]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame_incremental - fs/buffer.c
buffer: have alloc_page_buffers() use __GFP_NOFAIL
[mirror_ubuntu-focal-kernel.git] / fs / buffer.c
... / ...
CommitLineData
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/sched/signal.h>
23#include <linux/syscalls.h>
24#include <linux/fs.h>
25#include <linux/iomap.h>
26#include <linux/mm.h>
27#include <linux/percpu.h>
28#include <linux/slab.h>
29#include <linux/capability.h>
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
34#include <linux/export.h>
35#include <linux/backing-dev.h>
36#include <linux/writeback.h>
37#include <linux/hash.h>
38#include <linux/suspend.h>
39#include <linux/buffer_head.h>
40#include <linux/task_io_accounting_ops.h>
41#include <linux/bio.h>
42#include <linux/notifier.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <trace/events/block.h>
49
50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57{
58 bh->b_end_io = handler;
59 bh->b_private = private;
60}
61EXPORT_SYMBOL(init_buffer);
62
63inline void touch_buffer(struct buffer_head *bh)
64{
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67}
68EXPORT_SYMBOL(touch_buffer);
69
70void __lock_buffer(struct buffer_head *bh)
71{
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73}
74EXPORT_SYMBOL(__lock_buffer);
75
76void unlock_buffer(struct buffer_head *bh)
77{
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81}
82EXPORT_SYMBOL(unlock_buffer);
83
84/*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91{
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115}
116EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118/*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123void __wait_on_buffer(struct buffer_head * bh)
124{
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126}
127EXPORT_SYMBOL(__wait_on_buffer);
128
129static void
130__clear_page_buffers(struct page *page)
131{
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
135}
136
137static void buffer_io_error(struct buffer_head *bh, char *msg)
138{
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143}
144
145/*
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
152 */
153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154{
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162}
163
164/*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169{
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
172}
173EXPORT_SYMBOL(end_buffer_read_sync);
174
175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176{
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 mark_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186}
187EXPORT_SYMBOL(end_buffer_write_sync);
188
189/*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200static struct buffer_head *
201__find_get_block_slow(struct block_device *bdev, sector_t block)
202{
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251out:
252 return ret;
253}
254
255/*
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 */
258static void free_more_memory(void)
259{
260 struct zoneref *z;
261 int nid;
262
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 yield();
265
266 for_each_online_node(nid) {
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 GFP_NOFS, NULL);
273 }
274}
275
276/*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281{
282 unsigned long flags;
283 struct buffer_head *first;
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331still_busy:
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334 return;
335}
336
337/*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342{
343 unsigned long flags;
344 struct buffer_head *first;
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
354 buffer_io_error(bh, ", lost async page write");
355 mark_buffer_write_io_error(bh);
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
358 }
359
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
376 end_page_writeback(page);
377 return;
378
379still_busy:
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
382 return;
383}
384EXPORT_SYMBOL(end_buffer_async_write);
385
386/*
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
394 *
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
397 *
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
400 *
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
403 *
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
406 */
407static void mark_buffer_async_read(struct buffer_head *bh)
408{
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
411}
412
413static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
415{
416 bh->b_end_io = handler;
417 set_buffer_async_write(bh);
418}
419
420void mark_buffer_async_write(struct buffer_head *bh)
421{
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
423}
424EXPORT_SYMBOL(mark_buffer_async_write);
425
426
427/*
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
433 *
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
437 *
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
448 *
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
451 *
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
456 *
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
460 *
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
465 *
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
474 */
475
476/*
477 * The buffer's backing address_space's private_lock must be held
478 */
479static void __remove_assoc_queue(struct buffer_head *bh)
480{
481 list_del_init(&bh->b_assoc_buffers);
482 WARN_ON(!bh->b_assoc_map);
483 bh->b_assoc_map = NULL;
484}
485
486int inode_has_buffers(struct inode *inode)
487{
488 return !list_empty(&inode->i_data.private_list);
489}
490
491/*
492 * osync is designed to support O_SYNC io. It waits synchronously for
493 * all already-submitted IO to complete, but does not queue any new
494 * writes to the disk.
495 *
496 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497 * you dirty the buffers, and then use osync_inode_buffers to wait for
498 * completion. Any other dirty buffers which are not yet queued for
499 * write will not be flushed to disk by the osync.
500 */
501static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
502{
503 struct buffer_head *bh;
504 struct list_head *p;
505 int err = 0;
506
507 spin_lock(lock);
508repeat:
509 list_for_each_prev(p, list) {
510 bh = BH_ENTRY(p);
511 if (buffer_locked(bh)) {
512 get_bh(bh);
513 spin_unlock(lock);
514 wait_on_buffer(bh);
515 if (!buffer_uptodate(bh))
516 err = -EIO;
517 brelse(bh);
518 spin_lock(lock);
519 goto repeat;
520 }
521 }
522 spin_unlock(lock);
523 return err;
524}
525
526static void do_thaw_one(struct super_block *sb, void *unused)
527{
528 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
529 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
530}
531
532static void do_thaw_all(struct work_struct *work)
533{
534 iterate_supers(do_thaw_one, NULL);
535 kfree(work);
536 printk(KERN_WARNING "Emergency Thaw complete\n");
537}
538
539/**
540 * emergency_thaw_all -- forcibly thaw every frozen filesystem
541 *
542 * Used for emergency unfreeze of all filesystems via SysRq
543 */
544void emergency_thaw_all(void)
545{
546 struct work_struct *work;
547
548 work = kmalloc(sizeof(*work), GFP_ATOMIC);
549 if (work) {
550 INIT_WORK(work, do_thaw_all);
551 schedule_work(work);
552 }
553}
554
555/**
556 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
557 * @mapping: the mapping which wants those buffers written
558 *
559 * Starts I/O against the buffers at mapping->private_list, and waits upon
560 * that I/O.
561 *
562 * Basically, this is a convenience function for fsync().
563 * @mapping is a file or directory which needs those buffers to be written for
564 * a successful fsync().
565 */
566int sync_mapping_buffers(struct address_space *mapping)
567{
568 struct address_space *buffer_mapping = mapping->private_data;
569
570 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
571 return 0;
572
573 return fsync_buffers_list(&buffer_mapping->private_lock,
574 &mapping->private_list);
575}
576EXPORT_SYMBOL(sync_mapping_buffers);
577
578/*
579 * Called when we've recently written block `bblock', and it is known that
580 * `bblock' was for a buffer_boundary() buffer. This means that the block at
581 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
582 * dirty, schedule it for IO. So that indirects merge nicely with their data.
583 */
584void write_boundary_block(struct block_device *bdev,
585 sector_t bblock, unsigned blocksize)
586{
587 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
588 if (bh) {
589 if (buffer_dirty(bh))
590 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
591 put_bh(bh);
592 }
593}
594
595void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
596{
597 struct address_space *mapping = inode->i_mapping;
598 struct address_space *buffer_mapping = bh->b_page->mapping;
599
600 mark_buffer_dirty(bh);
601 if (!mapping->private_data) {
602 mapping->private_data = buffer_mapping;
603 } else {
604 BUG_ON(mapping->private_data != buffer_mapping);
605 }
606 if (!bh->b_assoc_map) {
607 spin_lock(&buffer_mapping->private_lock);
608 list_move_tail(&bh->b_assoc_buffers,
609 &mapping->private_list);
610 bh->b_assoc_map = mapping;
611 spin_unlock(&buffer_mapping->private_lock);
612 }
613}
614EXPORT_SYMBOL(mark_buffer_dirty_inode);
615
616/*
617 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
618 * dirty.
619 *
620 * If warn is true, then emit a warning if the page is not uptodate and has
621 * not been truncated.
622 *
623 * The caller must hold lock_page_memcg().
624 */
625static void __set_page_dirty(struct page *page, struct address_space *mapping,
626 int warn)
627{
628 unsigned long flags;
629
630 spin_lock_irqsave(&mapping->tree_lock, flags);
631 if (page->mapping) { /* Race with truncate? */
632 WARN_ON_ONCE(warn && !PageUptodate(page));
633 account_page_dirtied(page, mapping);
634 radix_tree_tag_set(&mapping->page_tree,
635 page_index(page), PAGECACHE_TAG_DIRTY);
636 }
637 spin_unlock_irqrestore(&mapping->tree_lock, flags);
638}
639
640/*
641 * Add a page to the dirty page list.
642 *
643 * It is a sad fact of life that this function is called from several places
644 * deeply under spinlocking. It may not sleep.
645 *
646 * If the page has buffers, the uptodate buffers are set dirty, to preserve
647 * dirty-state coherency between the page and the buffers. It the page does
648 * not have buffers then when they are later attached they will all be set
649 * dirty.
650 *
651 * The buffers are dirtied before the page is dirtied. There's a small race
652 * window in which a writepage caller may see the page cleanness but not the
653 * buffer dirtiness. That's fine. If this code were to set the page dirty
654 * before the buffers, a concurrent writepage caller could clear the page dirty
655 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656 * page on the dirty page list.
657 *
658 * We use private_lock to lock against try_to_free_buffers while using the
659 * page's buffer list. Also use this to protect against clean buffers being
660 * added to the page after it was set dirty.
661 *
662 * FIXME: may need to call ->reservepage here as well. That's rather up to the
663 * address_space though.
664 */
665int __set_page_dirty_buffers(struct page *page)
666{
667 int newly_dirty;
668 struct address_space *mapping = page_mapping(page);
669
670 if (unlikely(!mapping))
671 return !TestSetPageDirty(page);
672
673 spin_lock(&mapping->private_lock);
674 if (page_has_buffers(page)) {
675 struct buffer_head *head = page_buffers(page);
676 struct buffer_head *bh = head;
677
678 do {
679 set_buffer_dirty(bh);
680 bh = bh->b_this_page;
681 } while (bh != head);
682 }
683 /*
684 * Lock out page->mem_cgroup migration to keep PageDirty
685 * synchronized with per-memcg dirty page counters.
686 */
687 lock_page_memcg(page);
688 newly_dirty = !TestSetPageDirty(page);
689 spin_unlock(&mapping->private_lock);
690
691 if (newly_dirty)
692 __set_page_dirty(page, mapping, 1);
693
694 unlock_page_memcg(page);
695
696 if (newly_dirty)
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698
699 return newly_dirty;
700}
701EXPORT_SYMBOL(__set_page_dirty_buffers);
702
703/*
704 * Write out and wait upon a list of buffers.
705 *
706 * We have conflicting pressures: we want to make sure that all
707 * initially dirty buffers get waited on, but that any subsequently
708 * dirtied buffers don't. After all, we don't want fsync to last
709 * forever if somebody is actively writing to the file.
710 *
711 * Do this in two main stages: first we copy dirty buffers to a
712 * temporary inode list, queueing the writes as we go. Then we clean
713 * up, waiting for those writes to complete.
714 *
715 * During this second stage, any subsequent updates to the file may end
716 * up refiling the buffer on the original inode's dirty list again, so
717 * there is a chance we will end up with a buffer queued for write but
718 * not yet completed on that list. So, as a final cleanup we go through
719 * the osync code to catch these locked, dirty buffers without requeuing
720 * any newly dirty buffers for write.
721 */
722static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
723{
724 struct buffer_head *bh;
725 struct list_head tmp;
726 struct address_space *mapping;
727 int err = 0, err2;
728 struct blk_plug plug;
729
730 INIT_LIST_HEAD(&tmp);
731 blk_start_plug(&plug);
732
733 spin_lock(lock);
734 while (!list_empty(list)) {
735 bh = BH_ENTRY(list->next);
736 mapping = bh->b_assoc_map;
737 __remove_assoc_queue(bh);
738 /* Avoid race with mark_buffer_dirty_inode() which does
739 * a lockless check and we rely on seeing the dirty bit */
740 smp_mb();
741 if (buffer_dirty(bh) || buffer_locked(bh)) {
742 list_add(&bh->b_assoc_buffers, &tmp);
743 bh->b_assoc_map = mapping;
744 if (buffer_dirty(bh)) {
745 get_bh(bh);
746 spin_unlock(lock);
747 /*
748 * Ensure any pending I/O completes so that
749 * write_dirty_buffer() actually writes the
750 * current contents - it is a noop if I/O is
751 * still in flight on potentially older
752 * contents.
753 */
754 write_dirty_buffer(bh, REQ_SYNC);
755
756 /*
757 * Kick off IO for the previous mapping. Note
758 * that we will not run the very last mapping,
759 * wait_on_buffer() will do that for us
760 * through sync_buffer().
761 */
762 brelse(bh);
763 spin_lock(lock);
764 }
765 }
766 }
767
768 spin_unlock(lock);
769 blk_finish_plug(&plug);
770 spin_lock(lock);
771
772 while (!list_empty(&tmp)) {
773 bh = BH_ENTRY(tmp.prev);
774 get_bh(bh);
775 mapping = bh->b_assoc_map;
776 __remove_assoc_queue(bh);
777 /* Avoid race with mark_buffer_dirty_inode() which does
778 * a lockless check and we rely on seeing the dirty bit */
779 smp_mb();
780 if (buffer_dirty(bh)) {
781 list_add(&bh->b_assoc_buffers,
782 &mapping->private_list);
783 bh->b_assoc_map = mapping;
784 }
785 spin_unlock(lock);
786 wait_on_buffer(bh);
787 if (!buffer_uptodate(bh))
788 err = -EIO;
789 brelse(bh);
790 spin_lock(lock);
791 }
792
793 spin_unlock(lock);
794 err2 = osync_buffers_list(lock, list);
795 if (err)
796 return err;
797 else
798 return err2;
799}
800
801/*
802 * Invalidate any and all dirty buffers on a given inode. We are
803 * probably unmounting the fs, but that doesn't mean we have already
804 * done a sync(). Just drop the buffers from the inode list.
805 *
806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
807 * assumes that all the buffers are against the blockdev. Not true
808 * for reiserfs.
809 */
810void invalidate_inode_buffers(struct inode *inode)
811{
812 if (inode_has_buffers(inode)) {
813 struct address_space *mapping = &inode->i_data;
814 struct list_head *list = &mapping->private_list;
815 struct address_space *buffer_mapping = mapping->private_data;
816
817 spin_lock(&buffer_mapping->private_lock);
818 while (!list_empty(list))
819 __remove_assoc_queue(BH_ENTRY(list->next));
820 spin_unlock(&buffer_mapping->private_lock);
821 }
822}
823EXPORT_SYMBOL(invalidate_inode_buffers);
824
825/*
826 * Remove any clean buffers from the inode's buffer list. This is called
827 * when we're trying to free the inode itself. Those buffers can pin it.
828 *
829 * Returns true if all buffers were removed.
830 */
831int remove_inode_buffers(struct inode *inode)
832{
833 int ret = 1;
834
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
838 struct address_space *buffer_mapping = mapping->private_data;
839
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list)) {
842 struct buffer_head *bh = BH_ENTRY(list->next);
843 if (buffer_dirty(bh)) {
844 ret = 0;
845 break;
846 }
847 __remove_assoc_queue(bh);
848 }
849 spin_unlock(&buffer_mapping->private_lock);
850 }
851 return ret;
852}
853
854/*
855 * Create the appropriate buffers when given a page for data area and
856 * the size of each buffer.. Use the bh->b_this_page linked list to
857 * follow the buffers created. Return NULL if unable to create more
858 * buffers.
859 *
860 * The retry flag is used to differentiate async IO (paging, swapping)
861 * which may not fail from ordinary buffer allocations.
862 */
863struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864 bool retry)
865{
866 struct buffer_head *bh, *head;
867 gfp_t gfp = GFP_NOFS;
868 long offset;
869
870 if (retry)
871 gfp |= __GFP_NOFAIL;
872
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(gfp);
877 if (!bh)
878 goto no_grow;
879
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
884 bh->b_size = size;
885
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
888 }
889 return head;
890/*
891 * In case anything failed, we just free everything we got.
892 */
893no_grow:
894 if (head) {
895 do {
896 bh = head;
897 head = head->b_this_page;
898 free_buffer_head(bh);
899 } while (head);
900 }
901
902 return NULL;
903}
904EXPORT_SYMBOL_GPL(alloc_page_buffers);
905
906static inline void
907link_dev_buffers(struct page *page, struct buffer_head *head)
908{
909 struct buffer_head *bh, *tail;
910
911 bh = head;
912 do {
913 tail = bh;
914 bh = bh->b_this_page;
915 } while (bh);
916 tail->b_this_page = head;
917 attach_page_buffers(page, head);
918}
919
920static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
921{
922 sector_t retval = ~((sector_t)0);
923 loff_t sz = i_size_read(bdev->bd_inode);
924
925 if (sz) {
926 unsigned int sizebits = blksize_bits(size);
927 retval = (sz >> sizebits);
928 }
929 return retval;
930}
931
932/*
933 * Initialise the state of a blockdev page's buffers.
934 */
935static sector_t
936init_page_buffers(struct page *page, struct block_device *bdev,
937 sector_t block, int size)
938{
939 struct buffer_head *head = page_buffers(page);
940 struct buffer_head *bh = head;
941 int uptodate = PageUptodate(page);
942 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
943
944 do {
945 if (!buffer_mapped(bh)) {
946 init_buffer(bh, NULL, NULL);
947 bh->b_bdev = bdev;
948 bh->b_blocknr = block;
949 if (uptodate)
950 set_buffer_uptodate(bh);
951 if (block < end_block)
952 set_buffer_mapped(bh);
953 }
954 block++;
955 bh = bh->b_this_page;
956 } while (bh != head);
957
958 /*
959 * Caller needs to validate requested block against end of device.
960 */
961 return end_block;
962}
963
964/*
965 * Create the page-cache page that contains the requested block.
966 *
967 * This is used purely for blockdev mappings.
968 */
969static int
970grow_dev_page(struct block_device *bdev, sector_t block,
971 pgoff_t index, int size, int sizebits, gfp_t gfp)
972{
973 struct inode *inode = bdev->bd_inode;
974 struct page *page;
975 struct buffer_head *bh;
976 sector_t end_block;
977 int ret = 0; /* Will call free_more_memory() */
978 gfp_t gfp_mask;
979
980 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
981
982 /*
983 * XXX: __getblk_slow() can not really deal with failure and
984 * will endlessly loop on improvised global reclaim. Prefer
985 * looping in the allocator rather than here, at least that
986 * code knows what it's doing.
987 */
988 gfp_mask |= __GFP_NOFAIL;
989
990 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
991 if (!page)
992 return ret;
993
994 BUG_ON(!PageLocked(page));
995
996 if (page_has_buffers(page)) {
997 bh = page_buffers(page);
998 if (bh->b_size == size) {
999 end_block = init_page_buffers(page, bdev,
1000 (sector_t)index << sizebits,
1001 size);
1002 goto done;
1003 }
1004 if (!try_to_free_buffers(page))
1005 goto failed;
1006 }
1007
1008 /*
1009 * Allocate some buffers for this page
1010 */
1011 bh = alloc_page_buffers(page, size, false);
1012 if (!bh)
1013 goto failed;
1014
1015 /*
1016 * Link the page to the buffers and initialise them. Take the
1017 * lock to be atomic wrt __find_get_block(), which does not
1018 * run under the page lock.
1019 */
1020 spin_lock(&inode->i_mapping->private_lock);
1021 link_dev_buffers(page, bh);
1022 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1023 size);
1024 spin_unlock(&inode->i_mapping->private_lock);
1025done:
1026 ret = (block < end_block) ? 1 : -ENXIO;
1027failed:
1028 unlock_page(page);
1029 put_page(page);
1030 return ret;
1031}
1032
1033/*
1034 * Create buffers for the specified block device block's page. If
1035 * that page was dirty, the buffers are set dirty also.
1036 */
1037static int
1038grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1039{
1040 pgoff_t index;
1041 int sizebits;
1042
1043 sizebits = -1;
1044 do {
1045 sizebits++;
1046 } while ((size << sizebits) < PAGE_SIZE);
1047
1048 index = block >> sizebits;
1049
1050 /*
1051 * Check for a block which wants to lie outside our maximum possible
1052 * pagecache index. (this comparison is done using sector_t types).
1053 */
1054 if (unlikely(index != block >> sizebits)) {
1055 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1056 "device %pg\n",
1057 __func__, (unsigned long long)block,
1058 bdev);
1059 return -EIO;
1060 }
1061
1062 /* Create a page with the proper size buffers.. */
1063 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1064}
1065
1066static struct buffer_head *
1067__getblk_slow(struct block_device *bdev, sector_t block,
1068 unsigned size, gfp_t gfp)
1069{
1070 /* Size must be multiple of hard sectorsize */
1071 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1072 (size < 512 || size > PAGE_SIZE))) {
1073 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1074 size);
1075 printk(KERN_ERR "logical block size: %d\n",
1076 bdev_logical_block_size(bdev));
1077
1078 dump_stack();
1079 return NULL;
1080 }
1081
1082 for (;;) {
1083 struct buffer_head *bh;
1084 int ret;
1085
1086 bh = __find_get_block(bdev, block, size);
1087 if (bh)
1088 return bh;
1089
1090 ret = grow_buffers(bdev, block, size, gfp);
1091 if (ret < 0)
1092 return NULL;
1093 if (ret == 0)
1094 free_more_memory();
1095 }
1096}
1097
1098/*
1099 * The relationship between dirty buffers and dirty pages:
1100 *
1101 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1102 * the page is tagged dirty in its radix tree.
1103 *
1104 * At all times, the dirtiness of the buffers represents the dirtiness of
1105 * subsections of the page. If the page has buffers, the page dirty bit is
1106 * merely a hint about the true dirty state.
1107 *
1108 * When a page is set dirty in its entirety, all its buffers are marked dirty
1109 * (if the page has buffers).
1110 *
1111 * When a buffer is marked dirty, its page is dirtied, but the page's other
1112 * buffers are not.
1113 *
1114 * Also. When blockdev buffers are explicitly read with bread(), they
1115 * individually become uptodate. But their backing page remains not
1116 * uptodate - even if all of its buffers are uptodate. A subsequent
1117 * block_read_full_page() against that page will discover all the uptodate
1118 * buffers, will set the page uptodate and will perform no I/O.
1119 */
1120
1121/**
1122 * mark_buffer_dirty - mark a buffer_head as needing writeout
1123 * @bh: the buffer_head to mark dirty
1124 *
1125 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1126 * backing page dirty, then tag the page as dirty in its address_space's radix
1127 * tree and then attach the address_space's inode to its superblock's dirty
1128 * inode list.
1129 *
1130 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1131 * mapping->tree_lock and mapping->host->i_lock.
1132 */
1133void mark_buffer_dirty(struct buffer_head *bh)
1134{
1135 WARN_ON_ONCE(!buffer_uptodate(bh));
1136
1137 trace_block_dirty_buffer(bh);
1138
1139 /*
1140 * Very *carefully* optimize the it-is-already-dirty case.
1141 *
1142 * Don't let the final "is it dirty" escape to before we
1143 * perhaps modified the buffer.
1144 */
1145 if (buffer_dirty(bh)) {
1146 smp_mb();
1147 if (buffer_dirty(bh))
1148 return;
1149 }
1150
1151 if (!test_set_buffer_dirty(bh)) {
1152 struct page *page = bh->b_page;
1153 struct address_space *mapping = NULL;
1154
1155 lock_page_memcg(page);
1156 if (!TestSetPageDirty(page)) {
1157 mapping = page_mapping(page);
1158 if (mapping)
1159 __set_page_dirty(page, mapping, 0);
1160 }
1161 unlock_page_memcg(page);
1162 if (mapping)
1163 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1164 }
1165}
1166EXPORT_SYMBOL(mark_buffer_dirty);
1167
1168void mark_buffer_write_io_error(struct buffer_head *bh)
1169{
1170 set_buffer_write_io_error(bh);
1171 /* FIXME: do we need to set this in both places? */
1172 if (bh->b_page && bh->b_page->mapping)
1173 mapping_set_error(bh->b_page->mapping, -EIO);
1174 if (bh->b_assoc_map)
1175 mapping_set_error(bh->b_assoc_map, -EIO);
1176}
1177EXPORT_SYMBOL(mark_buffer_write_io_error);
1178
1179/*
1180 * Decrement a buffer_head's reference count. If all buffers against a page
1181 * have zero reference count, are clean and unlocked, and if the page is clean
1182 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1183 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1184 * a page but it ends up not being freed, and buffers may later be reattached).
1185 */
1186void __brelse(struct buffer_head * buf)
1187{
1188 if (atomic_read(&buf->b_count)) {
1189 put_bh(buf);
1190 return;
1191 }
1192 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1193}
1194EXPORT_SYMBOL(__brelse);
1195
1196/*
1197 * bforget() is like brelse(), except it discards any
1198 * potentially dirty data.
1199 */
1200void __bforget(struct buffer_head *bh)
1201{
1202 clear_buffer_dirty(bh);
1203 if (bh->b_assoc_map) {
1204 struct address_space *buffer_mapping = bh->b_page->mapping;
1205
1206 spin_lock(&buffer_mapping->private_lock);
1207 list_del_init(&bh->b_assoc_buffers);
1208 bh->b_assoc_map = NULL;
1209 spin_unlock(&buffer_mapping->private_lock);
1210 }
1211 __brelse(bh);
1212}
1213EXPORT_SYMBOL(__bforget);
1214
1215static struct buffer_head *__bread_slow(struct buffer_head *bh)
1216{
1217 lock_buffer(bh);
1218 if (buffer_uptodate(bh)) {
1219 unlock_buffer(bh);
1220 return bh;
1221 } else {
1222 get_bh(bh);
1223 bh->b_end_io = end_buffer_read_sync;
1224 submit_bh(REQ_OP_READ, 0, bh);
1225 wait_on_buffer(bh);
1226 if (buffer_uptodate(bh))
1227 return bh;
1228 }
1229 brelse(bh);
1230 return NULL;
1231}
1232
1233/*
1234 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1235 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1236 * refcount elevated by one when they're in an LRU. A buffer can only appear
1237 * once in a particular CPU's LRU. A single buffer can be present in multiple
1238 * CPU's LRUs at the same time.
1239 *
1240 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1241 * sb_find_get_block().
1242 *
1243 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1244 * a local interrupt disable for that.
1245 */
1246
1247#define BH_LRU_SIZE 16
1248
1249struct bh_lru {
1250 struct buffer_head *bhs[BH_LRU_SIZE];
1251};
1252
1253static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1254
1255#ifdef CONFIG_SMP
1256#define bh_lru_lock() local_irq_disable()
1257#define bh_lru_unlock() local_irq_enable()
1258#else
1259#define bh_lru_lock() preempt_disable()
1260#define bh_lru_unlock() preempt_enable()
1261#endif
1262
1263static inline void check_irqs_on(void)
1264{
1265#ifdef irqs_disabled
1266 BUG_ON(irqs_disabled());
1267#endif
1268}
1269
1270/*
1271 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1272 * inserted at the front, and the buffer_head at the back if any is evicted.
1273 * Or, if already in the LRU it is moved to the front.
1274 */
1275static void bh_lru_install(struct buffer_head *bh)
1276{
1277 struct buffer_head *evictee = bh;
1278 struct bh_lru *b;
1279 int i;
1280
1281 check_irqs_on();
1282 bh_lru_lock();
1283
1284 b = this_cpu_ptr(&bh_lrus);
1285 for (i = 0; i < BH_LRU_SIZE; i++) {
1286 swap(evictee, b->bhs[i]);
1287 if (evictee == bh) {
1288 bh_lru_unlock();
1289 return;
1290 }
1291 }
1292
1293 get_bh(bh);
1294 bh_lru_unlock();
1295 brelse(evictee);
1296}
1297
1298/*
1299 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1300 */
1301static struct buffer_head *
1302lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1303{
1304 struct buffer_head *ret = NULL;
1305 unsigned int i;
1306
1307 check_irqs_on();
1308 bh_lru_lock();
1309 for (i = 0; i < BH_LRU_SIZE; i++) {
1310 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1311
1312 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1313 bh->b_size == size) {
1314 if (i) {
1315 while (i) {
1316 __this_cpu_write(bh_lrus.bhs[i],
1317 __this_cpu_read(bh_lrus.bhs[i - 1]));
1318 i--;
1319 }
1320 __this_cpu_write(bh_lrus.bhs[0], bh);
1321 }
1322 get_bh(bh);
1323 ret = bh;
1324 break;
1325 }
1326 }
1327 bh_lru_unlock();
1328 return ret;
1329}
1330
1331/*
1332 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1333 * it in the LRU and mark it as accessed. If it is not present then return
1334 * NULL
1335 */
1336struct buffer_head *
1337__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1338{
1339 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1340
1341 if (bh == NULL) {
1342 /* __find_get_block_slow will mark the page accessed */
1343 bh = __find_get_block_slow(bdev, block);
1344 if (bh)
1345 bh_lru_install(bh);
1346 } else
1347 touch_buffer(bh);
1348
1349 return bh;
1350}
1351EXPORT_SYMBOL(__find_get_block);
1352
1353/*
1354 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1355 * which corresponds to the passed block_device, block and size. The
1356 * returned buffer has its reference count incremented.
1357 *
1358 * __getblk_gfp() will lock up the machine if grow_dev_page's
1359 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1360 */
1361struct buffer_head *
1362__getblk_gfp(struct block_device *bdev, sector_t block,
1363 unsigned size, gfp_t gfp)
1364{
1365 struct buffer_head *bh = __find_get_block(bdev, block, size);
1366
1367 might_sleep();
1368 if (bh == NULL)
1369 bh = __getblk_slow(bdev, block, size, gfp);
1370 return bh;
1371}
1372EXPORT_SYMBOL(__getblk_gfp);
1373
1374/*
1375 * Do async read-ahead on a buffer..
1376 */
1377void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1378{
1379 struct buffer_head *bh = __getblk(bdev, block, size);
1380 if (likely(bh)) {
1381 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1382 brelse(bh);
1383 }
1384}
1385EXPORT_SYMBOL(__breadahead);
1386
1387/**
1388 * __bread_gfp() - reads a specified block and returns the bh
1389 * @bdev: the block_device to read from
1390 * @block: number of block
1391 * @size: size (in bytes) to read
1392 * @gfp: page allocation flag
1393 *
1394 * Reads a specified block, and returns buffer head that contains it.
1395 * The page cache can be allocated from non-movable area
1396 * not to prevent page migration if you set gfp to zero.
1397 * It returns NULL if the block was unreadable.
1398 */
1399struct buffer_head *
1400__bread_gfp(struct block_device *bdev, sector_t block,
1401 unsigned size, gfp_t gfp)
1402{
1403 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1404
1405 if (likely(bh) && !buffer_uptodate(bh))
1406 bh = __bread_slow(bh);
1407 return bh;
1408}
1409EXPORT_SYMBOL(__bread_gfp);
1410
1411/*
1412 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1413 * This doesn't race because it runs in each cpu either in irq
1414 * or with preempt disabled.
1415 */
1416static void invalidate_bh_lru(void *arg)
1417{
1418 struct bh_lru *b = &get_cpu_var(bh_lrus);
1419 int i;
1420
1421 for (i = 0; i < BH_LRU_SIZE; i++) {
1422 brelse(b->bhs[i]);
1423 b->bhs[i] = NULL;
1424 }
1425 put_cpu_var(bh_lrus);
1426}
1427
1428static bool has_bh_in_lru(int cpu, void *dummy)
1429{
1430 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1431 int i;
1432
1433 for (i = 0; i < BH_LRU_SIZE; i++) {
1434 if (b->bhs[i])
1435 return 1;
1436 }
1437
1438 return 0;
1439}
1440
1441void invalidate_bh_lrus(void)
1442{
1443 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1444}
1445EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1446
1447void set_bh_page(struct buffer_head *bh,
1448 struct page *page, unsigned long offset)
1449{
1450 bh->b_page = page;
1451 BUG_ON(offset >= PAGE_SIZE);
1452 if (PageHighMem(page))
1453 /*
1454 * This catches illegal uses and preserves the offset:
1455 */
1456 bh->b_data = (char *)(0 + offset);
1457 else
1458 bh->b_data = page_address(page) + offset;
1459}
1460EXPORT_SYMBOL(set_bh_page);
1461
1462/*
1463 * Called when truncating a buffer on a page completely.
1464 */
1465
1466/* Bits that are cleared during an invalidate */
1467#define BUFFER_FLAGS_DISCARD \
1468 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1469 1 << BH_Delay | 1 << BH_Unwritten)
1470
1471static void discard_buffer(struct buffer_head * bh)
1472{
1473 unsigned long b_state, b_state_old;
1474
1475 lock_buffer(bh);
1476 clear_buffer_dirty(bh);
1477 bh->b_bdev = NULL;
1478 b_state = bh->b_state;
1479 for (;;) {
1480 b_state_old = cmpxchg(&bh->b_state, b_state,
1481 (b_state & ~BUFFER_FLAGS_DISCARD));
1482 if (b_state_old == b_state)
1483 break;
1484 b_state = b_state_old;
1485 }
1486 unlock_buffer(bh);
1487}
1488
1489/**
1490 * block_invalidatepage - invalidate part or all of a buffer-backed page
1491 *
1492 * @page: the page which is affected
1493 * @offset: start of the range to invalidate
1494 * @length: length of the range to invalidate
1495 *
1496 * block_invalidatepage() is called when all or part of the page has become
1497 * invalidated by a truncate operation.
1498 *
1499 * block_invalidatepage() does not have to release all buffers, but it must
1500 * ensure that no dirty buffer is left outside @offset and that no I/O
1501 * is underway against any of the blocks which are outside the truncation
1502 * point. Because the caller is about to free (and possibly reuse) those
1503 * blocks on-disk.
1504 */
1505void block_invalidatepage(struct page *page, unsigned int offset,
1506 unsigned int length)
1507{
1508 struct buffer_head *head, *bh, *next;
1509 unsigned int curr_off = 0;
1510 unsigned int stop = length + offset;
1511
1512 BUG_ON(!PageLocked(page));
1513 if (!page_has_buffers(page))
1514 goto out;
1515
1516 /*
1517 * Check for overflow
1518 */
1519 BUG_ON(stop > PAGE_SIZE || stop < length);
1520
1521 head = page_buffers(page);
1522 bh = head;
1523 do {
1524 unsigned int next_off = curr_off + bh->b_size;
1525 next = bh->b_this_page;
1526
1527 /*
1528 * Are we still fully in range ?
1529 */
1530 if (next_off > stop)
1531 goto out;
1532
1533 /*
1534 * is this block fully invalidated?
1535 */
1536 if (offset <= curr_off)
1537 discard_buffer(bh);
1538 curr_off = next_off;
1539 bh = next;
1540 } while (bh != head);
1541
1542 /*
1543 * We release buffers only if the entire page is being invalidated.
1544 * The get_block cached value has been unconditionally invalidated,
1545 * so real IO is not possible anymore.
1546 */
1547 if (offset == 0)
1548 try_to_release_page(page, 0);
1549out:
1550 return;
1551}
1552EXPORT_SYMBOL(block_invalidatepage);
1553
1554
1555/*
1556 * We attach and possibly dirty the buffers atomically wrt
1557 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1558 * is already excluded via the page lock.
1559 */
1560void create_empty_buffers(struct page *page,
1561 unsigned long blocksize, unsigned long b_state)
1562{
1563 struct buffer_head *bh, *head, *tail;
1564
1565 head = alloc_page_buffers(page, blocksize, true);
1566 bh = head;
1567 do {
1568 bh->b_state |= b_state;
1569 tail = bh;
1570 bh = bh->b_this_page;
1571 } while (bh);
1572 tail->b_this_page = head;
1573
1574 spin_lock(&page->mapping->private_lock);
1575 if (PageUptodate(page) || PageDirty(page)) {
1576 bh = head;
1577 do {
1578 if (PageDirty(page))
1579 set_buffer_dirty(bh);
1580 if (PageUptodate(page))
1581 set_buffer_uptodate(bh);
1582 bh = bh->b_this_page;
1583 } while (bh != head);
1584 }
1585 attach_page_buffers(page, head);
1586 spin_unlock(&page->mapping->private_lock);
1587}
1588EXPORT_SYMBOL(create_empty_buffers);
1589
1590/**
1591 * clean_bdev_aliases: clean a range of buffers in block device
1592 * @bdev: Block device to clean buffers in
1593 * @block: Start of a range of blocks to clean
1594 * @len: Number of blocks to clean
1595 *
1596 * We are taking a range of blocks for data and we don't want writeback of any
1597 * buffer-cache aliases starting from return from this function and until the
1598 * moment when something will explicitly mark the buffer dirty (hopefully that
1599 * will not happen until we will free that block ;-) We don't even need to mark
1600 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1601 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1602 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1603 * would confuse anyone who might pick it with bread() afterwards...
1604 *
1605 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1606 * writeout I/O going on against recently-freed buffers. We don't wait on that
1607 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1608 * need to. That happens here.
1609 */
1610void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1611{
1612 struct inode *bd_inode = bdev->bd_inode;
1613 struct address_space *bd_mapping = bd_inode->i_mapping;
1614 struct pagevec pvec;
1615 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1616 pgoff_t end;
1617 int i, count;
1618 struct buffer_head *bh;
1619 struct buffer_head *head;
1620
1621 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1622 pagevec_init(&pvec, 0);
1623 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1624 count = pagevec_count(&pvec);
1625 for (i = 0; i < count; i++) {
1626 struct page *page = pvec.pages[i];
1627
1628 if (!page_has_buffers(page))
1629 continue;
1630 /*
1631 * We use page lock instead of bd_mapping->private_lock
1632 * to pin buffers here since we can afford to sleep and
1633 * it scales better than a global spinlock lock.
1634 */
1635 lock_page(page);
1636 /* Recheck when the page is locked which pins bhs */
1637 if (!page_has_buffers(page))
1638 goto unlock_page;
1639 head = page_buffers(page);
1640 bh = head;
1641 do {
1642 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1643 goto next;
1644 if (bh->b_blocknr >= block + len)
1645 break;
1646 clear_buffer_dirty(bh);
1647 wait_on_buffer(bh);
1648 clear_buffer_req(bh);
1649next:
1650 bh = bh->b_this_page;
1651 } while (bh != head);
1652unlock_page:
1653 unlock_page(page);
1654 }
1655 pagevec_release(&pvec);
1656 cond_resched();
1657 /* End of range already reached? */
1658 if (index > end || !index)
1659 break;
1660 }
1661}
1662EXPORT_SYMBOL(clean_bdev_aliases);
1663
1664/*
1665 * Size is a power-of-two in the range 512..PAGE_SIZE,
1666 * and the case we care about most is PAGE_SIZE.
1667 *
1668 * So this *could* possibly be written with those
1669 * constraints in mind (relevant mostly if some
1670 * architecture has a slow bit-scan instruction)
1671 */
1672static inline int block_size_bits(unsigned int blocksize)
1673{
1674 return ilog2(blocksize);
1675}
1676
1677static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1678{
1679 BUG_ON(!PageLocked(page));
1680
1681 if (!page_has_buffers(page))
1682 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1683 return page_buffers(page);
1684}
1685
1686/*
1687 * NOTE! All mapped/uptodate combinations are valid:
1688 *
1689 * Mapped Uptodate Meaning
1690 *
1691 * No No "unknown" - must do get_block()
1692 * No Yes "hole" - zero-filled
1693 * Yes No "allocated" - allocated on disk, not read in
1694 * Yes Yes "valid" - allocated and up-to-date in memory.
1695 *
1696 * "Dirty" is valid only with the last case (mapped+uptodate).
1697 */
1698
1699/*
1700 * While block_write_full_page is writing back the dirty buffers under
1701 * the page lock, whoever dirtied the buffers may decide to clean them
1702 * again at any time. We handle that by only looking at the buffer
1703 * state inside lock_buffer().
1704 *
1705 * If block_write_full_page() is called for regular writeback
1706 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1707 * locked buffer. This only can happen if someone has written the buffer
1708 * directly, with submit_bh(). At the address_space level PageWriteback
1709 * prevents this contention from occurring.
1710 *
1711 * If block_write_full_page() is called with wbc->sync_mode ==
1712 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1713 * causes the writes to be flagged as synchronous writes.
1714 */
1715int __block_write_full_page(struct inode *inode, struct page *page,
1716 get_block_t *get_block, struct writeback_control *wbc,
1717 bh_end_io_t *handler)
1718{
1719 int err;
1720 sector_t block;
1721 sector_t last_block;
1722 struct buffer_head *bh, *head;
1723 unsigned int blocksize, bbits;
1724 int nr_underway = 0;
1725 int write_flags = wbc_to_write_flags(wbc);
1726
1727 head = create_page_buffers(page, inode,
1728 (1 << BH_Dirty)|(1 << BH_Uptodate));
1729
1730 /*
1731 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1732 * here, and the (potentially unmapped) buffers may become dirty at
1733 * any time. If a buffer becomes dirty here after we've inspected it
1734 * then we just miss that fact, and the page stays dirty.
1735 *
1736 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1737 * handle that here by just cleaning them.
1738 */
1739
1740 bh = head;
1741 blocksize = bh->b_size;
1742 bbits = block_size_bits(blocksize);
1743
1744 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1745 last_block = (i_size_read(inode) - 1) >> bbits;
1746
1747 /*
1748 * Get all the dirty buffers mapped to disk addresses and
1749 * handle any aliases from the underlying blockdev's mapping.
1750 */
1751 do {
1752 if (block > last_block) {
1753 /*
1754 * mapped buffers outside i_size will occur, because
1755 * this page can be outside i_size when there is a
1756 * truncate in progress.
1757 */
1758 /*
1759 * The buffer was zeroed by block_write_full_page()
1760 */
1761 clear_buffer_dirty(bh);
1762 set_buffer_uptodate(bh);
1763 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1764 buffer_dirty(bh)) {
1765 WARN_ON(bh->b_size != blocksize);
1766 err = get_block(inode, block, bh, 1);
1767 if (err)
1768 goto recover;
1769 clear_buffer_delay(bh);
1770 if (buffer_new(bh)) {
1771 /* blockdev mappings never come here */
1772 clear_buffer_new(bh);
1773 clean_bdev_bh_alias(bh);
1774 }
1775 }
1776 bh = bh->b_this_page;
1777 block++;
1778 } while (bh != head);
1779
1780 do {
1781 if (!buffer_mapped(bh))
1782 continue;
1783 /*
1784 * If it's a fully non-blocking write attempt and we cannot
1785 * lock the buffer then redirty the page. Note that this can
1786 * potentially cause a busy-wait loop from writeback threads
1787 * and kswapd activity, but those code paths have their own
1788 * higher-level throttling.
1789 */
1790 if (wbc->sync_mode != WB_SYNC_NONE) {
1791 lock_buffer(bh);
1792 } else if (!trylock_buffer(bh)) {
1793 redirty_page_for_writepage(wbc, page);
1794 continue;
1795 }
1796 if (test_clear_buffer_dirty(bh)) {
1797 mark_buffer_async_write_endio(bh, handler);
1798 } else {
1799 unlock_buffer(bh);
1800 }
1801 } while ((bh = bh->b_this_page) != head);
1802
1803 /*
1804 * The page and its buffers are protected by PageWriteback(), so we can
1805 * drop the bh refcounts early.
1806 */
1807 BUG_ON(PageWriteback(page));
1808 set_page_writeback(page);
1809
1810 do {
1811 struct buffer_head *next = bh->b_this_page;
1812 if (buffer_async_write(bh)) {
1813 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1814 inode->i_write_hint, wbc);
1815 nr_underway++;
1816 }
1817 bh = next;
1818 } while (bh != head);
1819 unlock_page(page);
1820
1821 err = 0;
1822done:
1823 if (nr_underway == 0) {
1824 /*
1825 * The page was marked dirty, but the buffers were
1826 * clean. Someone wrote them back by hand with
1827 * ll_rw_block/submit_bh. A rare case.
1828 */
1829 end_page_writeback(page);
1830
1831 /*
1832 * The page and buffer_heads can be released at any time from
1833 * here on.
1834 */
1835 }
1836 return err;
1837
1838recover:
1839 /*
1840 * ENOSPC, or some other error. We may already have added some
1841 * blocks to the file, so we need to write these out to avoid
1842 * exposing stale data.
1843 * The page is currently locked and not marked for writeback
1844 */
1845 bh = head;
1846 /* Recovery: lock and submit the mapped buffers */
1847 do {
1848 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1849 !buffer_delay(bh)) {
1850 lock_buffer(bh);
1851 mark_buffer_async_write_endio(bh, handler);
1852 } else {
1853 /*
1854 * The buffer may have been set dirty during
1855 * attachment to a dirty page.
1856 */
1857 clear_buffer_dirty(bh);
1858 }
1859 } while ((bh = bh->b_this_page) != head);
1860 SetPageError(page);
1861 BUG_ON(PageWriteback(page));
1862 mapping_set_error(page->mapping, err);
1863 set_page_writeback(page);
1864 do {
1865 struct buffer_head *next = bh->b_this_page;
1866 if (buffer_async_write(bh)) {
1867 clear_buffer_dirty(bh);
1868 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1869 inode->i_write_hint, wbc);
1870 nr_underway++;
1871 }
1872 bh = next;
1873 } while (bh != head);
1874 unlock_page(page);
1875 goto done;
1876}
1877EXPORT_SYMBOL(__block_write_full_page);
1878
1879/*
1880 * If a page has any new buffers, zero them out here, and mark them uptodate
1881 * and dirty so they'll be written out (in order to prevent uninitialised
1882 * block data from leaking). And clear the new bit.
1883 */
1884void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1885{
1886 unsigned int block_start, block_end;
1887 struct buffer_head *head, *bh;
1888
1889 BUG_ON(!PageLocked(page));
1890 if (!page_has_buffers(page))
1891 return;
1892
1893 bh = head = page_buffers(page);
1894 block_start = 0;
1895 do {
1896 block_end = block_start + bh->b_size;
1897
1898 if (buffer_new(bh)) {
1899 if (block_end > from && block_start < to) {
1900 if (!PageUptodate(page)) {
1901 unsigned start, size;
1902
1903 start = max(from, block_start);
1904 size = min(to, block_end) - start;
1905
1906 zero_user(page, start, size);
1907 set_buffer_uptodate(bh);
1908 }
1909
1910 clear_buffer_new(bh);
1911 mark_buffer_dirty(bh);
1912 }
1913 }
1914
1915 block_start = block_end;
1916 bh = bh->b_this_page;
1917 } while (bh != head);
1918}
1919EXPORT_SYMBOL(page_zero_new_buffers);
1920
1921static void
1922iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1923 struct iomap *iomap)
1924{
1925 loff_t offset = block << inode->i_blkbits;
1926
1927 bh->b_bdev = iomap->bdev;
1928
1929 /*
1930 * Block points to offset in file we need to map, iomap contains
1931 * the offset at which the map starts. If the map ends before the
1932 * current block, then do not map the buffer and let the caller
1933 * handle it.
1934 */
1935 BUG_ON(offset >= iomap->offset + iomap->length);
1936
1937 switch (iomap->type) {
1938 case IOMAP_HOLE:
1939 /*
1940 * If the buffer is not up to date or beyond the current EOF,
1941 * we need to mark it as new to ensure sub-block zeroing is
1942 * executed if necessary.
1943 */
1944 if (!buffer_uptodate(bh) ||
1945 (offset >= i_size_read(inode)))
1946 set_buffer_new(bh);
1947 break;
1948 case IOMAP_DELALLOC:
1949 if (!buffer_uptodate(bh) ||
1950 (offset >= i_size_read(inode)))
1951 set_buffer_new(bh);
1952 set_buffer_uptodate(bh);
1953 set_buffer_mapped(bh);
1954 set_buffer_delay(bh);
1955 break;
1956 case IOMAP_UNWRITTEN:
1957 /*
1958 * For unwritten regions, we always need to ensure that
1959 * sub-block writes cause the regions in the block we are not
1960 * writing to are zeroed. Set the buffer as new to ensure this.
1961 */
1962 set_buffer_new(bh);
1963 set_buffer_unwritten(bh);
1964 /* FALLTHRU */
1965 case IOMAP_MAPPED:
1966 if (offset >= i_size_read(inode))
1967 set_buffer_new(bh);
1968 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1969 ((offset - iomap->offset) >> inode->i_blkbits);
1970 set_buffer_mapped(bh);
1971 break;
1972 }
1973}
1974
1975int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1976 get_block_t *get_block, struct iomap *iomap)
1977{
1978 unsigned from = pos & (PAGE_SIZE - 1);
1979 unsigned to = from + len;
1980 struct inode *inode = page->mapping->host;
1981 unsigned block_start, block_end;
1982 sector_t block;
1983 int err = 0;
1984 unsigned blocksize, bbits;
1985 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1986
1987 BUG_ON(!PageLocked(page));
1988 BUG_ON(from > PAGE_SIZE);
1989 BUG_ON(to > PAGE_SIZE);
1990 BUG_ON(from > to);
1991
1992 head = create_page_buffers(page, inode, 0);
1993 blocksize = head->b_size;
1994 bbits = block_size_bits(blocksize);
1995
1996 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1997
1998 for(bh = head, block_start = 0; bh != head || !block_start;
1999 block++, block_start=block_end, bh = bh->b_this_page) {
2000 block_end = block_start + blocksize;
2001 if (block_end <= from || block_start >= to) {
2002 if (PageUptodate(page)) {
2003 if (!buffer_uptodate(bh))
2004 set_buffer_uptodate(bh);
2005 }
2006 continue;
2007 }
2008 if (buffer_new(bh))
2009 clear_buffer_new(bh);
2010 if (!buffer_mapped(bh)) {
2011 WARN_ON(bh->b_size != blocksize);
2012 if (get_block) {
2013 err = get_block(inode, block, bh, 1);
2014 if (err)
2015 break;
2016 } else {
2017 iomap_to_bh(inode, block, bh, iomap);
2018 }
2019
2020 if (buffer_new(bh)) {
2021 clean_bdev_bh_alias(bh);
2022 if (PageUptodate(page)) {
2023 clear_buffer_new(bh);
2024 set_buffer_uptodate(bh);
2025 mark_buffer_dirty(bh);
2026 continue;
2027 }
2028 if (block_end > to || block_start < from)
2029 zero_user_segments(page,
2030 to, block_end,
2031 block_start, from);
2032 continue;
2033 }
2034 }
2035 if (PageUptodate(page)) {
2036 if (!buffer_uptodate(bh))
2037 set_buffer_uptodate(bh);
2038 continue;
2039 }
2040 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2041 !buffer_unwritten(bh) &&
2042 (block_start < from || block_end > to)) {
2043 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2044 *wait_bh++=bh;
2045 }
2046 }
2047 /*
2048 * If we issued read requests - let them complete.
2049 */
2050 while(wait_bh > wait) {
2051 wait_on_buffer(*--wait_bh);
2052 if (!buffer_uptodate(*wait_bh))
2053 err = -EIO;
2054 }
2055 if (unlikely(err))
2056 page_zero_new_buffers(page, from, to);
2057 return err;
2058}
2059
2060int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2061 get_block_t *get_block)
2062{
2063 return __block_write_begin_int(page, pos, len, get_block, NULL);
2064}
2065EXPORT_SYMBOL(__block_write_begin);
2066
2067static int __block_commit_write(struct inode *inode, struct page *page,
2068 unsigned from, unsigned to)
2069{
2070 unsigned block_start, block_end;
2071 int partial = 0;
2072 unsigned blocksize;
2073 struct buffer_head *bh, *head;
2074
2075 bh = head = page_buffers(page);
2076 blocksize = bh->b_size;
2077
2078 block_start = 0;
2079 do {
2080 block_end = block_start + blocksize;
2081 if (block_end <= from || block_start >= to) {
2082 if (!buffer_uptodate(bh))
2083 partial = 1;
2084 } else {
2085 set_buffer_uptodate(bh);
2086 mark_buffer_dirty(bh);
2087 }
2088 clear_buffer_new(bh);
2089
2090 block_start = block_end;
2091 bh = bh->b_this_page;
2092 } while (bh != head);
2093
2094 /*
2095 * If this is a partial write which happened to make all buffers
2096 * uptodate then we can optimize away a bogus readpage() for
2097 * the next read(). Here we 'discover' whether the page went
2098 * uptodate as a result of this (potentially partial) write.
2099 */
2100 if (!partial)
2101 SetPageUptodate(page);
2102 return 0;
2103}
2104
2105/*
2106 * block_write_begin takes care of the basic task of block allocation and
2107 * bringing partial write blocks uptodate first.
2108 *
2109 * The filesystem needs to handle block truncation upon failure.
2110 */
2111int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2112 unsigned flags, struct page **pagep, get_block_t *get_block)
2113{
2114 pgoff_t index = pos >> PAGE_SHIFT;
2115 struct page *page;
2116 int status;
2117
2118 page = grab_cache_page_write_begin(mapping, index, flags);
2119 if (!page)
2120 return -ENOMEM;
2121
2122 status = __block_write_begin(page, pos, len, get_block);
2123 if (unlikely(status)) {
2124 unlock_page(page);
2125 put_page(page);
2126 page = NULL;
2127 }
2128
2129 *pagep = page;
2130 return status;
2131}
2132EXPORT_SYMBOL(block_write_begin);
2133
2134int block_write_end(struct file *file, struct address_space *mapping,
2135 loff_t pos, unsigned len, unsigned copied,
2136 struct page *page, void *fsdata)
2137{
2138 struct inode *inode = mapping->host;
2139 unsigned start;
2140
2141 start = pos & (PAGE_SIZE - 1);
2142
2143 if (unlikely(copied < len)) {
2144 /*
2145 * The buffers that were written will now be uptodate, so we
2146 * don't have to worry about a readpage reading them and
2147 * overwriting a partial write. However if we have encountered
2148 * a short write and only partially written into a buffer, it
2149 * will not be marked uptodate, so a readpage might come in and
2150 * destroy our partial write.
2151 *
2152 * Do the simplest thing, and just treat any short write to a
2153 * non uptodate page as a zero-length write, and force the
2154 * caller to redo the whole thing.
2155 */
2156 if (!PageUptodate(page))
2157 copied = 0;
2158
2159 page_zero_new_buffers(page, start+copied, start+len);
2160 }
2161 flush_dcache_page(page);
2162
2163 /* This could be a short (even 0-length) commit */
2164 __block_commit_write(inode, page, start, start+copied);
2165
2166 return copied;
2167}
2168EXPORT_SYMBOL(block_write_end);
2169
2170int generic_write_end(struct file *file, struct address_space *mapping,
2171 loff_t pos, unsigned len, unsigned copied,
2172 struct page *page, void *fsdata)
2173{
2174 struct inode *inode = mapping->host;
2175 loff_t old_size = inode->i_size;
2176 int i_size_changed = 0;
2177
2178 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2179
2180 /*
2181 * No need to use i_size_read() here, the i_size
2182 * cannot change under us because we hold i_mutex.
2183 *
2184 * But it's important to update i_size while still holding page lock:
2185 * page writeout could otherwise come in and zero beyond i_size.
2186 */
2187 if (pos+copied > inode->i_size) {
2188 i_size_write(inode, pos+copied);
2189 i_size_changed = 1;
2190 }
2191
2192 unlock_page(page);
2193 put_page(page);
2194
2195 if (old_size < pos)
2196 pagecache_isize_extended(inode, old_size, pos);
2197 /*
2198 * Don't mark the inode dirty under page lock. First, it unnecessarily
2199 * makes the holding time of page lock longer. Second, it forces lock
2200 * ordering of page lock and transaction start for journaling
2201 * filesystems.
2202 */
2203 if (i_size_changed)
2204 mark_inode_dirty(inode);
2205
2206 return copied;
2207}
2208EXPORT_SYMBOL(generic_write_end);
2209
2210/*
2211 * block_is_partially_uptodate checks whether buffers within a page are
2212 * uptodate or not.
2213 *
2214 * Returns true if all buffers which correspond to a file portion
2215 * we want to read are uptodate.
2216 */
2217int block_is_partially_uptodate(struct page *page, unsigned long from,
2218 unsigned long count)
2219{
2220 unsigned block_start, block_end, blocksize;
2221 unsigned to;
2222 struct buffer_head *bh, *head;
2223 int ret = 1;
2224
2225 if (!page_has_buffers(page))
2226 return 0;
2227
2228 head = page_buffers(page);
2229 blocksize = head->b_size;
2230 to = min_t(unsigned, PAGE_SIZE - from, count);
2231 to = from + to;
2232 if (from < blocksize && to > PAGE_SIZE - blocksize)
2233 return 0;
2234
2235 bh = head;
2236 block_start = 0;
2237 do {
2238 block_end = block_start + blocksize;
2239 if (block_end > from && block_start < to) {
2240 if (!buffer_uptodate(bh)) {
2241 ret = 0;
2242 break;
2243 }
2244 if (block_end >= to)
2245 break;
2246 }
2247 block_start = block_end;
2248 bh = bh->b_this_page;
2249 } while (bh != head);
2250
2251 return ret;
2252}
2253EXPORT_SYMBOL(block_is_partially_uptodate);
2254
2255/*
2256 * Generic "read page" function for block devices that have the normal
2257 * get_block functionality. This is most of the block device filesystems.
2258 * Reads the page asynchronously --- the unlock_buffer() and
2259 * set/clear_buffer_uptodate() functions propagate buffer state into the
2260 * page struct once IO has completed.
2261 */
2262int block_read_full_page(struct page *page, get_block_t *get_block)
2263{
2264 struct inode *inode = page->mapping->host;
2265 sector_t iblock, lblock;
2266 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2267 unsigned int blocksize, bbits;
2268 int nr, i;
2269 int fully_mapped = 1;
2270
2271 head = create_page_buffers(page, inode, 0);
2272 blocksize = head->b_size;
2273 bbits = block_size_bits(blocksize);
2274
2275 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2276 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2277 bh = head;
2278 nr = 0;
2279 i = 0;
2280
2281 do {
2282 if (buffer_uptodate(bh))
2283 continue;
2284
2285 if (!buffer_mapped(bh)) {
2286 int err = 0;
2287
2288 fully_mapped = 0;
2289 if (iblock < lblock) {
2290 WARN_ON(bh->b_size != blocksize);
2291 err = get_block(inode, iblock, bh, 0);
2292 if (err)
2293 SetPageError(page);
2294 }
2295 if (!buffer_mapped(bh)) {
2296 zero_user(page, i * blocksize, blocksize);
2297 if (!err)
2298 set_buffer_uptodate(bh);
2299 continue;
2300 }
2301 /*
2302 * get_block() might have updated the buffer
2303 * synchronously
2304 */
2305 if (buffer_uptodate(bh))
2306 continue;
2307 }
2308 arr[nr++] = bh;
2309 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2310
2311 if (fully_mapped)
2312 SetPageMappedToDisk(page);
2313
2314 if (!nr) {
2315 /*
2316 * All buffers are uptodate - we can set the page uptodate
2317 * as well. But not if get_block() returned an error.
2318 */
2319 if (!PageError(page))
2320 SetPageUptodate(page);
2321 unlock_page(page);
2322 return 0;
2323 }
2324
2325 /* Stage two: lock the buffers */
2326 for (i = 0; i < nr; i++) {
2327 bh = arr[i];
2328 lock_buffer(bh);
2329 mark_buffer_async_read(bh);
2330 }
2331
2332 /*
2333 * Stage 3: start the IO. Check for uptodateness
2334 * inside the buffer lock in case another process reading
2335 * the underlying blockdev brought it uptodate (the sct fix).
2336 */
2337 for (i = 0; i < nr; i++) {
2338 bh = arr[i];
2339 if (buffer_uptodate(bh))
2340 end_buffer_async_read(bh, 1);
2341 else
2342 submit_bh(REQ_OP_READ, 0, bh);
2343 }
2344 return 0;
2345}
2346EXPORT_SYMBOL(block_read_full_page);
2347
2348/* utility function for filesystems that need to do work on expanding
2349 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2350 * deal with the hole.
2351 */
2352int generic_cont_expand_simple(struct inode *inode, loff_t size)
2353{
2354 struct address_space *mapping = inode->i_mapping;
2355 struct page *page;
2356 void *fsdata;
2357 int err;
2358
2359 err = inode_newsize_ok(inode, size);
2360 if (err)
2361 goto out;
2362
2363 err = pagecache_write_begin(NULL, mapping, size, 0,
2364 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2365 if (err)
2366 goto out;
2367
2368 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2369 BUG_ON(err > 0);
2370
2371out:
2372 return err;
2373}
2374EXPORT_SYMBOL(generic_cont_expand_simple);
2375
2376static int cont_expand_zero(struct file *file, struct address_space *mapping,
2377 loff_t pos, loff_t *bytes)
2378{
2379 struct inode *inode = mapping->host;
2380 unsigned int blocksize = i_blocksize(inode);
2381 struct page *page;
2382 void *fsdata;
2383 pgoff_t index, curidx;
2384 loff_t curpos;
2385 unsigned zerofrom, offset, len;
2386 int err = 0;
2387
2388 index = pos >> PAGE_SHIFT;
2389 offset = pos & ~PAGE_MASK;
2390
2391 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2392 zerofrom = curpos & ~PAGE_MASK;
2393 if (zerofrom & (blocksize-1)) {
2394 *bytes |= (blocksize-1);
2395 (*bytes)++;
2396 }
2397 len = PAGE_SIZE - zerofrom;
2398
2399 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2400 &page, &fsdata);
2401 if (err)
2402 goto out;
2403 zero_user(page, zerofrom, len);
2404 err = pagecache_write_end(file, mapping, curpos, len, len,
2405 page, fsdata);
2406 if (err < 0)
2407 goto out;
2408 BUG_ON(err != len);
2409 err = 0;
2410
2411 balance_dirty_pages_ratelimited(mapping);
2412
2413 if (unlikely(fatal_signal_pending(current))) {
2414 err = -EINTR;
2415 goto out;
2416 }
2417 }
2418
2419 /* page covers the boundary, find the boundary offset */
2420 if (index == curidx) {
2421 zerofrom = curpos & ~PAGE_MASK;
2422 /* if we will expand the thing last block will be filled */
2423 if (offset <= zerofrom) {
2424 goto out;
2425 }
2426 if (zerofrom & (blocksize-1)) {
2427 *bytes |= (blocksize-1);
2428 (*bytes)++;
2429 }
2430 len = offset - zerofrom;
2431
2432 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2433 &page, &fsdata);
2434 if (err)
2435 goto out;
2436 zero_user(page, zerofrom, len);
2437 err = pagecache_write_end(file, mapping, curpos, len, len,
2438 page, fsdata);
2439 if (err < 0)
2440 goto out;
2441 BUG_ON(err != len);
2442 err = 0;
2443 }
2444out:
2445 return err;
2446}
2447
2448/*
2449 * For moronic filesystems that do not allow holes in file.
2450 * We may have to extend the file.
2451 */
2452int cont_write_begin(struct file *file, struct address_space *mapping,
2453 loff_t pos, unsigned len, unsigned flags,
2454 struct page **pagep, void **fsdata,
2455 get_block_t *get_block, loff_t *bytes)
2456{
2457 struct inode *inode = mapping->host;
2458 unsigned int blocksize = i_blocksize(inode);
2459 unsigned int zerofrom;
2460 int err;
2461
2462 err = cont_expand_zero(file, mapping, pos, bytes);
2463 if (err)
2464 return err;
2465
2466 zerofrom = *bytes & ~PAGE_MASK;
2467 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2468 *bytes |= (blocksize-1);
2469 (*bytes)++;
2470 }
2471
2472 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2473}
2474EXPORT_SYMBOL(cont_write_begin);
2475
2476int block_commit_write(struct page *page, unsigned from, unsigned to)
2477{
2478 struct inode *inode = page->mapping->host;
2479 __block_commit_write(inode,page,from,to);
2480 return 0;
2481}
2482EXPORT_SYMBOL(block_commit_write);
2483
2484/*
2485 * block_page_mkwrite() is not allowed to change the file size as it gets
2486 * called from a page fault handler when a page is first dirtied. Hence we must
2487 * be careful to check for EOF conditions here. We set the page up correctly
2488 * for a written page which means we get ENOSPC checking when writing into
2489 * holes and correct delalloc and unwritten extent mapping on filesystems that
2490 * support these features.
2491 *
2492 * We are not allowed to take the i_mutex here so we have to play games to
2493 * protect against truncate races as the page could now be beyond EOF. Because
2494 * truncate writes the inode size before removing pages, once we have the
2495 * page lock we can determine safely if the page is beyond EOF. If it is not
2496 * beyond EOF, then the page is guaranteed safe against truncation until we
2497 * unlock the page.
2498 *
2499 * Direct callers of this function should protect against filesystem freezing
2500 * using sb_start_pagefault() - sb_end_pagefault() functions.
2501 */
2502int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2503 get_block_t get_block)
2504{
2505 struct page *page = vmf->page;
2506 struct inode *inode = file_inode(vma->vm_file);
2507 unsigned long end;
2508 loff_t size;
2509 int ret;
2510
2511 lock_page(page);
2512 size = i_size_read(inode);
2513 if ((page->mapping != inode->i_mapping) ||
2514 (page_offset(page) > size)) {
2515 /* We overload EFAULT to mean page got truncated */
2516 ret = -EFAULT;
2517 goto out_unlock;
2518 }
2519
2520 /* page is wholly or partially inside EOF */
2521 if (((page->index + 1) << PAGE_SHIFT) > size)
2522 end = size & ~PAGE_MASK;
2523 else
2524 end = PAGE_SIZE;
2525
2526 ret = __block_write_begin(page, 0, end, get_block);
2527 if (!ret)
2528 ret = block_commit_write(page, 0, end);
2529
2530 if (unlikely(ret < 0))
2531 goto out_unlock;
2532 set_page_dirty(page);
2533 wait_for_stable_page(page);
2534 return 0;
2535out_unlock:
2536 unlock_page(page);
2537 return ret;
2538}
2539EXPORT_SYMBOL(block_page_mkwrite);
2540
2541/*
2542 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2543 * immediately, while under the page lock. So it needs a special end_io
2544 * handler which does not touch the bh after unlocking it.
2545 */
2546static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2547{
2548 __end_buffer_read_notouch(bh, uptodate);
2549}
2550
2551/*
2552 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2553 * the page (converting it to circular linked list and taking care of page
2554 * dirty races).
2555 */
2556static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2557{
2558 struct buffer_head *bh;
2559
2560 BUG_ON(!PageLocked(page));
2561
2562 spin_lock(&page->mapping->private_lock);
2563 bh = head;
2564 do {
2565 if (PageDirty(page))
2566 set_buffer_dirty(bh);
2567 if (!bh->b_this_page)
2568 bh->b_this_page = head;
2569 bh = bh->b_this_page;
2570 } while (bh != head);
2571 attach_page_buffers(page, head);
2572 spin_unlock(&page->mapping->private_lock);
2573}
2574
2575/*
2576 * On entry, the page is fully not uptodate.
2577 * On exit the page is fully uptodate in the areas outside (from,to)
2578 * The filesystem needs to handle block truncation upon failure.
2579 */
2580int nobh_write_begin(struct address_space *mapping,
2581 loff_t pos, unsigned len, unsigned flags,
2582 struct page **pagep, void **fsdata,
2583 get_block_t *get_block)
2584{
2585 struct inode *inode = mapping->host;
2586 const unsigned blkbits = inode->i_blkbits;
2587 const unsigned blocksize = 1 << blkbits;
2588 struct buffer_head *head, *bh;
2589 struct page *page;
2590 pgoff_t index;
2591 unsigned from, to;
2592 unsigned block_in_page;
2593 unsigned block_start, block_end;
2594 sector_t block_in_file;
2595 int nr_reads = 0;
2596 int ret = 0;
2597 int is_mapped_to_disk = 1;
2598
2599 index = pos >> PAGE_SHIFT;
2600 from = pos & (PAGE_SIZE - 1);
2601 to = from + len;
2602
2603 page = grab_cache_page_write_begin(mapping, index, flags);
2604 if (!page)
2605 return -ENOMEM;
2606 *pagep = page;
2607 *fsdata = NULL;
2608
2609 if (page_has_buffers(page)) {
2610 ret = __block_write_begin(page, pos, len, get_block);
2611 if (unlikely(ret))
2612 goto out_release;
2613 return ret;
2614 }
2615
2616 if (PageMappedToDisk(page))
2617 return 0;
2618
2619 /*
2620 * Allocate buffers so that we can keep track of state, and potentially
2621 * attach them to the page if an error occurs. In the common case of
2622 * no error, they will just be freed again without ever being attached
2623 * to the page (which is all OK, because we're under the page lock).
2624 *
2625 * Be careful: the buffer linked list is a NULL terminated one, rather
2626 * than the circular one we're used to.
2627 */
2628 head = alloc_page_buffers(page, blocksize, false);
2629 if (!head) {
2630 ret = -ENOMEM;
2631 goto out_release;
2632 }
2633
2634 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2635
2636 /*
2637 * We loop across all blocks in the page, whether or not they are
2638 * part of the affected region. This is so we can discover if the
2639 * page is fully mapped-to-disk.
2640 */
2641 for (block_start = 0, block_in_page = 0, bh = head;
2642 block_start < PAGE_SIZE;
2643 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2644 int create;
2645
2646 block_end = block_start + blocksize;
2647 bh->b_state = 0;
2648 create = 1;
2649 if (block_start >= to)
2650 create = 0;
2651 ret = get_block(inode, block_in_file + block_in_page,
2652 bh, create);
2653 if (ret)
2654 goto failed;
2655 if (!buffer_mapped(bh))
2656 is_mapped_to_disk = 0;
2657 if (buffer_new(bh))
2658 clean_bdev_bh_alias(bh);
2659 if (PageUptodate(page)) {
2660 set_buffer_uptodate(bh);
2661 continue;
2662 }
2663 if (buffer_new(bh) || !buffer_mapped(bh)) {
2664 zero_user_segments(page, block_start, from,
2665 to, block_end);
2666 continue;
2667 }
2668 if (buffer_uptodate(bh))
2669 continue; /* reiserfs does this */
2670 if (block_start < from || block_end > to) {
2671 lock_buffer(bh);
2672 bh->b_end_io = end_buffer_read_nobh;
2673 submit_bh(REQ_OP_READ, 0, bh);
2674 nr_reads++;
2675 }
2676 }
2677
2678 if (nr_reads) {
2679 /*
2680 * The page is locked, so these buffers are protected from
2681 * any VM or truncate activity. Hence we don't need to care
2682 * for the buffer_head refcounts.
2683 */
2684 for (bh = head; bh; bh = bh->b_this_page) {
2685 wait_on_buffer(bh);
2686 if (!buffer_uptodate(bh))
2687 ret = -EIO;
2688 }
2689 if (ret)
2690 goto failed;
2691 }
2692
2693 if (is_mapped_to_disk)
2694 SetPageMappedToDisk(page);
2695
2696 *fsdata = head; /* to be released by nobh_write_end */
2697
2698 return 0;
2699
2700failed:
2701 BUG_ON(!ret);
2702 /*
2703 * Error recovery is a bit difficult. We need to zero out blocks that
2704 * were newly allocated, and dirty them to ensure they get written out.
2705 * Buffers need to be attached to the page at this point, otherwise
2706 * the handling of potential IO errors during writeout would be hard
2707 * (could try doing synchronous writeout, but what if that fails too?)
2708 */
2709 attach_nobh_buffers(page, head);
2710 page_zero_new_buffers(page, from, to);
2711
2712out_release:
2713 unlock_page(page);
2714 put_page(page);
2715 *pagep = NULL;
2716
2717 return ret;
2718}
2719EXPORT_SYMBOL(nobh_write_begin);
2720
2721int nobh_write_end(struct file *file, struct address_space *mapping,
2722 loff_t pos, unsigned len, unsigned copied,
2723 struct page *page, void *fsdata)
2724{
2725 struct inode *inode = page->mapping->host;
2726 struct buffer_head *head = fsdata;
2727 struct buffer_head *bh;
2728 BUG_ON(fsdata != NULL && page_has_buffers(page));
2729
2730 if (unlikely(copied < len) && head)
2731 attach_nobh_buffers(page, head);
2732 if (page_has_buffers(page))
2733 return generic_write_end(file, mapping, pos, len,
2734 copied, page, fsdata);
2735
2736 SetPageUptodate(page);
2737 set_page_dirty(page);
2738 if (pos+copied > inode->i_size) {
2739 i_size_write(inode, pos+copied);
2740 mark_inode_dirty(inode);
2741 }
2742
2743 unlock_page(page);
2744 put_page(page);
2745
2746 while (head) {
2747 bh = head;
2748 head = head->b_this_page;
2749 free_buffer_head(bh);
2750 }
2751
2752 return copied;
2753}
2754EXPORT_SYMBOL(nobh_write_end);
2755
2756/*
2757 * nobh_writepage() - based on block_full_write_page() except
2758 * that it tries to operate without attaching bufferheads to
2759 * the page.
2760 */
2761int nobh_writepage(struct page *page, get_block_t *get_block,
2762 struct writeback_control *wbc)
2763{
2764 struct inode * const inode = page->mapping->host;
2765 loff_t i_size = i_size_read(inode);
2766 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2767 unsigned offset;
2768 int ret;
2769
2770 /* Is the page fully inside i_size? */
2771 if (page->index < end_index)
2772 goto out;
2773
2774 /* Is the page fully outside i_size? (truncate in progress) */
2775 offset = i_size & (PAGE_SIZE-1);
2776 if (page->index >= end_index+1 || !offset) {
2777 /*
2778 * The page may have dirty, unmapped buffers. For example,
2779 * they may have been added in ext3_writepage(). Make them
2780 * freeable here, so the page does not leak.
2781 */
2782#if 0
2783 /* Not really sure about this - do we need this ? */
2784 if (page->mapping->a_ops->invalidatepage)
2785 page->mapping->a_ops->invalidatepage(page, offset);
2786#endif
2787 unlock_page(page);
2788 return 0; /* don't care */
2789 }
2790
2791 /*
2792 * The page straddles i_size. It must be zeroed out on each and every
2793 * writepage invocation because it may be mmapped. "A file is mapped
2794 * in multiples of the page size. For a file that is not a multiple of
2795 * the page size, the remaining memory is zeroed when mapped, and
2796 * writes to that region are not written out to the file."
2797 */
2798 zero_user_segment(page, offset, PAGE_SIZE);
2799out:
2800 ret = mpage_writepage(page, get_block, wbc);
2801 if (ret == -EAGAIN)
2802 ret = __block_write_full_page(inode, page, get_block, wbc,
2803 end_buffer_async_write);
2804 return ret;
2805}
2806EXPORT_SYMBOL(nobh_writepage);
2807
2808int nobh_truncate_page(struct address_space *mapping,
2809 loff_t from, get_block_t *get_block)
2810{
2811 pgoff_t index = from >> PAGE_SHIFT;
2812 unsigned offset = from & (PAGE_SIZE-1);
2813 unsigned blocksize;
2814 sector_t iblock;
2815 unsigned length, pos;
2816 struct inode *inode = mapping->host;
2817 struct page *page;
2818 struct buffer_head map_bh;
2819 int err;
2820
2821 blocksize = i_blocksize(inode);
2822 length = offset & (blocksize - 1);
2823
2824 /* Block boundary? Nothing to do */
2825 if (!length)
2826 return 0;
2827
2828 length = blocksize - length;
2829 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2830
2831 page = grab_cache_page(mapping, index);
2832 err = -ENOMEM;
2833 if (!page)
2834 goto out;
2835
2836 if (page_has_buffers(page)) {
2837has_buffers:
2838 unlock_page(page);
2839 put_page(page);
2840 return block_truncate_page(mapping, from, get_block);
2841 }
2842
2843 /* Find the buffer that contains "offset" */
2844 pos = blocksize;
2845 while (offset >= pos) {
2846 iblock++;
2847 pos += blocksize;
2848 }
2849
2850 map_bh.b_size = blocksize;
2851 map_bh.b_state = 0;
2852 err = get_block(inode, iblock, &map_bh, 0);
2853 if (err)
2854 goto unlock;
2855 /* unmapped? It's a hole - nothing to do */
2856 if (!buffer_mapped(&map_bh))
2857 goto unlock;
2858
2859 /* Ok, it's mapped. Make sure it's up-to-date */
2860 if (!PageUptodate(page)) {
2861 err = mapping->a_ops->readpage(NULL, page);
2862 if (err) {
2863 put_page(page);
2864 goto out;
2865 }
2866 lock_page(page);
2867 if (!PageUptodate(page)) {
2868 err = -EIO;
2869 goto unlock;
2870 }
2871 if (page_has_buffers(page))
2872 goto has_buffers;
2873 }
2874 zero_user(page, offset, length);
2875 set_page_dirty(page);
2876 err = 0;
2877
2878unlock:
2879 unlock_page(page);
2880 put_page(page);
2881out:
2882 return err;
2883}
2884EXPORT_SYMBOL(nobh_truncate_page);
2885
2886int block_truncate_page(struct address_space *mapping,
2887 loff_t from, get_block_t *get_block)
2888{
2889 pgoff_t index = from >> PAGE_SHIFT;
2890 unsigned offset = from & (PAGE_SIZE-1);
2891 unsigned blocksize;
2892 sector_t iblock;
2893 unsigned length, pos;
2894 struct inode *inode = mapping->host;
2895 struct page *page;
2896 struct buffer_head *bh;
2897 int err;
2898
2899 blocksize = i_blocksize(inode);
2900 length = offset & (blocksize - 1);
2901
2902 /* Block boundary? Nothing to do */
2903 if (!length)
2904 return 0;
2905
2906 length = blocksize - length;
2907 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2908
2909 page = grab_cache_page(mapping, index);
2910 err = -ENOMEM;
2911 if (!page)
2912 goto out;
2913
2914 if (!page_has_buffers(page))
2915 create_empty_buffers(page, blocksize, 0);
2916
2917 /* Find the buffer that contains "offset" */
2918 bh = page_buffers(page);
2919 pos = blocksize;
2920 while (offset >= pos) {
2921 bh = bh->b_this_page;
2922 iblock++;
2923 pos += blocksize;
2924 }
2925
2926 err = 0;
2927 if (!buffer_mapped(bh)) {
2928 WARN_ON(bh->b_size != blocksize);
2929 err = get_block(inode, iblock, bh, 0);
2930 if (err)
2931 goto unlock;
2932 /* unmapped? It's a hole - nothing to do */
2933 if (!buffer_mapped(bh))
2934 goto unlock;
2935 }
2936
2937 /* Ok, it's mapped. Make sure it's up-to-date */
2938 if (PageUptodate(page))
2939 set_buffer_uptodate(bh);
2940
2941 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2942 err = -EIO;
2943 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2944 wait_on_buffer(bh);
2945 /* Uhhuh. Read error. Complain and punt. */
2946 if (!buffer_uptodate(bh))
2947 goto unlock;
2948 }
2949
2950 zero_user(page, offset, length);
2951 mark_buffer_dirty(bh);
2952 err = 0;
2953
2954unlock:
2955 unlock_page(page);
2956 put_page(page);
2957out:
2958 return err;
2959}
2960EXPORT_SYMBOL(block_truncate_page);
2961
2962/*
2963 * The generic ->writepage function for buffer-backed address_spaces
2964 */
2965int block_write_full_page(struct page *page, get_block_t *get_block,
2966 struct writeback_control *wbc)
2967{
2968 struct inode * const inode = page->mapping->host;
2969 loff_t i_size = i_size_read(inode);
2970 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2971 unsigned offset;
2972
2973 /* Is the page fully inside i_size? */
2974 if (page->index < end_index)
2975 return __block_write_full_page(inode, page, get_block, wbc,
2976 end_buffer_async_write);
2977
2978 /* Is the page fully outside i_size? (truncate in progress) */
2979 offset = i_size & (PAGE_SIZE-1);
2980 if (page->index >= end_index+1 || !offset) {
2981 /*
2982 * The page may have dirty, unmapped buffers. For example,
2983 * they may have been added in ext3_writepage(). Make them
2984 * freeable here, so the page does not leak.
2985 */
2986 do_invalidatepage(page, 0, PAGE_SIZE);
2987 unlock_page(page);
2988 return 0; /* don't care */
2989 }
2990
2991 /*
2992 * The page straddles i_size. It must be zeroed out on each and every
2993 * writepage invocation because it may be mmapped. "A file is mapped
2994 * in multiples of the page size. For a file that is not a multiple of
2995 * the page size, the remaining memory is zeroed when mapped, and
2996 * writes to that region are not written out to the file."
2997 */
2998 zero_user_segment(page, offset, PAGE_SIZE);
2999 return __block_write_full_page(inode, page, get_block, wbc,
3000 end_buffer_async_write);
3001}
3002EXPORT_SYMBOL(block_write_full_page);
3003
3004sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3005 get_block_t *get_block)
3006{
3007 struct inode *inode = mapping->host;
3008 struct buffer_head tmp = {
3009 .b_size = i_blocksize(inode),
3010 };
3011
3012 get_block(inode, block, &tmp, 0);
3013 return tmp.b_blocknr;
3014}
3015EXPORT_SYMBOL(generic_block_bmap);
3016
3017static void end_bio_bh_io_sync(struct bio *bio)
3018{
3019 struct buffer_head *bh = bio->bi_private;
3020
3021 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3022 set_bit(BH_Quiet, &bh->b_state);
3023
3024 bh->b_end_io(bh, !bio->bi_status);
3025 bio_put(bio);
3026}
3027
3028/*
3029 * This allows us to do IO even on the odd last sectors
3030 * of a device, even if the block size is some multiple
3031 * of the physical sector size.
3032 *
3033 * We'll just truncate the bio to the size of the device,
3034 * and clear the end of the buffer head manually.
3035 *
3036 * Truly out-of-range accesses will turn into actual IO
3037 * errors, this only handles the "we need to be able to
3038 * do IO at the final sector" case.
3039 */
3040void guard_bio_eod(int op, struct bio *bio)
3041{
3042 sector_t maxsector;
3043 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3044 unsigned truncated_bytes;
3045
3046 maxsector = get_capacity(bio->bi_disk);
3047 if (!maxsector)
3048 return;
3049
3050 /*
3051 * If the *whole* IO is past the end of the device,
3052 * let it through, and the IO layer will turn it into
3053 * an EIO.
3054 */
3055 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3056 return;
3057
3058 maxsector -= bio->bi_iter.bi_sector;
3059 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3060 return;
3061
3062 /* Uhhuh. We've got a bio that straddles the device size! */
3063 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3064
3065 /* Truncate the bio.. */
3066 bio->bi_iter.bi_size -= truncated_bytes;
3067 bvec->bv_len -= truncated_bytes;
3068
3069 /* ..and clear the end of the buffer for reads */
3070 if (op == REQ_OP_READ) {
3071 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3072 truncated_bytes);
3073 }
3074}
3075
3076static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3077 enum rw_hint write_hint, struct writeback_control *wbc)
3078{
3079 struct bio *bio;
3080
3081 BUG_ON(!buffer_locked(bh));
3082 BUG_ON(!buffer_mapped(bh));
3083 BUG_ON(!bh->b_end_io);
3084 BUG_ON(buffer_delay(bh));
3085 BUG_ON(buffer_unwritten(bh));
3086
3087 /*
3088 * Only clear out a write error when rewriting
3089 */
3090 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3091 clear_buffer_write_io_error(bh);
3092
3093 /*
3094 * from here on down, it's all bio -- do the initial mapping,
3095 * submit_bio -> generic_make_request may further map this bio around
3096 */
3097 bio = bio_alloc(GFP_NOIO, 1);
3098
3099 if (wbc) {
3100 wbc_init_bio(wbc, bio);
3101 wbc_account_io(wbc, bh->b_page, bh->b_size);
3102 }
3103
3104 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3105 bio_set_dev(bio, bh->b_bdev);
3106 bio->bi_write_hint = write_hint;
3107
3108 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3109 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3110
3111 bio->bi_end_io = end_bio_bh_io_sync;
3112 bio->bi_private = bh;
3113
3114 /* Take care of bh's that straddle the end of the device */
3115 guard_bio_eod(op, bio);
3116
3117 if (buffer_meta(bh))
3118 op_flags |= REQ_META;
3119 if (buffer_prio(bh))
3120 op_flags |= REQ_PRIO;
3121 bio_set_op_attrs(bio, op, op_flags);
3122
3123 submit_bio(bio);
3124 return 0;
3125}
3126
3127int submit_bh(int op, int op_flags, struct buffer_head *bh)
3128{
3129 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3130}
3131EXPORT_SYMBOL(submit_bh);
3132
3133/**
3134 * ll_rw_block: low-level access to block devices (DEPRECATED)
3135 * @op: whether to %READ or %WRITE
3136 * @op_flags: req_flag_bits
3137 * @nr: number of &struct buffer_heads in the array
3138 * @bhs: array of pointers to &struct buffer_head
3139 *
3140 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3141 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3142 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3143 * %REQ_RAHEAD.
3144 *
3145 * This function drops any buffer that it cannot get a lock on (with the
3146 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3147 * request, and any buffer that appears to be up-to-date when doing read
3148 * request. Further it marks as clean buffers that are processed for
3149 * writing (the buffer cache won't assume that they are actually clean
3150 * until the buffer gets unlocked).
3151 *
3152 * ll_rw_block sets b_end_io to simple completion handler that marks
3153 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3154 * any waiters.
3155 *
3156 * All of the buffers must be for the same device, and must also be a
3157 * multiple of the current approved size for the device.
3158 */
3159void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3160{
3161 int i;
3162
3163 for (i = 0; i < nr; i++) {
3164 struct buffer_head *bh = bhs[i];
3165
3166 if (!trylock_buffer(bh))
3167 continue;
3168 if (op == WRITE) {
3169 if (test_clear_buffer_dirty(bh)) {
3170 bh->b_end_io = end_buffer_write_sync;
3171 get_bh(bh);
3172 submit_bh(op, op_flags, bh);
3173 continue;
3174 }
3175 } else {
3176 if (!buffer_uptodate(bh)) {
3177 bh->b_end_io = end_buffer_read_sync;
3178 get_bh(bh);
3179 submit_bh(op, op_flags, bh);
3180 continue;
3181 }
3182 }
3183 unlock_buffer(bh);
3184 }
3185}
3186EXPORT_SYMBOL(ll_rw_block);
3187
3188void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3189{
3190 lock_buffer(bh);
3191 if (!test_clear_buffer_dirty(bh)) {
3192 unlock_buffer(bh);
3193 return;
3194 }
3195 bh->b_end_io = end_buffer_write_sync;
3196 get_bh(bh);
3197 submit_bh(REQ_OP_WRITE, op_flags, bh);
3198}
3199EXPORT_SYMBOL(write_dirty_buffer);
3200
3201/*
3202 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3203 * and then start new I/O and then wait upon it. The caller must have a ref on
3204 * the buffer_head.
3205 */
3206int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3207{
3208 int ret = 0;
3209
3210 WARN_ON(atomic_read(&bh->b_count) < 1);
3211 lock_buffer(bh);
3212 if (test_clear_buffer_dirty(bh)) {
3213 get_bh(bh);
3214 bh->b_end_io = end_buffer_write_sync;
3215 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3216 wait_on_buffer(bh);
3217 if (!ret && !buffer_uptodate(bh))
3218 ret = -EIO;
3219 } else {
3220 unlock_buffer(bh);
3221 }
3222 return ret;
3223}
3224EXPORT_SYMBOL(__sync_dirty_buffer);
3225
3226int sync_dirty_buffer(struct buffer_head *bh)
3227{
3228 return __sync_dirty_buffer(bh, REQ_SYNC);
3229}
3230EXPORT_SYMBOL(sync_dirty_buffer);
3231
3232/*
3233 * try_to_free_buffers() checks if all the buffers on this particular page
3234 * are unused, and releases them if so.
3235 *
3236 * Exclusion against try_to_free_buffers may be obtained by either
3237 * locking the page or by holding its mapping's private_lock.
3238 *
3239 * If the page is dirty but all the buffers are clean then we need to
3240 * be sure to mark the page clean as well. This is because the page
3241 * may be against a block device, and a later reattachment of buffers
3242 * to a dirty page will set *all* buffers dirty. Which would corrupt
3243 * filesystem data on the same device.
3244 *
3245 * The same applies to regular filesystem pages: if all the buffers are
3246 * clean then we set the page clean and proceed. To do that, we require
3247 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3248 * private_lock.
3249 *
3250 * try_to_free_buffers() is non-blocking.
3251 */
3252static inline int buffer_busy(struct buffer_head *bh)
3253{
3254 return atomic_read(&bh->b_count) |
3255 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3256}
3257
3258static int
3259drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3260{
3261 struct buffer_head *head = page_buffers(page);
3262 struct buffer_head *bh;
3263
3264 bh = head;
3265 do {
3266 if (buffer_busy(bh))
3267 goto failed;
3268 bh = bh->b_this_page;
3269 } while (bh != head);
3270
3271 do {
3272 struct buffer_head *next = bh->b_this_page;
3273
3274 if (bh->b_assoc_map)
3275 __remove_assoc_queue(bh);
3276 bh = next;
3277 } while (bh != head);
3278 *buffers_to_free = head;
3279 __clear_page_buffers(page);
3280 return 1;
3281failed:
3282 return 0;
3283}
3284
3285int try_to_free_buffers(struct page *page)
3286{
3287 struct address_space * const mapping = page->mapping;
3288 struct buffer_head *buffers_to_free = NULL;
3289 int ret = 0;
3290
3291 BUG_ON(!PageLocked(page));
3292 if (PageWriteback(page))
3293 return 0;
3294
3295 if (mapping == NULL) { /* can this still happen? */
3296 ret = drop_buffers(page, &buffers_to_free);
3297 goto out;
3298 }
3299
3300 spin_lock(&mapping->private_lock);
3301 ret = drop_buffers(page, &buffers_to_free);
3302
3303 /*
3304 * If the filesystem writes its buffers by hand (eg ext3)
3305 * then we can have clean buffers against a dirty page. We
3306 * clean the page here; otherwise the VM will never notice
3307 * that the filesystem did any IO at all.
3308 *
3309 * Also, during truncate, discard_buffer will have marked all
3310 * the page's buffers clean. We discover that here and clean
3311 * the page also.
3312 *
3313 * private_lock must be held over this entire operation in order
3314 * to synchronise against __set_page_dirty_buffers and prevent the
3315 * dirty bit from being lost.
3316 */
3317 if (ret)
3318 cancel_dirty_page(page);
3319 spin_unlock(&mapping->private_lock);
3320out:
3321 if (buffers_to_free) {
3322 struct buffer_head *bh = buffers_to_free;
3323
3324 do {
3325 struct buffer_head *next = bh->b_this_page;
3326 free_buffer_head(bh);
3327 bh = next;
3328 } while (bh != buffers_to_free);
3329 }
3330 return ret;
3331}
3332EXPORT_SYMBOL(try_to_free_buffers);
3333
3334/*
3335 * There are no bdflush tunables left. But distributions are
3336 * still running obsolete flush daemons, so we terminate them here.
3337 *
3338 * Use of bdflush() is deprecated and will be removed in a future kernel.
3339 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3340 */
3341SYSCALL_DEFINE2(bdflush, int, func, long, data)
3342{
3343 static int msg_count;
3344
3345 if (!capable(CAP_SYS_ADMIN))
3346 return -EPERM;
3347
3348 if (msg_count < 5) {
3349 msg_count++;
3350 printk(KERN_INFO
3351 "warning: process `%s' used the obsolete bdflush"
3352 " system call\n", current->comm);
3353 printk(KERN_INFO "Fix your initscripts?\n");
3354 }
3355
3356 if (func == 1)
3357 do_exit(0);
3358 return 0;
3359}
3360
3361/*
3362 * Buffer-head allocation
3363 */
3364static struct kmem_cache *bh_cachep __read_mostly;
3365
3366/*
3367 * Once the number of bh's in the machine exceeds this level, we start
3368 * stripping them in writeback.
3369 */
3370static unsigned long max_buffer_heads;
3371
3372int buffer_heads_over_limit;
3373
3374struct bh_accounting {
3375 int nr; /* Number of live bh's */
3376 int ratelimit; /* Limit cacheline bouncing */
3377};
3378
3379static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3380
3381static void recalc_bh_state(void)
3382{
3383 int i;
3384 int tot = 0;
3385
3386 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3387 return;
3388 __this_cpu_write(bh_accounting.ratelimit, 0);
3389 for_each_online_cpu(i)
3390 tot += per_cpu(bh_accounting, i).nr;
3391 buffer_heads_over_limit = (tot > max_buffer_heads);
3392}
3393
3394struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3395{
3396 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3397 if (ret) {
3398 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3399 preempt_disable();
3400 __this_cpu_inc(bh_accounting.nr);
3401 recalc_bh_state();
3402 preempt_enable();
3403 }
3404 return ret;
3405}
3406EXPORT_SYMBOL(alloc_buffer_head);
3407
3408void free_buffer_head(struct buffer_head *bh)
3409{
3410 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3411 kmem_cache_free(bh_cachep, bh);
3412 preempt_disable();
3413 __this_cpu_dec(bh_accounting.nr);
3414 recalc_bh_state();
3415 preempt_enable();
3416}
3417EXPORT_SYMBOL(free_buffer_head);
3418
3419static int buffer_exit_cpu_dead(unsigned int cpu)
3420{
3421 int i;
3422 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3423
3424 for (i = 0; i < BH_LRU_SIZE; i++) {
3425 brelse(b->bhs[i]);
3426 b->bhs[i] = NULL;
3427 }
3428 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3429 per_cpu(bh_accounting, cpu).nr = 0;
3430 return 0;
3431}
3432
3433/**
3434 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3435 * @bh: struct buffer_head
3436 *
3437 * Return true if the buffer is up-to-date and false,
3438 * with the buffer locked, if not.
3439 */
3440int bh_uptodate_or_lock(struct buffer_head *bh)
3441{
3442 if (!buffer_uptodate(bh)) {
3443 lock_buffer(bh);
3444 if (!buffer_uptodate(bh))
3445 return 0;
3446 unlock_buffer(bh);
3447 }
3448 return 1;
3449}
3450EXPORT_SYMBOL(bh_uptodate_or_lock);
3451
3452/**
3453 * bh_submit_read - Submit a locked buffer for reading
3454 * @bh: struct buffer_head
3455 *
3456 * Returns zero on success and -EIO on error.
3457 */
3458int bh_submit_read(struct buffer_head *bh)
3459{
3460 BUG_ON(!buffer_locked(bh));
3461
3462 if (buffer_uptodate(bh)) {
3463 unlock_buffer(bh);
3464 return 0;
3465 }
3466
3467 get_bh(bh);
3468 bh->b_end_io = end_buffer_read_sync;
3469 submit_bh(REQ_OP_READ, 0, bh);
3470 wait_on_buffer(bh);
3471 if (buffer_uptodate(bh))
3472 return 0;
3473 return -EIO;
3474}
3475EXPORT_SYMBOL(bh_submit_read);
3476
3477/*
3478 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3479 *
3480 * Returns the offset within the file on success, and -ENOENT otherwise.
3481 */
3482static loff_t
3483page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3484{
3485 loff_t offset = page_offset(page);
3486 struct buffer_head *bh, *head;
3487 bool seek_data = whence == SEEK_DATA;
3488
3489 if (lastoff < offset)
3490 lastoff = offset;
3491
3492 bh = head = page_buffers(page);
3493 do {
3494 offset += bh->b_size;
3495 if (lastoff >= offset)
3496 continue;
3497
3498 /*
3499 * Unwritten extents that have data in the page cache covering
3500 * them can be identified by the BH_Unwritten state flag.
3501 * Pages with multiple buffers might have a mix of holes, data
3502 * and unwritten extents - any buffer with valid data in it
3503 * should have BH_Uptodate flag set on it.
3504 */
3505
3506 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3507 return lastoff;
3508
3509 lastoff = offset;
3510 } while ((bh = bh->b_this_page) != head);
3511 return -ENOENT;
3512}
3513
3514/*
3515 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3516 *
3517 * Within unwritten extents, the page cache determines which parts are holes
3518 * and which are data: unwritten and uptodate buffer heads count as data;
3519 * everything else counts as a hole.
3520 *
3521 * Returns the resulting offset on successs, and -ENOENT otherwise.
3522 */
3523loff_t
3524page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3525 int whence)
3526{
3527 pgoff_t index = offset >> PAGE_SHIFT;
3528 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3529 loff_t lastoff = offset;
3530 struct pagevec pvec;
3531
3532 if (length <= 0)
3533 return -ENOENT;
3534
3535 pagevec_init(&pvec, 0);
3536
3537 do {
3538 unsigned nr_pages, i;
3539
3540 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3541 end - 1);
3542 if (nr_pages == 0)
3543 break;
3544
3545 for (i = 0; i < nr_pages; i++) {
3546 struct page *page = pvec.pages[i];
3547
3548 /*
3549 * At this point, the page may be truncated or
3550 * invalidated (changing page->mapping to NULL), or
3551 * even swizzled back from swapper_space to tmpfs file
3552 * mapping. However, page->index will not change
3553 * because we have a reference on the page.
3554 *
3555 * If current page offset is beyond where we've ended,
3556 * we've found a hole.
3557 */
3558 if (whence == SEEK_HOLE &&
3559 lastoff < page_offset(page))
3560 goto check_range;
3561
3562 lock_page(page);
3563 if (likely(page->mapping == inode->i_mapping) &&
3564 page_has_buffers(page)) {
3565 lastoff = page_seek_hole_data(page, lastoff, whence);
3566 if (lastoff >= 0) {
3567 unlock_page(page);
3568 goto check_range;
3569 }
3570 }
3571 unlock_page(page);
3572 lastoff = page_offset(page) + PAGE_SIZE;
3573 }
3574 pagevec_release(&pvec);
3575 } while (index < end);
3576
3577 /* When no page at lastoff and we are not done, we found a hole. */
3578 if (whence != SEEK_HOLE)
3579 goto not_found;
3580
3581check_range:
3582 if (lastoff < offset + length)
3583 goto out;
3584not_found:
3585 lastoff = -ENOENT;
3586out:
3587 pagevec_release(&pvec);
3588 return lastoff;
3589}
3590
3591void __init buffer_init(void)
3592{
3593 unsigned long nrpages;
3594 int ret;
3595
3596 bh_cachep = kmem_cache_create("buffer_head",
3597 sizeof(struct buffer_head), 0,
3598 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3599 SLAB_MEM_SPREAD),
3600 NULL);
3601
3602 /*
3603 * Limit the bh occupancy to 10% of ZONE_NORMAL
3604 */
3605 nrpages = (nr_free_buffer_pages() * 10) / 100;
3606 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3607 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3608 NULL, buffer_exit_cpu_dead);
3609 WARN_ON(ret < 0);
3610}