]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - fs/exec.c
execve: improve interactivity with large arguments
[mirror_ubuntu-hirsute-kernel.git] / fs / exec.c
... / ...
CommitLineData
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/stat.h>
30#include <linux/fcntl.h>
31#include <linux/swap.h>
32#include <linux/string.h>
33#include <linux/init.h>
34#include <linux/pagemap.h>
35#include <linux/perf_event.h>
36#include <linux/highmem.h>
37#include <linux/spinlock.h>
38#include <linux/key.h>
39#include <linux/personality.h>
40#include <linux/binfmts.h>
41#include <linux/utsname.h>
42#include <linux/pid_namespace.h>
43#include <linux/module.h>
44#include <linux/namei.h>
45#include <linux/proc_fs.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57
58#include <asm/uaccess.h>
59#include <asm/mmu_context.h>
60#include <asm/tlb.h>
61#include "internal.h"
62
63int core_uses_pid;
64char core_pattern[CORENAME_MAX_SIZE] = "core";
65unsigned int core_pipe_limit;
66int suid_dumpable = 0;
67
68/* The maximal length of core_pattern is also specified in sysctl.c */
69
70static LIST_HEAD(formats);
71static DEFINE_RWLOCK(binfmt_lock);
72
73int __register_binfmt(struct linux_binfmt * fmt, int insert)
74{
75 if (!fmt)
76 return -EINVAL;
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 return 0;
82}
83
84EXPORT_SYMBOL(__register_binfmt);
85
86void unregister_binfmt(struct linux_binfmt * fmt)
87{
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
91}
92
93EXPORT_SYMBOL(unregister_binfmt);
94
95static inline void put_binfmt(struct linux_binfmt * fmt)
96{
97 module_put(fmt->module);
98}
99
100/*
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
103 *
104 * Also note that we take the address to load from from the file itself.
105 */
106SYSCALL_DEFINE1(uselib, const char __user *, library)
107{
108 struct file *file;
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
111
112 if (IS_ERR(tmp))
113 goto out;
114
115 file = do_filp_open(AT_FDCWD, tmp,
116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 MAY_READ | MAY_EXEC | MAY_OPEN);
118 putname(tmp);
119 error = PTR_ERR(file);
120 if (IS_ERR(file))
121 goto out;
122
123 error = -EINVAL;
124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 goto exit;
126
127 error = -EACCES;
128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 goto exit;
130
131 fsnotify_open(file);
132
133 error = -ENOEXEC;
134 if(file->f_op) {
135 struct linux_binfmt * fmt;
136
137 read_lock(&binfmt_lock);
138 list_for_each_entry(fmt, &formats, lh) {
139 if (!fmt->load_shlib)
140 continue;
141 if (!try_module_get(fmt->module))
142 continue;
143 read_unlock(&binfmt_lock);
144 error = fmt->load_shlib(file);
145 read_lock(&binfmt_lock);
146 put_binfmt(fmt);
147 if (error != -ENOEXEC)
148 break;
149 }
150 read_unlock(&binfmt_lock);
151 }
152exit:
153 fput(file);
154out:
155 return error;
156}
157
158#ifdef CONFIG_MMU
159
160static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 int write)
162{
163 struct page *page;
164 int ret;
165
166#ifdef CONFIG_STACK_GROWSUP
167 if (write) {
168 ret = expand_stack_downwards(bprm->vma, pos);
169 if (ret < 0)
170 return NULL;
171 }
172#endif
173 ret = get_user_pages(current, bprm->mm, pos,
174 1, write, 1, &page, NULL);
175 if (ret <= 0)
176 return NULL;
177
178 if (write) {
179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 struct rlimit *rlim;
181
182 /*
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
185 */
186 if (size <= ARG_MAX)
187 return page;
188
189 /*
190 * Limit to 1/4-th the stack size for the argv+env strings.
191 * This ensures that:
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
194 * to work from.
195 */
196 rlim = current->signal->rlim;
197 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
198 put_page(page);
199 return NULL;
200 }
201 }
202
203 return page;
204}
205
206static void put_arg_page(struct page *page)
207{
208 put_page(page);
209}
210
211static void free_arg_page(struct linux_binprm *bprm, int i)
212{
213}
214
215static void free_arg_pages(struct linux_binprm *bprm)
216{
217}
218
219static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 struct page *page)
221{
222 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223}
224
225static int __bprm_mm_init(struct linux_binprm *bprm)
226{
227 int err;
228 struct vm_area_struct *vma = NULL;
229 struct mm_struct *mm = bprm->mm;
230
231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 if (!vma)
233 return -ENOMEM;
234
235 down_write(&mm->mmap_sem);
236 vma->vm_mm = mm;
237
238 /*
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
242 * configured yet.
243 */
244 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 INIT_LIST_HEAD(&vma->anon_vma_chain);
250 err = insert_vm_struct(mm, vma);
251 if (err)
252 goto err;
253
254 mm->stack_vm = mm->total_vm = 1;
255 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
257 return 0;
258err:
259 up_write(&mm->mmap_sem);
260 bprm->vma = NULL;
261 kmem_cache_free(vm_area_cachep, vma);
262 return err;
263}
264
265static bool valid_arg_len(struct linux_binprm *bprm, long len)
266{
267 return len <= MAX_ARG_STRLEN;
268}
269
270#else
271
272static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 int write)
274{
275 struct page *page;
276
277 page = bprm->page[pos / PAGE_SIZE];
278 if (!page && write) {
279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 if (!page)
281 return NULL;
282 bprm->page[pos / PAGE_SIZE] = page;
283 }
284
285 return page;
286}
287
288static void put_arg_page(struct page *page)
289{
290}
291
292static void free_arg_page(struct linux_binprm *bprm, int i)
293{
294 if (bprm->page[i]) {
295 __free_page(bprm->page[i]);
296 bprm->page[i] = NULL;
297 }
298}
299
300static void free_arg_pages(struct linux_binprm *bprm)
301{
302 int i;
303
304 for (i = 0; i < MAX_ARG_PAGES; i++)
305 free_arg_page(bprm, i);
306}
307
308static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 struct page *page)
310{
311}
312
313static int __bprm_mm_init(struct linux_binprm *bprm)
314{
315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 return 0;
317}
318
319static bool valid_arg_len(struct linux_binprm *bprm, long len)
320{
321 return len <= bprm->p;
322}
323
324#endif /* CONFIG_MMU */
325
326/*
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
331 */
332int bprm_mm_init(struct linux_binprm *bprm)
333{
334 int err;
335 struct mm_struct *mm = NULL;
336
337 bprm->mm = mm = mm_alloc();
338 err = -ENOMEM;
339 if (!mm)
340 goto err;
341
342 err = init_new_context(current, mm);
343 if (err)
344 goto err;
345
346 err = __bprm_mm_init(bprm);
347 if (err)
348 goto err;
349
350 return 0;
351
352err:
353 if (mm) {
354 bprm->mm = NULL;
355 mmdrop(mm);
356 }
357
358 return err;
359}
360
361/*
362 * count() counts the number of strings in array ARGV.
363 */
364static int count(const char __user * const __user * argv, int max)
365{
366 int i = 0;
367
368 if (argv != NULL) {
369 for (;;) {
370 const char __user * p;
371
372 if (get_user(p, argv))
373 return -EFAULT;
374 if (!p)
375 break;
376 argv++;
377 if (i++ >= max)
378 return -E2BIG;
379 cond_resched();
380 }
381 }
382 return i;
383}
384
385/*
386 * 'copy_strings()' copies argument/environment strings from the old
387 * processes's memory to the new process's stack. The call to get_user_pages()
388 * ensures the destination page is created and not swapped out.
389 */
390static int copy_strings(int argc, const char __user *const __user *argv,
391 struct linux_binprm *bprm)
392{
393 struct page *kmapped_page = NULL;
394 char *kaddr = NULL;
395 unsigned long kpos = 0;
396 int ret;
397
398 while (argc-- > 0) {
399 const char __user *str;
400 int len;
401 unsigned long pos;
402
403 if (get_user(str, argv+argc) ||
404 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 ret = -EFAULT;
406 goto out;
407 }
408
409 if (!valid_arg_len(bprm, len)) {
410 ret = -E2BIG;
411 goto out;
412 }
413
414 /* We're going to work our way backwords. */
415 pos = bprm->p;
416 str += len;
417 bprm->p -= len;
418
419 while (len > 0) {
420 int offset, bytes_to_copy;
421
422 cond_resched();
423
424 offset = pos % PAGE_SIZE;
425 if (offset == 0)
426 offset = PAGE_SIZE;
427
428 bytes_to_copy = offset;
429 if (bytes_to_copy > len)
430 bytes_to_copy = len;
431
432 offset -= bytes_to_copy;
433 pos -= bytes_to_copy;
434 str -= bytes_to_copy;
435 len -= bytes_to_copy;
436
437 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
438 struct page *page;
439
440 page = get_arg_page(bprm, pos, 1);
441 if (!page) {
442 ret = -E2BIG;
443 goto out;
444 }
445
446 if (kmapped_page) {
447 flush_kernel_dcache_page(kmapped_page);
448 kunmap(kmapped_page);
449 put_arg_page(kmapped_page);
450 }
451 kmapped_page = page;
452 kaddr = kmap(kmapped_page);
453 kpos = pos & PAGE_MASK;
454 flush_arg_page(bprm, kpos, kmapped_page);
455 }
456 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
457 ret = -EFAULT;
458 goto out;
459 }
460 }
461 }
462 ret = 0;
463out:
464 if (kmapped_page) {
465 flush_kernel_dcache_page(kmapped_page);
466 kunmap(kmapped_page);
467 put_arg_page(kmapped_page);
468 }
469 return ret;
470}
471
472/*
473 * Like copy_strings, but get argv and its values from kernel memory.
474 */
475int copy_strings_kernel(int argc, const char *const *argv,
476 struct linux_binprm *bprm)
477{
478 int r;
479 mm_segment_t oldfs = get_fs();
480 set_fs(KERNEL_DS);
481 r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
482 set_fs(oldfs);
483 return r;
484}
485EXPORT_SYMBOL(copy_strings_kernel);
486
487#ifdef CONFIG_MMU
488
489/*
490 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
491 * the binfmt code determines where the new stack should reside, we shift it to
492 * its final location. The process proceeds as follows:
493 *
494 * 1) Use shift to calculate the new vma endpoints.
495 * 2) Extend vma to cover both the old and new ranges. This ensures the
496 * arguments passed to subsequent functions are consistent.
497 * 3) Move vma's page tables to the new range.
498 * 4) Free up any cleared pgd range.
499 * 5) Shrink the vma to cover only the new range.
500 */
501static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
502{
503 struct mm_struct *mm = vma->vm_mm;
504 unsigned long old_start = vma->vm_start;
505 unsigned long old_end = vma->vm_end;
506 unsigned long length = old_end - old_start;
507 unsigned long new_start = old_start - shift;
508 unsigned long new_end = old_end - shift;
509 struct mmu_gather *tlb;
510
511 BUG_ON(new_start > new_end);
512
513 /*
514 * ensure there are no vmas between where we want to go
515 * and where we are
516 */
517 if (vma != find_vma(mm, new_start))
518 return -EFAULT;
519
520 /*
521 * cover the whole range: [new_start, old_end)
522 */
523 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
524 return -ENOMEM;
525
526 /*
527 * move the page tables downwards, on failure we rely on
528 * process cleanup to remove whatever mess we made.
529 */
530 if (length != move_page_tables(vma, old_start,
531 vma, new_start, length))
532 return -ENOMEM;
533
534 lru_add_drain();
535 tlb = tlb_gather_mmu(mm, 0);
536 if (new_end > old_start) {
537 /*
538 * when the old and new regions overlap clear from new_end.
539 */
540 free_pgd_range(tlb, new_end, old_end, new_end,
541 vma->vm_next ? vma->vm_next->vm_start : 0);
542 } else {
543 /*
544 * otherwise, clean from old_start; this is done to not touch
545 * the address space in [new_end, old_start) some architectures
546 * have constraints on va-space that make this illegal (IA64) -
547 * for the others its just a little faster.
548 */
549 free_pgd_range(tlb, old_start, old_end, new_end,
550 vma->vm_next ? vma->vm_next->vm_start : 0);
551 }
552 tlb_finish_mmu(tlb, new_end, old_end);
553
554 /*
555 * Shrink the vma to just the new range. Always succeeds.
556 */
557 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
558
559 return 0;
560}
561
562/*
563 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
564 * the stack is optionally relocated, and some extra space is added.
565 */
566int setup_arg_pages(struct linux_binprm *bprm,
567 unsigned long stack_top,
568 int executable_stack)
569{
570 unsigned long ret;
571 unsigned long stack_shift;
572 struct mm_struct *mm = current->mm;
573 struct vm_area_struct *vma = bprm->vma;
574 struct vm_area_struct *prev = NULL;
575 unsigned long vm_flags;
576 unsigned long stack_base;
577 unsigned long stack_size;
578 unsigned long stack_expand;
579 unsigned long rlim_stack;
580
581#ifdef CONFIG_STACK_GROWSUP
582 /* Limit stack size to 1GB */
583 stack_base = rlimit_max(RLIMIT_STACK);
584 if (stack_base > (1 << 30))
585 stack_base = 1 << 30;
586
587 /* Make sure we didn't let the argument array grow too large. */
588 if (vma->vm_end - vma->vm_start > stack_base)
589 return -ENOMEM;
590
591 stack_base = PAGE_ALIGN(stack_top - stack_base);
592
593 stack_shift = vma->vm_start - stack_base;
594 mm->arg_start = bprm->p - stack_shift;
595 bprm->p = vma->vm_end - stack_shift;
596#else
597 stack_top = arch_align_stack(stack_top);
598 stack_top = PAGE_ALIGN(stack_top);
599
600 if (unlikely(stack_top < mmap_min_addr) ||
601 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
602 return -ENOMEM;
603
604 stack_shift = vma->vm_end - stack_top;
605
606 bprm->p -= stack_shift;
607 mm->arg_start = bprm->p;
608#endif
609
610 if (bprm->loader)
611 bprm->loader -= stack_shift;
612 bprm->exec -= stack_shift;
613
614 down_write(&mm->mmap_sem);
615 vm_flags = VM_STACK_FLAGS;
616
617 /*
618 * Adjust stack execute permissions; explicitly enable for
619 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
620 * (arch default) otherwise.
621 */
622 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
623 vm_flags |= VM_EXEC;
624 else if (executable_stack == EXSTACK_DISABLE_X)
625 vm_flags &= ~VM_EXEC;
626 vm_flags |= mm->def_flags;
627 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
628
629 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
630 vm_flags);
631 if (ret)
632 goto out_unlock;
633 BUG_ON(prev != vma);
634
635 /* Move stack pages down in memory. */
636 if (stack_shift) {
637 ret = shift_arg_pages(vma, stack_shift);
638 if (ret)
639 goto out_unlock;
640 }
641
642 /* mprotect_fixup is overkill to remove the temporary stack flags */
643 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
644
645 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
646 stack_size = vma->vm_end - vma->vm_start;
647 /*
648 * Align this down to a page boundary as expand_stack
649 * will align it up.
650 */
651 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
652#ifdef CONFIG_STACK_GROWSUP
653 if (stack_size + stack_expand > rlim_stack)
654 stack_base = vma->vm_start + rlim_stack;
655 else
656 stack_base = vma->vm_end + stack_expand;
657#else
658 if (stack_size + stack_expand > rlim_stack)
659 stack_base = vma->vm_end - rlim_stack;
660 else
661 stack_base = vma->vm_start - stack_expand;
662#endif
663 current->mm->start_stack = bprm->p;
664 ret = expand_stack(vma, stack_base);
665 if (ret)
666 ret = -EFAULT;
667
668out_unlock:
669 up_write(&mm->mmap_sem);
670 return ret;
671}
672EXPORT_SYMBOL(setup_arg_pages);
673
674#endif /* CONFIG_MMU */
675
676struct file *open_exec(const char *name)
677{
678 struct file *file;
679 int err;
680
681 file = do_filp_open(AT_FDCWD, name,
682 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
683 MAY_EXEC | MAY_OPEN);
684 if (IS_ERR(file))
685 goto out;
686
687 err = -EACCES;
688 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
689 goto exit;
690
691 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
692 goto exit;
693
694 fsnotify_open(file);
695
696 err = deny_write_access(file);
697 if (err)
698 goto exit;
699
700out:
701 return file;
702
703exit:
704 fput(file);
705 return ERR_PTR(err);
706}
707EXPORT_SYMBOL(open_exec);
708
709int kernel_read(struct file *file, loff_t offset,
710 char *addr, unsigned long count)
711{
712 mm_segment_t old_fs;
713 loff_t pos = offset;
714 int result;
715
716 old_fs = get_fs();
717 set_fs(get_ds());
718 /* The cast to a user pointer is valid due to the set_fs() */
719 result = vfs_read(file, (void __user *)addr, count, &pos);
720 set_fs(old_fs);
721 return result;
722}
723
724EXPORT_SYMBOL(kernel_read);
725
726static int exec_mmap(struct mm_struct *mm)
727{
728 struct task_struct *tsk;
729 struct mm_struct * old_mm, *active_mm;
730
731 /* Notify parent that we're no longer interested in the old VM */
732 tsk = current;
733 old_mm = current->mm;
734 sync_mm_rss(tsk, old_mm);
735 mm_release(tsk, old_mm);
736
737 if (old_mm) {
738 /*
739 * Make sure that if there is a core dump in progress
740 * for the old mm, we get out and die instead of going
741 * through with the exec. We must hold mmap_sem around
742 * checking core_state and changing tsk->mm.
743 */
744 down_read(&old_mm->mmap_sem);
745 if (unlikely(old_mm->core_state)) {
746 up_read(&old_mm->mmap_sem);
747 return -EINTR;
748 }
749 }
750 task_lock(tsk);
751 active_mm = tsk->active_mm;
752 tsk->mm = mm;
753 tsk->active_mm = mm;
754 activate_mm(active_mm, mm);
755 task_unlock(tsk);
756 arch_pick_mmap_layout(mm);
757 if (old_mm) {
758 up_read(&old_mm->mmap_sem);
759 BUG_ON(active_mm != old_mm);
760 mm_update_next_owner(old_mm);
761 mmput(old_mm);
762 return 0;
763 }
764 mmdrop(active_mm);
765 return 0;
766}
767
768/*
769 * This function makes sure the current process has its own signal table,
770 * so that flush_signal_handlers can later reset the handlers without
771 * disturbing other processes. (Other processes might share the signal
772 * table via the CLONE_SIGHAND option to clone().)
773 */
774static int de_thread(struct task_struct *tsk)
775{
776 struct signal_struct *sig = tsk->signal;
777 struct sighand_struct *oldsighand = tsk->sighand;
778 spinlock_t *lock = &oldsighand->siglock;
779
780 if (thread_group_empty(tsk))
781 goto no_thread_group;
782
783 /*
784 * Kill all other threads in the thread group.
785 */
786 spin_lock_irq(lock);
787 if (signal_group_exit(sig)) {
788 /*
789 * Another group action in progress, just
790 * return so that the signal is processed.
791 */
792 spin_unlock_irq(lock);
793 return -EAGAIN;
794 }
795
796 sig->group_exit_task = tsk;
797 sig->notify_count = zap_other_threads(tsk);
798 if (!thread_group_leader(tsk))
799 sig->notify_count--;
800
801 while (sig->notify_count) {
802 __set_current_state(TASK_UNINTERRUPTIBLE);
803 spin_unlock_irq(lock);
804 schedule();
805 spin_lock_irq(lock);
806 }
807 spin_unlock_irq(lock);
808
809 /*
810 * At this point all other threads have exited, all we have to
811 * do is to wait for the thread group leader to become inactive,
812 * and to assume its PID:
813 */
814 if (!thread_group_leader(tsk)) {
815 struct task_struct *leader = tsk->group_leader;
816
817 sig->notify_count = -1; /* for exit_notify() */
818 for (;;) {
819 write_lock_irq(&tasklist_lock);
820 if (likely(leader->exit_state))
821 break;
822 __set_current_state(TASK_UNINTERRUPTIBLE);
823 write_unlock_irq(&tasklist_lock);
824 schedule();
825 }
826
827 /*
828 * The only record we have of the real-time age of a
829 * process, regardless of execs it's done, is start_time.
830 * All the past CPU time is accumulated in signal_struct
831 * from sister threads now dead. But in this non-leader
832 * exec, nothing survives from the original leader thread,
833 * whose birth marks the true age of this process now.
834 * When we take on its identity by switching to its PID, we
835 * also take its birthdate (always earlier than our own).
836 */
837 tsk->start_time = leader->start_time;
838
839 BUG_ON(!same_thread_group(leader, tsk));
840 BUG_ON(has_group_leader_pid(tsk));
841 /*
842 * An exec() starts a new thread group with the
843 * TGID of the previous thread group. Rehash the
844 * two threads with a switched PID, and release
845 * the former thread group leader:
846 */
847
848 /* Become a process group leader with the old leader's pid.
849 * The old leader becomes a thread of the this thread group.
850 * Note: The old leader also uses this pid until release_task
851 * is called. Odd but simple and correct.
852 */
853 detach_pid(tsk, PIDTYPE_PID);
854 tsk->pid = leader->pid;
855 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
856 transfer_pid(leader, tsk, PIDTYPE_PGID);
857 transfer_pid(leader, tsk, PIDTYPE_SID);
858
859 list_replace_rcu(&leader->tasks, &tsk->tasks);
860 list_replace_init(&leader->sibling, &tsk->sibling);
861
862 tsk->group_leader = tsk;
863 leader->group_leader = tsk;
864
865 tsk->exit_signal = SIGCHLD;
866
867 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
868 leader->exit_state = EXIT_DEAD;
869 write_unlock_irq(&tasklist_lock);
870
871 release_task(leader);
872 }
873
874 sig->group_exit_task = NULL;
875 sig->notify_count = 0;
876
877no_thread_group:
878 if (current->mm)
879 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
880
881 exit_itimers(sig);
882 flush_itimer_signals();
883
884 if (atomic_read(&oldsighand->count) != 1) {
885 struct sighand_struct *newsighand;
886 /*
887 * This ->sighand is shared with the CLONE_SIGHAND
888 * but not CLONE_THREAD task, switch to the new one.
889 */
890 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
891 if (!newsighand)
892 return -ENOMEM;
893
894 atomic_set(&newsighand->count, 1);
895 memcpy(newsighand->action, oldsighand->action,
896 sizeof(newsighand->action));
897
898 write_lock_irq(&tasklist_lock);
899 spin_lock(&oldsighand->siglock);
900 rcu_assign_pointer(tsk->sighand, newsighand);
901 spin_unlock(&oldsighand->siglock);
902 write_unlock_irq(&tasklist_lock);
903
904 __cleanup_sighand(oldsighand);
905 }
906
907 BUG_ON(!thread_group_leader(tsk));
908 return 0;
909}
910
911/*
912 * These functions flushes out all traces of the currently running executable
913 * so that a new one can be started
914 */
915static void flush_old_files(struct files_struct * files)
916{
917 long j = -1;
918 struct fdtable *fdt;
919
920 spin_lock(&files->file_lock);
921 for (;;) {
922 unsigned long set, i;
923
924 j++;
925 i = j * __NFDBITS;
926 fdt = files_fdtable(files);
927 if (i >= fdt->max_fds)
928 break;
929 set = fdt->close_on_exec->fds_bits[j];
930 if (!set)
931 continue;
932 fdt->close_on_exec->fds_bits[j] = 0;
933 spin_unlock(&files->file_lock);
934 for ( ; set ; i++,set >>= 1) {
935 if (set & 1) {
936 sys_close(i);
937 }
938 }
939 spin_lock(&files->file_lock);
940
941 }
942 spin_unlock(&files->file_lock);
943}
944
945char *get_task_comm(char *buf, struct task_struct *tsk)
946{
947 /* buf must be at least sizeof(tsk->comm) in size */
948 task_lock(tsk);
949 strncpy(buf, tsk->comm, sizeof(tsk->comm));
950 task_unlock(tsk);
951 return buf;
952}
953
954void set_task_comm(struct task_struct *tsk, char *buf)
955{
956 task_lock(tsk);
957
958 /*
959 * Threads may access current->comm without holding
960 * the task lock, so write the string carefully.
961 * Readers without a lock may see incomplete new
962 * names but are safe from non-terminating string reads.
963 */
964 memset(tsk->comm, 0, TASK_COMM_LEN);
965 wmb();
966 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
967 task_unlock(tsk);
968 perf_event_comm(tsk);
969}
970
971int flush_old_exec(struct linux_binprm * bprm)
972{
973 int retval;
974
975 /*
976 * Make sure we have a private signal table and that
977 * we are unassociated from the previous thread group.
978 */
979 retval = de_thread(current);
980 if (retval)
981 goto out;
982
983 set_mm_exe_file(bprm->mm, bprm->file);
984
985 /*
986 * Release all of the old mmap stuff
987 */
988 retval = exec_mmap(bprm->mm);
989 if (retval)
990 goto out;
991
992 bprm->mm = NULL; /* We're using it now */
993
994 current->flags &= ~PF_RANDOMIZE;
995 flush_thread();
996 current->personality &= ~bprm->per_clear;
997
998 return 0;
999
1000out:
1001 return retval;
1002}
1003EXPORT_SYMBOL(flush_old_exec);
1004
1005void setup_new_exec(struct linux_binprm * bprm)
1006{
1007 int i, ch;
1008 const char *name;
1009 char tcomm[sizeof(current->comm)];
1010
1011 arch_pick_mmap_layout(current->mm);
1012
1013 /* This is the point of no return */
1014 current->sas_ss_sp = current->sas_ss_size = 0;
1015
1016 if (current_euid() == current_uid() && current_egid() == current_gid())
1017 set_dumpable(current->mm, 1);
1018 else
1019 set_dumpable(current->mm, suid_dumpable);
1020
1021 name = bprm->filename;
1022
1023 /* Copies the binary name from after last slash */
1024 for (i=0; (ch = *(name++)) != '\0';) {
1025 if (ch == '/')
1026 i = 0; /* overwrite what we wrote */
1027 else
1028 if (i < (sizeof(tcomm) - 1))
1029 tcomm[i++] = ch;
1030 }
1031 tcomm[i] = '\0';
1032 set_task_comm(current, tcomm);
1033
1034 /* Set the new mm task size. We have to do that late because it may
1035 * depend on TIF_32BIT which is only updated in flush_thread() on
1036 * some architectures like powerpc
1037 */
1038 current->mm->task_size = TASK_SIZE;
1039
1040 /* install the new credentials */
1041 if (bprm->cred->uid != current_euid() ||
1042 bprm->cred->gid != current_egid()) {
1043 current->pdeath_signal = 0;
1044 } else if (file_permission(bprm->file, MAY_READ) ||
1045 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1046 set_dumpable(current->mm, suid_dumpable);
1047 }
1048
1049 /*
1050 * Flush performance counters when crossing a
1051 * security domain:
1052 */
1053 if (!get_dumpable(current->mm))
1054 perf_event_exit_task(current);
1055
1056 /* An exec changes our domain. We are no longer part of the thread
1057 group */
1058
1059 current->self_exec_id++;
1060
1061 flush_signal_handlers(current, 0);
1062 flush_old_files(current->files);
1063}
1064EXPORT_SYMBOL(setup_new_exec);
1065
1066/*
1067 * Prepare credentials and lock ->cred_guard_mutex.
1068 * install_exec_creds() commits the new creds and drops the lock.
1069 * Or, if exec fails before, free_bprm() should release ->cred and
1070 * and unlock.
1071 */
1072int prepare_bprm_creds(struct linux_binprm *bprm)
1073{
1074 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1075 return -ERESTARTNOINTR;
1076
1077 bprm->cred = prepare_exec_creds();
1078 if (likely(bprm->cred))
1079 return 0;
1080
1081 mutex_unlock(&current->cred_guard_mutex);
1082 return -ENOMEM;
1083}
1084
1085void free_bprm(struct linux_binprm *bprm)
1086{
1087 free_arg_pages(bprm);
1088 if (bprm->cred) {
1089 mutex_unlock(&current->cred_guard_mutex);
1090 abort_creds(bprm->cred);
1091 }
1092 kfree(bprm);
1093}
1094
1095/*
1096 * install the new credentials for this executable
1097 */
1098void install_exec_creds(struct linux_binprm *bprm)
1099{
1100 security_bprm_committing_creds(bprm);
1101
1102 commit_creds(bprm->cred);
1103 bprm->cred = NULL;
1104 /*
1105 * cred_guard_mutex must be held at least to this point to prevent
1106 * ptrace_attach() from altering our determination of the task's
1107 * credentials; any time after this it may be unlocked.
1108 */
1109 security_bprm_committed_creds(bprm);
1110 mutex_unlock(&current->cred_guard_mutex);
1111}
1112EXPORT_SYMBOL(install_exec_creds);
1113
1114/*
1115 * determine how safe it is to execute the proposed program
1116 * - the caller must hold current->cred_guard_mutex to protect against
1117 * PTRACE_ATTACH
1118 */
1119int check_unsafe_exec(struct linux_binprm *bprm)
1120{
1121 struct task_struct *p = current, *t;
1122 unsigned n_fs;
1123 int res = 0;
1124
1125 bprm->unsafe = tracehook_unsafe_exec(p);
1126
1127 n_fs = 1;
1128 spin_lock(&p->fs->lock);
1129 rcu_read_lock();
1130 for (t = next_thread(p); t != p; t = next_thread(t)) {
1131 if (t->fs == p->fs)
1132 n_fs++;
1133 }
1134 rcu_read_unlock();
1135
1136 if (p->fs->users > n_fs) {
1137 bprm->unsafe |= LSM_UNSAFE_SHARE;
1138 } else {
1139 res = -EAGAIN;
1140 if (!p->fs->in_exec) {
1141 p->fs->in_exec = 1;
1142 res = 1;
1143 }
1144 }
1145 spin_unlock(&p->fs->lock);
1146
1147 return res;
1148}
1149
1150/*
1151 * Fill the binprm structure from the inode.
1152 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1153 *
1154 * This may be called multiple times for binary chains (scripts for example).
1155 */
1156int prepare_binprm(struct linux_binprm *bprm)
1157{
1158 umode_t mode;
1159 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1160 int retval;
1161
1162 mode = inode->i_mode;
1163 if (bprm->file->f_op == NULL)
1164 return -EACCES;
1165
1166 /* clear any previous set[ug]id data from a previous binary */
1167 bprm->cred->euid = current_euid();
1168 bprm->cred->egid = current_egid();
1169
1170 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1171 /* Set-uid? */
1172 if (mode & S_ISUID) {
1173 bprm->per_clear |= PER_CLEAR_ON_SETID;
1174 bprm->cred->euid = inode->i_uid;
1175 }
1176
1177 /* Set-gid? */
1178 /*
1179 * If setgid is set but no group execute bit then this
1180 * is a candidate for mandatory locking, not a setgid
1181 * executable.
1182 */
1183 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1184 bprm->per_clear |= PER_CLEAR_ON_SETID;
1185 bprm->cred->egid = inode->i_gid;
1186 }
1187 }
1188
1189 /* fill in binprm security blob */
1190 retval = security_bprm_set_creds(bprm);
1191 if (retval)
1192 return retval;
1193 bprm->cred_prepared = 1;
1194
1195 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1196 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1197}
1198
1199EXPORT_SYMBOL(prepare_binprm);
1200
1201/*
1202 * Arguments are '\0' separated strings found at the location bprm->p
1203 * points to; chop off the first by relocating brpm->p to right after
1204 * the first '\0' encountered.
1205 */
1206int remove_arg_zero(struct linux_binprm *bprm)
1207{
1208 int ret = 0;
1209 unsigned long offset;
1210 char *kaddr;
1211 struct page *page;
1212
1213 if (!bprm->argc)
1214 return 0;
1215
1216 do {
1217 offset = bprm->p & ~PAGE_MASK;
1218 page = get_arg_page(bprm, bprm->p, 0);
1219 if (!page) {
1220 ret = -EFAULT;
1221 goto out;
1222 }
1223 kaddr = kmap_atomic(page, KM_USER0);
1224
1225 for (; offset < PAGE_SIZE && kaddr[offset];
1226 offset++, bprm->p++)
1227 ;
1228
1229 kunmap_atomic(kaddr, KM_USER0);
1230 put_arg_page(page);
1231
1232 if (offset == PAGE_SIZE)
1233 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1234 } while (offset == PAGE_SIZE);
1235
1236 bprm->p++;
1237 bprm->argc--;
1238 ret = 0;
1239
1240out:
1241 return ret;
1242}
1243EXPORT_SYMBOL(remove_arg_zero);
1244
1245/*
1246 * cycle the list of binary formats handler, until one recognizes the image
1247 */
1248int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1249{
1250 unsigned int depth = bprm->recursion_depth;
1251 int try,retval;
1252 struct linux_binfmt *fmt;
1253
1254 retval = security_bprm_check(bprm);
1255 if (retval)
1256 return retval;
1257
1258 /* kernel module loader fixup */
1259 /* so we don't try to load run modprobe in kernel space. */
1260 set_fs(USER_DS);
1261
1262 retval = audit_bprm(bprm);
1263 if (retval)
1264 return retval;
1265
1266 retval = -ENOENT;
1267 for (try=0; try<2; try++) {
1268 read_lock(&binfmt_lock);
1269 list_for_each_entry(fmt, &formats, lh) {
1270 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1271 if (!fn)
1272 continue;
1273 if (!try_module_get(fmt->module))
1274 continue;
1275 read_unlock(&binfmt_lock);
1276 retval = fn(bprm, regs);
1277 /*
1278 * Restore the depth counter to its starting value
1279 * in this call, so we don't have to rely on every
1280 * load_binary function to restore it on return.
1281 */
1282 bprm->recursion_depth = depth;
1283 if (retval >= 0) {
1284 if (depth == 0)
1285 tracehook_report_exec(fmt, bprm, regs);
1286 put_binfmt(fmt);
1287 allow_write_access(bprm->file);
1288 if (bprm->file)
1289 fput(bprm->file);
1290 bprm->file = NULL;
1291 current->did_exec = 1;
1292 proc_exec_connector(current);
1293 return retval;
1294 }
1295 read_lock(&binfmt_lock);
1296 put_binfmt(fmt);
1297 if (retval != -ENOEXEC || bprm->mm == NULL)
1298 break;
1299 if (!bprm->file) {
1300 read_unlock(&binfmt_lock);
1301 return retval;
1302 }
1303 }
1304 read_unlock(&binfmt_lock);
1305 if (retval != -ENOEXEC || bprm->mm == NULL) {
1306 break;
1307#ifdef CONFIG_MODULES
1308 } else {
1309#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1310 if (printable(bprm->buf[0]) &&
1311 printable(bprm->buf[1]) &&
1312 printable(bprm->buf[2]) &&
1313 printable(bprm->buf[3]))
1314 break; /* -ENOEXEC */
1315 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1316#endif
1317 }
1318 }
1319 return retval;
1320}
1321
1322EXPORT_SYMBOL(search_binary_handler);
1323
1324/*
1325 * sys_execve() executes a new program.
1326 */
1327int do_execve(const char * filename,
1328 const char __user *const __user *argv,
1329 const char __user *const __user *envp,
1330 struct pt_regs * regs)
1331{
1332 struct linux_binprm *bprm;
1333 struct file *file;
1334 struct files_struct *displaced;
1335 bool clear_in_exec;
1336 int retval;
1337
1338 retval = unshare_files(&displaced);
1339 if (retval)
1340 goto out_ret;
1341
1342 retval = -ENOMEM;
1343 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1344 if (!bprm)
1345 goto out_files;
1346
1347 retval = prepare_bprm_creds(bprm);
1348 if (retval)
1349 goto out_free;
1350
1351 retval = check_unsafe_exec(bprm);
1352 if (retval < 0)
1353 goto out_free;
1354 clear_in_exec = retval;
1355 current->in_execve = 1;
1356
1357 file = open_exec(filename);
1358 retval = PTR_ERR(file);
1359 if (IS_ERR(file))
1360 goto out_unmark;
1361
1362 sched_exec();
1363
1364 bprm->file = file;
1365 bprm->filename = filename;
1366 bprm->interp = filename;
1367
1368 retval = bprm_mm_init(bprm);
1369 if (retval)
1370 goto out_file;
1371
1372 bprm->argc = count(argv, MAX_ARG_STRINGS);
1373 if ((retval = bprm->argc) < 0)
1374 goto out;
1375
1376 bprm->envc = count(envp, MAX_ARG_STRINGS);
1377 if ((retval = bprm->envc) < 0)
1378 goto out;
1379
1380 retval = prepare_binprm(bprm);
1381 if (retval < 0)
1382 goto out;
1383
1384 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1385 if (retval < 0)
1386 goto out;
1387
1388 bprm->exec = bprm->p;
1389 retval = copy_strings(bprm->envc, envp, bprm);
1390 if (retval < 0)
1391 goto out;
1392
1393 retval = copy_strings(bprm->argc, argv, bprm);
1394 if (retval < 0)
1395 goto out;
1396
1397 current->flags &= ~PF_KTHREAD;
1398 retval = search_binary_handler(bprm,regs);
1399 if (retval < 0)
1400 goto out;
1401
1402 /* execve succeeded */
1403 current->fs->in_exec = 0;
1404 current->in_execve = 0;
1405 acct_update_integrals(current);
1406 free_bprm(bprm);
1407 if (displaced)
1408 put_files_struct(displaced);
1409 return retval;
1410
1411out:
1412 if (bprm->mm)
1413 mmput (bprm->mm);
1414
1415out_file:
1416 if (bprm->file) {
1417 allow_write_access(bprm->file);
1418 fput(bprm->file);
1419 }
1420
1421out_unmark:
1422 if (clear_in_exec)
1423 current->fs->in_exec = 0;
1424 current->in_execve = 0;
1425
1426out_free:
1427 free_bprm(bprm);
1428
1429out_files:
1430 if (displaced)
1431 reset_files_struct(displaced);
1432out_ret:
1433 return retval;
1434}
1435
1436void set_binfmt(struct linux_binfmt *new)
1437{
1438 struct mm_struct *mm = current->mm;
1439
1440 if (mm->binfmt)
1441 module_put(mm->binfmt->module);
1442
1443 mm->binfmt = new;
1444 if (new)
1445 __module_get(new->module);
1446}
1447
1448EXPORT_SYMBOL(set_binfmt);
1449
1450/* format_corename will inspect the pattern parameter, and output a
1451 * name into corename, which must have space for at least
1452 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1453 */
1454static int format_corename(char *corename, long signr)
1455{
1456 const struct cred *cred = current_cred();
1457 const char *pat_ptr = core_pattern;
1458 int ispipe = (*pat_ptr == '|');
1459 char *out_ptr = corename;
1460 char *const out_end = corename + CORENAME_MAX_SIZE;
1461 int rc;
1462 int pid_in_pattern = 0;
1463
1464 /* Repeat as long as we have more pattern to process and more output
1465 space */
1466 while (*pat_ptr) {
1467 if (*pat_ptr != '%') {
1468 if (out_ptr == out_end)
1469 goto out;
1470 *out_ptr++ = *pat_ptr++;
1471 } else {
1472 switch (*++pat_ptr) {
1473 case 0:
1474 goto out;
1475 /* Double percent, output one percent */
1476 case '%':
1477 if (out_ptr == out_end)
1478 goto out;
1479 *out_ptr++ = '%';
1480 break;
1481 /* pid */
1482 case 'p':
1483 pid_in_pattern = 1;
1484 rc = snprintf(out_ptr, out_end - out_ptr,
1485 "%d", task_tgid_vnr(current));
1486 if (rc > out_end - out_ptr)
1487 goto out;
1488 out_ptr += rc;
1489 break;
1490 /* uid */
1491 case 'u':
1492 rc = snprintf(out_ptr, out_end - out_ptr,
1493 "%d", cred->uid);
1494 if (rc > out_end - out_ptr)
1495 goto out;
1496 out_ptr += rc;
1497 break;
1498 /* gid */
1499 case 'g':
1500 rc = snprintf(out_ptr, out_end - out_ptr,
1501 "%d", cred->gid);
1502 if (rc > out_end - out_ptr)
1503 goto out;
1504 out_ptr += rc;
1505 break;
1506 /* signal that caused the coredump */
1507 case 's':
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1509 "%ld", signr);
1510 if (rc > out_end - out_ptr)
1511 goto out;
1512 out_ptr += rc;
1513 break;
1514 /* UNIX time of coredump */
1515 case 't': {
1516 struct timeval tv;
1517 do_gettimeofday(&tv);
1518 rc = snprintf(out_ptr, out_end - out_ptr,
1519 "%lu", tv.tv_sec);
1520 if (rc > out_end - out_ptr)
1521 goto out;
1522 out_ptr += rc;
1523 break;
1524 }
1525 /* hostname */
1526 case 'h':
1527 down_read(&uts_sem);
1528 rc = snprintf(out_ptr, out_end - out_ptr,
1529 "%s", utsname()->nodename);
1530 up_read(&uts_sem);
1531 if (rc > out_end - out_ptr)
1532 goto out;
1533 out_ptr += rc;
1534 break;
1535 /* executable */
1536 case 'e':
1537 rc = snprintf(out_ptr, out_end - out_ptr,
1538 "%s", current->comm);
1539 if (rc > out_end - out_ptr)
1540 goto out;
1541 out_ptr += rc;
1542 break;
1543 /* core limit size */
1544 case 'c':
1545 rc = snprintf(out_ptr, out_end - out_ptr,
1546 "%lu", rlimit(RLIMIT_CORE));
1547 if (rc > out_end - out_ptr)
1548 goto out;
1549 out_ptr += rc;
1550 break;
1551 default:
1552 break;
1553 }
1554 ++pat_ptr;
1555 }
1556 }
1557 /* Backward compatibility with core_uses_pid:
1558 *
1559 * If core_pattern does not include a %p (as is the default)
1560 * and core_uses_pid is set, then .%pid will be appended to
1561 * the filename. Do not do this for piped commands. */
1562 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1563 rc = snprintf(out_ptr, out_end - out_ptr,
1564 ".%d", task_tgid_vnr(current));
1565 if (rc > out_end - out_ptr)
1566 goto out;
1567 out_ptr += rc;
1568 }
1569out:
1570 *out_ptr = 0;
1571 return ispipe;
1572}
1573
1574static int zap_process(struct task_struct *start, int exit_code)
1575{
1576 struct task_struct *t;
1577 int nr = 0;
1578
1579 start->signal->flags = SIGNAL_GROUP_EXIT;
1580 start->signal->group_exit_code = exit_code;
1581 start->signal->group_stop_count = 0;
1582
1583 t = start;
1584 do {
1585 if (t != current && t->mm) {
1586 sigaddset(&t->pending.signal, SIGKILL);
1587 signal_wake_up(t, 1);
1588 nr++;
1589 }
1590 } while_each_thread(start, t);
1591
1592 return nr;
1593}
1594
1595static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1596 struct core_state *core_state, int exit_code)
1597{
1598 struct task_struct *g, *p;
1599 unsigned long flags;
1600 int nr = -EAGAIN;
1601
1602 spin_lock_irq(&tsk->sighand->siglock);
1603 if (!signal_group_exit(tsk->signal)) {
1604 mm->core_state = core_state;
1605 nr = zap_process(tsk, exit_code);
1606 }
1607 spin_unlock_irq(&tsk->sighand->siglock);
1608 if (unlikely(nr < 0))
1609 return nr;
1610
1611 if (atomic_read(&mm->mm_users) == nr + 1)
1612 goto done;
1613 /*
1614 * We should find and kill all tasks which use this mm, and we should
1615 * count them correctly into ->nr_threads. We don't take tasklist
1616 * lock, but this is safe wrt:
1617 *
1618 * fork:
1619 * None of sub-threads can fork after zap_process(leader). All
1620 * processes which were created before this point should be
1621 * visible to zap_threads() because copy_process() adds the new
1622 * process to the tail of init_task.tasks list, and lock/unlock
1623 * of ->siglock provides a memory barrier.
1624 *
1625 * do_exit:
1626 * The caller holds mm->mmap_sem. This means that the task which
1627 * uses this mm can't pass exit_mm(), so it can't exit or clear
1628 * its ->mm.
1629 *
1630 * de_thread:
1631 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1632 * we must see either old or new leader, this does not matter.
1633 * However, it can change p->sighand, so lock_task_sighand(p)
1634 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1635 * it can't fail.
1636 *
1637 * Note also that "g" can be the old leader with ->mm == NULL
1638 * and already unhashed and thus removed from ->thread_group.
1639 * This is OK, __unhash_process()->list_del_rcu() does not
1640 * clear the ->next pointer, we will find the new leader via
1641 * next_thread().
1642 */
1643 rcu_read_lock();
1644 for_each_process(g) {
1645 if (g == tsk->group_leader)
1646 continue;
1647 if (g->flags & PF_KTHREAD)
1648 continue;
1649 p = g;
1650 do {
1651 if (p->mm) {
1652 if (unlikely(p->mm == mm)) {
1653 lock_task_sighand(p, &flags);
1654 nr += zap_process(p, exit_code);
1655 unlock_task_sighand(p, &flags);
1656 }
1657 break;
1658 }
1659 } while_each_thread(g, p);
1660 }
1661 rcu_read_unlock();
1662done:
1663 atomic_set(&core_state->nr_threads, nr);
1664 return nr;
1665}
1666
1667static int coredump_wait(int exit_code, struct core_state *core_state)
1668{
1669 struct task_struct *tsk = current;
1670 struct mm_struct *mm = tsk->mm;
1671 struct completion *vfork_done;
1672 int core_waiters = -EBUSY;
1673
1674 init_completion(&core_state->startup);
1675 core_state->dumper.task = tsk;
1676 core_state->dumper.next = NULL;
1677
1678 down_write(&mm->mmap_sem);
1679 if (!mm->core_state)
1680 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1681 up_write(&mm->mmap_sem);
1682
1683 if (unlikely(core_waiters < 0))
1684 goto fail;
1685
1686 /*
1687 * Make sure nobody is waiting for us to release the VM,
1688 * otherwise we can deadlock when we wait on each other
1689 */
1690 vfork_done = tsk->vfork_done;
1691 if (vfork_done) {
1692 tsk->vfork_done = NULL;
1693 complete(vfork_done);
1694 }
1695
1696 if (core_waiters)
1697 wait_for_completion(&core_state->startup);
1698fail:
1699 return core_waiters;
1700}
1701
1702static void coredump_finish(struct mm_struct *mm)
1703{
1704 struct core_thread *curr, *next;
1705 struct task_struct *task;
1706
1707 next = mm->core_state->dumper.next;
1708 while ((curr = next) != NULL) {
1709 next = curr->next;
1710 task = curr->task;
1711 /*
1712 * see exit_mm(), curr->task must not see
1713 * ->task == NULL before we read ->next.
1714 */
1715 smp_mb();
1716 curr->task = NULL;
1717 wake_up_process(task);
1718 }
1719
1720 mm->core_state = NULL;
1721}
1722
1723/*
1724 * set_dumpable converts traditional three-value dumpable to two flags and
1725 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1726 * these bits are not changed atomically. So get_dumpable can observe the
1727 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1728 * return either old dumpable or new one by paying attention to the order of
1729 * modifying the bits.
1730 *
1731 * dumpable | mm->flags (binary)
1732 * old new | initial interim final
1733 * ---------+-----------------------
1734 * 0 1 | 00 01 01
1735 * 0 2 | 00 10(*) 11
1736 * 1 0 | 01 00 00
1737 * 1 2 | 01 11 11
1738 * 2 0 | 11 10(*) 00
1739 * 2 1 | 11 11 01
1740 *
1741 * (*) get_dumpable regards interim value of 10 as 11.
1742 */
1743void set_dumpable(struct mm_struct *mm, int value)
1744{
1745 switch (value) {
1746 case 0:
1747 clear_bit(MMF_DUMPABLE, &mm->flags);
1748 smp_wmb();
1749 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1750 break;
1751 case 1:
1752 set_bit(MMF_DUMPABLE, &mm->flags);
1753 smp_wmb();
1754 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1755 break;
1756 case 2:
1757 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1758 smp_wmb();
1759 set_bit(MMF_DUMPABLE, &mm->flags);
1760 break;
1761 }
1762}
1763
1764static int __get_dumpable(unsigned long mm_flags)
1765{
1766 int ret;
1767
1768 ret = mm_flags & MMF_DUMPABLE_MASK;
1769 return (ret >= 2) ? 2 : ret;
1770}
1771
1772int get_dumpable(struct mm_struct *mm)
1773{
1774 return __get_dumpable(mm->flags);
1775}
1776
1777static void wait_for_dump_helpers(struct file *file)
1778{
1779 struct pipe_inode_info *pipe;
1780
1781 pipe = file->f_path.dentry->d_inode->i_pipe;
1782
1783 pipe_lock(pipe);
1784 pipe->readers++;
1785 pipe->writers--;
1786
1787 while ((pipe->readers > 1) && (!signal_pending(current))) {
1788 wake_up_interruptible_sync(&pipe->wait);
1789 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1790 pipe_wait(pipe);
1791 }
1792
1793 pipe->readers--;
1794 pipe->writers++;
1795 pipe_unlock(pipe);
1796
1797}
1798
1799
1800/*
1801 * uhm_pipe_setup
1802 * helper function to customize the process used
1803 * to collect the core in userspace. Specifically
1804 * it sets up a pipe and installs it as fd 0 (stdin)
1805 * for the process. Returns 0 on success, or
1806 * PTR_ERR on failure.
1807 * Note that it also sets the core limit to 1. This
1808 * is a special value that we use to trap recursive
1809 * core dumps
1810 */
1811static int umh_pipe_setup(struct subprocess_info *info)
1812{
1813 struct file *rp, *wp;
1814 struct fdtable *fdt;
1815 struct coredump_params *cp = (struct coredump_params *)info->data;
1816 struct files_struct *cf = current->files;
1817
1818 wp = create_write_pipe(0);
1819 if (IS_ERR(wp))
1820 return PTR_ERR(wp);
1821
1822 rp = create_read_pipe(wp, 0);
1823 if (IS_ERR(rp)) {
1824 free_write_pipe(wp);
1825 return PTR_ERR(rp);
1826 }
1827
1828 cp->file = wp;
1829
1830 sys_close(0);
1831 fd_install(0, rp);
1832 spin_lock(&cf->file_lock);
1833 fdt = files_fdtable(cf);
1834 FD_SET(0, fdt->open_fds);
1835 FD_CLR(0, fdt->close_on_exec);
1836 spin_unlock(&cf->file_lock);
1837
1838 /* and disallow core files too */
1839 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1840
1841 return 0;
1842}
1843
1844void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1845{
1846 struct core_state core_state;
1847 char corename[CORENAME_MAX_SIZE + 1];
1848 struct mm_struct *mm = current->mm;
1849 struct linux_binfmt * binfmt;
1850 const struct cred *old_cred;
1851 struct cred *cred;
1852 int retval = 0;
1853 int flag = 0;
1854 int ispipe;
1855 static atomic_t core_dump_count = ATOMIC_INIT(0);
1856 struct coredump_params cprm = {
1857 .signr = signr,
1858 .regs = regs,
1859 .limit = rlimit(RLIMIT_CORE),
1860 /*
1861 * We must use the same mm->flags while dumping core to avoid
1862 * inconsistency of bit flags, since this flag is not protected
1863 * by any locks.
1864 */
1865 .mm_flags = mm->flags,
1866 };
1867
1868 audit_core_dumps(signr);
1869
1870 binfmt = mm->binfmt;
1871 if (!binfmt || !binfmt->core_dump)
1872 goto fail;
1873 if (!__get_dumpable(cprm.mm_flags))
1874 goto fail;
1875
1876 cred = prepare_creds();
1877 if (!cred)
1878 goto fail;
1879 /*
1880 * We cannot trust fsuid as being the "true" uid of the
1881 * process nor do we know its entire history. We only know it
1882 * was tainted so we dump it as root in mode 2.
1883 */
1884 if (__get_dumpable(cprm.mm_flags) == 2) {
1885 /* Setuid core dump mode */
1886 flag = O_EXCL; /* Stop rewrite attacks */
1887 cred->fsuid = 0; /* Dump root private */
1888 }
1889
1890 retval = coredump_wait(exit_code, &core_state);
1891 if (retval < 0)
1892 goto fail_creds;
1893
1894 old_cred = override_creds(cred);
1895
1896 /*
1897 * Clear any false indication of pending signals that might
1898 * be seen by the filesystem code called to write the core file.
1899 */
1900 clear_thread_flag(TIF_SIGPENDING);
1901
1902 ispipe = format_corename(corename, signr);
1903
1904 if (ispipe) {
1905 int dump_count;
1906 char **helper_argv;
1907
1908 if (cprm.limit == 1) {
1909 /*
1910 * Normally core limits are irrelevant to pipes, since
1911 * we're not writing to the file system, but we use
1912 * cprm.limit of 1 here as a speacial value. Any
1913 * non-1 limit gets set to RLIM_INFINITY below, but
1914 * a limit of 0 skips the dump. This is a consistent
1915 * way to catch recursive crashes. We can still crash
1916 * if the core_pattern binary sets RLIM_CORE = !1
1917 * but it runs as root, and can do lots of stupid things
1918 * Note that we use task_tgid_vnr here to grab the pid
1919 * of the process group leader. That way we get the
1920 * right pid if a thread in a multi-threaded
1921 * core_pattern process dies.
1922 */
1923 printk(KERN_WARNING
1924 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1925 task_tgid_vnr(current), current->comm);
1926 printk(KERN_WARNING "Aborting core\n");
1927 goto fail_unlock;
1928 }
1929 cprm.limit = RLIM_INFINITY;
1930
1931 dump_count = atomic_inc_return(&core_dump_count);
1932 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1933 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1934 task_tgid_vnr(current), current->comm);
1935 printk(KERN_WARNING "Skipping core dump\n");
1936 goto fail_dropcount;
1937 }
1938
1939 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1940 if (!helper_argv) {
1941 printk(KERN_WARNING "%s failed to allocate memory\n",
1942 __func__);
1943 goto fail_dropcount;
1944 }
1945
1946 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1947 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1948 NULL, &cprm);
1949 argv_free(helper_argv);
1950 if (retval) {
1951 printk(KERN_INFO "Core dump to %s pipe failed\n",
1952 corename);
1953 goto close_fail;
1954 }
1955 } else {
1956 struct inode *inode;
1957
1958 if (cprm.limit < binfmt->min_coredump)
1959 goto fail_unlock;
1960
1961 cprm.file = filp_open(corename,
1962 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1963 0600);
1964 if (IS_ERR(cprm.file))
1965 goto fail_unlock;
1966
1967 inode = cprm.file->f_path.dentry->d_inode;
1968 if (inode->i_nlink > 1)
1969 goto close_fail;
1970 if (d_unhashed(cprm.file->f_path.dentry))
1971 goto close_fail;
1972 /*
1973 * AK: actually i see no reason to not allow this for named
1974 * pipes etc, but keep the previous behaviour for now.
1975 */
1976 if (!S_ISREG(inode->i_mode))
1977 goto close_fail;
1978 /*
1979 * Dont allow local users get cute and trick others to coredump
1980 * into their pre-created files.
1981 */
1982 if (inode->i_uid != current_fsuid())
1983 goto close_fail;
1984 if (!cprm.file->f_op || !cprm.file->f_op->write)
1985 goto close_fail;
1986 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1987 goto close_fail;
1988 }
1989
1990 retval = binfmt->core_dump(&cprm);
1991 if (retval)
1992 current->signal->group_exit_code |= 0x80;
1993
1994 if (ispipe && core_pipe_limit)
1995 wait_for_dump_helpers(cprm.file);
1996close_fail:
1997 if (cprm.file)
1998 filp_close(cprm.file, NULL);
1999fail_dropcount:
2000 if (ispipe)
2001 atomic_dec(&core_dump_count);
2002fail_unlock:
2003 coredump_finish(mm);
2004 revert_creds(old_cred);
2005fail_creds:
2006 put_cred(cred);
2007fail:
2008 return;
2009}