]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - fs/btrfs/volumes.h
btrfs: change btrfs_fs_devices::seeding to bool
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/bio.h>
10#include <linux/sort.h>
11#include <linux/btrfs.h>
12#include "async-thread.h"
13
14#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
15
16extern struct mutex uuid_mutex;
17
18#define BTRFS_STRIPE_LEN SZ_64K
19
20struct buffer_head;
21
22struct btrfs_io_geometry {
23 /* remaining bytes before crossing a stripe */
24 u64 len;
25 /* offset of logical address in chunk */
26 u64 offset;
27 /* length of single IO stripe */
28 u64 stripe_len;
29 /* number of stripe where address falls */
30 u64 stripe_nr;
31 /* offset of address in stripe */
32 u64 stripe_offset;
33 /* offset of raid56 stripe into the chunk */
34 u64 raid56_stripe_offset;
35};
36
37/*
38 * Use sequence counter to get consistent device stat data on
39 * 32-bit processors.
40 */
41#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
42#include <linux/seqlock.h>
43#define __BTRFS_NEED_DEVICE_DATA_ORDERED
44#define btrfs_device_data_ordered_init(device) \
45 seqcount_init(&device->data_seqcount)
46#else
47#define btrfs_device_data_ordered_init(device) do { } while (0)
48#endif
49
50#define BTRFS_DEV_STATE_WRITEABLE (0)
51#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
52#define BTRFS_DEV_STATE_MISSING (2)
53#define BTRFS_DEV_STATE_REPLACE_TGT (3)
54#define BTRFS_DEV_STATE_FLUSH_SENT (4)
55
56struct btrfs_device {
57 struct list_head dev_list; /* device_list_mutex */
58 struct list_head dev_alloc_list; /* chunk mutex */
59 struct list_head post_commit_list; /* chunk mutex */
60 struct btrfs_fs_devices *fs_devices;
61 struct btrfs_fs_info *fs_info;
62
63 struct rcu_string *name;
64
65 u64 generation;
66
67 struct block_device *bdev;
68
69 /* the mode sent to blkdev_get */
70 fmode_t mode;
71
72 unsigned long dev_state;
73 blk_status_t last_flush_error;
74
75#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
76 seqcount_t data_seqcount;
77#endif
78
79 /* the internal btrfs device id */
80 u64 devid;
81
82 /* size of the device in memory */
83 u64 total_bytes;
84
85 /* size of the device on disk */
86 u64 disk_total_bytes;
87
88 /* bytes used */
89 u64 bytes_used;
90
91 /* optimal io alignment for this device */
92 u32 io_align;
93
94 /* optimal io width for this device */
95 u32 io_width;
96 /* type and info about this device */
97 u64 type;
98
99 /* minimal io size for this device */
100 u32 sector_size;
101
102 /* physical drive uuid (or lvm uuid) */
103 u8 uuid[BTRFS_UUID_SIZE];
104
105 /*
106 * size of the device on the current transaction
107 *
108 * This variant is update when committing the transaction,
109 * and protected by chunk mutex
110 */
111 u64 commit_total_bytes;
112
113 /* bytes used on the current transaction */
114 u64 commit_bytes_used;
115
116 /* for sending down flush barriers */
117 struct bio *flush_bio;
118 struct completion flush_wait;
119
120 /* per-device scrub information */
121 struct scrub_ctx *scrub_ctx;
122
123 struct btrfs_work work;
124
125 /* readahead state */
126 atomic_t reada_in_flight;
127 u64 reada_next;
128 struct reada_zone *reada_curr_zone;
129 struct radix_tree_root reada_zones;
130 struct radix_tree_root reada_extents;
131
132 /* disk I/O failure stats. For detailed description refer to
133 * enum btrfs_dev_stat_values in ioctl.h */
134 int dev_stats_valid;
135
136 /* Counter to record the change of device stats */
137 atomic_t dev_stats_ccnt;
138 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
139
140 struct extent_io_tree alloc_state;
141};
142
143/*
144 * If we read those variants at the context of their own lock, we needn't
145 * use the following helpers, reading them directly is safe.
146 */
147#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
148#define BTRFS_DEVICE_GETSET_FUNCS(name) \
149static inline u64 \
150btrfs_device_get_##name(const struct btrfs_device *dev) \
151{ \
152 u64 size; \
153 unsigned int seq; \
154 \
155 do { \
156 seq = read_seqcount_begin(&dev->data_seqcount); \
157 size = dev->name; \
158 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
159 return size; \
160} \
161 \
162static inline void \
163btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
164{ \
165 preempt_disable(); \
166 write_seqcount_begin(&dev->data_seqcount); \
167 dev->name = size; \
168 write_seqcount_end(&dev->data_seqcount); \
169 preempt_enable(); \
170}
171#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
172#define BTRFS_DEVICE_GETSET_FUNCS(name) \
173static inline u64 \
174btrfs_device_get_##name(const struct btrfs_device *dev) \
175{ \
176 u64 size; \
177 \
178 preempt_disable(); \
179 size = dev->name; \
180 preempt_enable(); \
181 return size; \
182} \
183 \
184static inline void \
185btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
186{ \
187 preempt_disable(); \
188 dev->name = size; \
189 preempt_enable(); \
190}
191#else
192#define BTRFS_DEVICE_GETSET_FUNCS(name) \
193static inline u64 \
194btrfs_device_get_##name(const struct btrfs_device *dev) \
195{ \
196 return dev->name; \
197} \
198 \
199static inline void \
200btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
201{ \
202 dev->name = size; \
203}
204#endif
205
206BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
207BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
208BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
209
210struct btrfs_fs_devices {
211 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
212 u8 metadata_uuid[BTRFS_FSID_SIZE];
213 bool fsid_change;
214 struct list_head fs_list;
215
216 u64 num_devices;
217 u64 open_devices;
218 u64 rw_devices;
219 u64 missing_devices;
220 u64 total_rw_bytes;
221 u64 total_devices;
222
223 /* Highest generation number of seen devices */
224 u64 latest_generation;
225
226 struct block_device *latest_bdev;
227
228 /* all of the devices in the FS, protected by a mutex
229 * so we can safely walk it to write out the supers without
230 * worrying about add/remove by the multi-device code.
231 * Scrubbing super can kick off supers writing by holding
232 * this mutex lock.
233 */
234 struct mutex device_list_mutex;
235
236 /* List of all devices, protected by device_list_mutex */
237 struct list_head devices;
238
239 /*
240 * Devices which can satisfy space allocation. Protected by
241 * chunk_mutex
242 */
243 struct list_head alloc_list;
244
245 struct btrfs_fs_devices *seed;
246 bool seeding;
247
248 int opened;
249
250 /* set when we find or add a device that doesn't have the
251 * nonrot flag set
252 */
253 int rotating;
254
255 struct btrfs_fs_info *fs_info;
256 /* sysfs kobjects */
257 struct kobject fsid_kobj;
258 struct kobject *device_dir_kobj;
259 struct completion kobj_unregister;
260};
261
262#define BTRFS_BIO_INLINE_CSUM_SIZE 64
263
264#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
265 - sizeof(struct btrfs_chunk)) \
266 / sizeof(struct btrfs_stripe) + 1)
267
268#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
269 - 2 * sizeof(struct btrfs_disk_key) \
270 - 2 * sizeof(struct btrfs_chunk)) \
271 / sizeof(struct btrfs_stripe) + 1)
272
273/*
274 * we need the mirror number and stripe index to be passed around
275 * the call chain while we are processing end_io (especially errors).
276 * Really, what we need is a btrfs_bio structure that has this info
277 * and is properly sized with its stripe array, but we're not there
278 * quite yet. We have our own btrfs bioset, and all of the bios
279 * we allocate are actually btrfs_io_bios. We'll cram as much of
280 * struct btrfs_bio as we can into this over time.
281 */
282struct btrfs_io_bio {
283 unsigned int mirror_num;
284 unsigned int stripe_index;
285 u64 logical;
286 u8 *csum;
287 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
288 struct bvec_iter iter;
289 /*
290 * This member must come last, bio_alloc_bioset will allocate enough
291 * bytes for entire btrfs_io_bio but relies on bio being last.
292 */
293 struct bio bio;
294};
295
296static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
297{
298 return container_of(bio, struct btrfs_io_bio, bio);
299}
300
301static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
302{
303 if (io_bio->csum != io_bio->csum_inline) {
304 kfree(io_bio->csum);
305 io_bio->csum = NULL;
306 }
307}
308
309struct btrfs_bio_stripe {
310 struct btrfs_device *dev;
311 u64 physical;
312 u64 length; /* only used for discard mappings */
313};
314
315struct btrfs_bio {
316 refcount_t refs;
317 atomic_t stripes_pending;
318 struct btrfs_fs_info *fs_info;
319 u64 map_type; /* get from map_lookup->type */
320 bio_end_io_t *end_io;
321 struct bio *orig_bio;
322 void *private;
323 atomic_t error;
324 int max_errors;
325 int num_stripes;
326 int mirror_num;
327 int num_tgtdevs;
328 int *tgtdev_map;
329 /*
330 * logical block numbers for the start of each stripe
331 * The last one or two are p/q. These are sorted,
332 * so raid_map[0] is the start of our full stripe
333 */
334 u64 *raid_map;
335 struct btrfs_bio_stripe stripes[];
336};
337
338struct btrfs_device_info {
339 struct btrfs_device *dev;
340 u64 dev_offset;
341 u64 max_avail;
342 u64 total_avail;
343};
344
345struct btrfs_raid_attr {
346 u8 sub_stripes; /* sub_stripes info for map */
347 u8 dev_stripes; /* stripes per dev */
348 u8 devs_max; /* max devs to use */
349 u8 devs_min; /* min devs needed */
350 u8 tolerated_failures; /* max tolerated fail devs */
351 u8 devs_increment; /* ndevs has to be a multiple of this */
352 u8 ncopies; /* how many copies to data has */
353 u8 nparity; /* number of stripes worth of bytes to store
354 * parity information */
355 u8 mindev_error; /* error code if min devs requisite is unmet */
356 const char raid_name[8]; /* name of the raid */
357 u64 bg_flag; /* block group flag of the raid */
358};
359
360extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
361
362struct map_lookup {
363 u64 type;
364 int io_align;
365 int io_width;
366 u64 stripe_len;
367 int num_stripes;
368 int sub_stripes;
369 int verified_stripes; /* For mount time dev extent verification */
370 struct btrfs_bio_stripe stripes[];
371};
372
373#define map_lookup_size(n) (sizeof(struct map_lookup) + \
374 (sizeof(struct btrfs_bio_stripe) * (n)))
375
376struct btrfs_balance_args;
377struct btrfs_balance_progress;
378struct btrfs_balance_control {
379 struct btrfs_balance_args data;
380 struct btrfs_balance_args meta;
381 struct btrfs_balance_args sys;
382
383 u64 flags;
384
385 struct btrfs_balance_progress stat;
386};
387
388enum btrfs_map_op {
389 BTRFS_MAP_READ,
390 BTRFS_MAP_WRITE,
391 BTRFS_MAP_DISCARD,
392 BTRFS_MAP_GET_READ_MIRRORS,
393};
394
395static inline enum btrfs_map_op btrfs_op(struct bio *bio)
396{
397 switch (bio_op(bio)) {
398 case REQ_OP_DISCARD:
399 return BTRFS_MAP_DISCARD;
400 case REQ_OP_WRITE:
401 return BTRFS_MAP_WRITE;
402 default:
403 WARN_ON_ONCE(1);
404 /* fall through */
405 case REQ_OP_READ:
406 return BTRFS_MAP_READ;
407 }
408}
409
410void btrfs_get_bbio(struct btrfs_bio *bbio);
411void btrfs_put_bbio(struct btrfs_bio *bbio);
412int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
413 u64 logical, u64 *length,
414 struct btrfs_bio **bbio_ret, int mirror_num);
415int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
416 u64 logical, u64 *length,
417 struct btrfs_bio **bbio_ret);
418int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
419 u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
420int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
421 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
422int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
423int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
424int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
425void btrfs_mapping_tree_free(struct extent_map_tree *tree);
426blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
427 int mirror_num);
428int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
429 fmode_t flags, void *holder);
430struct btrfs_device *btrfs_scan_one_device(const char *path,
431 fmode_t flags, void *holder);
432int btrfs_forget_devices(const char *path);
433int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
434void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
435void btrfs_assign_next_active_device(struct btrfs_device *device,
436 struct btrfs_device *this_dev);
437struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
438 u64 devid,
439 const char *devpath);
440struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
441 const u64 *devid,
442 const u8 *uuid);
443void btrfs_free_device(struct btrfs_device *device);
444int btrfs_rm_device(struct btrfs_fs_info *fs_info,
445 const char *device_path, u64 devid);
446void __exit btrfs_cleanup_fs_uuids(void);
447int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
448int btrfs_grow_device(struct btrfs_trans_handle *trans,
449 struct btrfs_device *device, u64 new_size);
450struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
451 u64 devid, u8 *uuid, u8 *fsid, bool seed);
452int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
453int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
454int btrfs_balance(struct btrfs_fs_info *fs_info,
455 struct btrfs_balance_control *bctl,
456 struct btrfs_ioctl_balance_args *bargs);
457void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
458int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
459int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
460int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
461int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
462int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
463int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
464int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
465int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
466 u64 *start, u64 *max_avail);
467void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
468int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
469 struct btrfs_ioctl_get_dev_stats *stats);
470void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
471int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
472int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
473void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
474void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
475void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
476void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
477int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
478 u64 logical, u64 len);
479unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
480 u64 logical);
481int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
482 u64 chunk_offset, u64 chunk_size);
483int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
484struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
485 u64 logical, u64 length);
486
487static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
488 int index)
489{
490 atomic_inc(dev->dev_stat_values + index);
491 /*
492 * This memory barrier orders stores updating statistics before stores
493 * updating dev_stats_ccnt.
494 *
495 * It pairs with smp_rmb() in btrfs_run_dev_stats().
496 */
497 smp_mb__before_atomic();
498 atomic_inc(&dev->dev_stats_ccnt);
499}
500
501static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
502 int index)
503{
504 return atomic_read(dev->dev_stat_values + index);
505}
506
507static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
508 int index)
509{
510 int ret;
511
512 ret = atomic_xchg(dev->dev_stat_values + index, 0);
513 /*
514 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
515 * - RMW operations that have a return value are fully ordered;
516 *
517 * This implicit memory barriers is paired with the smp_rmb in
518 * btrfs_run_dev_stats
519 */
520 atomic_inc(&dev->dev_stats_ccnt);
521 return ret;
522}
523
524static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
525 int index, unsigned long val)
526{
527 atomic_set(dev->dev_stat_values + index, val);
528 /*
529 * This memory barrier orders stores updating statistics before stores
530 * updating dev_stats_ccnt.
531 *
532 * It pairs with smp_rmb() in btrfs_run_dev_stats().
533 */
534 smp_mb__before_atomic();
535 atomic_inc(&dev->dev_stats_ccnt);
536}
537
538/*
539 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
540 * can be used as index to access btrfs_raid_array[].
541 */
542static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
543{
544 if (flags & BTRFS_BLOCK_GROUP_RAID10)
545 return BTRFS_RAID_RAID10;
546 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
547 return BTRFS_RAID_RAID1;
548 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
549 return BTRFS_RAID_RAID1C3;
550 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
551 return BTRFS_RAID_RAID1C4;
552 else if (flags & BTRFS_BLOCK_GROUP_DUP)
553 return BTRFS_RAID_DUP;
554 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
555 return BTRFS_RAID_RAID0;
556 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
557 return BTRFS_RAID_RAID5;
558 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
559 return BTRFS_RAID_RAID6;
560
561 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
562}
563
564void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
565
566struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
567void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
568void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
569bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
570 struct btrfs_device *failing_dev);
571
572int btrfs_bg_type_to_factor(u64 flags);
573const char *btrfs_bg_type_to_raid_name(u64 flags);
574int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
575
576#endif