]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/exec.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
... / ...
CommitLineData
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/coredump.h>
37#include <linux/pagemap.h>
38#include <linux/perf_event.h>
39#include <linux/highmem.h>
40#include <linux/spinlock.h>
41#include <linux/key.h>
42#include <linux/personality.h>
43#include <linux/binfmts.h>
44#include <linux/utsname.h>
45#include <linux/pid_namespace.h>
46#include <linux/module.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/security.h>
50#include <linux/syscalls.h>
51#include <linux/tsacct_kern.h>
52#include <linux/cn_proc.h>
53#include <linux/audit.h>
54#include <linux/tracehook.h>
55#include <linux/kmod.h>
56#include <linux/fsnotify.h>
57#include <linux/fs_struct.h>
58#include <linux/pipe_fs_i.h>
59#include <linux/oom.h>
60#include <linux/compat.h>
61#include <linux/vmalloc.h>
62
63#include <linux/uaccess.h>
64#include <asm/mmu_context.h>
65#include <asm/tlb.h>
66
67#include <trace/events/task.h>
68#include "internal.h"
69
70#include <trace/events/sched.h>
71
72int suid_dumpable = 0;
73
74static LIST_HEAD(formats);
75static DEFINE_RWLOCK(binfmt_lock);
76
77void __register_binfmt(struct linux_binfmt * fmt, int insert)
78{
79 BUG_ON(!fmt);
80 if (WARN_ON(!fmt->load_binary))
81 return;
82 write_lock(&binfmt_lock);
83 insert ? list_add(&fmt->lh, &formats) :
84 list_add_tail(&fmt->lh, &formats);
85 write_unlock(&binfmt_lock);
86}
87
88EXPORT_SYMBOL(__register_binfmt);
89
90void unregister_binfmt(struct linux_binfmt * fmt)
91{
92 write_lock(&binfmt_lock);
93 list_del(&fmt->lh);
94 write_unlock(&binfmt_lock);
95}
96
97EXPORT_SYMBOL(unregister_binfmt);
98
99static inline void put_binfmt(struct linux_binfmt * fmt)
100{
101 module_put(fmt->module);
102}
103
104bool path_noexec(const struct path *path)
105{
106 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108}
109
110#ifdef CONFIG_USELIB
111/*
112 * Note that a shared library must be both readable and executable due to
113 * security reasons.
114 *
115 * Also note that we take the address to load from from the file itself.
116 */
117SYSCALL_DEFINE1(uselib, const char __user *, library)
118{
119 struct linux_binfmt *fmt;
120 struct file *file;
121 struct filename *tmp = getname(library);
122 int error = PTR_ERR(tmp);
123 static const struct open_flags uselib_flags = {
124 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
125 .acc_mode = MAY_READ | MAY_EXEC,
126 .intent = LOOKUP_OPEN,
127 .lookup_flags = LOOKUP_FOLLOW,
128 };
129
130 if (IS_ERR(tmp))
131 goto out;
132
133 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
134 putname(tmp);
135 error = PTR_ERR(file);
136 if (IS_ERR(file))
137 goto out;
138
139 error = -EINVAL;
140 if (!S_ISREG(file_inode(file)->i_mode))
141 goto exit;
142
143 error = -EACCES;
144 if (path_noexec(&file->f_path))
145 goto exit;
146
147 fsnotify_open(file);
148
149 error = -ENOEXEC;
150
151 read_lock(&binfmt_lock);
152 list_for_each_entry(fmt, &formats, lh) {
153 if (!fmt->load_shlib)
154 continue;
155 if (!try_module_get(fmt->module))
156 continue;
157 read_unlock(&binfmt_lock);
158 error = fmt->load_shlib(file);
159 read_lock(&binfmt_lock);
160 put_binfmt(fmt);
161 if (error != -ENOEXEC)
162 break;
163 }
164 read_unlock(&binfmt_lock);
165exit:
166 fput(file);
167out:
168 return error;
169}
170#endif /* #ifdef CONFIG_USELIB */
171
172#ifdef CONFIG_MMU
173/*
174 * The nascent bprm->mm is not visible until exec_mmap() but it can
175 * use a lot of memory, account these pages in current->mm temporary
176 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
177 * change the counter back via acct_arg_size(0).
178 */
179static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
180{
181 struct mm_struct *mm = current->mm;
182 long diff = (long)(pages - bprm->vma_pages);
183
184 if (!mm || !diff)
185 return;
186
187 bprm->vma_pages = pages;
188 add_mm_counter(mm, MM_ANONPAGES, diff);
189}
190
191static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
192 int write)
193{
194 struct page *page;
195 int ret;
196 unsigned int gup_flags = FOLL_FORCE;
197
198#ifdef CONFIG_STACK_GROWSUP
199 if (write) {
200 ret = expand_downwards(bprm->vma, pos);
201 if (ret < 0)
202 return NULL;
203 }
204#endif
205
206 if (write)
207 gup_flags |= FOLL_WRITE;
208
209 /*
210 * We are doing an exec(). 'current' is the process
211 * doing the exec and bprm->mm is the new process's mm.
212 */
213 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
214 &page, NULL, NULL);
215 if (ret <= 0)
216 return NULL;
217
218 if (write) {
219 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
220 struct rlimit *rlim;
221
222 acct_arg_size(bprm, size / PAGE_SIZE);
223
224 /*
225 * We've historically supported up to 32 pages (ARG_MAX)
226 * of argument strings even with small stacks
227 */
228 if (size <= ARG_MAX)
229 return page;
230
231 /*
232 * Limit to 1/4-th the stack size for the argv+env strings.
233 * This ensures that:
234 * - the remaining binfmt code will not run out of stack space,
235 * - the program will have a reasonable amount of stack left
236 * to work from.
237 */
238 rlim = current->signal->rlim;
239 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
240 put_page(page);
241 return NULL;
242 }
243 }
244
245 return page;
246}
247
248static void put_arg_page(struct page *page)
249{
250 put_page(page);
251}
252
253static void free_arg_pages(struct linux_binprm *bprm)
254{
255}
256
257static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
258 struct page *page)
259{
260 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
261}
262
263static int __bprm_mm_init(struct linux_binprm *bprm)
264{
265 int err;
266 struct vm_area_struct *vma = NULL;
267 struct mm_struct *mm = bprm->mm;
268
269 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
270 if (!vma)
271 return -ENOMEM;
272
273 if (down_write_killable(&mm->mmap_sem)) {
274 err = -EINTR;
275 goto err_free;
276 }
277 vma->vm_mm = mm;
278
279 /*
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
283 * configured yet.
284 */
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 INIT_LIST_HEAD(&vma->anon_vma_chain);
291
292 err = insert_vm_struct(mm, vma);
293 if (err)
294 goto err;
295
296 mm->stack_vm = mm->total_vm = 1;
297 arch_bprm_mm_init(mm, vma);
298 up_write(&mm->mmap_sem);
299 bprm->p = vma->vm_end - sizeof(void *);
300 return 0;
301err:
302 up_write(&mm->mmap_sem);
303err_free:
304 bprm->vma = NULL;
305 kmem_cache_free(vm_area_cachep, vma);
306 return err;
307}
308
309static bool valid_arg_len(struct linux_binprm *bprm, long len)
310{
311 return len <= MAX_ARG_STRLEN;
312}
313
314#else
315
316static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317{
318}
319
320static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 int write)
322{
323 struct page *page;
324
325 page = bprm->page[pos / PAGE_SIZE];
326 if (!page && write) {
327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 if (!page)
329 return NULL;
330 bprm->page[pos / PAGE_SIZE] = page;
331 }
332
333 return page;
334}
335
336static void put_arg_page(struct page *page)
337{
338}
339
340static void free_arg_page(struct linux_binprm *bprm, int i)
341{
342 if (bprm->page[i]) {
343 __free_page(bprm->page[i]);
344 bprm->page[i] = NULL;
345 }
346}
347
348static void free_arg_pages(struct linux_binprm *bprm)
349{
350 int i;
351
352 for (i = 0; i < MAX_ARG_PAGES; i++)
353 free_arg_page(bprm, i);
354}
355
356static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 struct page *page)
358{
359}
360
361static int __bprm_mm_init(struct linux_binprm *bprm)
362{
363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 return 0;
365}
366
367static bool valid_arg_len(struct linux_binprm *bprm, long len)
368{
369 return len <= bprm->p;
370}
371
372#endif /* CONFIG_MMU */
373
374/*
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct. We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values. We'll update
378 * them later in setup_arg_pages().
379 */
380static int bprm_mm_init(struct linux_binprm *bprm)
381{
382 int err;
383 struct mm_struct *mm = NULL;
384
385 bprm->mm = mm = mm_alloc();
386 err = -ENOMEM;
387 if (!mm)
388 goto err;
389
390 err = __bprm_mm_init(bprm);
391 if (err)
392 goto err;
393
394 return 0;
395
396err:
397 if (mm) {
398 bprm->mm = NULL;
399 mmdrop(mm);
400 }
401
402 return err;
403}
404
405struct user_arg_ptr {
406#ifdef CONFIG_COMPAT
407 bool is_compat;
408#endif
409 union {
410 const char __user *const __user *native;
411#ifdef CONFIG_COMPAT
412 const compat_uptr_t __user *compat;
413#endif
414 } ptr;
415};
416
417static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
418{
419 const char __user *native;
420
421#ifdef CONFIG_COMPAT
422 if (unlikely(argv.is_compat)) {
423 compat_uptr_t compat;
424
425 if (get_user(compat, argv.ptr.compat + nr))
426 return ERR_PTR(-EFAULT);
427
428 return compat_ptr(compat);
429 }
430#endif
431
432 if (get_user(native, argv.ptr.native + nr))
433 return ERR_PTR(-EFAULT);
434
435 return native;
436}
437
438/*
439 * count() counts the number of strings in array ARGV.
440 */
441static int count(struct user_arg_ptr argv, int max)
442{
443 int i = 0;
444
445 if (argv.ptr.native != NULL) {
446 for (;;) {
447 const char __user *p = get_user_arg_ptr(argv, i);
448
449 if (!p)
450 break;
451
452 if (IS_ERR(p))
453 return -EFAULT;
454
455 if (i >= max)
456 return -E2BIG;
457 ++i;
458
459 if (fatal_signal_pending(current))
460 return -ERESTARTNOHAND;
461 cond_resched();
462 }
463 }
464 return i;
465}
466
467/*
468 * 'copy_strings()' copies argument/environment strings from the old
469 * processes's memory to the new process's stack. The call to get_user_pages()
470 * ensures the destination page is created and not swapped out.
471 */
472static int copy_strings(int argc, struct user_arg_ptr argv,
473 struct linux_binprm *bprm)
474{
475 struct page *kmapped_page = NULL;
476 char *kaddr = NULL;
477 unsigned long kpos = 0;
478 int ret;
479
480 while (argc-- > 0) {
481 const char __user *str;
482 int len;
483 unsigned long pos;
484
485 ret = -EFAULT;
486 str = get_user_arg_ptr(argv, argc);
487 if (IS_ERR(str))
488 goto out;
489
490 len = strnlen_user(str, MAX_ARG_STRLEN);
491 if (!len)
492 goto out;
493
494 ret = -E2BIG;
495 if (!valid_arg_len(bprm, len))
496 goto out;
497
498 /* We're going to work our way backwords. */
499 pos = bprm->p;
500 str += len;
501 bprm->p -= len;
502
503 while (len > 0) {
504 int offset, bytes_to_copy;
505
506 if (fatal_signal_pending(current)) {
507 ret = -ERESTARTNOHAND;
508 goto out;
509 }
510 cond_resched();
511
512 offset = pos % PAGE_SIZE;
513 if (offset == 0)
514 offset = PAGE_SIZE;
515
516 bytes_to_copy = offset;
517 if (bytes_to_copy > len)
518 bytes_to_copy = len;
519
520 offset -= bytes_to_copy;
521 pos -= bytes_to_copy;
522 str -= bytes_to_copy;
523 len -= bytes_to_copy;
524
525 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526 struct page *page;
527
528 page = get_arg_page(bprm, pos, 1);
529 if (!page) {
530 ret = -E2BIG;
531 goto out;
532 }
533
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
538 }
539 kmapped_page = page;
540 kaddr = kmap(kmapped_page);
541 kpos = pos & PAGE_MASK;
542 flush_arg_page(bprm, kpos, kmapped_page);
543 }
544 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545 ret = -EFAULT;
546 goto out;
547 }
548 }
549 }
550 ret = 0;
551out:
552 if (kmapped_page) {
553 flush_kernel_dcache_page(kmapped_page);
554 kunmap(kmapped_page);
555 put_arg_page(kmapped_page);
556 }
557 return ret;
558}
559
560/*
561 * Like copy_strings, but get argv and its values from kernel memory.
562 */
563int copy_strings_kernel(int argc, const char *const *__argv,
564 struct linux_binprm *bprm)
565{
566 int r;
567 mm_segment_t oldfs = get_fs();
568 struct user_arg_ptr argv = {
569 .ptr.native = (const char __user *const __user *)__argv,
570 };
571
572 set_fs(KERNEL_DS);
573 r = copy_strings(argc, argv, bprm);
574 set_fs(oldfs);
575
576 return r;
577}
578EXPORT_SYMBOL(copy_strings_kernel);
579
580#ifdef CONFIG_MMU
581
582/*
583 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
584 * the binfmt code determines where the new stack should reside, we shift it to
585 * its final location. The process proceeds as follows:
586 *
587 * 1) Use shift to calculate the new vma endpoints.
588 * 2) Extend vma to cover both the old and new ranges. This ensures the
589 * arguments passed to subsequent functions are consistent.
590 * 3) Move vma's page tables to the new range.
591 * 4) Free up any cleared pgd range.
592 * 5) Shrink the vma to cover only the new range.
593 */
594static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
595{
596 struct mm_struct *mm = vma->vm_mm;
597 unsigned long old_start = vma->vm_start;
598 unsigned long old_end = vma->vm_end;
599 unsigned long length = old_end - old_start;
600 unsigned long new_start = old_start - shift;
601 unsigned long new_end = old_end - shift;
602 struct mmu_gather tlb;
603
604 BUG_ON(new_start > new_end);
605
606 /*
607 * ensure there are no vmas between where we want to go
608 * and where we are
609 */
610 if (vma != find_vma(mm, new_start))
611 return -EFAULT;
612
613 /*
614 * cover the whole range: [new_start, old_end)
615 */
616 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617 return -ENOMEM;
618
619 /*
620 * move the page tables downwards, on failure we rely on
621 * process cleanup to remove whatever mess we made.
622 */
623 if (length != move_page_tables(vma, old_start,
624 vma, new_start, length, false))
625 return -ENOMEM;
626
627 lru_add_drain();
628 tlb_gather_mmu(&tlb, mm, old_start, old_end);
629 if (new_end > old_start) {
630 /*
631 * when the old and new regions overlap clear from new_end.
632 */
633 free_pgd_range(&tlb, new_end, old_end, new_end,
634 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
635 } else {
636 /*
637 * otherwise, clean from old_start; this is done to not touch
638 * the address space in [new_end, old_start) some architectures
639 * have constraints on va-space that make this illegal (IA64) -
640 * for the others its just a little faster.
641 */
642 free_pgd_range(&tlb, old_start, old_end, new_end,
643 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
644 }
645 tlb_finish_mmu(&tlb, old_start, old_end);
646
647 /*
648 * Shrink the vma to just the new range. Always succeeds.
649 */
650 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651
652 return 0;
653}
654
655/*
656 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657 * the stack is optionally relocated, and some extra space is added.
658 */
659int setup_arg_pages(struct linux_binprm *bprm,
660 unsigned long stack_top,
661 int executable_stack)
662{
663 unsigned long ret;
664 unsigned long stack_shift;
665 struct mm_struct *mm = current->mm;
666 struct vm_area_struct *vma = bprm->vma;
667 struct vm_area_struct *prev = NULL;
668 unsigned long vm_flags;
669 unsigned long stack_base;
670 unsigned long stack_size;
671 unsigned long stack_expand;
672 unsigned long rlim_stack;
673
674#ifdef CONFIG_STACK_GROWSUP
675 /* Limit stack size */
676 stack_base = rlimit_max(RLIMIT_STACK);
677 if (stack_base > STACK_SIZE_MAX)
678 stack_base = STACK_SIZE_MAX;
679
680 /* Add space for stack randomization. */
681 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
682
683 /* Make sure we didn't let the argument array grow too large. */
684 if (vma->vm_end - vma->vm_start > stack_base)
685 return -ENOMEM;
686
687 stack_base = PAGE_ALIGN(stack_top - stack_base);
688
689 stack_shift = vma->vm_start - stack_base;
690 mm->arg_start = bprm->p - stack_shift;
691 bprm->p = vma->vm_end - stack_shift;
692#else
693 stack_top = arch_align_stack(stack_top);
694 stack_top = PAGE_ALIGN(stack_top);
695
696 if (unlikely(stack_top < mmap_min_addr) ||
697 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
698 return -ENOMEM;
699
700 stack_shift = vma->vm_end - stack_top;
701
702 bprm->p -= stack_shift;
703 mm->arg_start = bprm->p;
704#endif
705
706 if (bprm->loader)
707 bprm->loader -= stack_shift;
708 bprm->exec -= stack_shift;
709
710 if (down_write_killable(&mm->mmap_sem))
711 return -EINTR;
712
713 vm_flags = VM_STACK_FLAGS;
714
715 /*
716 * Adjust stack execute permissions; explicitly enable for
717 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
718 * (arch default) otherwise.
719 */
720 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
721 vm_flags |= VM_EXEC;
722 else if (executable_stack == EXSTACK_DISABLE_X)
723 vm_flags &= ~VM_EXEC;
724 vm_flags |= mm->def_flags;
725 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
726
727 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
728 vm_flags);
729 if (ret)
730 goto out_unlock;
731 BUG_ON(prev != vma);
732
733 /* Move stack pages down in memory. */
734 if (stack_shift) {
735 ret = shift_arg_pages(vma, stack_shift);
736 if (ret)
737 goto out_unlock;
738 }
739
740 /* mprotect_fixup is overkill to remove the temporary stack flags */
741 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
742
743 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
744 stack_size = vma->vm_end - vma->vm_start;
745 /*
746 * Align this down to a page boundary as expand_stack
747 * will align it up.
748 */
749 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
750#ifdef CONFIG_STACK_GROWSUP
751 if (stack_size + stack_expand > rlim_stack)
752 stack_base = vma->vm_start + rlim_stack;
753 else
754 stack_base = vma->vm_end + stack_expand;
755#else
756 if (stack_size + stack_expand > rlim_stack)
757 stack_base = vma->vm_end - rlim_stack;
758 else
759 stack_base = vma->vm_start - stack_expand;
760#endif
761 current->mm->start_stack = bprm->p;
762 ret = expand_stack(vma, stack_base);
763 if (ret)
764 ret = -EFAULT;
765
766out_unlock:
767 up_write(&mm->mmap_sem);
768 return ret;
769}
770EXPORT_SYMBOL(setup_arg_pages);
771
772#else
773
774/*
775 * Transfer the program arguments and environment from the holding pages
776 * onto the stack. The provided stack pointer is adjusted accordingly.
777 */
778int transfer_args_to_stack(struct linux_binprm *bprm,
779 unsigned long *sp_location)
780{
781 unsigned long index, stop, sp;
782 int ret = 0;
783
784 stop = bprm->p >> PAGE_SHIFT;
785 sp = *sp_location;
786
787 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
788 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
789 char *src = kmap(bprm->page[index]) + offset;
790 sp -= PAGE_SIZE - offset;
791 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
792 ret = -EFAULT;
793 kunmap(bprm->page[index]);
794 if (ret)
795 goto out;
796 }
797
798 *sp_location = sp;
799
800out:
801 return ret;
802}
803EXPORT_SYMBOL(transfer_args_to_stack);
804
805#endif /* CONFIG_MMU */
806
807static struct file *do_open_execat(int fd, struct filename *name, int flags)
808{
809 struct file *file;
810 int err;
811 struct open_flags open_exec_flags = {
812 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
813 .acc_mode = MAY_EXEC,
814 .intent = LOOKUP_OPEN,
815 .lookup_flags = LOOKUP_FOLLOW,
816 };
817
818 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
819 return ERR_PTR(-EINVAL);
820 if (flags & AT_SYMLINK_NOFOLLOW)
821 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
822 if (flags & AT_EMPTY_PATH)
823 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
824
825 file = do_filp_open(fd, name, &open_exec_flags);
826 if (IS_ERR(file))
827 goto out;
828
829 err = -EACCES;
830 if (!S_ISREG(file_inode(file)->i_mode))
831 goto exit;
832
833 if (path_noexec(&file->f_path))
834 goto exit;
835
836 err = deny_write_access(file);
837 if (err)
838 goto exit;
839
840 if (name->name[0] != '\0')
841 fsnotify_open(file);
842
843out:
844 return file;
845
846exit:
847 fput(file);
848 return ERR_PTR(err);
849}
850
851struct file *open_exec(const char *name)
852{
853 struct filename *filename = getname_kernel(name);
854 struct file *f = ERR_CAST(filename);
855
856 if (!IS_ERR(filename)) {
857 f = do_open_execat(AT_FDCWD, filename, 0);
858 putname(filename);
859 }
860 return f;
861}
862EXPORT_SYMBOL(open_exec);
863
864int kernel_read(struct file *file, loff_t offset,
865 char *addr, unsigned long count)
866{
867 mm_segment_t old_fs;
868 loff_t pos = offset;
869 int result;
870
871 old_fs = get_fs();
872 set_fs(get_ds());
873 /* The cast to a user pointer is valid due to the set_fs() */
874 result = vfs_read(file, (void __user *)addr, count, &pos);
875 set_fs(old_fs);
876 return result;
877}
878
879EXPORT_SYMBOL(kernel_read);
880
881int kernel_read_file(struct file *file, void **buf, loff_t *size,
882 loff_t max_size, enum kernel_read_file_id id)
883{
884 loff_t i_size, pos;
885 ssize_t bytes = 0;
886 int ret;
887
888 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
889 return -EINVAL;
890
891 ret = security_kernel_read_file(file, id);
892 if (ret)
893 return ret;
894
895 ret = deny_write_access(file);
896 if (ret)
897 return ret;
898
899 i_size = i_size_read(file_inode(file));
900 if (max_size > 0 && i_size > max_size) {
901 ret = -EFBIG;
902 goto out;
903 }
904 if (i_size <= 0) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
910 *buf = vmalloc(i_size);
911 if (!*buf) {
912 ret = -ENOMEM;
913 goto out;
914 }
915
916 pos = 0;
917 while (pos < i_size) {
918 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
919 i_size - pos);
920 if (bytes < 0) {
921 ret = bytes;
922 goto out;
923 }
924
925 if (bytes == 0)
926 break;
927 pos += bytes;
928 }
929
930 if (pos != i_size) {
931 ret = -EIO;
932 goto out_free;
933 }
934
935 ret = security_kernel_post_read_file(file, *buf, i_size, id);
936 if (!ret)
937 *size = pos;
938
939out_free:
940 if (ret < 0) {
941 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
942 vfree(*buf);
943 *buf = NULL;
944 }
945 }
946
947out:
948 allow_write_access(file);
949 return ret;
950}
951EXPORT_SYMBOL_GPL(kernel_read_file);
952
953int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
954 loff_t max_size, enum kernel_read_file_id id)
955{
956 struct file *file;
957 int ret;
958
959 if (!path || !*path)
960 return -EINVAL;
961
962 file = filp_open(path, O_RDONLY, 0);
963 if (IS_ERR(file))
964 return PTR_ERR(file);
965
966 ret = kernel_read_file(file, buf, size, max_size, id);
967 fput(file);
968 return ret;
969}
970EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
971
972int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
973 enum kernel_read_file_id id)
974{
975 struct fd f = fdget(fd);
976 int ret = -EBADF;
977
978 if (!f.file)
979 goto out;
980
981 ret = kernel_read_file(f.file, buf, size, max_size, id);
982out:
983 fdput(f);
984 return ret;
985}
986EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
987
988ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
989{
990 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
991 if (res > 0)
992 flush_icache_range(addr, addr + len);
993 return res;
994}
995EXPORT_SYMBOL(read_code);
996
997static int exec_mmap(struct mm_struct *mm)
998{
999 struct task_struct *tsk;
1000 struct mm_struct *old_mm, *active_mm;
1001
1002 /* Notify parent that we're no longer interested in the old VM */
1003 tsk = current;
1004 old_mm = current->mm;
1005 mm_release(tsk, old_mm);
1006
1007 if (old_mm) {
1008 sync_mm_rss(old_mm);
1009 /*
1010 * Make sure that if there is a core dump in progress
1011 * for the old mm, we get out and die instead of going
1012 * through with the exec. We must hold mmap_sem around
1013 * checking core_state and changing tsk->mm.
1014 */
1015 down_read(&old_mm->mmap_sem);
1016 if (unlikely(old_mm->core_state)) {
1017 up_read(&old_mm->mmap_sem);
1018 return -EINTR;
1019 }
1020 }
1021 task_lock(tsk);
1022 active_mm = tsk->active_mm;
1023 tsk->mm = mm;
1024 tsk->active_mm = mm;
1025 activate_mm(active_mm, mm);
1026 tsk->mm->vmacache_seqnum = 0;
1027 vmacache_flush(tsk);
1028 task_unlock(tsk);
1029 if (old_mm) {
1030 up_read(&old_mm->mmap_sem);
1031 BUG_ON(active_mm != old_mm);
1032 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1033 mm_update_next_owner(old_mm);
1034 mmput(old_mm);
1035 return 0;
1036 }
1037 mmdrop(active_mm);
1038 return 0;
1039}
1040
1041/*
1042 * This function makes sure the current process has its own signal table,
1043 * so that flush_signal_handlers can later reset the handlers without
1044 * disturbing other processes. (Other processes might share the signal
1045 * table via the CLONE_SIGHAND option to clone().)
1046 */
1047static int de_thread(struct task_struct *tsk)
1048{
1049 struct signal_struct *sig = tsk->signal;
1050 struct sighand_struct *oldsighand = tsk->sighand;
1051 spinlock_t *lock = &oldsighand->siglock;
1052
1053 if (thread_group_empty(tsk))
1054 goto no_thread_group;
1055
1056 /*
1057 * Kill all other threads in the thread group.
1058 */
1059 spin_lock_irq(lock);
1060 if (signal_group_exit(sig)) {
1061 /*
1062 * Another group action in progress, just
1063 * return so that the signal is processed.
1064 */
1065 spin_unlock_irq(lock);
1066 return -EAGAIN;
1067 }
1068
1069 sig->group_exit_task = tsk;
1070 sig->notify_count = zap_other_threads(tsk);
1071 if (!thread_group_leader(tsk))
1072 sig->notify_count--;
1073
1074 while (sig->notify_count) {
1075 __set_current_state(TASK_KILLABLE);
1076 spin_unlock_irq(lock);
1077 schedule();
1078 if (unlikely(__fatal_signal_pending(tsk)))
1079 goto killed;
1080 spin_lock_irq(lock);
1081 }
1082 spin_unlock_irq(lock);
1083
1084 /*
1085 * At this point all other threads have exited, all we have to
1086 * do is to wait for the thread group leader to become inactive,
1087 * and to assume its PID:
1088 */
1089 if (!thread_group_leader(tsk)) {
1090 struct task_struct *leader = tsk->group_leader;
1091
1092 for (;;) {
1093 cgroup_threadgroup_change_begin(tsk);
1094 write_lock_irq(&tasklist_lock);
1095 /*
1096 * Do this under tasklist_lock to ensure that
1097 * exit_notify() can't miss ->group_exit_task
1098 */
1099 sig->notify_count = -1;
1100 if (likely(leader->exit_state))
1101 break;
1102 __set_current_state(TASK_KILLABLE);
1103 write_unlock_irq(&tasklist_lock);
1104 cgroup_threadgroup_change_end(tsk);
1105 schedule();
1106 if (unlikely(__fatal_signal_pending(tsk)))
1107 goto killed;
1108 }
1109
1110 /*
1111 * The only record we have of the real-time age of a
1112 * process, regardless of execs it's done, is start_time.
1113 * All the past CPU time is accumulated in signal_struct
1114 * from sister threads now dead. But in this non-leader
1115 * exec, nothing survives from the original leader thread,
1116 * whose birth marks the true age of this process now.
1117 * When we take on its identity by switching to its PID, we
1118 * also take its birthdate (always earlier than our own).
1119 */
1120 tsk->start_time = leader->start_time;
1121 tsk->real_start_time = leader->real_start_time;
1122
1123 BUG_ON(!same_thread_group(leader, tsk));
1124 BUG_ON(has_group_leader_pid(tsk));
1125 /*
1126 * An exec() starts a new thread group with the
1127 * TGID of the previous thread group. Rehash the
1128 * two threads with a switched PID, and release
1129 * the former thread group leader:
1130 */
1131
1132 /* Become a process group leader with the old leader's pid.
1133 * The old leader becomes a thread of the this thread group.
1134 * Note: The old leader also uses this pid until release_task
1135 * is called. Odd but simple and correct.
1136 */
1137 tsk->pid = leader->pid;
1138 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1139 transfer_pid(leader, tsk, PIDTYPE_PGID);
1140 transfer_pid(leader, tsk, PIDTYPE_SID);
1141
1142 list_replace_rcu(&leader->tasks, &tsk->tasks);
1143 list_replace_init(&leader->sibling, &tsk->sibling);
1144
1145 tsk->group_leader = tsk;
1146 leader->group_leader = tsk;
1147
1148 tsk->exit_signal = SIGCHLD;
1149 leader->exit_signal = -1;
1150
1151 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1152 leader->exit_state = EXIT_DEAD;
1153
1154 /*
1155 * We are going to release_task()->ptrace_unlink() silently,
1156 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1157 * the tracer wont't block again waiting for this thread.
1158 */
1159 if (unlikely(leader->ptrace))
1160 __wake_up_parent(leader, leader->parent);
1161 write_unlock_irq(&tasklist_lock);
1162 cgroup_threadgroup_change_end(tsk);
1163
1164 release_task(leader);
1165 }
1166
1167 sig->group_exit_task = NULL;
1168 sig->notify_count = 0;
1169
1170no_thread_group:
1171 /* we have changed execution domain */
1172 tsk->exit_signal = SIGCHLD;
1173
1174#ifdef CONFIG_POSIX_TIMERS
1175 exit_itimers(sig);
1176 flush_itimer_signals();
1177#endif
1178
1179 if (atomic_read(&oldsighand->count) != 1) {
1180 struct sighand_struct *newsighand;
1181 /*
1182 * This ->sighand is shared with the CLONE_SIGHAND
1183 * but not CLONE_THREAD task, switch to the new one.
1184 */
1185 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1186 if (!newsighand)
1187 return -ENOMEM;
1188
1189 atomic_set(&newsighand->count, 1);
1190 memcpy(newsighand->action, oldsighand->action,
1191 sizeof(newsighand->action));
1192
1193 write_lock_irq(&tasklist_lock);
1194 spin_lock(&oldsighand->siglock);
1195 rcu_assign_pointer(tsk->sighand, newsighand);
1196 spin_unlock(&oldsighand->siglock);
1197 write_unlock_irq(&tasklist_lock);
1198
1199 __cleanup_sighand(oldsighand);
1200 }
1201
1202 BUG_ON(!thread_group_leader(tsk));
1203 return 0;
1204
1205killed:
1206 /* protects against exit_notify() and __exit_signal() */
1207 read_lock(&tasklist_lock);
1208 sig->group_exit_task = NULL;
1209 sig->notify_count = 0;
1210 read_unlock(&tasklist_lock);
1211 return -EAGAIN;
1212}
1213
1214char *get_task_comm(char *buf, struct task_struct *tsk)
1215{
1216 /* buf must be at least sizeof(tsk->comm) in size */
1217 task_lock(tsk);
1218 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1219 task_unlock(tsk);
1220 return buf;
1221}
1222EXPORT_SYMBOL_GPL(get_task_comm);
1223
1224/*
1225 * These functions flushes out all traces of the currently running executable
1226 * so that a new one can be started
1227 */
1228
1229void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230{
1231 task_lock(tsk);
1232 trace_task_rename(tsk, buf);
1233 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1234 task_unlock(tsk);
1235 perf_event_comm(tsk, exec);
1236}
1237
1238int flush_old_exec(struct linux_binprm * bprm)
1239{
1240 int retval;
1241
1242 /*
1243 * Make sure we have a private signal table and that
1244 * we are unassociated from the previous thread group.
1245 */
1246 retval = de_thread(current);
1247 if (retval)
1248 goto out;
1249
1250 /*
1251 * Must be called _before_ exec_mmap() as bprm->mm is
1252 * not visibile until then. This also enables the update
1253 * to be lockless.
1254 */
1255 set_mm_exe_file(bprm->mm, bprm->file);
1256
1257 /*
1258 * Release all of the old mmap stuff
1259 */
1260 acct_arg_size(bprm, 0);
1261 retval = exec_mmap(bprm->mm);
1262 if (retval)
1263 goto out;
1264
1265 bprm->mm = NULL; /* We're using it now */
1266
1267 set_fs(USER_DS);
1268 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1269 PF_NOFREEZE | PF_NO_SETAFFINITY);
1270 flush_thread();
1271 current->personality &= ~bprm->per_clear;
1272
1273 /*
1274 * We have to apply CLOEXEC before we change whether the process is
1275 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1276 * trying to access the should-be-closed file descriptors of a process
1277 * undergoing exec(2).
1278 */
1279 do_close_on_exec(current->files);
1280 return 0;
1281
1282out:
1283 return retval;
1284}
1285EXPORT_SYMBOL(flush_old_exec);
1286
1287void would_dump(struct linux_binprm *bprm, struct file *file)
1288{
1289 struct inode *inode = file_inode(file);
1290 if (inode_permission(inode, MAY_READ) < 0) {
1291 struct user_namespace *old, *user_ns;
1292 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1293
1294 /* Ensure mm->user_ns contains the executable */
1295 user_ns = old = bprm->mm->user_ns;
1296 while ((user_ns != &init_user_ns) &&
1297 !privileged_wrt_inode_uidgid(user_ns, inode))
1298 user_ns = user_ns->parent;
1299
1300 if (old != user_ns) {
1301 bprm->mm->user_ns = get_user_ns(user_ns);
1302 put_user_ns(old);
1303 }
1304 }
1305}
1306EXPORT_SYMBOL(would_dump);
1307
1308void setup_new_exec(struct linux_binprm * bprm)
1309{
1310 arch_pick_mmap_layout(current->mm);
1311
1312 /* This is the point of no return */
1313 current->sas_ss_sp = current->sas_ss_size = 0;
1314
1315 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1316 set_dumpable(current->mm, SUID_DUMP_USER);
1317 else
1318 set_dumpable(current->mm, suid_dumpable);
1319
1320 perf_event_exec();
1321 __set_task_comm(current, kbasename(bprm->filename), true);
1322
1323 /* Set the new mm task size. We have to do that late because it may
1324 * depend on TIF_32BIT which is only updated in flush_thread() on
1325 * some architectures like powerpc
1326 */
1327 current->mm->task_size = TASK_SIZE;
1328
1329 /* install the new credentials */
1330 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1331 !gid_eq(bprm->cred->gid, current_egid())) {
1332 current->pdeath_signal = 0;
1333 } else {
1334 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1335 set_dumpable(current->mm, suid_dumpable);
1336 }
1337
1338 /* An exec changes our domain. We are no longer part of the thread
1339 group */
1340 current->self_exec_id++;
1341 flush_signal_handlers(current, 0);
1342}
1343EXPORT_SYMBOL(setup_new_exec);
1344
1345/*
1346 * Prepare credentials and lock ->cred_guard_mutex.
1347 * install_exec_creds() commits the new creds and drops the lock.
1348 * Or, if exec fails before, free_bprm() should release ->cred and
1349 * and unlock.
1350 */
1351int prepare_bprm_creds(struct linux_binprm *bprm)
1352{
1353 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1354 return -ERESTARTNOINTR;
1355
1356 bprm->cred = prepare_exec_creds();
1357 if (likely(bprm->cred))
1358 return 0;
1359
1360 mutex_unlock(&current->signal->cred_guard_mutex);
1361 return -ENOMEM;
1362}
1363
1364static void free_bprm(struct linux_binprm *bprm)
1365{
1366 free_arg_pages(bprm);
1367 if (bprm->cred) {
1368 mutex_unlock(&current->signal->cred_guard_mutex);
1369 abort_creds(bprm->cred);
1370 }
1371 if (bprm->file) {
1372 allow_write_access(bprm->file);
1373 fput(bprm->file);
1374 }
1375 /* If a binfmt changed the interp, free it. */
1376 if (bprm->interp != bprm->filename)
1377 kfree(bprm->interp);
1378 kfree(bprm);
1379}
1380
1381int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1382{
1383 /* If a binfmt changed the interp, free it first. */
1384 if (bprm->interp != bprm->filename)
1385 kfree(bprm->interp);
1386 bprm->interp = kstrdup(interp, GFP_KERNEL);
1387 if (!bprm->interp)
1388 return -ENOMEM;
1389 return 0;
1390}
1391EXPORT_SYMBOL(bprm_change_interp);
1392
1393/*
1394 * install the new credentials for this executable
1395 */
1396void install_exec_creds(struct linux_binprm *bprm)
1397{
1398 security_bprm_committing_creds(bprm);
1399
1400 commit_creds(bprm->cred);
1401 bprm->cred = NULL;
1402
1403 /*
1404 * Disable monitoring for regular users
1405 * when executing setuid binaries. Must
1406 * wait until new credentials are committed
1407 * by commit_creds() above
1408 */
1409 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1410 perf_event_exit_task(current);
1411 /*
1412 * cred_guard_mutex must be held at least to this point to prevent
1413 * ptrace_attach() from altering our determination of the task's
1414 * credentials; any time after this it may be unlocked.
1415 */
1416 security_bprm_committed_creds(bprm);
1417 mutex_unlock(&current->signal->cred_guard_mutex);
1418}
1419EXPORT_SYMBOL(install_exec_creds);
1420
1421/*
1422 * determine how safe it is to execute the proposed program
1423 * - the caller must hold ->cred_guard_mutex to protect against
1424 * PTRACE_ATTACH or seccomp thread-sync
1425 */
1426static void check_unsafe_exec(struct linux_binprm *bprm)
1427{
1428 struct task_struct *p = current, *t;
1429 unsigned n_fs;
1430
1431 if (p->ptrace)
1432 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1433
1434 /*
1435 * This isn't strictly necessary, but it makes it harder for LSMs to
1436 * mess up.
1437 */
1438 if (task_no_new_privs(current))
1439 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1440
1441 t = p;
1442 n_fs = 1;
1443 spin_lock(&p->fs->lock);
1444 rcu_read_lock();
1445 while_each_thread(p, t) {
1446 if (t->fs == p->fs)
1447 n_fs++;
1448 }
1449 rcu_read_unlock();
1450
1451 if (p->fs->users > n_fs)
1452 bprm->unsafe |= LSM_UNSAFE_SHARE;
1453 else
1454 p->fs->in_exec = 1;
1455 spin_unlock(&p->fs->lock);
1456}
1457
1458static void bprm_fill_uid(struct linux_binprm *bprm)
1459{
1460 struct inode *inode;
1461 unsigned int mode;
1462 kuid_t uid;
1463 kgid_t gid;
1464
1465 /*
1466 * Since this can be called multiple times (via prepare_binprm),
1467 * we must clear any previous work done when setting set[ug]id
1468 * bits from any earlier bprm->file uses (for example when run
1469 * first for a setuid script then again for its interpreter).
1470 */
1471 bprm->cred->euid = current_euid();
1472 bprm->cred->egid = current_egid();
1473
1474 if (!mnt_may_suid(bprm->file->f_path.mnt))
1475 return;
1476
1477 if (task_no_new_privs(current))
1478 return;
1479
1480 inode = bprm->file->f_path.dentry->d_inode;
1481 mode = READ_ONCE(inode->i_mode);
1482 if (!(mode & (S_ISUID|S_ISGID)))
1483 return;
1484
1485 /* Be careful if suid/sgid is set */
1486 inode_lock(inode);
1487
1488 /* reload atomically mode/uid/gid now that lock held */
1489 mode = inode->i_mode;
1490 uid = inode->i_uid;
1491 gid = inode->i_gid;
1492 inode_unlock(inode);
1493
1494 /* We ignore suid/sgid if there are no mappings for them in the ns */
1495 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1496 !kgid_has_mapping(bprm->cred->user_ns, gid))
1497 return;
1498
1499 if (mode & S_ISUID) {
1500 bprm->per_clear |= PER_CLEAR_ON_SETID;
1501 bprm->cred->euid = uid;
1502 }
1503
1504 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1505 bprm->per_clear |= PER_CLEAR_ON_SETID;
1506 bprm->cred->egid = gid;
1507 }
1508}
1509
1510/*
1511 * Fill the binprm structure from the inode.
1512 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1513 *
1514 * This may be called multiple times for binary chains (scripts for example).
1515 */
1516int prepare_binprm(struct linux_binprm *bprm)
1517{
1518 int retval;
1519
1520 bprm_fill_uid(bprm);
1521
1522 /* fill in binprm security blob */
1523 retval = security_bprm_set_creds(bprm);
1524 if (retval)
1525 return retval;
1526 bprm->cred_prepared = 1;
1527
1528 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1529 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1530}
1531
1532EXPORT_SYMBOL(prepare_binprm);
1533
1534/*
1535 * Arguments are '\0' separated strings found at the location bprm->p
1536 * points to; chop off the first by relocating brpm->p to right after
1537 * the first '\0' encountered.
1538 */
1539int remove_arg_zero(struct linux_binprm *bprm)
1540{
1541 int ret = 0;
1542 unsigned long offset;
1543 char *kaddr;
1544 struct page *page;
1545
1546 if (!bprm->argc)
1547 return 0;
1548
1549 do {
1550 offset = bprm->p & ~PAGE_MASK;
1551 page = get_arg_page(bprm, bprm->p, 0);
1552 if (!page) {
1553 ret = -EFAULT;
1554 goto out;
1555 }
1556 kaddr = kmap_atomic(page);
1557
1558 for (; offset < PAGE_SIZE && kaddr[offset];
1559 offset++, bprm->p++)
1560 ;
1561
1562 kunmap_atomic(kaddr);
1563 put_arg_page(page);
1564 } while (offset == PAGE_SIZE);
1565
1566 bprm->p++;
1567 bprm->argc--;
1568 ret = 0;
1569
1570out:
1571 return ret;
1572}
1573EXPORT_SYMBOL(remove_arg_zero);
1574
1575#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1576/*
1577 * cycle the list of binary formats handler, until one recognizes the image
1578 */
1579int search_binary_handler(struct linux_binprm *bprm)
1580{
1581 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1582 struct linux_binfmt *fmt;
1583 int retval;
1584
1585 /* This allows 4 levels of binfmt rewrites before failing hard. */
1586 if (bprm->recursion_depth > 5)
1587 return -ELOOP;
1588
1589 retval = security_bprm_check(bprm);
1590 if (retval)
1591 return retval;
1592
1593 retval = -ENOENT;
1594 retry:
1595 read_lock(&binfmt_lock);
1596 list_for_each_entry(fmt, &formats, lh) {
1597 if (!try_module_get(fmt->module))
1598 continue;
1599 read_unlock(&binfmt_lock);
1600 bprm->recursion_depth++;
1601 retval = fmt->load_binary(bprm);
1602 read_lock(&binfmt_lock);
1603 put_binfmt(fmt);
1604 bprm->recursion_depth--;
1605 if (retval < 0 && !bprm->mm) {
1606 /* we got to flush_old_exec() and failed after it */
1607 read_unlock(&binfmt_lock);
1608 force_sigsegv(SIGSEGV, current);
1609 return retval;
1610 }
1611 if (retval != -ENOEXEC || !bprm->file) {
1612 read_unlock(&binfmt_lock);
1613 return retval;
1614 }
1615 }
1616 read_unlock(&binfmt_lock);
1617
1618 if (need_retry) {
1619 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1620 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1621 return retval;
1622 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1623 return retval;
1624 need_retry = false;
1625 goto retry;
1626 }
1627
1628 return retval;
1629}
1630EXPORT_SYMBOL(search_binary_handler);
1631
1632static int exec_binprm(struct linux_binprm *bprm)
1633{
1634 pid_t old_pid, old_vpid;
1635 int ret;
1636
1637 /* Need to fetch pid before load_binary changes it */
1638 old_pid = current->pid;
1639 rcu_read_lock();
1640 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1641 rcu_read_unlock();
1642
1643 ret = search_binary_handler(bprm);
1644 if (ret >= 0) {
1645 audit_bprm(bprm);
1646 trace_sched_process_exec(current, old_pid, bprm);
1647 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1648 proc_exec_connector(current);
1649 }
1650
1651 return ret;
1652}
1653
1654/*
1655 * sys_execve() executes a new program.
1656 */
1657static int do_execveat_common(int fd, struct filename *filename,
1658 struct user_arg_ptr argv,
1659 struct user_arg_ptr envp,
1660 int flags)
1661{
1662 char *pathbuf = NULL;
1663 struct linux_binprm *bprm;
1664 struct file *file;
1665 struct files_struct *displaced;
1666 int retval;
1667
1668 if (IS_ERR(filename))
1669 return PTR_ERR(filename);
1670
1671 /*
1672 * We move the actual failure in case of RLIMIT_NPROC excess from
1673 * set*uid() to execve() because too many poorly written programs
1674 * don't check setuid() return code. Here we additionally recheck
1675 * whether NPROC limit is still exceeded.
1676 */
1677 if ((current->flags & PF_NPROC_EXCEEDED) &&
1678 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1679 retval = -EAGAIN;
1680 goto out_ret;
1681 }
1682
1683 /* We're below the limit (still or again), so we don't want to make
1684 * further execve() calls fail. */
1685 current->flags &= ~PF_NPROC_EXCEEDED;
1686
1687 retval = unshare_files(&displaced);
1688 if (retval)
1689 goto out_ret;
1690
1691 retval = -ENOMEM;
1692 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1693 if (!bprm)
1694 goto out_files;
1695
1696 retval = prepare_bprm_creds(bprm);
1697 if (retval)
1698 goto out_free;
1699
1700 check_unsafe_exec(bprm);
1701 current->in_execve = 1;
1702
1703 file = do_open_execat(fd, filename, flags);
1704 retval = PTR_ERR(file);
1705 if (IS_ERR(file))
1706 goto out_unmark;
1707
1708 sched_exec();
1709
1710 bprm->file = file;
1711 if (fd == AT_FDCWD || filename->name[0] == '/') {
1712 bprm->filename = filename->name;
1713 } else {
1714 if (filename->name[0] == '\0')
1715 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1716 else
1717 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1718 fd, filename->name);
1719 if (!pathbuf) {
1720 retval = -ENOMEM;
1721 goto out_unmark;
1722 }
1723 /*
1724 * Record that a name derived from an O_CLOEXEC fd will be
1725 * inaccessible after exec. Relies on having exclusive access to
1726 * current->files (due to unshare_files above).
1727 */
1728 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1729 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1730 bprm->filename = pathbuf;
1731 }
1732 bprm->interp = bprm->filename;
1733
1734 retval = bprm_mm_init(bprm);
1735 if (retval)
1736 goto out_unmark;
1737
1738 bprm->argc = count(argv, MAX_ARG_STRINGS);
1739 if ((retval = bprm->argc) < 0)
1740 goto out;
1741
1742 bprm->envc = count(envp, MAX_ARG_STRINGS);
1743 if ((retval = bprm->envc) < 0)
1744 goto out;
1745
1746 retval = prepare_binprm(bprm);
1747 if (retval < 0)
1748 goto out;
1749
1750 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1751 if (retval < 0)
1752 goto out;
1753
1754 bprm->exec = bprm->p;
1755 retval = copy_strings(bprm->envc, envp, bprm);
1756 if (retval < 0)
1757 goto out;
1758
1759 retval = copy_strings(bprm->argc, argv, bprm);
1760 if (retval < 0)
1761 goto out;
1762
1763 would_dump(bprm, bprm->file);
1764
1765 retval = exec_binprm(bprm);
1766 if (retval < 0)
1767 goto out;
1768
1769 /* execve succeeded */
1770 current->fs->in_exec = 0;
1771 current->in_execve = 0;
1772 acct_update_integrals(current);
1773 task_numa_free(current);
1774 free_bprm(bprm);
1775 kfree(pathbuf);
1776 putname(filename);
1777 if (displaced)
1778 put_files_struct(displaced);
1779 return retval;
1780
1781out:
1782 if (bprm->mm) {
1783 acct_arg_size(bprm, 0);
1784 mmput(bprm->mm);
1785 }
1786
1787out_unmark:
1788 current->fs->in_exec = 0;
1789 current->in_execve = 0;
1790
1791out_free:
1792 free_bprm(bprm);
1793 kfree(pathbuf);
1794
1795out_files:
1796 if (displaced)
1797 reset_files_struct(displaced);
1798out_ret:
1799 putname(filename);
1800 return retval;
1801}
1802
1803int do_execve(struct filename *filename,
1804 const char __user *const __user *__argv,
1805 const char __user *const __user *__envp)
1806{
1807 struct user_arg_ptr argv = { .ptr.native = __argv };
1808 struct user_arg_ptr envp = { .ptr.native = __envp };
1809 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1810}
1811
1812int do_execveat(int fd, struct filename *filename,
1813 const char __user *const __user *__argv,
1814 const char __user *const __user *__envp,
1815 int flags)
1816{
1817 struct user_arg_ptr argv = { .ptr.native = __argv };
1818 struct user_arg_ptr envp = { .ptr.native = __envp };
1819
1820 return do_execveat_common(fd, filename, argv, envp, flags);
1821}
1822
1823#ifdef CONFIG_COMPAT
1824static int compat_do_execve(struct filename *filename,
1825 const compat_uptr_t __user *__argv,
1826 const compat_uptr_t __user *__envp)
1827{
1828 struct user_arg_ptr argv = {
1829 .is_compat = true,
1830 .ptr.compat = __argv,
1831 };
1832 struct user_arg_ptr envp = {
1833 .is_compat = true,
1834 .ptr.compat = __envp,
1835 };
1836 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1837}
1838
1839static int compat_do_execveat(int fd, struct filename *filename,
1840 const compat_uptr_t __user *__argv,
1841 const compat_uptr_t __user *__envp,
1842 int flags)
1843{
1844 struct user_arg_ptr argv = {
1845 .is_compat = true,
1846 .ptr.compat = __argv,
1847 };
1848 struct user_arg_ptr envp = {
1849 .is_compat = true,
1850 .ptr.compat = __envp,
1851 };
1852 return do_execveat_common(fd, filename, argv, envp, flags);
1853}
1854#endif
1855
1856void set_binfmt(struct linux_binfmt *new)
1857{
1858 struct mm_struct *mm = current->mm;
1859
1860 if (mm->binfmt)
1861 module_put(mm->binfmt->module);
1862
1863 mm->binfmt = new;
1864 if (new)
1865 __module_get(new->module);
1866}
1867EXPORT_SYMBOL(set_binfmt);
1868
1869/*
1870 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1871 */
1872void set_dumpable(struct mm_struct *mm, int value)
1873{
1874 unsigned long old, new;
1875
1876 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1877 return;
1878
1879 do {
1880 old = ACCESS_ONCE(mm->flags);
1881 new = (old & ~MMF_DUMPABLE_MASK) | value;
1882 } while (cmpxchg(&mm->flags, old, new) != old);
1883}
1884
1885SYSCALL_DEFINE3(execve,
1886 const char __user *, filename,
1887 const char __user *const __user *, argv,
1888 const char __user *const __user *, envp)
1889{
1890 return do_execve(getname(filename), argv, envp);
1891}
1892
1893SYSCALL_DEFINE5(execveat,
1894 int, fd, const char __user *, filename,
1895 const char __user *const __user *, argv,
1896 const char __user *const __user *, envp,
1897 int, flags)
1898{
1899 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1900
1901 return do_execveat(fd,
1902 getname_flags(filename, lookup_flags, NULL),
1903 argv, envp, flags);
1904}
1905
1906#ifdef CONFIG_COMPAT
1907COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1908 const compat_uptr_t __user *, argv,
1909 const compat_uptr_t __user *, envp)
1910{
1911 return compat_do_execve(getname(filename), argv, envp);
1912}
1913
1914COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1915 const char __user *, filename,
1916 const compat_uptr_t __user *, argv,
1917 const compat_uptr_t __user *, envp,
1918 int, flags)
1919{
1920 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1921
1922 return compat_do_execveat(fd,
1923 getname_flags(filename, lookup_flags, NULL),
1924 argv, envp, flags);
1925}
1926#endif