]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * fs/dcache.c | |
3 | * | |
4 | * Complete reimplementation | |
5 | * (C) 1997 Thomas Schoebel-Theuer, | |
6 | * with heavy changes by Linus Torvalds | |
7 | */ | |
8 | ||
9 | /* | |
10 | * Notes on the allocation strategy: | |
11 | * | |
12 | * The dcache is a master of the icache - whenever a dcache entry | |
13 | * exists, the inode will always exist. "iput()" is done either when | |
14 | * the dcache entry is deleted or garbage collected. | |
15 | */ | |
16 | ||
17 | #include <linux/syscalls.h> | |
18 | #include <linux/string.h> | |
19 | #include <linux/mm.h> | |
20 | #include <linux/fs.h> | |
21 | #include <linux/fsnotify.h> | |
22 | #include <linux/slab.h> | |
23 | #include <linux/init.h> | |
24 | #include <linux/hash.h> | |
25 | #include <linux/cache.h> | |
26 | #include <linux/module.h> | |
27 | #include <linux/mount.h> | |
28 | #include <linux/file.h> | |
29 | #include <asm/uaccess.h> | |
30 | #include <linux/security.h> | |
31 | #include <linux/seqlock.h> | |
32 | #include <linux/swap.h> | |
33 | #include <linux/bootmem.h> | |
34 | #include <linux/fs_struct.h> | |
35 | #include <linux/hardirq.h> | |
36 | #include "internal.h" | |
37 | ||
38 | /* | |
39 | * Usage: | |
40 | * dcache_inode_lock protects: | |
41 | * - i_dentry, d_alias, d_inode | |
42 | * dcache_hash_lock protects: | |
43 | * - the dcache hash table, s_anon lists | |
44 | * dcache_lru_lock protects: | |
45 | * - the dcache lru lists and counters | |
46 | * d_lock protects: | |
47 | * - d_flags | |
48 | * - d_name | |
49 | * - d_lru | |
50 | * - d_count | |
51 | * - d_unhashed() | |
52 | * - d_parent and d_subdirs | |
53 | * - childrens' d_child and d_parent | |
54 | * - d_alias, d_inode | |
55 | * | |
56 | * Ordering: | |
57 | * dcache_lock | |
58 | * dcache_inode_lock | |
59 | * dentry->d_lock | |
60 | * dcache_lru_lock | |
61 | * dcache_hash_lock | |
62 | * | |
63 | * If there is an ancestor relationship: | |
64 | * dentry->d_parent->...->d_parent->d_lock | |
65 | * ... | |
66 | * dentry->d_parent->d_lock | |
67 | * dentry->d_lock | |
68 | * | |
69 | * If no ancestor relationship: | |
70 | * if (dentry1 < dentry2) | |
71 | * dentry1->d_lock | |
72 | * dentry2->d_lock | |
73 | */ | |
74 | int sysctl_vfs_cache_pressure __read_mostly = 100; | |
75 | EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); | |
76 | ||
77 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock); | |
78 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock); | |
79 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock); | |
80 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock); | |
81 | __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); | |
82 | ||
83 | EXPORT_SYMBOL(rename_lock); | |
84 | EXPORT_SYMBOL(dcache_inode_lock); | |
85 | EXPORT_SYMBOL(dcache_lock); | |
86 | ||
87 | static struct kmem_cache *dentry_cache __read_mostly; | |
88 | ||
89 | #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname)) | |
90 | ||
91 | /* | |
92 | * This is the single most critical data structure when it comes | |
93 | * to the dcache: the hashtable for lookups. Somebody should try | |
94 | * to make this good - I've just made it work. | |
95 | * | |
96 | * This hash-function tries to avoid losing too many bits of hash | |
97 | * information, yet avoid using a prime hash-size or similar. | |
98 | */ | |
99 | #define D_HASHBITS d_hash_shift | |
100 | #define D_HASHMASK d_hash_mask | |
101 | ||
102 | static unsigned int d_hash_mask __read_mostly; | |
103 | static unsigned int d_hash_shift __read_mostly; | |
104 | static struct hlist_head *dentry_hashtable __read_mostly; | |
105 | ||
106 | /* Statistics gathering. */ | |
107 | struct dentry_stat_t dentry_stat = { | |
108 | .age_limit = 45, | |
109 | }; | |
110 | ||
111 | static DEFINE_PER_CPU(unsigned int, nr_dentry); | |
112 | ||
113 | #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) | |
114 | static int get_nr_dentry(void) | |
115 | { | |
116 | int i; | |
117 | int sum = 0; | |
118 | for_each_possible_cpu(i) | |
119 | sum += per_cpu(nr_dentry, i); | |
120 | return sum < 0 ? 0 : sum; | |
121 | } | |
122 | ||
123 | int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, | |
124 | size_t *lenp, loff_t *ppos) | |
125 | { | |
126 | dentry_stat.nr_dentry = get_nr_dentry(); | |
127 | return proc_dointvec(table, write, buffer, lenp, ppos); | |
128 | } | |
129 | #endif | |
130 | ||
131 | static void __d_free(struct rcu_head *head) | |
132 | { | |
133 | struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); | |
134 | ||
135 | WARN_ON(!list_empty(&dentry->d_alias)); | |
136 | if (dname_external(dentry)) | |
137 | kfree(dentry->d_name.name); | |
138 | kmem_cache_free(dentry_cache, dentry); | |
139 | } | |
140 | ||
141 | /* | |
142 | * no dcache_lock, please. | |
143 | */ | |
144 | static void d_free(struct dentry *dentry) | |
145 | { | |
146 | BUG_ON(dentry->d_count); | |
147 | this_cpu_dec(nr_dentry); | |
148 | if (dentry->d_op && dentry->d_op->d_release) | |
149 | dentry->d_op->d_release(dentry); | |
150 | ||
151 | /* if dentry was never inserted into hash, immediate free is OK */ | |
152 | if (hlist_unhashed(&dentry->d_hash)) | |
153 | __d_free(&dentry->d_u.d_rcu); | |
154 | else | |
155 | call_rcu(&dentry->d_u.d_rcu, __d_free); | |
156 | } | |
157 | ||
158 | /* | |
159 | * Release the dentry's inode, using the filesystem | |
160 | * d_iput() operation if defined. | |
161 | */ | |
162 | static void dentry_iput(struct dentry * dentry) | |
163 | __releases(dentry->d_lock) | |
164 | __releases(dcache_inode_lock) | |
165 | __releases(dcache_lock) | |
166 | { | |
167 | struct inode *inode = dentry->d_inode; | |
168 | if (inode) { | |
169 | dentry->d_inode = NULL; | |
170 | list_del_init(&dentry->d_alias); | |
171 | spin_unlock(&dentry->d_lock); | |
172 | spin_unlock(&dcache_inode_lock); | |
173 | spin_unlock(&dcache_lock); | |
174 | if (!inode->i_nlink) | |
175 | fsnotify_inoderemove(inode); | |
176 | if (dentry->d_op && dentry->d_op->d_iput) | |
177 | dentry->d_op->d_iput(dentry, inode); | |
178 | else | |
179 | iput(inode); | |
180 | } else { | |
181 | spin_unlock(&dentry->d_lock); | |
182 | spin_unlock(&dcache_inode_lock); | |
183 | spin_unlock(&dcache_lock); | |
184 | } | |
185 | } | |
186 | ||
187 | /* | |
188 | * dentry_lru_(add|del|move_tail) must be called with d_lock held. | |
189 | */ | |
190 | static void dentry_lru_add(struct dentry *dentry) | |
191 | { | |
192 | if (list_empty(&dentry->d_lru)) { | |
193 | spin_lock(&dcache_lru_lock); | |
194 | list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); | |
195 | dentry->d_sb->s_nr_dentry_unused++; | |
196 | dentry_stat.nr_unused++; | |
197 | spin_unlock(&dcache_lru_lock); | |
198 | } | |
199 | } | |
200 | ||
201 | static void __dentry_lru_del(struct dentry *dentry) | |
202 | { | |
203 | list_del_init(&dentry->d_lru); | |
204 | dentry->d_sb->s_nr_dentry_unused--; | |
205 | dentry_stat.nr_unused--; | |
206 | } | |
207 | ||
208 | static void dentry_lru_del(struct dentry *dentry) | |
209 | { | |
210 | if (!list_empty(&dentry->d_lru)) { | |
211 | spin_lock(&dcache_lru_lock); | |
212 | __dentry_lru_del(dentry); | |
213 | spin_unlock(&dcache_lru_lock); | |
214 | } | |
215 | } | |
216 | ||
217 | static void dentry_lru_move_tail(struct dentry *dentry) | |
218 | { | |
219 | spin_lock(&dcache_lru_lock); | |
220 | if (list_empty(&dentry->d_lru)) { | |
221 | list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); | |
222 | dentry->d_sb->s_nr_dentry_unused++; | |
223 | dentry_stat.nr_unused++; | |
224 | } else { | |
225 | list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); | |
226 | } | |
227 | spin_unlock(&dcache_lru_lock); | |
228 | } | |
229 | ||
230 | /** | |
231 | * d_kill - kill dentry and return parent | |
232 | * @dentry: dentry to kill | |
233 | * | |
234 | * The dentry must already be unhashed and removed from the LRU. | |
235 | * | |
236 | * If this is the root of the dentry tree, return NULL. | |
237 | * | |
238 | * dcache_lock and d_lock and d_parent->d_lock must be held by caller, and | |
239 | * are dropped by d_kill. | |
240 | */ | |
241 | static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) | |
242 | __releases(dentry->d_lock) | |
243 | __releases(parent->d_lock) | |
244 | __releases(dcache_inode_lock) | |
245 | __releases(dcache_lock) | |
246 | { | |
247 | dentry->d_parent = NULL; | |
248 | list_del(&dentry->d_u.d_child); | |
249 | if (parent) | |
250 | spin_unlock(&parent->d_lock); | |
251 | dentry_iput(dentry); | |
252 | /* | |
253 | * dentry_iput drops the locks, at which point nobody (except | |
254 | * transient RCU lookups) can reach this dentry. | |
255 | */ | |
256 | d_free(dentry); | |
257 | return parent; | |
258 | } | |
259 | ||
260 | /** | |
261 | * d_drop - drop a dentry | |
262 | * @dentry: dentry to drop | |
263 | * | |
264 | * d_drop() unhashes the entry from the parent dentry hashes, so that it won't | |
265 | * be found through a VFS lookup any more. Note that this is different from | |
266 | * deleting the dentry - d_delete will try to mark the dentry negative if | |
267 | * possible, giving a successful _negative_ lookup, while d_drop will | |
268 | * just make the cache lookup fail. | |
269 | * | |
270 | * d_drop() is used mainly for stuff that wants to invalidate a dentry for some | |
271 | * reason (NFS timeouts or autofs deletes). | |
272 | * | |
273 | * __d_drop requires dentry->d_lock. | |
274 | */ | |
275 | void __d_drop(struct dentry *dentry) | |
276 | { | |
277 | if (!(dentry->d_flags & DCACHE_UNHASHED)) { | |
278 | dentry->d_flags |= DCACHE_UNHASHED; | |
279 | spin_lock(&dcache_hash_lock); | |
280 | hlist_del_rcu(&dentry->d_hash); | |
281 | spin_unlock(&dcache_hash_lock); | |
282 | } | |
283 | } | |
284 | EXPORT_SYMBOL(__d_drop); | |
285 | ||
286 | void d_drop(struct dentry *dentry) | |
287 | { | |
288 | spin_lock(&dcache_lock); | |
289 | spin_lock(&dentry->d_lock); | |
290 | __d_drop(dentry); | |
291 | spin_unlock(&dentry->d_lock); | |
292 | spin_unlock(&dcache_lock); | |
293 | } | |
294 | EXPORT_SYMBOL(d_drop); | |
295 | ||
296 | /* | |
297 | * This is dput | |
298 | * | |
299 | * This is complicated by the fact that we do not want to put | |
300 | * dentries that are no longer on any hash chain on the unused | |
301 | * list: we'd much rather just get rid of them immediately. | |
302 | * | |
303 | * However, that implies that we have to traverse the dentry | |
304 | * tree upwards to the parents which might _also_ now be | |
305 | * scheduled for deletion (it may have been only waiting for | |
306 | * its last child to go away). | |
307 | * | |
308 | * This tail recursion is done by hand as we don't want to depend | |
309 | * on the compiler to always get this right (gcc generally doesn't). | |
310 | * Real recursion would eat up our stack space. | |
311 | */ | |
312 | ||
313 | /* | |
314 | * dput - release a dentry | |
315 | * @dentry: dentry to release | |
316 | * | |
317 | * Release a dentry. This will drop the usage count and if appropriate | |
318 | * call the dentry unlink method as well as removing it from the queues and | |
319 | * releasing its resources. If the parent dentries were scheduled for release | |
320 | * they too may now get deleted. | |
321 | * | |
322 | * no dcache lock, please. | |
323 | */ | |
324 | ||
325 | void dput(struct dentry *dentry) | |
326 | { | |
327 | struct dentry *parent; | |
328 | if (!dentry) | |
329 | return; | |
330 | ||
331 | repeat: | |
332 | if (dentry->d_count == 1) | |
333 | might_sleep(); | |
334 | spin_lock(&dentry->d_lock); | |
335 | if (IS_ROOT(dentry)) | |
336 | parent = NULL; | |
337 | else | |
338 | parent = dentry->d_parent; | |
339 | if (dentry->d_count == 1) { | |
340 | if (!spin_trylock(&dcache_lock)) { | |
341 | /* | |
342 | * Something of a livelock possibility we could avoid | |
343 | * by taking dcache_lock and trying again, but we | |
344 | * want to reduce dcache_lock anyway so this will | |
345 | * get improved. | |
346 | */ | |
347 | drop1: | |
348 | spin_unlock(&dentry->d_lock); | |
349 | goto repeat; | |
350 | } | |
351 | if (!spin_trylock(&dcache_inode_lock)) { | |
352 | drop2: | |
353 | spin_unlock(&dcache_lock); | |
354 | goto drop1; | |
355 | } | |
356 | if (parent && !spin_trylock(&parent->d_lock)) { | |
357 | spin_unlock(&dcache_inode_lock); | |
358 | goto drop2; | |
359 | } | |
360 | } | |
361 | dentry->d_count--; | |
362 | if (dentry->d_count) { | |
363 | spin_unlock(&dentry->d_lock); | |
364 | if (parent) | |
365 | spin_unlock(&parent->d_lock); | |
366 | spin_unlock(&dcache_lock); | |
367 | return; | |
368 | } | |
369 | ||
370 | /* | |
371 | * AV: ->d_delete() is _NOT_ allowed to block now. | |
372 | */ | |
373 | if (dentry->d_op && dentry->d_op->d_delete) { | |
374 | if (dentry->d_op->d_delete(dentry)) | |
375 | goto unhash_it; | |
376 | } | |
377 | ||
378 | /* Unreachable? Get rid of it */ | |
379 | if (d_unhashed(dentry)) | |
380 | goto kill_it; | |
381 | ||
382 | /* Otherwise leave it cached and ensure it's on the LRU */ | |
383 | dentry->d_flags |= DCACHE_REFERENCED; | |
384 | dentry_lru_add(dentry); | |
385 | ||
386 | spin_unlock(&dentry->d_lock); | |
387 | if (parent) | |
388 | spin_unlock(&parent->d_lock); | |
389 | spin_unlock(&dcache_inode_lock); | |
390 | spin_unlock(&dcache_lock); | |
391 | return; | |
392 | ||
393 | unhash_it: | |
394 | __d_drop(dentry); | |
395 | kill_it: | |
396 | /* if dentry was on the d_lru list delete it from there */ | |
397 | dentry_lru_del(dentry); | |
398 | dentry = d_kill(dentry, parent); | |
399 | if (dentry) | |
400 | goto repeat; | |
401 | } | |
402 | EXPORT_SYMBOL(dput); | |
403 | ||
404 | /** | |
405 | * d_invalidate - invalidate a dentry | |
406 | * @dentry: dentry to invalidate | |
407 | * | |
408 | * Try to invalidate the dentry if it turns out to be | |
409 | * possible. If there are other dentries that can be | |
410 | * reached through this one we can't delete it and we | |
411 | * return -EBUSY. On success we return 0. | |
412 | * | |
413 | * no dcache lock. | |
414 | */ | |
415 | ||
416 | int d_invalidate(struct dentry * dentry) | |
417 | { | |
418 | /* | |
419 | * If it's already been dropped, return OK. | |
420 | */ | |
421 | spin_lock(&dcache_lock); | |
422 | spin_lock(&dentry->d_lock); | |
423 | if (d_unhashed(dentry)) { | |
424 | spin_unlock(&dentry->d_lock); | |
425 | spin_unlock(&dcache_lock); | |
426 | return 0; | |
427 | } | |
428 | /* | |
429 | * Check whether to do a partial shrink_dcache | |
430 | * to get rid of unused child entries. | |
431 | */ | |
432 | if (!list_empty(&dentry->d_subdirs)) { | |
433 | spin_unlock(&dentry->d_lock); | |
434 | spin_unlock(&dcache_lock); | |
435 | shrink_dcache_parent(dentry); | |
436 | spin_lock(&dcache_lock); | |
437 | spin_lock(&dentry->d_lock); | |
438 | } | |
439 | ||
440 | /* | |
441 | * Somebody else still using it? | |
442 | * | |
443 | * If it's a directory, we can't drop it | |
444 | * for fear of somebody re-populating it | |
445 | * with children (even though dropping it | |
446 | * would make it unreachable from the root, | |
447 | * we might still populate it if it was a | |
448 | * working directory or similar). | |
449 | */ | |
450 | if (dentry->d_count > 1) { | |
451 | if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { | |
452 | spin_unlock(&dentry->d_lock); | |
453 | spin_unlock(&dcache_lock); | |
454 | return -EBUSY; | |
455 | } | |
456 | } | |
457 | ||
458 | __d_drop(dentry); | |
459 | spin_unlock(&dentry->d_lock); | |
460 | spin_unlock(&dcache_lock); | |
461 | return 0; | |
462 | } | |
463 | EXPORT_SYMBOL(d_invalidate); | |
464 | ||
465 | /* This must be called with dcache_lock and d_lock held */ | |
466 | static inline struct dentry * __dget_locked_dlock(struct dentry *dentry) | |
467 | { | |
468 | dentry->d_count++; | |
469 | dentry_lru_del(dentry); | |
470 | return dentry; | |
471 | } | |
472 | ||
473 | /* This should be called _only_ with dcache_lock held */ | |
474 | static inline struct dentry * __dget_locked(struct dentry *dentry) | |
475 | { | |
476 | spin_lock(&dentry->d_lock); | |
477 | __dget_locked_dlock(dentry); | |
478 | spin_unlock(&dentry->d_lock); | |
479 | return dentry; | |
480 | } | |
481 | ||
482 | struct dentry * dget_locked_dlock(struct dentry *dentry) | |
483 | { | |
484 | return __dget_locked_dlock(dentry); | |
485 | } | |
486 | ||
487 | struct dentry * dget_locked(struct dentry *dentry) | |
488 | { | |
489 | return __dget_locked(dentry); | |
490 | } | |
491 | EXPORT_SYMBOL(dget_locked); | |
492 | ||
493 | struct dentry *dget_parent(struct dentry *dentry) | |
494 | { | |
495 | struct dentry *ret; | |
496 | ||
497 | repeat: | |
498 | spin_lock(&dentry->d_lock); | |
499 | ret = dentry->d_parent; | |
500 | if (!ret) | |
501 | goto out; | |
502 | if (dentry == ret) { | |
503 | ret->d_count++; | |
504 | goto out; | |
505 | } | |
506 | if (!spin_trylock(&ret->d_lock)) { | |
507 | spin_unlock(&dentry->d_lock); | |
508 | cpu_relax(); | |
509 | goto repeat; | |
510 | } | |
511 | BUG_ON(!ret->d_count); | |
512 | ret->d_count++; | |
513 | spin_unlock(&ret->d_lock); | |
514 | out: | |
515 | spin_unlock(&dentry->d_lock); | |
516 | return ret; | |
517 | } | |
518 | EXPORT_SYMBOL(dget_parent); | |
519 | ||
520 | /** | |
521 | * d_find_alias - grab a hashed alias of inode | |
522 | * @inode: inode in question | |
523 | * @want_discon: flag, used by d_splice_alias, to request | |
524 | * that only a DISCONNECTED alias be returned. | |
525 | * | |
526 | * If inode has a hashed alias, or is a directory and has any alias, | |
527 | * acquire the reference to alias and return it. Otherwise return NULL. | |
528 | * Notice that if inode is a directory there can be only one alias and | |
529 | * it can be unhashed only if it has no children, or if it is the root | |
530 | * of a filesystem. | |
531 | * | |
532 | * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer | |
533 | * any other hashed alias over that one unless @want_discon is set, | |
534 | * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. | |
535 | */ | |
536 | static struct dentry *__d_find_alias(struct inode *inode, int want_discon) | |
537 | { | |
538 | struct dentry *alias, *discon_alias; | |
539 | ||
540 | again: | |
541 | discon_alias = NULL; | |
542 | list_for_each_entry(alias, &inode->i_dentry, d_alias) { | |
543 | spin_lock(&alias->d_lock); | |
544 | if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { | |
545 | if (IS_ROOT(alias) && | |
546 | (alias->d_flags & DCACHE_DISCONNECTED)) { | |
547 | discon_alias = alias; | |
548 | } else if (!want_discon) { | |
549 | __dget_locked_dlock(alias); | |
550 | spin_unlock(&alias->d_lock); | |
551 | return alias; | |
552 | } | |
553 | } | |
554 | spin_unlock(&alias->d_lock); | |
555 | } | |
556 | if (discon_alias) { | |
557 | alias = discon_alias; | |
558 | spin_lock(&alias->d_lock); | |
559 | if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { | |
560 | if (IS_ROOT(alias) && | |
561 | (alias->d_flags & DCACHE_DISCONNECTED)) { | |
562 | __dget_locked_dlock(alias); | |
563 | spin_unlock(&alias->d_lock); | |
564 | return alias; | |
565 | } | |
566 | } | |
567 | spin_unlock(&alias->d_lock); | |
568 | goto again; | |
569 | } | |
570 | return NULL; | |
571 | } | |
572 | ||
573 | struct dentry *d_find_alias(struct inode *inode) | |
574 | { | |
575 | struct dentry *de = NULL; | |
576 | ||
577 | if (!list_empty(&inode->i_dentry)) { | |
578 | spin_lock(&dcache_lock); | |
579 | spin_lock(&dcache_inode_lock); | |
580 | de = __d_find_alias(inode, 0); | |
581 | spin_unlock(&dcache_inode_lock); | |
582 | spin_unlock(&dcache_lock); | |
583 | } | |
584 | return de; | |
585 | } | |
586 | EXPORT_SYMBOL(d_find_alias); | |
587 | ||
588 | /* | |
589 | * Try to kill dentries associated with this inode. | |
590 | * WARNING: you must own a reference to inode. | |
591 | */ | |
592 | void d_prune_aliases(struct inode *inode) | |
593 | { | |
594 | struct dentry *dentry; | |
595 | restart: | |
596 | spin_lock(&dcache_lock); | |
597 | spin_lock(&dcache_inode_lock); | |
598 | list_for_each_entry(dentry, &inode->i_dentry, d_alias) { | |
599 | spin_lock(&dentry->d_lock); | |
600 | if (!dentry->d_count) { | |
601 | __dget_locked_dlock(dentry); | |
602 | __d_drop(dentry); | |
603 | spin_unlock(&dentry->d_lock); | |
604 | spin_unlock(&dcache_inode_lock); | |
605 | spin_unlock(&dcache_lock); | |
606 | dput(dentry); | |
607 | goto restart; | |
608 | } | |
609 | spin_unlock(&dentry->d_lock); | |
610 | } | |
611 | spin_unlock(&dcache_inode_lock); | |
612 | spin_unlock(&dcache_lock); | |
613 | } | |
614 | EXPORT_SYMBOL(d_prune_aliases); | |
615 | ||
616 | /* | |
617 | * Throw away a dentry - free the inode, dput the parent. This requires that | |
618 | * the LRU list has already been removed. | |
619 | * | |
620 | * Try to prune ancestors as well. This is necessary to prevent | |
621 | * quadratic behavior of shrink_dcache_parent(), but is also expected | |
622 | * to be beneficial in reducing dentry cache fragmentation. | |
623 | */ | |
624 | static void prune_one_dentry(struct dentry *dentry, struct dentry *parent) | |
625 | __releases(dentry->d_lock) | |
626 | __releases(parent->d_lock) | |
627 | __releases(dcache_inode_lock) | |
628 | __releases(dcache_lock) | |
629 | { | |
630 | __d_drop(dentry); | |
631 | dentry = d_kill(dentry, parent); | |
632 | ||
633 | /* | |
634 | * Prune ancestors. Locking is simpler than in dput(), | |
635 | * because dcache_lock needs to be taken anyway. | |
636 | */ | |
637 | while (dentry) { | |
638 | spin_lock(&dcache_lock); | |
639 | spin_lock(&dcache_inode_lock); | |
640 | again: | |
641 | spin_lock(&dentry->d_lock); | |
642 | if (IS_ROOT(dentry)) | |
643 | parent = NULL; | |
644 | else | |
645 | parent = dentry->d_parent; | |
646 | if (parent && !spin_trylock(&parent->d_lock)) { | |
647 | spin_unlock(&dentry->d_lock); | |
648 | goto again; | |
649 | } | |
650 | dentry->d_count--; | |
651 | if (dentry->d_count) { | |
652 | if (parent) | |
653 | spin_unlock(&parent->d_lock); | |
654 | spin_unlock(&dentry->d_lock); | |
655 | spin_unlock(&dcache_inode_lock); | |
656 | spin_unlock(&dcache_lock); | |
657 | return; | |
658 | } | |
659 | ||
660 | dentry_lru_del(dentry); | |
661 | __d_drop(dentry); | |
662 | dentry = d_kill(dentry, parent); | |
663 | } | |
664 | } | |
665 | ||
666 | static void shrink_dentry_list(struct list_head *list) | |
667 | { | |
668 | struct dentry *dentry; | |
669 | ||
670 | while (!list_empty(list)) { | |
671 | struct dentry *parent; | |
672 | ||
673 | dentry = list_entry(list->prev, struct dentry, d_lru); | |
674 | ||
675 | if (!spin_trylock(&dentry->d_lock)) { | |
676 | relock: | |
677 | spin_unlock(&dcache_lru_lock); | |
678 | cpu_relax(); | |
679 | spin_lock(&dcache_lru_lock); | |
680 | continue; | |
681 | } | |
682 | ||
683 | /* | |
684 | * We found an inuse dentry which was not removed from | |
685 | * the LRU because of laziness during lookup. Do not free | |
686 | * it - just keep it off the LRU list. | |
687 | */ | |
688 | if (dentry->d_count) { | |
689 | __dentry_lru_del(dentry); | |
690 | spin_unlock(&dentry->d_lock); | |
691 | continue; | |
692 | } | |
693 | if (IS_ROOT(dentry)) | |
694 | parent = NULL; | |
695 | else | |
696 | parent = dentry->d_parent; | |
697 | if (parent && !spin_trylock(&parent->d_lock)) { | |
698 | spin_unlock(&dentry->d_lock); | |
699 | goto relock; | |
700 | } | |
701 | __dentry_lru_del(dentry); | |
702 | spin_unlock(&dcache_lru_lock); | |
703 | ||
704 | prune_one_dentry(dentry, parent); | |
705 | /* dcache_lock, dcache_inode_lock and dentry->d_lock dropped */ | |
706 | spin_lock(&dcache_lock); | |
707 | spin_lock(&dcache_inode_lock); | |
708 | spin_lock(&dcache_lru_lock); | |
709 | } | |
710 | } | |
711 | ||
712 | /** | |
713 | * __shrink_dcache_sb - shrink the dentry LRU on a given superblock | |
714 | * @sb: superblock to shrink dentry LRU. | |
715 | * @count: number of entries to prune | |
716 | * @flags: flags to control the dentry processing | |
717 | * | |
718 | * If flags contains DCACHE_REFERENCED reference dentries will not be pruned. | |
719 | */ | |
720 | static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags) | |
721 | { | |
722 | /* called from prune_dcache() and shrink_dcache_parent() */ | |
723 | struct dentry *dentry; | |
724 | LIST_HEAD(referenced); | |
725 | LIST_HEAD(tmp); | |
726 | int cnt = *count; | |
727 | ||
728 | spin_lock(&dcache_lock); | |
729 | spin_lock(&dcache_inode_lock); | |
730 | relock: | |
731 | spin_lock(&dcache_lru_lock); | |
732 | while (!list_empty(&sb->s_dentry_lru)) { | |
733 | dentry = list_entry(sb->s_dentry_lru.prev, | |
734 | struct dentry, d_lru); | |
735 | BUG_ON(dentry->d_sb != sb); | |
736 | ||
737 | if (!spin_trylock(&dentry->d_lock)) { | |
738 | spin_unlock(&dcache_lru_lock); | |
739 | cpu_relax(); | |
740 | goto relock; | |
741 | } | |
742 | ||
743 | /* | |
744 | * If we are honouring the DCACHE_REFERENCED flag and the | |
745 | * dentry has this flag set, don't free it. Clear the flag | |
746 | * and put it back on the LRU. | |
747 | */ | |
748 | if (flags & DCACHE_REFERENCED && | |
749 | dentry->d_flags & DCACHE_REFERENCED) { | |
750 | dentry->d_flags &= ~DCACHE_REFERENCED; | |
751 | list_move(&dentry->d_lru, &referenced); | |
752 | spin_unlock(&dentry->d_lock); | |
753 | } else { | |
754 | list_move_tail(&dentry->d_lru, &tmp); | |
755 | spin_unlock(&dentry->d_lock); | |
756 | if (!--cnt) | |
757 | break; | |
758 | } | |
759 | /* XXX: re-add cond_resched_lock when dcache_lock goes away */ | |
760 | } | |
761 | ||
762 | *count = cnt; | |
763 | shrink_dentry_list(&tmp); | |
764 | ||
765 | if (!list_empty(&referenced)) | |
766 | list_splice(&referenced, &sb->s_dentry_lru); | |
767 | spin_unlock(&dcache_lru_lock); | |
768 | spin_unlock(&dcache_inode_lock); | |
769 | spin_unlock(&dcache_lock); | |
770 | } | |
771 | ||
772 | /** | |
773 | * prune_dcache - shrink the dcache | |
774 | * @count: number of entries to try to free | |
775 | * | |
776 | * Shrink the dcache. This is done when we need more memory, or simply when we | |
777 | * need to unmount something (at which point we need to unuse all dentries). | |
778 | * | |
779 | * This function may fail to free any resources if all the dentries are in use. | |
780 | */ | |
781 | static void prune_dcache(int count) | |
782 | { | |
783 | struct super_block *sb, *p = NULL; | |
784 | int w_count; | |
785 | int unused = dentry_stat.nr_unused; | |
786 | int prune_ratio; | |
787 | int pruned; | |
788 | ||
789 | if (unused == 0 || count == 0) | |
790 | return; | |
791 | spin_lock(&dcache_lock); | |
792 | if (count >= unused) | |
793 | prune_ratio = 1; | |
794 | else | |
795 | prune_ratio = unused / count; | |
796 | spin_lock(&sb_lock); | |
797 | list_for_each_entry(sb, &super_blocks, s_list) { | |
798 | if (list_empty(&sb->s_instances)) | |
799 | continue; | |
800 | if (sb->s_nr_dentry_unused == 0) | |
801 | continue; | |
802 | sb->s_count++; | |
803 | /* Now, we reclaim unused dentrins with fairness. | |
804 | * We reclaim them same percentage from each superblock. | |
805 | * We calculate number of dentries to scan on this sb | |
806 | * as follows, but the implementation is arranged to avoid | |
807 | * overflows: | |
808 | * number of dentries to scan on this sb = | |
809 | * count * (number of dentries on this sb / | |
810 | * number of dentries in the machine) | |
811 | */ | |
812 | spin_unlock(&sb_lock); | |
813 | if (prune_ratio != 1) | |
814 | w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1; | |
815 | else | |
816 | w_count = sb->s_nr_dentry_unused; | |
817 | pruned = w_count; | |
818 | /* | |
819 | * We need to be sure this filesystem isn't being unmounted, | |
820 | * otherwise we could race with generic_shutdown_super(), and | |
821 | * end up holding a reference to an inode while the filesystem | |
822 | * is unmounted. So we try to get s_umount, and make sure | |
823 | * s_root isn't NULL. | |
824 | */ | |
825 | if (down_read_trylock(&sb->s_umount)) { | |
826 | if ((sb->s_root != NULL) && | |
827 | (!list_empty(&sb->s_dentry_lru))) { | |
828 | spin_unlock(&dcache_lock); | |
829 | __shrink_dcache_sb(sb, &w_count, | |
830 | DCACHE_REFERENCED); | |
831 | pruned -= w_count; | |
832 | spin_lock(&dcache_lock); | |
833 | } | |
834 | up_read(&sb->s_umount); | |
835 | } | |
836 | spin_lock(&sb_lock); | |
837 | if (p) | |
838 | __put_super(p); | |
839 | count -= pruned; | |
840 | p = sb; | |
841 | /* more work left to do? */ | |
842 | if (count <= 0) | |
843 | break; | |
844 | } | |
845 | if (p) | |
846 | __put_super(p); | |
847 | spin_unlock(&sb_lock); | |
848 | spin_unlock(&dcache_lock); | |
849 | } | |
850 | ||
851 | /** | |
852 | * shrink_dcache_sb - shrink dcache for a superblock | |
853 | * @sb: superblock | |
854 | * | |
855 | * Shrink the dcache for the specified super block. This is used to free | |
856 | * the dcache before unmounting a file system. | |
857 | */ | |
858 | void shrink_dcache_sb(struct super_block *sb) | |
859 | { | |
860 | LIST_HEAD(tmp); | |
861 | ||
862 | spin_lock(&dcache_lock); | |
863 | spin_lock(&dcache_inode_lock); | |
864 | spin_lock(&dcache_lru_lock); | |
865 | while (!list_empty(&sb->s_dentry_lru)) { | |
866 | list_splice_init(&sb->s_dentry_lru, &tmp); | |
867 | shrink_dentry_list(&tmp); | |
868 | } | |
869 | spin_unlock(&dcache_lru_lock); | |
870 | spin_unlock(&dcache_inode_lock); | |
871 | spin_unlock(&dcache_lock); | |
872 | } | |
873 | EXPORT_SYMBOL(shrink_dcache_sb); | |
874 | ||
875 | /* | |
876 | * destroy a single subtree of dentries for unmount | |
877 | * - see the comments on shrink_dcache_for_umount() for a description of the | |
878 | * locking | |
879 | */ | |
880 | static void shrink_dcache_for_umount_subtree(struct dentry *dentry) | |
881 | { | |
882 | struct dentry *parent; | |
883 | unsigned detached = 0; | |
884 | ||
885 | BUG_ON(!IS_ROOT(dentry)); | |
886 | ||
887 | /* detach this root from the system */ | |
888 | spin_lock(&dcache_lock); | |
889 | spin_lock(&dentry->d_lock); | |
890 | dentry_lru_del(dentry); | |
891 | __d_drop(dentry); | |
892 | spin_unlock(&dentry->d_lock); | |
893 | spin_unlock(&dcache_lock); | |
894 | ||
895 | for (;;) { | |
896 | /* descend to the first leaf in the current subtree */ | |
897 | while (!list_empty(&dentry->d_subdirs)) { | |
898 | struct dentry *loop; | |
899 | ||
900 | /* this is a branch with children - detach all of them | |
901 | * from the system in one go */ | |
902 | spin_lock(&dcache_lock); | |
903 | spin_lock(&dentry->d_lock); | |
904 | list_for_each_entry(loop, &dentry->d_subdirs, | |
905 | d_u.d_child) { | |
906 | spin_lock_nested(&loop->d_lock, | |
907 | DENTRY_D_LOCK_NESTED); | |
908 | dentry_lru_del(loop); | |
909 | __d_drop(loop); | |
910 | spin_unlock(&loop->d_lock); | |
911 | } | |
912 | spin_unlock(&dentry->d_lock); | |
913 | spin_unlock(&dcache_lock); | |
914 | ||
915 | /* move to the first child */ | |
916 | dentry = list_entry(dentry->d_subdirs.next, | |
917 | struct dentry, d_u.d_child); | |
918 | } | |
919 | ||
920 | /* consume the dentries from this leaf up through its parents | |
921 | * until we find one with children or run out altogether */ | |
922 | do { | |
923 | struct inode *inode; | |
924 | ||
925 | if (dentry->d_count != 0) { | |
926 | printk(KERN_ERR | |
927 | "BUG: Dentry %p{i=%lx,n=%s}" | |
928 | " still in use (%d)" | |
929 | " [unmount of %s %s]\n", | |
930 | dentry, | |
931 | dentry->d_inode ? | |
932 | dentry->d_inode->i_ino : 0UL, | |
933 | dentry->d_name.name, | |
934 | dentry->d_count, | |
935 | dentry->d_sb->s_type->name, | |
936 | dentry->d_sb->s_id); | |
937 | BUG(); | |
938 | } | |
939 | ||
940 | if (IS_ROOT(dentry)) { | |
941 | parent = NULL; | |
942 | list_del(&dentry->d_u.d_child); | |
943 | } else { | |
944 | parent = dentry->d_parent; | |
945 | spin_lock(&parent->d_lock); | |
946 | parent->d_count--; | |
947 | list_del(&dentry->d_u.d_child); | |
948 | spin_unlock(&parent->d_lock); | |
949 | } | |
950 | ||
951 | detached++; | |
952 | ||
953 | inode = dentry->d_inode; | |
954 | if (inode) { | |
955 | dentry->d_inode = NULL; | |
956 | list_del_init(&dentry->d_alias); | |
957 | if (dentry->d_op && dentry->d_op->d_iput) | |
958 | dentry->d_op->d_iput(dentry, inode); | |
959 | else | |
960 | iput(inode); | |
961 | } | |
962 | ||
963 | d_free(dentry); | |
964 | ||
965 | /* finished when we fall off the top of the tree, | |
966 | * otherwise we ascend to the parent and move to the | |
967 | * next sibling if there is one */ | |
968 | if (!parent) | |
969 | return; | |
970 | dentry = parent; | |
971 | } while (list_empty(&dentry->d_subdirs)); | |
972 | ||
973 | dentry = list_entry(dentry->d_subdirs.next, | |
974 | struct dentry, d_u.d_child); | |
975 | } | |
976 | } | |
977 | ||
978 | /* | |
979 | * destroy the dentries attached to a superblock on unmounting | |
980 | * - we don't need to use dentry->d_lock, and only need dcache_lock when | |
981 | * removing the dentry from the system lists and hashes because: | |
982 | * - the superblock is detached from all mountings and open files, so the | |
983 | * dentry trees will not be rearranged by the VFS | |
984 | * - s_umount is write-locked, so the memory pressure shrinker will ignore | |
985 | * any dentries belonging to this superblock that it comes across | |
986 | * - the filesystem itself is no longer permitted to rearrange the dentries | |
987 | * in this superblock | |
988 | */ | |
989 | void shrink_dcache_for_umount(struct super_block *sb) | |
990 | { | |
991 | struct dentry *dentry; | |
992 | ||
993 | if (down_read_trylock(&sb->s_umount)) | |
994 | BUG(); | |
995 | ||
996 | dentry = sb->s_root; | |
997 | sb->s_root = NULL; | |
998 | spin_lock(&dentry->d_lock); | |
999 | dentry->d_count--; | |
1000 | spin_unlock(&dentry->d_lock); | |
1001 | shrink_dcache_for_umount_subtree(dentry); | |
1002 | ||
1003 | while (!hlist_empty(&sb->s_anon)) { | |
1004 | dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash); | |
1005 | shrink_dcache_for_umount_subtree(dentry); | |
1006 | } | |
1007 | } | |
1008 | ||
1009 | /* | |
1010 | * Search for at least 1 mount point in the dentry's subdirs. | |
1011 | * We descend to the next level whenever the d_subdirs | |
1012 | * list is non-empty and continue searching. | |
1013 | */ | |
1014 | ||
1015 | /** | |
1016 | * have_submounts - check for mounts over a dentry | |
1017 | * @parent: dentry to check. | |
1018 | * | |
1019 | * Return true if the parent or its subdirectories contain | |
1020 | * a mount point | |
1021 | */ | |
1022 | int have_submounts(struct dentry *parent) | |
1023 | { | |
1024 | struct dentry *this_parent; | |
1025 | struct list_head *next; | |
1026 | unsigned seq; | |
1027 | ||
1028 | rename_retry: | |
1029 | this_parent = parent; | |
1030 | seq = read_seqbegin(&rename_lock); | |
1031 | ||
1032 | spin_lock(&dcache_lock); | |
1033 | if (d_mountpoint(parent)) | |
1034 | goto positive; | |
1035 | spin_lock(&this_parent->d_lock); | |
1036 | repeat: | |
1037 | next = this_parent->d_subdirs.next; | |
1038 | resume: | |
1039 | while (next != &this_parent->d_subdirs) { | |
1040 | struct list_head *tmp = next; | |
1041 | struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | |
1042 | next = tmp->next; | |
1043 | ||
1044 | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | |
1045 | /* Have we found a mount point ? */ | |
1046 | if (d_mountpoint(dentry)) { | |
1047 | spin_unlock(&dentry->d_lock); | |
1048 | spin_unlock(&this_parent->d_lock); | |
1049 | goto positive; | |
1050 | } | |
1051 | if (!list_empty(&dentry->d_subdirs)) { | |
1052 | spin_unlock(&this_parent->d_lock); | |
1053 | spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); | |
1054 | this_parent = dentry; | |
1055 | spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); | |
1056 | goto repeat; | |
1057 | } | |
1058 | spin_unlock(&dentry->d_lock); | |
1059 | } | |
1060 | /* | |
1061 | * All done at this level ... ascend and resume the search. | |
1062 | */ | |
1063 | if (this_parent != parent) { | |
1064 | struct dentry *tmp; | |
1065 | struct dentry *child; | |
1066 | ||
1067 | tmp = this_parent->d_parent; | |
1068 | rcu_read_lock(); | |
1069 | spin_unlock(&this_parent->d_lock); | |
1070 | child = this_parent; | |
1071 | this_parent = tmp; | |
1072 | spin_lock(&this_parent->d_lock); | |
1073 | /* might go back up the wrong parent if we have had a rename | |
1074 | * or deletion */ | |
1075 | if (this_parent != child->d_parent || | |
1076 | read_seqretry(&rename_lock, seq)) { | |
1077 | spin_unlock(&this_parent->d_lock); | |
1078 | spin_unlock(&dcache_lock); | |
1079 | rcu_read_unlock(); | |
1080 | goto rename_retry; | |
1081 | } | |
1082 | rcu_read_unlock(); | |
1083 | next = child->d_u.d_child.next; | |
1084 | goto resume; | |
1085 | } | |
1086 | spin_unlock(&this_parent->d_lock); | |
1087 | spin_unlock(&dcache_lock); | |
1088 | if (read_seqretry(&rename_lock, seq)) | |
1089 | goto rename_retry; | |
1090 | return 0; /* No mount points found in tree */ | |
1091 | positive: | |
1092 | spin_unlock(&dcache_lock); | |
1093 | if (read_seqretry(&rename_lock, seq)) | |
1094 | goto rename_retry; | |
1095 | return 1; | |
1096 | } | |
1097 | EXPORT_SYMBOL(have_submounts); | |
1098 | ||
1099 | /* | |
1100 | * Search the dentry child list for the specified parent, | |
1101 | * and move any unused dentries to the end of the unused | |
1102 | * list for prune_dcache(). We descend to the next level | |
1103 | * whenever the d_subdirs list is non-empty and continue | |
1104 | * searching. | |
1105 | * | |
1106 | * It returns zero iff there are no unused children, | |
1107 | * otherwise it returns the number of children moved to | |
1108 | * the end of the unused list. This may not be the total | |
1109 | * number of unused children, because select_parent can | |
1110 | * drop the lock and return early due to latency | |
1111 | * constraints. | |
1112 | */ | |
1113 | static int select_parent(struct dentry * parent) | |
1114 | { | |
1115 | struct dentry *this_parent; | |
1116 | struct list_head *next; | |
1117 | unsigned seq; | |
1118 | int found = 0; | |
1119 | ||
1120 | rename_retry: | |
1121 | this_parent = parent; | |
1122 | seq = read_seqbegin(&rename_lock); | |
1123 | ||
1124 | spin_lock(&dcache_lock); | |
1125 | spin_lock(&this_parent->d_lock); | |
1126 | repeat: | |
1127 | next = this_parent->d_subdirs.next; | |
1128 | resume: | |
1129 | while (next != &this_parent->d_subdirs) { | |
1130 | struct list_head *tmp = next; | |
1131 | struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | |
1132 | next = tmp->next; | |
1133 | ||
1134 | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | |
1135 | ||
1136 | /* | |
1137 | * move only zero ref count dentries to the end | |
1138 | * of the unused list for prune_dcache | |
1139 | */ | |
1140 | if (!dentry->d_count) { | |
1141 | dentry_lru_move_tail(dentry); | |
1142 | found++; | |
1143 | } else { | |
1144 | dentry_lru_del(dentry); | |
1145 | } | |
1146 | ||
1147 | /* | |
1148 | * We can return to the caller if we have found some (this | |
1149 | * ensures forward progress). We'll be coming back to find | |
1150 | * the rest. | |
1151 | */ | |
1152 | if (found && need_resched()) { | |
1153 | spin_unlock(&dentry->d_lock); | |
1154 | goto out; | |
1155 | } | |
1156 | ||
1157 | /* | |
1158 | * Descend a level if the d_subdirs list is non-empty. | |
1159 | */ | |
1160 | if (!list_empty(&dentry->d_subdirs)) { | |
1161 | spin_unlock(&this_parent->d_lock); | |
1162 | spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); | |
1163 | this_parent = dentry; | |
1164 | spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); | |
1165 | goto repeat; | |
1166 | } | |
1167 | ||
1168 | spin_unlock(&dentry->d_lock); | |
1169 | } | |
1170 | /* | |
1171 | * All done at this level ... ascend and resume the search. | |
1172 | */ | |
1173 | if (this_parent != parent) { | |
1174 | struct dentry *tmp; | |
1175 | struct dentry *child; | |
1176 | ||
1177 | tmp = this_parent->d_parent; | |
1178 | rcu_read_lock(); | |
1179 | spin_unlock(&this_parent->d_lock); | |
1180 | child = this_parent; | |
1181 | this_parent = tmp; | |
1182 | spin_lock(&this_parent->d_lock); | |
1183 | /* might go back up the wrong parent if we have had a rename | |
1184 | * or deletion */ | |
1185 | if (this_parent != child->d_parent || | |
1186 | read_seqretry(&rename_lock, seq)) { | |
1187 | spin_unlock(&this_parent->d_lock); | |
1188 | spin_unlock(&dcache_lock); | |
1189 | rcu_read_unlock(); | |
1190 | goto rename_retry; | |
1191 | } | |
1192 | rcu_read_unlock(); | |
1193 | next = child->d_u.d_child.next; | |
1194 | goto resume; | |
1195 | } | |
1196 | out: | |
1197 | spin_unlock(&this_parent->d_lock); | |
1198 | spin_unlock(&dcache_lock); | |
1199 | if (read_seqretry(&rename_lock, seq)) | |
1200 | goto rename_retry; | |
1201 | return found; | |
1202 | } | |
1203 | ||
1204 | /** | |
1205 | * shrink_dcache_parent - prune dcache | |
1206 | * @parent: parent of entries to prune | |
1207 | * | |
1208 | * Prune the dcache to remove unused children of the parent dentry. | |
1209 | */ | |
1210 | ||
1211 | void shrink_dcache_parent(struct dentry * parent) | |
1212 | { | |
1213 | struct super_block *sb = parent->d_sb; | |
1214 | int found; | |
1215 | ||
1216 | while ((found = select_parent(parent)) != 0) | |
1217 | __shrink_dcache_sb(sb, &found, 0); | |
1218 | } | |
1219 | EXPORT_SYMBOL(shrink_dcache_parent); | |
1220 | ||
1221 | /* | |
1222 | * Scan `nr' dentries and return the number which remain. | |
1223 | * | |
1224 | * We need to avoid reentering the filesystem if the caller is performing a | |
1225 | * GFP_NOFS allocation attempt. One example deadlock is: | |
1226 | * | |
1227 | * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> | |
1228 | * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> | |
1229 | * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. | |
1230 | * | |
1231 | * In this case we return -1 to tell the caller that we baled. | |
1232 | */ | |
1233 | static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) | |
1234 | { | |
1235 | if (nr) { | |
1236 | if (!(gfp_mask & __GFP_FS)) | |
1237 | return -1; | |
1238 | prune_dcache(nr); | |
1239 | } | |
1240 | ||
1241 | return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; | |
1242 | } | |
1243 | ||
1244 | static struct shrinker dcache_shrinker = { | |
1245 | .shrink = shrink_dcache_memory, | |
1246 | .seeks = DEFAULT_SEEKS, | |
1247 | }; | |
1248 | ||
1249 | /** | |
1250 | * d_alloc - allocate a dcache entry | |
1251 | * @parent: parent of entry to allocate | |
1252 | * @name: qstr of the name | |
1253 | * | |
1254 | * Allocates a dentry. It returns %NULL if there is insufficient memory | |
1255 | * available. On a success the dentry is returned. The name passed in is | |
1256 | * copied and the copy passed in may be reused after this call. | |
1257 | */ | |
1258 | ||
1259 | struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) | |
1260 | { | |
1261 | struct dentry *dentry; | |
1262 | char *dname; | |
1263 | ||
1264 | dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); | |
1265 | if (!dentry) | |
1266 | return NULL; | |
1267 | ||
1268 | if (name->len > DNAME_INLINE_LEN-1) { | |
1269 | dname = kmalloc(name->len + 1, GFP_KERNEL); | |
1270 | if (!dname) { | |
1271 | kmem_cache_free(dentry_cache, dentry); | |
1272 | return NULL; | |
1273 | } | |
1274 | } else { | |
1275 | dname = dentry->d_iname; | |
1276 | } | |
1277 | dentry->d_name.name = dname; | |
1278 | ||
1279 | dentry->d_name.len = name->len; | |
1280 | dentry->d_name.hash = name->hash; | |
1281 | memcpy(dname, name->name, name->len); | |
1282 | dname[name->len] = 0; | |
1283 | ||
1284 | dentry->d_count = 1; | |
1285 | dentry->d_flags = DCACHE_UNHASHED; | |
1286 | spin_lock_init(&dentry->d_lock); | |
1287 | dentry->d_inode = NULL; | |
1288 | dentry->d_parent = NULL; | |
1289 | dentry->d_sb = NULL; | |
1290 | dentry->d_op = NULL; | |
1291 | dentry->d_fsdata = NULL; | |
1292 | dentry->d_mounted = 0; | |
1293 | INIT_HLIST_NODE(&dentry->d_hash); | |
1294 | INIT_LIST_HEAD(&dentry->d_lru); | |
1295 | INIT_LIST_HEAD(&dentry->d_subdirs); | |
1296 | INIT_LIST_HEAD(&dentry->d_alias); | |
1297 | INIT_LIST_HEAD(&dentry->d_u.d_child); | |
1298 | ||
1299 | if (parent) { | |
1300 | spin_lock(&dcache_lock); | |
1301 | spin_lock(&parent->d_lock); | |
1302 | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | |
1303 | dentry->d_parent = dget_dlock(parent); | |
1304 | dentry->d_sb = parent->d_sb; | |
1305 | list_add(&dentry->d_u.d_child, &parent->d_subdirs); | |
1306 | spin_unlock(&dentry->d_lock); | |
1307 | spin_unlock(&parent->d_lock); | |
1308 | spin_unlock(&dcache_lock); | |
1309 | } | |
1310 | ||
1311 | this_cpu_inc(nr_dentry); | |
1312 | ||
1313 | return dentry; | |
1314 | } | |
1315 | EXPORT_SYMBOL(d_alloc); | |
1316 | ||
1317 | struct dentry *d_alloc_name(struct dentry *parent, const char *name) | |
1318 | { | |
1319 | struct qstr q; | |
1320 | ||
1321 | q.name = name; | |
1322 | q.len = strlen(name); | |
1323 | q.hash = full_name_hash(q.name, q.len); | |
1324 | return d_alloc(parent, &q); | |
1325 | } | |
1326 | EXPORT_SYMBOL(d_alloc_name); | |
1327 | ||
1328 | /* the caller must hold dcache_lock */ | |
1329 | static void __d_instantiate(struct dentry *dentry, struct inode *inode) | |
1330 | { | |
1331 | spin_lock(&dentry->d_lock); | |
1332 | if (inode) | |
1333 | list_add(&dentry->d_alias, &inode->i_dentry); | |
1334 | dentry->d_inode = inode; | |
1335 | spin_unlock(&dentry->d_lock); | |
1336 | fsnotify_d_instantiate(dentry, inode); | |
1337 | } | |
1338 | ||
1339 | /** | |
1340 | * d_instantiate - fill in inode information for a dentry | |
1341 | * @entry: dentry to complete | |
1342 | * @inode: inode to attach to this dentry | |
1343 | * | |
1344 | * Fill in inode information in the entry. | |
1345 | * | |
1346 | * This turns negative dentries into productive full members | |
1347 | * of society. | |
1348 | * | |
1349 | * NOTE! This assumes that the inode count has been incremented | |
1350 | * (or otherwise set) by the caller to indicate that it is now | |
1351 | * in use by the dcache. | |
1352 | */ | |
1353 | ||
1354 | void d_instantiate(struct dentry *entry, struct inode * inode) | |
1355 | { | |
1356 | BUG_ON(!list_empty(&entry->d_alias)); | |
1357 | spin_lock(&dcache_lock); | |
1358 | spin_lock(&dcache_inode_lock); | |
1359 | __d_instantiate(entry, inode); | |
1360 | spin_unlock(&dcache_inode_lock); | |
1361 | spin_unlock(&dcache_lock); | |
1362 | security_d_instantiate(entry, inode); | |
1363 | } | |
1364 | EXPORT_SYMBOL(d_instantiate); | |
1365 | ||
1366 | /** | |
1367 | * d_instantiate_unique - instantiate a non-aliased dentry | |
1368 | * @entry: dentry to instantiate | |
1369 | * @inode: inode to attach to this dentry | |
1370 | * | |
1371 | * Fill in inode information in the entry. On success, it returns NULL. | |
1372 | * If an unhashed alias of "entry" already exists, then we return the | |
1373 | * aliased dentry instead and drop one reference to inode. | |
1374 | * | |
1375 | * Note that in order to avoid conflicts with rename() etc, the caller | |
1376 | * had better be holding the parent directory semaphore. | |
1377 | * | |
1378 | * This also assumes that the inode count has been incremented | |
1379 | * (or otherwise set) by the caller to indicate that it is now | |
1380 | * in use by the dcache. | |
1381 | */ | |
1382 | static struct dentry *__d_instantiate_unique(struct dentry *entry, | |
1383 | struct inode *inode) | |
1384 | { | |
1385 | struct dentry *alias; | |
1386 | int len = entry->d_name.len; | |
1387 | const char *name = entry->d_name.name; | |
1388 | unsigned int hash = entry->d_name.hash; | |
1389 | ||
1390 | if (!inode) { | |
1391 | __d_instantiate(entry, NULL); | |
1392 | return NULL; | |
1393 | } | |
1394 | ||
1395 | list_for_each_entry(alias, &inode->i_dentry, d_alias) { | |
1396 | struct qstr *qstr = &alias->d_name; | |
1397 | ||
1398 | /* | |
1399 | * Don't need alias->d_lock here, because aliases with | |
1400 | * d_parent == entry->d_parent are not subject to name or | |
1401 | * parent changes, because the parent inode i_mutex is held. | |
1402 | */ | |
1403 | if (qstr->hash != hash) | |
1404 | continue; | |
1405 | if (alias->d_parent != entry->d_parent) | |
1406 | continue; | |
1407 | if (qstr->len != len) | |
1408 | continue; | |
1409 | if (memcmp(qstr->name, name, len)) | |
1410 | continue; | |
1411 | dget_locked(alias); | |
1412 | return alias; | |
1413 | } | |
1414 | ||
1415 | __d_instantiate(entry, inode); | |
1416 | return NULL; | |
1417 | } | |
1418 | ||
1419 | struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) | |
1420 | { | |
1421 | struct dentry *result; | |
1422 | ||
1423 | BUG_ON(!list_empty(&entry->d_alias)); | |
1424 | ||
1425 | spin_lock(&dcache_lock); | |
1426 | spin_lock(&dcache_inode_lock); | |
1427 | result = __d_instantiate_unique(entry, inode); | |
1428 | spin_unlock(&dcache_inode_lock); | |
1429 | spin_unlock(&dcache_lock); | |
1430 | ||
1431 | if (!result) { | |
1432 | security_d_instantiate(entry, inode); | |
1433 | return NULL; | |
1434 | } | |
1435 | ||
1436 | BUG_ON(!d_unhashed(result)); | |
1437 | iput(inode); | |
1438 | return result; | |
1439 | } | |
1440 | ||
1441 | EXPORT_SYMBOL(d_instantiate_unique); | |
1442 | ||
1443 | /** | |
1444 | * d_alloc_root - allocate root dentry | |
1445 | * @root_inode: inode to allocate the root for | |
1446 | * | |
1447 | * Allocate a root ("/") dentry for the inode given. The inode is | |
1448 | * instantiated and returned. %NULL is returned if there is insufficient | |
1449 | * memory or the inode passed is %NULL. | |
1450 | */ | |
1451 | ||
1452 | struct dentry * d_alloc_root(struct inode * root_inode) | |
1453 | { | |
1454 | struct dentry *res = NULL; | |
1455 | ||
1456 | if (root_inode) { | |
1457 | static const struct qstr name = { .name = "/", .len = 1 }; | |
1458 | ||
1459 | res = d_alloc(NULL, &name); | |
1460 | if (res) { | |
1461 | res->d_sb = root_inode->i_sb; | |
1462 | res->d_parent = res; | |
1463 | d_instantiate(res, root_inode); | |
1464 | } | |
1465 | } | |
1466 | return res; | |
1467 | } | |
1468 | EXPORT_SYMBOL(d_alloc_root); | |
1469 | ||
1470 | static inline struct hlist_head *d_hash(struct dentry *parent, | |
1471 | unsigned long hash) | |
1472 | { | |
1473 | hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; | |
1474 | hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); | |
1475 | return dentry_hashtable + (hash & D_HASHMASK); | |
1476 | } | |
1477 | ||
1478 | /** | |
1479 | * d_obtain_alias - find or allocate a dentry for a given inode | |
1480 | * @inode: inode to allocate the dentry for | |
1481 | * | |
1482 | * Obtain a dentry for an inode resulting from NFS filehandle conversion or | |
1483 | * similar open by handle operations. The returned dentry may be anonymous, | |
1484 | * or may have a full name (if the inode was already in the cache). | |
1485 | * | |
1486 | * When called on a directory inode, we must ensure that the inode only ever | |
1487 | * has one dentry. If a dentry is found, that is returned instead of | |
1488 | * allocating a new one. | |
1489 | * | |
1490 | * On successful return, the reference to the inode has been transferred | |
1491 | * to the dentry. In case of an error the reference on the inode is released. | |
1492 | * To make it easier to use in export operations a %NULL or IS_ERR inode may | |
1493 | * be passed in and will be the error will be propagate to the return value, | |
1494 | * with a %NULL @inode replaced by ERR_PTR(-ESTALE). | |
1495 | */ | |
1496 | struct dentry *d_obtain_alias(struct inode *inode) | |
1497 | { | |
1498 | static const struct qstr anonstring = { .name = "" }; | |
1499 | struct dentry *tmp; | |
1500 | struct dentry *res; | |
1501 | ||
1502 | if (!inode) | |
1503 | return ERR_PTR(-ESTALE); | |
1504 | if (IS_ERR(inode)) | |
1505 | return ERR_CAST(inode); | |
1506 | ||
1507 | res = d_find_alias(inode); | |
1508 | if (res) | |
1509 | goto out_iput; | |
1510 | ||
1511 | tmp = d_alloc(NULL, &anonstring); | |
1512 | if (!tmp) { | |
1513 | res = ERR_PTR(-ENOMEM); | |
1514 | goto out_iput; | |
1515 | } | |
1516 | tmp->d_parent = tmp; /* make sure dput doesn't croak */ | |
1517 | ||
1518 | spin_lock(&dcache_lock); | |
1519 | spin_lock(&dcache_inode_lock); | |
1520 | res = __d_find_alias(inode, 0); | |
1521 | if (res) { | |
1522 | spin_unlock(&dcache_inode_lock); | |
1523 | spin_unlock(&dcache_lock); | |
1524 | dput(tmp); | |
1525 | goto out_iput; | |
1526 | } | |
1527 | ||
1528 | /* attach a disconnected dentry */ | |
1529 | spin_lock(&tmp->d_lock); | |
1530 | tmp->d_sb = inode->i_sb; | |
1531 | tmp->d_inode = inode; | |
1532 | tmp->d_flags |= DCACHE_DISCONNECTED; | |
1533 | tmp->d_flags &= ~DCACHE_UNHASHED; | |
1534 | list_add(&tmp->d_alias, &inode->i_dentry); | |
1535 | spin_lock(&dcache_hash_lock); | |
1536 | hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon); | |
1537 | spin_unlock(&dcache_hash_lock); | |
1538 | spin_unlock(&tmp->d_lock); | |
1539 | spin_unlock(&dcache_inode_lock); | |
1540 | ||
1541 | spin_unlock(&dcache_lock); | |
1542 | return tmp; | |
1543 | ||
1544 | out_iput: | |
1545 | iput(inode); | |
1546 | return res; | |
1547 | } | |
1548 | EXPORT_SYMBOL(d_obtain_alias); | |
1549 | ||
1550 | /** | |
1551 | * d_splice_alias - splice a disconnected dentry into the tree if one exists | |
1552 | * @inode: the inode which may have a disconnected dentry | |
1553 | * @dentry: a negative dentry which we want to point to the inode. | |
1554 | * | |
1555 | * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and | |
1556 | * DCACHE_DISCONNECTED), then d_move that in place of the given dentry | |
1557 | * and return it, else simply d_add the inode to the dentry and return NULL. | |
1558 | * | |
1559 | * This is needed in the lookup routine of any filesystem that is exportable | |
1560 | * (via knfsd) so that we can build dcache paths to directories effectively. | |
1561 | * | |
1562 | * If a dentry was found and moved, then it is returned. Otherwise NULL | |
1563 | * is returned. This matches the expected return value of ->lookup. | |
1564 | * | |
1565 | */ | |
1566 | struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) | |
1567 | { | |
1568 | struct dentry *new = NULL; | |
1569 | ||
1570 | if (inode && S_ISDIR(inode->i_mode)) { | |
1571 | spin_lock(&dcache_lock); | |
1572 | spin_lock(&dcache_inode_lock); | |
1573 | new = __d_find_alias(inode, 1); | |
1574 | if (new) { | |
1575 | BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); | |
1576 | spin_unlock(&dcache_inode_lock); | |
1577 | spin_unlock(&dcache_lock); | |
1578 | security_d_instantiate(new, inode); | |
1579 | d_move(new, dentry); | |
1580 | iput(inode); | |
1581 | } else { | |
1582 | /* already taking dcache_lock, so d_add() by hand */ | |
1583 | __d_instantiate(dentry, inode); | |
1584 | spin_unlock(&dcache_inode_lock); | |
1585 | spin_unlock(&dcache_lock); | |
1586 | security_d_instantiate(dentry, inode); | |
1587 | d_rehash(dentry); | |
1588 | } | |
1589 | } else | |
1590 | d_add(dentry, inode); | |
1591 | return new; | |
1592 | } | |
1593 | EXPORT_SYMBOL(d_splice_alias); | |
1594 | ||
1595 | /** | |
1596 | * d_add_ci - lookup or allocate new dentry with case-exact name | |
1597 | * @inode: the inode case-insensitive lookup has found | |
1598 | * @dentry: the negative dentry that was passed to the parent's lookup func | |
1599 | * @name: the case-exact name to be associated with the returned dentry | |
1600 | * | |
1601 | * This is to avoid filling the dcache with case-insensitive names to the | |
1602 | * same inode, only the actual correct case is stored in the dcache for | |
1603 | * case-insensitive filesystems. | |
1604 | * | |
1605 | * For a case-insensitive lookup match and if the the case-exact dentry | |
1606 | * already exists in in the dcache, use it and return it. | |
1607 | * | |
1608 | * If no entry exists with the exact case name, allocate new dentry with | |
1609 | * the exact case, and return the spliced entry. | |
1610 | */ | |
1611 | struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, | |
1612 | struct qstr *name) | |
1613 | { | |
1614 | int error; | |
1615 | struct dentry *found; | |
1616 | struct dentry *new; | |
1617 | ||
1618 | /* | |
1619 | * First check if a dentry matching the name already exists, | |
1620 | * if not go ahead and create it now. | |
1621 | */ | |
1622 | found = d_hash_and_lookup(dentry->d_parent, name); | |
1623 | if (!found) { | |
1624 | new = d_alloc(dentry->d_parent, name); | |
1625 | if (!new) { | |
1626 | error = -ENOMEM; | |
1627 | goto err_out; | |
1628 | } | |
1629 | ||
1630 | found = d_splice_alias(inode, new); | |
1631 | if (found) { | |
1632 | dput(new); | |
1633 | return found; | |
1634 | } | |
1635 | return new; | |
1636 | } | |
1637 | ||
1638 | /* | |
1639 | * If a matching dentry exists, and it's not negative use it. | |
1640 | * | |
1641 | * Decrement the reference count to balance the iget() done | |
1642 | * earlier on. | |
1643 | */ | |
1644 | if (found->d_inode) { | |
1645 | if (unlikely(found->d_inode != inode)) { | |
1646 | /* This can't happen because bad inodes are unhashed. */ | |
1647 | BUG_ON(!is_bad_inode(inode)); | |
1648 | BUG_ON(!is_bad_inode(found->d_inode)); | |
1649 | } | |
1650 | iput(inode); | |
1651 | return found; | |
1652 | } | |
1653 | ||
1654 | /* | |
1655 | * Negative dentry: instantiate it unless the inode is a directory and | |
1656 | * already has a dentry. | |
1657 | */ | |
1658 | spin_lock(&dcache_lock); | |
1659 | spin_lock(&dcache_inode_lock); | |
1660 | if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) { | |
1661 | __d_instantiate(found, inode); | |
1662 | spin_unlock(&dcache_inode_lock); | |
1663 | spin_unlock(&dcache_lock); | |
1664 | security_d_instantiate(found, inode); | |
1665 | return found; | |
1666 | } | |
1667 | ||
1668 | /* | |
1669 | * In case a directory already has a (disconnected) entry grab a | |
1670 | * reference to it, move it in place and use it. | |
1671 | */ | |
1672 | new = list_entry(inode->i_dentry.next, struct dentry, d_alias); | |
1673 | dget_locked(new); | |
1674 | spin_unlock(&dcache_inode_lock); | |
1675 | spin_unlock(&dcache_lock); | |
1676 | security_d_instantiate(found, inode); | |
1677 | d_move(new, found); | |
1678 | iput(inode); | |
1679 | dput(found); | |
1680 | return new; | |
1681 | ||
1682 | err_out: | |
1683 | iput(inode); | |
1684 | return ERR_PTR(error); | |
1685 | } | |
1686 | EXPORT_SYMBOL(d_add_ci); | |
1687 | ||
1688 | /** | |
1689 | * d_lookup - search for a dentry | |
1690 | * @parent: parent dentry | |
1691 | * @name: qstr of name we wish to find | |
1692 | * Returns: dentry, or NULL | |
1693 | * | |
1694 | * d_lookup searches the children of the parent dentry for the name in | |
1695 | * question. If the dentry is found its reference count is incremented and the | |
1696 | * dentry is returned. The caller must use dput to free the entry when it has | |
1697 | * finished using it. %NULL is returned if the dentry does not exist. | |
1698 | */ | |
1699 | struct dentry * d_lookup(struct dentry * parent, struct qstr * name) | |
1700 | { | |
1701 | struct dentry * dentry = NULL; | |
1702 | unsigned seq; | |
1703 | ||
1704 | do { | |
1705 | seq = read_seqbegin(&rename_lock); | |
1706 | dentry = __d_lookup(parent, name); | |
1707 | if (dentry) | |
1708 | break; | |
1709 | } while (read_seqretry(&rename_lock, seq)); | |
1710 | return dentry; | |
1711 | } | |
1712 | EXPORT_SYMBOL(d_lookup); | |
1713 | ||
1714 | /* | |
1715 | * __d_lookup - search for a dentry (racy) | |
1716 | * @parent: parent dentry | |
1717 | * @name: qstr of name we wish to find | |
1718 | * Returns: dentry, or NULL | |
1719 | * | |
1720 | * __d_lookup is like d_lookup, however it may (rarely) return a | |
1721 | * false-negative result due to unrelated rename activity. | |
1722 | * | |
1723 | * __d_lookup is slightly faster by avoiding rename_lock read seqlock, | |
1724 | * however it must be used carefully, eg. with a following d_lookup in | |
1725 | * the case of failure. | |
1726 | * | |
1727 | * __d_lookup callers must be commented. | |
1728 | */ | |
1729 | struct dentry * __d_lookup(struct dentry * parent, struct qstr * name) | |
1730 | { | |
1731 | unsigned int len = name->len; | |
1732 | unsigned int hash = name->hash; | |
1733 | const unsigned char *str = name->name; | |
1734 | struct hlist_head *head = d_hash(parent,hash); | |
1735 | struct dentry *found = NULL; | |
1736 | struct hlist_node *node; | |
1737 | struct dentry *dentry; | |
1738 | ||
1739 | /* | |
1740 | * The hash list is protected using RCU. | |
1741 | * | |
1742 | * Take d_lock when comparing a candidate dentry, to avoid races | |
1743 | * with d_move(). | |
1744 | * | |
1745 | * It is possible that concurrent renames can mess up our list | |
1746 | * walk here and result in missing our dentry, resulting in the | |
1747 | * false-negative result. d_lookup() protects against concurrent | |
1748 | * renames using rename_lock seqlock. | |
1749 | * | |
1750 | * See Documentation/vfs/dcache-locking.txt for more details. | |
1751 | */ | |
1752 | rcu_read_lock(); | |
1753 | ||
1754 | hlist_for_each_entry_rcu(dentry, node, head, d_hash) { | |
1755 | struct qstr *qstr; | |
1756 | ||
1757 | if (dentry->d_name.hash != hash) | |
1758 | continue; | |
1759 | if (dentry->d_parent != parent) | |
1760 | continue; | |
1761 | ||
1762 | spin_lock(&dentry->d_lock); | |
1763 | ||
1764 | /* | |
1765 | * Recheck the dentry after taking the lock - d_move may have | |
1766 | * changed things. Don't bother checking the hash because | |
1767 | * we're about to compare the whole name anyway. | |
1768 | */ | |
1769 | if (dentry->d_parent != parent) | |
1770 | goto next; | |
1771 | ||
1772 | /* non-existing due to RCU? */ | |
1773 | if (d_unhashed(dentry)) | |
1774 | goto next; | |
1775 | ||
1776 | /* | |
1777 | * It is safe to compare names since d_move() cannot | |
1778 | * change the qstr (protected by d_lock). | |
1779 | */ | |
1780 | qstr = &dentry->d_name; | |
1781 | if (parent->d_op && parent->d_op->d_compare) { | |
1782 | if (parent->d_op->d_compare(parent, parent->d_inode, | |
1783 | dentry, dentry->d_inode, | |
1784 | qstr->len, qstr->name, name)) | |
1785 | goto next; | |
1786 | } else { | |
1787 | if (qstr->len != len) | |
1788 | goto next; | |
1789 | if (memcmp(qstr->name, str, len)) | |
1790 | goto next; | |
1791 | } | |
1792 | ||
1793 | dentry->d_count++; | |
1794 | found = dentry; | |
1795 | spin_unlock(&dentry->d_lock); | |
1796 | break; | |
1797 | next: | |
1798 | spin_unlock(&dentry->d_lock); | |
1799 | } | |
1800 | rcu_read_unlock(); | |
1801 | ||
1802 | return found; | |
1803 | } | |
1804 | ||
1805 | /** | |
1806 | * d_hash_and_lookup - hash the qstr then search for a dentry | |
1807 | * @dir: Directory to search in | |
1808 | * @name: qstr of name we wish to find | |
1809 | * | |
1810 | * On hash failure or on lookup failure NULL is returned. | |
1811 | */ | |
1812 | struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) | |
1813 | { | |
1814 | struct dentry *dentry = NULL; | |
1815 | ||
1816 | /* | |
1817 | * Check for a fs-specific hash function. Note that we must | |
1818 | * calculate the standard hash first, as the d_op->d_hash() | |
1819 | * routine may choose to leave the hash value unchanged. | |
1820 | */ | |
1821 | name->hash = full_name_hash(name->name, name->len); | |
1822 | if (dir->d_op && dir->d_op->d_hash) { | |
1823 | if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0) | |
1824 | goto out; | |
1825 | } | |
1826 | dentry = d_lookup(dir, name); | |
1827 | out: | |
1828 | return dentry; | |
1829 | } | |
1830 | ||
1831 | /** | |
1832 | * d_validate - verify dentry provided from insecure source (deprecated) | |
1833 | * @dentry: The dentry alleged to be valid child of @dparent | |
1834 | * @dparent: The parent dentry (known to be valid) | |
1835 | * | |
1836 | * An insecure source has sent us a dentry, here we verify it and dget() it. | |
1837 | * This is used by ncpfs in its readdir implementation. | |
1838 | * Zero is returned in the dentry is invalid. | |
1839 | * | |
1840 | * This function is slow for big directories, and deprecated, do not use it. | |
1841 | */ | |
1842 | int d_validate(struct dentry *dentry, struct dentry *dparent) | |
1843 | { | |
1844 | struct dentry *child; | |
1845 | ||
1846 | spin_lock(&dcache_lock); | |
1847 | spin_lock(&dparent->d_lock); | |
1848 | list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { | |
1849 | if (dentry == child) { | |
1850 | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | |
1851 | __dget_locked_dlock(dentry); | |
1852 | spin_unlock(&dentry->d_lock); | |
1853 | spin_unlock(&dparent->d_lock); | |
1854 | spin_unlock(&dcache_lock); | |
1855 | return 1; | |
1856 | } | |
1857 | } | |
1858 | spin_unlock(&dparent->d_lock); | |
1859 | spin_unlock(&dcache_lock); | |
1860 | ||
1861 | return 0; | |
1862 | } | |
1863 | EXPORT_SYMBOL(d_validate); | |
1864 | ||
1865 | /* | |
1866 | * When a file is deleted, we have two options: | |
1867 | * - turn this dentry into a negative dentry | |
1868 | * - unhash this dentry and free it. | |
1869 | * | |
1870 | * Usually, we want to just turn this into | |
1871 | * a negative dentry, but if anybody else is | |
1872 | * currently using the dentry or the inode | |
1873 | * we can't do that and we fall back on removing | |
1874 | * it from the hash queues and waiting for | |
1875 | * it to be deleted later when it has no users | |
1876 | */ | |
1877 | ||
1878 | /** | |
1879 | * d_delete - delete a dentry | |
1880 | * @dentry: The dentry to delete | |
1881 | * | |
1882 | * Turn the dentry into a negative dentry if possible, otherwise | |
1883 | * remove it from the hash queues so it can be deleted later | |
1884 | */ | |
1885 | ||
1886 | void d_delete(struct dentry * dentry) | |
1887 | { | |
1888 | int isdir = 0; | |
1889 | /* | |
1890 | * Are we the only user? | |
1891 | */ | |
1892 | spin_lock(&dcache_lock); | |
1893 | spin_lock(&dcache_inode_lock); | |
1894 | spin_lock(&dentry->d_lock); | |
1895 | isdir = S_ISDIR(dentry->d_inode->i_mode); | |
1896 | if (dentry->d_count == 1) { | |
1897 | dentry->d_flags &= ~DCACHE_CANT_MOUNT; | |
1898 | dentry_iput(dentry); | |
1899 | fsnotify_nameremove(dentry, isdir); | |
1900 | return; | |
1901 | } | |
1902 | ||
1903 | if (!d_unhashed(dentry)) | |
1904 | __d_drop(dentry); | |
1905 | ||
1906 | spin_unlock(&dentry->d_lock); | |
1907 | spin_unlock(&dcache_inode_lock); | |
1908 | spin_unlock(&dcache_lock); | |
1909 | ||
1910 | fsnotify_nameremove(dentry, isdir); | |
1911 | } | |
1912 | EXPORT_SYMBOL(d_delete); | |
1913 | ||
1914 | static void __d_rehash(struct dentry * entry, struct hlist_head *list) | |
1915 | { | |
1916 | ||
1917 | entry->d_flags &= ~DCACHE_UNHASHED; | |
1918 | hlist_add_head_rcu(&entry->d_hash, list); | |
1919 | } | |
1920 | ||
1921 | static void _d_rehash(struct dentry * entry) | |
1922 | { | |
1923 | __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); | |
1924 | } | |
1925 | ||
1926 | /** | |
1927 | * d_rehash - add an entry back to the hash | |
1928 | * @entry: dentry to add to the hash | |
1929 | * | |
1930 | * Adds a dentry to the hash according to its name. | |
1931 | */ | |
1932 | ||
1933 | void d_rehash(struct dentry * entry) | |
1934 | { | |
1935 | spin_lock(&dcache_lock); | |
1936 | spin_lock(&entry->d_lock); | |
1937 | spin_lock(&dcache_hash_lock); | |
1938 | _d_rehash(entry); | |
1939 | spin_unlock(&dcache_hash_lock); | |
1940 | spin_unlock(&entry->d_lock); | |
1941 | spin_unlock(&dcache_lock); | |
1942 | } | |
1943 | EXPORT_SYMBOL(d_rehash); | |
1944 | ||
1945 | /** | |
1946 | * dentry_update_name_case - update case insensitive dentry with a new name | |
1947 | * @dentry: dentry to be updated | |
1948 | * @name: new name | |
1949 | * | |
1950 | * Update a case insensitive dentry with new case of name. | |
1951 | * | |
1952 | * dentry must have been returned by d_lookup with name @name. Old and new | |
1953 | * name lengths must match (ie. no d_compare which allows mismatched name | |
1954 | * lengths). | |
1955 | * | |
1956 | * Parent inode i_mutex must be held over d_lookup and into this call (to | |
1957 | * keep renames and concurrent inserts, and readdir(2) away). | |
1958 | */ | |
1959 | void dentry_update_name_case(struct dentry *dentry, struct qstr *name) | |
1960 | { | |
1961 | BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); | |
1962 | BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ | |
1963 | ||
1964 | spin_lock(&dcache_lock); | |
1965 | spin_lock(&dentry->d_lock); | |
1966 | memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); | |
1967 | spin_unlock(&dentry->d_lock); | |
1968 | spin_unlock(&dcache_lock); | |
1969 | } | |
1970 | EXPORT_SYMBOL(dentry_update_name_case); | |
1971 | ||
1972 | static void switch_names(struct dentry *dentry, struct dentry *target) | |
1973 | { | |
1974 | if (dname_external(target)) { | |
1975 | if (dname_external(dentry)) { | |
1976 | /* | |
1977 | * Both external: swap the pointers | |
1978 | */ | |
1979 | swap(target->d_name.name, dentry->d_name.name); | |
1980 | } else { | |
1981 | /* | |
1982 | * dentry:internal, target:external. Steal target's | |
1983 | * storage and make target internal. | |
1984 | */ | |
1985 | memcpy(target->d_iname, dentry->d_name.name, | |
1986 | dentry->d_name.len + 1); | |
1987 | dentry->d_name.name = target->d_name.name; | |
1988 | target->d_name.name = target->d_iname; | |
1989 | } | |
1990 | } else { | |
1991 | if (dname_external(dentry)) { | |
1992 | /* | |
1993 | * dentry:external, target:internal. Give dentry's | |
1994 | * storage to target and make dentry internal | |
1995 | */ | |
1996 | memcpy(dentry->d_iname, target->d_name.name, | |
1997 | target->d_name.len + 1); | |
1998 | target->d_name.name = dentry->d_name.name; | |
1999 | dentry->d_name.name = dentry->d_iname; | |
2000 | } else { | |
2001 | /* | |
2002 | * Both are internal. Just copy target to dentry | |
2003 | */ | |
2004 | memcpy(dentry->d_iname, target->d_name.name, | |
2005 | target->d_name.len + 1); | |
2006 | dentry->d_name.len = target->d_name.len; | |
2007 | return; | |
2008 | } | |
2009 | } | |
2010 | swap(dentry->d_name.len, target->d_name.len); | |
2011 | } | |
2012 | ||
2013 | static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) | |
2014 | { | |
2015 | /* | |
2016 | * XXXX: do we really need to take target->d_lock? | |
2017 | */ | |
2018 | if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) | |
2019 | spin_lock(&target->d_parent->d_lock); | |
2020 | else { | |
2021 | if (d_ancestor(dentry->d_parent, target->d_parent)) { | |
2022 | spin_lock(&dentry->d_parent->d_lock); | |
2023 | spin_lock_nested(&target->d_parent->d_lock, | |
2024 | DENTRY_D_LOCK_NESTED); | |
2025 | } else { | |
2026 | spin_lock(&target->d_parent->d_lock); | |
2027 | spin_lock_nested(&dentry->d_parent->d_lock, | |
2028 | DENTRY_D_LOCK_NESTED); | |
2029 | } | |
2030 | } | |
2031 | if (target < dentry) { | |
2032 | spin_lock_nested(&target->d_lock, 2); | |
2033 | spin_lock_nested(&dentry->d_lock, 3); | |
2034 | } else { | |
2035 | spin_lock_nested(&dentry->d_lock, 2); | |
2036 | spin_lock_nested(&target->d_lock, 3); | |
2037 | } | |
2038 | } | |
2039 | ||
2040 | static void dentry_unlock_parents_for_move(struct dentry *dentry, | |
2041 | struct dentry *target) | |
2042 | { | |
2043 | if (target->d_parent != dentry->d_parent) | |
2044 | spin_unlock(&dentry->d_parent->d_lock); | |
2045 | if (target->d_parent != target) | |
2046 | spin_unlock(&target->d_parent->d_lock); | |
2047 | } | |
2048 | ||
2049 | /* | |
2050 | * When switching names, the actual string doesn't strictly have to | |
2051 | * be preserved in the target - because we're dropping the target | |
2052 | * anyway. As such, we can just do a simple memcpy() to copy over | |
2053 | * the new name before we switch. | |
2054 | * | |
2055 | * Note that we have to be a lot more careful about getting the hash | |
2056 | * switched - we have to switch the hash value properly even if it | |
2057 | * then no longer matches the actual (corrupted) string of the target. | |
2058 | * The hash value has to match the hash queue that the dentry is on.. | |
2059 | */ | |
2060 | /* | |
2061 | * d_move_locked - move a dentry | |
2062 | * @dentry: entry to move | |
2063 | * @target: new dentry | |
2064 | * | |
2065 | * Update the dcache to reflect the move of a file name. Negative | |
2066 | * dcache entries should not be moved in this way. | |
2067 | */ | |
2068 | static void d_move_locked(struct dentry * dentry, struct dentry * target) | |
2069 | { | |
2070 | if (!dentry->d_inode) | |
2071 | printk(KERN_WARNING "VFS: moving negative dcache entry\n"); | |
2072 | ||
2073 | BUG_ON(d_ancestor(dentry, target)); | |
2074 | BUG_ON(d_ancestor(target, dentry)); | |
2075 | ||
2076 | write_seqlock(&rename_lock); | |
2077 | ||
2078 | dentry_lock_for_move(dentry, target); | |
2079 | ||
2080 | /* Move the dentry to the target hash queue, if on different bucket */ | |
2081 | spin_lock(&dcache_hash_lock); | |
2082 | if (!d_unhashed(dentry)) | |
2083 | hlist_del_rcu(&dentry->d_hash); | |
2084 | __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); | |
2085 | spin_unlock(&dcache_hash_lock); | |
2086 | ||
2087 | /* Unhash the target: dput() will then get rid of it */ | |
2088 | __d_drop(target); | |
2089 | ||
2090 | list_del(&dentry->d_u.d_child); | |
2091 | list_del(&target->d_u.d_child); | |
2092 | ||
2093 | /* Switch the names.. */ | |
2094 | switch_names(dentry, target); | |
2095 | swap(dentry->d_name.hash, target->d_name.hash); | |
2096 | ||
2097 | /* ... and switch the parents */ | |
2098 | if (IS_ROOT(dentry)) { | |
2099 | dentry->d_parent = target->d_parent; | |
2100 | target->d_parent = target; | |
2101 | INIT_LIST_HEAD(&target->d_u.d_child); | |
2102 | } else { | |
2103 | swap(dentry->d_parent, target->d_parent); | |
2104 | ||
2105 | /* And add them back to the (new) parent lists */ | |
2106 | list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); | |
2107 | } | |
2108 | ||
2109 | list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); | |
2110 | ||
2111 | dentry_unlock_parents_for_move(dentry, target); | |
2112 | spin_unlock(&target->d_lock); | |
2113 | fsnotify_d_move(dentry); | |
2114 | spin_unlock(&dentry->d_lock); | |
2115 | write_sequnlock(&rename_lock); | |
2116 | } | |
2117 | ||
2118 | /** | |
2119 | * d_move - move a dentry | |
2120 | * @dentry: entry to move | |
2121 | * @target: new dentry | |
2122 | * | |
2123 | * Update the dcache to reflect the move of a file name. Negative | |
2124 | * dcache entries should not be moved in this way. | |
2125 | */ | |
2126 | ||
2127 | void d_move(struct dentry * dentry, struct dentry * target) | |
2128 | { | |
2129 | spin_lock(&dcache_lock); | |
2130 | d_move_locked(dentry, target); | |
2131 | spin_unlock(&dcache_lock); | |
2132 | } | |
2133 | EXPORT_SYMBOL(d_move); | |
2134 | ||
2135 | /** | |
2136 | * d_ancestor - search for an ancestor | |
2137 | * @p1: ancestor dentry | |
2138 | * @p2: child dentry | |
2139 | * | |
2140 | * Returns the ancestor dentry of p2 which is a child of p1, if p1 is | |
2141 | * an ancestor of p2, else NULL. | |
2142 | */ | |
2143 | struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) | |
2144 | { | |
2145 | struct dentry *p; | |
2146 | ||
2147 | for (p = p2; !IS_ROOT(p); p = p->d_parent) { | |
2148 | if (p->d_parent == p1) | |
2149 | return p; | |
2150 | } | |
2151 | return NULL; | |
2152 | } | |
2153 | ||
2154 | /* | |
2155 | * This helper attempts to cope with remotely renamed directories | |
2156 | * | |
2157 | * It assumes that the caller is already holding | |
2158 | * dentry->d_parent->d_inode->i_mutex and the dcache_lock | |
2159 | * | |
2160 | * Note: If ever the locking in lock_rename() changes, then please | |
2161 | * remember to update this too... | |
2162 | */ | |
2163 | static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias) | |
2164 | __releases(dcache_lock) | |
2165 | __releases(dcache_inode_lock) | |
2166 | { | |
2167 | struct mutex *m1 = NULL, *m2 = NULL; | |
2168 | struct dentry *ret; | |
2169 | ||
2170 | /* If alias and dentry share a parent, then no extra locks required */ | |
2171 | if (alias->d_parent == dentry->d_parent) | |
2172 | goto out_unalias; | |
2173 | ||
2174 | /* Check for loops */ | |
2175 | ret = ERR_PTR(-ELOOP); | |
2176 | if (d_ancestor(alias, dentry)) | |
2177 | goto out_err; | |
2178 | ||
2179 | /* See lock_rename() */ | |
2180 | ret = ERR_PTR(-EBUSY); | |
2181 | if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) | |
2182 | goto out_err; | |
2183 | m1 = &dentry->d_sb->s_vfs_rename_mutex; | |
2184 | if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) | |
2185 | goto out_err; | |
2186 | m2 = &alias->d_parent->d_inode->i_mutex; | |
2187 | out_unalias: | |
2188 | d_move_locked(alias, dentry); | |
2189 | ret = alias; | |
2190 | out_err: | |
2191 | spin_unlock(&dcache_inode_lock); | |
2192 | spin_unlock(&dcache_lock); | |
2193 | if (m2) | |
2194 | mutex_unlock(m2); | |
2195 | if (m1) | |
2196 | mutex_unlock(m1); | |
2197 | return ret; | |
2198 | } | |
2199 | ||
2200 | /* | |
2201 | * Prepare an anonymous dentry for life in the superblock's dentry tree as a | |
2202 | * named dentry in place of the dentry to be replaced. | |
2203 | * returns with anon->d_lock held! | |
2204 | */ | |
2205 | static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) | |
2206 | { | |
2207 | struct dentry *dparent, *aparent; | |
2208 | ||
2209 | dentry_lock_for_move(anon, dentry); | |
2210 | ||
2211 | dparent = dentry->d_parent; | |
2212 | aparent = anon->d_parent; | |
2213 | ||
2214 | switch_names(dentry, anon); | |
2215 | swap(dentry->d_name.hash, anon->d_name.hash); | |
2216 | ||
2217 | dentry->d_parent = (aparent == anon) ? dentry : aparent; | |
2218 | list_del(&dentry->d_u.d_child); | |
2219 | if (!IS_ROOT(dentry)) | |
2220 | list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); | |
2221 | else | |
2222 | INIT_LIST_HEAD(&dentry->d_u.d_child); | |
2223 | ||
2224 | anon->d_parent = (dparent == dentry) ? anon : dparent; | |
2225 | list_del(&anon->d_u.d_child); | |
2226 | if (!IS_ROOT(anon)) | |
2227 | list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); | |
2228 | else | |
2229 | INIT_LIST_HEAD(&anon->d_u.d_child); | |
2230 | ||
2231 | dentry_unlock_parents_for_move(anon, dentry); | |
2232 | spin_unlock(&dentry->d_lock); | |
2233 | ||
2234 | /* anon->d_lock still locked, returns locked */ | |
2235 | anon->d_flags &= ~DCACHE_DISCONNECTED; | |
2236 | } | |
2237 | ||
2238 | /** | |
2239 | * d_materialise_unique - introduce an inode into the tree | |
2240 | * @dentry: candidate dentry | |
2241 | * @inode: inode to bind to the dentry, to which aliases may be attached | |
2242 | * | |
2243 | * Introduces an dentry into the tree, substituting an extant disconnected | |
2244 | * root directory alias in its place if there is one | |
2245 | */ | |
2246 | struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) | |
2247 | { | |
2248 | struct dentry *actual; | |
2249 | ||
2250 | BUG_ON(!d_unhashed(dentry)); | |
2251 | ||
2252 | spin_lock(&dcache_lock); | |
2253 | spin_lock(&dcache_inode_lock); | |
2254 | ||
2255 | if (!inode) { | |
2256 | actual = dentry; | |
2257 | __d_instantiate(dentry, NULL); | |
2258 | goto found_lock; | |
2259 | } | |
2260 | ||
2261 | if (S_ISDIR(inode->i_mode)) { | |
2262 | struct dentry *alias; | |
2263 | ||
2264 | /* Does an aliased dentry already exist? */ | |
2265 | alias = __d_find_alias(inode, 0); | |
2266 | if (alias) { | |
2267 | actual = alias; | |
2268 | /* Is this an anonymous mountpoint that we could splice | |
2269 | * into our tree? */ | |
2270 | if (IS_ROOT(alias)) { | |
2271 | __d_materialise_dentry(dentry, alias); | |
2272 | __d_drop(alias); | |
2273 | goto found; | |
2274 | } | |
2275 | /* Nope, but we must(!) avoid directory aliasing */ | |
2276 | actual = __d_unalias(dentry, alias); | |
2277 | if (IS_ERR(actual)) | |
2278 | dput(alias); | |
2279 | goto out_nolock; | |
2280 | } | |
2281 | } | |
2282 | ||
2283 | /* Add a unique reference */ | |
2284 | actual = __d_instantiate_unique(dentry, inode); | |
2285 | if (!actual) | |
2286 | actual = dentry; | |
2287 | else if (unlikely(!d_unhashed(actual))) | |
2288 | goto shouldnt_be_hashed; | |
2289 | ||
2290 | found_lock: | |
2291 | spin_lock(&actual->d_lock); | |
2292 | found: | |
2293 | spin_lock(&dcache_hash_lock); | |
2294 | _d_rehash(actual); | |
2295 | spin_unlock(&dcache_hash_lock); | |
2296 | spin_unlock(&actual->d_lock); | |
2297 | spin_unlock(&dcache_inode_lock); | |
2298 | spin_unlock(&dcache_lock); | |
2299 | out_nolock: | |
2300 | if (actual == dentry) { | |
2301 | security_d_instantiate(dentry, inode); | |
2302 | return NULL; | |
2303 | } | |
2304 | ||
2305 | iput(inode); | |
2306 | return actual; | |
2307 | ||
2308 | shouldnt_be_hashed: | |
2309 | spin_unlock(&dcache_inode_lock); | |
2310 | spin_unlock(&dcache_lock); | |
2311 | BUG(); | |
2312 | } | |
2313 | EXPORT_SYMBOL_GPL(d_materialise_unique); | |
2314 | ||
2315 | static int prepend(char **buffer, int *buflen, const char *str, int namelen) | |
2316 | { | |
2317 | *buflen -= namelen; | |
2318 | if (*buflen < 0) | |
2319 | return -ENAMETOOLONG; | |
2320 | *buffer -= namelen; | |
2321 | memcpy(*buffer, str, namelen); | |
2322 | return 0; | |
2323 | } | |
2324 | ||
2325 | static int prepend_name(char **buffer, int *buflen, struct qstr *name) | |
2326 | { | |
2327 | return prepend(buffer, buflen, name->name, name->len); | |
2328 | } | |
2329 | ||
2330 | /** | |
2331 | * Prepend path string to a buffer | |
2332 | * | |
2333 | * @path: the dentry/vfsmount to report | |
2334 | * @root: root vfsmnt/dentry (may be modified by this function) | |
2335 | * @buffer: pointer to the end of the buffer | |
2336 | * @buflen: pointer to buffer length | |
2337 | * | |
2338 | * Caller holds the rename_lock. | |
2339 | * | |
2340 | * If path is not reachable from the supplied root, then the value of | |
2341 | * root is changed (without modifying refcounts). | |
2342 | */ | |
2343 | static int prepend_path(const struct path *path, struct path *root, | |
2344 | char **buffer, int *buflen) | |
2345 | { | |
2346 | struct dentry *dentry = path->dentry; | |
2347 | struct vfsmount *vfsmnt = path->mnt; | |
2348 | bool slash = false; | |
2349 | int error = 0; | |
2350 | ||
2351 | br_read_lock(vfsmount_lock); | |
2352 | while (dentry != root->dentry || vfsmnt != root->mnt) { | |
2353 | struct dentry * parent; | |
2354 | ||
2355 | if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { | |
2356 | /* Global root? */ | |
2357 | if (vfsmnt->mnt_parent == vfsmnt) { | |
2358 | goto global_root; | |
2359 | } | |
2360 | dentry = vfsmnt->mnt_mountpoint; | |
2361 | vfsmnt = vfsmnt->mnt_parent; | |
2362 | continue; | |
2363 | } | |
2364 | parent = dentry->d_parent; | |
2365 | prefetch(parent); | |
2366 | spin_lock(&dentry->d_lock); | |
2367 | error = prepend_name(buffer, buflen, &dentry->d_name); | |
2368 | spin_unlock(&dentry->d_lock); | |
2369 | if (!error) | |
2370 | error = prepend(buffer, buflen, "/", 1); | |
2371 | if (error) | |
2372 | break; | |
2373 | ||
2374 | slash = true; | |
2375 | dentry = parent; | |
2376 | } | |
2377 | ||
2378 | out: | |
2379 | if (!error && !slash) | |
2380 | error = prepend(buffer, buflen, "/", 1); | |
2381 | ||
2382 | br_read_unlock(vfsmount_lock); | |
2383 | return error; | |
2384 | ||
2385 | global_root: | |
2386 | /* | |
2387 | * Filesystems needing to implement special "root names" | |
2388 | * should do so with ->d_dname() | |
2389 | */ | |
2390 | if (IS_ROOT(dentry) && | |
2391 | (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { | |
2392 | WARN(1, "Root dentry has weird name <%.*s>\n", | |
2393 | (int) dentry->d_name.len, dentry->d_name.name); | |
2394 | } | |
2395 | root->mnt = vfsmnt; | |
2396 | root->dentry = dentry; | |
2397 | goto out; | |
2398 | } | |
2399 | ||
2400 | /** | |
2401 | * __d_path - return the path of a dentry | |
2402 | * @path: the dentry/vfsmount to report | |
2403 | * @root: root vfsmnt/dentry (may be modified by this function) | |
2404 | * @buf: buffer to return value in | |
2405 | * @buflen: buffer length | |
2406 | * | |
2407 | * Convert a dentry into an ASCII path name. | |
2408 | * | |
2409 | * Returns a pointer into the buffer or an error code if the | |
2410 | * path was too long. | |
2411 | * | |
2412 | * "buflen" should be positive. | |
2413 | * | |
2414 | * If path is not reachable from the supplied root, then the value of | |
2415 | * root is changed (without modifying refcounts). | |
2416 | */ | |
2417 | char *__d_path(const struct path *path, struct path *root, | |
2418 | char *buf, int buflen) | |
2419 | { | |
2420 | char *res = buf + buflen; | |
2421 | int error; | |
2422 | ||
2423 | prepend(&res, &buflen, "\0", 1); | |
2424 | spin_lock(&dcache_lock); | |
2425 | write_seqlock(&rename_lock); | |
2426 | error = prepend_path(path, root, &res, &buflen); | |
2427 | write_sequnlock(&rename_lock); | |
2428 | spin_unlock(&dcache_lock); | |
2429 | ||
2430 | if (error) | |
2431 | return ERR_PTR(error); | |
2432 | return res; | |
2433 | } | |
2434 | ||
2435 | /* | |
2436 | * same as __d_path but appends "(deleted)" for unlinked files. | |
2437 | */ | |
2438 | static int path_with_deleted(const struct path *path, struct path *root, | |
2439 | char **buf, int *buflen) | |
2440 | { | |
2441 | prepend(buf, buflen, "\0", 1); | |
2442 | if (d_unlinked(path->dentry)) { | |
2443 | int error = prepend(buf, buflen, " (deleted)", 10); | |
2444 | if (error) | |
2445 | return error; | |
2446 | } | |
2447 | ||
2448 | return prepend_path(path, root, buf, buflen); | |
2449 | } | |
2450 | ||
2451 | static int prepend_unreachable(char **buffer, int *buflen) | |
2452 | { | |
2453 | return prepend(buffer, buflen, "(unreachable)", 13); | |
2454 | } | |
2455 | ||
2456 | /** | |
2457 | * d_path - return the path of a dentry | |
2458 | * @path: path to report | |
2459 | * @buf: buffer to return value in | |
2460 | * @buflen: buffer length | |
2461 | * | |
2462 | * Convert a dentry into an ASCII path name. If the entry has been deleted | |
2463 | * the string " (deleted)" is appended. Note that this is ambiguous. | |
2464 | * | |
2465 | * Returns a pointer into the buffer or an error code if the path was | |
2466 | * too long. Note: Callers should use the returned pointer, not the passed | |
2467 | * in buffer, to use the name! The implementation often starts at an offset | |
2468 | * into the buffer, and may leave 0 bytes at the start. | |
2469 | * | |
2470 | * "buflen" should be positive. | |
2471 | */ | |
2472 | char *d_path(const struct path *path, char *buf, int buflen) | |
2473 | { | |
2474 | char *res = buf + buflen; | |
2475 | struct path root; | |
2476 | struct path tmp; | |
2477 | int error; | |
2478 | ||
2479 | /* | |
2480 | * We have various synthetic filesystems that never get mounted. On | |
2481 | * these filesystems dentries are never used for lookup purposes, and | |
2482 | * thus don't need to be hashed. They also don't need a name until a | |
2483 | * user wants to identify the object in /proc/pid/fd/. The little hack | |
2484 | * below allows us to generate a name for these objects on demand: | |
2485 | */ | |
2486 | if (path->dentry->d_op && path->dentry->d_op->d_dname) | |
2487 | return path->dentry->d_op->d_dname(path->dentry, buf, buflen); | |
2488 | ||
2489 | get_fs_root(current->fs, &root); | |
2490 | spin_lock(&dcache_lock); | |
2491 | write_seqlock(&rename_lock); | |
2492 | tmp = root; | |
2493 | error = path_with_deleted(path, &tmp, &res, &buflen); | |
2494 | if (error) | |
2495 | res = ERR_PTR(error); | |
2496 | write_sequnlock(&rename_lock); | |
2497 | spin_unlock(&dcache_lock); | |
2498 | path_put(&root); | |
2499 | return res; | |
2500 | } | |
2501 | EXPORT_SYMBOL(d_path); | |
2502 | ||
2503 | /** | |
2504 | * d_path_with_unreachable - return the path of a dentry | |
2505 | * @path: path to report | |
2506 | * @buf: buffer to return value in | |
2507 | * @buflen: buffer length | |
2508 | * | |
2509 | * The difference from d_path() is that this prepends "(unreachable)" | |
2510 | * to paths which are unreachable from the current process' root. | |
2511 | */ | |
2512 | char *d_path_with_unreachable(const struct path *path, char *buf, int buflen) | |
2513 | { | |
2514 | char *res = buf + buflen; | |
2515 | struct path root; | |
2516 | struct path tmp; | |
2517 | int error; | |
2518 | ||
2519 | if (path->dentry->d_op && path->dentry->d_op->d_dname) | |
2520 | return path->dentry->d_op->d_dname(path->dentry, buf, buflen); | |
2521 | ||
2522 | get_fs_root(current->fs, &root); | |
2523 | spin_lock(&dcache_lock); | |
2524 | write_seqlock(&rename_lock); | |
2525 | tmp = root; | |
2526 | error = path_with_deleted(path, &tmp, &res, &buflen); | |
2527 | if (!error && !path_equal(&tmp, &root)) | |
2528 | error = prepend_unreachable(&res, &buflen); | |
2529 | write_sequnlock(&rename_lock); | |
2530 | spin_unlock(&dcache_lock); | |
2531 | path_put(&root); | |
2532 | if (error) | |
2533 | res = ERR_PTR(error); | |
2534 | ||
2535 | return res; | |
2536 | } | |
2537 | ||
2538 | /* | |
2539 | * Helper function for dentry_operations.d_dname() members | |
2540 | */ | |
2541 | char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, | |
2542 | const char *fmt, ...) | |
2543 | { | |
2544 | va_list args; | |
2545 | char temp[64]; | |
2546 | int sz; | |
2547 | ||
2548 | va_start(args, fmt); | |
2549 | sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; | |
2550 | va_end(args); | |
2551 | ||
2552 | if (sz > sizeof(temp) || sz > buflen) | |
2553 | return ERR_PTR(-ENAMETOOLONG); | |
2554 | ||
2555 | buffer += buflen - sz; | |
2556 | return memcpy(buffer, temp, sz); | |
2557 | } | |
2558 | ||
2559 | /* | |
2560 | * Write full pathname from the root of the filesystem into the buffer. | |
2561 | */ | |
2562 | static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) | |
2563 | { | |
2564 | char *end = buf + buflen; | |
2565 | char *retval; | |
2566 | ||
2567 | prepend(&end, &buflen, "\0", 1); | |
2568 | if (buflen < 1) | |
2569 | goto Elong; | |
2570 | /* Get '/' right */ | |
2571 | retval = end-1; | |
2572 | *retval = '/'; | |
2573 | ||
2574 | while (!IS_ROOT(dentry)) { | |
2575 | struct dentry *parent = dentry->d_parent; | |
2576 | int error; | |
2577 | ||
2578 | prefetch(parent); | |
2579 | spin_lock(&dentry->d_lock); | |
2580 | error = prepend_name(&end, &buflen, &dentry->d_name); | |
2581 | spin_unlock(&dentry->d_lock); | |
2582 | if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) | |
2583 | goto Elong; | |
2584 | ||
2585 | retval = end; | |
2586 | dentry = parent; | |
2587 | } | |
2588 | return retval; | |
2589 | Elong: | |
2590 | return ERR_PTR(-ENAMETOOLONG); | |
2591 | } | |
2592 | ||
2593 | char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) | |
2594 | { | |
2595 | char *retval; | |
2596 | ||
2597 | spin_lock(&dcache_lock); | |
2598 | write_seqlock(&rename_lock); | |
2599 | retval = __dentry_path(dentry, buf, buflen); | |
2600 | write_sequnlock(&rename_lock); | |
2601 | spin_unlock(&dcache_lock); | |
2602 | ||
2603 | return retval; | |
2604 | } | |
2605 | EXPORT_SYMBOL(dentry_path_raw); | |
2606 | ||
2607 | char *dentry_path(struct dentry *dentry, char *buf, int buflen) | |
2608 | { | |
2609 | char *p = NULL; | |
2610 | char *retval; | |
2611 | ||
2612 | spin_lock(&dcache_lock); | |
2613 | write_seqlock(&rename_lock); | |
2614 | if (d_unlinked(dentry)) { | |
2615 | p = buf + buflen; | |
2616 | if (prepend(&p, &buflen, "//deleted", 10) != 0) | |
2617 | goto Elong; | |
2618 | buflen++; | |
2619 | } | |
2620 | retval = __dentry_path(dentry, buf, buflen); | |
2621 | write_sequnlock(&rename_lock); | |
2622 | spin_unlock(&dcache_lock); | |
2623 | if (!IS_ERR(retval) && p) | |
2624 | *p = '/'; /* restore '/' overriden with '\0' */ | |
2625 | return retval; | |
2626 | Elong: | |
2627 | spin_unlock(&dcache_lock); | |
2628 | return ERR_PTR(-ENAMETOOLONG); | |
2629 | } | |
2630 | ||
2631 | /* | |
2632 | * NOTE! The user-level library version returns a | |
2633 | * character pointer. The kernel system call just | |
2634 | * returns the length of the buffer filled (which | |
2635 | * includes the ending '\0' character), or a negative | |
2636 | * error value. So libc would do something like | |
2637 | * | |
2638 | * char *getcwd(char * buf, size_t size) | |
2639 | * { | |
2640 | * int retval; | |
2641 | * | |
2642 | * retval = sys_getcwd(buf, size); | |
2643 | * if (retval >= 0) | |
2644 | * return buf; | |
2645 | * errno = -retval; | |
2646 | * return NULL; | |
2647 | * } | |
2648 | */ | |
2649 | SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) | |
2650 | { | |
2651 | int error; | |
2652 | struct path pwd, root; | |
2653 | char *page = (char *) __get_free_page(GFP_USER); | |
2654 | ||
2655 | if (!page) | |
2656 | return -ENOMEM; | |
2657 | ||
2658 | get_fs_root_and_pwd(current->fs, &root, &pwd); | |
2659 | ||
2660 | error = -ENOENT; | |
2661 | spin_lock(&dcache_lock); | |
2662 | write_seqlock(&rename_lock); | |
2663 | if (!d_unlinked(pwd.dentry)) { | |
2664 | unsigned long len; | |
2665 | struct path tmp = root; | |
2666 | char *cwd = page + PAGE_SIZE; | |
2667 | int buflen = PAGE_SIZE; | |
2668 | ||
2669 | prepend(&cwd, &buflen, "\0", 1); | |
2670 | error = prepend_path(&pwd, &tmp, &cwd, &buflen); | |
2671 | write_sequnlock(&rename_lock); | |
2672 | spin_unlock(&dcache_lock); | |
2673 | ||
2674 | if (error) | |
2675 | goto out; | |
2676 | ||
2677 | /* Unreachable from current root */ | |
2678 | if (!path_equal(&tmp, &root)) { | |
2679 | error = prepend_unreachable(&cwd, &buflen); | |
2680 | if (error) | |
2681 | goto out; | |
2682 | } | |
2683 | ||
2684 | error = -ERANGE; | |
2685 | len = PAGE_SIZE + page - cwd; | |
2686 | if (len <= size) { | |
2687 | error = len; | |
2688 | if (copy_to_user(buf, cwd, len)) | |
2689 | error = -EFAULT; | |
2690 | } | |
2691 | } else { | |
2692 | write_sequnlock(&rename_lock); | |
2693 | spin_unlock(&dcache_lock); | |
2694 | } | |
2695 | ||
2696 | out: | |
2697 | path_put(&pwd); | |
2698 | path_put(&root); | |
2699 | free_page((unsigned long) page); | |
2700 | return error; | |
2701 | } | |
2702 | ||
2703 | /* | |
2704 | * Test whether new_dentry is a subdirectory of old_dentry. | |
2705 | * | |
2706 | * Trivially implemented using the dcache structure | |
2707 | */ | |
2708 | ||
2709 | /** | |
2710 | * is_subdir - is new dentry a subdirectory of old_dentry | |
2711 | * @new_dentry: new dentry | |
2712 | * @old_dentry: old dentry | |
2713 | * | |
2714 | * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). | |
2715 | * Returns 0 otherwise. | |
2716 | * Caller must ensure that "new_dentry" is pinned before calling is_subdir() | |
2717 | */ | |
2718 | ||
2719 | int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) | |
2720 | { | |
2721 | int result; | |
2722 | unsigned seq; | |
2723 | ||
2724 | if (new_dentry == old_dentry) | |
2725 | return 1; | |
2726 | ||
2727 | do { | |
2728 | /* for restarting inner loop in case of seq retry */ | |
2729 | seq = read_seqbegin(&rename_lock); | |
2730 | /* | |
2731 | * Need rcu_readlock to protect against the d_parent trashing | |
2732 | * due to d_move | |
2733 | */ | |
2734 | rcu_read_lock(); | |
2735 | if (d_ancestor(old_dentry, new_dentry)) | |
2736 | result = 1; | |
2737 | else | |
2738 | result = 0; | |
2739 | rcu_read_unlock(); | |
2740 | } while (read_seqretry(&rename_lock, seq)); | |
2741 | ||
2742 | return result; | |
2743 | } | |
2744 | ||
2745 | int path_is_under(struct path *path1, struct path *path2) | |
2746 | { | |
2747 | struct vfsmount *mnt = path1->mnt; | |
2748 | struct dentry *dentry = path1->dentry; | |
2749 | int res; | |
2750 | ||
2751 | br_read_lock(vfsmount_lock); | |
2752 | if (mnt != path2->mnt) { | |
2753 | for (;;) { | |
2754 | if (mnt->mnt_parent == mnt) { | |
2755 | br_read_unlock(vfsmount_lock); | |
2756 | return 0; | |
2757 | } | |
2758 | if (mnt->mnt_parent == path2->mnt) | |
2759 | break; | |
2760 | mnt = mnt->mnt_parent; | |
2761 | } | |
2762 | dentry = mnt->mnt_mountpoint; | |
2763 | } | |
2764 | res = is_subdir(dentry, path2->dentry); | |
2765 | br_read_unlock(vfsmount_lock); | |
2766 | return res; | |
2767 | } | |
2768 | EXPORT_SYMBOL(path_is_under); | |
2769 | ||
2770 | void d_genocide(struct dentry *root) | |
2771 | { | |
2772 | struct dentry *this_parent; | |
2773 | struct list_head *next; | |
2774 | unsigned seq; | |
2775 | ||
2776 | rename_retry: | |
2777 | this_parent = root; | |
2778 | seq = read_seqbegin(&rename_lock); | |
2779 | spin_lock(&dcache_lock); | |
2780 | spin_lock(&this_parent->d_lock); | |
2781 | repeat: | |
2782 | next = this_parent->d_subdirs.next; | |
2783 | resume: | |
2784 | while (next != &this_parent->d_subdirs) { | |
2785 | struct list_head *tmp = next; | |
2786 | struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | |
2787 | next = tmp->next; | |
2788 | ||
2789 | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | |
2790 | if (d_unhashed(dentry) || !dentry->d_inode) { | |
2791 | spin_unlock(&dentry->d_lock); | |
2792 | continue; | |
2793 | } | |
2794 | if (!list_empty(&dentry->d_subdirs)) { | |
2795 | spin_unlock(&this_parent->d_lock); | |
2796 | spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); | |
2797 | this_parent = dentry; | |
2798 | spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); | |
2799 | goto repeat; | |
2800 | } | |
2801 | if (!(dentry->d_flags & DCACHE_GENOCIDE)) { | |
2802 | dentry->d_flags |= DCACHE_GENOCIDE; | |
2803 | dentry->d_count--; | |
2804 | } | |
2805 | spin_unlock(&dentry->d_lock); | |
2806 | } | |
2807 | if (this_parent != root) { | |
2808 | struct dentry *tmp; | |
2809 | struct dentry *child; | |
2810 | ||
2811 | tmp = this_parent->d_parent; | |
2812 | if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { | |
2813 | this_parent->d_flags |= DCACHE_GENOCIDE; | |
2814 | this_parent->d_count--; | |
2815 | } | |
2816 | rcu_read_lock(); | |
2817 | spin_unlock(&this_parent->d_lock); | |
2818 | child = this_parent; | |
2819 | this_parent = tmp; | |
2820 | spin_lock(&this_parent->d_lock); | |
2821 | /* might go back up the wrong parent if we have had a rename | |
2822 | * or deletion */ | |
2823 | if (this_parent != child->d_parent || | |
2824 | read_seqretry(&rename_lock, seq)) { | |
2825 | spin_unlock(&this_parent->d_lock); | |
2826 | spin_unlock(&dcache_lock); | |
2827 | rcu_read_unlock(); | |
2828 | goto rename_retry; | |
2829 | } | |
2830 | rcu_read_unlock(); | |
2831 | next = child->d_u.d_child.next; | |
2832 | goto resume; | |
2833 | } | |
2834 | spin_unlock(&this_parent->d_lock); | |
2835 | spin_unlock(&dcache_lock); | |
2836 | if (read_seqretry(&rename_lock, seq)) | |
2837 | goto rename_retry; | |
2838 | } | |
2839 | ||
2840 | /** | |
2841 | * find_inode_number - check for dentry with name | |
2842 | * @dir: directory to check | |
2843 | * @name: Name to find. | |
2844 | * | |
2845 | * Check whether a dentry already exists for the given name, | |
2846 | * and return the inode number if it has an inode. Otherwise | |
2847 | * 0 is returned. | |
2848 | * | |
2849 | * This routine is used to post-process directory listings for | |
2850 | * filesystems using synthetic inode numbers, and is necessary | |
2851 | * to keep getcwd() working. | |
2852 | */ | |
2853 | ||
2854 | ino_t find_inode_number(struct dentry *dir, struct qstr *name) | |
2855 | { | |
2856 | struct dentry * dentry; | |
2857 | ino_t ino = 0; | |
2858 | ||
2859 | dentry = d_hash_and_lookup(dir, name); | |
2860 | if (dentry) { | |
2861 | if (dentry->d_inode) | |
2862 | ino = dentry->d_inode->i_ino; | |
2863 | dput(dentry); | |
2864 | } | |
2865 | return ino; | |
2866 | } | |
2867 | EXPORT_SYMBOL(find_inode_number); | |
2868 | ||
2869 | static __initdata unsigned long dhash_entries; | |
2870 | static int __init set_dhash_entries(char *str) | |
2871 | { | |
2872 | if (!str) | |
2873 | return 0; | |
2874 | dhash_entries = simple_strtoul(str, &str, 0); | |
2875 | return 1; | |
2876 | } | |
2877 | __setup("dhash_entries=", set_dhash_entries); | |
2878 | ||
2879 | static void __init dcache_init_early(void) | |
2880 | { | |
2881 | int loop; | |
2882 | ||
2883 | /* If hashes are distributed across NUMA nodes, defer | |
2884 | * hash allocation until vmalloc space is available. | |
2885 | */ | |
2886 | if (hashdist) | |
2887 | return; | |
2888 | ||
2889 | dentry_hashtable = | |
2890 | alloc_large_system_hash("Dentry cache", | |
2891 | sizeof(struct hlist_head), | |
2892 | dhash_entries, | |
2893 | 13, | |
2894 | HASH_EARLY, | |
2895 | &d_hash_shift, | |
2896 | &d_hash_mask, | |
2897 | 0); | |
2898 | ||
2899 | for (loop = 0; loop < (1 << d_hash_shift); loop++) | |
2900 | INIT_HLIST_HEAD(&dentry_hashtable[loop]); | |
2901 | } | |
2902 | ||
2903 | static void __init dcache_init(void) | |
2904 | { | |
2905 | int loop; | |
2906 | ||
2907 | /* | |
2908 | * A constructor could be added for stable state like the lists, | |
2909 | * but it is probably not worth it because of the cache nature | |
2910 | * of the dcache. | |
2911 | */ | |
2912 | dentry_cache = KMEM_CACHE(dentry, | |
2913 | SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); | |
2914 | ||
2915 | register_shrinker(&dcache_shrinker); | |
2916 | ||
2917 | /* Hash may have been set up in dcache_init_early */ | |
2918 | if (!hashdist) | |
2919 | return; | |
2920 | ||
2921 | dentry_hashtable = | |
2922 | alloc_large_system_hash("Dentry cache", | |
2923 | sizeof(struct hlist_head), | |
2924 | dhash_entries, | |
2925 | 13, | |
2926 | 0, | |
2927 | &d_hash_shift, | |
2928 | &d_hash_mask, | |
2929 | 0); | |
2930 | ||
2931 | for (loop = 0; loop < (1 << d_hash_shift); loop++) | |
2932 | INIT_HLIST_HEAD(&dentry_hashtable[loop]); | |
2933 | } | |
2934 | ||
2935 | /* SLAB cache for __getname() consumers */ | |
2936 | struct kmem_cache *names_cachep __read_mostly; | |
2937 | EXPORT_SYMBOL(names_cachep); | |
2938 | ||
2939 | EXPORT_SYMBOL(d_genocide); | |
2940 | ||
2941 | void __init vfs_caches_init_early(void) | |
2942 | { | |
2943 | dcache_init_early(); | |
2944 | inode_init_early(); | |
2945 | } | |
2946 | ||
2947 | void __init vfs_caches_init(unsigned long mempages) | |
2948 | { | |
2949 | unsigned long reserve; | |
2950 | ||
2951 | /* Base hash sizes on available memory, with a reserve equal to | |
2952 | 150% of current kernel size */ | |
2953 | ||
2954 | reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); | |
2955 | mempages -= reserve; | |
2956 | ||
2957 | names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, | |
2958 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | |
2959 | ||
2960 | dcache_init(); | |
2961 | inode_init(); | |
2962 | files_init(mempages); | |
2963 | mnt_init(); | |
2964 | bdev_cache_init(); | |
2965 | chrdev_init(); | |
2966 | } |