1267
1268 if (map->stripes[i].dev != device)
1269 continue;
1270 if (map->stripes[i].physical >= physical_start + len ||
1271 map->stripes[i].physical + em->orig_block_len <=
1272 physical_start)
1273 continue;
1274 /*
1275 * Make sure that while processing the pinned list we do
1276 * not override our *start with a lower value, because
1277 * we can have pinned chunks that fall within this
1278 * device hole and that have lower physical addresses
1279 * than the pending chunks we processed before. If we
1280 * do not take this special care we can end up getting
1281 * 2 pending chunks that start at the same physical
1282 * device offsets because the end offset of a pinned
1283 * chunk can be equal to the start offset of some
1284 * pending chunk.
1285 */
1286 end = map->stripes[i].physical + em->orig_block_len;
1287 if (end > *start) {
1288 *start = end;
1289 ret = 1;
1290 }
1291 }
1292 }
1293 if (search_list != &fs_info->pinned_chunks) {
1294 search_list = &fs_info->pinned_chunks;
1295 goto again;
1296 }
1297
1298 return ret;
1299}
1300
1301
1302/*
1303 * find_free_dev_extent_start - find free space in the specified device
1304 * @device: the device which we search the free space in
1305 * @num_bytes: the size of the free space that we need
1306 * @search_start: the position from which to begin the search
1307 * @start: store the start of the free space.
1308 * @len: the size of the free space. that we find, or the size
1309 * of the max free space if we don't find suitable free space
1310 *
1311 * this uses a pretty simple search, the expectation is that it is
1312 * called very infrequently and that a given device has a small number
1313 * of extents
1314 *
1315 * @start is used to store the start of the free space if we find. But if we
1316 * don't find suitable free space, it will be used to store the start position
1317 * of the max free space.
1318 *
1319 * @len is used to store the size of the free space that we find.
1320 * But if we don't find suitable free space, it is used to store the size of
1321 * the max free space.
1322 */
1323int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1324 struct btrfs_device *device, u64 num_bytes,
1325 u64 search_start, u64 *start, u64 *len)
1326{
1327 struct btrfs_key key;
1328 struct btrfs_root *root = device->dev_root;
1329 struct btrfs_dev_extent *dev_extent;
1330 struct btrfs_path *path;
1331 u64 hole_size;
1332 u64 max_hole_start;
1333 u64 max_hole_size;
1334 u64 extent_end;
1335 u64 search_end = device->total_bytes;
1336 int ret;
1337 int slot;
1338 struct extent_buffer *l;
1339 u64 min_search_start;
1340
1341 /*
1342 * We don't want to overwrite the superblock on the drive nor any area
1343 * used by the boot loader (grub for example), so we make sure to start
1344 * at an offset of at least 1MB.
1345 */
1346 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1347 search_start = max(search_start, min_search_start);
1348
1349 path = btrfs_alloc_path();
1350 if (!path)
1351 return -ENOMEM;
1352
1353 max_hole_start = search_start;
1354 max_hole_size = 0;
1355
1356again:
1357 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1358 ret = -ENOSPC;
1359 goto out;
1360 }
1361
1362 path->reada = READA_FORWARD;
1363 path->search_commit_root = 1;
1364 path->skip_locking = 1;
1365
1366 key.objectid = device->devid;
1367 key.offset = search_start;
1368 key.type = BTRFS_DEV_EXTENT_KEY;
1369
1370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1371 if (ret < 0)
1372 goto out;
1373 if (ret > 0) {
1374 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1375 if (ret < 0)
1376 goto out;
1377 }
1378
1379 while (1) {
1380 l = path->nodes[0];
1381 slot = path->slots[0];
1382 if (slot >= btrfs_header_nritems(l)) {
1383 ret = btrfs_next_leaf(root, path);
1384 if (ret == 0)
1385 continue;
1386 if (ret < 0)
1387 goto out;
1388
1389 break;
1390 }
1391 btrfs_item_key_to_cpu(l, &key, slot);
1392
1393 if (key.objectid < device->devid)
1394 goto next;
1395
1396 if (key.objectid > device->devid)
1397 break;
1398
1399 if (key.type != BTRFS_DEV_EXTENT_KEY)
1400 goto next;
1401
1402 if (key.offset > search_start) {
1403 hole_size = key.offset - search_start;
1404
1405 /*
1406 * Have to check before we set max_hole_start, otherwise
1407 * we could end up sending back this offset anyway.
1408 */
1409 if (contains_pending_extent(transaction, device,
1410 &search_start,
1411 hole_size)) {
1412 if (key.offset >= search_start) {
1413 hole_size = key.offset - search_start;
1414 } else {
1415 WARN_ON_ONCE(1);
1416 hole_size = 0;
1417 }
1418 }
1419
1420 if (hole_size > max_hole_size) {
1421 max_hole_start = search_start;
1422 max_hole_size = hole_size;
1423 }
1424
1425 /*
1426 * If this free space is greater than which we need,
1427 * it must be the max free space that we have found
1428 * until now, so max_hole_start must point to the start
1429 * of this free space and the length of this free space
1430 * is stored in max_hole_size. Thus, we return
1431 * max_hole_start and max_hole_size and go back to the
1432 * caller.
1433 */
1434 if (hole_size >= num_bytes) {
1435 ret = 0;
1436 goto out;
1437 }
1438 }
1439
1440 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1441 extent_end = key.offset + btrfs_dev_extent_length(l,
1442 dev_extent);
1443 if (extent_end > search_start)
1444 search_start = extent_end;
1445next:
1446 path->slots[0]++;
1447 cond_resched();
1448 }
1449
1450 /*
1451 * At this point, search_start should be the end of
1452 * allocated dev extents, and when shrinking the device,
1453 * search_end may be smaller than search_start.
1454 */
1455 if (search_end > search_start) {
1456 hole_size = search_end - search_start;
1457
1458 if (contains_pending_extent(transaction, device, &search_start,
1459 hole_size)) {
1460 btrfs_release_path(path);
1461 goto again;
1462 }
1463
1464 if (hole_size > max_hole_size) {
1465 max_hole_start = search_start;
1466 max_hole_size = hole_size;
1467 }
1468 }
1469
1470 /* See above. */
1471 if (max_hole_size < num_bytes)
1472 ret = -ENOSPC;
1473 else
1474 ret = 0;
1475
1476out:
1477 btrfs_free_path(path);
1478 *start = max_hole_start;
1479 if (len)
1480 *len = max_hole_size;
1481 return ret;
1482}
1483
1484int find_free_dev_extent(struct btrfs_trans_handle *trans,
1485 struct btrfs_device *device, u64 num_bytes,
1486 u64 *start, u64 *len)
1487{
1488 /* FIXME use last free of some kind */
1489 return find_free_dev_extent_start(trans->transaction, device,
1490 num_bytes, 0, start, len);
1491}
1492
1493static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1494 struct btrfs_device *device,
1495 u64 start, u64 *dev_extent_len)
1496{
1497 int ret;
1498 struct btrfs_path *path;
1499 struct btrfs_root *root = device->dev_root;
1500 struct btrfs_key key;
1501 struct btrfs_key found_key;
1502 struct extent_buffer *leaf = NULL;
1503 struct btrfs_dev_extent *extent = NULL;
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
1509 key.objectid = device->devid;
1510 key.offset = start;
1511 key.type = BTRFS_DEV_EXTENT_KEY;
1512again:
1513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1514 if (ret > 0) {
1515 ret = btrfs_previous_item(root, path, key.objectid,
1516 BTRFS_DEV_EXTENT_KEY);
1517 if (ret)
1518 goto out;
1519 leaf = path->nodes[0];
1520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1521 extent = btrfs_item_ptr(leaf, path->slots[0],
1522 struct btrfs_dev_extent);
1523 BUG_ON(found_key.offset > start || found_key.offset +
1524 btrfs_dev_extent_length(leaf, extent) < start);
1525 key = found_key;
1526 btrfs_release_path(path);
1527 goto again;
1528 } else if (ret == 0) {
1529 leaf = path->nodes[0];
1530 extent = btrfs_item_ptr(leaf, path->slots[0],
1531 struct btrfs_dev_extent);
1532 } else {
1533 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1534 goto out;
1535 }
1536
1537 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1538
1539 ret = btrfs_del_item(trans, root, path);
1540 if (ret) {
1541 btrfs_handle_fs_error(root->fs_info, ret,
1542 "Failed to remove dev extent item");
1543 } else {
1544 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1545 }
1546out:
1547 btrfs_free_path(path);
1548 return ret;
1549}
1550
1551static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1552 struct btrfs_device *device,
1553 u64 chunk_tree, u64 chunk_objectid,
1554 u64 chunk_offset, u64 start, u64 num_bytes)
1555{
1556 int ret;
1557 struct btrfs_path *path;
1558 struct btrfs_root *root = device->dev_root;
1559 struct btrfs_dev_extent *extent;
1560 struct extent_buffer *leaf;
1561 struct btrfs_key key;
1562
1563 WARN_ON(!device->in_fs_metadata);
1564 WARN_ON(device->is_tgtdev_for_dev_replace);
1565 path = btrfs_alloc_path();
1566 if (!path)
1567 return -ENOMEM;
1568
1569 key.objectid = device->devid;
1570 key.offset = start;
1571 key.type = BTRFS_DEV_EXTENT_KEY;
1572 ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 sizeof(*extent));
1574 if (ret)
1575 goto out;
1576
1577 leaf = path->nodes[0];
1578 extent = btrfs_item_ptr(leaf, path->slots[0],
1579 struct btrfs_dev_extent);
1580 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1581 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1582 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1583
1584 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1585 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1586
1587 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1588 btrfs_mark_buffer_dirty(leaf);
1589out:
1590 btrfs_free_path(path);
1591 return ret;
1592}
1593
1594static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1595{
1596 struct extent_map_tree *em_tree;
1597 struct extent_map *em;
1598 struct rb_node *n;
1599 u64 ret = 0;
1600
1601 em_tree = &fs_info->mapping_tree.map_tree;
1602 read_lock(&em_tree->lock);
1603 n = rb_last(&em_tree->map);
1604 if (n) {
1605 em = rb_entry(n, struct extent_map, rb_node);
1606 ret = em->start + em->len;
1607 }
1608 read_unlock(&em_tree->lock);
1609
1610 return ret;
1611}
1612
1613static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1614 u64 *devid_ret)
1615{
1616 int ret;
1617 struct btrfs_key key;
1618 struct btrfs_key found_key;
1619 struct btrfs_path *path;
1620
1621 path = btrfs_alloc_path();
1622 if (!path)
1623 return -ENOMEM;
1624
1625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626 key.type = BTRFS_DEV_ITEM_KEY;
1627 key.offset = (u64)-1;
1628
1629 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1630 if (ret < 0)
1631 goto error;
1632
1633 BUG_ON(ret == 0); /* Corruption */
1634
1635 ret = btrfs_previous_item(fs_info->chunk_root, path,
1636 BTRFS_DEV_ITEMS_OBJECTID,
1637 BTRFS_DEV_ITEM_KEY);
1638 if (ret) {
1639 *devid_ret = 1;
1640 } else {
1641 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1642 path->slots[0]);
1643 *devid_ret = found_key.offset + 1;
1644 }
1645 ret = 0;
1646error:
1647 btrfs_free_path(path);
1648 return ret;
1649}
1650
1651/*
1652 * the device information is stored in the chunk root
1653 * the btrfs_device struct should be fully filled in
1654 */
1655static int btrfs_add_device(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_device *device)
1658{
1659 int ret;
1660 struct btrfs_path *path;
1661 struct btrfs_dev_item *dev_item;
1662 struct extent_buffer *leaf;
1663 struct btrfs_key key;
1664 unsigned long ptr;
1665
1666 root = root->fs_info->chunk_root;
1667
1668 path = btrfs_alloc_path();
1669 if (!path)
1670 return -ENOMEM;
1671
1672 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1673 key.type = BTRFS_DEV_ITEM_KEY;
1674 key.offset = device->devid;
1675
1676 ret = btrfs_insert_empty_item(trans, root, path, &key,
1677 sizeof(*dev_item));
1678 if (ret)
1679 goto out;
1680
1681 leaf = path->nodes[0];
1682 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1683
1684 btrfs_set_device_id(leaf, dev_item, device->devid);
1685 btrfs_set_device_generation(leaf, dev_item, 0);
1686 btrfs_set_device_type(leaf, dev_item, device->type);
1687 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1688 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1689 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1690 btrfs_set_device_total_bytes(leaf, dev_item,
1691 btrfs_device_get_disk_total_bytes(device));
1692 btrfs_set_device_bytes_used(leaf, dev_item,
1693 btrfs_device_get_bytes_used(device));
1694 btrfs_set_device_group(leaf, dev_item, 0);
1695 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1696 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1697 btrfs_set_device_start_offset(leaf, dev_item, 0);
1698
1699 ptr = btrfs_device_uuid(dev_item);
1700 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1701 ptr = btrfs_device_fsid(dev_item);
1702 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1703 btrfs_mark_buffer_dirty(leaf);
1704
1705 ret = 0;
1706out:
1707 btrfs_free_path(path);
1708 return ret;
1709}
1710
1711/*
1712 * Function to update ctime/mtime for a given device path.
1713 * Mainly used for ctime/mtime based probe like libblkid.
1714 */
1715static void update_dev_time(char *path_name)
1716{
1717 struct file *filp;
1718
1719 filp = filp_open(path_name, O_RDWR, 0);
1720 if (IS_ERR(filp))
1721 return;
1722 file_update_time(filp);
1723 filp_close(filp, NULL);
1724}
1725
1726static int btrfs_rm_dev_item(struct btrfs_root *root,
1727 struct btrfs_device *device)
1728{
1729 int ret;
1730 struct btrfs_path *path;
1731 struct btrfs_key key;
1732 struct btrfs_trans_handle *trans;
1733
1734 root = root->fs_info->chunk_root;
1735
1736 path = btrfs_alloc_path();
1737 if (!path)
1738 return -ENOMEM;
1739
1740 trans = btrfs_start_transaction(root, 0);
1741 if (IS_ERR(trans)) {
1742 btrfs_free_path(path);
1743 return PTR_ERR(trans);
1744 }
1745 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1746 key.type = BTRFS_DEV_ITEM_KEY;
1747 key.offset = device->devid;
1748
1749 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1750 if (ret < 0)
1751 goto out;
1752
1753 if (ret > 0) {
1754 ret = -ENOENT;
1755 goto out;
1756 }
1757
1758 ret = btrfs_del_item(trans, root, path);
1759 if (ret)
1760 goto out;
1761out:
1762 btrfs_free_path(path);
1763 btrfs_commit_transaction(trans, root);
1764 return ret;
1765}
1766
1767/*
1768 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1769 * filesystem. It's up to the caller to adjust that number regarding eg. device
1770 * replace.
1771 */
1772static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1773 u64 num_devices)
1774{
1775 u64 all_avail;
1776 unsigned seq;
1777 int i;
1778
1779 do {
1780 seq = read_seqbegin(&fs_info->profiles_lock);
1781
1782 all_avail = fs_info->avail_data_alloc_bits |
1783 fs_info->avail_system_alloc_bits |
1784 fs_info->avail_metadata_alloc_bits;
1785 } while (read_seqretry(&fs_info->profiles_lock, seq));
1786
1787 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1788 if (!(all_avail & btrfs_raid_group[i]))
1789 continue;
1790
1791 if (num_devices < btrfs_raid_array[i].devs_min) {
1792 int ret = btrfs_raid_mindev_error[i];
1793
1794 if (ret)
1795 return ret;
1796 }
1797 }
1798
1799 return 0;
1800}
1801
1802struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1803 struct btrfs_device *device)
1804{
1805 struct btrfs_device *next_device;
1806
1807 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1808 if (next_device != device &&
1809 !next_device->missing && next_device->bdev)
1810 return next_device;
1811 }
1812
1813 return NULL;
1814}
1815
1816/*
1817 * Helper function to check if the given device is part of s_bdev / latest_bdev
1818 * and replace it with the provided or the next active device, in the context
1819 * where this function called, there should be always be another device (or
1820 * this_dev) which is active.
1821 */
1822void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1823 struct btrfs_device *device, struct btrfs_device *this_dev)
1824{
1825 struct btrfs_device *next_device;
1826
1827 if (this_dev)
1828 next_device = this_dev;
1829 else
1830 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1831 device);
1832 ASSERT(next_device);
1833
1834 if (fs_info->sb->s_bdev &&
1835 (fs_info->sb->s_bdev == device->bdev))
1836 fs_info->sb->s_bdev = next_device->bdev;
1837
1838 if (fs_info->fs_devices->latest_bdev == device->bdev)
1839 fs_info->fs_devices->latest_bdev = next_device->bdev;
1840}
1841
1842int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1843{
1844 struct btrfs_device *device;
1845 struct btrfs_fs_devices *cur_devices;
1846 u64 num_devices;
1847 int ret = 0;
1848 bool clear_super = false;
1849
1850 mutex_lock(&uuid_mutex);
1851
1852 num_devices = root->fs_info->fs_devices->num_devices;
1853 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1854 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1855 WARN_ON(num_devices < 1);
1856 num_devices--;
1857 }
1858 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1859
1860 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1861 if (ret)
1862 goto out;
1863
1864 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1865 &device);
1866 if (ret)
1867 goto out;
1868
1869 if (device->is_tgtdev_for_dev_replace) {
1870 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1871 goto out;
1872 }
1873
1874 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1875 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1876 goto out;
1877 }
1878
1879 if (device->writeable) {
1880 lock_chunks(root);
1881 list_del_init(&device->dev_alloc_list);
1882 device->fs_devices->rw_devices--;
1883 unlock_chunks(root);
1884 clear_super = true;
1885 }
1886
1887 mutex_unlock(&uuid_mutex);
1888 ret = btrfs_shrink_device(device, 0);
1889 mutex_lock(&uuid_mutex);
1890 if (ret)
1891 goto error_undo;
1892
1893 /*
1894 * TODO: the superblock still includes this device in its num_devices
1895 * counter although write_all_supers() is not locked out. This
1896 * could give a filesystem state which requires a degraded mount.
1897 */
1898 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1899 if (ret)
1900 goto error_undo;
1901
1902 device->in_fs_metadata = 0;
1903 btrfs_scrub_cancel_dev(root->fs_info, device);
1904
1905 /*
1906 * the device list mutex makes sure that we don't change
1907 * the device list while someone else is writing out all
1908 * the device supers. Whoever is writing all supers, should
1909 * lock the device list mutex before getting the number of
1910 * devices in the super block (super_copy). Conversely,
1911 * whoever updates the number of devices in the super block
1912 * (super_copy) should hold the device list mutex.
1913 */
1914
1915 cur_devices = device->fs_devices;
1916 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1917 list_del_rcu(&device->dev_list);
1918
1919 device->fs_devices->num_devices--;
1920 device->fs_devices->total_devices--;
1921
1922 if (device->missing)
1923 device->fs_devices->missing_devices--;
1924
1925 btrfs_assign_next_active_device(root->fs_info, device, NULL);
1926
1927 if (device->bdev) {
1928 device->fs_devices->open_devices--;
1929 /* remove sysfs entry */
1930 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1931 }
1932
1933 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1934 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1935 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1936
1937 /*
1938 * at this point, the device is zero sized and detached from
1939 * the devices list. All that's left is to zero out the old
1940 * supers and free the device.
1941 */
1942 if (device->writeable)
1943 btrfs_scratch_superblocks(device->bdev, device->name->str);
1944
1945 btrfs_close_bdev(device);
1946 call_rcu(&device->rcu, free_device);
1947
1948 if (cur_devices->open_devices == 0) {
1949 struct btrfs_fs_devices *fs_devices;
1950 fs_devices = root->fs_info->fs_devices;
1951 while (fs_devices) {
1952 if (fs_devices->seed == cur_devices) {
1953 fs_devices->seed = cur_devices->seed;
1954 break;
1955 }
1956 fs_devices = fs_devices->seed;
1957 }
1958 cur_devices->seed = NULL;
1959 __btrfs_close_devices(cur_devices);
1960 free_fs_devices(cur_devices);
1961 }
1962
1963 root->fs_info->num_tolerated_disk_barrier_failures =
1964 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1965
1966out:
1967 mutex_unlock(&uuid_mutex);
1968 return ret;
1969
1970error_undo:
1971 if (device->writeable) {
1972 lock_chunks(root);
1973 list_add(&device->dev_alloc_list,
1974 &root->fs_info->fs_devices->alloc_list);
1975 device->fs_devices->rw_devices++;
1976 unlock_chunks(root);
1977 }
1978 goto out;
1979}
1980
1981void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1982 struct btrfs_device *srcdev)
1983{
1984 struct btrfs_fs_devices *fs_devices;
1985
1986 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1987
1988 /*
1989 * in case of fs with no seed, srcdev->fs_devices will point
1990 * to fs_devices of fs_info. However when the dev being replaced is
1991 * a seed dev it will point to the seed's local fs_devices. In short
1992 * srcdev will have its correct fs_devices in both the cases.
1993 */
1994 fs_devices = srcdev->fs_devices;
1995
1996 list_del_rcu(&srcdev->dev_list);
1997 list_del_rcu(&srcdev->dev_alloc_list);
1998 fs_devices->num_devices--;
1999 if (srcdev->missing)
2000 fs_devices->missing_devices--;
2001
2002 if (srcdev->writeable)
2003 fs_devices->rw_devices--;
2004
2005 if (srcdev->bdev)
2006 fs_devices->open_devices--;
2007}
2008
2009void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2010 struct btrfs_device *srcdev)
2011{
2012 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2013
2014 if (srcdev->writeable) {
2015 /* zero out the old super if it is writable */
2016 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2017 }
2018
2019 btrfs_close_bdev(srcdev);
2020
2021 call_rcu(&srcdev->rcu, free_device);
2022
2023 /*
2024 * unless fs_devices is seed fs, num_devices shouldn't go
2025 * zero
2026 */
2027 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2028
2029 /* if this is no devs we rather delete the fs_devices */
2030 if (!fs_devices->num_devices) {
2031 struct btrfs_fs_devices *tmp_fs_devices;
2032
2033 tmp_fs_devices = fs_info->fs_devices;
2034 while (tmp_fs_devices) {
2035 if (tmp_fs_devices->seed == fs_devices) {
2036 tmp_fs_devices->seed = fs_devices->seed;
2037 break;
2038 }
2039 tmp_fs_devices = tmp_fs_devices->seed;
2040 }
2041 fs_devices->seed = NULL;
2042 __btrfs_close_devices(fs_devices);
2043 free_fs_devices(fs_devices);
2044 }
2045}
2046
2047void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2048 struct btrfs_device *tgtdev)
2049{
2050 mutex_lock(&uuid_mutex);
2051 WARN_ON(!tgtdev);
2052 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2053
2054 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2055
2056 if (tgtdev->bdev)
2057 fs_info->fs_devices->open_devices--;
2058
2059 fs_info->fs_devices->num_devices--;
2060
2061 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2062
2063 list_del_rcu(&tgtdev->dev_list);
2064
2065 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2066 mutex_unlock(&uuid_mutex);
2067
2068 /*
2069 * The update_dev_time() with in btrfs_scratch_superblocks()
2070 * may lead to a call to btrfs_show_devname() which will try
2071 * to hold device_list_mutex. And here this device
2072 * is already out of device list, so we don't have to hold
2073 * the device_list_mutex lock.
2074 */
2075 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2076
2077 btrfs_close_bdev(tgtdev);
2078 call_rcu(&tgtdev->rcu, free_device);
2079}
2080
2081static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2082 struct btrfs_device **device)
2083{
2084 int ret = 0;
2085 struct btrfs_super_block *disk_super;
2086 u64 devid;
2087 u8 *dev_uuid;
2088 struct block_device *bdev;
2089 struct buffer_head *bh;
2090
2091 *device = NULL;
2092 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2093 root->fs_info->bdev_holder, 0, &bdev, &bh);
2094 if (ret)
2095 return ret;
2096 disk_super = (struct btrfs_super_block *)bh->b_data;
2097 devid = btrfs_stack_device_id(&disk_super->dev_item);
2098 dev_uuid = disk_super->dev_item.uuid;
2099 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2100 disk_super->fsid);
2101 brelse(bh);
2102 if (!*device)
2103 ret = -ENOENT;
2104 blkdev_put(bdev, FMODE_READ);
2105 return ret;
2106}
2107
2108int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2109 char *device_path,
2110 struct btrfs_device **device)
2111{
2112 *device = NULL;
2113 if (strcmp(device_path, "missing") == 0) {
2114 struct list_head *devices;
2115 struct btrfs_device *tmp;
2116
2117 devices = &root->fs_info->fs_devices->devices;
2118 /*
2119 * It is safe to read the devices since the volume_mutex
2120 * is held by the caller.
2121 */
2122 list_for_each_entry(tmp, devices, dev_list) {
2123 if (tmp->in_fs_metadata && !tmp->bdev) {
2124 *device = tmp;
2125 break;
2126 }
2127 }
2128
2129 if (!*device)
2130 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2131
2132 return 0;
2133 } else {
2134 return btrfs_find_device_by_path(root, device_path, device);
2135 }
2136}
2137
2138/*
2139 * Lookup a device given by device id, or the path if the id is 0.
2140 */
2141int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2142 char *devpath,
2143 struct btrfs_device **device)
2144{
2145 int ret;
2146
2147 if (devid) {
2148 ret = 0;
2149 *device = btrfs_find_device(root->fs_info, devid, NULL,
2150 NULL);
2151 if (!*device)
2152 ret = -ENOENT;
2153 } else {
2154 if (!devpath || !devpath[0])
2155 return -EINVAL;
2156
2157 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2158 device);
2159 }
2160 return ret;
2161}
2162
2163/*
2164 * does all the dirty work required for changing file system's UUID.
2165 */
2166static int btrfs_prepare_sprout(struct btrfs_root *root)
2167{
2168 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2169 struct btrfs_fs_devices *old_devices;
2170 struct btrfs_fs_devices *seed_devices;
2171 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2172 struct btrfs_device *device;
2173 u64 super_flags;
2174
2175 BUG_ON(!mutex_is_locked(&uuid_mutex));
2176 if (!fs_devices->seeding)
2177 return -EINVAL;
2178
2179 seed_devices = __alloc_fs_devices();
2180 if (IS_ERR(seed_devices))
2181 return PTR_ERR(seed_devices);
2182
2183 old_devices = clone_fs_devices(fs_devices);
2184 if (IS_ERR(old_devices)) {
2185 kfree(seed_devices);
2186 return PTR_ERR(old_devices);
2187 }
2188
2189 list_add(&old_devices->list, &fs_uuids);
2190
2191 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2192 seed_devices->opened = 1;
2193 INIT_LIST_HEAD(&seed_devices->devices);
2194 INIT_LIST_HEAD(&seed_devices->alloc_list);
2195 mutex_init(&seed_devices->device_list_mutex);
2196
2197 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2198 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2199 synchronize_rcu);
2200 list_for_each_entry(device, &seed_devices->devices, dev_list)
2201 device->fs_devices = seed_devices;
2202
2203 lock_chunks(root);
2204 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2205 unlock_chunks(root);
2206
2207 fs_devices->seeding = 0;
2208 fs_devices->num_devices = 0;
2209 fs_devices->open_devices = 0;
2210 fs_devices->missing_devices = 0;
2211 fs_devices->rotating = 0;
2212 fs_devices->seed = seed_devices;
2213
2214 generate_random_uuid(fs_devices->fsid);
2215 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2216 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2217 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2218
2219 super_flags = btrfs_super_flags(disk_super) &
2220 ~BTRFS_SUPER_FLAG_SEEDING;
2221 btrfs_set_super_flags(disk_super, super_flags);
2222
2223 return 0;
2224}
2225
2226/*
2227 * Store the expected generation for seed devices in device items.
2228 */
2229static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2230 struct btrfs_root *root)
2231{
2232 struct btrfs_path *path;
2233 struct extent_buffer *leaf;
2234 struct btrfs_dev_item *dev_item;
2235 struct btrfs_device *device;
2236 struct btrfs_key key;
2237 u8 fs_uuid[BTRFS_UUID_SIZE];
2238 u8 dev_uuid[BTRFS_UUID_SIZE];
2239 u64 devid;
2240 int ret;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 root = root->fs_info->chunk_root;
2247 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2248 key.offset = 0;
2249 key.type = BTRFS_DEV_ITEM_KEY;
2250
2251 while (1) {
2252 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2253 if (ret < 0)
2254 goto error;
2255
2256 leaf = path->nodes[0];
2257next_slot:
2258 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2259 ret = btrfs_next_leaf(root, path);
2260 if (ret > 0)
2261 break;
2262 if (ret < 0)
2263 goto error;
2264 leaf = path->nodes[0];
2265 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2266 btrfs_release_path(path);
2267 continue;
2268 }
2269
2270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2271 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2272 key.type != BTRFS_DEV_ITEM_KEY)
2273 break;
2274
2275 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2276 struct btrfs_dev_item);
2277 devid = btrfs_device_id(leaf, dev_item);
2278 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2279 BTRFS_UUID_SIZE);
2280 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2281 BTRFS_UUID_SIZE);
2282 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2283 fs_uuid);
2284 BUG_ON(!device); /* Logic error */
2285
2286 if (device->fs_devices->seeding) {
2287 btrfs_set_device_generation(leaf, dev_item,
2288 device->generation);
2289 btrfs_mark_buffer_dirty(leaf);
2290 }
2291
2292 path->slots[0]++;
2293 goto next_slot;
2294 }
2295 ret = 0;
2296error:
2297 btrfs_free_path(path);
2298 return ret;
2299}
2300
2301int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2302{
2303 struct request_queue *q;
2304 struct btrfs_trans_handle *trans;
2305 struct btrfs_device *device;
2306 struct block_device *bdev;
2307 struct list_head *devices;
2308 struct super_block *sb = root->fs_info->sb;
2309 struct rcu_string *name;
2310 u64 tmp;
2311 int seeding_dev = 0;
2312 int ret = 0;
2313
2314 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2315 return -EROFS;
2316
2317 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2318 root->fs_info->bdev_holder);
2319 if (IS_ERR(bdev))
2320 return PTR_ERR(bdev);
2321
2322 if (root->fs_info->fs_devices->seeding) {
2323 seeding_dev = 1;
2324 down_write(&sb->s_umount);
2325 mutex_lock(&uuid_mutex);
2326 }
2327
2328 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2329
2330 devices = &root->fs_info->fs_devices->devices;
2331
2332 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2333 list_for_each_entry(device, devices, dev_list) {
2334 if (device->bdev == bdev) {
2335 ret = -EEXIST;
2336 mutex_unlock(
2337 &root->fs_info->fs_devices->device_list_mutex);
2338 goto error;
2339 }
2340 }
2341 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2342
2343 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2344 if (IS_ERR(device)) {
2345 /* we can safely leave the fs_devices entry around */
2346 ret = PTR_ERR(device);
2347 goto error;
2348 }
2349
2350 name = rcu_string_strdup(device_path, GFP_KERNEL);
2351 if (!name) {
2352 kfree(device);
2353 ret = -ENOMEM;
2354 goto error;
2355 }
2356 rcu_assign_pointer(device->name, name);
2357
2358 trans = btrfs_start_transaction(root, 0);
2359 if (IS_ERR(trans)) {
2360 rcu_string_free(device->name);
2361 kfree(device);
2362 ret = PTR_ERR(trans);
2363 goto error;
2364 }
2365
2366 q = bdev_get_queue(bdev);
2367 if (blk_queue_discard(q))
2368 device->can_discard = 1;
2369 device->writeable = 1;
2370 device->generation = trans->transid;
2371 device->io_width = root->sectorsize;
2372 device->io_align = root->sectorsize;
2373 device->sector_size = root->sectorsize;
2374 device->total_bytes = i_size_read(bdev->bd_inode);
2375 device->disk_total_bytes = device->total_bytes;
2376 device->commit_total_bytes = device->total_bytes;
2377 device->dev_root = root->fs_info->dev_root;
2378 device->bdev = bdev;
2379 device->in_fs_metadata = 1;
2380 device->is_tgtdev_for_dev_replace = 0;
2381 device->mode = FMODE_EXCL;
2382 device->dev_stats_valid = 1;
2383 set_blocksize(device->bdev, 4096);
2384
2385 if (seeding_dev) {
2386 sb->s_flags &= ~MS_RDONLY;
2387 ret = btrfs_prepare_sprout(root);
2388 BUG_ON(ret); /* -ENOMEM */
2389 }
2390
2391 device->fs_devices = root->fs_info->fs_devices;
2392
2393 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2394 lock_chunks(root);
2395 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2396 list_add(&device->dev_alloc_list,
2397 &root->fs_info->fs_devices->alloc_list);
2398 root->fs_info->fs_devices->num_devices++;
2399 root->fs_info->fs_devices->open_devices++;
2400 root->fs_info->fs_devices->rw_devices++;
2401 root->fs_info->fs_devices->total_devices++;
2402 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2403
2404 spin_lock(&root->fs_info->free_chunk_lock);
2405 root->fs_info->free_chunk_space += device->total_bytes;
2406 spin_unlock(&root->fs_info->free_chunk_lock);
2407
2408 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2409 root->fs_info->fs_devices->rotating = 1;
2410
2411 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2412 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2413 tmp + device->total_bytes);
2414
2415 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2416 btrfs_set_super_num_devices(root->fs_info->super_copy,
2417 tmp + 1);
2418
2419 /* add sysfs device entry */
2420 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2421
2422 /*
2423 * we've got more storage, clear any full flags on the space
2424 * infos
2425 */
2426 btrfs_clear_space_info_full(root->fs_info);
2427
2428 unlock_chunks(root);
2429 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2430
2431 if (seeding_dev) {
2432 lock_chunks(root);
2433 ret = init_first_rw_device(trans, root, device);
2434 unlock_chunks(root);
2435 if (ret) {
2436 btrfs_abort_transaction(trans, ret);
2437 goto error_trans;
2438 }
2439 }
2440
2441 ret = btrfs_add_device(trans, root, device);
2442 if (ret) {
2443 btrfs_abort_transaction(trans, ret);
2444 goto error_trans;
2445 }
2446
2447 if (seeding_dev) {
2448 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2449
2450 ret = btrfs_finish_sprout(trans, root);
2451 if (ret) {
2452 btrfs_abort_transaction(trans, ret);
2453 goto error_trans;
2454 }
2455
2456 /* Sprouting would change fsid of the mounted root,
2457 * so rename the fsid on the sysfs
2458 */
2459 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2460 root->fs_info->fsid);
2461 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2462 fsid_buf))
2463 btrfs_warn(root->fs_info,
2464 "sysfs: failed to create fsid for sprout");
2465 }
2466
2467 root->fs_info->num_tolerated_disk_barrier_failures =
2468 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2469 ret = btrfs_commit_transaction(trans, root);
2470
2471 if (seeding_dev) {
2472 mutex_unlock(&uuid_mutex);
2473 up_write(&sb->s_umount);
2474
2475 if (ret) /* transaction commit */
2476 return ret;
2477
2478 ret = btrfs_relocate_sys_chunks(root);
2479 if (ret < 0)
2480 btrfs_handle_fs_error(root->fs_info, ret,
2481 "Failed to relocate sys chunks after "
2482 "device initialization. This can be fixed "
2483 "using the \"btrfs balance\" command.");
2484 trans = btrfs_attach_transaction(root);
2485 if (IS_ERR(trans)) {
2486 if (PTR_ERR(trans) == -ENOENT)
2487 return 0;
2488 return PTR_ERR(trans);
2489 }
2490 ret = btrfs_commit_transaction(trans, root);
2491 }
2492
2493 /* Update ctime/mtime for libblkid */
2494 update_dev_time(device_path);
2495 return ret;
2496
2497error_trans:
2498 btrfs_end_transaction(trans, root);
2499 rcu_string_free(device->name);
2500 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2501 kfree(device);
2502error:
2503 blkdev_put(bdev, FMODE_EXCL);
2504 if (seeding_dev) {
2505 mutex_unlock(&uuid_mutex);
2506 up_write(&sb->s_umount);
2507 }
2508 return ret;
2509}
2510
2511int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2512 struct btrfs_device *srcdev,
2513 struct btrfs_device **device_out)
2514{
2515 struct request_queue *q;
2516 struct btrfs_device *device;
2517 struct block_device *bdev;
2518 struct btrfs_fs_info *fs_info = root->fs_info;
2519 struct list_head *devices;
2520 struct rcu_string *name;
2521 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2522 int ret = 0;
2523
2524 *device_out = NULL;
2525 if (fs_info->fs_devices->seeding) {
2526 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2527 return -EINVAL;
2528 }
2529
2530 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2531 fs_info->bdev_holder);
2532 if (IS_ERR(bdev)) {
2533 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2534 return PTR_ERR(bdev);
2535 }
2536
2537 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2538
2539 devices = &fs_info->fs_devices->devices;
2540 list_for_each_entry(device, devices, dev_list) {
2541 if (device->bdev == bdev) {
2542 btrfs_err(fs_info, "target device is in the filesystem!");
2543 ret = -EEXIST;
2544 goto error;
2545 }
2546 }
2547
2548
2549 if (i_size_read(bdev->bd_inode) <
2550 btrfs_device_get_total_bytes(srcdev)) {
2551 btrfs_err(fs_info, "target device is smaller than source device!");
2552 ret = -EINVAL;
2553 goto error;
2554 }
2555
2556
2557 device = btrfs_alloc_device(NULL, &devid, NULL);
2558 if (IS_ERR(device)) {
2559 ret = PTR_ERR(device);
2560 goto error;
2561 }
2562
2563 name = rcu_string_strdup(device_path, GFP_NOFS);
2564 if (!name) {
2565 kfree(device);
2566 ret = -ENOMEM;
2567 goto error;
2568 }
2569 rcu_assign_pointer(device->name, name);
2570
2571 q = bdev_get_queue(bdev);
2572 if (blk_queue_discard(q))
2573 device->can_discard = 1;
2574 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2575 device->writeable = 1;
2576 device->generation = 0;
2577 device->io_width = root->sectorsize;
2578 device->io_align = root->sectorsize;
2579 device->sector_size = root->sectorsize;
2580 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2581 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2582 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2583 ASSERT(list_empty(&srcdev->resized_list));
2584 device->commit_total_bytes = srcdev->commit_total_bytes;
2585 device->commit_bytes_used = device->bytes_used;
2586 device->dev_root = fs_info->dev_root;
2587 device->bdev = bdev;
2588 device->in_fs_metadata = 1;
2589 device->is_tgtdev_for_dev_replace = 1;
2590 device->mode = FMODE_EXCL;
2591 device->dev_stats_valid = 1;
2592 set_blocksize(device->bdev, 4096);
2593 device->fs_devices = fs_info->fs_devices;
2594 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2595 fs_info->fs_devices->num_devices++;
2596 fs_info->fs_devices->open_devices++;
2597 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2598
2599 *device_out = device;
2600 return ret;
2601
2602error:
2603 blkdev_put(bdev, FMODE_EXCL);
2604 return ret;
2605}
2606
2607void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2608 struct btrfs_device *tgtdev)
2609{
2610 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2611 tgtdev->io_width = fs_info->dev_root->sectorsize;
2612 tgtdev->io_align = fs_info->dev_root->sectorsize;
2613 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2614 tgtdev->dev_root = fs_info->dev_root;
2615 tgtdev->in_fs_metadata = 1;
2616}
2617
2618static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2619 struct btrfs_device *device)
2620{
2621 int ret;
2622 struct btrfs_path *path;
2623 struct btrfs_root *root;
2624 struct btrfs_dev_item *dev_item;
2625 struct extent_buffer *leaf;
2626 struct btrfs_key key;
2627
2628 root = device->dev_root->fs_info->chunk_root;
2629
2630 path = btrfs_alloc_path();
2631 if (!path)
2632 return -ENOMEM;
2633
2634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2635 key.type = BTRFS_DEV_ITEM_KEY;
2636 key.offset = device->devid;
2637
2638 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2639 if (ret < 0)
2640 goto out;
2641
2642 if (ret > 0) {
2643 ret = -ENOENT;
2644 goto out;
2645 }
2646
2647 leaf = path->nodes[0];
2648 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2649
2650 btrfs_set_device_id(leaf, dev_item, device->devid);
2651 btrfs_set_device_type(leaf, dev_item, device->type);
2652 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2653 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2654 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2655 btrfs_set_device_total_bytes(leaf, dev_item,
2656 btrfs_device_get_disk_total_bytes(device));
2657 btrfs_set_device_bytes_used(leaf, dev_item,
2658 btrfs_device_get_bytes_used(device));
2659 btrfs_mark_buffer_dirty(leaf);
2660
2661out:
2662 btrfs_free_path(path);
2663 return ret;
2664}
2665
2666int btrfs_grow_device(struct btrfs_trans_handle *trans,
2667 struct btrfs_device *device, u64 new_size)
2668{
2669 struct btrfs_super_block *super_copy =
2670 device->dev_root->fs_info->super_copy;
2671 struct btrfs_fs_devices *fs_devices;
2672 u64 old_total;
2673 u64 diff;
2674
2675 if (!device->writeable)
2676 return -EACCES;
2677
2678 lock_chunks(device->dev_root);
2679 old_total = btrfs_super_total_bytes(super_copy);
2680 diff = new_size - device->total_bytes;
2681
2682 if (new_size <= device->total_bytes ||
2683 device->is_tgtdev_for_dev_replace) {
2684 unlock_chunks(device->dev_root);
2685 return -EINVAL;
2686 }
2687
2688 fs_devices = device->dev_root->fs_info->fs_devices;
2689
2690 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2691 device->fs_devices->total_rw_bytes += diff;
2692
2693 btrfs_device_set_total_bytes(device, new_size);
2694 btrfs_device_set_disk_total_bytes(device, new_size);
2695 btrfs_clear_space_info_full(device->dev_root->fs_info);
2696 if (list_empty(&device->resized_list))
2697 list_add_tail(&device->resized_list,
2698 &fs_devices->resized_devices);
2699 unlock_chunks(device->dev_root);
2700
2701 return btrfs_update_device(trans, device);
2702}
2703
2704static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *root, u64 chunk_objectid,
2706 u64 chunk_offset)
2707{
2708 int ret;
2709 struct btrfs_path *path;
2710 struct btrfs_key key;
2711
2712 root = root->fs_info->chunk_root;
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 return -ENOMEM;
2716
2717 key.objectid = chunk_objectid;
2718 key.offset = chunk_offset;
2719 key.type = BTRFS_CHUNK_ITEM_KEY;
2720
2721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2722 if (ret < 0)
2723 goto out;
2724 else if (ret > 0) { /* Logic error or corruption */
2725 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2726 "Failed lookup while freeing chunk.");
2727 ret = -ENOENT;
2728 goto out;
2729 }
2730
2731 ret = btrfs_del_item(trans, root, path);
2732 if (ret < 0)
2733 btrfs_handle_fs_error(root->fs_info, ret,
2734 "Failed to delete chunk item.");
2735out:
2736 btrfs_free_path(path);
2737 return ret;
2738}
2739
2740static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2741 chunk_offset)
2742{
2743 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2744 struct btrfs_disk_key *disk_key;
2745 struct btrfs_chunk *chunk;
2746 u8 *ptr;
2747 int ret = 0;
2748 u32 num_stripes;
2749 u32 array_size;
2750 u32 len = 0;
2751 u32 cur;
2752 struct btrfs_key key;
2753
2754 lock_chunks(root);
2755 array_size = btrfs_super_sys_array_size(super_copy);
2756
2757 ptr = super_copy->sys_chunk_array;
2758 cur = 0;
2759
2760 while (cur < array_size) {
2761 disk_key = (struct btrfs_disk_key *)ptr;
2762 btrfs_disk_key_to_cpu(&key, disk_key);
2763
2764 len = sizeof(*disk_key);
2765
2766 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2767 chunk = (struct btrfs_chunk *)(ptr + len);
2768 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2769 len += btrfs_chunk_item_size(num_stripes);
2770 } else {
2771 ret = -EIO;
2772 break;
2773 }
2774 if (key.objectid == chunk_objectid &&
2775 key.offset == chunk_offset) {
2776 memmove(ptr, ptr + len, array_size - (cur + len));
2777 array_size -= len;
2778 btrfs_set_super_sys_array_size(super_copy, array_size);
2779 } else {
2780 ptr += len;
2781 cur += len;
2782 }
2783 }
2784 unlock_chunks(root);
2785 return ret;
2786}
2787
2788int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *root, u64 chunk_offset)
2790{
2791 struct extent_map_tree *em_tree;
2792 struct extent_map *em;
2793 struct btrfs_root *extent_root = root->fs_info->extent_root;
2794 struct map_lookup *map;
2795 u64 dev_extent_len = 0;
2796 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2797 int i, ret = 0;
2798 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2799
2800 /* Just in case */
2801 root = root->fs_info->chunk_root;
2802 em_tree = &root->fs_info->mapping_tree.map_tree;
2803
2804 read_lock(&em_tree->lock);
2805 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2806 read_unlock(&em_tree->lock);
2807
2808 if (!em || em->start > chunk_offset ||
2809 em->start + em->len < chunk_offset) {
2810 /*
2811 * This is a logic error, but we don't want to just rely on the
2812 * user having built with ASSERT enabled, so if ASSERT doesn't
2813 * do anything we still error out.
2814 */
2815 ASSERT(0);
2816 if (em)
2817 free_extent_map(em);
2818 return -EINVAL;
2819 }
2820 map = em->map_lookup;
2821 lock_chunks(root->fs_info->chunk_root);
2822 check_system_chunk(trans, extent_root, map->type);
2823 unlock_chunks(root->fs_info->chunk_root);
2824
2825 /*
2826 * Take the device list mutex to prevent races with the final phase of
2827 * a device replace operation that replaces the device object associated
2828 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2829 */
2830 mutex_lock(&fs_devices->device_list_mutex);
2831 for (i = 0; i < map->num_stripes; i++) {
2832 struct btrfs_device *device = map->stripes[i].dev;
2833 ret = btrfs_free_dev_extent(trans, device,
2834 map->stripes[i].physical,
2835 &dev_extent_len);
2836 if (ret) {
2837 mutex_unlock(&fs_devices->device_list_mutex);
2838 btrfs_abort_transaction(trans, ret);
2839 goto out;
2840 }
2841
2842 if (device->bytes_used > 0) {
2843 lock_chunks(root);
2844 btrfs_device_set_bytes_used(device,
2845 device->bytes_used - dev_extent_len);
2846 spin_lock(&root->fs_info->free_chunk_lock);
2847 root->fs_info->free_chunk_space += dev_extent_len;
2848 spin_unlock(&root->fs_info->free_chunk_lock);
2849 btrfs_clear_space_info_full(root->fs_info);
2850 unlock_chunks(root);
2851 }
2852
2853 if (map->stripes[i].dev) {
2854 ret = btrfs_update_device(trans, map->stripes[i].dev);
2855 if (ret) {
2856 mutex_unlock(&fs_devices->device_list_mutex);
2857 btrfs_abort_transaction(trans, ret);
2858 goto out;
2859 }
2860 }
2861 }
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863
2864 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2865 if (ret) {
2866 btrfs_abort_transaction(trans, ret);
2867 goto out;
2868 }
2869
2870 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2871
2872 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2873 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2874 if (ret) {
2875 btrfs_abort_transaction(trans, ret);
2876 goto out;
2877 }
2878 }
2879
2880 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2881 if (ret) {
2882 btrfs_abort_transaction(trans, ret);
2883 goto out;
2884 }
2885
2886out:
2887 /* once for us */
2888 free_extent_map(em);
2889 return ret;
2890}
2891
2892static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2893{
2894 struct btrfs_root *extent_root;
2895 int ret;
2896 struct btrfs_block_group_cache *block_group;
2897
2898 root = root->fs_info->chunk_root;
2899 extent_root = root->fs_info->extent_root;
2900
2901 /*
2902 * Prevent races with automatic removal of unused block groups.
2903 * After we relocate and before we remove the chunk with offset
2904 * chunk_offset, automatic removal of the block group can kick in,
2905 * resulting in a failure when calling btrfs_remove_chunk() below.
2906 *
2907 * Make sure to acquire this mutex before doing a tree search (dev
2908 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2909 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2910 * we release the path used to search the chunk/dev tree and before
2911 * the current task acquires this mutex and calls us.
2912 */
2913 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2914
2915 ret = btrfs_can_relocate(extent_root, chunk_offset);
2916 if (ret)
2917 return -ENOSPC;
2918
2919 /* step one, relocate all the extents inside this chunk */
2920 btrfs_scrub_pause(root);
2921 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2922 btrfs_scrub_continue(root);
2923 if (ret)
2924 return ret;
2925
2926 /*
2927 * step two, flag the chunk as removed and let
2928 * btrfs_delete_unused_bgs() remove it.
2929 */
2930 block_group = btrfs_lookup_block_group(root->fs_info, chunk_offset);
2931 spin_lock(&block_group->lock);
2932 block_group->removed = 1;
2933 spin_unlock(&block_group->lock);
2934 btrfs_put_block_group(block_group);
2935
2936 return 0;
2937}
2938
2939static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2940{
2941 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2942 struct btrfs_path *path;
2943 struct extent_buffer *leaf;
2944 struct btrfs_chunk *chunk;
2945 struct btrfs_key key;
2946 struct btrfs_key found_key;
2947 u64 chunk_type;
2948 bool retried = false;
2949 int failed = 0;
2950 int ret;
2951
2952 path = btrfs_alloc_path();
2953 if (!path)
2954 return -ENOMEM;
2955
2956again:
2957 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2958 key.offset = (u64)-1;
2959 key.type = BTRFS_CHUNK_ITEM_KEY;
2960
2961 while (1) {
2962 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2963 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2964 if (ret < 0) {
2965 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2966 goto error;
2967 }
2968 BUG_ON(ret == 0); /* Corruption */
2969
2970 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2971 key.type);
2972 if (ret)
2973 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2974 if (ret < 0)
2975 goto error;
2976 if (ret > 0)
2977 break;
2978
2979 leaf = path->nodes[0];
2980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2981
2982 chunk = btrfs_item_ptr(leaf, path->slots[0],
2983 struct btrfs_chunk);
2984 chunk_type = btrfs_chunk_type(leaf, chunk);
2985 btrfs_release_path(path);
2986
2987 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2988 ret = btrfs_relocate_chunk(chunk_root,
2989 found_key.offset);
2990 if (ret == -ENOSPC)
2991 failed++;
2992 else
2993 BUG_ON(ret);
2994 }
2995 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2996
2997 if (found_key.offset == 0)
2998 break;
2999 key.offset = found_key.offset - 1;
3000 }
3001 ret = 0;
3002 if (failed && !retried) {
3003 failed = 0;
3004 retried = true;
3005 goto again;
3006 } else if (WARN_ON(failed && retried)) {
3007 ret = -ENOSPC;
3008 }
3009error:
3010 btrfs_free_path(path);
3011 return ret;
3012}
3013
3014static int insert_balance_item(struct btrfs_root *root,
3015 struct btrfs_balance_control *bctl)
3016{
3017 struct btrfs_trans_handle *trans;
3018 struct btrfs_balance_item *item;
3019 struct btrfs_disk_balance_args disk_bargs;
3020 struct btrfs_path *path;
3021 struct extent_buffer *leaf;
3022 struct btrfs_key key;
3023 int ret, err;
3024
3025 path = btrfs_alloc_path();
3026 if (!path)
3027 return -ENOMEM;
3028
3029 trans = btrfs_start_transaction(root, 0);
3030 if (IS_ERR(trans)) {
3031 btrfs_free_path(path);
3032 return PTR_ERR(trans);
3033 }
3034
3035 key.objectid = BTRFS_BALANCE_OBJECTID;
3036 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3037 key.offset = 0;
3038
3039 ret = btrfs_insert_empty_item(trans, root, path, &key,
3040 sizeof(*item));
3041 if (ret)
3042 goto out;
3043
3044 leaf = path->nodes[0];
3045 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3046
3047 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3048
3049 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3050 btrfs_set_balance_data(leaf, item, &disk_bargs);
3051 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3052 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3053 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3054 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3055
3056 btrfs_set_balance_flags(leaf, item, bctl->flags);
3057
3058 btrfs_mark_buffer_dirty(leaf);
3059out:
3060 btrfs_free_path(path);
3061 err = btrfs_commit_transaction(trans, root);
3062 if (err && !ret)
3063 ret = err;
3064 return ret;
3065}
3066
3067static int del_balance_item(struct btrfs_root *root)
3068{
3069 struct btrfs_trans_handle *trans;
3070 struct btrfs_path *path;
3071 struct btrfs_key key;
3072 int ret, err;
3073
3074 path = btrfs_alloc_path();
3075 if (!path)
3076 return -ENOMEM;
3077
3078 trans = btrfs_start_transaction(root, 0);
3079 if (IS_ERR(trans)) {
3080 btrfs_free_path(path);
3081 return PTR_ERR(trans);
3082 }
3083
3084 key.objectid = BTRFS_BALANCE_OBJECTID;
3085 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3086 key.offset = 0;
3087
3088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3089 if (ret < 0)
3090 goto out;
3091 if (ret > 0) {
3092 ret = -ENOENT;
3093 goto out;
3094 }
3095
3096 ret = btrfs_del_item(trans, root, path);
3097out:
3098 btrfs_free_path(path);
3099 err = btrfs_commit_transaction(trans, root);
3100 if (err && !ret)
3101 ret = err;
3102 return ret;
3103}
3104
3105/*
3106 * This is a heuristic used to reduce the number of chunks balanced on
3107 * resume after balance was interrupted.
3108 */
3109static void update_balance_args(struct btrfs_balance_control *bctl)
3110{
3111 /*
3112 * Turn on soft mode for chunk types that were being converted.
3113 */
3114 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3115 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3116 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3117 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3118 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3119 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3120
3121 /*
3122 * Turn on usage filter if is not already used. The idea is
3123 * that chunks that we have already balanced should be
3124 * reasonably full. Don't do it for chunks that are being
3125 * converted - that will keep us from relocating unconverted
3126 * (albeit full) chunks.
3127 */
3128 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3129 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3130 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3131 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3132 bctl->data.usage = 90;
3133 }
3134 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3135 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3136 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3137 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3138 bctl->sys.usage = 90;
3139 }
3140 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3141 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3142 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3143 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3144 bctl->meta.usage = 90;
3145 }
3146}
3147
3148/*
3149 * Should be called with both balance and volume mutexes held to
3150 * serialize other volume operations (add_dev/rm_dev/resize) with
3151 * restriper. Same goes for unset_balance_control.
3152 */
3153static void set_balance_control(struct btrfs_balance_control *bctl)
3154{
3155 struct btrfs_fs_info *fs_info = bctl->fs_info;
3156
3157 BUG_ON(fs_info->balance_ctl);
3158
3159 spin_lock(&fs_info->balance_lock);
3160 fs_info->balance_ctl = bctl;
3161 spin_unlock(&fs_info->balance_lock);
3162}
3163
3164static void unset_balance_control(struct btrfs_fs_info *fs_info)
3165{
3166 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3167
3168 BUG_ON(!fs_info->balance_ctl);
3169
3170 spin_lock(&fs_info->balance_lock);
3171 fs_info->balance_ctl = NULL;
3172 spin_unlock(&fs_info->balance_lock);
3173
3174 kfree(bctl);
3175}
3176
3177/*
3178 * Balance filters. Return 1 if chunk should be filtered out
3179 * (should not be balanced).
3180 */
3181static int chunk_profiles_filter(u64 chunk_type,
3182 struct btrfs_balance_args *bargs)
3183{
3184 chunk_type = chunk_to_extended(chunk_type) &
3185 BTRFS_EXTENDED_PROFILE_MASK;
3186
3187 if (bargs->profiles & chunk_type)
3188 return 0;
3189
3190 return 1;
3191}
3192
3193static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3194 struct btrfs_balance_args *bargs)
3195{
3196 struct btrfs_block_group_cache *cache;
3197 u64 chunk_used;
3198 u64 user_thresh_min;
3199 u64 user_thresh_max;
3200 int ret = 1;
3201
3202 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3203 chunk_used = btrfs_block_group_used(&cache->item);
3204
3205 if (bargs->usage_min == 0)
3206 user_thresh_min = 0;
3207 else
3208 user_thresh_min = div_factor_fine(cache->key.offset,
3209 bargs->usage_min);
3210
3211 if (bargs->usage_max == 0)
3212 user_thresh_max = 1;
3213 else if (bargs->usage_max > 100)
3214 user_thresh_max = cache->key.offset;
3215 else
3216 user_thresh_max = div_factor_fine(cache->key.offset,
3217 bargs->usage_max);
3218
3219 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3220 ret = 0;
3221
3222 btrfs_put_block_group(cache);
3223 return ret;
3224}
3225
3226static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3227 u64 chunk_offset, struct btrfs_balance_args *bargs)
3228{
3229 struct btrfs_block_group_cache *cache;
3230 u64 chunk_used, user_thresh;
3231 int ret = 1;
3232
3233 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3234 chunk_used = btrfs_block_group_used(&cache->item);
3235
3236 if (bargs->usage_min == 0)
3237 user_thresh = 1;
3238 else if (bargs->usage > 100)
3239 user_thresh = cache->key.offset;
3240 else
3241 user_thresh = div_factor_fine(cache->key.offset,
3242 bargs->usage);
3243
3244 if (chunk_used < user_thresh)
3245 ret = 0;
3246
3247 btrfs_put_block_group(cache);
3248 return ret;
3249}
3250
3251static int chunk_devid_filter(struct extent_buffer *leaf,
3252 struct btrfs_chunk *chunk,
3253 struct btrfs_balance_args *bargs)
3254{
3255 struct btrfs_stripe *stripe;
3256 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3257 int i;
3258
3259 for (i = 0; i < num_stripes; i++) {
3260 stripe = btrfs_stripe_nr(chunk, i);
3261 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3262 return 0;
3263 }
3264
3265 return 1;
3266}
3267
3268/* [pstart, pend) */
3269static int chunk_drange_filter(struct extent_buffer *leaf,
3270 struct btrfs_chunk *chunk,
3271 u64 chunk_offset,
3272 struct btrfs_balance_args *bargs)
3273{
3274 struct btrfs_stripe *stripe;
3275 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3276 u64 stripe_offset;
3277 u64 stripe_length;
3278 int factor;
3279 int i;
3280
3281 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3282 return 0;
3283
3284 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3285 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3286 factor = num_stripes / 2;
3287 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3288 factor = num_stripes - 1;
3289 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3290 factor = num_stripes - 2;
3291 } else {
3292 factor = num_stripes;
3293 }
3294
3295 for (i = 0; i < num_stripes; i++) {
3296 stripe = btrfs_stripe_nr(chunk, i);
3297 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3298 continue;
3299
3300 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3301 stripe_length = btrfs_chunk_length(leaf, chunk);
3302 stripe_length = div_u64(stripe_length, factor);
3303
3304 if (stripe_offset < bargs->pend &&
3305 stripe_offset + stripe_length > bargs->pstart)
3306 return 0;
3307 }
3308
3309 return 1;
3310}
3311
3312/* [vstart, vend) */
3313static int chunk_vrange_filter(struct extent_buffer *leaf,
3314 struct btrfs_chunk *chunk,
3315 u64 chunk_offset,
3316 struct btrfs_balance_args *bargs)
3317{
3318 if (chunk_offset < bargs->vend &&
3319 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3320 /* at least part of the chunk is inside this vrange */
3321 return 0;
3322
3323 return 1;
3324}
3325
3326static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3327 struct btrfs_chunk *chunk,
3328 struct btrfs_balance_args *bargs)
3329{
3330 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3331
3332 if (bargs->stripes_min <= num_stripes
3333 && num_stripes <= bargs->stripes_max)
3334 return 0;
3335
3336 return 1;
3337}
3338
3339static int chunk_soft_convert_filter(u64 chunk_type,
3340 struct btrfs_balance_args *bargs)
3341{
3342 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3343 return 0;
3344
3345 chunk_type = chunk_to_extended(chunk_type) &
3346 BTRFS_EXTENDED_PROFILE_MASK;
3347
3348 if (bargs->target == chunk_type)
3349 return 1;
3350
3351 return 0;
3352}
3353
3354static int should_balance_chunk(struct btrfs_root *root,
3355 struct extent_buffer *leaf,
3356 struct btrfs_chunk *chunk, u64 chunk_offset)
3357{
3358 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3359 struct btrfs_balance_args *bargs = NULL;
3360 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3361
3362 /* type filter */
3363 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3364 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3365 return 0;
3366 }
3367
3368 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3369 bargs = &bctl->data;
3370 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3371 bargs = &bctl->sys;
3372 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3373 bargs = &bctl->meta;
3374
3375 /* profiles filter */
3376 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3377 chunk_profiles_filter(chunk_type, bargs)) {
3378 return 0;
3379 }
3380
3381 /* usage filter */
3382 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3383 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3384 return 0;
3385 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3386 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3387 return 0;
3388 }
3389
3390 /* devid filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3392 chunk_devid_filter(leaf, chunk, bargs)) {
3393 return 0;
3394 }
3395
3396 /* drange filter, makes sense only with devid filter */
3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3398 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3399 return 0;
3400 }
3401
3402 /* vrange filter */
3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3404 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3405 return 0;
3406 }
3407
3408 /* stripes filter */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3410 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3411 return 0;
3412 }
3413
3414 /* soft profile changing mode */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3416 chunk_soft_convert_filter(chunk_type, bargs)) {
3417 return 0;
3418 }
3419
3420 /*
3421 * limited by count, must be the last filter
3422 */
3423 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3424 if (bargs->limit == 0)
3425 return 0;
3426 else
3427 bargs->limit--;
3428 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3429 /*
3430 * Same logic as the 'limit' filter; the minimum cannot be
3431 * determined here because we do not have the global information
3432 * about the count of all chunks that satisfy the filters.
3433 */
3434 if (bargs->limit_max == 0)
3435 return 0;
3436 else
3437 bargs->limit_max--;
3438 }
3439
3440 return 1;
3441}
3442
3443static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3444{
3445 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3446 struct btrfs_root *chunk_root = fs_info->chunk_root;
3447 struct btrfs_root *dev_root = fs_info->dev_root;
3448 struct list_head *devices;
3449 struct btrfs_device *device;
3450 u64 old_size;
3451 u64 size_to_free;
3452 u64 chunk_type;
3453 struct btrfs_chunk *chunk;
3454 struct btrfs_path *path = NULL;
3455 struct btrfs_key key;
3456 struct btrfs_key found_key;
3457 struct btrfs_trans_handle *trans;
3458 struct extent_buffer *leaf;
3459 int slot;
3460 int ret;
3461 int enospc_errors = 0;
3462 bool counting = true;
3463 /* The single value limit and min/max limits use the same bytes in the */
3464 u64 limit_data = bctl->data.limit;
3465 u64 limit_meta = bctl->meta.limit;
3466 u64 limit_sys = bctl->sys.limit;
3467 u32 count_data = 0;
3468 u32 count_meta = 0;
3469 u32 count_sys = 0;
3470 int chunk_reserved = 0;
3471 u64 bytes_used = 0;
3472
3473 /* step one make some room on all the devices */
3474 devices = &fs_info->fs_devices->devices;
3475 list_for_each_entry(device, devices, dev_list) {
3476 old_size = btrfs_device_get_total_bytes(device);
3477 size_to_free = div_factor(old_size, 1);
3478 size_to_free = min_t(u64, size_to_free, SZ_1M);
3479 if (!device->writeable ||
3480 btrfs_device_get_total_bytes(device) -
3481 btrfs_device_get_bytes_used(device) > size_to_free ||
3482 device->is_tgtdev_for_dev_replace)
3483 continue;
3484
3485 ret = btrfs_shrink_device(device, old_size - size_to_free);
3486 if (ret == -ENOSPC)
3487 break;
3488 if (ret) {
3489 /* btrfs_shrink_device never returns ret > 0 */
3490 WARN_ON(ret > 0);
3491 goto error;
3492 }
3493
3494 trans = btrfs_start_transaction(dev_root, 0);
3495 if (IS_ERR(trans)) {
3496 ret = PTR_ERR(trans);
3497 btrfs_info_in_rcu(fs_info,
3498 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3499 rcu_str_deref(device->name), ret,
3500 old_size, old_size - size_to_free);
3501 goto error;
3502 }
3503
3504 ret = btrfs_grow_device(trans, device, old_size);
3505 if (ret) {
3506 btrfs_end_transaction(trans, dev_root);
3507 /* btrfs_grow_device never returns ret > 0 */
3508 WARN_ON(ret > 0);
3509 btrfs_info_in_rcu(fs_info,
3510 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3511 rcu_str_deref(device->name), ret,
3512 old_size, old_size - size_to_free);
3513 goto error;
3514 }
3515
3516 btrfs_end_transaction(trans, dev_root);
3517 }
3518
3519 /* step two, relocate all the chunks */
3520 path = btrfs_alloc_path();
3521 if (!path) {
3522 ret = -ENOMEM;
3523 goto error;
3524 }
3525
3526 /* zero out stat counters */
3527 spin_lock(&fs_info->balance_lock);
3528 memset(&bctl->stat, 0, sizeof(bctl->stat));
3529 spin_unlock(&fs_info->balance_lock);
3530again:
3531 if (!counting) {
3532 /*
3533 * The single value limit and min/max limits use the same bytes
3534 * in the
3535 */
3536 bctl->data.limit = limit_data;
3537 bctl->meta.limit = limit_meta;
3538 bctl->sys.limit = limit_sys;
3539 }
3540 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3541 key.offset = (u64)-1;
3542 key.type = BTRFS_CHUNK_ITEM_KEY;
3543
3544 while (1) {
3545 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3546 atomic_read(&fs_info->balance_cancel_req)) {
3547 ret = -ECANCELED;
3548 goto error;
3549 }
3550
3551 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3552 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3553 if (ret < 0) {
3554 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3555 goto error;
3556 }
3557
3558 /*
3559 * this shouldn't happen, it means the last relocate
3560 * failed
3561 */
3562 if (ret == 0)
3563 BUG(); /* FIXME break ? */
3564
3565 ret = btrfs_previous_item(chunk_root, path, 0,
3566 BTRFS_CHUNK_ITEM_KEY);
3567 if (ret) {
3568 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3569 ret = 0;
3570 break;
3571 }
3572
3573 leaf = path->nodes[0];
3574 slot = path->slots[0];
3575 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3576
3577 if (found_key.objectid != key.objectid) {
3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 break;
3580 }
3581
3582 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3583 chunk_type = btrfs_chunk_type(leaf, chunk);
3584
3585 if (!counting) {
3586 spin_lock(&fs_info->balance_lock);
3587 bctl->stat.considered++;
3588 spin_unlock(&fs_info->balance_lock);
3589 }
3590
3591 ret = should_balance_chunk(chunk_root, leaf, chunk,
3592 found_key.offset);
3593
3594 btrfs_release_path(path);
3595 if (!ret) {
3596 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3597 goto loop;
3598 }
3599
3600 if (counting) {
3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3602 spin_lock(&fs_info->balance_lock);
3603 bctl->stat.expected++;
3604 spin_unlock(&fs_info->balance_lock);
3605
3606 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3607 count_data++;
3608 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3609 count_sys++;
3610 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3611 count_meta++;
3612
3613 goto loop;
3614 }
3615
3616 /*
3617 * Apply limit_min filter, no need to check if the LIMITS
3618 * filter is used, limit_min is 0 by default
3619 */
3620 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3621 count_data < bctl->data.limit_min)
3622 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3623 count_meta < bctl->meta.limit_min)
3624 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3625 count_sys < bctl->sys.limit_min)) {
3626 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3627 goto loop;
3628 }
3629
3630 ASSERT(fs_info->data_sinfo);
3631 spin_lock(&fs_info->data_sinfo->lock);
3632 bytes_used = fs_info->data_sinfo->bytes_used;
3633 spin_unlock(&fs_info->data_sinfo->lock);
3634
3635 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3636 !chunk_reserved && !bytes_used) {
3637 trans = btrfs_start_transaction(chunk_root, 0);
3638 if (IS_ERR(trans)) {
3639 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3640 ret = PTR_ERR(trans);
3641 goto error;
3642 }
3643
3644 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3645 BTRFS_BLOCK_GROUP_DATA);
3646 btrfs_end_transaction(trans, chunk_root);
3647 if (ret < 0) {
3648 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3649 goto error;
3650 }
3651 chunk_reserved = 1;
3652 }
3653
3654 ret = btrfs_relocate_chunk(chunk_root,
3655 found_key.offset);
3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 if (ret && ret != -ENOSPC)
3658 goto error;
3659 if (ret == -ENOSPC) {
3660 enospc_errors++;
3661 } else {
3662 spin_lock(&fs_info->balance_lock);
3663 bctl->stat.completed++;
3664 spin_unlock(&fs_info->balance_lock);
3665 }
3666loop:
3667 if (found_key.offset == 0)
3668 break;
3669 key.offset = found_key.offset - 1;
3670 }
3671
3672 if (counting) {
3673 btrfs_release_path(path);
3674 counting = false;
3675 goto again;
3676 }
3677error:
3678 btrfs_free_path(path);
3679 if (enospc_errors) {
3680 btrfs_info(fs_info, "%d enospc errors during balance",
3681 enospc_errors);
3682 if (!ret)
3683 ret = -ENOSPC;
3684 }
3685
3686 return ret;
3687}
3688
3689/**
3690 * alloc_profile_is_valid - see if a given profile is valid and reduced
3691 * @flags: profile to validate
3692 * @extended: if true @flags is treated as an extended profile
3693 */
3694static int alloc_profile_is_valid(u64 flags, int extended)
3695{
3696 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3697 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3698
3699 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3700
3701 /* 1) check that all other bits are zeroed */
3702 if (flags & ~mask)
3703 return 0;
3704
3705 /* 2) see if profile is reduced */
3706 if (flags == 0)
3707 return !extended; /* "0" is valid for usual profiles */
3708
3709 /* true if exactly one bit set */
3710 return (flags & (flags - 1)) == 0;
3711}
3712
3713static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3714{
3715 /* cancel requested || normal exit path */
3716 return atomic_read(&fs_info->balance_cancel_req) ||
3717 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3718 atomic_read(&fs_info->balance_cancel_req) == 0);
3719}
3720
3721static void __cancel_balance(struct btrfs_fs_info *fs_info)
3722{
3723 int ret;
3724
3725 unset_balance_control(fs_info);
3726 ret = del_balance_item(fs_info->tree_root);
3727 if (ret)
3728 btrfs_handle_fs_error(fs_info, ret, NULL);
3729
3730 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3731}
3732
3733/* Non-zero return value signifies invalidity */
3734static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3735 u64 allowed)
3736{
3737 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3738 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3739 (bctl_arg->target & ~allowed)));
3740}
3741
3742/*
3743 * Should be called with both balance and volume mutexes held
3744 */
3745int btrfs_balance(struct btrfs_balance_control *bctl,
3746 struct btrfs_ioctl_balance_args *bargs)
3747{
3748 struct btrfs_fs_info *fs_info = bctl->fs_info;
3749 u64 allowed;
3750 int mixed = 0;
3751 int ret;
3752 u64 num_devices;
3753 unsigned seq;
3754
3755 if (btrfs_fs_closing(fs_info) ||
3756 atomic_read(&fs_info->balance_pause_req) ||
3757 atomic_read(&fs_info->balance_cancel_req)) {
3758 ret = -EINVAL;
3759 goto out;
3760 }
3761
3762 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3763 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3764 mixed = 1;
3765
3766 /*
3767 * In case of mixed groups both data and meta should be picked,
3768 * and identical options should be given for both of them.
3769 */
3770 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3771 if (mixed && (bctl->flags & allowed)) {
3772 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3773 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3774 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3775 btrfs_err(fs_info, "with mixed groups data and "
3776 "metadata balance options must be the same");
3777 ret = -EINVAL;
3778 goto out;
3779 }
3780 }
3781
3782 num_devices = fs_info->fs_devices->num_devices;
3783 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3784 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3785 BUG_ON(num_devices < 1);
3786 num_devices--;
3787 }
3788 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3789 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3790 if (num_devices > 1)
3791 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3792 if (num_devices > 2)
3793 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3794 if (num_devices > 3)
3795 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3796 BTRFS_BLOCK_GROUP_RAID6);
3797 if (validate_convert_profile(&bctl->data, allowed)) {
3798 btrfs_err(fs_info, "unable to start balance with target "
3799 "data profile %llu",
3800 bctl->data.target);
3801 ret = -EINVAL;
3802 goto out;
3803 }
3804 if (validate_convert_profile(&bctl->meta, allowed)) {
3805 btrfs_err(fs_info,
3806 "unable to start balance with target metadata profile %llu",
3807 bctl->meta.target);
3808 ret = -EINVAL;
3809 goto out;
3810 }
3811 if (validate_convert_profile(&bctl->sys, allowed)) {
3812 btrfs_err(fs_info,
3813 "unable to start balance with target system profile %llu",
3814 bctl->sys.target);
3815 ret = -EINVAL;
3816 goto out;
3817 }
3818
3819 /* allow to reduce meta or sys integrity only if force set */
3820 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3821 BTRFS_BLOCK_GROUP_RAID10 |
3822 BTRFS_BLOCK_GROUP_RAID5 |
3823 BTRFS_BLOCK_GROUP_RAID6;
3824 do {
3825 seq = read_seqbegin(&fs_info->profiles_lock);
3826
3827 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3828 (fs_info->avail_system_alloc_bits & allowed) &&
3829 !(bctl->sys.target & allowed)) ||
3830 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3831 (fs_info->avail_metadata_alloc_bits & allowed) &&
3832 !(bctl->meta.target & allowed))) {
3833 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3834 btrfs_info(fs_info, "force reducing metadata integrity");
3835 } else {
3836 btrfs_err(fs_info, "balance will reduce metadata "
3837 "integrity, use force if you want this");
3838 ret = -EINVAL;
3839 goto out;
3840 }
3841 }
3842 } while (read_seqretry(&fs_info->profiles_lock, seq));
3843
3844 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3845 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3846 btrfs_warn(fs_info,
3847 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3848 bctl->meta.target, bctl->data.target);
3849 }
3850
3851 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3852 fs_info->num_tolerated_disk_barrier_failures = min(
3853 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3854 btrfs_get_num_tolerated_disk_barrier_failures(
3855 bctl->sys.target));
3856 }
3857
3858 ret = insert_balance_item(fs_info->tree_root, bctl);
3859 if (ret && ret != -EEXIST)
3860 goto out;
3861
3862 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3863 BUG_ON(ret == -EEXIST);
3864 set_balance_control(bctl);
3865 } else {
3866 BUG_ON(ret != -EEXIST);
3867 spin_lock(&fs_info->balance_lock);
3868 update_balance_args(bctl);
3869 spin_unlock(&fs_info->balance_lock);
3870 }
3871
3872 atomic_inc(&fs_info->balance_running);
3873 mutex_unlock(&fs_info->balance_mutex);
3874
3875 ret = __btrfs_balance(fs_info);
3876
3877 mutex_lock(&fs_info->balance_mutex);
3878 atomic_dec(&fs_info->balance_running);
3879
3880 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3881 fs_info->num_tolerated_disk_barrier_failures =
3882 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3883 }
3884
3885 if (bargs) {
3886 memset(bargs, 0, sizeof(*bargs));
3887 update_ioctl_balance_args(fs_info, 0, bargs);
3888 }
3889
3890 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3891 balance_need_close(fs_info)) {
3892 __cancel_balance(fs_info);
3893 }
3894
3895 wake_up(&fs_info->balance_wait_q);
3896
3897 return ret;
3898out:
3899 if (bctl->flags & BTRFS_BALANCE_RESUME)
3900 __cancel_balance(fs_info);
3901 else {
3902 kfree(bctl);
3903 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3904 }
3905 return ret;
3906}
3907
3908static int balance_kthread(void *data)
3909{
3910 struct btrfs_fs_info *fs_info = data;
3911 int ret = 0;
3912
3913 mutex_lock(&fs_info->volume_mutex);
3914 mutex_lock(&fs_info->balance_mutex);
3915
3916 if (fs_info->balance_ctl) {
3917 btrfs_info(fs_info, "continuing balance");
3918 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3919 }
3920
3921 mutex_unlock(&fs_info->balance_mutex);
3922 mutex_unlock(&fs_info->volume_mutex);
3923
3924 return ret;
3925}
3926
3927int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3928{
3929 struct task_struct *tsk;
3930
3931 spin_lock(&fs_info->balance_lock);
3932 if (!fs_info->balance_ctl) {
3933 spin_unlock(&fs_info->balance_lock);
3934 return 0;
3935 }
3936 spin_unlock(&fs_info->balance_lock);
3937
3938 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3939 btrfs_info(fs_info, "force skipping balance");
3940 return 0;
3941 }
3942
3943 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3944 return PTR_ERR_OR_ZERO(tsk);
3945}
3946
3947int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3948{
3949 struct btrfs_balance_control *bctl;
3950 struct btrfs_balance_item *item;
3951 struct btrfs_disk_balance_args disk_bargs;
3952 struct btrfs_path *path;
3953 struct extent_buffer *leaf;
3954 struct btrfs_key key;
3955 int ret;
3956
3957 path = btrfs_alloc_path();
3958 if (!path)
3959 return -ENOMEM;
3960
3961 key.objectid = BTRFS_BALANCE_OBJECTID;
3962 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3963 key.offset = 0;
3964
3965 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3966 if (ret < 0)
3967 goto out;
3968 if (ret > 0) { /* ret = -ENOENT; */
3969 ret = 0;
3970 goto out;
3971 }
3972
3973 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3974 if (!bctl) {
3975 ret = -ENOMEM;
3976 goto out;
3977 }
3978
3979 leaf = path->nodes[0];
3980 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3981
3982 bctl->fs_info = fs_info;
3983 bctl->flags = btrfs_balance_flags(leaf, item);
3984 bctl->flags |= BTRFS_BALANCE_RESUME;
3985
3986 btrfs_balance_data(leaf, item, &disk_bargs);
3987 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3988 btrfs_balance_meta(leaf, item, &disk_bargs);
3989 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3990 btrfs_balance_sys(leaf, item, &disk_bargs);
3991 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3992
3993 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3994
3995 mutex_lock(&fs_info->volume_mutex);
3996 mutex_lock(&fs_info->balance_mutex);
3997
3998 set_balance_control(bctl);
3999
4000 mutex_unlock(&fs_info->balance_mutex);
4001 mutex_unlock(&fs_info->volume_mutex);
4002out:
4003 btrfs_free_path(path);
4004 return ret;
4005}
4006
4007int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4008{
4009 int ret = 0;
4010
4011 mutex_lock(&fs_info->balance_mutex);
4012 if (!fs_info->balance_ctl) {
4013 mutex_unlock(&fs_info->balance_mutex);
4014 return -ENOTCONN;
4015 }
4016
4017 if (atomic_read(&fs_info->balance_running)) {
4018 atomic_inc(&fs_info->balance_pause_req);
4019 mutex_unlock(&fs_info->balance_mutex);
4020
4021 wait_event(fs_info->balance_wait_q,
4022 atomic_read(&fs_info->balance_running) == 0);
4023
4024 mutex_lock(&fs_info->balance_mutex);
4025 /* we are good with balance_ctl ripped off from under us */
4026 BUG_ON(atomic_read(&fs_info->balance_running));
4027 atomic_dec(&fs_info->balance_pause_req);
4028 } else {
4029 ret = -ENOTCONN;
4030 }
4031
4032 mutex_unlock(&fs_info->balance_mutex);
4033 return ret;
4034}
4035
4036int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4037{
4038 if (fs_info->sb->s_flags & MS_RDONLY)
4039 return -EROFS;
4040
4041 mutex_lock(&fs_info->balance_mutex);
4042 if (!fs_info->balance_ctl) {
4043 mutex_unlock(&fs_info->balance_mutex);
4044 return -ENOTCONN;
4045 }
4046
4047 atomic_inc(&fs_info->balance_cancel_req);
4048 /*
4049 * if we are running just wait and return, balance item is
4050 * deleted in btrfs_balance in this case
4051 */
4052 if (atomic_read(&fs_info->balance_running)) {
4053 mutex_unlock(&fs_info->balance_mutex);
4054 wait_event(fs_info->balance_wait_q,
4055 atomic_read(&fs_info->balance_running) == 0);
4056 mutex_lock(&fs_info->balance_mutex);
4057 } else {
4058 /* __cancel_balance needs volume_mutex */
4059 mutex_unlock(&fs_info->balance_mutex);
4060 mutex_lock(&fs_info->volume_mutex);
4061 mutex_lock(&fs_info->balance_mutex);
4062
4063 if (fs_info->balance_ctl)
4064 __cancel_balance(fs_info);
4065
4066 mutex_unlock(&fs_info->volume_mutex);
4067 }
4068
4069 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4070 atomic_dec(&fs_info->balance_cancel_req);
4071 mutex_unlock(&fs_info->balance_mutex);
4072 return 0;
4073}
4074
4075static int btrfs_uuid_scan_kthread(void *data)
4076{
4077 struct btrfs_fs_info *fs_info = data;
4078 struct btrfs_root *root = fs_info->tree_root;
4079 struct btrfs_key key;
4080 struct btrfs_key max_key;
4081 struct btrfs_path *path = NULL;
4082 int ret = 0;
4083 struct extent_buffer *eb;
4084 int slot;
4085 struct btrfs_root_item root_item;
4086 u32 item_size;
4087 struct btrfs_trans_handle *trans = NULL;
4088
4089 path = btrfs_alloc_path();
4090 if (!path) {
4091 ret = -ENOMEM;
4092 goto out;
4093 }
4094
4095 key.objectid = 0;
4096 key.type = BTRFS_ROOT_ITEM_KEY;
4097 key.offset = 0;
4098
4099 max_key.objectid = (u64)-1;
4100 max_key.type = BTRFS_ROOT_ITEM_KEY;
4101 max_key.offset = (u64)-1;
4102
4103 while (1) {
4104 ret = btrfs_search_forward(root, &key, path, 0);
4105 if (ret) {
4106 if (ret > 0)
4107 ret = 0;
4108 break;
4109 }
4110
4111 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4112 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4113 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4114 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4115 goto skip;
4116
4117 eb = path->nodes[0];
4118 slot = path->slots[0];
4119 item_size = btrfs_item_size_nr(eb, slot);
4120 if (item_size < sizeof(root_item))
4121 goto skip;
4122
4123 read_extent_buffer(eb, &root_item,
4124 btrfs_item_ptr_offset(eb, slot),
4125 (int)sizeof(root_item));
4126 if (btrfs_root_refs(&root_item) == 0)
4127 goto skip;
4128
4129 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4130 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4131 if (trans)
4132 goto update_tree;
4133
4134 btrfs_release_path(path);
4135 /*
4136 * 1 - subvol uuid item
4137 * 1 - received_subvol uuid item
4138 */
4139 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4140 if (IS_ERR(trans)) {
4141 ret = PTR_ERR(trans);
4142 break;
4143 }
4144 continue;
4145 } else {
4146 goto skip;
4147 }
4148update_tree:
4149 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4150 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4151 root_item.uuid,
4152 BTRFS_UUID_KEY_SUBVOL,
4153 key.objectid);
4154 if (ret < 0) {
4155 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4156 ret);
4157 break;
4158 }
4159 }
4160
4161 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4162 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4163 root_item.received_uuid,
4164 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4165 key.objectid);
4166 if (ret < 0) {
4167 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4168 ret);
4169 break;
4170 }
4171 }
4172
4173skip:
4174 if (trans) {
4175 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4176 trans = NULL;
4177 if (ret)
4178 break;
4179 }
4180
4181 btrfs_release_path(path);
4182 if (key.offset < (u64)-1) {
4183 key.offset++;
4184 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4185 key.offset = 0;
4186 key.type = BTRFS_ROOT_ITEM_KEY;
4187 } else if (key.objectid < (u64)-1) {
4188 key.offset = 0;
4189 key.type = BTRFS_ROOT_ITEM_KEY;
4190 key.objectid++;
4191 } else {
4192 break;
4193 }
4194 cond_resched();
4195 }
4196
4197out:
4198 btrfs_free_path(path);
4199 if (trans && !IS_ERR(trans))
4200 btrfs_end_transaction(trans, fs_info->uuid_root);
4201 if (ret)
4202 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4203 else
4204 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4205 up(&fs_info->uuid_tree_rescan_sem);
4206 return 0;
4207}
4208
4209/*
4210 * Callback for btrfs_uuid_tree_iterate().
4211 * returns:
4212 * 0 check succeeded, the entry is not outdated.
4213 * < 0 if an error occurred.
4214 * > 0 if the check failed, which means the caller shall remove the entry.
4215 */
4216static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4217 u8 *uuid, u8 type, u64 subid)
4218{
4219 struct btrfs_key key;
4220 int ret = 0;
4221 struct btrfs_root *subvol_root;
4222
4223 if (type != BTRFS_UUID_KEY_SUBVOL &&
4224 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4225 goto out;
4226
4227 key.objectid = subid;
4228 key.type = BTRFS_ROOT_ITEM_KEY;
4229 key.offset = (u64)-1;
4230 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4231 if (IS_ERR(subvol_root)) {
4232 ret = PTR_ERR(subvol_root);
4233 if (ret == -ENOENT)
4234 ret = 1;
4235 goto out;
4236 }
4237
4238 switch (type) {
4239 case BTRFS_UUID_KEY_SUBVOL:
4240 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4241 ret = 1;
4242 break;
4243 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4244 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4245 BTRFS_UUID_SIZE))
4246 ret = 1;
4247 break;
4248 }
4249
4250out:
4251 return ret;
4252}
4253
4254static int btrfs_uuid_rescan_kthread(void *data)
4255{
4256 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4257 int ret;
4258
4259 /*
4260 * 1st step is to iterate through the existing UUID tree and
4261 * to delete all entries that contain outdated data.
4262 * 2nd step is to add all missing entries to the UUID tree.
4263 */
4264 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4265 if (ret < 0) {
4266 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4267 up(&fs_info->uuid_tree_rescan_sem);
4268 return ret;
4269 }
4270 return btrfs_uuid_scan_kthread(data);
4271}
4272
4273int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4274{
4275 struct btrfs_trans_handle *trans;
4276 struct btrfs_root *tree_root = fs_info->tree_root;
4277 struct btrfs_root *uuid_root;
4278 struct task_struct *task;
4279 int ret;
4280
4281 /*
4282 * 1 - root node
4283 * 1 - root item
4284 */
4285 trans = btrfs_start_transaction(tree_root, 2);
4286 if (IS_ERR(trans))
4287 return PTR_ERR(trans);
4288
4289 uuid_root = btrfs_create_tree(trans, fs_info,
4290 BTRFS_UUID_TREE_OBJECTID);
4291 if (IS_ERR(uuid_root)) {
4292 ret = PTR_ERR(uuid_root);
4293 btrfs_abort_transaction(trans, ret);
4294 btrfs_end_transaction(trans, tree_root);
4295 return ret;
4296 }
4297
4298 fs_info->uuid_root = uuid_root;
4299
4300 ret = btrfs_commit_transaction(trans, tree_root);
4301 if (ret)
4302 return ret;
4303
4304 down(&fs_info->uuid_tree_rescan_sem);
4305 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4306 if (IS_ERR(task)) {
4307 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4308 btrfs_warn(fs_info, "failed to start uuid_scan task");
4309 up(&fs_info->uuid_tree_rescan_sem);
4310 return PTR_ERR(task);
4311 }
4312
4313 return 0;
4314}
4315
4316int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4317{
4318 struct task_struct *task;
4319
4320 down(&fs_info->uuid_tree_rescan_sem);
4321 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4322 if (IS_ERR(task)) {
4323 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4324 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4325 up(&fs_info->uuid_tree_rescan_sem);
4326 return PTR_ERR(task);
4327 }
4328
4329 return 0;
4330}
4331
4332/*
4333 * shrinking a device means finding all of the device extents past
4334 * the new size, and then following the back refs to the chunks.
4335 * The chunk relocation code actually frees the device extent
4336 */
4337int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4338{
4339 struct btrfs_trans_handle *trans;
4340 struct btrfs_root *root = device->dev_root;
4341 struct btrfs_dev_extent *dev_extent = NULL;
4342 struct btrfs_path *path;
4343 u64 length;
4344 u64 chunk_offset;
4345 int ret;
4346 int slot;
4347 int failed = 0;
4348 bool retried = false;
4349 bool checked_pending_chunks = false;
4350 struct extent_buffer *l;
4351 struct btrfs_key key;
4352 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4353 u64 old_total = btrfs_super_total_bytes(super_copy);
4354 u64 old_size = btrfs_device_get_total_bytes(device);
4355 u64 diff = old_size - new_size;
4356
4357 if (device->is_tgtdev_for_dev_replace)
4358 return -EINVAL;
4359
4360 path = btrfs_alloc_path();
4361 if (!path)
4362 return -ENOMEM;
4363
4364 path->reada = READA_FORWARD;
4365
4366 lock_chunks(root);
4367
4368 btrfs_device_set_total_bytes(device, new_size);
4369 if (device->writeable) {
4370 device->fs_devices->total_rw_bytes -= diff;
4371 spin_lock(&root->fs_info->free_chunk_lock);
4372 root->fs_info->free_chunk_space -= diff;
4373 spin_unlock(&root->fs_info->free_chunk_lock);
4374 }
4375 unlock_chunks(root);
4376
4377again:
4378 key.objectid = device->devid;
4379 key.offset = (u64)-1;
4380 key.type = BTRFS_DEV_EXTENT_KEY;
4381
4382 do {
4383 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4384 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4385 if (ret < 0) {
4386 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4387 goto done;
4388 }
4389
4390 ret = btrfs_previous_item(root, path, 0, key.type);
4391 if (ret)
4392 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4393 if (ret < 0)
4394 goto done;
4395 if (ret) {
4396 ret = 0;
4397 btrfs_release_path(path);
4398 break;
4399 }
4400
4401 l = path->nodes[0];
4402 slot = path->slots[0];
4403 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4404
4405 if (key.objectid != device->devid) {
4406 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4407 btrfs_release_path(path);
4408 break;
4409 }
4410
4411 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4412 length = btrfs_dev_extent_length(l, dev_extent);
4413
4414 if (key.offset + length <= new_size) {
4415 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4416 btrfs_release_path(path);
4417 break;
4418 }
4419
4420 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4421 btrfs_release_path(path);
4422
4423 ret = btrfs_relocate_chunk(root, chunk_offset);
4424 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4425 if (ret && ret != -ENOSPC)
4426 goto done;
4427 if (ret == -ENOSPC)
4428 failed++;
4429 } while (key.offset-- > 0);
4430
4431 if (failed && !retried) {
4432 failed = 0;
4433 retried = true;
4434 goto again;
4435 } else if (failed && retried) {
4436 ret = -ENOSPC;
4437 goto done;
4438 }
4439
4440 /* Shrinking succeeded, else we would be at "done". */
4441 trans = btrfs_start_transaction(root, 0);
4442 if (IS_ERR(trans)) {
4443 ret = PTR_ERR(trans);
4444 goto done;
4445 }
4446
4447 lock_chunks(root);
4448
4449 /*
4450 * We checked in the above loop all device extents that were already in
4451 * the device tree. However before we have updated the device's
4452 * total_bytes to the new size, we might have had chunk allocations that
4453 * have not complete yet (new block groups attached to transaction
4454 * handles), and therefore their device extents were not yet in the
4455 * device tree and we missed them in the loop above. So if we have any
4456 * pending chunk using a device extent that overlaps the device range
4457 * that we can not use anymore, commit the current transaction and
4458 * repeat the search on the device tree - this way we guarantee we will
4459 * not have chunks using device extents that end beyond 'new_size'.
4460 */
4461 if (!checked_pending_chunks) {
4462 u64 start = new_size;
4463 u64 len = old_size - new_size;
4464
4465 if (contains_pending_extent(trans->transaction, device,
4466 &start, len)) {
4467 unlock_chunks(root);
4468 checked_pending_chunks = true;
4469 failed = 0;
4470 retried = false;
4471 ret = btrfs_commit_transaction(trans, root);
4472 if (ret)
4473 goto done;
4474 goto again;
4475 }
4476 }
4477
4478 btrfs_device_set_disk_total_bytes(device, new_size);
4479 if (list_empty(&device->resized_list))
4480 list_add_tail(&device->resized_list,
4481 &root->fs_info->fs_devices->resized_devices);
4482
4483 WARN_ON(diff > old_total);
4484 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4485 unlock_chunks(root);
4486
4487 /* Now btrfs_update_device() will change the on-disk size. */
4488 ret = btrfs_update_device(trans, device);
4489 btrfs_end_transaction(trans, root);
4490done:
4491 btrfs_free_path(path);
4492 if (ret) {
4493 lock_chunks(root);
4494 btrfs_device_set_total_bytes(device, old_size);
4495 if (device->writeable)
4496 device->fs_devices->total_rw_bytes += diff;
4497 spin_lock(&root->fs_info->free_chunk_lock);
4498 root->fs_info->free_chunk_space += diff;
4499 spin_unlock(&root->fs_info->free_chunk_lock);
4500 unlock_chunks(root);
4501 }
4502 return ret;
4503}
4504
4505static int btrfs_add_system_chunk(struct btrfs_root *root,
4506 struct btrfs_key *key,
4507 struct btrfs_chunk *chunk, int item_size)
4508{
4509 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4510 struct btrfs_disk_key disk_key;
4511 u32 array_size;
4512 u8 *ptr;
4513
4514 lock_chunks(root);
4515 array_size = btrfs_super_sys_array_size(super_copy);
4516 if (array_size + item_size + sizeof(disk_key)
4517 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4518 unlock_chunks(root);
4519 return -EFBIG;
4520 }
4521
4522 ptr = super_copy->sys_chunk_array + array_size;
4523 btrfs_cpu_key_to_disk(&disk_key, key);
4524 memcpy(ptr, &disk_key, sizeof(disk_key));
4525 ptr += sizeof(disk_key);
4526 memcpy(ptr, chunk, item_size);
4527 item_size += sizeof(disk_key);
4528 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4529 unlock_chunks(root);
4530
4531 return 0;
4532}
4533
4534/*
4535 * sort the devices in descending order by max_avail, total_avail
4536 */
4537static int btrfs_cmp_device_info(const void *a, const void *b)
4538{
4539 const struct btrfs_device_info *di_a = a;
4540 const struct btrfs_device_info *di_b = b;
4541
4542 if (di_a->max_avail > di_b->max_avail)
4543 return -1;
4544 if (di_a->max_avail < di_b->max_avail)
4545 return 1;
4546 if (di_a->total_avail > di_b->total_avail)
4547 return -1;
4548 if (di_a->total_avail < di_b->total_avail)
4549 return 1;
4550 return 0;
4551}
4552
4553static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4554{
4555 /* TODO allow them to set a preferred stripe size */
4556 return SZ_64K;
4557}
4558
4559static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4560{
4561 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4562 return;
4563
4564 btrfs_set_fs_incompat(info, RAID56);
4565}
4566
4567#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
4568 - sizeof(struct btrfs_chunk)) \
4569 / sizeof(struct btrfs_stripe) + 1)
4570
4571#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4572 - 2 * sizeof(struct btrfs_disk_key) \
4573 - 2 * sizeof(struct btrfs_chunk)) \
4574 / sizeof(struct btrfs_stripe) + 1)
4575
4576static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4577 struct btrfs_root *extent_root, u64 start,
4578 u64 type)
4579{
4580 struct btrfs_fs_info *info = extent_root->fs_info;
4581 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4582 struct list_head *cur;
4583 struct map_lookup *map = NULL;
4584 struct extent_map_tree *em_tree;
4585 struct extent_map *em;
4586 struct btrfs_device_info *devices_info = NULL;
4587 u64 total_avail;
4588 int num_stripes; /* total number of stripes to allocate */
4589 int data_stripes; /* number of stripes that count for
4590 block group size */
4591 int sub_stripes; /* sub_stripes info for map */
4592 int dev_stripes; /* stripes per dev */
4593 int devs_max; /* max devs to use */
4594 int devs_min; /* min devs needed */
4595 int devs_increment; /* ndevs has to be a multiple of this */
4596 int ncopies; /* how many copies to data has */
4597 int ret;
4598 u64 max_stripe_size;
4599 u64 max_chunk_size;
4600 u64 stripe_size;
4601 u64 num_bytes;
4602 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4603 int ndevs;
4604 int i;
4605 int j;
4606 int index;
4607
4608 BUG_ON(!alloc_profile_is_valid(type, 0));
4609
4610 if (list_empty(&fs_devices->alloc_list))
4611 return -ENOSPC;
4612
4613 index = __get_raid_index(type);
4614
4615 sub_stripes = btrfs_raid_array[index].sub_stripes;
4616 dev_stripes = btrfs_raid_array[index].dev_stripes;
4617 devs_max = btrfs_raid_array[index].devs_max;
4618 devs_min = btrfs_raid_array[index].devs_min;
4619 devs_increment = btrfs_raid_array[index].devs_increment;
4620 ncopies = btrfs_raid_array[index].ncopies;
4621
4622 if (type & BTRFS_BLOCK_GROUP_DATA) {
4623 max_stripe_size = SZ_1G;
4624 max_chunk_size = 10 * max_stripe_size;
4625 if (!devs_max)
4626 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4627 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4628 /* for larger filesystems, use larger metadata chunks */
4629 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4630 max_stripe_size = SZ_1G;
4631 else
4632 max_stripe_size = SZ_256M;
4633 max_chunk_size = max_stripe_size;
4634 if (!devs_max)
4635 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4636 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4637 max_stripe_size = SZ_32M;
4638 max_chunk_size = 2 * max_stripe_size;
4639 if (!devs_max)
4640 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4641 } else {
4642 btrfs_err(info, "invalid chunk type 0x%llx requested",
4643 type);
4644 BUG_ON(1);
4645 }
4646
4647 /* we don't want a chunk larger than 10% of writeable space */
4648 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4649 max_chunk_size);
4650
4651 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4652 GFP_NOFS);
4653 if (!devices_info)
4654 return -ENOMEM;
4655
4656 cur = fs_devices->alloc_list.next;
4657
4658 /*
4659 * in the first pass through the devices list, we gather information
4660 * about the available holes on each device.
4661 */
4662 ndevs = 0;
4663 while (cur != &fs_devices->alloc_list) {
4664 struct btrfs_device *device;
4665 u64 max_avail;
4666 u64 dev_offset;
4667
4668 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4669
4670 cur = cur->next;
4671
4672 if (!device->writeable) {
4673 WARN(1, KERN_ERR
4674 "BTRFS: read-only device in alloc_list\n");
4675 continue;
4676 }
4677
4678 if (!device->in_fs_metadata ||
4679 device->is_tgtdev_for_dev_replace)
4680 continue;
4681
4682 if (device->total_bytes > device->bytes_used)
4683 total_avail = device->total_bytes - device->bytes_used;
4684 else
4685 total_avail = 0;
4686
4687 /* If there is no space on this device, skip it. */
4688 if (total_avail == 0)
4689 continue;
4690
4691 ret = find_free_dev_extent(trans, device,
4692 max_stripe_size * dev_stripes,
4693 &dev_offset, &max_avail);
4694 if (ret && ret != -ENOSPC)
4695 goto error;
4696
4697 if (ret == 0)
4698 max_avail = max_stripe_size * dev_stripes;
4699
4700 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4701 continue;
4702
4703 if (ndevs == fs_devices->rw_devices) {
4704 WARN(1, "%s: found more than %llu devices\n",
4705 __func__, fs_devices->rw_devices);
4706 break;
4707 }
4708 devices_info[ndevs].dev_offset = dev_offset;
4709 devices_info[ndevs].max_avail = max_avail;
4710 devices_info[ndevs].total_avail = total_avail;
4711 devices_info[ndevs].dev = device;
4712 ++ndevs;
4713 }
4714
4715 /*
4716 * now sort the devices by hole size / available space
4717 */
4718 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4719 btrfs_cmp_device_info, NULL);
4720
4721 /* round down to number of usable stripes */
4722 ndevs -= ndevs % devs_increment;
4723
4724 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4725 ret = -ENOSPC;
4726 goto error;
4727 }
4728
4729 if (devs_max && ndevs > devs_max)
4730 ndevs = devs_max;
4731 /*
4732 * the primary goal is to maximize the number of stripes, so use as many
4733 * devices as possible, even if the stripes are not maximum sized.
4734 */
4735 stripe_size = devices_info[ndevs-1].max_avail;
4736 num_stripes = ndevs * dev_stripes;
4737
4738 /*
4739 * this will have to be fixed for RAID1 and RAID10 over
4740 * more drives
4741 */
4742 data_stripes = num_stripes / ncopies;
4743
4744 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4745 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4746 extent_root->stripesize);
4747 data_stripes = num_stripes - 1;
4748 }
4749 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4750 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4751 extent_root->stripesize);
4752 data_stripes = num_stripes - 2;
4753 }
4754
4755 /*
4756 * Use the number of data stripes to figure out how big this chunk
4757 * is really going to be in terms of logical address space,
4758 * and compare that answer with the max chunk size
4759 */
4760 if (stripe_size * data_stripes > max_chunk_size) {
4761 u64 mask = (1ULL << 24) - 1;
4762
4763 stripe_size = div_u64(max_chunk_size, data_stripes);
4764
4765 /* bump the answer up to a 16MB boundary */
4766 stripe_size = (stripe_size + mask) & ~mask;
4767
4768 /* but don't go higher than the limits we found
4769 * while searching for free extents
4770 */
4771 if (stripe_size > devices_info[ndevs-1].max_avail)
4772 stripe_size = devices_info[ndevs-1].max_avail;
4773 }
4774
4775 stripe_size = div_u64(stripe_size, dev_stripes);
4776
4777 /* align to BTRFS_STRIPE_LEN */
4778 stripe_size = div_u64(stripe_size, raid_stripe_len);
4779 stripe_size *= raid_stripe_len;
4780
4781 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4782 if (!map) {
4783 ret = -ENOMEM;
4784 goto error;
4785 }
4786 map->num_stripes = num_stripes;
4787
4788 for (i = 0; i < ndevs; ++i) {
4789 for (j = 0; j < dev_stripes; ++j) {
4790 int s = i * dev_stripes + j;
4791 map->stripes[s].dev = devices_info[i].dev;
4792 map->stripes[s].physical = devices_info[i].dev_offset +
4793 j * stripe_size;
4794 }
4795 }
4796 map->sector_size = extent_root->sectorsize;
4797 map->stripe_len = raid_stripe_len;
4798 map->io_align = raid_stripe_len;
4799 map->io_width = raid_stripe_len;
4800 map->type = type;
4801 map->sub_stripes = sub_stripes;
4802
4803 num_bytes = stripe_size * data_stripes;
4804
4805 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4806
4807 em = alloc_extent_map();
4808 if (!em) {
4809 kfree(map);
4810 ret = -ENOMEM;
4811 goto error;
4812 }
4813 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4814 em->map_lookup = map;
4815 em->start = start;
4816 em->len = num_bytes;
4817 em->block_start = 0;
4818 em->block_len = em->len;
4819 em->orig_block_len = stripe_size;
4820
4821 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4822 write_lock(&em_tree->lock);
4823 ret = add_extent_mapping(em_tree, em, 0);
4824 if (!ret) {
4825 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4826 atomic_inc(&em->refs);
4827 }
4828 write_unlock(&em_tree->lock);
4829 if (ret) {
4830 free_extent_map(em);
4831 goto error;
4832 }
4833
4834 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4835 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4836 start, num_bytes);
4837 if (ret)
4838 goto error_del_extent;
4839
4840 for (i = 0; i < map->num_stripes; i++) {
4841 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4842 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4843 }
4844
4845 spin_lock(&extent_root->fs_info->free_chunk_lock);
4846 extent_root->fs_info->free_chunk_space -= (stripe_size *
4847 map->num_stripes);
4848 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4849
4850 free_extent_map(em);
4851 check_raid56_incompat_flag(extent_root->fs_info, type);
4852
4853 kfree(devices_info);
4854 return 0;
4855
4856error_del_extent:
4857 write_lock(&em_tree->lock);
4858 remove_extent_mapping(em_tree, em);
4859 write_unlock(&em_tree->lock);
4860
4861 /* One for our allocation */
4862 free_extent_map(em);
4863 /* One for the tree reference */
4864 free_extent_map(em);
4865 /* One for the pending_chunks list reference */
4866 free_extent_map(em);
4867error:
4868 kfree(devices_info);
4869 return ret;
4870}
4871
4872int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4873 struct btrfs_root *extent_root,
4874 u64 chunk_offset, u64 chunk_size)
4875{
4876 struct btrfs_key key;
4877 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4878 struct btrfs_device *device;
4879 struct btrfs_chunk *chunk;
4880 struct btrfs_stripe *stripe;
4881 struct extent_map_tree *em_tree;
4882 struct extent_map *em;
4883 struct map_lookup *map;
4884 size_t item_size;
4885 u64 dev_offset;
4886 u64 stripe_size;
4887 int i = 0;
4888 int ret = 0;
4889
4890 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4891 read_lock(&em_tree->lock);
4892 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4893 read_unlock(&em_tree->lock);
4894
4895 if (!em) {
4896 btrfs_crit(extent_root->fs_info, "unable to find logical "
4897 "%Lu len %Lu", chunk_offset, chunk_size);
4898 return -EINVAL;
4899 }
4900
4901 if (em->start != chunk_offset || em->len != chunk_size) {
4902 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4903 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4904 chunk_size, em->start, em->len);
4905 free_extent_map(em);
4906 return -EINVAL;
4907 }
4908
4909 map = em->map_lookup;
4910 item_size = btrfs_chunk_item_size(map->num_stripes);
4911 stripe_size = em->orig_block_len;
4912
4913 chunk = kzalloc(item_size, GFP_NOFS);
4914 if (!chunk) {
4915 ret = -ENOMEM;
4916 goto out;
4917 }
4918
4919 /*
4920 * Take the device list mutex to prevent races with the final phase of
4921 * a device replace operation that replaces the device object associated
4922 * with the map's stripes, because the device object's id can change
4923 * at any time during that final phase of the device replace operation
4924 * (dev-replace.c:btrfs_dev_replace_finishing()).
4925 */
4926 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4927 for (i = 0; i < map->num_stripes; i++) {
4928 device = map->stripes[i].dev;
4929 dev_offset = map->stripes[i].physical;
4930
4931 ret = btrfs_update_device(trans, device);
4932 if (ret)
4933 break;
4934 ret = btrfs_alloc_dev_extent(trans, device,
4935 chunk_root->root_key.objectid,
4936 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4937 chunk_offset, dev_offset,
4938 stripe_size);
4939 if (ret)
4940 break;
4941 }
4942 if (ret) {
4943 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4944 goto out;
4945 }
4946
4947 stripe = &chunk->stripe;
4948 for (i = 0; i < map->num_stripes; i++) {
4949 device = map->stripes[i].dev;
4950 dev_offset = map->stripes[i].physical;
4951
4952 btrfs_set_stack_stripe_devid(stripe, device->devid);
4953 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4954 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4955 stripe++;
4956 }
4957 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4958
4959 btrfs_set_stack_chunk_length(chunk, chunk_size);
4960 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4961 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4962 btrfs_set_stack_chunk_type(chunk, map->type);
4963 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4964 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4965 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4966 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4967 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4968
4969 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4970 key.type = BTRFS_CHUNK_ITEM_KEY;
4971 key.offset = chunk_offset;
4972
4973 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4974 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4975 /*
4976 * TODO: Cleanup of inserted chunk root in case of
4977 * failure.
4978 */
4979 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4980 item_size);
4981 }
4982
4983out:
4984 kfree(chunk);
4985 free_extent_map(em);
4986 return ret;
4987}
4988
4989/*
4990 * Chunk allocation falls into two parts. The first part does works
4991 * that make the new allocated chunk useable, but not do any operation
4992 * that modifies the chunk tree. The second part does the works that
4993 * require modifying the chunk tree. This division is important for the
4994 * bootstrap process of adding storage to a seed btrfs.
4995 */
4996int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4997 struct btrfs_root *extent_root, u64 type)
4998{
4999 u64 chunk_offset;
5000
5001 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5002 chunk_offset = find_next_chunk(extent_root->fs_info);
5003 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5004}
5005
5006static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5007 struct btrfs_root *root,
5008 struct btrfs_device *device)
5009{
5010 u64 chunk_offset;
5011 u64 sys_chunk_offset;
5012 u64 alloc_profile;
5013 struct btrfs_fs_info *fs_info = root->fs_info;
5014 struct btrfs_root *extent_root = fs_info->extent_root;
5015 int ret;
5016
5017 chunk_offset = find_next_chunk(fs_info);
5018 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5019 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5020 alloc_profile);
5021 if (ret)
5022 return ret;
5023
5024 sys_chunk_offset = find_next_chunk(root->fs_info);
5025 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5026 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5027 alloc_profile);
5028 return ret;
5029}
5030
5031static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5032{
5033 int max_errors;
5034
5035 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5036 BTRFS_BLOCK_GROUP_RAID10 |
5037 BTRFS_BLOCK_GROUP_RAID5 |
5038 BTRFS_BLOCK_GROUP_DUP)) {
5039 max_errors = 1;
5040 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5041 max_errors = 2;
5042 } else {
5043 max_errors = 0;
5044 }
5045
5046 return max_errors;
5047}
5048
5049int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5050{
5051 struct extent_map *em;
5052 struct map_lookup *map;
5053 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5054 int readonly = 0;
5055 int miss_ndevs = 0;
5056 int i;
5057
5058 read_lock(&map_tree->map_tree.lock);
5059 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5060 read_unlock(&map_tree->map_tree.lock);
5061 if (!em)
5062 return 1;
5063
5064 map = em->map_lookup;
5065 for (i = 0; i < map->num_stripes; i++) {
5066 if (map->stripes[i].dev->missing) {
5067 miss_ndevs++;
5068 continue;
5069 }
5070
5071 if (!map->stripes[i].dev->writeable) {
5072 readonly = 1;
5073 goto end;
5074 }
5075 }
5076
5077 /*
5078 * If the number of missing devices is larger than max errors,
5079 * we can not write the data into that chunk successfully, so
5080 * set it readonly.
5081 */
5082 if (miss_ndevs > btrfs_chunk_max_errors(map))
5083 readonly = 1;
5084end:
5085 free_extent_map(em);
5086 return readonly;
5087}
5088
5089void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5090{
5091 extent_map_tree_init(&tree->map_tree);
5092}
5093
5094void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5095{
5096 struct extent_map *em;
5097
5098 while (1) {
5099 write_lock(&tree->map_tree.lock);
5100 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5101 if (em)
5102 remove_extent_mapping(&tree->map_tree, em);
5103 write_unlock(&tree->map_tree.lock);
5104 if (!em)
5105 break;
5106 /* once for us */
5107 free_extent_map(em);
5108 /* once for the tree */
5109 free_extent_map(em);
5110 }
5111}
5112
5113int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5114{
5115 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5116 struct extent_map *em;
5117 struct map_lookup *map;
5118 struct extent_map_tree *em_tree = &map_tree->map_tree;
5119 int ret;
5120
5121 read_lock(&em_tree->lock);
5122 em = lookup_extent_mapping(em_tree, logical, len);
5123 read_unlock(&em_tree->lock);
5124
5125 /*
5126 * We could return errors for these cases, but that could get ugly and
5127 * we'd probably do the same thing which is just not do anything else
5128 * and exit, so return 1 so the callers don't try to use other copies.
5129 */
5130 if (!em) {
5131 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5132 logical+len);
5133 return 1;
5134 }
5135
5136 if (em->start > logical || em->start + em->len < logical) {
5137 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5138 "%Lu-%Lu", logical, logical+len, em->start,
5139 em->start + em->len);
5140 free_extent_map(em);
5141 return 1;
5142 }
5143
5144 map = em->map_lookup;
5145 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5146 ret = map->num_stripes;
5147 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5148 ret = map->sub_stripes;
5149 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5150 ret = 2;
5151 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5152 ret = 3;
5153 else
5154 ret = 1;
5155 free_extent_map(em);
5156
5157 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5158 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5159 ret++;
5160 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5161
5162 return ret;
5163}
5164
5165unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5166 struct btrfs_mapping_tree *map_tree,
5167 u64 logical)
5168{
5169 struct extent_map *em;
5170 struct map_lookup *map;
5171 struct extent_map_tree *em_tree = &map_tree->map_tree;
5172 unsigned long len = root->sectorsize;
5173
5174 read_lock(&em_tree->lock);
5175 em = lookup_extent_mapping(em_tree, logical, len);
5176 read_unlock(&em_tree->lock);
5177 BUG_ON(!em);
5178
5179 BUG_ON(em->start > logical || em->start + em->len < logical);
5180 map = em->map_lookup;
5181 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5182 len = map->stripe_len * nr_data_stripes(map);
5183 free_extent_map(em);
5184 return len;
5185}
5186
5187int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5188 u64 logical, u64 len, int mirror_num)
5189{
5190 struct extent_map *em;
5191 struct map_lookup *map;
5192 struct extent_map_tree *em_tree = &map_tree->map_tree;
5193 int ret = 0;
5194
5195 read_lock(&em_tree->lock);
5196 em = lookup_extent_mapping(em_tree, logical, len);
5197 read_unlock(&em_tree->lock);
5198 BUG_ON(!em);
5199
5200 BUG_ON(em->start > logical || em->start + em->len < logical);
5201 map = em->map_lookup;
5202 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5203 ret = 1;
5204 free_extent_map(em);
5205 return ret;
5206}
5207
5208static int find_live_mirror(struct btrfs_fs_info *fs_info,
5209 struct map_lookup *map, int first, int num,
5210 int optimal, int dev_replace_is_ongoing)
5211{
5212 int i;
5213 int tolerance;
5214 struct btrfs_device *srcdev;
5215
5216 if (dev_replace_is_ongoing &&
5217 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5218 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5219 srcdev = fs_info->dev_replace.srcdev;
5220 else
5221 srcdev = NULL;
5222
5223 /*
5224 * try to avoid the drive that is the source drive for a
5225 * dev-replace procedure, only choose it if no other non-missing
5226 * mirror is available
5227 */
5228 for (tolerance = 0; tolerance < 2; tolerance++) {
5229 if (map->stripes[optimal].dev->bdev &&
5230 (tolerance || map->stripes[optimal].dev != srcdev))
5231 return optimal;
5232 for (i = first; i < first + num; i++) {
5233 if (map->stripes[i].dev->bdev &&
5234 (tolerance || map->stripes[i].dev != srcdev))
5235 return i;
5236 }
5237 }
5238
5239 /* we couldn't find one that doesn't fail. Just return something
5240 * and the io error handling code will clean up eventually
5241 */
5242 return optimal;
5243}
5244
5245static inline int parity_smaller(u64 a, u64 b)
5246{
5247 return a > b;
5248}
5249
5250/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5251static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5252{
5253 struct btrfs_bio_stripe s;
5254 int i;
5255 u64 l;
5256 int again = 1;
5257
5258 while (again) {
5259 again = 0;
5260 for (i = 0; i < num_stripes - 1; i++) {
5261 if (parity_smaller(bbio->raid_map[i],
5262 bbio->raid_map[i+1])) {
5263 s = bbio->stripes[i];
5264 l = bbio->raid_map[i];
5265 bbio->stripes[i] = bbio->stripes[i+1];
5266 bbio->raid_map[i] = bbio->raid_map[i+1];
5267 bbio->stripes[i+1] = s;
5268 bbio->raid_map[i+1] = l;
5269
5270 again = 1;
5271 }
5272 }
5273 }
5274}
5275
5276static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5277{
5278 struct btrfs_bio *bbio = kzalloc(
5279 /* the size of the btrfs_bio */
5280 sizeof(struct btrfs_bio) +
5281 /* plus the variable array for the stripes */
5282 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5283 /* plus the variable array for the tgt dev */
5284 sizeof(int) * (real_stripes) +
5285 /*
5286 * plus the raid_map, which includes both the tgt dev
5287 * and the stripes
5288 */
5289 sizeof(u64) * (total_stripes),
5290 GFP_NOFS|__GFP_NOFAIL);
5291
5292 atomic_set(&bbio->error, 0);
5293 atomic_set(&bbio->refs, 1);
5294
5295 return bbio;
5296}
5297
5298void btrfs_get_bbio(struct btrfs_bio *bbio)
5299{
5300 WARN_ON(!atomic_read(&bbio->refs));
5301 atomic_inc(&bbio->refs);
5302}
5303
5304void btrfs_put_bbio(struct btrfs_bio *bbio)
5305{
5306 if (!bbio)
5307 return;
5308 if (atomic_dec_and_test(&bbio->refs))
5309 kfree(bbio);
5310}
5311
5312static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5313 u64 logical, u64 *length,
5314 struct btrfs_bio **bbio_ret,
5315 int mirror_num, int need_raid_map)
5316{
5317 struct extent_map *em;
5318 struct map_lookup *map;
5319 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5320 struct extent_map_tree *em_tree = &map_tree->map_tree;
5321 u64 offset;
5322 u64 stripe_offset;
5323 u64 stripe_end_offset;
5324 u64 stripe_nr;
5325 u64 stripe_nr_orig;
5326 u64 stripe_nr_end;
5327 u64 stripe_len;
5328 u32 stripe_index;
5329 int i;
5330 int ret = 0;
5331 int num_stripes;
5332 int max_errors = 0;
5333 int tgtdev_indexes = 0;
5334 struct btrfs_bio *bbio = NULL;
5335 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5336 int dev_replace_is_ongoing = 0;
5337 int num_alloc_stripes;
5338 int patch_the_first_stripe_for_dev_replace = 0;
5339 u64 physical_to_patch_in_first_stripe = 0;
5340 u64 raid56_full_stripe_start = (u64)-1;
5341
5342 read_lock(&em_tree->lock);
5343 em = lookup_extent_mapping(em_tree, logical, *length);
5344 read_unlock(&em_tree->lock);
5345
5346 if (!em) {
5347 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5348 logical, *length);
5349 return -EINVAL;
5350 }
5351
5352 if (em->start > logical || em->start + em->len < logical) {
5353 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5354 "found %Lu-%Lu", logical, em->start,
5355 em->start + em->len);
5356 free_extent_map(em);
5357 return -EINVAL;
5358 }
5359
5360 map = em->map_lookup;
5361 offset = logical - em->start;
5362
5363 stripe_len = map->stripe_len;
5364 stripe_nr = offset;
5365 /*
5366 * stripe_nr counts the total number of stripes we have to stride
5367 * to get to this block
5368 */
5369 stripe_nr = div64_u64(stripe_nr, stripe_len);
5370
5371 stripe_offset = stripe_nr * stripe_len;
5372 if (offset < stripe_offset) {
5373 btrfs_crit(fs_info, "stripe math has gone wrong, "
5374 "stripe_offset=%llu, offset=%llu, start=%llu, "
5375 "logical=%llu, stripe_len=%llu",
5376 stripe_offset, offset, em->start, logical,
5377 stripe_len);
5378 free_extent_map(em);
5379 return -EINVAL;
5380 }
5381
5382 /* stripe_offset is the offset of this block in its stripe*/
5383 stripe_offset = offset - stripe_offset;
5384
5385 /* if we're here for raid56, we need to know the stripe aligned start */
5386 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5387 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5388 raid56_full_stripe_start = offset;
5389
5390 /* allow a write of a full stripe, but make sure we don't
5391 * allow straddling of stripes
5392 */
5393 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5394 full_stripe_len);
5395 raid56_full_stripe_start *= full_stripe_len;
5396 }
5397
5398 if (op == REQ_OP_DISCARD) {
5399 /* we don't discard raid56 yet */
5400 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5401 ret = -EOPNOTSUPP;
5402 goto out;
5403 }
5404 *length = min_t(u64, em->len - offset, *length);
5405 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5406 u64 max_len;
5407 /* For writes to RAID[56], allow a full stripeset across all disks.
5408 For other RAID types and for RAID[56] reads, just allow a single
5409 stripe (on a single disk). */
5410 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5411 (op == REQ_OP_WRITE)) {
5412 max_len = stripe_len * nr_data_stripes(map) -
5413 (offset - raid56_full_stripe_start);
5414 } else {
5415 /* we limit the length of each bio to what fits in a stripe */
5416 max_len = stripe_len - stripe_offset;
5417 }
5418 *length = min_t(u64, em->len - offset, max_len);
5419 } else {
5420 *length = em->len - offset;
5421 }
5422
5423 /* This is for when we're called from btrfs_merge_bio_hook() and all
5424 it cares about is the length */
5425 if (!bbio_ret)
5426 goto out;
5427
5428 btrfs_dev_replace_lock(dev_replace, 0);
5429 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5430 if (!dev_replace_is_ongoing)
5431 btrfs_dev_replace_unlock(dev_replace, 0);
5432 else
5433 btrfs_dev_replace_set_lock_blocking(dev_replace);
5434
5435 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5436 op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5437 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5438 /*
5439 * in dev-replace case, for repair case (that's the only
5440 * case where the mirror is selected explicitly when
5441 * calling btrfs_map_block), blocks left of the left cursor
5442 * can also be read from the target drive.
5443 * For REQ_GET_READ_MIRRORS, the target drive is added as
5444 * the last one to the array of stripes. For READ, it also
5445 * needs to be supported using the same mirror number.
5446 * If the requested block is not left of the left cursor,
5447 * EIO is returned. This can happen because btrfs_num_copies()
5448 * returns one more in the dev-replace case.
5449 */
5450 u64 tmp_length = *length;
5451 struct btrfs_bio *tmp_bbio = NULL;
5452 int tmp_num_stripes;
5453 u64 srcdev_devid = dev_replace->srcdev->devid;
5454 int index_srcdev = 0;
5455 int found = 0;
5456 u64 physical_of_found = 0;
5457
5458 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5459 logical, &tmp_length, &tmp_bbio, 0, 0);
5460 if (ret) {
5461 WARN_ON(tmp_bbio != NULL);
5462 goto out;
5463 }
5464
5465 tmp_num_stripes = tmp_bbio->num_stripes;
5466 if (mirror_num > tmp_num_stripes) {
5467 /*
5468 * REQ_GET_READ_MIRRORS does not contain this
5469 * mirror, that means that the requested area
5470 * is not left of the left cursor
5471 */
5472 ret = -EIO;
5473 btrfs_put_bbio(tmp_bbio);
5474 goto out;
5475 }
5476
5477 /*
5478 * process the rest of the function using the mirror_num
5479 * of the source drive. Therefore look it up first.
5480 * At the end, patch the device pointer to the one of the
5481 * target drive.
5482 */
5483 for (i = 0; i < tmp_num_stripes; i++) {
5484 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5485 continue;
5486
5487 /*
5488 * In case of DUP, in order to keep it simple, only add
5489 * the mirror with the lowest physical address
5490 */
5491 if (found &&
5492 physical_of_found <= tmp_bbio->stripes[i].physical)
5493 continue;
5494
5495 index_srcdev = i;
5496 found = 1;
5497 physical_of_found = tmp_bbio->stripes[i].physical;
5498 }
5499
5500 btrfs_put_bbio(tmp_bbio);
5501
5502 if (!found) {
5503 WARN_ON(1);
5504 ret = -EIO;
5505 goto out;
5506 }
5507
5508 mirror_num = index_srcdev + 1;
5509 patch_the_first_stripe_for_dev_replace = 1;
5510 physical_to_patch_in_first_stripe = physical_of_found;
5511 } else if (mirror_num > map->num_stripes) {
5512 mirror_num = 0;
5513 }
5514
5515 num_stripes = 1;
5516 stripe_index = 0;
5517 stripe_nr_orig = stripe_nr;
5518 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5519 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5520 stripe_end_offset = stripe_nr_end * map->stripe_len -
5521 (offset + *length);
5522
5523 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5524 if (op == REQ_OP_DISCARD)
5525 num_stripes = min_t(u64, map->num_stripes,
5526 stripe_nr_end - stripe_nr_orig);
5527 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5528 &stripe_index);
5529 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5530 op != REQ_GET_READ_MIRRORS)
5531 mirror_num = 1;
5532 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5533 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5534 op == REQ_GET_READ_MIRRORS)
5535 num_stripes = map->num_stripes;
5536 else if (mirror_num)
5537 stripe_index = mirror_num - 1;
5538 else {
5539 stripe_index = find_live_mirror(fs_info, map, 0,
5540 map->num_stripes,
5541 current->pid % map->num_stripes,
5542 dev_replace_is_ongoing);
5543 mirror_num = stripe_index + 1;
5544 }
5545
5546 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5547 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5548 op == REQ_GET_READ_MIRRORS) {
5549 num_stripes = map->num_stripes;
5550 } else if (mirror_num) {
5551 stripe_index = mirror_num - 1;
5552 } else {
5553 mirror_num = 1;
5554 }
5555
5556 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5557 u32 factor = map->num_stripes / map->sub_stripes;
5558
5559 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5560 stripe_index *= map->sub_stripes;
5561
5562 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5563 num_stripes = map->sub_stripes;
5564 else if (op == REQ_OP_DISCARD)
5565 num_stripes = min_t(u64, map->sub_stripes *
5566 (stripe_nr_end - stripe_nr_orig),
5567 map->num_stripes);
5568 else if (mirror_num)
5569 stripe_index += mirror_num - 1;
5570 else {
5571 int old_stripe_index = stripe_index;
5572 stripe_index = find_live_mirror(fs_info, map,
5573 stripe_index,
5574 map->sub_stripes, stripe_index +
5575 current->pid % map->sub_stripes,
5576 dev_replace_is_ongoing);
5577 mirror_num = stripe_index - old_stripe_index + 1;
5578 }
5579
5580 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5581 if (need_raid_map &&
5582 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5583 mirror_num > 1)) {
5584 /* push stripe_nr back to the start of the full stripe */
5585 stripe_nr = div_u64(raid56_full_stripe_start,
5586 stripe_len * nr_data_stripes(map));
5587
5588 /* RAID[56] write or recovery. Return all stripes */
5589 num_stripes = map->num_stripes;
5590 max_errors = nr_parity_stripes(map);
5591
5592 *length = map->stripe_len;
5593 stripe_index = 0;
5594 stripe_offset = 0;
5595 } else {
5596 /*
5597 * Mirror #0 or #1 means the original data block.
5598 * Mirror #2 is RAID5 parity block.
5599 * Mirror #3 is RAID6 Q block.
5600 */
5601 stripe_nr = div_u64_rem(stripe_nr,
5602 nr_data_stripes(map), &stripe_index);
5603 if (mirror_num > 1)
5604 stripe_index = nr_data_stripes(map) +
5605 mirror_num - 2;
5606
5607 /* We distribute the parity blocks across stripes */
5608 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5609 &stripe_index);
5610 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5611 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5612 mirror_num = 1;
5613 }
5614 } else {
5615 /*
5616 * after this, stripe_nr is the number of stripes on this
5617 * device we have to walk to find the data, and stripe_index is
5618 * the number of our device in the stripe array
5619 */
5620 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5621 &stripe_index);
5622 mirror_num = stripe_index + 1;
5623 }
5624 if (stripe_index >= map->num_stripes) {
5625 btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5626 "got stripe_index=%u, num_stripes=%u",
5627 stripe_index, map->num_stripes);
5628 ret = -EINVAL;
5629 goto out;
5630 }
5631
5632 num_alloc_stripes = num_stripes;
5633 if (dev_replace_is_ongoing) {
5634 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5635 num_alloc_stripes <<= 1;
5636 if (op == REQ_GET_READ_MIRRORS)
5637 num_alloc_stripes++;
5638 tgtdev_indexes = num_stripes;
5639 }
5640
5641 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5642 if (!bbio) {
5643 ret = -ENOMEM;
5644 goto out;
5645 }
5646 if (dev_replace_is_ongoing)
5647 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5648
5649 /* build raid_map */
5650 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5651 need_raid_map &&
5652 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5653 mirror_num > 1)) {
5654 u64 tmp;
5655 unsigned rot;
5656
5657 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5658 sizeof(struct btrfs_bio_stripe) *
5659 num_alloc_stripes +
5660 sizeof(int) * tgtdev_indexes);
5661
5662 /* Work out the disk rotation on this stripe-set */
5663 div_u64_rem(stripe_nr, num_stripes, &rot);
5664
5665 /* Fill in the logical address of each stripe */
5666 tmp = stripe_nr * nr_data_stripes(map);
5667 for (i = 0; i < nr_data_stripes(map); i++)
5668 bbio->raid_map[(i+rot) % num_stripes] =
5669 em->start + (tmp + i) * map->stripe_len;
5670
5671 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5672 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5673 bbio->raid_map[(i+rot+1) % num_stripes] =
5674 RAID6_Q_STRIPE;
5675 }
5676
5677 if (op == REQ_OP_DISCARD) {
5678 u32 factor = 0;
5679 u32 sub_stripes = 0;
5680 u64 stripes_per_dev = 0;
5681 u32 remaining_stripes = 0;
5682 u32 last_stripe = 0;
5683
5684 if (map->type &
5685 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5686 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5687 sub_stripes = 1;
5688 else
5689 sub_stripes = map->sub_stripes;
5690
5691 factor = map->num_stripes / sub_stripes;
5692 stripes_per_dev = div_u64_rem(stripe_nr_end -
5693 stripe_nr_orig,
5694 factor,
5695 &remaining_stripes);
5696 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5697 last_stripe *= sub_stripes;
5698 }
5699
5700 for (i = 0; i < num_stripes; i++) {
5701 bbio->stripes[i].physical =
5702 map->stripes[stripe_index].physical +
5703 stripe_offset + stripe_nr * map->stripe_len;
5704 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5705
5706 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5707 BTRFS_BLOCK_GROUP_RAID10)) {
5708 bbio->stripes[i].length = stripes_per_dev *
5709 map->stripe_len;
5710
5711 if (i / sub_stripes < remaining_stripes)
5712 bbio->stripes[i].length +=
5713 map->stripe_len;
5714
5715 /*
5716 * Special for the first stripe and
5717 * the last stripe:
5718 *
5719 * |-------|...|-------|
5720 * |----------|
5721 * off end_off
5722 */
5723 if (i < sub_stripes)
5724 bbio->stripes[i].length -=
5725 stripe_offset;
5726
5727 if (stripe_index >= last_stripe &&
5728 stripe_index <= (last_stripe +
5729 sub_stripes - 1))
5730 bbio->stripes[i].length -=
5731 stripe_end_offset;
5732
5733 if (i == sub_stripes - 1)
5734 stripe_offset = 0;
5735 } else
5736 bbio->stripes[i].length = *length;
5737
5738 stripe_index++;
5739 if (stripe_index == map->num_stripes) {
5740 /* This could only happen for RAID0/10 */
5741 stripe_index = 0;
5742 stripe_nr++;
5743 }
5744 }
5745 } else {
5746 for (i = 0; i < num_stripes; i++) {
5747 bbio->stripes[i].physical =
5748 map->stripes[stripe_index].physical +
5749 stripe_offset +
5750 stripe_nr * map->stripe_len;
5751 bbio->stripes[i].dev =
5752 map->stripes[stripe_index].dev;
5753 stripe_index++;
5754 }
5755 }
5756
5757 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5758 max_errors = btrfs_chunk_max_errors(map);
5759
5760 if (bbio->raid_map)
5761 sort_parity_stripes(bbio, num_stripes);
5762
5763 tgtdev_indexes = 0;
5764 if (dev_replace_is_ongoing &&
5765 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5766 dev_replace->tgtdev != NULL) {
5767 int index_where_to_add;
5768 u64 srcdev_devid = dev_replace->srcdev->devid;
5769
5770 /*
5771 * duplicate the write operations while the dev replace
5772 * procedure is running. Since the copying of the old disk
5773 * to the new disk takes place at run time while the
5774 * filesystem is mounted writable, the regular write
5775 * operations to the old disk have to be duplicated to go
5776 * to the new disk as well.
5777 * Note that device->missing is handled by the caller, and
5778 * that the write to the old disk is already set up in the
5779 * stripes array.
5780 */
5781 index_where_to_add = num_stripes;
5782 for (i = 0; i < num_stripes; i++) {
5783 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5784 /* write to new disk, too */
5785 struct btrfs_bio_stripe *new =
5786 bbio->stripes + index_where_to_add;
5787 struct btrfs_bio_stripe *old =
5788 bbio->stripes + i;
5789
5790 new->physical = old->physical;
5791 new->length = old->length;
5792 new->dev = dev_replace->tgtdev;
5793 bbio->tgtdev_map[i] = index_where_to_add;
5794 index_where_to_add++;
5795 max_errors++;
5796 tgtdev_indexes++;
5797 }
5798 }
5799 num_stripes = index_where_to_add;
5800 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5801 dev_replace->tgtdev != NULL) {
5802 u64 srcdev_devid = dev_replace->srcdev->devid;
5803 int index_srcdev = 0;
5804 int found = 0;
5805 u64 physical_of_found = 0;
5806
5807 /*
5808 * During the dev-replace procedure, the target drive can
5809 * also be used to read data in case it is needed to repair
5810 * a corrupt block elsewhere. This is possible if the
5811 * requested area is left of the left cursor. In this area,
5812 * the target drive is a full copy of the source drive.
5813 */
5814 for (i = 0; i < num_stripes; i++) {
5815 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5816 /*
5817 * In case of DUP, in order to keep it
5818 * simple, only add the mirror with the
5819 * lowest physical address
5820 */
5821 if (found &&
5822 physical_of_found <=
5823 bbio->stripes[i].physical)
5824 continue;
5825 index_srcdev = i;
5826 found = 1;
5827 physical_of_found = bbio->stripes[i].physical;
5828 }
5829 }
5830 if (found) {
5831 struct btrfs_bio_stripe *tgtdev_stripe =
5832 bbio->stripes + num_stripes;
5833
5834 tgtdev_stripe->physical = physical_of_found;
5835 tgtdev_stripe->length =
5836 bbio->stripes[index_srcdev].length;
5837 tgtdev_stripe->dev = dev_replace->tgtdev;
5838 bbio->tgtdev_map[index_srcdev] = num_stripes;
5839
5840 tgtdev_indexes++;
5841 num_stripes++;
5842 }
5843 }
5844
5845 *bbio_ret = bbio;
5846 bbio->map_type = map->type;
5847 bbio->num_stripes = num_stripes;
5848 bbio->max_errors = max_errors;
5849 bbio->mirror_num = mirror_num;
5850 bbio->num_tgtdevs = tgtdev_indexes;
5851
5852 /*
5853 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5854 * mirror_num == num_stripes + 1 && dev_replace target drive is
5855 * available as a mirror
5856 */
5857 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5858 WARN_ON(num_stripes > 1);
5859 bbio->stripes[0].dev = dev_replace->tgtdev;
5860 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5861 bbio->mirror_num = map->num_stripes + 1;
5862 }
5863out:
5864 if (dev_replace_is_ongoing) {
5865 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5866 btrfs_dev_replace_unlock(dev_replace, 0);
5867 }
5868 free_extent_map(em);
5869 return ret;
5870}
5871
5872int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5873 u64 logical, u64 *length,
5874 struct btrfs_bio **bbio_ret, int mirror_num)
5875{
5876 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5877 mirror_num, 0);
5878}
5879
5880/* For Scrub/replace */
5881int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5882 u64 logical, u64 *length,
5883 struct btrfs_bio **bbio_ret, int mirror_num,
5884 int need_raid_map)
5885{
5886 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5887 mirror_num, need_raid_map);
5888}
5889
5890int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5891 u64 chunk_start, u64 physical, u64 devid,
5892 u64 **logical, int *naddrs, int *stripe_len)
5893{
5894 struct extent_map_tree *em_tree = &map_tree->map_tree;
5895 struct extent_map *em;
5896 struct map_lookup *map;
5897 u64 *buf;
5898 u64 bytenr;
5899 u64 length;
5900 u64 stripe_nr;
5901 u64 rmap_len;
5902 int i, j, nr = 0;
5903
5904 read_lock(&em_tree->lock);
5905 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5906 read_unlock(&em_tree->lock);
5907
5908 if (!em) {
5909 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5910 chunk_start);
5911 return -EIO;
5912 }
5913
5914 if (em->start != chunk_start) {
5915 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5916 em->start, chunk_start);
5917 free_extent_map(em);
5918 return -EIO;
5919 }
5920 map = em->map_lookup;
5921
5922 length = em->len;
5923 rmap_len = map->stripe_len;
5924
5925 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5926 length = div_u64(length, map->num_stripes / map->sub_stripes);
5927 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5928 length = div_u64(length, map->num_stripes);
5929 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5930 length = div_u64(length, nr_data_stripes(map));
5931 rmap_len = map->stripe_len * nr_data_stripes(map);
5932 }
5933
5934 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5935 BUG_ON(!buf); /* -ENOMEM */
5936
5937 for (i = 0; i < map->num_stripes; i++) {
5938 if (devid && map->stripes[i].dev->devid != devid)
5939 continue;
5940 if (map->stripes[i].physical > physical ||
5941 map->stripes[i].physical + length <= physical)
5942 continue;
5943
5944 stripe_nr = physical - map->stripes[i].physical;
5945 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5946
5947 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5948 stripe_nr = stripe_nr * map->num_stripes + i;
5949 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5950 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5951 stripe_nr = stripe_nr * map->num_stripes + i;
5952 } /* else if RAID[56], multiply by nr_data_stripes().
5953 * Alternatively, just use rmap_len below instead of
5954 * map->stripe_len */
5955
5956 bytenr = chunk_start + stripe_nr * rmap_len;
5957 WARN_ON(nr >= map->num_stripes);
5958 for (j = 0; j < nr; j++) {
5959 if (buf[j] == bytenr)
5960 break;
5961 }
5962 if (j == nr) {
5963 WARN_ON(nr >= map->num_stripes);
5964 buf[nr++] = bytenr;
5965 }
5966 }
5967
5968 *logical = buf;
5969 *naddrs = nr;
5970 *stripe_len = rmap_len;
5971
5972 free_extent_map(em);
5973 return 0;
5974}
5975
5976static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5977{
5978 bio->bi_private = bbio->private;
5979 bio->bi_end_io = bbio->end_io;
5980 bio_endio(bio);
5981
5982 btrfs_put_bbio(bbio);
5983}
5984
5985static void btrfs_end_bio(struct bio *bio)
5986{
5987 struct btrfs_bio *bbio = bio->bi_private;
5988 int is_orig_bio = 0;
5989
5990 if (bio->bi_error) {
5991 atomic_inc(&bbio->error);
5992 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5993 unsigned int stripe_index =
5994 btrfs_io_bio(bio)->stripe_index;
5995 struct btrfs_device *dev;
5996
5997 BUG_ON(stripe_index >= bbio->num_stripes);
5998 dev = bbio->stripes[stripe_index].dev;
5999 if (dev->bdev) {
6000 if (bio_op(bio) == REQ_OP_WRITE)
6001 btrfs_dev_stat_inc(dev,
6002 BTRFS_DEV_STAT_WRITE_ERRS);
6003 else
6004 btrfs_dev_stat_inc(dev,
6005 BTRFS_DEV_STAT_READ_ERRS);
6006 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6007 btrfs_dev_stat_inc(dev,
6008 BTRFS_DEV_STAT_FLUSH_ERRS);
6009 btrfs_dev_stat_print_on_error(dev);
6010 }
6011 }
6012 }
6013
6014 if (bio == bbio->orig_bio)
6015 is_orig_bio = 1;
6016
6017 btrfs_bio_counter_dec(bbio->fs_info);
6018
6019 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6020 if (!is_orig_bio) {
6021 bio_put(bio);
6022 bio = bbio->orig_bio;
6023 }
6024
6025 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6026 /* only send an error to the higher layers if it is
6027 * beyond the tolerance of the btrfs bio
6028 */
6029 if (atomic_read(&bbio->error) > bbio->max_errors) {
6030 bio->bi_error = -EIO;
6031 } else {
6032 /*
6033 * this bio is actually up to date, we didn't
6034 * go over the max number of errors
6035 */
6036 bio->bi_error = 0;
6037 }
6038
6039 btrfs_end_bbio(bbio, bio);
6040 } else if (!is_orig_bio) {
6041 bio_put(bio);
6042 }
6043}
6044
6045/*
6046 * see run_scheduled_bios for a description of why bios are collected for
6047 * async submit.
6048 *
6049 * This will add one bio to the pending list for a device and make sure
6050 * the work struct is scheduled.
6051 */
6052static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6053 struct btrfs_device *device,
6054 struct bio *bio)
6055{
6056 int should_queue = 1;
6057 struct btrfs_pending_bios *pending_bios;
6058
6059 if (device->missing || !device->bdev) {
6060 bio_io_error(bio);
6061 return;
6062 }
6063
6064 /* don't bother with additional async steps for reads, right now */
6065 if (bio_op(bio) == REQ_OP_READ) {
6066 bio_get(bio);
6067 btrfsic_submit_bio(bio);
6068 bio_put(bio);
6069 return;
6070 }
6071
6072 /*
6073 * nr_async_bios allows us to reliably return congestion to the
6074 * higher layers. Otherwise, the async bio makes it appear we have
6075 * made progress against dirty pages when we've really just put it
6076 * on a queue for later
6077 */
6078 atomic_inc(&root->fs_info->nr_async_bios);
6079 WARN_ON(bio->bi_next);
6080 bio->bi_next = NULL;
6081
6082 spin_lock(&device->io_lock);
6083 if (bio->bi_opf & REQ_SYNC)
6084 pending_bios = &device->pending_sync_bios;
6085 else
6086 pending_bios = &device->pending_bios;
6087
6088 if (pending_bios->tail)
6089 pending_bios->tail->bi_next = bio;
6090
6091 pending_bios->tail = bio;
6092 if (!pending_bios->head)
6093 pending_bios->head = bio;
6094 if (device->running_pending)
6095 should_queue = 0;
6096
6097 spin_unlock(&device->io_lock);
6098
6099 if (should_queue)
6100 btrfs_queue_work(root->fs_info->submit_workers,
6101 &device->work);
6102}
6103
6104static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6105 struct bio *bio, u64 physical, int dev_nr,
6106 int async)
6107{
6108 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6109
6110 bio->bi_private = bbio;
6111 btrfs_io_bio(bio)->stripe_index = dev_nr;
6112 bio->bi_end_io = btrfs_end_bio;
6113 bio->bi_iter.bi_sector = physical >> 9;
6114#ifdef DEBUG
6115 {
6116 struct rcu_string *name;
6117
6118 rcu_read_lock();
6119 name = rcu_dereference(dev->name);
6120 pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu "
6121 "(%s id %llu), size=%u\n", bio_op(bio), bio->bi_opf,
6122 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6123 name->str, dev->devid, bio->bi_iter.bi_size);
6124 rcu_read_unlock();
6125 }
6126#endif
6127 bio->bi_bdev = dev->bdev;
6128
6129 btrfs_bio_counter_inc_noblocked(root->fs_info);
6130
6131 if (async)
6132 btrfs_schedule_bio(root, dev, bio);
6133 else
6134 btrfsic_submit_bio(bio);
6135}
6136
6137static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6138{
6139 atomic_inc(&bbio->error);
6140 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6141 /* Should be the original bio. */
6142 WARN_ON(bio != bbio->orig_bio);
6143
6144 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6145 bio->bi_iter.bi_sector = logical >> 9;
6146 bio->bi_error = -EIO;
6147 btrfs_end_bbio(bbio, bio);
6148 }
6149}
6150
6151int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6152 int mirror_num, int async_submit)
6153{
6154 struct btrfs_device *dev;
6155 struct bio *first_bio = bio;
6156 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6157 u64 length = 0;
6158 u64 map_length;
6159 int ret;
6160 int dev_nr;
6161 int total_devs;
6162 struct btrfs_bio *bbio = NULL;
6163
6164 length = bio->bi_iter.bi_size;
6165 map_length = length;
6166
6167 btrfs_bio_counter_inc_blocked(root->fs_info);
6168 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6169 &map_length, &bbio, mirror_num, 1);
6170 if (ret) {
6171 btrfs_bio_counter_dec(root->fs_info);
6172 return ret;
6173 }
6174
6175 total_devs = bbio->num_stripes;
6176 bbio->orig_bio = first_bio;
6177 bbio->private = first_bio->bi_private;
6178 bbio->end_io = first_bio->bi_end_io;
6179 bbio->fs_info = root->fs_info;
6180 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6181
6182 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6183 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6184 /* In this case, map_length has been set to the length of
6185 a single stripe; not the whole write */
6186 if (bio_op(bio) == REQ_OP_WRITE) {
6187 ret = raid56_parity_write(root, bio, bbio, map_length);
6188 } else {
6189 ret = raid56_parity_recover(root, bio, bbio, map_length,
6190 mirror_num, 1);
6191 }
6192
6193 btrfs_bio_counter_dec(root->fs_info);
6194 return ret;
6195 }
6196
6197 if (map_length < length) {
6198 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6199 logical, length, map_length);
6200 BUG();
6201 }
6202
6203 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6204 dev = bbio->stripes[dev_nr].dev;
6205 if (!dev || !dev->bdev ||
6206 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6207 bbio_error(bbio, first_bio, logical);
6208 continue;
6209 }
6210
6211 if (dev_nr < total_devs - 1) {
6212 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6213 BUG_ON(!bio); /* -ENOMEM */
6214 } else
6215 bio = first_bio;
6216
6217 submit_stripe_bio(root, bbio, bio,
6218 bbio->stripes[dev_nr].physical, dev_nr,
6219 async_submit);
6220 }
6221 btrfs_bio_counter_dec(root->fs_info);
6222 return 0;
6223}
6224
6225struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6226 u8 *uuid, u8 *fsid)
6227{
6228 struct btrfs_device *device;
6229 struct btrfs_fs_devices *cur_devices;
6230
6231 cur_devices = fs_info->fs_devices;
6232 while (cur_devices) {
6233 if (!fsid ||
6234 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6235 device = __find_device(&cur_devices->devices,
6236 devid, uuid);
6237 if (device)
6238 return device;
6239 }
6240 cur_devices = cur_devices->seed;
6241 }
6242 return NULL;
6243}
6244
6245static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6246 struct btrfs_fs_devices *fs_devices,
6247 u64 devid, u8 *dev_uuid)
6248{
6249 struct btrfs_device *device;
6250
6251 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6252 if (IS_ERR(device))
6253 return NULL;
6254
6255 list_add(&device->dev_list, &fs_devices->devices);
6256 device->fs_devices = fs_devices;
6257 fs_devices->num_devices++;
6258
6259 device->missing = 1;
6260 fs_devices->missing_devices++;
6261
6262 return device;
6263}
6264
6265/**
6266 * btrfs_alloc_device - allocate struct btrfs_device
6267 * @fs_info: used only for generating a new devid, can be NULL if
6268 * devid is provided (i.e. @devid != NULL).
6269 * @devid: a pointer to devid for this device. If NULL a new devid
6270 * is generated.
6271 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6272 * is generated.
6273 *
6274 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6275 * on error. Returned struct is not linked onto any lists and can be
6276 * destroyed with kfree() right away.
6277 */
6278struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6279 const u64 *devid,
6280 const u8 *uuid)
6281{
6282 struct btrfs_device *dev;
6283 u64 tmp;
6284
6285 if (WARN_ON(!devid && !fs_info))
6286 return ERR_PTR(-EINVAL);
6287
6288 dev = __alloc_device();
6289 if (IS_ERR(dev))
6290 return dev;
6291
6292 if (devid)
6293 tmp = *devid;
6294 else {
6295 int ret;
6296
6297 ret = find_next_devid(fs_info, &tmp);
6298 if (ret) {
6299 kfree(dev);
6300 return ERR_PTR(ret);
6301 }
6302 }
6303 dev->devid = tmp;
6304
6305 if (uuid)
6306 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6307 else
6308 generate_random_uuid(dev->uuid);
6309
6310 btrfs_init_work(&dev->work, btrfs_submit_helper,
6311 pending_bios_fn, NULL, NULL);
6312
6313 return dev;
6314}
6315
6316/* Return -EIO if any error, otherwise return 0. */
6317static int btrfs_check_chunk_valid(struct btrfs_root *root,
6318 struct extent_buffer *leaf,
6319 struct btrfs_chunk *chunk, u64 logical)
6320{
6321 u64 length;
6322 u64 stripe_len;
6323 u16 num_stripes;
6324 u16 sub_stripes;
6325 u64 type;
6326
6327 length = btrfs_chunk_length(leaf, chunk);
6328 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6329 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6330 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6331 type = btrfs_chunk_type(leaf, chunk);
6332
6333 if (!num_stripes) {
6334 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6335 num_stripes);
6336 return -EIO;
6337 }
6338 if (!IS_ALIGNED(logical, root->sectorsize)) {
6339 btrfs_err(root->fs_info,
6340 "invalid chunk logical %llu", logical);
6341 return -EIO;
6342 }
6343 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6344 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6345 btrfs_chunk_sector_size(leaf, chunk));
6346 return -EIO;
6347 }
6348 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6349 btrfs_err(root->fs_info,
6350 "invalid chunk length %llu", length);
6351 return -EIO;
6352 }
6353 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6354 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6355 stripe_len);
6356 return -EIO;
6357 }
6358 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6359 type) {
6360 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6361 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6362 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6363 btrfs_chunk_type(leaf, chunk));
6364 return -EIO;
6365 }
6366 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6367 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6368 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6369 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6370 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6371 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6372 num_stripes != 1)) {
6373 btrfs_err(root->fs_info,
6374 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6375 num_stripes, sub_stripes,
6376 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6377 return -EIO;
6378 }
6379
6380 return 0;
6381}
6382
6383static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6384 struct extent_buffer *leaf,
6385 struct btrfs_chunk *chunk)
6386{
6387 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6388 struct map_lookup *map;
6389 struct extent_map *em;
6390 u64 logical;
6391 u64 length;
6392 u64 stripe_len;
6393 u64 devid;
6394 u8 uuid[BTRFS_UUID_SIZE];
6395 int num_stripes;
6396 int ret;
6397 int i;
6398
6399 logical = key->offset;
6400 length = btrfs_chunk_length(leaf, chunk);
6401 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6402 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6403
6404 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6405 if (ret)
6406 return ret;
6407
6408 read_lock(&map_tree->map_tree.lock);
6409 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6410 read_unlock(&map_tree->map_tree.lock);
6411
6412 /* already mapped? */
6413 if (em && em->start <= logical && em->start + em->len > logical) {
6414 free_extent_map(em);
6415 return 0;
6416 } else if (em) {
6417 free_extent_map(em);
6418 }
6419
6420 em = alloc_extent_map();
6421 if (!em)
6422 return -ENOMEM;
6423 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6424 if (!map) {
6425 free_extent_map(em);
6426 return -ENOMEM;
6427 }
6428
6429 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6430 em->map_lookup = map;
6431 em->start = logical;
6432 em->len = length;
6433 em->orig_start = 0;
6434 em->block_start = 0;
6435 em->block_len = em->len;
6436
6437 map->num_stripes = num_stripes;
6438 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6439 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6440 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6441 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6442 map->type = btrfs_chunk_type(leaf, chunk);
6443 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6444 for (i = 0; i < num_stripes; i++) {
6445 map->stripes[i].physical =
6446 btrfs_stripe_offset_nr(leaf, chunk, i);
6447 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6448 read_extent_buffer(leaf, uuid, (unsigned long)
6449 btrfs_stripe_dev_uuid_nr(chunk, i),
6450 BTRFS_UUID_SIZE);
6451 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6452 uuid, NULL);
6453 if (!map->stripes[i].dev &&
6454 !btrfs_test_opt(root->fs_info, DEGRADED)) {
6455 free_extent_map(em);
6456 return -EIO;
6457 }
6458 if (!map->stripes[i].dev) {
6459 map->stripes[i].dev =
6460 add_missing_dev(root, root->fs_info->fs_devices,
6461 devid, uuid);
6462 if (!map->stripes[i].dev) {
6463 free_extent_map(em);
6464 return -EIO;
6465 }
6466 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6467 devid, uuid);
6468 }
6469 map->stripes[i].dev->in_fs_metadata = 1;
6470 }
6471
6472 write_lock(&map_tree->map_tree.lock);
6473 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6474 write_unlock(&map_tree->map_tree.lock);
6475 BUG_ON(ret); /* Tree corruption */
6476 free_extent_map(em);
6477
6478 return 0;
6479}
6480
6481static void fill_device_from_item(struct extent_buffer *leaf,
6482 struct btrfs_dev_item *dev_item,
6483 struct btrfs_device *device)
6484{
6485 unsigned long ptr;
6486
6487 device->devid = btrfs_device_id(leaf, dev_item);
6488 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6489 device->total_bytes = device->disk_total_bytes;
6490 device->commit_total_bytes = device->disk_total_bytes;
6491 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6492 device->commit_bytes_used = device->bytes_used;
6493 device->type = btrfs_device_type(leaf, dev_item);
6494 device->io_align = btrfs_device_io_align(leaf, dev_item);
6495 device->io_width = btrfs_device_io_width(leaf, dev_item);
6496 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6497 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6498 device->is_tgtdev_for_dev_replace = 0;
6499
6500 ptr = btrfs_device_uuid(dev_item);
6501 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6502}
6503
6504static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6505 u8 *fsid)
6506{
6507 struct btrfs_fs_devices *fs_devices;
6508 int ret;
6509
6510 BUG_ON(!mutex_is_locked(&uuid_mutex));
6511
6512 fs_devices = root->fs_info->fs_devices->seed;
6513 while (fs_devices) {
6514 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6515 return fs_devices;
6516
6517 fs_devices = fs_devices->seed;
6518 }
6519
6520 fs_devices = find_fsid(fsid);
6521 if (!fs_devices) {
6522 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6523 return ERR_PTR(-ENOENT);
6524
6525 fs_devices = alloc_fs_devices(fsid);
6526 if (IS_ERR(fs_devices))
6527 return fs_devices;
6528
6529 fs_devices->seeding = 1;
6530 fs_devices->opened = 1;
6531 return fs_devices;
6532 }
6533
6534 fs_devices = clone_fs_devices(fs_devices);
6535 if (IS_ERR(fs_devices))
6536 return fs_devices;
6537
6538 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6539 root->fs_info->bdev_holder);
6540 if (ret) {
6541 free_fs_devices(fs_devices);
6542 fs_devices = ERR_PTR(ret);
6543 goto out;
6544 }
6545
6546 if (!fs_devices->seeding) {
6547 __btrfs_close_devices(fs_devices);
6548 free_fs_devices(fs_devices);
6549 fs_devices = ERR_PTR(-EINVAL);
6550 goto out;
6551 }
6552
6553 fs_devices->seed = root->fs_info->fs_devices->seed;
6554 root->fs_info->fs_devices->seed = fs_devices;
6555out:
6556 return fs_devices;
6557}
6558
6559static int read_one_dev(struct btrfs_root *root,
6560 struct extent_buffer *leaf,
6561 struct btrfs_dev_item *dev_item)
6562{
6563 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6564 struct btrfs_device *device;
6565 u64 devid;
6566 int ret;
6567 u8 fs_uuid[BTRFS_UUID_SIZE];
6568 u8 dev_uuid[BTRFS_UUID_SIZE];
6569
6570 devid = btrfs_device_id(leaf, dev_item);
6571 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6572 BTRFS_UUID_SIZE);
6573 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6574 BTRFS_UUID_SIZE);
6575
6576 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6577 fs_devices = open_seed_devices(root, fs_uuid);
6578 if (IS_ERR(fs_devices))
6579 return PTR_ERR(fs_devices);
6580 }
6581
6582 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6583 if (!device) {
6584 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6585 return -EIO;
6586
6587 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6588 if (!device)
6589 return -ENOMEM;
6590 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6591 devid, dev_uuid);
6592 } else {
6593 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6594 return -EIO;
6595
6596 if(!device->bdev && !device->missing) {
6597 /*
6598 * this happens when a device that was properly setup
6599 * in the device info lists suddenly goes bad.
6600 * device->bdev is NULL, and so we have to set
6601 * device->missing to one here
6602 */
6603 device->fs_devices->missing_devices++;
6604 device->missing = 1;
6605 }
6606
6607 /* Move the device to its own fs_devices */
6608 if (device->fs_devices != fs_devices) {
6609 ASSERT(device->missing);
6610
6611 list_move(&device->dev_list, &fs_devices->devices);
6612 device->fs_devices->num_devices--;
6613 fs_devices->num_devices++;
6614
6615 device->fs_devices->missing_devices--;
6616 fs_devices->missing_devices++;
6617
6618 device->fs_devices = fs_devices;
6619 }
6620 }
6621
6622 if (device->fs_devices != root->fs_info->fs_devices) {
6623 BUG_ON(device->writeable);
6624 if (device->generation !=
6625 btrfs_device_generation(leaf, dev_item))
6626 return -EINVAL;
6627 }
6628
6629 fill_device_from_item(leaf, dev_item, device);
6630 device->in_fs_metadata = 1;
6631 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6632 device->fs_devices->total_rw_bytes += device->total_bytes;
6633 spin_lock(&root->fs_info->free_chunk_lock);
6634 root->fs_info->free_chunk_space += device->total_bytes -
6635 device->bytes_used;
6636 spin_unlock(&root->fs_info->free_chunk_lock);
6637 }
6638 ret = 0;
6639 return ret;
6640}
6641
6642int btrfs_read_sys_array(struct btrfs_root *root)
6643{
6644 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6645 struct extent_buffer *sb;
6646 struct btrfs_disk_key *disk_key;
6647 struct btrfs_chunk *chunk;
6648 u8 *array_ptr;
6649 unsigned long sb_array_offset;
6650 int ret = 0;
6651 u32 num_stripes;
6652 u32 array_size;
6653 u32 len = 0;
6654 u32 cur_offset;
6655 u64 type;
6656 struct btrfs_key key;
6657
6658 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6659 /*
6660 * This will create extent buffer of nodesize, superblock size is
6661 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6662 * overallocate but we can keep it as-is, only the first page is used.
6663 */
6664 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6665 if (IS_ERR(sb))
6666 return PTR_ERR(sb);
6667 set_extent_buffer_uptodate(sb);
6668 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6669 /*
6670 * The sb extent buffer is artificial and just used to read the system array.
6671 * set_extent_buffer_uptodate() call does not properly mark all it's
6672 * pages up-to-date when the page is larger: extent does not cover the
6673 * whole page and consequently check_page_uptodate does not find all
6674 * the page's extents up-to-date (the hole beyond sb),
6675 * write_extent_buffer then triggers a WARN_ON.
6676 *
6677 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6678 * but sb spans only this function. Add an explicit SetPageUptodate call
6679 * to silence the warning eg. on PowerPC 64.
6680 */
6681 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6682 SetPageUptodate(sb->pages[0]);
6683
6684 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6685 array_size = btrfs_super_sys_array_size(super_copy);
6686
6687 array_ptr = super_copy->sys_chunk_array;
6688 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6689 cur_offset = 0;
6690
6691 while (cur_offset < array_size) {
6692 disk_key = (struct btrfs_disk_key *)array_ptr;
6693 len = sizeof(*disk_key);
6694 if (cur_offset + len > array_size)
6695 goto out_short_read;
6696
6697 btrfs_disk_key_to_cpu(&key, disk_key);
6698
6699 array_ptr += len;
6700 sb_array_offset += len;
6701 cur_offset += len;
6702
6703 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6704 chunk = (struct btrfs_chunk *)sb_array_offset;
6705 /*
6706 * At least one btrfs_chunk with one stripe must be
6707 * present, exact stripe count check comes afterwards
6708 */
6709 len = btrfs_chunk_item_size(1);
6710 if (cur_offset + len > array_size)
6711 goto out_short_read;
6712
6713 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6714 if (!num_stripes) {
6715 printk(KERN_ERR
6716 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6717 num_stripes, cur_offset);
6718 ret = -EIO;
6719 break;
6720 }
6721
6722 type = btrfs_chunk_type(sb, chunk);
6723 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6724 btrfs_err(root->fs_info,
6725 "invalid chunk type %llu in sys_array at offset %u",
6726 type, cur_offset);
6727 ret = -EIO;
6728 break;
6729 }
6730
6731 len = btrfs_chunk_item_size(num_stripes);
6732 if (cur_offset + len > array_size)
6733 goto out_short_read;
6734
6735 ret = read_one_chunk(root, &key, sb, chunk);
6736 if (ret)
6737 break;
6738 } else {
6739 printk(KERN_ERR
6740 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6741 (u32)key.type, cur_offset);
6742 ret = -EIO;
6743 break;
6744 }
6745 array_ptr += len;
6746 sb_array_offset += len;
6747 cur_offset += len;
6748 }
6749 clear_extent_buffer_uptodate(sb);
6750 free_extent_buffer_stale(sb);
6751 return ret;
6752
6753out_short_read:
6754 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6755 len, cur_offset);
6756 clear_extent_buffer_uptodate(sb);
6757 free_extent_buffer_stale(sb);
6758 return -EIO;
6759}
6760
6761int btrfs_read_chunk_tree(struct btrfs_root *root)
6762{
6763 struct btrfs_path *path;
6764 struct extent_buffer *leaf;
6765 struct btrfs_key key;
6766 struct btrfs_key found_key;
6767 int ret;
6768 int slot;
6769 u64 total_dev = 0;
6770
6771 root = root->fs_info->chunk_root;
6772
6773 path = btrfs_alloc_path();
6774 if (!path)
6775 return -ENOMEM;
6776
6777 mutex_lock(&uuid_mutex);
6778 lock_chunks(root);
6779
6780 /*
6781 * Read all device items, and then all the chunk items. All
6782 * device items are found before any chunk item (their object id
6783 * is smaller than the lowest possible object id for a chunk
6784 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6785 */
6786 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6787 key.offset = 0;
6788 key.type = 0;
6789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6790 if (ret < 0)
6791 goto error;
6792 while (1) {
6793 leaf = path->nodes[0];
6794 slot = path->slots[0];
6795 if (slot >= btrfs_header_nritems(leaf)) {
6796 ret = btrfs_next_leaf(root, path);
6797 if (ret == 0)
6798 continue;
6799 if (ret < 0)
6800 goto error;
6801 break;
6802 }
6803 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6804 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6805 struct btrfs_dev_item *dev_item;
6806 dev_item = btrfs_item_ptr(leaf, slot,
6807 struct btrfs_dev_item);
6808 ret = read_one_dev(root, leaf, dev_item);
6809 if (ret)
6810 goto error;
6811 total_dev++;
6812 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6813 struct btrfs_chunk *chunk;
6814 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6815 ret = read_one_chunk(root, &found_key, leaf, chunk);
6816 if (ret)
6817 goto error;
6818 }
6819 path->slots[0]++;
6820 }
6821
6822 /*
6823 * After loading chunk tree, we've got all device information,
6824 * do another round of validation checks.
6825 */
6826 if (total_dev != root->fs_info->fs_devices->total_devices) {
6827 btrfs_err(root->fs_info,
6828 "super_num_devices %llu mismatch with num_devices %llu found here",
6829 btrfs_super_num_devices(root->fs_info->super_copy),
6830 total_dev);
6831 ret = -EINVAL;
6832 goto error;
6833 }
6834 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6835 root->fs_info->fs_devices->total_rw_bytes) {
6836 btrfs_err(root->fs_info,
6837 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6838 btrfs_super_total_bytes(root->fs_info->super_copy),
6839 root->fs_info->fs_devices->total_rw_bytes);
6840 ret = -EINVAL;
6841 goto error;
6842 }
6843 ret = 0;
6844error:
6845 unlock_chunks(root);
6846 mutex_unlock(&uuid_mutex);
6847
6848 btrfs_free_path(path);
6849 return ret;
6850}
6851
6852void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6853{
6854 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6855 struct btrfs_device *device;
6856
6857 while (fs_devices) {
6858 mutex_lock(&fs_devices->device_list_mutex);
6859 list_for_each_entry(device, &fs_devices->devices, dev_list)
6860 device->dev_root = fs_info->dev_root;
6861 mutex_unlock(&fs_devices->device_list_mutex);
6862
6863 fs_devices = fs_devices->seed;
6864 }
6865}
6866
6867static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6868{
6869 int i;
6870
6871 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6872 btrfs_dev_stat_reset(dev, i);
6873}
6874
6875int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6876{
6877 struct btrfs_key key;
6878 struct btrfs_key found_key;
6879 struct btrfs_root *dev_root = fs_info->dev_root;
6880 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6881 struct extent_buffer *eb;
6882 int slot;
6883 int ret = 0;
6884 struct btrfs_device *device;
6885 struct btrfs_path *path = NULL;
6886 int i;
6887
6888 path = btrfs_alloc_path();
6889 if (!path) {
6890 ret = -ENOMEM;
6891 goto out;
6892 }
6893
6894 mutex_lock(&fs_devices->device_list_mutex);
6895 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6896 int item_size;
6897 struct btrfs_dev_stats_item *ptr;
6898
6899 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6900 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6901 key.offset = device->devid;
6902 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6903 if (ret) {
6904 __btrfs_reset_dev_stats(device);
6905 device->dev_stats_valid = 1;
6906 btrfs_release_path(path);
6907 continue;
6908 }
6909 slot = path->slots[0];
6910 eb = path->nodes[0];
6911 btrfs_item_key_to_cpu(eb, &found_key, slot);
6912 item_size = btrfs_item_size_nr(eb, slot);
6913
6914 ptr = btrfs_item_ptr(eb, slot,
6915 struct btrfs_dev_stats_item);
6916
6917 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6918 if (item_size >= (1 + i) * sizeof(__le64))
6919 btrfs_dev_stat_set(device, i,
6920 btrfs_dev_stats_value(eb, ptr, i));
6921 else
6922 btrfs_dev_stat_reset(device, i);
6923 }
6924
6925 device->dev_stats_valid = 1;
6926 btrfs_dev_stat_print_on_load(device);
6927 btrfs_release_path(path);
6928 }
6929 mutex_unlock(&fs_devices->device_list_mutex);
6930
6931out:
6932 btrfs_free_path(path);
6933 return ret < 0 ? ret : 0;
6934}
6935
6936static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6937 struct btrfs_root *dev_root,
6938 struct btrfs_device *device)
6939{
6940 struct btrfs_path *path;
6941 struct btrfs_key key;
6942 struct extent_buffer *eb;
6943 struct btrfs_dev_stats_item *ptr;
6944 int ret;
6945 int i;
6946
6947 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6948 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6949 key.offset = device->devid;
6950
6951 path = btrfs_alloc_path();
6952 BUG_ON(!path);
6953 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6954 if (ret < 0) {
6955 btrfs_warn_in_rcu(dev_root->fs_info,
6956 "error %d while searching for dev_stats item for device %s",
6957 ret, rcu_str_deref(device->name));
6958 goto out;
6959 }
6960
6961 if (ret == 0 &&
6962 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6963 /* need to delete old one and insert a new one */
6964 ret = btrfs_del_item(trans, dev_root, path);
6965 if (ret != 0) {
6966 btrfs_warn_in_rcu(dev_root->fs_info,
6967 "delete too small dev_stats item for device %s failed %d",
6968 rcu_str_deref(device->name), ret);
6969 goto out;
6970 }
6971 ret = 1;
6972 }
6973
6974 if (ret == 1) {
6975 /* need to insert a new item */
6976 btrfs_release_path(path);
6977 ret = btrfs_insert_empty_item(trans, dev_root, path,
6978 &key, sizeof(*ptr));
6979 if (ret < 0) {
6980 btrfs_warn_in_rcu(dev_root->fs_info,
6981 "insert dev_stats item for device %s failed %d",
6982 rcu_str_deref(device->name), ret);
6983 goto out;
6984 }
6985 }
6986
6987 eb = path->nodes[0];
6988 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6989 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6990 btrfs_set_dev_stats_value(eb, ptr, i,
6991 btrfs_dev_stat_read(device, i));
6992 btrfs_mark_buffer_dirty(eb);
6993
6994out:
6995 btrfs_free_path(path);
6996 return ret;
6997}
6998
6999/*
7000 * called from commit_transaction. Writes all changed device stats to disk.
7001 */
7002int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7003 struct btrfs_fs_info *fs_info)
7004{
7005 struct btrfs_root *dev_root = fs_info->dev_root;
7006 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7007 struct btrfs_device *device;
7008 int stats_cnt;
7009 int ret = 0;
7010
7011 mutex_lock(&fs_devices->device_list_mutex);
7012 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7013 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7014 continue;
7015
7016 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7017 ret = update_dev_stat_item(trans, dev_root, device);
7018 if (!ret)
7019 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7020 }
7021 mutex_unlock(&fs_devices->device_list_mutex);
7022
7023 return ret;
7024}
7025
7026void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7027{
7028 btrfs_dev_stat_inc(dev, index);
7029 btrfs_dev_stat_print_on_error(dev);
7030}
7031
7032static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7033{
7034 if (!dev->dev_stats_valid)
7035 return;
7036 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7037 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7038 rcu_str_deref(dev->name),
7039 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7040 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7041 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7042 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7043 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7044}
7045
7046static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7047{
7048 int i;
7049
7050 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7051 if (btrfs_dev_stat_read(dev, i) != 0)
7052 break;
7053 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7054 return; /* all values == 0, suppress message */
7055
7056 btrfs_info_in_rcu(dev->dev_root->fs_info,
7057 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7058 rcu_str_deref(dev->name),
7059 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7060 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7061 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7062 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7063 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7064}
7065
7066int btrfs_get_dev_stats(struct btrfs_root *root,
7067 struct btrfs_ioctl_get_dev_stats *stats)
7068{
7069 struct btrfs_device *dev;
7070 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7071 int i;
7072
7073 mutex_lock(&fs_devices->device_list_mutex);
7074 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7075 mutex_unlock(&fs_devices->device_list_mutex);
7076
7077 if (!dev) {
7078 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
7079 return -ENODEV;
7080 } else if (!dev->dev_stats_valid) {
7081 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
7082 return -ENODEV;
7083 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7084 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7085 if (stats->nr_items > i)
7086 stats->values[i] =
7087 btrfs_dev_stat_read_and_reset(dev, i);
7088 else
7089 btrfs_dev_stat_reset(dev, i);
7090 }
7091 } else {
7092 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7093 if (stats->nr_items > i)
7094 stats->values[i] = btrfs_dev_stat_read(dev, i);
7095 }
7096 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7097 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7098 return 0;
7099}
7100
7101void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7102{
7103 struct buffer_head *bh;
7104 struct btrfs_super_block *disk_super;
7105 int copy_num;
7106
7107 if (!bdev)
7108 return;
7109
7110 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7111 copy_num++) {
7112
7113 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7114 continue;
7115
7116 disk_super = (struct btrfs_super_block *)bh->b_data;
7117
7118 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7119 set_buffer_dirty(bh);
7120 sync_dirty_buffer(bh);
7121 brelse(bh);
7122 }
7123
7124 /* Notify udev that device has changed */
7125 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7126
7127 /* Update ctime/mtime for device path for libblkid */
7128 update_dev_time(device_path);
7129}
7130
7131/*
7132 * Update the size of all devices, which is used for writing out the
7133 * super blocks.
7134 */
7135void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7136{
7137 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7138 struct btrfs_device *curr, *next;
7139
7140 if (list_empty(&fs_devices->resized_devices))
7141 return;
7142
7143 mutex_lock(&fs_devices->device_list_mutex);
7144 lock_chunks(fs_info->dev_root);
7145 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7146 resized_list) {
7147 list_del_init(&curr->resized_list);
7148 curr->commit_total_bytes = curr->disk_total_bytes;
7149 }
7150 unlock_chunks(fs_info->dev_root);
7151 mutex_unlock(&fs_devices->device_list_mutex);
7152}
7153
7154/* Must be invoked during the transaction commit */
7155void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7156 struct btrfs_transaction *transaction)
7157{
7158 struct extent_map *em;
7159 struct map_lookup *map;
7160 struct btrfs_device *dev;
7161 int i;
7162
7163 if (list_empty(&transaction->pending_chunks))
7164 return;
7165
7166 /* In order to kick the device replace finish process */
7167 lock_chunks(root);
7168 list_for_each_entry(em, &transaction->pending_chunks, list) {
7169 map = em->map_lookup;
7170
7171 for (i = 0; i < map->num_stripes; i++) {
7172 dev = map->stripes[i].dev;
7173 dev->commit_bytes_used = dev->bytes_used;
7174 }
7175 }
7176 unlock_chunks(root);
7177}
7178
7179void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7180{
7181 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7182 while (fs_devices) {
7183 fs_devices->fs_info = fs_info;
7184 fs_devices = fs_devices->seed;
7185 }
7186}
7187
7188void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7189{
7190 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7191 while (fs_devices) {
7192 fs_devices->fs_info = NULL;
7193 fs_devices = fs_devices->seed;
7194 }
7195}