]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/exec.c
kernel/pid.c: update comment on find_task_by_pid_ns
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
... / ...
CommitLineData
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/stat.h>
30#include <linux/fcntl.h>
31#include <linux/smp_lock.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/pagemap.h>
36#include <linux/perf_event.h>
37#include <linux/highmem.h>
38#include <linux/spinlock.h>
39#include <linux/key.h>
40#include <linux/personality.h>
41#include <linux/binfmts.h>
42#include <linux/utsname.h>
43#include <linux/pid_namespace.h>
44#include <linux/module.h>
45#include <linux/namei.h>
46#include <linux/proc_fs.h>
47#include <linux/mount.h>
48#include <linux/security.h>
49#include <linux/syscalls.h>
50#include <linux/tsacct_kern.h>
51#include <linux/cn_proc.h>
52#include <linux/audit.h>
53#include <linux/tracehook.h>
54#include <linux/kmod.h>
55#include <linux/fsnotify.h>
56#include <linux/fs_struct.h>
57#include <linux/pipe_fs_i.h>
58
59#include <asm/uaccess.h>
60#include <asm/mmu_context.h>
61#include <asm/tlb.h>
62#include "internal.h"
63
64int core_uses_pid;
65char core_pattern[CORENAME_MAX_SIZE] = "core";
66unsigned int core_pipe_limit;
67int suid_dumpable = 0;
68
69/* The maximal length of core_pattern is also specified in sysctl.c */
70
71static LIST_HEAD(formats);
72static DEFINE_RWLOCK(binfmt_lock);
73
74int __register_binfmt(struct linux_binfmt * fmt, int insert)
75{
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
83}
84
85EXPORT_SYMBOL(__register_binfmt);
86
87void unregister_binfmt(struct linux_binfmt * fmt)
88{
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92}
93
94EXPORT_SYMBOL(unregister_binfmt);
95
96static inline void put_binfmt(struct linux_binfmt * fmt)
97{
98 module_put(fmt->module);
99}
100
101/*
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
104 *
105 * Also note that we take the address to load from from the file itself.
106 */
107SYSCALL_DEFINE1(uselib, const char __user *, library)
108{
109 struct file *file;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
112
113 if (IS_ERR(tmp))
114 goto out;
115
116 file = do_filp_open(AT_FDCWD, tmp,
117 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 MAY_READ | MAY_EXEC | MAY_OPEN);
119 putname(tmp);
120 error = PTR_ERR(file);
121 if (IS_ERR(file))
122 goto out;
123
124 error = -EINVAL;
125 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 goto exit;
127
128 error = -EACCES;
129 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 goto exit;
131
132 fsnotify_open(file->f_path.dentry);
133
134 error = -ENOEXEC;
135 if(file->f_op) {
136 struct linux_binfmt * fmt;
137
138 read_lock(&binfmt_lock);
139 list_for_each_entry(fmt, &formats, lh) {
140 if (!fmt->load_shlib)
141 continue;
142 if (!try_module_get(fmt->module))
143 continue;
144 read_unlock(&binfmt_lock);
145 error = fmt->load_shlib(file);
146 read_lock(&binfmt_lock);
147 put_binfmt(fmt);
148 if (error != -ENOEXEC)
149 break;
150 }
151 read_unlock(&binfmt_lock);
152 }
153exit:
154 fput(file);
155out:
156 return error;
157}
158
159#ifdef CONFIG_MMU
160
161static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 int write)
163{
164 struct page *page;
165 int ret;
166
167#ifdef CONFIG_STACK_GROWSUP
168 if (write) {
169 ret = expand_stack_downwards(bprm->vma, pos);
170 if (ret < 0)
171 return NULL;
172 }
173#endif
174 ret = get_user_pages(current, bprm->mm, pos,
175 1, write, 1, &page, NULL);
176 if (ret <= 0)
177 return NULL;
178
179 if (write) {
180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 struct rlimit *rlim;
182
183 /*
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
186 */
187 if (size <= ARG_MAX)
188 return page;
189
190 /*
191 * Limit to 1/4-th the stack size for the argv+env strings.
192 * This ensures that:
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
195 * to work from.
196 */
197 rlim = current->signal->rlim;
198 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
199 put_page(page);
200 return NULL;
201 }
202 }
203
204 return page;
205}
206
207static void put_arg_page(struct page *page)
208{
209 put_page(page);
210}
211
212static void free_arg_page(struct linux_binprm *bprm, int i)
213{
214}
215
216static void free_arg_pages(struct linux_binprm *bprm)
217{
218}
219
220static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 struct page *page)
222{
223 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
224}
225
226static int __bprm_mm_init(struct linux_binprm *bprm)
227{
228 int err;
229 struct vm_area_struct *vma = NULL;
230 struct mm_struct *mm = bprm->mm;
231
232 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 if (!vma)
234 return -ENOMEM;
235
236 down_write(&mm->mmap_sem);
237 vma->vm_mm = mm;
238
239 /*
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
243 * configured yet.
244 */
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 INIT_LIST_HEAD(&vma->anon_vma_chain);
250 err = insert_vm_struct(mm, vma);
251 if (err)
252 goto err;
253
254 mm->stack_vm = mm->total_vm = 1;
255 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
257 return 0;
258err:
259 up_write(&mm->mmap_sem);
260 bprm->vma = NULL;
261 kmem_cache_free(vm_area_cachep, vma);
262 return err;
263}
264
265static bool valid_arg_len(struct linux_binprm *bprm, long len)
266{
267 return len <= MAX_ARG_STRLEN;
268}
269
270#else
271
272static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 int write)
274{
275 struct page *page;
276
277 page = bprm->page[pos / PAGE_SIZE];
278 if (!page && write) {
279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 if (!page)
281 return NULL;
282 bprm->page[pos / PAGE_SIZE] = page;
283 }
284
285 return page;
286}
287
288static void put_arg_page(struct page *page)
289{
290}
291
292static void free_arg_page(struct linux_binprm *bprm, int i)
293{
294 if (bprm->page[i]) {
295 __free_page(bprm->page[i]);
296 bprm->page[i] = NULL;
297 }
298}
299
300static void free_arg_pages(struct linux_binprm *bprm)
301{
302 int i;
303
304 for (i = 0; i < MAX_ARG_PAGES; i++)
305 free_arg_page(bprm, i);
306}
307
308static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 struct page *page)
310{
311}
312
313static int __bprm_mm_init(struct linux_binprm *bprm)
314{
315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 return 0;
317}
318
319static bool valid_arg_len(struct linux_binprm *bprm, long len)
320{
321 return len <= bprm->p;
322}
323
324#endif /* CONFIG_MMU */
325
326/*
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
331 */
332int bprm_mm_init(struct linux_binprm *bprm)
333{
334 int err;
335 struct mm_struct *mm = NULL;
336
337 bprm->mm = mm = mm_alloc();
338 err = -ENOMEM;
339 if (!mm)
340 goto err;
341
342 err = init_new_context(current, mm);
343 if (err)
344 goto err;
345
346 err = __bprm_mm_init(bprm);
347 if (err)
348 goto err;
349
350 return 0;
351
352err:
353 if (mm) {
354 bprm->mm = NULL;
355 mmdrop(mm);
356 }
357
358 return err;
359}
360
361/*
362 * count() counts the number of strings in array ARGV.
363 */
364static int count(char __user * __user * argv, int max)
365{
366 int i = 0;
367
368 if (argv != NULL) {
369 for (;;) {
370 char __user * p;
371
372 if (get_user(p, argv))
373 return -EFAULT;
374 if (!p)
375 break;
376 argv++;
377 if (i++ >= max)
378 return -E2BIG;
379 cond_resched();
380 }
381 }
382 return i;
383}
384
385/*
386 * 'copy_strings()' copies argument/environment strings from the old
387 * processes's memory to the new process's stack. The call to get_user_pages()
388 * ensures the destination page is created and not swapped out.
389 */
390static int copy_strings(int argc, char __user * __user * argv,
391 struct linux_binprm *bprm)
392{
393 struct page *kmapped_page = NULL;
394 char *kaddr = NULL;
395 unsigned long kpos = 0;
396 int ret;
397
398 while (argc-- > 0) {
399 char __user *str;
400 int len;
401 unsigned long pos;
402
403 if (get_user(str, argv+argc) ||
404 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 ret = -EFAULT;
406 goto out;
407 }
408
409 if (!valid_arg_len(bprm, len)) {
410 ret = -E2BIG;
411 goto out;
412 }
413
414 /* We're going to work our way backwords. */
415 pos = bprm->p;
416 str += len;
417 bprm->p -= len;
418
419 while (len > 0) {
420 int offset, bytes_to_copy;
421
422 offset = pos % PAGE_SIZE;
423 if (offset == 0)
424 offset = PAGE_SIZE;
425
426 bytes_to_copy = offset;
427 if (bytes_to_copy > len)
428 bytes_to_copy = len;
429
430 offset -= bytes_to_copy;
431 pos -= bytes_to_copy;
432 str -= bytes_to_copy;
433 len -= bytes_to_copy;
434
435 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 struct page *page;
437
438 page = get_arg_page(bprm, pos, 1);
439 if (!page) {
440 ret = -E2BIG;
441 goto out;
442 }
443
444 if (kmapped_page) {
445 flush_kernel_dcache_page(kmapped_page);
446 kunmap(kmapped_page);
447 put_arg_page(kmapped_page);
448 }
449 kmapped_page = page;
450 kaddr = kmap(kmapped_page);
451 kpos = pos & PAGE_MASK;
452 flush_arg_page(bprm, kpos, kmapped_page);
453 }
454 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455 ret = -EFAULT;
456 goto out;
457 }
458 }
459 }
460 ret = 0;
461out:
462 if (kmapped_page) {
463 flush_kernel_dcache_page(kmapped_page);
464 kunmap(kmapped_page);
465 put_arg_page(kmapped_page);
466 }
467 return ret;
468}
469
470/*
471 * Like copy_strings, but get argv and its values from kernel memory.
472 */
473int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474{
475 int r;
476 mm_segment_t oldfs = get_fs();
477 set_fs(KERNEL_DS);
478 r = copy_strings(argc, (char __user * __user *)argv, bprm);
479 set_fs(oldfs);
480 return r;
481}
482EXPORT_SYMBOL(copy_strings_kernel);
483
484#ifdef CONFIG_MMU
485
486/*
487 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
488 * the binfmt code determines where the new stack should reside, we shift it to
489 * its final location. The process proceeds as follows:
490 *
491 * 1) Use shift to calculate the new vma endpoints.
492 * 2) Extend vma to cover both the old and new ranges. This ensures the
493 * arguments passed to subsequent functions are consistent.
494 * 3) Move vma's page tables to the new range.
495 * 4) Free up any cleared pgd range.
496 * 5) Shrink the vma to cover only the new range.
497 */
498static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
499{
500 struct mm_struct *mm = vma->vm_mm;
501 unsigned long old_start = vma->vm_start;
502 unsigned long old_end = vma->vm_end;
503 unsigned long length = old_end - old_start;
504 unsigned long new_start = old_start - shift;
505 unsigned long new_end = old_end - shift;
506 struct mmu_gather *tlb;
507
508 BUG_ON(new_start > new_end);
509
510 /*
511 * ensure there are no vmas between where we want to go
512 * and where we are
513 */
514 if (vma != find_vma(mm, new_start))
515 return -EFAULT;
516
517 /*
518 * cover the whole range: [new_start, old_end)
519 */
520 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
521 return -ENOMEM;
522
523 /*
524 * move the page tables downwards, on failure we rely on
525 * process cleanup to remove whatever mess we made.
526 */
527 if (length != move_page_tables(vma, old_start,
528 vma, new_start, length))
529 return -ENOMEM;
530
531 lru_add_drain();
532 tlb = tlb_gather_mmu(mm, 0);
533 if (new_end > old_start) {
534 /*
535 * when the old and new regions overlap clear from new_end.
536 */
537 free_pgd_range(tlb, new_end, old_end, new_end,
538 vma->vm_next ? vma->vm_next->vm_start : 0);
539 } else {
540 /*
541 * otherwise, clean from old_start; this is done to not touch
542 * the address space in [new_end, old_start) some architectures
543 * have constraints on va-space that make this illegal (IA64) -
544 * for the others its just a little faster.
545 */
546 free_pgd_range(tlb, old_start, old_end, new_end,
547 vma->vm_next ? vma->vm_next->vm_start : 0);
548 }
549 tlb_finish_mmu(tlb, new_end, old_end);
550
551 /*
552 * Shrink the vma to just the new range. Always succeeds.
553 */
554 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
555
556 return 0;
557}
558
559#define EXTRA_STACK_VM_PAGES 20 /* random */
560
561/*
562 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
563 * the stack is optionally relocated, and some extra space is added.
564 */
565int setup_arg_pages(struct linux_binprm *bprm,
566 unsigned long stack_top,
567 int executable_stack)
568{
569 unsigned long ret;
570 unsigned long stack_shift;
571 struct mm_struct *mm = current->mm;
572 struct vm_area_struct *vma = bprm->vma;
573 struct vm_area_struct *prev = NULL;
574 unsigned long vm_flags;
575 unsigned long stack_base;
576 unsigned long stack_size;
577 unsigned long stack_expand;
578 unsigned long rlim_stack;
579
580#ifdef CONFIG_STACK_GROWSUP
581 /* Limit stack size to 1GB */
582 stack_base = rlimit_max(RLIMIT_STACK);
583 if (stack_base > (1 << 30))
584 stack_base = 1 << 30;
585
586 /* Make sure we didn't let the argument array grow too large. */
587 if (vma->vm_end - vma->vm_start > stack_base)
588 return -ENOMEM;
589
590 stack_base = PAGE_ALIGN(stack_top - stack_base);
591
592 stack_shift = vma->vm_start - stack_base;
593 mm->arg_start = bprm->p - stack_shift;
594 bprm->p = vma->vm_end - stack_shift;
595#else
596 stack_top = arch_align_stack(stack_top);
597 stack_top = PAGE_ALIGN(stack_top);
598 stack_shift = vma->vm_end - stack_top;
599
600 bprm->p -= stack_shift;
601 mm->arg_start = bprm->p;
602#endif
603
604 if (bprm->loader)
605 bprm->loader -= stack_shift;
606 bprm->exec -= stack_shift;
607
608 down_write(&mm->mmap_sem);
609 vm_flags = VM_STACK_FLAGS;
610
611 /*
612 * Adjust stack execute permissions; explicitly enable for
613 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614 * (arch default) otherwise.
615 */
616 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
617 vm_flags |= VM_EXEC;
618 else if (executable_stack == EXSTACK_DISABLE_X)
619 vm_flags &= ~VM_EXEC;
620 vm_flags |= mm->def_flags;
621
622 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623 vm_flags);
624 if (ret)
625 goto out_unlock;
626 BUG_ON(prev != vma);
627
628 /* Move stack pages down in memory. */
629 if (stack_shift) {
630 ret = shift_arg_pages(vma, stack_shift);
631 if (ret)
632 goto out_unlock;
633 }
634
635 stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
636 stack_size = vma->vm_end - vma->vm_start;
637 /*
638 * Align this down to a page boundary as expand_stack
639 * will align it up.
640 */
641 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
642#ifdef CONFIG_STACK_GROWSUP
643 if (stack_size + stack_expand > rlim_stack)
644 stack_base = vma->vm_start + rlim_stack;
645 else
646 stack_base = vma->vm_end + stack_expand;
647#else
648 if (stack_size + stack_expand > rlim_stack)
649 stack_base = vma->vm_end - rlim_stack;
650 else
651 stack_base = vma->vm_start - stack_expand;
652#endif
653 ret = expand_stack(vma, stack_base);
654 if (ret)
655 ret = -EFAULT;
656
657out_unlock:
658 up_write(&mm->mmap_sem);
659 return ret;
660}
661EXPORT_SYMBOL(setup_arg_pages);
662
663#endif /* CONFIG_MMU */
664
665struct file *open_exec(const char *name)
666{
667 struct file *file;
668 int err;
669
670 file = do_filp_open(AT_FDCWD, name,
671 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
672 MAY_EXEC | MAY_OPEN);
673 if (IS_ERR(file))
674 goto out;
675
676 err = -EACCES;
677 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
678 goto exit;
679
680 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
681 goto exit;
682
683 fsnotify_open(file->f_path.dentry);
684
685 err = deny_write_access(file);
686 if (err)
687 goto exit;
688
689out:
690 return file;
691
692exit:
693 fput(file);
694 return ERR_PTR(err);
695}
696EXPORT_SYMBOL(open_exec);
697
698int kernel_read(struct file *file, loff_t offset,
699 char *addr, unsigned long count)
700{
701 mm_segment_t old_fs;
702 loff_t pos = offset;
703 int result;
704
705 old_fs = get_fs();
706 set_fs(get_ds());
707 /* The cast to a user pointer is valid due to the set_fs() */
708 result = vfs_read(file, (void __user *)addr, count, &pos);
709 set_fs(old_fs);
710 return result;
711}
712
713EXPORT_SYMBOL(kernel_read);
714
715static int exec_mmap(struct mm_struct *mm)
716{
717 struct task_struct *tsk;
718 struct mm_struct * old_mm, *active_mm;
719
720 /* Notify parent that we're no longer interested in the old VM */
721 tsk = current;
722 old_mm = current->mm;
723 sync_mm_rss(tsk, old_mm);
724 mm_release(tsk, old_mm);
725
726 if (old_mm) {
727 /*
728 * Make sure that if there is a core dump in progress
729 * for the old mm, we get out and die instead of going
730 * through with the exec. We must hold mmap_sem around
731 * checking core_state and changing tsk->mm.
732 */
733 down_read(&old_mm->mmap_sem);
734 if (unlikely(old_mm->core_state)) {
735 up_read(&old_mm->mmap_sem);
736 return -EINTR;
737 }
738 }
739 task_lock(tsk);
740 active_mm = tsk->active_mm;
741 tsk->mm = mm;
742 tsk->active_mm = mm;
743 activate_mm(active_mm, mm);
744 task_unlock(tsk);
745 arch_pick_mmap_layout(mm);
746 if (old_mm) {
747 up_read(&old_mm->mmap_sem);
748 BUG_ON(active_mm != old_mm);
749 mm_update_next_owner(old_mm);
750 mmput(old_mm);
751 return 0;
752 }
753 mmdrop(active_mm);
754 return 0;
755}
756
757/*
758 * This function makes sure the current process has its own signal table,
759 * so that flush_signal_handlers can later reset the handlers without
760 * disturbing other processes. (Other processes might share the signal
761 * table via the CLONE_SIGHAND option to clone().)
762 */
763static int de_thread(struct task_struct *tsk)
764{
765 struct signal_struct *sig = tsk->signal;
766 struct sighand_struct *oldsighand = tsk->sighand;
767 spinlock_t *lock = &oldsighand->siglock;
768 int count;
769
770 if (thread_group_empty(tsk))
771 goto no_thread_group;
772
773 /*
774 * Kill all other threads in the thread group.
775 */
776 spin_lock_irq(lock);
777 if (signal_group_exit(sig)) {
778 /*
779 * Another group action in progress, just
780 * return so that the signal is processed.
781 */
782 spin_unlock_irq(lock);
783 return -EAGAIN;
784 }
785 sig->group_exit_task = tsk;
786 zap_other_threads(tsk);
787
788 /* Account for the thread group leader hanging around: */
789 count = thread_group_leader(tsk) ? 1 : 2;
790 sig->notify_count = count;
791 while (atomic_read(&sig->count) > count) {
792 __set_current_state(TASK_UNINTERRUPTIBLE);
793 spin_unlock_irq(lock);
794 schedule();
795 spin_lock_irq(lock);
796 }
797 spin_unlock_irq(lock);
798
799 /*
800 * At this point all other threads have exited, all we have to
801 * do is to wait for the thread group leader to become inactive,
802 * and to assume its PID:
803 */
804 if (!thread_group_leader(tsk)) {
805 struct task_struct *leader = tsk->group_leader;
806
807 sig->notify_count = -1; /* for exit_notify() */
808 for (;;) {
809 write_lock_irq(&tasklist_lock);
810 if (likely(leader->exit_state))
811 break;
812 __set_current_state(TASK_UNINTERRUPTIBLE);
813 write_unlock_irq(&tasklist_lock);
814 schedule();
815 }
816
817 /*
818 * The only record we have of the real-time age of a
819 * process, regardless of execs it's done, is start_time.
820 * All the past CPU time is accumulated in signal_struct
821 * from sister threads now dead. But in this non-leader
822 * exec, nothing survives from the original leader thread,
823 * whose birth marks the true age of this process now.
824 * When we take on its identity by switching to its PID, we
825 * also take its birthdate (always earlier than our own).
826 */
827 tsk->start_time = leader->start_time;
828
829 BUG_ON(!same_thread_group(leader, tsk));
830 BUG_ON(has_group_leader_pid(tsk));
831 /*
832 * An exec() starts a new thread group with the
833 * TGID of the previous thread group. Rehash the
834 * two threads with a switched PID, and release
835 * the former thread group leader:
836 */
837
838 /* Become a process group leader with the old leader's pid.
839 * The old leader becomes a thread of the this thread group.
840 * Note: The old leader also uses this pid until release_task
841 * is called. Odd but simple and correct.
842 */
843 detach_pid(tsk, PIDTYPE_PID);
844 tsk->pid = leader->pid;
845 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
846 transfer_pid(leader, tsk, PIDTYPE_PGID);
847 transfer_pid(leader, tsk, PIDTYPE_SID);
848
849 list_replace_rcu(&leader->tasks, &tsk->tasks);
850 list_replace_init(&leader->sibling, &tsk->sibling);
851
852 tsk->group_leader = tsk;
853 leader->group_leader = tsk;
854
855 tsk->exit_signal = SIGCHLD;
856
857 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
858 leader->exit_state = EXIT_DEAD;
859 write_unlock_irq(&tasklist_lock);
860
861 release_task(leader);
862 }
863
864 sig->group_exit_task = NULL;
865 sig->notify_count = 0;
866
867no_thread_group:
868 if (current->mm)
869 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
870
871 exit_itimers(sig);
872 flush_itimer_signals();
873
874 if (atomic_read(&oldsighand->count) != 1) {
875 struct sighand_struct *newsighand;
876 /*
877 * This ->sighand is shared with the CLONE_SIGHAND
878 * but not CLONE_THREAD task, switch to the new one.
879 */
880 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
881 if (!newsighand)
882 return -ENOMEM;
883
884 atomic_set(&newsighand->count, 1);
885 memcpy(newsighand->action, oldsighand->action,
886 sizeof(newsighand->action));
887
888 write_lock_irq(&tasklist_lock);
889 spin_lock(&oldsighand->siglock);
890 rcu_assign_pointer(tsk->sighand, newsighand);
891 spin_unlock(&oldsighand->siglock);
892 write_unlock_irq(&tasklist_lock);
893
894 __cleanup_sighand(oldsighand);
895 }
896
897 BUG_ON(!thread_group_leader(tsk));
898 return 0;
899}
900
901/*
902 * These functions flushes out all traces of the currently running executable
903 * so that a new one can be started
904 */
905static void flush_old_files(struct files_struct * files)
906{
907 long j = -1;
908 struct fdtable *fdt;
909
910 spin_lock(&files->file_lock);
911 for (;;) {
912 unsigned long set, i;
913
914 j++;
915 i = j * __NFDBITS;
916 fdt = files_fdtable(files);
917 if (i >= fdt->max_fds)
918 break;
919 set = fdt->close_on_exec->fds_bits[j];
920 if (!set)
921 continue;
922 fdt->close_on_exec->fds_bits[j] = 0;
923 spin_unlock(&files->file_lock);
924 for ( ; set ; i++,set >>= 1) {
925 if (set & 1) {
926 sys_close(i);
927 }
928 }
929 spin_lock(&files->file_lock);
930
931 }
932 spin_unlock(&files->file_lock);
933}
934
935char *get_task_comm(char *buf, struct task_struct *tsk)
936{
937 /* buf must be at least sizeof(tsk->comm) in size */
938 task_lock(tsk);
939 strncpy(buf, tsk->comm, sizeof(tsk->comm));
940 task_unlock(tsk);
941 return buf;
942}
943
944void set_task_comm(struct task_struct *tsk, char *buf)
945{
946 task_lock(tsk);
947
948 /*
949 * Threads may access current->comm without holding
950 * the task lock, so write the string carefully.
951 * Readers without a lock may see incomplete new
952 * names but are safe from non-terminating string reads.
953 */
954 memset(tsk->comm, 0, TASK_COMM_LEN);
955 wmb();
956 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
957 task_unlock(tsk);
958 perf_event_comm(tsk);
959}
960
961int flush_old_exec(struct linux_binprm * bprm)
962{
963 int retval;
964
965 /*
966 * Make sure we have a private signal table and that
967 * we are unassociated from the previous thread group.
968 */
969 retval = de_thread(current);
970 if (retval)
971 goto out;
972
973 set_mm_exe_file(bprm->mm, bprm->file);
974
975 /*
976 * Release all of the old mmap stuff
977 */
978 retval = exec_mmap(bprm->mm);
979 if (retval)
980 goto out;
981
982 bprm->mm = NULL; /* We're using it now */
983
984 current->flags &= ~PF_RANDOMIZE;
985 flush_thread();
986 current->personality &= ~bprm->per_clear;
987
988 return 0;
989
990out:
991 return retval;
992}
993EXPORT_SYMBOL(flush_old_exec);
994
995void setup_new_exec(struct linux_binprm * bprm)
996{
997 int i, ch;
998 char * name;
999 char tcomm[sizeof(current->comm)];
1000
1001 arch_pick_mmap_layout(current->mm);
1002
1003 /* This is the point of no return */
1004 current->sas_ss_sp = current->sas_ss_size = 0;
1005
1006 if (current_euid() == current_uid() && current_egid() == current_gid())
1007 set_dumpable(current->mm, 1);
1008 else
1009 set_dumpable(current->mm, suid_dumpable);
1010
1011 name = bprm->filename;
1012
1013 /* Copies the binary name from after last slash */
1014 for (i=0; (ch = *(name++)) != '\0';) {
1015 if (ch == '/')
1016 i = 0; /* overwrite what we wrote */
1017 else
1018 if (i < (sizeof(tcomm) - 1))
1019 tcomm[i++] = ch;
1020 }
1021 tcomm[i] = '\0';
1022 set_task_comm(current, tcomm);
1023
1024 /* Set the new mm task size. We have to do that late because it may
1025 * depend on TIF_32BIT which is only updated in flush_thread() on
1026 * some architectures like powerpc
1027 */
1028 current->mm->task_size = TASK_SIZE;
1029
1030 /* install the new credentials */
1031 if (bprm->cred->uid != current_euid() ||
1032 bprm->cred->gid != current_egid()) {
1033 current->pdeath_signal = 0;
1034 } else if (file_permission(bprm->file, MAY_READ) ||
1035 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1036 set_dumpable(current->mm, suid_dumpable);
1037 }
1038
1039 /*
1040 * Flush performance counters when crossing a
1041 * security domain:
1042 */
1043 if (!get_dumpable(current->mm))
1044 perf_event_exit_task(current);
1045
1046 /* An exec changes our domain. We are no longer part of the thread
1047 group */
1048
1049 current->self_exec_id++;
1050
1051 flush_signal_handlers(current, 0);
1052 flush_old_files(current->files);
1053}
1054EXPORT_SYMBOL(setup_new_exec);
1055
1056/*
1057 * Prepare credentials and lock ->cred_guard_mutex.
1058 * install_exec_creds() commits the new creds and drops the lock.
1059 * Or, if exec fails before, free_bprm() should release ->cred and
1060 * and unlock.
1061 */
1062int prepare_bprm_creds(struct linux_binprm *bprm)
1063{
1064 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1065 return -ERESTARTNOINTR;
1066
1067 bprm->cred = prepare_exec_creds();
1068 if (likely(bprm->cred))
1069 return 0;
1070
1071 mutex_unlock(&current->cred_guard_mutex);
1072 return -ENOMEM;
1073}
1074
1075void free_bprm(struct linux_binprm *bprm)
1076{
1077 free_arg_pages(bprm);
1078 if (bprm->cred) {
1079 mutex_unlock(&current->cred_guard_mutex);
1080 abort_creds(bprm->cred);
1081 }
1082 kfree(bprm);
1083}
1084
1085/*
1086 * install the new credentials for this executable
1087 */
1088void install_exec_creds(struct linux_binprm *bprm)
1089{
1090 security_bprm_committing_creds(bprm);
1091
1092 commit_creds(bprm->cred);
1093 bprm->cred = NULL;
1094 /*
1095 * cred_guard_mutex must be held at least to this point to prevent
1096 * ptrace_attach() from altering our determination of the task's
1097 * credentials; any time after this it may be unlocked.
1098 */
1099 security_bprm_committed_creds(bprm);
1100 mutex_unlock(&current->cred_guard_mutex);
1101}
1102EXPORT_SYMBOL(install_exec_creds);
1103
1104/*
1105 * determine how safe it is to execute the proposed program
1106 * - the caller must hold current->cred_guard_mutex to protect against
1107 * PTRACE_ATTACH
1108 */
1109int check_unsafe_exec(struct linux_binprm *bprm)
1110{
1111 struct task_struct *p = current, *t;
1112 unsigned n_fs;
1113 int res = 0;
1114
1115 bprm->unsafe = tracehook_unsafe_exec(p);
1116
1117 n_fs = 1;
1118 write_lock(&p->fs->lock);
1119 rcu_read_lock();
1120 for (t = next_thread(p); t != p; t = next_thread(t)) {
1121 if (t->fs == p->fs)
1122 n_fs++;
1123 }
1124 rcu_read_unlock();
1125
1126 if (p->fs->users > n_fs) {
1127 bprm->unsafe |= LSM_UNSAFE_SHARE;
1128 } else {
1129 res = -EAGAIN;
1130 if (!p->fs->in_exec) {
1131 p->fs->in_exec = 1;
1132 res = 1;
1133 }
1134 }
1135 write_unlock(&p->fs->lock);
1136
1137 return res;
1138}
1139
1140/*
1141 * Fill the binprm structure from the inode.
1142 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1143 *
1144 * This may be called multiple times for binary chains (scripts for example).
1145 */
1146int prepare_binprm(struct linux_binprm *bprm)
1147{
1148 umode_t mode;
1149 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1150 int retval;
1151
1152 mode = inode->i_mode;
1153 if (bprm->file->f_op == NULL)
1154 return -EACCES;
1155
1156 /* clear any previous set[ug]id data from a previous binary */
1157 bprm->cred->euid = current_euid();
1158 bprm->cred->egid = current_egid();
1159
1160 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1161 /* Set-uid? */
1162 if (mode & S_ISUID) {
1163 bprm->per_clear |= PER_CLEAR_ON_SETID;
1164 bprm->cred->euid = inode->i_uid;
1165 }
1166
1167 /* Set-gid? */
1168 /*
1169 * If setgid is set but no group execute bit then this
1170 * is a candidate for mandatory locking, not a setgid
1171 * executable.
1172 */
1173 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1174 bprm->per_clear |= PER_CLEAR_ON_SETID;
1175 bprm->cred->egid = inode->i_gid;
1176 }
1177 }
1178
1179 /* fill in binprm security blob */
1180 retval = security_bprm_set_creds(bprm);
1181 if (retval)
1182 return retval;
1183 bprm->cred_prepared = 1;
1184
1185 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1186 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1187}
1188
1189EXPORT_SYMBOL(prepare_binprm);
1190
1191/*
1192 * Arguments are '\0' separated strings found at the location bprm->p
1193 * points to; chop off the first by relocating brpm->p to right after
1194 * the first '\0' encountered.
1195 */
1196int remove_arg_zero(struct linux_binprm *bprm)
1197{
1198 int ret = 0;
1199 unsigned long offset;
1200 char *kaddr;
1201 struct page *page;
1202
1203 if (!bprm->argc)
1204 return 0;
1205
1206 do {
1207 offset = bprm->p & ~PAGE_MASK;
1208 page = get_arg_page(bprm, bprm->p, 0);
1209 if (!page) {
1210 ret = -EFAULT;
1211 goto out;
1212 }
1213 kaddr = kmap_atomic(page, KM_USER0);
1214
1215 for (; offset < PAGE_SIZE && kaddr[offset];
1216 offset++, bprm->p++)
1217 ;
1218
1219 kunmap_atomic(kaddr, KM_USER0);
1220 put_arg_page(page);
1221
1222 if (offset == PAGE_SIZE)
1223 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1224 } while (offset == PAGE_SIZE);
1225
1226 bprm->p++;
1227 bprm->argc--;
1228 ret = 0;
1229
1230out:
1231 return ret;
1232}
1233EXPORT_SYMBOL(remove_arg_zero);
1234
1235/*
1236 * cycle the list of binary formats handler, until one recognizes the image
1237 */
1238int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1239{
1240 unsigned int depth = bprm->recursion_depth;
1241 int try,retval;
1242 struct linux_binfmt *fmt;
1243
1244 retval = security_bprm_check(bprm);
1245 if (retval)
1246 return retval;
1247
1248 /* kernel module loader fixup */
1249 /* so we don't try to load run modprobe in kernel space. */
1250 set_fs(USER_DS);
1251
1252 retval = audit_bprm(bprm);
1253 if (retval)
1254 return retval;
1255
1256 retval = -ENOENT;
1257 for (try=0; try<2; try++) {
1258 read_lock(&binfmt_lock);
1259 list_for_each_entry(fmt, &formats, lh) {
1260 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1261 if (!fn)
1262 continue;
1263 if (!try_module_get(fmt->module))
1264 continue;
1265 read_unlock(&binfmt_lock);
1266 retval = fn(bprm, regs);
1267 /*
1268 * Restore the depth counter to its starting value
1269 * in this call, so we don't have to rely on every
1270 * load_binary function to restore it on return.
1271 */
1272 bprm->recursion_depth = depth;
1273 if (retval >= 0) {
1274 if (depth == 0)
1275 tracehook_report_exec(fmt, bprm, regs);
1276 put_binfmt(fmt);
1277 allow_write_access(bprm->file);
1278 if (bprm->file)
1279 fput(bprm->file);
1280 bprm->file = NULL;
1281 current->did_exec = 1;
1282 proc_exec_connector(current);
1283 return retval;
1284 }
1285 read_lock(&binfmt_lock);
1286 put_binfmt(fmt);
1287 if (retval != -ENOEXEC || bprm->mm == NULL)
1288 break;
1289 if (!bprm->file) {
1290 read_unlock(&binfmt_lock);
1291 return retval;
1292 }
1293 }
1294 read_unlock(&binfmt_lock);
1295 if (retval != -ENOEXEC || bprm->mm == NULL) {
1296 break;
1297#ifdef CONFIG_MODULES
1298 } else {
1299#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1300 if (printable(bprm->buf[0]) &&
1301 printable(bprm->buf[1]) &&
1302 printable(bprm->buf[2]) &&
1303 printable(bprm->buf[3]))
1304 break; /* -ENOEXEC */
1305 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1306#endif
1307 }
1308 }
1309 return retval;
1310}
1311
1312EXPORT_SYMBOL(search_binary_handler);
1313
1314/*
1315 * sys_execve() executes a new program.
1316 */
1317int do_execve(char * filename,
1318 char __user *__user *argv,
1319 char __user *__user *envp,
1320 struct pt_regs * regs)
1321{
1322 struct linux_binprm *bprm;
1323 struct file *file;
1324 struct files_struct *displaced;
1325 bool clear_in_exec;
1326 int retval;
1327
1328 retval = unshare_files(&displaced);
1329 if (retval)
1330 goto out_ret;
1331
1332 retval = -ENOMEM;
1333 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1334 if (!bprm)
1335 goto out_files;
1336
1337 retval = prepare_bprm_creds(bprm);
1338 if (retval)
1339 goto out_free;
1340
1341 retval = check_unsafe_exec(bprm);
1342 if (retval < 0)
1343 goto out_free;
1344 clear_in_exec = retval;
1345 current->in_execve = 1;
1346
1347 file = open_exec(filename);
1348 retval = PTR_ERR(file);
1349 if (IS_ERR(file))
1350 goto out_unmark;
1351
1352 sched_exec();
1353
1354 bprm->file = file;
1355 bprm->filename = filename;
1356 bprm->interp = filename;
1357
1358 retval = bprm_mm_init(bprm);
1359 if (retval)
1360 goto out_file;
1361
1362 bprm->argc = count(argv, MAX_ARG_STRINGS);
1363 if ((retval = bprm->argc) < 0)
1364 goto out;
1365
1366 bprm->envc = count(envp, MAX_ARG_STRINGS);
1367 if ((retval = bprm->envc) < 0)
1368 goto out;
1369
1370 retval = prepare_binprm(bprm);
1371 if (retval < 0)
1372 goto out;
1373
1374 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1375 if (retval < 0)
1376 goto out;
1377
1378 bprm->exec = bprm->p;
1379 retval = copy_strings(bprm->envc, envp, bprm);
1380 if (retval < 0)
1381 goto out;
1382
1383 retval = copy_strings(bprm->argc, argv, bprm);
1384 if (retval < 0)
1385 goto out;
1386
1387 current->flags &= ~PF_KTHREAD;
1388 retval = search_binary_handler(bprm,regs);
1389 if (retval < 0)
1390 goto out;
1391
1392 current->stack_start = current->mm->start_stack;
1393
1394 /* execve succeeded */
1395 current->fs->in_exec = 0;
1396 current->in_execve = 0;
1397 acct_update_integrals(current);
1398 free_bprm(bprm);
1399 if (displaced)
1400 put_files_struct(displaced);
1401 return retval;
1402
1403out:
1404 if (bprm->mm)
1405 mmput (bprm->mm);
1406
1407out_file:
1408 if (bprm->file) {
1409 allow_write_access(bprm->file);
1410 fput(bprm->file);
1411 }
1412
1413out_unmark:
1414 if (clear_in_exec)
1415 current->fs->in_exec = 0;
1416 current->in_execve = 0;
1417
1418out_free:
1419 free_bprm(bprm);
1420
1421out_files:
1422 if (displaced)
1423 reset_files_struct(displaced);
1424out_ret:
1425 return retval;
1426}
1427
1428void set_binfmt(struct linux_binfmt *new)
1429{
1430 struct mm_struct *mm = current->mm;
1431
1432 if (mm->binfmt)
1433 module_put(mm->binfmt->module);
1434
1435 mm->binfmt = new;
1436 if (new)
1437 __module_get(new->module);
1438}
1439
1440EXPORT_SYMBOL(set_binfmt);
1441
1442/* format_corename will inspect the pattern parameter, and output a
1443 * name into corename, which must have space for at least
1444 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1445 */
1446static int format_corename(char *corename, long signr)
1447{
1448 const struct cred *cred = current_cred();
1449 const char *pat_ptr = core_pattern;
1450 int ispipe = (*pat_ptr == '|');
1451 char *out_ptr = corename;
1452 char *const out_end = corename + CORENAME_MAX_SIZE;
1453 int rc;
1454 int pid_in_pattern = 0;
1455
1456 /* Repeat as long as we have more pattern to process and more output
1457 space */
1458 while (*pat_ptr) {
1459 if (*pat_ptr != '%') {
1460 if (out_ptr == out_end)
1461 goto out;
1462 *out_ptr++ = *pat_ptr++;
1463 } else {
1464 switch (*++pat_ptr) {
1465 case 0:
1466 goto out;
1467 /* Double percent, output one percent */
1468 case '%':
1469 if (out_ptr == out_end)
1470 goto out;
1471 *out_ptr++ = '%';
1472 break;
1473 /* pid */
1474 case 'p':
1475 pid_in_pattern = 1;
1476 rc = snprintf(out_ptr, out_end - out_ptr,
1477 "%d", task_tgid_vnr(current));
1478 if (rc > out_end - out_ptr)
1479 goto out;
1480 out_ptr += rc;
1481 break;
1482 /* uid */
1483 case 'u':
1484 rc = snprintf(out_ptr, out_end - out_ptr,
1485 "%d", cred->uid);
1486 if (rc > out_end - out_ptr)
1487 goto out;
1488 out_ptr += rc;
1489 break;
1490 /* gid */
1491 case 'g':
1492 rc = snprintf(out_ptr, out_end - out_ptr,
1493 "%d", cred->gid);
1494 if (rc > out_end - out_ptr)
1495 goto out;
1496 out_ptr += rc;
1497 break;
1498 /* signal that caused the coredump */
1499 case 's':
1500 rc = snprintf(out_ptr, out_end - out_ptr,
1501 "%ld", signr);
1502 if (rc > out_end - out_ptr)
1503 goto out;
1504 out_ptr += rc;
1505 break;
1506 /* UNIX time of coredump */
1507 case 't': {
1508 struct timeval tv;
1509 do_gettimeofday(&tv);
1510 rc = snprintf(out_ptr, out_end - out_ptr,
1511 "%lu", tv.tv_sec);
1512 if (rc > out_end - out_ptr)
1513 goto out;
1514 out_ptr += rc;
1515 break;
1516 }
1517 /* hostname */
1518 case 'h':
1519 down_read(&uts_sem);
1520 rc = snprintf(out_ptr, out_end - out_ptr,
1521 "%s", utsname()->nodename);
1522 up_read(&uts_sem);
1523 if (rc > out_end - out_ptr)
1524 goto out;
1525 out_ptr += rc;
1526 break;
1527 /* executable */
1528 case 'e':
1529 rc = snprintf(out_ptr, out_end - out_ptr,
1530 "%s", current->comm);
1531 if (rc > out_end - out_ptr)
1532 goto out;
1533 out_ptr += rc;
1534 break;
1535 /* core limit size */
1536 case 'c':
1537 rc = snprintf(out_ptr, out_end - out_ptr,
1538 "%lu", rlimit(RLIMIT_CORE));
1539 if (rc > out_end - out_ptr)
1540 goto out;
1541 out_ptr += rc;
1542 break;
1543 default:
1544 break;
1545 }
1546 ++pat_ptr;
1547 }
1548 }
1549 /* Backward compatibility with core_uses_pid:
1550 *
1551 * If core_pattern does not include a %p (as is the default)
1552 * and core_uses_pid is set, then .%pid will be appended to
1553 * the filename. Do not do this for piped commands. */
1554 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1555 rc = snprintf(out_ptr, out_end - out_ptr,
1556 ".%d", task_tgid_vnr(current));
1557 if (rc > out_end - out_ptr)
1558 goto out;
1559 out_ptr += rc;
1560 }
1561out:
1562 *out_ptr = 0;
1563 return ispipe;
1564}
1565
1566static int zap_process(struct task_struct *start)
1567{
1568 struct task_struct *t;
1569 int nr = 0;
1570
1571 start->signal->flags = SIGNAL_GROUP_EXIT;
1572 start->signal->group_stop_count = 0;
1573
1574 t = start;
1575 do {
1576 if (t != current && t->mm) {
1577 sigaddset(&t->pending.signal, SIGKILL);
1578 signal_wake_up(t, 1);
1579 nr++;
1580 }
1581 } while_each_thread(start, t);
1582
1583 return nr;
1584}
1585
1586static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1587 struct core_state *core_state, int exit_code)
1588{
1589 struct task_struct *g, *p;
1590 unsigned long flags;
1591 int nr = -EAGAIN;
1592
1593 spin_lock_irq(&tsk->sighand->siglock);
1594 if (!signal_group_exit(tsk->signal)) {
1595 mm->core_state = core_state;
1596 tsk->signal->group_exit_code = exit_code;
1597 nr = zap_process(tsk);
1598 }
1599 spin_unlock_irq(&tsk->sighand->siglock);
1600 if (unlikely(nr < 0))
1601 return nr;
1602
1603 if (atomic_read(&mm->mm_users) == nr + 1)
1604 goto done;
1605 /*
1606 * We should find and kill all tasks which use this mm, and we should
1607 * count them correctly into ->nr_threads. We don't take tasklist
1608 * lock, but this is safe wrt:
1609 *
1610 * fork:
1611 * None of sub-threads can fork after zap_process(leader). All
1612 * processes which were created before this point should be
1613 * visible to zap_threads() because copy_process() adds the new
1614 * process to the tail of init_task.tasks list, and lock/unlock
1615 * of ->siglock provides a memory barrier.
1616 *
1617 * do_exit:
1618 * The caller holds mm->mmap_sem. This means that the task which
1619 * uses this mm can't pass exit_mm(), so it can't exit or clear
1620 * its ->mm.
1621 *
1622 * de_thread:
1623 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1624 * we must see either old or new leader, this does not matter.
1625 * However, it can change p->sighand, so lock_task_sighand(p)
1626 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1627 * it can't fail.
1628 *
1629 * Note also that "g" can be the old leader with ->mm == NULL
1630 * and already unhashed and thus removed from ->thread_group.
1631 * This is OK, __unhash_process()->list_del_rcu() does not
1632 * clear the ->next pointer, we will find the new leader via
1633 * next_thread().
1634 */
1635 rcu_read_lock();
1636 for_each_process(g) {
1637 if (g == tsk->group_leader)
1638 continue;
1639 if (g->flags & PF_KTHREAD)
1640 continue;
1641 p = g;
1642 do {
1643 if (p->mm) {
1644 if (unlikely(p->mm == mm)) {
1645 lock_task_sighand(p, &flags);
1646 nr += zap_process(p);
1647 unlock_task_sighand(p, &flags);
1648 }
1649 break;
1650 }
1651 } while_each_thread(g, p);
1652 }
1653 rcu_read_unlock();
1654done:
1655 atomic_set(&core_state->nr_threads, nr);
1656 return nr;
1657}
1658
1659static int coredump_wait(int exit_code, struct core_state *core_state)
1660{
1661 struct task_struct *tsk = current;
1662 struct mm_struct *mm = tsk->mm;
1663 struct completion *vfork_done;
1664 int core_waiters;
1665
1666 init_completion(&core_state->startup);
1667 core_state->dumper.task = tsk;
1668 core_state->dumper.next = NULL;
1669 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1670 up_write(&mm->mmap_sem);
1671
1672 if (unlikely(core_waiters < 0))
1673 goto fail;
1674
1675 /*
1676 * Make sure nobody is waiting for us to release the VM,
1677 * otherwise we can deadlock when we wait on each other
1678 */
1679 vfork_done = tsk->vfork_done;
1680 if (vfork_done) {
1681 tsk->vfork_done = NULL;
1682 complete(vfork_done);
1683 }
1684
1685 if (core_waiters)
1686 wait_for_completion(&core_state->startup);
1687fail:
1688 return core_waiters;
1689}
1690
1691static void coredump_finish(struct mm_struct *mm)
1692{
1693 struct core_thread *curr, *next;
1694 struct task_struct *task;
1695
1696 next = mm->core_state->dumper.next;
1697 while ((curr = next) != NULL) {
1698 next = curr->next;
1699 task = curr->task;
1700 /*
1701 * see exit_mm(), curr->task must not see
1702 * ->task == NULL before we read ->next.
1703 */
1704 smp_mb();
1705 curr->task = NULL;
1706 wake_up_process(task);
1707 }
1708
1709 mm->core_state = NULL;
1710}
1711
1712/*
1713 * set_dumpable converts traditional three-value dumpable to two flags and
1714 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1715 * these bits are not changed atomically. So get_dumpable can observe the
1716 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1717 * return either old dumpable or new one by paying attention to the order of
1718 * modifying the bits.
1719 *
1720 * dumpable | mm->flags (binary)
1721 * old new | initial interim final
1722 * ---------+-----------------------
1723 * 0 1 | 00 01 01
1724 * 0 2 | 00 10(*) 11
1725 * 1 0 | 01 00 00
1726 * 1 2 | 01 11 11
1727 * 2 0 | 11 10(*) 00
1728 * 2 1 | 11 11 01
1729 *
1730 * (*) get_dumpable regards interim value of 10 as 11.
1731 */
1732void set_dumpable(struct mm_struct *mm, int value)
1733{
1734 switch (value) {
1735 case 0:
1736 clear_bit(MMF_DUMPABLE, &mm->flags);
1737 smp_wmb();
1738 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1739 break;
1740 case 1:
1741 set_bit(MMF_DUMPABLE, &mm->flags);
1742 smp_wmb();
1743 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1744 break;
1745 case 2:
1746 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1747 smp_wmb();
1748 set_bit(MMF_DUMPABLE, &mm->flags);
1749 break;
1750 }
1751}
1752
1753int get_dumpable(struct mm_struct *mm)
1754{
1755 int ret;
1756
1757 ret = mm->flags & 0x3;
1758 return (ret >= 2) ? 2 : ret;
1759}
1760
1761static void wait_for_dump_helpers(struct file *file)
1762{
1763 struct pipe_inode_info *pipe;
1764
1765 pipe = file->f_path.dentry->d_inode->i_pipe;
1766
1767 pipe_lock(pipe);
1768 pipe->readers++;
1769 pipe->writers--;
1770
1771 while ((pipe->readers > 1) && (!signal_pending(current))) {
1772 wake_up_interruptible_sync(&pipe->wait);
1773 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1774 pipe_wait(pipe);
1775 }
1776
1777 pipe->readers--;
1778 pipe->writers++;
1779 pipe_unlock(pipe);
1780
1781}
1782
1783
1784void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1785{
1786 struct core_state core_state;
1787 char corename[CORENAME_MAX_SIZE + 1];
1788 struct mm_struct *mm = current->mm;
1789 struct linux_binfmt * binfmt;
1790 struct inode * inode;
1791 const struct cred *old_cred;
1792 struct cred *cred;
1793 int retval = 0;
1794 int flag = 0;
1795 int ispipe = 0;
1796 char **helper_argv = NULL;
1797 int helper_argc = 0;
1798 int dump_count = 0;
1799 static atomic_t core_dump_count = ATOMIC_INIT(0);
1800 struct coredump_params cprm = {
1801 .signr = signr,
1802 .regs = regs,
1803 .limit = rlimit(RLIMIT_CORE),
1804 };
1805
1806 audit_core_dumps(signr);
1807
1808 binfmt = mm->binfmt;
1809 if (!binfmt || !binfmt->core_dump)
1810 goto fail;
1811
1812 cred = prepare_creds();
1813 if (!cred) {
1814 retval = -ENOMEM;
1815 goto fail;
1816 }
1817
1818 down_write(&mm->mmap_sem);
1819 /*
1820 * If another thread got here first, or we are not dumpable, bail out.
1821 */
1822 if (mm->core_state || !get_dumpable(mm)) {
1823 up_write(&mm->mmap_sem);
1824 put_cred(cred);
1825 goto fail;
1826 }
1827
1828 /*
1829 * We cannot trust fsuid as being the "true" uid of the
1830 * process nor do we know its entire history. We only know it
1831 * was tainted so we dump it as root in mode 2.
1832 */
1833 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1834 flag = O_EXCL; /* Stop rewrite attacks */
1835 cred->fsuid = 0; /* Dump root private */
1836 }
1837
1838 retval = coredump_wait(exit_code, &core_state);
1839 if (retval < 0) {
1840 put_cred(cred);
1841 goto fail;
1842 }
1843
1844 old_cred = override_creds(cred);
1845
1846 /*
1847 * Clear any false indication of pending signals that might
1848 * be seen by the filesystem code called to write the core file.
1849 */
1850 clear_thread_flag(TIF_SIGPENDING);
1851
1852 /*
1853 * lock_kernel() because format_corename() is controlled by sysctl, which
1854 * uses lock_kernel()
1855 */
1856 lock_kernel();
1857 ispipe = format_corename(corename, signr);
1858 unlock_kernel();
1859
1860 if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1861 goto fail_unlock;
1862
1863 if (ispipe) {
1864 if (cprm.limit == 0) {
1865 /*
1866 * Normally core limits are irrelevant to pipes, since
1867 * we're not writing to the file system, but we use
1868 * cprm.limit of 0 here as a speacial value. Any
1869 * non-zero limit gets set to RLIM_INFINITY below, but
1870 * a limit of 0 skips the dump. This is a consistent
1871 * way to catch recursive crashes. We can still crash
1872 * if the core_pattern binary sets RLIM_CORE = !0
1873 * but it runs as root, and can do lots of stupid things
1874 * Note that we use task_tgid_vnr here to grab the pid
1875 * of the process group leader. That way we get the
1876 * right pid if a thread in a multi-threaded
1877 * core_pattern process dies.
1878 */
1879 printk(KERN_WARNING
1880 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1881 task_tgid_vnr(current), current->comm);
1882 printk(KERN_WARNING "Aborting core\n");
1883 goto fail_unlock;
1884 }
1885
1886 dump_count = atomic_inc_return(&core_dump_count);
1887 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1888 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1889 task_tgid_vnr(current), current->comm);
1890 printk(KERN_WARNING "Skipping core dump\n");
1891 goto fail_dropcount;
1892 }
1893
1894 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1895 if (!helper_argv) {
1896 printk(KERN_WARNING "%s failed to allocate memory\n",
1897 __func__);
1898 goto fail_dropcount;
1899 }
1900
1901 cprm.limit = RLIM_INFINITY;
1902
1903 /* SIGPIPE can happen, but it's just never processed */
1904 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1905 &cprm.file)) {
1906 printk(KERN_INFO "Core dump to %s pipe failed\n",
1907 corename);
1908 goto fail_dropcount;
1909 }
1910 } else
1911 cprm.file = filp_open(corename,
1912 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1913 0600);
1914 if (IS_ERR(cprm.file))
1915 goto fail_dropcount;
1916 inode = cprm.file->f_path.dentry->d_inode;
1917 if (inode->i_nlink > 1)
1918 goto close_fail; /* multiple links - don't dump */
1919 if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1920 goto close_fail;
1921
1922 /* AK: actually i see no reason to not allow this for named pipes etc.,
1923 but keep the previous behaviour for now. */
1924 if (!ispipe && !S_ISREG(inode->i_mode))
1925 goto close_fail;
1926 /*
1927 * Dont allow local users get cute and trick others to coredump
1928 * into their pre-created files:
1929 */
1930 if (inode->i_uid != current_fsuid())
1931 goto close_fail;
1932 if (!cprm.file->f_op)
1933 goto close_fail;
1934 if (!cprm.file->f_op->write)
1935 goto close_fail;
1936 if (!ispipe &&
1937 do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1938 goto close_fail;
1939
1940 retval = binfmt->core_dump(&cprm);
1941
1942 if (retval)
1943 current->signal->group_exit_code |= 0x80;
1944close_fail:
1945 if (ispipe && core_pipe_limit)
1946 wait_for_dump_helpers(cprm.file);
1947 filp_close(cprm.file, NULL);
1948fail_dropcount:
1949 if (dump_count)
1950 atomic_dec(&core_dump_count);
1951fail_unlock:
1952 if (helper_argv)
1953 argv_free(helper_argv);
1954
1955 revert_creds(old_cred);
1956 put_cred(cred);
1957 coredump_finish(mm);
1958fail:
1959 return;
1960}