]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - fs/dcache.c
dcache: move d_splice_alias
[mirror_ubuntu-hirsute-kernel.git] / fs / dcache.c
... / ...
CommitLineData
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
21#include <linux/fsnotify.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/export.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
34#include <linux/fs_struct.h>
35#include <linux/hardirq.h>
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
38#include <linux/prefetch.h>
39#include <linux/ratelimit.h>
40#include <linux/list_lru.h>
41#include "internal.h"
42#include "mount.h"
43
44/*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82int sysctl_vfs_cache_pressure __read_mostly = 100;
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87EXPORT_SYMBOL(rename_lock);
88
89static struct kmem_cache *dentry_cache __read_mostly;
90
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
102
103static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107{
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
111}
112
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
118static DEFINE_PER_CPU(long, nr_dentry);
119static DEFINE_PER_CPU(long, nr_dentry_unused);
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
135static long get_nr_dentry(void)
136{
137 int i;
138 long sum = 0;
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
153int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
156 dentry_stat.nr_dentry = get_nr_dentry();
157 dentry_stat.nr_unused = get_nr_dentry_unused();
158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159}
160#endif
161
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179{
180 unsigned long a,b,mask;
181
182 for (;;) {
183 a = *(unsigned long *)cs;
184 b = load_unaligned_zeropad(ct);
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
195 mask = bytemask_from_count(tcount);
196 return unlikely(!!((a ^ b) & mask));
197}
198
199#else
200
201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202{
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
213#endif
214
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
217 const unsigned char *cs;
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
237}
238
239static void __d_free(struct rcu_head *head)
240{
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
260 * @dentry: the target dentry
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
272/*
273 * Release the dentry's inode, using the filesystem
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
276 */
277static void dentry_iput(struct dentry * dentry)
278 __releases(dentry->d_lock)
279 __releases(dentry->d_inode->i_lock)
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
284 hlist_del_init(&dentry->d_alias);
285 spin_unlock(&dentry->d_lock);
286 spin_unlock(&inode->i_lock);
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
295 }
296}
297
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
304 __releases(dentry->d_inode->i_lock)
305{
306 struct inode *inode = dentry->d_inode;
307 __d_clear_type(dentry);
308 dentry->d_inode = NULL;
309 hlist_del_init(&dentry->d_alias);
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
312 spin_unlock(&inode->i_lock);
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
389/*
390 * dentry_lru_(add|del)_list) must be called with d_lock held.
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
396}
397
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
415 if (!d_unhashed(dentry)) {
416 struct hlist_bl_head *b;
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
431 dentry_rcuwalk_barrier(dentry);
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
441}
442EXPORT_SYMBOL(d_drop);
443
444static void __dentry_kill(struct dentry *dentry)
445{
446 struct dentry *parent = NULL;
447 bool can_free = true;
448 if (!IS_ROOT(dentry))
449 parent = dentry->d_parent;
450
451 /*
452 * The dentry is now unrecoverably dead to the world.
453 */
454 lockref_mark_dead(&dentry->d_lockref);
455
456 /*
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
459 */
460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
461 dentry->d_op->d_prune(dentry);
462
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
466 }
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
486
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
491 }
492 spin_unlock(&dentry->d_lock);
493 if (likely(can_free))
494 dentry_free(dentry);
495}
496
497/*
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
502 */
503static struct dentry *dentry_kill(struct dentry *dentry)
504 __releases(dentry->d_lock)
505{
506 struct inode *inode = dentry->d_inode;
507 struct dentry *parent = NULL;
508
509 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
510 goto failed;
511
512 if (!IS_ROOT(dentry)) {
513 parent = dentry->d_parent;
514 if (unlikely(!spin_trylock(&parent->d_lock))) {
515 if (inode)
516 spin_unlock(&inode->i_lock);
517 goto failed;
518 }
519 }
520
521 __dentry_kill(dentry);
522 return parent;
523
524failed:
525 spin_unlock(&dentry->d_lock);
526 cpu_relax();
527 return dentry; /* try again with same dentry */
528}
529
530static inline struct dentry *lock_parent(struct dentry *dentry)
531{
532 struct dentry *parent = dentry->d_parent;
533 if (IS_ROOT(dentry))
534 return NULL;
535 if (unlikely((int)dentry->d_lockref.count < 0))
536 return NULL;
537 if (likely(spin_trylock(&parent->d_lock)))
538 return parent;
539 rcu_read_lock();
540 spin_unlock(&dentry->d_lock);
541again:
542 parent = ACCESS_ONCE(dentry->d_parent);
543 spin_lock(&parent->d_lock);
544 /*
545 * We can't blindly lock dentry until we are sure
546 * that we won't violate the locking order.
547 * Any changes of dentry->d_parent must have
548 * been done with parent->d_lock held, so
549 * spin_lock() above is enough of a barrier
550 * for checking if it's still our child.
551 */
552 if (unlikely(parent != dentry->d_parent)) {
553 spin_unlock(&parent->d_lock);
554 goto again;
555 }
556 rcu_read_unlock();
557 if (parent != dentry)
558 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
559 else
560 parent = NULL;
561 return parent;
562}
563
564/*
565 * This is dput
566 *
567 * This is complicated by the fact that we do not want to put
568 * dentries that are no longer on any hash chain on the unused
569 * list: we'd much rather just get rid of them immediately.
570 *
571 * However, that implies that we have to traverse the dentry
572 * tree upwards to the parents which might _also_ now be
573 * scheduled for deletion (it may have been only waiting for
574 * its last child to go away).
575 *
576 * This tail recursion is done by hand as we don't want to depend
577 * on the compiler to always get this right (gcc generally doesn't).
578 * Real recursion would eat up our stack space.
579 */
580
581/*
582 * dput - release a dentry
583 * @dentry: dentry to release
584 *
585 * Release a dentry. This will drop the usage count and if appropriate
586 * call the dentry unlink method as well as removing it from the queues and
587 * releasing its resources. If the parent dentries were scheduled for release
588 * they too may now get deleted.
589 */
590void dput(struct dentry *dentry)
591{
592 if (unlikely(!dentry))
593 return;
594
595repeat:
596 if (lockref_put_or_lock(&dentry->d_lockref))
597 return;
598
599 /* Unreachable? Get rid of it */
600 if (unlikely(d_unhashed(dentry)))
601 goto kill_it;
602
603 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
604 if (dentry->d_op->d_delete(dentry))
605 goto kill_it;
606 }
607
608 if (!(dentry->d_flags & DCACHE_REFERENCED))
609 dentry->d_flags |= DCACHE_REFERENCED;
610 dentry_lru_add(dentry);
611
612 dentry->d_lockref.count--;
613 spin_unlock(&dentry->d_lock);
614 return;
615
616kill_it:
617 dentry = dentry_kill(dentry);
618 if (dentry)
619 goto repeat;
620}
621EXPORT_SYMBOL(dput);
622
623/**
624 * d_invalidate - invalidate a dentry
625 * @dentry: dentry to invalidate
626 *
627 * Try to invalidate the dentry if it turns out to be
628 * possible. If there are other dentries that can be
629 * reached through this one we can't delete it and we
630 * return -EBUSY. On success we return 0.
631 *
632 * no dcache lock.
633 */
634
635int d_invalidate(struct dentry * dentry)
636{
637 /*
638 * If it's already been dropped, return OK.
639 */
640 spin_lock(&dentry->d_lock);
641 if (d_unhashed(dentry)) {
642 spin_unlock(&dentry->d_lock);
643 return 0;
644 }
645 /*
646 * Check whether to do a partial shrink_dcache
647 * to get rid of unused child entries.
648 */
649 if (!list_empty(&dentry->d_subdirs)) {
650 spin_unlock(&dentry->d_lock);
651 shrink_dcache_parent(dentry);
652 spin_lock(&dentry->d_lock);
653 }
654
655 /*
656 * Somebody else still using it?
657 *
658 * If it's a directory, we can't drop it
659 * for fear of somebody re-populating it
660 * with children (even though dropping it
661 * would make it unreachable from the root,
662 * we might still populate it if it was a
663 * working directory or similar).
664 * We also need to leave mountpoints alone,
665 * directory or not.
666 */
667 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
668 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
669 spin_unlock(&dentry->d_lock);
670 return -EBUSY;
671 }
672 }
673
674 __d_drop(dentry);
675 spin_unlock(&dentry->d_lock);
676 return 0;
677}
678EXPORT_SYMBOL(d_invalidate);
679
680/* This must be called with d_lock held */
681static inline void __dget_dlock(struct dentry *dentry)
682{
683 dentry->d_lockref.count++;
684}
685
686static inline void __dget(struct dentry *dentry)
687{
688 lockref_get(&dentry->d_lockref);
689}
690
691struct dentry *dget_parent(struct dentry *dentry)
692{
693 int gotref;
694 struct dentry *ret;
695
696 /*
697 * Do optimistic parent lookup without any
698 * locking.
699 */
700 rcu_read_lock();
701 ret = ACCESS_ONCE(dentry->d_parent);
702 gotref = lockref_get_not_zero(&ret->d_lockref);
703 rcu_read_unlock();
704 if (likely(gotref)) {
705 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
706 return ret;
707 dput(ret);
708 }
709
710repeat:
711 /*
712 * Don't need rcu_dereference because we re-check it was correct under
713 * the lock.
714 */
715 rcu_read_lock();
716 ret = dentry->d_parent;
717 spin_lock(&ret->d_lock);
718 if (unlikely(ret != dentry->d_parent)) {
719 spin_unlock(&ret->d_lock);
720 rcu_read_unlock();
721 goto repeat;
722 }
723 rcu_read_unlock();
724 BUG_ON(!ret->d_lockref.count);
725 ret->d_lockref.count++;
726 spin_unlock(&ret->d_lock);
727 return ret;
728}
729EXPORT_SYMBOL(dget_parent);
730
731/**
732 * d_find_alias - grab a hashed alias of inode
733 * @inode: inode in question
734 * @want_discon: flag, used by d_splice_alias, to request
735 * that only a DISCONNECTED alias be returned.
736 *
737 * If inode has a hashed alias, or is a directory and has any alias,
738 * acquire the reference to alias and return it. Otherwise return NULL.
739 * Notice that if inode is a directory there can be only one alias and
740 * it can be unhashed only if it has no children, or if it is the root
741 * of a filesystem.
742 *
743 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
744 * any other hashed alias over that one unless @want_discon is set,
745 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
746 */
747static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
748{
749 struct dentry *alias, *discon_alias;
750
751again:
752 discon_alias = NULL;
753 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
754 spin_lock(&alias->d_lock);
755 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
756 if (IS_ROOT(alias) &&
757 (alias->d_flags & DCACHE_DISCONNECTED)) {
758 discon_alias = alias;
759 } else if (!want_discon) {
760 __dget_dlock(alias);
761 spin_unlock(&alias->d_lock);
762 return alias;
763 }
764 }
765 spin_unlock(&alias->d_lock);
766 }
767 if (discon_alias) {
768 alias = discon_alias;
769 spin_lock(&alias->d_lock);
770 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
771 if (IS_ROOT(alias) &&
772 (alias->d_flags & DCACHE_DISCONNECTED)) {
773 __dget_dlock(alias);
774 spin_unlock(&alias->d_lock);
775 return alias;
776 }
777 }
778 spin_unlock(&alias->d_lock);
779 goto again;
780 }
781 return NULL;
782}
783
784struct dentry *d_find_alias(struct inode *inode)
785{
786 struct dentry *de = NULL;
787
788 if (!hlist_empty(&inode->i_dentry)) {
789 spin_lock(&inode->i_lock);
790 de = __d_find_alias(inode, 0);
791 spin_unlock(&inode->i_lock);
792 }
793 return de;
794}
795EXPORT_SYMBOL(d_find_alias);
796
797/*
798 * Try to kill dentries associated with this inode.
799 * WARNING: you must own a reference to inode.
800 */
801void d_prune_aliases(struct inode *inode)
802{
803 struct dentry *dentry;
804restart:
805 spin_lock(&inode->i_lock);
806 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
807 spin_lock(&dentry->d_lock);
808 if (!dentry->d_lockref.count) {
809 /*
810 * inform the fs via d_prune that this dentry
811 * is about to be unhashed and destroyed.
812 */
813 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
814 !d_unhashed(dentry))
815 dentry->d_op->d_prune(dentry);
816
817 __dget_dlock(dentry);
818 __d_drop(dentry);
819 spin_unlock(&dentry->d_lock);
820 spin_unlock(&inode->i_lock);
821 dput(dentry);
822 goto restart;
823 }
824 spin_unlock(&dentry->d_lock);
825 }
826 spin_unlock(&inode->i_lock);
827}
828EXPORT_SYMBOL(d_prune_aliases);
829
830static void shrink_dentry_list(struct list_head *list)
831{
832 struct dentry *dentry, *parent;
833
834 while (!list_empty(list)) {
835 struct inode *inode;
836 dentry = list_entry(list->prev, struct dentry, d_lru);
837 spin_lock(&dentry->d_lock);
838 parent = lock_parent(dentry);
839
840 /*
841 * The dispose list is isolated and dentries are not accounted
842 * to the LRU here, so we can simply remove it from the list
843 * here regardless of whether it is referenced or not.
844 */
845 d_shrink_del(dentry);
846
847 /*
848 * We found an inuse dentry which was not removed from
849 * the LRU because of laziness during lookup. Do not free it.
850 */
851 if ((int)dentry->d_lockref.count > 0) {
852 spin_unlock(&dentry->d_lock);
853 if (parent)
854 spin_unlock(&parent->d_lock);
855 continue;
856 }
857
858
859 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
860 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
861 spin_unlock(&dentry->d_lock);
862 if (parent)
863 spin_unlock(&parent->d_lock);
864 if (can_free)
865 dentry_free(dentry);
866 continue;
867 }
868
869 inode = dentry->d_inode;
870 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
871 d_shrink_add(dentry, list);
872 spin_unlock(&dentry->d_lock);
873 if (parent)
874 spin_unlock(&parent->d_lock);
875 continue;
876 }
877
878 __dentry_kill(dentry);
879
880 /*
881 * We need to prune ancestors too. This is necessary to prevent
882 * quadratic behavior of shrink_dcache_parent(), but is also
883 * expected to be beneficial in reducing dentry cache
884 * fragmentation.
885 */
886 dentry = parent;
887 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
888 parent = lock_parent(dentry);
889 if (dentry->d_lockref.count != 1) {
890 dentry->d_lockref.count--;
891 spin_unlock(&dentry->d_lock);
892 if (parent)
893 spin_unlock(&parent->d_lock);
894 break;
895 }
896 inode = dentry->d_inode; /* can't be NULL */
897 if (unlikely(!spin_trylock(&inode->i_lock))) {
898 spin_unlock(&dentry->d_lock);
899 if (parent)
900 spin_unlock(&parent->d_lock);
901 cpu_relax();
902 continue;
903 }
904 __dentry_kill(dentry);
905 dentry = parent;
906 }
907 }
908}
909
910static enum lru_status
911dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
912{
913 struct list_head *freeable = arg;
914 struct dentry *dentry = container_of(item, struct dentry, d_lru);
915
916
917 /*
918 * we are inverting the lru lock/dentry->d_lock here,
919 * so use a trylock. If we fail to get the lock, just skip
920 * it
921 */
922 if (!spin_trylock(&dentry->d_lock))
923 return LRU_SKIP;
924
925 /*
926 * Referenced dentries are still in use. If they have active
927 * counts, just remove them from the LRU. Otherwise give them
928 * another pass through the LRU.
929 */
930 if (dentry->d_lockref.count) {
931 d_lru_isolate(dentry);
932 spin_unlock(&dentry->d_lock);
933 return LRU_REMOVED;
934 }
935
936 if (dentry->d_flags & DCACHE_REFERENCED) {
937 dentry->d_flags &= ~DCACHE_REFERENCED;
938 spin_unlock(&dentry->d_lock);
939
940 /*
941 * The list move itself will be made by the common LRU code. At
942 * this point, we've dropped the dentry->d_lock but keep the
943 * lru lock. This is safe to do, since every list movement is
944 * protected by the lru lock even if both locks are held.
945 *
946 * This is guaranteed by the fact that all LRU management
947 * functions are intermediated by the LRU API calls like
948 * list_lru_add and list_lru_del. List movement in this file
949 * only ever occur through this functions or through callbacks
950 * like this one, that are called from the LRU API.
951 *
952 * The only exceptions to this are functions like
953 * shrink_dentry_list, and code that first checks for the
954 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
955 * operating only with stack provided lists after they are
956 * properly isolated from the main list. It is thus, always a
957 * local access.
958 */
959 return LRU_ROTATE;
960 }
961
962 d_lru_shrink_move(dentry, freeable);
963 spin_unlock(&dentry->d_lock);
964
965 return LRU_REMOVED;
966}
967
968/**
969 * prune_dcache_sb - shrink the dcache
970 * @sb: superblock
971 * @nr_to_scan : number of entries to try to free
972 * @nid: which node to scan for freeable entities
973 *
974 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
975 * done when we need more memory an called from the superblock shrinker
976 * function.
977 *
978 * This function may fail to free any resources if all the dentries are in
979 * use.
980 */
981long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
982 int nid)
983{
984 LIST_HEAD(dispose);
985 long freed;
986
987 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
988 &dispose, &nr_to_scan);
989 shrink_dentry_list(&dispose);
990 return freed;
991}
992
993static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
994 spinlock_t *lru_lock, void *arg)
995{
996 struct list_head *freeable = arg;
997 struct dentry *dentry = container_of(item, struct dentry, d_lru);
998
999 /*
1000 * we are inverting the lru lock/dentry->d_lock here,
1001 * so use a trylock. If we fail to get the lock, just skip
1002 * it
1003 */
1004 if (!spin_trylock(&dentry->d_lock))
1005 return LRU_SKIP;
1006
1007 d_lru_shrink_move(dentry, freeable);
1008 spin_unlock(&dentry->d_lock);
1009
1010 return LRU_REMOVED;
1011}
1012
1013
1014/**
1015 * shrink_dcache_sb - shrink dcache for a superblock
1016 * @sb: superblock
1017 *
1018 * Shrink the dcache for the specified super block. This is used to free
1019 * the dcache before unmounting a file system.
1020 */
1021void shrink_dcache_sb(struct super_block *sb)
1022{
1023 long freed;
1024
1025 do {
1026 LIST_HEAD(dispose);
1027
1028 freed = list_lru_walk(&sb->s_dentry_lru,
1029 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1030
1031 this_cpu_sub(nr_dentry_unused, freed);
1032 shrink_dentry_list(&dispose);
1033 } while (freed > 0);
1034}
1035EXPORT_SYMBOL(shrink_dcache_sb);
1036
1037/**
1038 * enum d_walk_ret - action to talke during tree walk
1039 * @D_WALK_CONTINUE: contrinue walk
1040 * @D_WALK_QUIT: quit walk
1041 * @D_WALK_NORETRY: quit when retry is needed
1042 * @D_WALK_SKIP: skip this dentry and its children
1043 */
1044enum d_walk_ret {
1045 D_WALK_CONTINUE,
1046 D_WALK_QUIT,
1047 D_WALK_NORETRY,
1048 D_WALK_SKIP,
1049};
1050
1051/**
1052 * d_walk - walk the dentry tree
1053 * @parent: start of walk
1054 * @data: data passed to @enter() and @finish()
1055 * @enter: callback when first entering the dentry
1056 * @finish: callback when successfully finished the walk
1057 *
1058 * The @enter() and @finish() callbacks are called with d_lock held.
1059 */
1060static void d_walk(struct dentry *parent, void *data,
1061 enum d_walk_ret (*enter)(void *, struct dentry *),
1062 void (*finish)(void *))
1063{
1064 struct dentry *this_parent;
1065 struct list_head *next;
1066 unsigned seq = 0;
1067 enum d_walk_ret ret;
1068 bool retry = true;
1069
1070again:
1071 read_seqbegin_or_lock(&rename_lock, &seq);
1072 this_parent = parent;
1073 spin_lock(&this_parent->d_lock);
1074
1075 ret = enter(data, this_parent);
1076 switch (ret) {
1077 case D_WALK_CONTINUE:
1078 break;
1079 case D_WALK_QUIT:
1080 case D_WALK_SKIP:
1081 goto out_unlock;
1082 case D_WALK_NORETRY:
1083 retry = false;
1084 break;
1085 }
1086repeat:
1087 next = this_parent->d_subdirs.next;
1088resume:
1089 while (next != &this_parent->d_subdirs) {
1090 struct list_head *tmp = next;
1091 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1092 next = tmp->next;
1093
1094 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1095
1096 ret = enter(data, dentry);
1097 switch (ret) {
1098 case D_WALK_CONTINUE:
1099 break;
1100 case D_WALK_QUIT:
1101 spin_unlock(&dentry->d_lock);
1102 goto out_unlock;
1103 case D_WALK_NORETRY:
1104 retry = false;
1105 break;
1106 case D_WALK_SKIP:
1107 spin_unlock(&dentry->d_lock);
1108 continue;
1109 }
1110
1111 if (!list_empty(&dentry->d_subdirs)) {
1112 spin_unlock(&this_parent->d_lock);
1113 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1114 this_parent = dentry;
1115 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1116 goto repeat;
1117 }
1118 spin_unlock(&dentry->d_lock);
1119 }
1120 /*
1121 * All done at this level ... ascend and resume the search.
1122 */
1123 if (this_parent != parent) {
1124 struct dentry *child = this_parent;
1125 this_parent = child->d_parent;
1126
1127 rcu_read_lock();
1128 spin_unlock(&child->d_lock);
1129 spin_lock(&this_parent->d_lock);
1130
1131 /*
1132 * might go back up the wrong parent if we have had a rename
1133 * or deletion
1134 */
1135 if (this_parent != child->d_parent ||
1136 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1137 need_seqretry(&rename_lock, seq)) {
1138 spin_unlock(&this_parent->d_lock);
1139 rcu_read_unlock();
1140 goto rename_retry;
1141 }
1142 rcu_read_unlock();
1143 next = child->d_u.d_child.next;
1144 goto resume;
1145 }
1146 if (need_seqretry(&rename_lock, seq)) {
1147 spin_unlock(&this_parent->d_lock);
1148 goto rename_retry;
1149 }
1150 if (finish)
1151 finish(data);
1152
1153out_unlock:
1154 spin_unlock(&this_parent->d_lock);
1155 done_seqretry(&rename_lock, seq);
1156 return;
1157
1158rename_retry:
1159 if (!retry)
1160 return;
1161 seq = 1;
1162 goto again;
1163}
1164
1165/*
1166 * Search for at least 1 mount point in the dentry's subdirs.
1167 * We descend to the next level whenever the d_subdirs
1168 * list is non-empty and continue searching.
1169 */
1170
1171static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1172{
1173 int *ret = data;
1174 if (d_mountpoint(dentry)) {
1175 *ret = 1;
1176 return D_WALK_QUIT;
1177 }
1178 return D_WALK_CONTINUE;
1179}
1180
1181/**
1182 * have_submounts - check for mounts over a dentry
1183 * @parent: dentry to check.
1184 *
1185 * Return true if the parent or its subdirectories contain
1186 * a mount point
1187 */
1188int have_submounts(struct dentry *parent)
1189{
1190 int ret = 0;
1191
1192 d_walk(parent, &ret, check_mount, NULL);
1193
1194 return ret;
1195}
1196EXPORT_SYMBOL(have_submounts);
1197
1198/*
1199 * Called by mount code to set a mountpoint and check if the mountpoint is
1200 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1201 * subtree can become unreachable).
1202 *
1203 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1204 * this reason take rename_lock and d_lock on dentry and ancestors.
1205 */
1206int d_set_mounted(struct dentry *dentry)
1207{
1208 struct dentry *p;
1209 int ret = -ENOENT;
1210 write_seqlock(&rename_lock);
1211 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1212 /* Need exclusion wrt. check_submounts_and_drop() */
1213 spin_lock(&p->d_lock);
1214 if (unlikely(d_unhashed(p))) {
1215 spin_unlock(&p->d_lock);
1216 goto out;
1217 }
1218 spin_unlock(&p->d_lock);
1219 }
1220 spin_lock(&dentry->d_lock);
1221 if (!d_unlinked(dentry)) {
1222 dentry->d_flags |= DCACHE_MOUNTED;
1223 ret = 0;
1224 }
1225 spin_unlock(&dentry->d_lock);
1226out:
1227 write_sequnlock(&rename_lock);
1228 return ret;
1229}
1230
1231/*
1232 * Search the dentry child list of the specified parent,
1233 * and move any unused dentries to the end of the unused
1234 * list for prune_dcache(). We descend to the next level
1235 * whenever the d_subdirs list is non-empty and continue
1236 * searching.
1237 *
1238 * It returns zero iff there are no unused children,
1239 * otherwise it returns the number of children moved to
1240 * the end of the unused list. This may not be the total
1241 * number of unused children, because select_parent can
1242 * drop the lock and return early due to latency
1243 * constraints.
1244 */
1245
1246struct select_data {
1247 struct dentry *start;
1248 struct list_head dispose;
1249 int found;
1250};
1251
1252static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1253{
1254 struct select_data *data = _data;
1255 enum d_walk_ret ret = D_WALK_CONTINUE;
1256
1257 if (data->start == dentry)
1258 goto out;
1259
1260 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1261 data->found++;
1262 } else {
1263 if (dentry->d_flags & DCACHE_LRU_LIST)
1264 d_lru_del(dentry);
1265 if (!dentry->d_lockref.count) {
1266 d_shrink_add(dentry, &data->dispose);
1267 data->found++;
1268 }
1269 }
1270 /*
1271 * We can return to the caller if we have found some (this
1272 * ensures forward progress). We'll be coming back to find
1273 * the rest.
1274 */
1275 if (!list_empty(&data->dispose))
1276 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1277out:
1278 return ret;
1279}
1280
1281/**
1282 * shrink_dcache_parent - prune dcache
1283 * @parent: parent of entries to prune
1284 *
1285 * Prune the dcache to remove unused children of the parent dentry.
1286 */
1287void shrink_dcache_parent(struct dentry *parent)
1288{
1289 for (;;) {
1290 struct select_data data;
1291
1292 INIT_LIST_HEAD(&data.dispose);
1293 data.start = parent;
1294 data.found = 0;
1295
1296 d_walk(parent, &data, select_collect, NULL);
1297 if (!data.found)
1298 break;
1299
1300 shrink_dentry_list(&data.dispose);
1301 cond_resched();
1302 }
1303}
1304EXPORT_SYMBOL(shrink_dcache_parent);
1305
1306static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1307{
1308 /* it has busy descendents; complain about those instead */
1309 if (!list_empty(&dentry->d_subdirs))
1310 return D_WALK_CONTINUE;
1311
1312 /* root with refcount 1 is fine */
1313 if (dentry == _data && dentry->d_lockref.count == 1)
1314 return D_WALK_CONTINUE;
1315
1316 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1317 " still in use (%d) [unmount of %s %s]\n",
1318 dentry,
1319 dentry->d_inode ?
1320 dentry->d_inode->i_ino : 0UL,
1321 dentry,
1322 dentry->d_lockref.count,
1323 dentry->d_sb->s_type->name,
1324 dentry->d_sb->s_id);
1325 WARN_ON(1);
1326 return D_WALK_CONTINUE;
1327}
1328
1329static void do_one_tree(struct dentry *dentry)
1330{
1331 shrink_dcache_parent(dentry);
1332 d_walk(dentry, dentry, umount_check, NULL);
1333 d_drop(dentry);
1334 dput(dentry);
1335}
1336
1337/*
1338 * destroy the dentries attached to a superblock on unmounting
1339 */
1340void shrink_dcache_for_umount(struct super_block *sb)
1341{
1342 struct dentry *dentry;
1343
1344 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1345
1346 dentry = sb->s_root;
1347 sb->s_root = NULL;
1348 do_one_tree(dentry);
1349
1350 while (!hlist_bl_empty(&sb->s_anon)) {
1351 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1352 do_one_tree(dentry);
1353 }
1354}
1355
1356static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1357{
1358 struct select_data *data = _data;
1359
1360 if (d_mountpoint(dentry)) {
1361 data->found = -EBUSY;
1362 return D_WALK_QUIT;
1363 }
1364
1365 return select_collect(_data, dentry);
1366}
1367
1368static void check_and_drop(void *_data)
1369{
1370 struct select_data *data = _data;
1371
1372 if (d_mountpoint(data->start))
1373 data->found = -EBUSY;
1374 if (!data->found)
1375 __d_drop(data->start);
1376}
1377
1378/**
1379 * check_submounts_and_drop - prune dcache, check for submounts and drop
1380 *
1381 * All done as a single atomic operation relative to has_unlinked_ancestor().
1382 * Returns 0 if successfully unhashed @parent. If there were submounts then
1383 * return -EBUSY.
1384 *
1385 * @dentry: dentry to prune and drop
1386 */
1387int check_submounts_and_drop(struct dentry *dentry)
1388{
1389 int ret = 0;
1390
1391 /* Negative dentries can be dropped without further checks */
1392 if (!dentry->d_inode) {
1393 d_drop(dentry);
1394 goto out;
1395 }
1396
1397 for (;;) {
1398 struct select_data data;
1399
1400 INIT_LIST_HEAD(&data.dispose);
1401 data.start = dentry;
1402 data.found = 0;
1403
1404 d_walk(dentry, &data, check_and_collect, check_and_drop);
1405 ret = data.found;
1406
1407 if (!list_empty(&data.dispose))
1408 shrink_dentry_list(&data.dispose);
1409
1410 if (ret <= 0)
1411 break;
1412
1413 cond_resched();
1414 }
1415
1416out:
1417 return ret;
1418}
1419EXPORT_SYMBOL(check_submounts_and_drop);
1420
1421/**
1422 * __d_alloc - allocate a dcache entry
1423 * @sb: filesystem it will belong to
1424 * @name: qstr of the name
1425 *
1426 * Allocates a dentry. It returns %NULL if there is insufficient memory
1427 * available. On a success the dentry is returned. The name passed in is
1428 * copied and the copy passed in may be reused after this call.
1429 */
1430
1431struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1432{
1433 struct dentry *dentry;
1434 char *dname;
1435
1436 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1437 if (!dentry)
1438 return NULL;
1439
1440 /*
1441 * We guarantee that the inline name is always NUL-terminated.
1442 * This way the memcpy() done by the name switching in rename
1443 * will still always have a NUL at the end, even if we might
1444 * be overwriting an internal NUL character
1445 */
1446 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1447 if (name->len > DNAME_INLINE_LEN-1) {
1448 dname = kmalloc(name->len + 1, GFP_KERNEL);
1449 if (!dname) {
1450 kmem_cache_free(dentry_cache, dentry);
1451 return NULL;
1452 }
1453 } else {
1454 dname = dentry->d_iname;
1455 }
1456
1457 dentry->d_name.len = name->len;
1458 dentry->d_name.hash = name->hash;
1459 memcpy(dname, name->name, name->len);
1460 dname[name->len] = 0;
1461
1462 /* Make sure we always see the terminating NUL character */
1463 smp_wmb();
1464 dentry->d_name.name = dname;
1465
1466 dentry->d_lockref.count = 1;
1467 dentry->d_flags = 0;
1468 spin_lock_init(&dentry->d_lock);
1469 seqcount_init(&dentry->d_seq);
1470 dentry->d_inode = NULL;
1471 dentry->d_parent = dentry;
1472 dentry->d_sb = sb;
1473 dentry->d_op = NULL;
1474 dentry->d_fsdata = NULL;
1475 INIT_HLIST_BL_NODE(&dentry->d_hash);
1476 INIT_LIST_HEAD(&dentry->d_lru);
1477 INIT_LIST_HEAD(&dentry->d_subdirs);
1478 INIT_HLIST_NODE(&dentry->d_alias);
1479 INIT_LIST_HEAD(&dentry->d_u.d_child);
1480 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1481
1482 this_cpu_inc(nr_dentry);
1483
1484 return dentry;
1485}
1486
1487/**
1488 * d_alloc - allocate a dcache entry
1489 * @parent: parent of entry to allocate
1490 * @name: qstr of the name
1491 *
1492 * Allocates a dentry. It returns %NULL if there is insufficient memory
1493 * available. On a success the dentry is returned. The name passed in is
1494 * copied and the copy passed in may be reused after this call.
1495 */
1496struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1497{
1498 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1499 if (!dentry)
1500 return NULL;
1501
1502 spin_lock(&parent->d_lock);
1503 /*
1504 * don't need child lock because it is not subject
1505 * to concurrency here
1506 */
1507 __dget_dlock(parent);
1508 dentry->d_parent = parent;
1509 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1510 spin_unlock(&parent->d_lock);
1511
1512 return dentry;
1513}
1514EXPORT_SYMBOL(d_alloc);
1515
1516/**
1517 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1518 * @sb: the superblock
1519 * @name: qstr of the name
1520 *
1521 * For a filesystem that just pins its dentries in memory and never
1522 * performs lookups at all, return an unhashed IS_ROOT dentry.
1523 */
1524struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1525{
1526 return __d_alloc(sb, name);
1527}
1528EXPORT_SYMBOL(d_alloc_pseudo);
1529
1530struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1531{
1532 struct qstr q;
1533
1534 q.name = name;
1535 q.len = strlen(name);
1536 q.hash = full_name_hash(q.name, q.len);
1537 return d_alloc(parent, &q);
1538}
1539EXPORT_SYMBOL(d_alloc_name);
1540
1541void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1542{
1543 WARN_ON_ONCE(dentry->d_op);
1544 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1545 DCACHE_OP_COMPARE |
1546 DCACHE_OP_REVALIDATE |
1547 DCACHE_OP_WEAK_REVALIDATE |
1548 DCACHE_OP_DELETE ));
1549 dentry->d_op = op;
1550 if (!op)
1551 return;
1552 if (op->d_hash)
1553 dentry->d_flags |= DCACHE_OP_HASH;
1554 if (op->d_compare)
1555 dentry->d_flags |= DCACHE_OP_COMPARE;
1556 if (op->d_revalidate)
1557 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1558 if (op->d_weak_revalidate)
1559 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1560 if (op->d_delete)
1561 dentry->d_flags |= DCACHE_OP_DELETE;
1562 if (op->d_prune)
1563 dentry->d_flags |= DCACHE_OP_PRUNE;
1564
1565}
1566EXPORT_SYMBOL(d_set_d_op);
1567
1568static unsigned d_flags_for_inode(struct inode *inode)
1569{
1570 unsigned add_flags = DCACHE_FILE_TYPE;
1571
1572 if (!inode)
1573 return DCACHE_MISS_TYPE;
1574
1575 if (S_ISDIR(inode->i_mode)) {
1576 add_flags = DCACHE_DIRECTORY_TYPE;
1577 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1578 if (unlikely(!inode->i_op->lookup))
1579 add_flags = DCACHE_AUTODIR_TYPE;
1580 else
1581 inode->i_opflags |= IOP_LOOKUP;
1582 }
1583 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1584 if (unlikely(inode->i_op->follow_link))
1585 add_flags = DCACHE_SYMLINK_TYPE;
1586 else
1587 inode->i_opflags |= IOP_NOFOLLOW;
1588 }
1589
1590 if (unlikely(IS_AUTOMOUNT(inode)))
1591 add_flags |= DCACHE_NEED_AUTOMOUNT;
1592 return add_flags;
1593}
1594
1595static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1596{
1597 unsigned add_flags = d_flags_for_inode(inode);
1598
1599 spin_lock(&dentry->d_lock);
1600 __d_set_type(dentry, add_flags);
1601 if (inode)
1602 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1603 dentry->d_inode = inode;
1604 dentry_rcuwalk_barrier(dentry);
1605 spin_unlock(&dentry->d_lock);
1606 fsnotify_d_instantiate(dentry, inode);
1607}
1608
1609/**
1610 * d_instantiate - fill in inode information for a dentry
1611 * @entry: dentry to complete
1612 * @inode: inode to attach to this dentry
1613 *
1614 * Fill in inode information in the entry.
1615 *
1616 * This turns negative dentries into productive full members
1617 * of society.
1618 *
1619 * NOTE! This assumes that the inode count has been incremented
1620 * (or otherwise set) by the caller to indicate that it is now
1621 * in use by the dcache.
1622 */
1623
1624void d_instantiate(struct dentry *entry, struct inode * inode)
1625{
1626 BUG_ON(!hlist_unhashed(&entry->d_alias));
1627 if (inode)
1628 spin_lock(&inode->i_lock);
1629 __d_instantiate(entry, inode);
1630 if (inode)
1631 spin_unlock(&inode->i_lock);
1632 security_d_instantiate(entry, inode);
1633}
1634EXPORT_SYMBOL(d_instantiate);
1635
1636/**
1637 * d_instantiate_unique - instantiate a non-aliased dentry
1638 * @entry: dentry to instantiate
1639 * @inode: inode to attach to this dentry
1640 *
1641 * Fill in inode information in the entry. On success, it returns NULL.
1642 * If an unhashed alias of "entry" already exists, then we return the
1643 * aliased dentry instead and drop one reference to inode.
1644 *
1645 * Note that in order to avoid conflicts with rename() etc, the caller
1646 * had better be holding the parent directory semaphore.
1647 *
1648 * This also assumes that the inode count has been incremented
1649 * (or otherwise set) by the caller to indicate that it is now
1650 * in use by the dcache.
1651 */
1652static struct dentry *__d_instantiate_unique(struct dentry *entry,
1653 struct inode *inode)
1654{
1655 struct dentry *alias;
1656 int len = entry->d_name.len;
1657 const char *name = entry->d_name.name;
1658 unsigned int hash = entry->d_name.hash;
1659
1660 if (!inode) {
1661 __d_instantiate(entry, NULL);
1662 return NULL;
1663 }
1664
1665 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1666 /*
1667 * Don't need alias->d_lock here, because aliases with
1668 * d_parent == entry->d_parent are not subject to name or
1669 * parent changes, because the parent inode i_mutex is held.
1670 */
1671 if (alias->d_name.hash != hash)
1672 continue;
1673 if (alias->d_parent != entry->d_parent)
1674 continue;
1675 if (alias->d_name.len != len)
1676 continue;
1677 if (dentry_cmp(alias, name, len))
1678 continue;
1679 __dget(alias);
1680 return alias;
1681 }
1682
1683 __d_instantiate(entry, inode);
1684 return NULL;
1685}
1686
1687struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1688{
1689 struct dentry *result;
1690
1691 BUG_ON(!hlist_unhashed(&entry->d_alias));
1692
1693 if (inode)
1694 spin_lock(&inode->i_lock);
1695 result = __d_instantiate_unique(entry, inode);
1696 if (inode)
1697 spin_unlock(&inode->i_lock);
1698
1699 if (!result) {
1700 security_d_instantiate(entry, inode);
1701 return NULL;
1702 }
1703
1704 BUG_ON(!d_unhashed(result));
1705 iput(inode);
1706 return result;
1707}
1708
1709EXPORT_SYMBOL(d_instantiate_unique);
1710
1711/**
1712 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1713 * @entry: dentry to complete
1714 * @inode: inode to attach to this dentry
1715 *
1716 * Fill in inode information in the entry. If a directory alias is found, then
1717 * return an error (and drop inode). Together with d_materialise_unique() this
1718 * guarantees that a directory inode may never have more than one alias.
1719 */
1720int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1721{
1722 BUG_ON(!hlist_unhashed(&entry->d_alias));
1723
1724 spin_lock(&inode->i_lock);
1725 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1726 spin_unlock(&inode->i_lock);
1727 iput(inode);
1728 return -EBUSY;
1729 }
1730 __d_instantiate(entry, inode);
1731 spin_unlock(&inode->i_lock);
1732 security_d_instantiate(entry, inode);
1733
1734 return 0;
1735}
1736EXPORT_SYMBOL(d_instantiate_no_diralias);
1737
1738struct dentry *d_make_root(struct inode *root_inode)
1739{
1740 struct dentry *res = NULL;
1741
1742 if (root_inode) {
1743 static const struct qstr name = QSTR_INIT("/", 1);
1744
1745 res = __d_alloc(root_inode->i_sb, &name);
1746 if (res)
1747 d_instantiate(res, root_inode);
1748 else
1749 iput(root_inode);
1750 }
1751 return res;
1752}
1753EXPORT_SYMBOL(d_make_root);
1754
1755static struct dentry * __d_find_any_alias(struct inode *inode)
1756{
1757 struct dentry *alias;
1758
1759 if (hlist_empty(&inode->i_dentry))
1760 return NULL;
1761 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1762 __dget(alias);
1763 return alias;
1764}
1765
1766/**
1767 * d_find_any_alias - find any alias for a given inode
1768 * @inode: inode to find an alias for
1769 *
1770 * If any aliases exist for the given inode, take and return a
1771 * reference for one of them. If no aliases exist, return %NULL.
1772 */
1773struct dentry *d_find_any_alias(struct inode *inode)
1774{
1775 struct dentry *de;
1776
1777 spin_lock(&inode->i_lock);
1778 de = __d_find_any_alias(inode);
1779 spin_unlock(&inode->i_lock);
1780 return de;
1781}
1782EXPORT_SYMBOL(d_find_any_alias);
1783
1784/**
1785 * d_obtain_alias - find or allocate a dentry for a given inode
1786 * @inode: inode to allocate the dentry for
1787 *
1788 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1789 * similar open by handle operations. The returned dentry may be anonymous,
1790 * or may have a full name (if the inode was already in the cache).
1791 *
1792 * When called on a directory inode, we must ensure that the inode only ever
1793 * has one dentry. If a dentry is found, that is returned instead of
1794 * allocating a new one.
1795 *
1796 * On successful return, the reference to the inode has been transferred
1797 * to the dentry. In case of an error the reference on the inode is released.
1798 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1799 * be passed in and will be the error will be propagate to the return value,
1800 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1801 */
1802struct dentry *d_obtain_alias(struct inode *inode)
1803{
1804 static const struct qstr anonstring = QSTR_INIT("/", 1);
1805 struct dentry *tmp;
1806 struct dentry *res;
1807 unsigned add_flags;
1808
1809 if (!inode)
1810 return ERR_PTR(-ESTALE);
1811 if (IS_ERR(inode))
1812 return ERR_CAST(inode);
1813
1814 res = d_find_any_alias(inode);
1815 if (res)
1816 goto out_iput;
1817
1818 tmp = __d_alloc(inode->i_sb, &anonstring);
1819 if (!tmp) {
1820 res = ERR_PTR(-ENOMEM);
1821 goto out_iput;
1822 }
1823
1824 spin_lock(&inode->i_lock);
1825 res = __d_find_any_alias(inode);
1826 if (res) {
1827 spin_unlock(&inode->i_lock);
1828 dput(tmp);
1829 goto out_iput;
1830 }
1831
1832 /* attach a disconnected dentry */
1833 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1834
1835 spin_lock(&tmp->d_lock);
1836 tmp->d_inode = inode;
1837 tmp->d_flags |= add_flags;
1838 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1839 hlist_bl_lock(&tmp->d_sb->s_anon);
1840 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1841 hlist_bl_unlock(&tmp->d_sb->s_anon);
1842 spin_unlock(&tmp->d_lock);
1843 spin_unlock(&inode->i_lock);
1844 security_d_instantiate(tmp, inode);
1845
1846 return tmp;
1847
1848 out_iput:
1849 if (res && !IS_ERR(res))
1850 security_d_instantiate(res, inode);
1851 iput(inode);
1852 return res;
1853}
1854EXPORT_SYMBOL(d_obtain_alias);
1855
1856/**
1857 * d_add_ci - lookup or allocate new dentry with case-exact name
1858 * @inode: the inode case-insensitive lookup has found
1859 * @dentry: the negative dentry that was passed to the parent's lookup func
1860 * @name: the case-exact name to be associated with the returned dentry
1861 *
1862 * This is to avoid filling the dcache with case-insensitive names to the
1863 * same inode, only the actual correct case is stored in the dcache for
1864 * case-insensitive filesystems.
1865 *
1866 * For a case-insensitive lookup match and if the the case-exact dentry
1867 * already exists in in the dcache, use it and return it.
1868 *
1869 * If no entry exists with the exact case name, allocate new dentry with
1870 * the exact case, and return the spliced entry.
1871 */
1872struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1873 struct qstr *name)
1874{
1875 struct dentry *found;
1876 struct dentry *new;
1877
1878 /*
1879 * First check if a dentry matching the name already exists,
1880 * if not go ahead and create it now.
1881 */
1882 found = d_hash_and_lookup(dentry->d_parent, name);
1883 if (unlikely(IS_ERR(found)))
1884 goto err_out;
1885 if (!found) {
1886 new = d_alloc(dentry->d_parent, name);
1887 if (!new) {
1888 found = ERR_PTR(-ENOMEM);
1889 goto err_out;
1890 }
1891
1892 found = d_splice_alias(inode, new);
1893 if (found) {
1894 dput(new);
1895 return found;
1896 }
1897 return new;
1898 }
1899
1900 /*
1901 * If a matching dentry exists, and it's not negative use it.
1902 *
1903 * Decrement the reference count to balance the iget() done
1904 * earlier on.
1905 */
1906 if (found->d_inode) {
1907 if (unlikely(found->d_inode != inode)) {
1908 /* This can't happen because bad inodes are unhashed. */
1909 BUG_ON(!is_bad_inode(inode));
1910 BUG_ON(!is_bad_inode(found->d_inode));
1911 }
1912 iput(inode);
1913 return found;
1914 }
1915
1916 /*
1917 * Negative dentry: instantiate it unless the inode is a directory and
1918 * already has a dentry.
1919 */
1920 new = d_splice_alias(inode, found);
1921 if (new) {
1922 dput(found);
1923 found = new;
1924 }
1925 return found;
1926
1927err_out:
1928 iput(inode);
1929 return found;
1930}
1931EXPORT_SYMBOL(d_add_ci);
1932
1933/*
1934 * Do the slow-case of the dentry name compare.
1935 *
1936 * Unlike the dentry_cmp() function, we need to atomically
1937 * load the name and length information, so that the
1938 * filesystem can rely on them, and can use the 'name' and
1939 * 'len' information without worrying about walking off the
1940 * end of memory etc.
1941 *
1942 * Thus the read_seqcount_retry() and the "duplicate" info
1943 * in arguments (the low-level filesystem should not look
1944 * at the dentry inode or name contents directly, since
1945 * rename can change them while we're in RCU mode).
1946 */
1947enum slow_d_compare {
1948 D_COMP_OK,
1949 D_COMP_NOMATCH,
1950 D_COMP_SEQRETRY,
1951};
1952
1953static noinline enum slow_d_compare slow_dentry_cmp(
1954 const struct dentry *parent,
1955 struct dentry *dentry,
1956 unsigned int seq,
1957 const struct qstr *name)
1958{
1959 int tlen = dentry->d_name.len;
1960 const char *tname = dentry->d_name.name;
1961
1962 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1963 cpu_relax();
1964 return D_COMP_SEQRETRY;
1965 }
1966 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1967 return D_COMP_NOMATCH;
1968 return D_COMP_OK;
1969}
1970
1971/**
1972 * __d_lookup_rcu - search for a dentry (racy, store-free)
1973 * @parent: parent dentry
1974 * @name: qstr of name we wish to find
1975 * @seqp: returns d_seq value at the point where the dentry was found
1976 * Returns: dentry, or NULL
1977 *
1978 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1979 * resolution (store-free path walking) design described in
1980 * Documentation/filesystems/path-lookup.txt.
1981 *
1982 * This is not to be used outside core vfs.
1983 *
1984 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1985 * held, and rcu_read_lock held. The returned dentry must not be stored into
1986 * without taking d_lock and checking d_seq sequence count against @seq
1987 * returned here.
1988 *
1989 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1990 * function.
1991 *
1992 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1993 * the returned dentry, so long as its parent's seqlock is checked after the
1994 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1995 * is formed, giving integrity down the path walk.
1996 *
1997 * NOTE! The caller *has* to check the resulting dentry against the sequence
1998 * number we've returned before using any of the resulting dentry state!
1999 */
2000struct dentry *__d_lookup_rcu(const struct dentry *parent,
2001 const struct qstr *name,
2002 unsigned *seqp)
2003{
2004 u64 hashlen = name->hash_len;
2005 const unsigned char *str = name->name;
2006 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2007 struct hlist_bl_node *node;
2008 struct dentry *dentry;
2009
2010 /*
2011 * Note: There is significant duplication with __d_lookup_rcu which is
2012 * required to prevent single threaded performance regressions
2013 * especially on architectures where smp_rmb (in seqcounts) are costly.
2014 * Keep the two functions in sync.
2015 */
2016
2017 /*
2018 * The hash list is protected using RCU.
2019 *
2020 * Carefully use d_seq when comparing a candidate dentry, to avoid
2021 * races with d_move().
2022 *
2023 * It is possible that concurrent renames can mess up our list
2024 * walk here and result in missing our dentry, resulting in the
2025 * false-negative result. d_lookup() protects against concurrent
2026 * renames using rename_lock seqlock.
2027 *
2028 * See Documentation/filesystems/path-lookup.txt for more details.
2029 */
2030 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2031 unsigned seq;
2032
2033seqretry:
2034 /*
2035 * The dentry sequence count protects us from concurrent
2036 * renames, and thus protects parent and name fields.
2037 *
2038 * The caller must perform a seqcount check in order
2039 * to do anything useful with the returned dentry.
2040 *
2041 * NOTE! We do a "raw" seqcount_begin here. That means that
2042 * we don't wait for the sequence count to stabilize if it
2043 * is in the middle of a sequence change. If we do the slow
2044 * dentry compare, we will do seqretries until it is stable,
2045 * and if we end up with a successful lookup, we actually
2046 * want to exit RCU lookup anyway.
2047 */
2048 seq = raw_seqcount_begin(&dentry->d_seq);
2049 if (dentry->d_parent != parent)
2050 continue;
2051 if (d_unhashed(dentry))
2052 continue;
2053
2054 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2055 if (dentry->d_name.hash != hashlen_hash(hashlen))
2056 continue;
2057 *seqp = seq;
2058 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2059 case D_COMP_OK:
2060 return dentry;
2061 case D_COMP_NOMATCH:
2062 continue;
2063 default:
2064 goto seqretry;
2065 }
2066 }
2067
2068 if (dentry->d_name.hash_len != hashlen)
2069 continue;
2070 *seqp = seq;
2071 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2072 return dentry;
2073 }
2074 return NULL;
2075}
2076
2077/**
2078 * d_lookup - search for a dentry
2079 * @parent: parent dentry
2080 * @name: qstr of name we wish to find
2081 * Returns: dentry, or NULL
2082 *
2083 * d_lookup searches the children of the parent dentry for the name in
2084 * question. If the dentry is found its reference count is incremented and the
2085 * dentry is returned. The caller must use dput to free the entry when it has
2086 * finished using it. %NULL is returned if the dentry does not exist.
2087 */
2088struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2089{
2090 struct dentry *dentry;
2091 unsigned seq;
2092
2093 do {
2094 seq = read_seqbegin(&rename_lock);
2095 dentry = __d_lookup(parent, name);
2096 if (dentry)
2097 break;
2098 } while (read_seqretry(&rename_lock, seq));
2099 return dentry;
2100}
2101EXPORT_SYMBOL(d_lookup);
2102
2103/**
2104 * __d_lookup - search for a dentry (racy)
2105 * @parent: parent dentry
2106 * @name: qstr of name we wish to find
2107 * Returns: dentry, or NULL
2108 *
2109 * __d_lookup is like d_lookup, however it may (rarely) return a
2110 * false-negative result due to unrelated rename activity.
2111 *
2112 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2113 * however it must be used carefully, eg. with a following d_lookup in
2114 * the case of failure.
2115 *
2116 * __d_lookup callers must be commented.
2117 */
2118struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2119{
2120 unsigned int len = name->len;
2121 unsigned int hash = name->hash;
2122 const unsigned char *str = name->name;
2123 struct hlist_bl_head *b = d_hash(parent, hash);
2124 struct hlist_bl_node *node;
2125 struct dentry *found = NULL;
2126 struct dentry *dentry;
2127
2128 /*
2129 * Note: There is significant duplication with __d_lookup_rcu which is
2130 * required to prevent single threaded performance regressions
2131 * especially on architectures where smp_rmb (in seqcounts) are costly.
2132 * Keep the two functions in sync.
2133 */
2134
2135 /*
2136 * The hash list is protected using RCU.
2137 *
2138 * Take d_lock when comparing a candidate dentry, to avoid races
2139 * with d_move().
2140 *
2141 * It is possible that concurrent renames can mess up our list
2142 * walk here and result in missing our dentry, resulting in the
2143 * false-negative result. d_lookup() protects against concurrent
2144 * renames using rename_lock seqlock.
2145 *
2146 * See Documentation/filesystems/path-lookup.txt for more details.
2147 */
2148 rcu_read_lock();
2149
2150 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2151
2152 if (dentry->d_name.hash != hash)
2153 continue;
2154
2155 spin_lock(&dentry->d_lock);
2156 if (dentry->d_parent != parent)
2157 goto next;
2158 if (d_unhashed(dentry))
2159 goto next;
2160
2161 /*
2162 * It is safe to compare names since d_move() cannot
2163 * change the qstr (protected by d_lock).
2164 */
2165 if (parent->d_flags & DCACHE_OP_COMPARE) {
2166 int tlen = dentry->d_name.len;
2167 const char *tname = dentry->d_name.name;
2168 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2169 goto next;
2170 } else {
2171 if (dentry->d_name.len != len)
2172 goto next;
2173 if (dentry_cmp(dentry, str, len))
2174 goto next;
2175 }
2176
2177 dentry->d_lockref.count++;
2178 found = dentry;
2179 spin_unlock(&dentry->d_lock);
2180 break;
2181next:
2182 spin_unlock(&dentry->d_lock);
2183 }
2184 rcu_read_unlock();
2185
2186 return found;
2187}
2188
2189/**
2190 * d_hash_and_lookup - hash the qstr then search for a dentry
2191 * @dir: Directory to search in
2192 * @name: qstr of name we wish to find
2193 *
2194 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2195 */
2196struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2197{
2198 /*
2199 * Check for a fs-specific hash function. Note that we must
2200 * calculate the standard hash first, as the d_op->d_hash()
2201 * routine may choose to leave the hash value unchanged.
2202 */
2203 name->hash = full_name_hash(name->name, name->len);
2204 if (dir->d_flags & DCACHE_OP_HASH) {
2205 int err = dir->d_op->d_hash(dir, name);
2206 if (unlikely(err < 0))
2207 return ERR_PTR(err);
2208 }
2209 return d_lookup(dir, name);
2210}
2211EXPORT_SYMBOL(d_hash_and_lookup);
2212
2213/**
2214 * d_validate - verify dentry provided from insecure source (deprecated)
2215 * @dentry: The dentry alleged to be valid child of @dparent
2216 * @dparent: The parent dentry (known to be valid)
2217 *
2218 * An insecure source has sent us a dentry, here we verify it and dget() it.
2219 * This is used by ncpfs in its readdir implementation.
2220 * Zero is returned in the dentry is invalid.
2221 *
2222 * This function is slow for big directories, and deprecated, do not use it.
2223 */
2224int d_validate(struct dentry *dentry, struct dentry *dparent)
2225{
2226 struct dentry *child;
2227
2228 spin_lock(&dparent->d_lock);
2229 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2230 if (dentry == child) {
2231 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2232 __dget_dlock(dentry);
2233 spin_unlock(&dentry->d_lock);
2234 spin_unlock(&dparent->d_lock);
2235 return 1;
2236 }
2237 }
2238 spin_unlock(&dparent->d_lock);
2239
2240 return 0;
2241}
2242EXPORT_SYMBOL(d_validate);
2243
2244/*
2245 * When a file is deleted, we have two options:
2246 * - turn this dentry into a negative dentry
2247 * - unhash this dentry and free it.
2248 *
2249 * Usually, we want to just turn this into
2250 * a negative dentry, but if anybody else is
2251 * currently using the dentry or the inode
2252 * we can't do that and we fall back on removing
2253 * it from the hash queues and waiting for
2254 * it to be deleted later when it has no users
2255 */
2256
2257/**
2258 * d_delete - delete a dentry
2259 * @dentry: The dentry to delete
2260 *
2261 * Turn the dentry into a negative dentry if possible, otherwise
2262 * remove it from the hash queues so it can be deleted later
2263 */
2264
2265void d_delete(struct dentry * dentry)
2266{
2267 struct inode *inode;
2268 int isdir = 0;
2269 /*
2270 * Are we the only user?
2271 */
2272again:
2273 spin_lock(&dentry->d_lock);
2274 inode = dentry->d_inode;
2275 isdir = S_ISDIR(inode->i_mode);
2276 if (dentry->d_lockref.count == 1) {
2277 if (!spin_trylock(&inode->i_lock)) {
2278 spin_unlock(&dentry->d_lock);
2279 cpu_relax();
2280 goto again;
2281 }
2282 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2283 dentry_unlink_inode(dentry);
2284 fsnotify_nameremove(dentry, isdir);
2285 return;
2286 }
2287
2288 if (!d_unhashed(dentry))
2289 __d_drop(dentry);
2290
2291 spin_unlock(&dentry->d_lock);
2292
2293 fsnotify_nameremove(dentry, isdir);
2294}
2295EXPORT_SYMBOL(d_delete);
2296
2297static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2298{
2299 BUG_ON(!d_unhashed(entry));
2300 hlist_bl_lock(b);
2301 entry->d_flags |= DCACHE_RCUACCESS;
2302 hlist_bl_add_head_rcu(&entry->d_hash, b);
2303 hlist_bl_unlock(b);
2304}
2305
2306static void _d_rehash(struct dentry * entry)
2307{
2308 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2309}
2310
2311/**
2312 * d_rehash - add an entry back to the hash
2313 * @entry: dentry to add to the hash
2314 *
2315 * Adds a dentry to the hash according to its name.
2316 */
2317
2318void d_rehash(struct dentry * entry)
2319{
2320 spin_lock(&entry->d_lock);
2321 _d_rehash(entry);
2322 spin_unlock(&entry->d_lock);
2323}
2324EXPORT_SYMBOL(d_rehash);
2325
2326/**
2327 * dentry_update_name_case - update case insensitive dentry with a new name
2328 * @dentry: dentry to be updated
2329 * @name: new name
2330 *
2331 * Update a case insensitive dentry with new case of name.
2332 *
2333 * dentry must have been returned by d_lookup with name @name. Old and new
2334 * name lengths must match (ie. no d_compare which allows mismatched name
2335 * lengths).
2336 *
2337 * Parent inode i_mutex must be held over d_lookup and into this call (to
2338 * keep renames and concurrent inserts, and readdir(2) away).
2339 */
2340void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2341{
2342 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2343 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2344
2345 spin_lock(&dentry->d_lock);
2346 write_seqcount_begin(&dentry->d_seq);
2347 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2348 write_seqcount_end(&dentry->d_seq);
2349 spin_unlock(&dentry->d_lock);
2350}
2351EXPORT_SYMBOL(dentry_update_name_case);
2352
2353static void switch_names(struct dentry *dentry, struct dentry *target)
2354{
2355 if (dname_external(target)) {
2356 if (dname_external(dentry)) {
2357 /*
2358 * Both external: swap the pointers
2359 */
2360 swap(target->d_name.name, dentry->d_name.name);
2361 } else {
2362 /*
2363 * dentry:internal, target:external. Steal target's
2364 * storage and make target internal.
2365 */
2366 memcpy(target->d_iname, dentry->d_name.name,
2367 dentry->d_name.len + 1);
2368 dentry->d_name.name = target->d_name.name;
2369 target->d_name.name = target->d_iname;
2370 }
2371 } else {
2372 if (dname_external(dentry)) {
2373 /*
2374 * dentry:external, target:internal. Give dentry's
2375 * storage to target and make dentry internal
2376 */
2377 memcpy(dentry->d_iname, target->d_name.name,
2378 target->d_name.len + 1);
2379 target->d_name.name = dentry->d_name.name;
2380 dentry->d_name.name = dentry->d_iname;
2381 } else {
2382 /*
2383 * Both are internal.
2384 */
2385 unsigned int i;
2386 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2387 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2388 swap(((long *) &dentry->d_iname)[i],
2389 ((long *) &target->d_iname)[i]);
2390 }
2391 }
2392 }
2393 swap(dentry->d_name.len, target->d_name.len);
2394}
2395
2396static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2397{
2398 /*
2399 * XXXX: do we really need to take target->d_lock?
2400 */
2401 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2402 spin_lock(&target->d_parent->d_lock);
2403 else {
2404 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2405 spin_lock(&dentry->d_parent->d_lock);
2406 spin_lock_nested(&target->d_parent->d_lock,
2407 DENTRY_D_LOCK_NESTED);
2408 } else {
2409 spin_lock(&target->d_parent->d_lock);
2410 spin_lock_nested(&dentry->d_parent->d_lock,
2411 DENTRY_D_LOCK_NESTED);
2412 }
2413 }
2414 if (target < dentry) {
2415 spin_lock_nested(&target->d_lock, 2);
2416 spin_lock_nested(&dentry->d_lock, 3);
2417 } else {
2418 spin_lock_nested(&dentry->d_lock, 2);
2419 spin_lock_nested(&target->d_lock, 3);
2420 }
2421}
2422
2423static void dentry_unlock_parents_for_move(struct dentry *dentry,
2424 struct dentry *target)
2425{
2426 if (target->d_parent != dentry->d_parent)
2427 spin_unlock(&dentry->d_parent->d_lock);
2428 if (target->d_parent != target)
2429 spin_unlock(&target->d_parent->d_lock);
2430}
2431
2432/*
2433 * When switching names, the actual string doesn't strictly have to
2434 * be preserved in the target - because we're dropping the target
2435 * anyway. As such, we can just do a simple memcpy() to copy over
2436 * the new name before we switch.
2437 *
2438 * Note that we have to be a lot more careful about getting the hash
2439 * switched - we have to switch the hash value properly even if it
2440 * then no longer matches the actual (corrupted) string of the target.
2441 * The hash value has to match the hash queue that the dentry is on..
2442 */
2443/*
2444 * __d_move - move a dentry
2445 * @dentry: entry to move
2446 * @target: new dentry
2447 * @exchange: exchange the two dentries
2448 *
2449 * Update the dcache to reflect the move of a file name. Negative
2450 * dcache entries should not be moved in this way. Caller must hold
2451 * rename_lock, the i_mutex of the source and target directories,
2452 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2453 */
2454static void __d_move(struct dentry *dentry, struct dentry *target,
2455 bool exchange)
2456{
2457 if (!dentry->d_inode)
2458 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2459
2460 BUG_ON(d_ancestor(dentry, target));
2461 BUG_ON(d_ancestor(target, dentry));
2462
2463 dentry_lock_for_move(dentry, target);
2464
2465 write_seqcount_begin(&dentry->d_seq);
2466 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2467
2468 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2469
2470 /*
2471 * Move the dentry to the target hash queue. Don't bother checking
2472 * for the same hash queue because of how unlikely it is.
2473 */
2474 __d_drop(dentry);
2475 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2476
2477 /*
2478 * Unhash the target (d_delete() is not usable here). If exchanging
2479 * the two dentries, then rehash onto the other's hash queue.
2480 */
2481 __d_drop(target);
2482 if (exchange) {
2483 __d_rehash(target,
2484 d_hash(dentry->d_parent, dentry->d_name.hash));
2485 }
2486
2487 list_del(&dentry->d_u.d_child);
2488 list_del(&target->d_u.d_child);
2489
2490 /* Switch the names.. */
2491 switch_names(dentry, target);
2492 swap(dentry->d_name.hash, target->d_name.hash);
2493
2494 /* ... and switch the parents */
2495 if (IS_ROOT(dentry)) {
2496 dentry->d_parent = target->d_parent;
2497 target->d_parent = target;
2498 INIT_LIST_HEAD(&target->d_u.d_child);
2499 } else {
2500 swap(dentry->d_parent, target->d_parent);
2501
2502 /* And add them back to the (new) parent lists */
2503 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2504 }
2505
2506 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2507
2508 write_seqcount_end(&target->d_seq);
2509 write_seqcount_end(&dentry->d_seq);
2510
2511 dentry_unlock_parents_for_move(dentry, target);
2512 if (exchange)
2513 fsnotify_d_move(target);
2514 spin_unlock(&target->d_lock);
2515 fsnotify_d_move(dentry);
2516 spin_unlock(&dentry->d_lock);
2517}
2518
2519/*
2520 * d_move - move a dentry
2521 * @dentry: entry to move
2522 * @target: new dentry
2523 *
2524 * Update the dcache to reflect the move of a file name. Negative
2525 * dcache entries should not be moved in this way. See the locking
2526 * requirements for __d_move.
2527 */
2528void d_move(struct dentry *dentry, struct dentry *target)
2529{
2530 write_seqlock(&rename_lock);
2531 __d_move(dentry, target, false);
2532 write_sequnlock(&rename_lock);
2533}
2534EXPORT_SYMBOL(d_move);
2535
2536/*
2537 * d_exchange - exchange two dentries
2538 * @dentry1: first dentry
2539 * @dentry2: second dentry
2540 */
2541void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2542{
2543 write_seqlock(&rename_lock);
2544
2545 WARN_ON(!dentry1->d_inode);
2546 WARN_ON(!dentry2->d_inode);
2547 WARN_ON(IS_ROOT(dentry1));
2548 WARN_ON(IS_ROOT(dentry2));
2549
2550 __d_move(dentry1, dentry2, true);
2551
2552 write_sequnlock(&rename_lock);
2553}
2554
2555/**
2556 * d_ancestor - search for an ancestor
2557 * @p1: ancestor dentry
2558 * @p2: child dentry
2559 *
2560 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2561 * an ancestor of p2, else NULL.
2562 */
2563struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2564{
2565 struct dentry *p;
2566
2567 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2568 if (p->d_parent == p1)
2569 return p;
2570 }
2571 return NULL;
2572}
2573
2574/*
2575 * This helper attempts to cope with remotely renamed directories
2576 *
2577 * It assumes that the caller is already holding
2578 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2579 *
2580 * Note: If ever the locking in lock_rename() changes, then please
2581 * remember to update this too...
2582 */
2583static struct dentry *__d_unalias(struct inode *inode,
2584 struct dentry *dentry, struct dentry *alias)
2585{
2586 struct mutex *m1 = NULL, *m2 = NULL;
2587 struct dentry *ret = ERR_PTR(-EBUSY);
2588
2589 /* If alias and dentry share a parent, then no extra locks required */
2590 if (alias->d_parent == dentry->d_parent)
2591 goto out_unalias;
2592
2593 /* See lock_rename() */
2594 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2595 goto out_err;
2596 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2597 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2598 goto out_err;
2599 m2 = &alias->d_parent->d_inode->i_mutex;
2600out_unalias:
2601 if (likely(!d_mountpoint(alias))) {
2602 __d_move(alias, dentry, false);
2603 ret = alias;
2604 }
2605out_err:
2606 spin_unlock(&inode->i_lock);
2607 if (m2)
2608 mutex_unlock(m2);
2609 if (m1)
2610 mutex_unlock(m1);
2611 return ret;
2612}
2613
2614/*
2615 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2616 * named dentry in place of the dentry to be replaced.
2617 * returns with anon->d_lock held!
2618 */
2619static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2620{
2621 struct dentry *dparent;
2622
2623 dentry_lock_for_move(anon, dentry);
2624
2625 write_seqcount_begin(&dentry->d_seq);
2626 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2627
2628 dparent = dentry->d_parent;
2629
2630 switch_names(dentry, anon);
2631 swap(dentry->d_name.hash, anon->d_name.hash);
2632
2633 dentry->d_parent = dentry;
2634 list_del_init(&dentry->d_u.d_child);
2635 anon->d_parent = dparent;
2636 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2637
2638 write_seqcount_end(&dentry->d_seq);
2639 write_seqcount_end(&anon->d_seq);
2640
2641 dentry_unlock_parents_for_move(anon, dentry);
2642 spin_unlock(&dentry->d_lock);
2643
2644 /* anon->d_lock still locked, returns locked */
2645}
2646
2647/**
2648 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2649 * @inode: the inode which may have a disconnected dentry
2650 * @dentry: a negative dentry which we want to point to the inode.
2651 *
2652 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
2653 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
2654 * and return it, else simply d_add the inode to the dentry and return NULL.
2655 *
2656 * This is needed in the lookup routine of any filesystem that is exportable
2657 * (via knfsd) so that we can build dcache paths to directories effectively.
2658 *
2659 * If a dentry was found and moved, then it is returned. Otherwise NULL
2660 * is returned. This matches the expected return value of ->lookup.
2661 *
2662 * Cluster filesystems may call this function with a negative, hashed dentry.
2663 * In that case, we know that the inode will be a regular file, and also this
2664 * will only occur during atomic_open. So we need to check for the dentry
2665 * being already hashed only in the final case.
2666 */
2667struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2668{
2669 struct dentry *new = NULL;
2670
2671 if (IS_ERR(inode))
2672 return ERR_CAST(inode);
2673
2674 if (inode && S_ISDIR(inode->i_mode)) {
2675 spin_lock(&inode->i_lock);
2676 new = __d_find_alias(inode, 1);
2677 if (new) {
2678 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
2679 spin_unlock(&inode->i_lock);
2680 security_d_instantiate(new, inode);
2681 d_move(new, dentry);
2682 iput(inode);
2683 } else {
2684 /* already taking inode->i_lock, so d_add() by hand */
2685 __d_instantiate(dentry, inode);
2686 spin_unlock(&inode->i_lock);
2687 security_d_instantiate(dentry, inode);
2688 d_rehash(dentry);
2689 }
2690 } else {
2691 d_instantiate(dentry, inode);
2692 if (d_unhashed(dentry))
2693 d_rehash(dentry);
2694 }
2695 return new;
2696}
2697EXPORT_SYMBOL(d_splice_alias);
2698
2699/**
2700 * d_materialise_unique - introduce an inode into the tree
2701 * @dentry: candidate dentry
2702 * @inode: inode to bind to the dentry, to which aliases may be attached
2703 *
2704 * Introduces an dentry into the tree, substituting an extant disconnected
2705 * root directory alias in its place if there is one. Caller must hold the
2706 * i_mutex of the parent directory.
2707 */
2708struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2709{
2710 struct dentry *actual;
2711
2712 BUG_ON(!d_unhashed(dentry));
2713
2714 if (!inode) {
2715 actual = dentry;
2716 __d_instantiate(dentry, NULL);
2717 d_rehash(actual);
2718 goto out_nolock;
2719 }
2720
2721 spin_lock(&inode->i_lock);
2722
2723 if (S_ISDIR(inode->i_mode)) {
2724 struct dentry *alias;
2725
2726 /* Does an aliased dentry already exist? */
2727 alias = __d_find_alias(inode, 0);
2728 if (alias) {
2729 actual = alias;
2730 write_seqlock(&rename_lock);
2731
2732 if (d_ancestor(alias, dentry)) {
2733 /* Check for loops */
2734 actual = ERR_PTR(-ELOOP);
2735 spin_unlock(&inode->i_lock);
2736 } else if (IS_ROOT(alias)) {
2737 /* Is this an anonymous mountpoint that we
2738 * could splice into our tree? */
2739 __d_materialise_dentry(dentry, alias);
2740 write_sequnlock(&rename_lock);
2741 __d_drop(alias);
2742 goto found;
2743 } else {
2744 /* Nope, but we must(!) avoid directory
2745 * aliasing. This drops inode->i_lock */
2746 actual = __d_unalias(inode, dentry, alias);
2747 }
2748 write_sequnlock(&rename_lock);
2749 if (IS_ERR(actual)) {
2750 if (PTR_ERR(actual) == -ELOOP)
2751 pr_warn_ratelimited(
2752 "VFS: Lookup of '%s' in %s %s"
2753 " would have caused loop\n",
2754 dentry->d_name.name,
2755 inode->i_sb->s_type->name,
2756 inode->i_sb->s_id);
2757 dput(alias);
2758 }
2759 goto out_nolock;
2760 }
2761 }
2762
2763 /* Add a unique reference */
2764 actual = __d_instantiate_unique(dentry, inode);
2765 if (!actual)
2766 actual = dentry;
2767 else
2768 BUG_ON(!d_unhashed(actual));
2769
2770 spin_lock(&actual->d_lock);
2771found:
2772 _d_rehash(actual);
2773 spin_unlock(&actual->d_lock);
2774 spin_unlock(&inode->i_lock);
2775out_nolock:
2776 if (actual == dentry) {
2777 security_d_instantiate(dentry, inode);
2778 return NULL;
2779 }
2780
2781 iput(inode);
2782 return actual;
2783}
2784EXPORT_SYMBOL_GPL(d_materialise_unique);
2785
2786static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2787{
2788 *buflen -= namelen;
2789 if (*buflen < 0)
2790 return -ENAMETOOLONG;
2791 *buffer -= namelen;
2792 memcpy(*buffer, str, namelen);
2793 return 0;
2794}
2795
2796/**
2797 * prepend_name - prepend a pathname in front of current buffer pointer
2798 * @buffer: buffer pointer
2799 * @buflen: allocated length of the buffer
2800 * @name: name string and length qstr structure
2801 *
2802 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2803 * make sure that either the old or the new name pointer and length are
2804 * fetched. However, there may be mismatch between length and pointer.
2805 * The length cannot be trusted, we need to copy it byte-by-byte until
2806 * the length is reached or a null byte is found. It also prepends "/" at
2807 * the beginning of the name. The sequence number check at the caller will
2808 * retry it again when a d_move() does happen. So any garbage in the buffer
2809 * due to mismatched pointer and length will be discarded.
2810 */
2811static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2812{
2813 const char *dname = ACCESS_ONCE(name->name);
2814 u32 dlen = ACCESS_ONCE(name->len);
2815 char *p;
2816
2817 *buflen -= dlen + 1;
2818 if (*buflen < 0)
2819 return -ENAMETOOLONG;
2820 p = *buffer -= dlen + 1;
2821 *p++ = '/';
2822 while (dlen--) {
2823 char c = *dname++;
2824 if (!c)
2825 break;
2826 *p++ = c;
2827 }
2828 return 0;
2829}
2830
2831/**
2832 * prepend_path - Prepend path string to a buffer
2833 * @path: the dentry/vfsmount to report
2834 * @root: root vfsmnt/dentry
2835 * @buffer: pointer to the end of the buffer
2836 * @buflen: pointer to buffer length
2837 *
2838 * The function will first try to write out the pathname without taking any
2839 * lock other than the RCU read lock to make sure that dentries won't go away.
2840 * It only checks the sequence number of the global rename_lock as any change
2841 * in the dentry's d_seq will be preceded by changes in the rename_lock
2842 * sequence number. If the sequence number had been changed, it will restart
2843 * the whole pathname back-tracing sequence again by taking the rename_lock.
2844 * In this case, there is no need to take the RCU read lock as the recursive
2845 * parent pointer references will keep the dentry chain alive as long as no
2846 * rename operation is performed.
2847 */
2848static int prepend_path(const struct path *path,
2849 const struct path *root,
2850 char **buffer, int *buflen)
2851{
2852 struct dentry *dentry;
2853 struct vfsmount *vfsmnt;
2854 struct mount *mnt;
2855 int error = 0;
2856 unsigned seq, m_seq = 0;
2857 char *bptr;
2858 int blen;
2859
2860 rcu_read_lock();
2861restart_mnt:
2862 read_seqbegin_or_lock(&mount_lock, &m_seq);
2863 seq = 0;
2864 rcu_read_lock();
2865restart:
2866 bptr = *buffer;
2867 blen = *buflen;
2868 error = 0;
2869 dentry = path->dentry;
2870 vfsmnt = path->mnt;
2871 mnt = real_mount(vfsmnt);
2872 read_seqbegin_or_lock(&rename_lock, &seq);
2873 while (dentry != root->dentry || vfsmnt != root->mnt) {
2874 struct dentry * parent;
2875
2876 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2877 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2878 /* Global root? */
2879 if (mnt != parent) {
2880 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2881 mnt = parent;
2882 vfsmnt = &mnt->mnt;
2883 continue;
2884 }
2885 /*
2886 * Filesystems needing to implement special "root names"
2887 * should do so with ->d_dname()
2888 */
2889 if (IS_ROOT(dentry) &&
2890 (dentry->d_name.len != 1 ||
2891 dentry->d_name.name[0] != '/')) {
2892 WARN(1, "Root dentry has weird name <%.*s>\n",
2893 (int) dentry->d_name.len,
2894 dentry->d_name.name);
2895 }
2896 if (!error)
2897 error = is_mounted(vfsmnt) ? 1 : 2;
2898 break;
2899 }
2900 parent = dentry->d_parent;
2901 prefetch(parent);
2902 error = prepend_name(&bptr, &blen, &dentry->d_name);
2903 if (error)
2904 break;
2905
2906 dentry = parent;
2907 }
2908 if (!(seq & 1))
2909 rcu_read_unlock();
2910 if (need_seqretry(&rename_lock, seq)) {
2911 seq = 1;
2912 goto restart;
2913 }
2914 done_seqretry(&rename_lock, seq);
2915
2916 if (!(m_seq & 1))
2917 rcu_read_unlock();
2918 if (need_seqretry(&mount_lock, m_seq)) {
2919 m_seq = 1;
2920 goto restart_mnt;
2921 }
2922 done_seqretry(&mount_lock, m_seq);
2923
2924 if (error >= 0 && bptr == *buffer) {
2925 if (--blen < 0)
2926 error = -ENAMETOOLONG;
2927 else
2928 *--bptr = '/';
2929 }
2930 *buffer = bptr;
2931 *buflen = blen;
2932 return error;
2933}
2934
2935/**
2936 * __d_path - return the path of a dentry
2937 * @path: the dentry/vfsmount to report
2938 * @root: root vfsmnt/dentry
2939 * @buf: buffer to return value in
2940 * @buflen: buffer length
2941 *
2942 * Convert a dentry into an ASCII path name.
2943 *
2944 * Returns a pointer into the buffer or an error code if the
2945 * path was too long.
2946 *
2947 * "buflen" should be positive.
2948 *
2949 * If the path is not reachable from the supplied root, return %NULL.
2950 */
2951char *__d_path(const struct path *path,
2952 const struct path *root,
2953 char *buf, int buflen)
2954{
2955 char *res = buf + buflen;
2956 int error;
2957
2958 prepend(&res, &buflen, "\0", 1);
2959 error = prepend_path(path, root, &res, &buflen);
2960
2961 if (error < 0)
2962 return ERR_PTR(error);
2963 if (error > 0)
2964 return NULL;
2965 return res;
2966}
2967
2968char *d_absolute_path(const struct path *path,
2969 char *buf, int buflen)
2970{
2971 struct path root = {};
2972 char *res = buf + buflen;
2973 int error;
2974
2975 prepend(&res, &buflen, "\0", 1);
2976 error = prepend_path(path, &root, &res, &buflen);
2977
2978 if (error > 1)
2979 error = -EINVAL;
2980 if (error < 0)
2981 return ERR_PTR(error);
2982 return res;
2983}
2984
2985/*
2986 * same as __d_path but appends "(deleted)" for unlinked files.
2987 */
2988static int path_with_deleted(const struct path *path,
2989 const struct path *root,
2990 char **buf, int *buflen)
2991{
2992 prepend(buf, buflen, "\0", 1);
2993 if (d_unlinked(path->dentry)) {
2994 int error = prepend(buf, buflen, " (deleted)", 10);
2995 if (error)
2996 return error;
2997 }
2998
2999 return prepend_path(path, root, buf, buflen);
3000}
3001
3002static int prepend_unreachable(char **buffer, int *buflen)
3003{
3004 return prepend(buffer, buflen, "(unreachable)", 13);
3005}
3006
3007static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3008{
3009 unsigned seq;
3010
3011 do {
3012 seq = read_seqcount_begin(&fs->seq);
3013 *root = fs->root;
3014 } while (read_seqcount_retry(&fs->seq, seq));
3015}
3016
3017/**
3018 * d_path - return the path of a dentry
3019 * @path: path to report
3020 * @buf: buffer to return value in
3021 * @buflen: buffer length
3022 *
3023 * Convert a dentry into an ASCII path name. If the entry has been deleted
3024 * the string " (deleted)" is appended. Note that this is ambiguous.
3025 *
3026 * Returns a pointer into the buffer or an error code if the path was
3027 * too long. Note: Callers should use the returned pointer, not the passed
3028 * in buffer, to use the name! The implementation often starts at an offset
3029 * into the buffer, and may leave 0 bytes at the start.
3030 *
3031 * "buflen" should be positive.
3032 */
3033char *d_path(const struct path *path, char *buf, int buflen)
3034{
3035 char *res = buf + buflen;
3036 struct path root;
3037 int error;
3038
3039 /*
3040 * We have various synthetic filesystems that never get mounted. On
3041 * these filesystems dentries are never used for lookup purposes, and
3042 * thus don't need to be hashed. They also don't need a name until a
3043 * user wants to identify the object in /proc/pid/fd/. The little hack
3044 * below allows us to generate a name for these objects on demand:
3045 *
3046 * Some pseudo inodes are mountable. When they are mounted
3047 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3048 * and instead have d_path return the mounted path.
3049 */
3050 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3051 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3052 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3053
3054 rcu_read_lock();
3055 get_fs_root_rcu(current->fs, &root);
3056 error = path_with_deleted(path, &root, &res, &buflen);
3057 rcu_read_unlock();
3058
3059 if (error < 0)
3060 res = ERR_PTR(error);
3061 return res;
3062}
3063EXPORT_SYMBOL(d_path);
3064
3065/*
3066 * Helper function for dentry_operations.d_dname() members
3067 */
3068char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3069 const char *fmt, ...)
3070{
3071 va_list args;
3072 char temp[64];
3073 int sz;
3074
3075 va_start(args, fmt);
3076 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3077 va_end(args);
3078
3079 if (sz > sizeof(temp) || sz > buflen)
3080 return ERR_PTR(-ENAMETOOLONG);
3081
3082 buffer += buflen - sz;
3083 return memcpy(buffer, temp, sz);
3084}
3085
3086char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3087{
3088 char *end = buffer + buflen;
3089 /* these dentries are never renamed, so d_lock is not needed */
3090 if (prepend(&end, &buflen, " (deleted)", 11) ||
3091 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3092 prepend(&end, &buflen, "/", 1))
3093 end = ERR_PTR(-ENAMETOOLONG);
3094 return end;
3095}
3096EXPORT_SYMBOL(simple_dname);
3097
3098/*
3099 * Write full pathname from the root of the filesystem into the buffer.
3100 */
3101static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3102{
3103 struct dentry *dentry;
3104 char *end, *retval;
3105 int len, seq = 0;
3106 int error = 0;
3107
3108 if (buflen < 2)
3109 goto Elong;
3110
3111 rcu_read_lock();
3112restart:
3113 dentry = d;
3114 end = buf + buflen;
3115 len = buflen;
3116 prepend(&end, &len, "\0", 1);
3117 /* Get '/' right */
3118 retval = end-1;
3119 *retval = '/';
3120 read_seqbegin_or_lock(&rename_lock, &seq);
3121 while (!IS_ROOT(dentry)) {
3122 struct dentry *parent = dentry->d_parent;
3123
3124 prefetch(parent);
3125 error = prepend_name(&end, &len, &dentry->d_name);
3126 if (error)
3127 break;
3128
3129 retval = end;
3130 dentry = parent;
3131 }
3132 if (!(seq & 1))
3133 rcu_read_unlock();
3134 if (need_seqretry(&rename_lock, seq)) {
3135 seq = 1;
3136 goto restart;
3137 }
3138 done_seqretry(&rename_lock, seq);
3139 if (error)
3140 goto Elong;
3141 return retval;
3142Elong:
3143 return ERR_PTR(-ENAMETOOLONG);
3144}
3145
3146char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3147{
3148 return __dentry_path(dentry, buf, buflen);
3149}
3150EXPORT_SYMBOL(dentry_path_raw);
3151
3152char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3153{
3154 char *p = NULL;
3155 char *retval;
3156
3157 if (d_unlinked(dentry)) {
3158 p = buf + buflen;
3159 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3160 goto Elong;
3161 buflen++;
3162 }
3163 retval = __dentry_path(dentry, buf, buflen);
3164 if (!IS_ERR(retval) && p)
3165 *p = '/'; /* restore '/' overriden with '\0' */
3166 return retval;
3167Elong:
3168 return ERR_PTR(-ENAMETOOLONG);
3169}
3170
3171static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3172 struct path *pwd)
3173{
3174 unsigned seq;
3175
3176 do {
3177 seq = read_seqcount_begin(&fs->seq);
3178 *root = fs->root;
3179 *pwd = fs->pwd;
3180 } while (read_seqcount_retry(&fs->seq, seq));
3181}
3182
3183/*
3184 * NOTE! The user-level library version returns a
3185 * character pointer. The kernel system call just
3186 * returns the length of the buffer filled (which
3187 * includes the ending '\0' character), or a negative
3188 * error value. So libc would do something like
3189 *
3190 * char *getcwd(char * buf, size_t size)
3191 * {
3192 * int retval;
3193 *
3194 * retval = sys_getcwd(buf, size);
3195 * if (retval >= 0)
3196 * return buf;
3197 * errno = -retval;
3198 * return NULL;
3199 * }
3200 */
3201SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3202{
3203 int error;
3204 struct path pwd, root;
3205 char *page = __getname();
3206
3207 if (!page)
3208 return -ENOMEM;
3209
3210 rcu_read_lock();
3211 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3212
3213 error = -ENOENT;
3214 if (!d_unlinked(pwd.dentry)) {
3215 unsigned long len;
3216 char *cwd = page + PATH_MAX;
3217 int buflen = PATH_MAX;
3218
3219 prepend(&cwd, &buflen, "\0", 1);
3220 error = prepend_path(&pwd, &root, &cwd, &buflen);
3221 rcu_read_unlock();
3222
3223 if (error < 0)
3224 goto out;
3225
3226 /* Unreachable from current root */
3227 if (error > 0) {
3228 error = prepend_unreachable(&cwd, &buflen);
3229 if (error)
3230 goto out;
3231 }
3232
3233 error = -ERANGE;
3234 len = PATH_MAX + page - cwd;
3235 if (len <= size) {
3236 error = len;
3237 if (copy_to_user(buf, cwd, len))
3238 error = -EFAULT;
3239 }
3240 } else {
3241 rcu_read_unlock();
3242 }
3243
3244out:
3245 __putname(page);
3246 return error;
3247}
3248
3249/*
3250 * Test whether new_dentry is a subdirectory of old_dentry.
3251 *
3252 * Trivially implemented using the dcache structure
3253 */
3254
3255/**
3256 * is_subdir - is new dentry a subdirectory of old_dentry
3257 * @new_dentry: new dentry
3258 * @old_dentry: old dentry
3259 *
3260 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3261 * Returns 0 otherwise.
3262 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3263 */
3264
3265int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3266{
3267 int result;
3268 unsigned seq;
3269
3270 if (new_dentry == old_dentry)
3271 return 1;
3272
3273 do {
3274 /* for restarting inner loop in case of seq retry */
3275 seq = read_seqbegin(&rename_lock);
3276 /*
3277 * Need rcu_readlock to protect against the d_parent trashing
3278 * due to d_move
3279 */
3280 rcu_read_lock();
3281 if (d_ancestor(old_dentry, new_dentry))
3282 result = 1;
3283 else
3284 result = 0;
3285 rcu_read_unlock();
3286 } while (read_seqretry(&rename_lock, seq));
3287
3288 return result;
3289}
3290
3291static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3292{
3293 struct dentry *root = data;
3294 if (dentry != root) {
3295 if (d_unhashed(dentry) || !dentry->d_inode)
3296 return D_WALK_SKIP;
3297
3298 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3299 dentry->d_flags |= DCACHE_GENOCIDE;
3300 dentry->d_lockref.count--;
3301 }
3302 }
3303 return D_WALK_CONTINUE;
3304}
3305
3306void d_genocide(struct dentry *parent)
3307{
3308 d_walk(parent, parent, d_genocide_kill, NULL);
3309}
3310
3311void d_tmpfile(struct dentry *dentry, struct inode *inode)
3312{
3313 inode_dec_link_count(inode);
3314 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3315 !hlist_unhashed(&dentry->d_alias) ||
3316 !d_unlinked(dentry));
3317 spin_lock(&dentry->d_parent->d_lock);
3318 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3319 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3320 (unsigned long long)inode->i_ino);
3321 spin_unlock(&dentry->d_lock);
3322 spin_unlock(&dentry->d_parent->d_lock);
3323 d_instantiate(dentry, inode);
3324}
3325EXPORT_SYMBOL(d_tmpfile);
3326
3327static __initdata unsigned long dhash_entries;
3328static int __init set_dhash_entries(char *str)
3329{
3330 if (!str)
3331 return 0;
3332 dhash_entries = simple_strtoul(str, &str, 0);
3333 return 1;
3334}
3335__setup("dhash_entries=", set_dhash_entries);
3336
3337static void __init dcache_init_early(void)
3338{
3339 unsigned int loop;
3340
3341 /* If hashes are distributed across NUMA nodes, defer
3342 * hash allocation until vmalloc space is available.
3343 */
3344 if (hashdist)
3345 return;
3346
3347 dentry_hashtable =
3348 alloc_large_system_hash("Dentry cache",
3349 sizeof(struct hlist_bl_head),
3350 dhash_entries,
3351 13,
3352 HASH_EARLY,
3353 &d_hash_shift,
3354 &d_hash_mask,
3355 0,
3356 0);
3357
3358 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3359 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3360}
3361
3362static void __init dcache_init(void)
3363{
3364 unsigned int loop;
3365
3366 /*
3367 * A constructor could be added for stable state like the lists,
3368 * but it is probably not worth it because of the cache nature
3369 * of the dcache.
3370 */
3371 dentry_cache = KMEM_CACHE(dentry,
3372 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3373
3374 /* Hash may have been set up in dcache_init_early */
3375 if (!hashdist)
3376 return;
3377
3378 dentry_hashtable =
3379 alloc_large_system_hash("Dentry cache",
3380 sizeof(struct hlist_bl_head),
3381 dhash_entries,
3382 13,
3383 0,
3384 &d_hash_shift,
3385 &d_hash_mask,
3386 0,
3387 0);
3388
3389 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3390 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3391}
3392
3393/* SLAB cache for __getname() consumers */
3394struct kmem_cache *names_cachep __read_mostly;
3395EXPORT_SYMBOL(names_cachep);
3396
3397EXPORT_SYMBOL(d_genocide);
3398
3399void __init vfs_caches_init_early(void)
3400{
3401 dcache_init_early();
3402 inode_init_early();
3403}
3404
3405void __init vfs_caches_init(unsigned long mempages)
3406{
3407 unsigned long reserve;
3408
3409 /* Base hash sizes on available memory, with a reserve equal to
3410 150% of current kernel size */
3411
3412 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3413 mempages -= reserve;
3414
3415 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3416 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3417
3418 dcache_init();
3419 inode_init();
3420 files_init(mempages);
3421 mnt_init();
3422 bdev_cache_init();
3423 chrdev_init();
3424}