]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/f2fs/f2fs.h
f2fs: fix to avoid REQ_TIME and CP_TIME collision
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/buffer_head.h>
15#include <linux/slab.h>
16#include <linux/crc32.h>
17#include <linux/magic.h>
18#include <linux/kobject.h>
19#include <linux/sched.h>
20#include <linux/cred.h>
21#include <linux/vmalloc.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/quotaops.h>
25#include <linux/part_stat.h>
26#include <crypto/hash.h>
27
28#include <linux/fscrypt.h>
29#include <linux/fsverity.h>
30
31#ifdef CONFIG_F2FS_CHECK_FS
32#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33#else
34#define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41#endif
42
43enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60};
61
62#ifdef CONFIG_F2FS_FAULT_INJECTION
63#define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69};
70
71extern const char *f2fs_fault_name[FAULT_MAX];
72#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73#endif
74
75/*
76 * For mount options
77 */
78#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79#define F2FS_MOUNT_DISCARD 0x00000004
80#define F2FS_MOUNT_NOHEAP 0x00000008
81#define F2FS_MOUNT_XATTR_USER 0x00000010
82#define F2FS_MOUNT_POSIX_ACL 0x00000020
83#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84#define F2FS_MOUNT_INLINE_XATTR 0x00000080
85#define F2FS_MOUNT_INLINE_DATA 0x00000100
86#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88#define F2FS_MOUNT_NOBARRIER 0x00000800
89#define F2FS_MOUNT_FASTBOOT 0x00001000
90#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91#define F2FS_MOUNT_DATA_FLUSH 0x00008000
92#define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93#define F2FS_MOUNT_USRQUOTA 0x00080000
94#define F2FS_MOUNT_GRPQUOTA 0x00100000
95#define F2FS_MOUNT_PRJQUOTA 0x00200000
96#define F2FS_MOUNT_QUOTA 0x00400000
97#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98#define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100#define F2FS_MOUNT_NORECOVERY 0x04000000
101#define F2FS_MOUNT_ATGC 0x08000000
102
103#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
104#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107
108#define ver_after(a, b) (typecheck(unsigned long long, a) && \
109 typecheck(unsigned long long, b) && \
110 ((long long)((a) - (b)) > 0))
111
112typedef u32 block_t; /*
113 * should not change u32, since it is the on-disk block
114 * address format, __le32.
115 */
116typedef u32 nid_t;
117
118#define COMPRESS_EXT_NUM 16
119
120struct f2fs_mount_info {
121 unsigned int opt;
122 int write_io_size_bits; /* Write IO size bits */
123 block_t root_reserved_blocks; /* root reserved blocks */
124 kuid_t s_resuid; /* reserved blocks for uid */
125 kgid_t s_resgid; /* reserved blocks for gid */
126 int active_logs; /* # of active logs */
127 int inline_xattr_size; /* inline xattr size */
128#ifdef CONFIG_F2FS_FAULT_INJECTION
129 struct f2fs_fault_info fault_info; /* For fault injection */
130#endif
131#ifdef CONFIG_QUOTA
132 /* Names of quota files with journalled quota */
133 char *s_qf_names[MAXQUOTAS];
134 int s_jquota_fmt; /* Format of quota to use */
135#endif
136 /* For which write hints are passed down to block layer */
137 int whint_mode;
138 int alloc_mode; /* segment allocation policy */
139 int fsync_mode; /* fsync policy */
140 int fs_mode; /* fs mode: LFS or ADAPTIVE */
141 int bggc_mode; /* bggc mode: off, on or sync */
142 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 block_t unusable_cap_perc; /* percentage for cap */
144 block_t unusable_cap; /* Amount of space allowed to be
145 * unusable when disabling checkpoint
146 */
147
148 /* For compression */
149 unsigned char compress_algorithm; /* algorithm type */
150 unsigned compress_log_size; /* cluster log size */
151 unsigned char compress_ext_cnt; /* extension count */
152 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
153};
154
155#define F2FS_FEATURE_ENCRYPT 0x0001
156#define F2FS_FEATURE_BLKZONED 0x0002
157#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
158#define F2FS_FEATURE_EXTRA_ATTR 0x0008
159#define F2FS_FEATURE_PRJQUOTA 0x0010
160#define F2FS_FEATURE_INODE_CHKSUM 0x0020
161#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
162#define F2FS_FEATURE_QUOTA_INO 0x0080
163#define F2FS_FEATURE_INODE_CRTIME 0x0100
164#define F2FS_FEATURE_LOST_FOUND 0x0200
165#define F2FS_FEATURE_VERITY 0x0400
166#define F2FS_FEATURE_SB_CHKSUM 0x0800
167#define F2FS_FEATURE_CASEFOLD 0x1000
168#define F2FS_FEATURE_COMPRESSION 0x2000
169
170#define __F2FS_HAS_FEATURE(raw_super, mask) \
171 ((raw_super->feature & cpu_to_le32(mask)) != 0)
172#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
173#define F2FS_SET_FEATURE(sbi, mask) \
174 (sbi->raw_super->feature |= cpu_to_le32(mask))
175#define F2FS_CLEAR_FEATURE(sbi, mask) \
176 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
177
178/*
179 * Default values for user and/or group using reserved blocks
180 */
181#define F2FS_DEF_RESUID 0
182#define F2FS_DEF_RESGID 0
183
184/*
185 * For checkpoint manager
186 */
187enum {
188 NAT_BITMAP,
189 SIT_BITMAP
190};
191
192#define CP_UMOUNT 0x00000001
193#define CP_FASTBOOT 0x00000002
194#define CP_SYNC 0x00000004
195#define CP_RECOVERY 0x00000008
196#define CP_DISCARD 0x00000010
197#define CP_TRIMMED 0x00000020
198#define CP_PAUSE 0x00000040
199#define CP_RESIZE 0x00000080
200
201#define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
202#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
203#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
204#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
205#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
206#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
207#define DEF_CP_INTERVAL 60 /* 60 secs */
208#define DEF_IDLE_INTERVAL 5 /* 5 secs */
209#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
210#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
211#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
212
213struct cp_control {
214 int reason;
215 __u64 trim_start;
216 __u64 trim_end;
217 __u64 trim_minlen;
218};
219
220/*
221 * indicate meta/data type
222 */
223enum {
224 META_CP,
225 META_NAT,
226 META_SIT,
227 META_SSA,
228 META_MAX,
229 META_POR,
230 DATA_GENERIC, /* check range only */
231 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
232 DATA_GENERIC_ENHANCE_READ, /*
233 * strong check on range and segment
234 * bitmap but no warning due to race
235 * condition of read on truncated area
236 * by extent_cache
237 */
238 META_GENERIC,
239};
240
241/* for the list of ino */
242enum {
243 ORPHAN_INO, /* for orphan ino list */
244 APPEND_INO, /* for append ino list */
245 UPDATE_INO, /* for update ino list */
246 TRANS_DIR_INO, /* for trasactions dir ino list */
247 FLUSH_INO, /* for multiple device flushing */
248 MAX_INO_ENTRY, /* max. list */
249};
250
251struct ino_entry {
252 struct list_head list; /* list head */
253 nid_t ino; /* inode number */
254 unsigned int dirty_device; /* dirty device bitmap */
255};
256
257/* for the list of inodes to be GCed */
258struct inode_entry {
259 struct list_head list; /* list head */
260 struct inode *inode; /* vfs inode pointer */
261};
262
263struct fsync_node_entry {
264 struct list_head list; /* list head */
265 struct page *page; /* warm node page pointer */
266 unsigned int seq_id; /* sequence id */
267};
268
269/* for the bitmap indicate blocks to be discarded */
270struct discard_entry {
271 struct list_head list; /* list head */
272 block_t start_blkaddr; /* start blockaddr of current segment */
273 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
274};
275
276/* default discard granularity of inner discard thread, unit: block count */
277#define DEFAULT_DISCARD_GRANULARITY 16
278
279/* max discard pend list number */
280#define MAX_PLIST_NUM 512
281#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
282 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283
284enum {
285 D_PREP, /* initial */
286 D_PARTIAL, /* partially submitted */
287 D_SUBMIT, /* all submitted */
288 D_DONE, /* finished */
289};
290
291struct discard_info {
292 block_t lstart; /* logical start address */
293 block_t len; /* length */
294 block_t start; /* actual start address in dev */
295};
296
297struct discard_cmd {
298 struct rb_node rb_node; /* rb node located in rb-tree */
299 union {
300 struct {
301 block_t lstart; /* logical start address */
302 block_t len; /* length */
303 block_t start; /* actual start address in dev */
304 };
305 struct discard_info di; /* discard info */
306
307 };
308 struct list_head list; /* command list */
309 struct completion wait; /* compleation */
310 struct block_device *bdev; /* bdev */
311 unsigned short ref; /* reference count */
312 unsigned char state; /* state */
313 unsigned char queued; /* queued discard */
314 int error; /* bio error */
315 spinlock_t lock; /* for state/bio_ref updating */
316 unsigned short bio_ref; /* bio reference count */
317};
318
319enum {
320 DPOLICY_BG,
321 DPOLICY_FORCE,
322 DPOLICY_FSTRIM,
323 DPOLICY_UMOUNT,
324 MAX_DPOLICY,
325};
326
327struct discard_policy {
328 int type; /* type of discard */
329 unsigned int min_interval; /* used for candidates exist */
330 unsigned int mid_interval; /* used for device busy */
331 unsigned int max_interval; /* used for candidates not exist */
332 unsigned int max_requests; /* # of discards issued per round */
333 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
334 bool io_aware; /* issue discard in idle time */
335 bool sync; /* submit discard with REQ_SYNC flag */
336 bool ordered; /* issue discard by lba order */
337 bool timeout; /* discard timeout for put_super */
338 unsigned int granularity; /* discard granularity */
339};
340
341struct discard_cmd_control {
342 struct task_struct *f2fs_issue_discard; /* discard thread */
343 struct list_head entry_list; /* 4KB discard entry list */
344 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 struct list_head wait_list; /* store on-flushing entries */
346 struct list_head fstrim_list; /* in-flight discard from fstrim */
347 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
348 unsigned int discard_wake; /* to wake up discard thread */
349 struct mutex cmd_lock;
350 unsigned int nr_discards; /* # of discards in the list */
351 unsigned int max_discards; /* max. discards to be issued */
352 unsigned int discard_granularity; /* discard granularity */
353 unsigned int undiscard_blks; /* # of undiscard blocks */
354 unsigned int next_pos; /* next discard position */
355 atomic_t issued_discard; /* # of issued discard */
356 atomic_t queued_discard; /* # of queued discard */
357 atomic_t discard_cmd_cnt; /* # of cached cmd count */
358 struct rb_root_cached root; /* root of discard rb-tree */
359 bool rbtree_check; /* config for consistence check */
360};
361
362/* for the list of fsync inodes, used only during recovery */
363struct fsync_inode_entry {
364 struct list_head list; /* list head */
365 struct inode *inode; /* vfs inode pointer */
366 block_t blkaddr; /* block address locating the last fsync */
367 block_t last_dentry; /* block address locating the last dentry */
368};
369
370#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
371#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
372
373#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
374#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
375#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
376#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
377
378#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380
381static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382{
383 int before = nats_in_cursum(journal);
384
385 journal->n_nats = cpu_to_le16(before + i);
386 return before;
387}
388
389static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390{
391 int before = sits_in_cursum(journal);
392
393 journal->n_sits = cpu_to_le16(before + i);
394 return before;
395}
396
397static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 int size, int type)
399{
400 if (type == NAT_JOURNAL)
401 return size <= MAX_NAT_JENTRIES(journal);
402 return size <= MAX_SIT_JENTRIES(journal);
403}
404
405/* for inline stuff */
406#define DEF_INLINE_RESERVED_SIZE 1
407static inline int get_extra_isize(struct inode *inode);
408static inline int get_inline_xattr_addrs(struct inode *inode);
409#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
410 (CUR_ADDRS_PER_INODE(inode) - \
411 get_inline_xattr_addrs(inode) - \
412 DEF_INLINE_RESERVED_SIZE))
413
414/* for inline dir */
415#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 BITS_PER_BYTE + 1))
418#define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
421 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 NR_INLINE_DENTRY(inode) + \
423 INLINE_DENTRY_BITMAP_SIZE(inode)))
424
425/*
426 * For INODE and NODE manager
427 */
428/* for directory operations */
429
430struct f2fs_filename {
431 /*
432 * The filename the user specified. This is NULL for some
433 * filesystem-internal operations, e.g. converting an inline directory
434 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 */
436 const struct qstr *usr_fname;
437
438 /*
439 * The on-disk filename. For encrypted directories, this is encrypted.
440 * This may be NULL for lookups in an encrypted dir without the key.
441 */
442 struct fscrypt_str disk_name;
443
444 /* The dirhash of this filename */
445 f2fs_hash_t hash;
446
447#ifdef CONFIG_FS_ENCRYPTION
448 /*
449 * For lookups in encrypted directories: either the buffer backing
450 * disk_name, or a buffer that holds the decoded no-key name.
451 */
452 struct fscrypt_str crypto_buf;
453#endif
454#ifdef CONFIG_UNICODE
455 /*
456 * For casefolded directories: the casefolded name, but it's left NULL
457 * if the original name is not valid Unicode, if the directory is both
458 * casefolded and encrypted and its encryption key is unavailable, or if
459 * the filesystem is doing an internal operation where usr_fname is also
460 * NULL. In all these cases we fall back to treating the name as an
461 * opaque byte sequence.
462 */
463 struct fscrypt_str cf_name;
464#endif
465};
466
467struct f2fs_dentry_ptr {
468 struct inode *inode;
469 void *bitmap;
470 struct f2fs_dir_entry *dentry;
471 __u8 (*filename)[F2FS_SLOT_LEN];
472 int max;
473 int nr_bitmap;
474};
475
476static inline void make_dentry_ptr_block(struct inode *inode,
477 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478{
479 d->inode = inode;
480 d->max = NR_DENTRY_IN_BLOCK;
481 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 d->bitmap = t->dentry_bitmap;
483 d->dentry = t->dentry;
484 d->filename = t->filename;
485}
486
487static inline void make_dentry_ptr_inline(struct inode *inode,
488 struct f2fs_dentry_ptr *d, void *t)
489{
490 int entry_cnt = NR_INLINE_DENTRY(inode);
491 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 int reserved_size = INLINE_RESERVED_SIZE(inode);
493
494 d->inode = inode;
495 d->max = entry_cnt;
496 d->nr_bitmap = bitmap_size;
497 d->bitmap = t;
498 d->dentry = t + bitmap_size + reserved_size;
499 d->filename = t + bitmap_size + reserved_size +
500 SIZE_OF_DIR_ENTRY * entry_cnt;
501}
502
503/*
504 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505 * as its node offset to distinguish from index node blocks.
506 * But some bits are used to mark the node block.
507 */
508#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 >> OFFSET_BIT_SHIFT)
510enum {
511 ALLOC_NODE, /* allocate a new node page if needed */
512 LOOKUP_NODE, /* look up a node without readahead */
513 LOOKUP_NODE_RA, /*
514 * look up a node with readahead called
515 * by get_data_block.
516 */
517};
518
519#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
520
521/* congestion wait timeout value, default: 20ms */
522#define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
523
524/* maximum retry quota flush count */
525#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
526
527#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
528
529#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
530
531/* for in-memory extent cache entry */
532#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
533
534/* number of extent info in extent cache we try to shrink */
535#define EXTENT_CACHE_SHRINK_NUMBER 128
536
537struct rb_entry {
538 struct rb_node rb_node; /* rb node located in rb-tree */
539 union {
540 struct {
541 unsigned int ofs; /* start offset of the entry */
542 unsigned int len; /* length of the entry */
543 };
544 unsigned long long key; /* 64-bits key */
545 } __packed;
546};
547
548struct extent_info {
549 unsigned int fofs; /* start offset in a file */
550 unsigned int len; /* length of the extent */
551 u32 blk; /* start block address of the extent */
552};
553
554struct extent_node {
555 struct rb_node rb_node; /* rb node located in rb-tree */
556 struct extent_info ei; /* extent info */
557 struct list_head list; /* node in global extent list of sbi */
558 struct extent_tree *et; /* extent tree pointer */
559};
560
561struct extent_tree {
562 nid_t ino; /* inode number */
563 struct rb_root_cached root; /* root of extent info rb-tree */
564 struct extent_node *cached_en; /* recently accessed extent node */
565 struct extent_info largest; /* largested extent info */
566 struct list_head list; /* to be used by sbi->zombie_list */
567 rwlock_t lock; /* protect extent info rb-tree */
568 atomic_t node_cnt; /* # of extent node in rb-tree*/
569 bool largest_updated; /* largest extent updated */
570};
571
572/*
573 * This structure is taken from ext4_map_blocks.
574 *
575 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
576 */
577#define F2FS_MAP_NEW (1 << BH_New)
578#define F2FS_MAP_MAPPED (1 << BH_Mapped)
579#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
580#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
581 F2FS_MAP_UNWRITTEN)
582
583struct f2fs_map_blocks {
584 block_t m_pblk;
585 block_t m_lblk;
586 unsigned int m_len;
587 unsigned int m_flags;
588 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
589 pgoff_t *m_next_extent; /* point to next possible extent */
590 int m_seg_type;
591 bool m_may_create; /* indicate it is from write path */
592};
593
594/* for flag in get_data_block */
595enum {
596 F2FS_GET_BLOCK_DEFAULT,
597 F2FS_GET_BLOCK_FIEMAP,
598 F2FS_GET_BLOCK_BMAP,
599 F2FS_GET_BLOCK_DIO,
600 F2FS_GET_BLOCK_PRE_DIO,
601 F2FS_GET_BLOCK_PRE_AIO,
602 F2FS_GET_BLOCK_PRECACHE,
603};
604
605/*
606 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
607 */
608#define FADVISE_COLD_BIT 0x01
609#define FADVISE_LOST_PINO_BIT 0x02
610#define FADVISE_ENCRYPT_BIT 0x04
611#define FADVISE_ENC_NAME_BIT 0x08
612#define FADVISE_KEEP_SIZE_BIT 0x10
613#define FADVISE_HOT_BIT 0x20
614#define FADVISE_VERITY_BIT 0x40
615
616#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
617
618#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
619#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
620#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
621#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
622#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
623#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
624#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
625#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
626#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
627#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
628#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
629#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
630#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
631#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
632#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
633#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
634#define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
635#define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
636
637#define DEF_DIR_LEVEL 0
638
639enum {
640 GC_FAILURE_PIN,
641 GC_FAILURE_ATOMIC,
642 MAX_GC_FAILURE
643};
644
645/* used for f2fs_inode_info->flags */
646enum {
647 FI_NEW_INODE, /* indicate newly allocated inode */
648 FI_DIRTY_INODE, /* indicate inode is dirty or not */
649 FI_AUTO_RECOVER, /* indicate inode is recoverable */
650 FI_DIRTY_DIR, /* indicate directory has dirty pages */
651 FI_INC_LINK, /* need to increment i_nlink */
652 FI_ACL_MODE, /* indicate acl mode */
653 FI_NO_ALLOC, /* should not allocate any blocks */
654 FI_FREE_NID, /* free allocated nide */
655 FI_NO_EXTENT, /* not to use the extent cache */
656 FI_INLINE_XATTR, /* used for inline xattr */
657 FI_INLINE_DATA, /* used for inline data*/
658 FI_INLINE_DENTRY, /* used for inline dentry */
659 FI_APPEND_WRITE, /* inode has appended data */
660 FI_UPDATE_WRITE, /* inode has in-place-update data */
661 FI_NEED_IPU, /* used for ipu per file */
662 FI_ATOMIC_FILE, /* indicate atomic file */
663 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
664 FI_VOLATILE_FILE, /* indicate volatile file */
665 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
666 FI_DROP_CACHE, /* drop dirty page cache */
667 FI_DATA_EXIST, /* indicate data exists */
668 FI_INLINE_DOTS, /* indicate inline dot dentries */
669 FI_DO_DEFRAG, /* indicate defragment is running */
670 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
671 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
672 FI_HOT_DATA, /* indicate file is hot */
673 FI_EXTRA_ATTR, /* indicate file has extra attribute */
674 FI_PROJ_INHERIT, /* indicate file inherits projectid */
675 FI_PIN_FILE, /* indicate file should not be gced */
676 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
677 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
678 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
679 FI_MMAP_FILE, /* indicate file was mmapped */
680 FI_MAX, /* max flag, never be used */
681};
682
683struct f2fs_inode_info {
684 struct inode vfs_inode; /* serve a vfs inode */
685 unsigned long i_flags; /* keep an inode flags for ioctl */
686 unsigned char i_advise; /* use to give file attribute hints */
687 unsigned char i_dir_level; /* use for dentry level for large dir */
688 unsigned int i_current_depth; /* only for directory depth */
689 /* for gc failure statistic */
690 unsigned int i_gc_failures[MAX_GC_FAILURE];
691 unsigned int i_pino; /* parent inode number */
692 umode_t i_acl_mode; /* keep file acl mode temporarily */
693
694 /* Use below internally in f2fs*/
695 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
696 struct rw_semaphore i_sem; /* protect fi info */
697 atomic_t dirty_pages; /* # of dirty pages */
698 f2fs_hash_t chash; /* hash value of given file name */
699 unsigned int clevel; /* maximum level of given file name */
700 struct task_struct *task; /* lookup and create consistency */
701 struct task_struct *cp_task; /* separate cp/wb IO stats*/
702 nid_t i_xattr_nid; /* node id that contains xattrs */
703 loff_t last_disk_size; /* lastly written file size */
704 spinlock_t i_size_lock; /* protect last_disk_size */
705
706#ifdef CONFIG_QUOTA
707 struct dquot *i_dquot[MAXQUOTAS];
708
709 /* quota space reservation, managed internally by quota code */
710 qsize_t i_reserved_quota;
711#endif
712 struct list_head dirty_list; /* dirty list for dirs and files */
713 struct list_head gdirty_list; /* linked in global dirty list */
714 struct list_head inmem_ilist; /* list for inmem inodes */
715 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
716 struct task_struct *inmem_task; /* store inmemory task */
717 struct mutex inmem_lock; /* lock for inmemory pages */
718 pgoff_t ra_offset; /* ongoing readahead offset */
719 struct extent_tree *extent_tree; /* cached extent_tree entry */
720
721 /* avoid racing between foreground op and gc */
722 struct rw_semaphore i_gc_rwsem[2];
723 struct rw_semaphore i_mmap_sem;
724 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
725
726 int i_extra_isize; /* size of extra space located in i_addr */
727 kprojid_t i_projid; /* id for project quota */
728 int i_inline_xattr_size; /* inline xattr size */
729 struct timespec64 i_crtime; /* inode creation time */
730 struct timespec64 i_disk_time[4];/* inode disk times */
731
732 /* for file compress */
733 atomic_t i_compr_blocks; /* # of compressed blocks */
734 unsigned char i_compress_algorithm; /* algorithm type */
735 unsigned char i_log_cluster_size; /* log of cluster size */
736 unsigned int i_cluster_size; /* cluster size */
737};
738
739static inline void get_extent_info(struct extent_info *ext,
740 struct f2fs_extent *i_ext)
741{
742 ext->fofs = le32_to_cpu(i_ext->fofs);
743 ext->blk = le32_to_cpu(i_ext->blk);
744 ext->len = le32_to_cpu(i_ext->len);
745}
746
747static inline void set_raw_extent(struct extent_info *ext,
748 struct f2fs_extent *i_ext)
749{
750 i_ext->fofs = cpu_to_le32(ext->fofs);
751 i_ext->blk = cpu_to_le32(ext->blk);
752 i_ext->len = cpu_to_le32(ext->len);
753}
754
755static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
756 u32 blk, unsigned int len)
757{
758 ei->fofs = fofs;
759 ei->blk = blk;
760 ei->len = len;
761}
762
763static inline bool __is_discard_mergeable(struct discard_info *back,
764 struct discard_info *front, unsigned int max_len)
765{
766 return (back->lstart + back->len == front->lstart) &&
767 (back->len + front->len <= max_len);
768}
769
770static inline bool __is_discard_back_mergeable(struct discard_info *cur,
771 struct discard_info *back, unsigned int max_len)
772{
773 return __is_discard_mergeable(back, cur, max_len);
774}
775
776static inline bool __is_discard_front_mergeable(struct discard_info *cur,
777 struct discard_info *front, unsigned int max_len)
778{
779 return __is_discard_mergeable(cur, front, max_len);
780}
781
782static inline bool __is_extent_mergeable(struct extent_info *back,
783 struct extent_info *front)
784{
785 return (back->fofs + back->len == front->fofs &&
786 back->blk + back->len == front->blk);
787}
788
789static inline bool __is_back_mergeable(struct extent_info *cur,
790 struct extent_info *back)
791{
792 return __is_extent_mergeable(back, cur);
793}
794
795static inline bool __is_front_mergeable(struct extent_info *cur,
796 struct extent_info *front)
797{
798 return __is_extent_mergeable(cur, front);
799}
800
801extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
802static inline void __try_update_largest_extent(struct extent_tree *et,
803 struct extent_node *en)
804{
805 if (en->ei.len > et->largest.len) {
806 et->largest = en->ei;
807 et->largest_updated = true;
808 }
809}
810
811/*
812 * For free nid management
813 */
814enum nid_state {
815 FREE_NID, /* newly added to free nid list */
816 PREALLOC_NID, /* it is preallocated */
817 MAX_NID_STATE,
818};
819
820struct f2fs_nm_info {
821 block_t nat_blkaddr; /* base disk address of NAT */
822 nid_t max_nid; /* maximum possible node ids */
823 nid_t available_nids; /* # of available node ids */
824 nid_t next_scan_nid; /* the next nid to be scanned */
825 unsigned int ram_thresh; /* control the memory footprint */
826 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
827 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
828
829 /* NAT cache management */
830 struct radix_tree_root nat_root;/* root of the nat entry cache */
831 struct radix_tree_root nat_set_root;/* root of the nat set cache */
832 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
833 struct list_head nat_entries; /* cached nat entry list (clean) */
834 spinlock_t nat_list_lock; /* protect clean nat entry list */
835 unsigned int nat_cnt; /* the # of cached nat entries */
836 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
837 unsigned int nat_blocks; /* # of nat blocks */
838
839 /* free node ids management */
840 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
841 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
842 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
843 spinlock_t nid_list_lock; /* protect nid lists ops */
844 struct mutex build_lock; /* lock for build free nids */
845 unsigned char **free_nid_bitmap;
846 unsigned char *nat_block_bitmap;
847 unsigned short *free_nid_count; /* free nid count of NAT block */
848
849 /* for checkpoint */
850 char *nat_bitmap; /* NAT bitmap pointer */
851
852 unsigned int nat_bits_blocks; /* # of nat bits blocks */
853 unsigned char *nat_bits; /* NAT bits blocks */
854 unsigned char *full_nat_bits; /* full NAT pages */
855 unsigned char *empty_nat_bits; /* empty NAT pages */
856#ifdef CONFIG_F2FS_CHECK_FS
857 char *nat_bitmap_mir; /* NAT bitmap mirror */
858#endif
859 int bitmap_size; /* bitmap size */
860};
861
862/*
863 * this structure is used as one of function parameters.
864 * all the information are dedicated to a given direct node block determined
865 * by the data offset in a file.
866 */
867struct dnode_of_data {
868 struct inode *inode; /* vfs inode pointer */
869 struct page *inode_page; /* its inode page, NULL is possible */
870 struct page *node_page; /* cached direct node page */
871 nid_t nid; /* node id of the direct node block */
872 unsigned int ofs_in_node; /* data offset in the node page */
873 bool inode_page_locked; /* inode page is locked or not */
874 bool node_changed; /* is node block changed */
875 char cur_level; /* level of hole node page */
876 char max_level; /* level of current page located */
877 block_t data_blkaddr; /* block address of the node block */
878};
879
880static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
881 struct page *ipage, struct page *npage, nid_t nid)
882{
883 memset(dn, 0, sizeof(*dn));
884 dn->inode = inode;
885 dn->inode_page = ipage;
886 dn->node_page = npage;
887 dn->nid = nid;
888}
889
890/*
891 * For SIT manager
892 *
893 * By default, there are 6 active log areas across the whole main area.
894 * When considering hot and cold data separation to reduce cleaning overhead,
895 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
896 * respectively.
897 * In the current design, you should not change the numbers intentionally.
898 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
899 * logs individually according to the underlying devices. (default: 6)
900 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
901 * data and 8 for node logs.
902 */
903#define NR_CURSEG_DATA_TYPE (3)
904#define NR_CURSEG_NODE_TYPE (3)
905#define NR_CURSEG_INMEM_TYPE (2)
906#define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
907#define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
908
909enum {
910 CURSEG_HOT_DATA = 0, /* directory entry blocks */
911 CURSEG_WARM_DATA, /* data blocks */
912 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
913 CURSEG_HOT_NODE, /* direct node blocks of directory files */
914 CURSEG_WARM_NODE, /* direct node blocks of normal files */
915 CURSEG_COLD_NODE, /* indirect node blocks */
916 NR_PERSISTENT_LOG, /* number of persistent log */
917 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
918 /* pinned file that needs consecutive block address */
919 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
920 NO_CHECK_TYPE, /* number of persistent & inmem log */
921};
922
923struct flush_cmd {
924 struct completion wait;
925 struct llist_node llnode;
926 nid_t ino;
927 int ret;
928};
929
930struct flush_cmd_control {
931 struct task_struct *f2fs_issue_flush; /* flush thread */
932 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
933 atomic_t issued_flush; /* # of issued flushes */
934 atomic_t queued_flush; /* # of queued flushes */
935 struct llist_head issue_list; /* list for command issue */
936 struct llist_node *dispatch_list; /* list for command dispatch */
937};
938
939struct f2fs_sm_info {
940 struct sit_info *sit_info; /* whole segment information */
941 struct free_segmap_info *free_info; /* free segment information */
942 struct dirty_seglist_info *dirty_info; /* dirty segment information */
943 struct curseg_info *curseg_array; /* active segment information */
944
945 struct rw_semaphore curseg_lock; /* for preventing curseg change */
946
947 block_t seg0_blkaddr; /* block address of 0'th segment */
948 block_t main_blkaddr; /* start block address of main area */
949 block_t ssa_blkaddr; /* start block address of SSA area */
950
951 unsigned int segment_count; /* total # of segments */
952 unsigned int main_segments; /* # of segments in main area */
953 unsigned int reserved_segments; /* # of reserved segments */
954 unsigned int ovp_segments; /* # of overprovision segments */
955
956 /* a threshold to reclaim prefree segments */
957 unsigned int rec_prefree_segments;
958
959 /* for batched trimming */
960 unsigned int trim_sections; /* # of sections to trim */
961
962 struct list_head sit_entry_set; /* sit entry set list */
963
964 unsigned int ipu_policy; /* in-place-update policy */
965 unsigned int min_ipu_util; /* in-place-update threshold */
966 unsigned int min_fsync_blocks; /* threshold for fsync */
967 unsigned int min_seq_blocks; /* threshold for sequential blocks */
968 unsigned int min_hot_blocks; /* threshold for hot block allocation */
969 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
970
971 /* for flush command control */
972 struct flush_cmd_control *fcc_info;
973
974 /* for discard command control */
975 struct discard_cmd_control *dcc_info;
976};
977
978/*
979 * For superblock
980 */
981/*
982 * COUNT_TYPE for monitoring
983 *
984 * f2fs monitors the number of several block types such as on-writeback,
985 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
986 */
987#define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
988enum count_type {
989 F2FS_DIRTY_DENTS,
990 F2FS_DIRTY_DATA,
991 F2FS_DIRTY_QDATA,
992 F2FS_DIRTY_NODES,
993 F2FS_DIRTY_META,
994 F2FS_INMEM_PAGES,
995 F2FS_DIRTY_IMETA,
996 F2FS_WB_CP_DATA,
997 F2FS_WB_DATA,
998 F2FS_RD_DATA,
999 F2FS_RD_NODE,
1000 F2FS_RD_META,
1001 F2FS_DIO_WRITE,
1002 F2FS_DIO_READ,
1003 NR_COUNT_TYPE,
1004};
1005
1006/*
1007 * The below are the page types of bios used in submit_bio().
1008 * The available types are:
1009 * DATA User data pages. It operates as async mode.
1010 * NODE Node pages. It operates as async mode.
1011 * META FS metadata pages such as SIT, NAT, CP.
1012 * NR_PAGE_TYPE The number of page types.
1013 * META_FLUSH Make sure the previous pages are written
1014 * with waiting the bio's completion
1015 * ... Only can be used with META.
1016 */
1017#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1018enum page_type {
1019 DATA,
1020 NODE,
1021 META,
1022 NR_PAGE_TYPE,
1023 META_FLUSH,
1024 INMEM, /* the below types are used by tracepoints only. */
1025 INMEM_DROP,
1026 INMEM_INVALIDATE,
1027 INMEM_REVOKE,
1028 IPU,
1029 OPU,
1030};
1031
1032enum temp_type {
1033 HOT = 0, /* must be zero for meta bio */
1034 WARM,
1035 COLD,
1036 NR_TEMP_TYPE,
1037};
1038
1039enum need_lock_type {
1040 LOCK_REQ = 0,
1041 LOCK_DONE,
1042 LOCK_RETRY,
1043};
1044
1045enum cp_reason_type {
1046 CP_NO_NEEDED,
1047 CP_NON_REGULAR,
1048 CP_COMPRESSED,
1049 CP_HARDLINK,
1050 CP_SB_NEED_CP,
1051 CP_WRONG_PINO,
1052 CP_NO_SPC_ROLL,
1053 CP_NODE_NEED_CP,
1054 CP_FASTBOOT_MODE,
1055 CP_SPEC_LOG_NUM,
1056 CP_RECOVER_DIR,
1057};
1058
1059enum iostat_type {
1060 /* WRITE IO */
1061 APP_DIRECT_IO, /* app direct write IOs */
1062 APP_BUFFERED_IO, /* app buffered write IOs */
1063 APP_WRITE_IO, /* app write IOs */
1064 APP_MAPPED_IO, /* app mapped IOs */
1065 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1066 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1067 FS_META_IO, /* meta IOs from kworker/reclaimer */
1068 FS_GC_DATA_IO, /* data IOs from forground gc */
1069 FS_GC_NODE_IO, /* node IOs from forground gc */
1070 FS_CP_DATA_IO, /* data IOs from checkpoint */
1071 FS_CP_NODE_IO, /* node IOs from checkpoint */
1072 FS_CP_META_IO, /* meta IOs from checkpoint */
1073
1074 /* READ IO */
1075 APP_DIRECT_READ_IO, /* app direct read IOs */
1076 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1077 APP_READ_IO, /* app read IOs */
1078 APP_MAPPED_READ_IO, /* app mapped read IOs */
1079 FS_DATA_READ_IO, /* data read IOs */
1080 FS_GDATA_READ_IO, /* data read IOs from background gc */
1081 FS_CDATA_READ_IO, /* compressed data read IOs */
1082 FS_NODE_READ_IO, /* node read IOs */
1083 FS_META_READ_IO, /* meta read IOs */
1084
1085 /* other */
1086 FS_DISCARD, /* discard */
1087 NR_IO_TYPE,
1088};
1089
1090struct f2fs_io_info {
1091 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1092 nid_t ino; /* inode number */
1093 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1094 enum temp_type temp; /* contains HOT/WARM/COLD */
1095 int op; /* contains REQ_OP_ */
1096 int op_flags; /* req_flag_bits */
1097 block_t new_blkaddr; /* new block address to be written */
1098 block_t old_blkaddr; /* old block address before Cow */
1099 struct page *page; /* page to be written */
1100 struct page *encrypted_page; /* encrypted page */
1101 struct page *compressed_page; /* compressed page */
1102 struct list_head list; /* serialize IOs */
1103 bool submitted; /* indicate IO submission */
1104 int need_lock; /* indicate we need to lock cp_rwsem */
1105 bool in_list; /* indicate fio is in io_list */
1106 bool is_por; /* indicate IO is from recovery or not */
1107 bool retry; /* need to reallocate block address */
1108 int compr_blocks; /* # of compressed block addresses */
1109 bool encrypted; /* indicate file is encrypted */
1110 enum iostat_type io_type; /* io type */
1111 struct writeback_control *io_wbc; /* writeback control */
1112 struct bio **bio; /* bio for ipu */
1113 sector_t *last_block; /* last block number in bio */
1114 unsigned char version; /* version of the node */
1115};
1116
1117struct bio_entry {
1118 struct bio *bio;
1119 struct list_head list;
1120};
1121
1122#define is_read_io(rw) ((rw) == READ)
1123struct f2fs_bio_info {
1124 struct f2fs_sb_info *sbi; /* f2fs superblock */
1125 struct bio *bio; /* bios to merge */
1126 sector_t last_block_in_bio; /* last block number */
1127 struct f2fs_io_info fio; /* store buffered io info. */
1128 struct rw_semaphore io_rwsem; /* blocking op for bio */
1129 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1130 struct list_head io_list; /* track fios */
1131 struct list_head bio_list; /* bio entry list head */
1132 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1133};
1134
1135#define FDEV(i) (sbi->devs[i])
1136#define RDEV(i) (raw_super->devs[i])
1137struct f2fs_dev_info {
1138 struct block_device *bdev;
1139 char path[MAX_PATH_LEN];
1140 unsigned int total_segments;
1141 block_t start_blk;
1142 block_t end_blk;
1143#ifdef CONFIG_BLK_DEV_ZONED
1144 unsigned int nr_blkz; /* Total number of zones */
1145 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1146 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1147#endif
1148};
1149
1150enum inode_type {
1151 DIR_INODE, /* for dirty dir inode */
1152 FILE_INODE, /* for dirty regular/symlink inode */
1153 DIRTY_META, /* for all dirtied inode metadata */
1154 ATOMIC_FILE, /* for all atomic files */
1155 NR_INODE_TYPE,
1156};
1157
1158/* for inner inode cache management */
1159struct inode_management {
1160 struct radix_tree_root ino_root; /* ino entry array */
1161 spinlock_t ino_lock; /* for ino entry lock */
1162 struct list_head ino_list; /* inode list head */
1163 unsigned long ino_num; /* number of entries */
1164};
1165
1166/* for GC_AT */
1167struct atgc_management {
1168 bool atgc_enabled; /* ATGC is enabled or not */
1169 struct rb_root_cached root; /* root of victim rb-tree */
1170 struct list_head victim_list; /* linked with all victim entries */
1171 unsigned int victim_count; /* victim count in rb-tree */
1172 unsigned int candidate_ratio; /* candidate ratio */
1173 unsigned int max_candidate_count; /* max candidate count */
1174 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1175 unsigned long long age_threshold; /* age threshold */
1176};
1177
1178/* For s_flag in struct f2fs_sb_info */
1179enum {
1180 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1181 SBI_IS_CLOSE, /* specify unmounting */
1182 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1183 SBI_POR_DOING, /* recovery is doing or not */
1184 SBI_NEED_SB_WRITE, /* need to recover superblock */
1185 SBI_NEED_CP, /* need to checkpoint */
1186 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1187 SBI_IS_RECOVERED, /* recovered orphan/data */
1188 SBI_CP_DISABLED, /* CP was disabled last mount */
1189 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1190 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1191 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1192 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1193 SBI_IS_RESIZEFS, /* resizefs is in process */
1194};
1195
1196enum {
1197 CP_TIME,
1198 REQ_TIME,
1199 DISCARD_TIME,
1200 GC_TIME,
1201 DISABLE_TIME,
1202 UMOUNT_DISCARD_TIMEOUT,
1203 MAX_TIME,
1204};
1205
1206enum {
1207 GC_NORMAL,
1208 GC_IDLE_CB,
1209 GC_IDLE_GREEDY,
1210 GC_IDLE_AT,
1211 GC_URGENT_HIGH,
1212 GC_URGENT_LOW,
1213};
1214
1215enum {
1216 BGGC_MODE_ON, /* background gc is on */
1217 BGGC_MODE_OFF, /* background gc is off */
1218 BGGC_MODE_SYNC, /*
1219 * background gc is on, migrating blocks
1220 * like foreground gc
1221 */
1222};
1223
1224enum {
1225 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1226 FS_MODE_LFS, /* use lfs allocation only */
1227};
1228
1229enum {
1230 WHINT_MODE_OFF, /* not pass down write hints */
1231 WHINT_MODE_USER, /* try to pass down hints given by users */
1232 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1233};
1234
1235enum {
1236 ALLOC_MODE_DEFAULT, /* stay default */
1237 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1238};
1239
1240enum fsync_mode {
1241 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1242 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1243 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1244};
1245
1246/*
1247 * this value is set in page as a private data which indicate that
1248 * the page is atomically written, and it is in inmem_pages list.
1249 */
1250#define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1251#define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1252
1253#define IS_ATOMIC_WRITTEN_PAGE(page) \
1254 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1255#define IS_DUMMY_WRITTEN_PAGE(page) \
1256 (page_private(page) == DUMMY_WRITTEN_PAGE)
1257
1258#ifdef CONFIG_F2FS_IO_TRACE
1259#define IS_IO_TRACED_PAGE(page) \
1260 (page_private(page) > 0 && \
1261 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1262#else
1263#define IS_IO_TRACED_PAGE(page) (0)
1264#endif
1265
1266/* For compression */
1267enum compress_algorithm_type {
1268 COMPRESS_LZO,
1269 COMPRESS_LZ4,
1270 COMPRESS_ZSTD,
1271 COMPRESS_LZORLE,
1272 COMPRESS_MAX,
1273};
1274
1275#define COMPRESS_DATA_RESERVED_SIZE 5
1276struct compress_data {
1277 __le32 clen; /* compressed data size */
1278 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1279 u8 cdata[]; /* compressed data */
1280};
1281
1282#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1283
1284#define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1285
1286/* compress context */
1287struct compress_ctx {
1288 struct inode *inode; /* inode the context belong to */
1289 pgoff_t cluster_idx; /* cluster index number */
1290 unsigned int cluster_size; /* page count in cluster */
1291 unsigned int log_cluster_size; /* log of cluster size */
1292 struct page **rpages; /* pages store raw data in cluster */
1293 unsigned int nr_rpages; /* total page number in rpages */
1294 struct page **cpages; /* pages store compressed data in cluster */
1295 unsigned int nr_cpages; /* total page number in cpages */
1296 void *rbuf; /* virtual mapped address on rpages */
1297 struct compress_data *cbuf; /* virtual mapped address on cpages */
1298 size_t rlen; /* valid data length in rbuf */
1299 size_t clen; /* valid data length in cbuf */
1300 void *private; /* payload buffer for specified compression algorithm */
1301 void *private2; /* extra payload buffer */
1302};
1303
1304/* compress context for write IO path */
1305struct compress_io_ctx {
1306 u32 magic; /* magic number to indicate page is compressed */
1307 struct inode *inode; /* inode the context belong to */
1308 struct page **rpages; /* pages store raw data in cluster */
1309 unsigned int nr_rpages; /* total page number in rpages */
1310 atomic_t pending_pages; /* in-flight compressed page count */
1311};
1312
1313/* decompress io context for read IO path */
1314struct decompress_io_ctx {
1315 u32 magic; /* magic number to indicate page is compressed */
1316 struct inode *inode; /* inode the context belong to */
1317 pgoff_t cluster_idx; /* cluster index number */
1318 unsigned int cluster_size; /* page count in cluster */
1319 unsigned int log_cluster_size; /* log of cluster size */
1320 struct page **rpages; /* pages store raw data in cluster */
1321 unsigned int nr_rpages; /* total page number in rpages */
1322 struct page **cpages; /* pages store compressed data in cluster */
1323 unsigned int nr_cpages; /* total page number in cpages */
1324 struct page **tpages; /* temp pages to pad holes in cluster */
1325 void *rbuf; /* virtual mapped address on rpages */
1326 struct compress_data *cbuf; /* virtual mapped address on cpages */
1327 size_t rlen; /* valid data length in rbuf */
1328 size_t clen; /* valid data length in cbuf */
1329 atomic_t pending_pages; /* in-flight compressed page count */
1330 bool failed; /* indicate IO error during decompression */
1331 void *private; /* payload buffer for specified decompression algorithm */
1332 void *private2; /* extra payload buffer */
1333};
1334
1335#define NULL_CLUSTER ((unsigned int)(~0))
1336#define MIN_COMPRESS_LOG_SIZE 2
1337#define MAX_COMPRESS_LOG_SIZE 8
1338#define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1339
1340struct f2fs_sb_info {
1341 struct super_block *sb; /* pointer to VFS super block */
1342 struct proc_dir_entry *s_proc; /* proc entry */
1343 struct f2fs_super_block *raw_super; /* raw super block pointer */
1344 struct rw_semaphore sb_lock; /* lock for raw super block */
1345 int valid_super_block; /* valid super block no */
1346 unsigned long s_flag; /* flags for sbi */
1347 struct mutex writepages; /* mutex for writepages() */
1348
1349#ifdef CONFIG_BLK_DEV_ZONED
1350 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1351 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1352#endif
1353
1354 /* for node-related operations */
1355 struct f2fs_nm_info *nm_info; /* node manager */
1356 struct inode *node_inode; /* cache node blocks */
1357
1358 /* for segment-related operations */
1359 struct f2fs_sm_info *sm_info; /* segment manager */
1360
1361 /* for bio operations */
1362 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1363 /* keep migration IO order for LFS mode */
1364 struct rw_semaphore io_order_lock;
1365 mempool_t *write_io_dummy; /* Dummy pages */
1366
1367 /* for checkpoint */
1368 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1369 int cur_cp_pack; /* remain current cp pack */
1370 spinlock_t cp_lock; /* for flag in ckpt */
1371 struct inode *meta_inode; /* cache meta blocks */
1372 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */
1373 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1374 struct rw_semaphore node_write; /* locking node writes */
1375 struct rw_semaphore node_change; /* locking node change */
1376 wait_queue_head_t cp_wait;
1377 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1378 long interval_time[MAX_TIME]; /* to store thresholds */
1379
1380 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1381
1382 spinlock_t fsync_node_lock; /* for node entry lock */
1383 struct list_head fsync_node_list; /* node list head */
1384 unsigned int fsync_seg_id; /* sequence id */
1385 unsigned int fsync_node_num; /* number of node entries */
1386
1387 /* for orphan inode, use 0'th array */
1388 unsigned int max_orphans; /* max orphan inodes */
1389
1390 /* for inode management */
1391 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1392 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1393 struct mutex flush_lock; /* for flush exclusion */
1394
1395 /* for extent tree cache */
1396 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1397 struct mutex extent_tree_lock; /* locking extent radix tree */
1398 struct list_head extent_list; /* lru list for shrinker */
1399 spinlock_t extent_lock; /* locking extent lru list */
1400 atomic_t total_ext_tree; /* extent tree count */
1401 struct list_head zombie_list; /* extent zombie tree list */
1402 atomic_t total_zombie_tree; /* extent zombie tree count */
1403 atomic_t total_ext_node; /* extent info count */
1404
1405 /* basic filesystem units */
1406 unsigned int log_sectors_per_block; /* log2 sectors per block */
1407 unsigned int log_blocksize; /* log2 block size */
1408 unsigned int blocksize; /* block size */
1409 unsigned int root_ino_num; /* root inode number*/
1410 unsigned int node_ino_num; /* node inode number*/
1411 unsigned int meta_ino_num; /* meta inode number*/
1412 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1413 unsigned int blocks_per_seg; /* blocks per segment */
1414 unsigned int segs_per_sec; /* segments per section */
1415 unsigned int secs_per_zone; /* sections per zone */
1416 unsigned int total_sections; /* total section count */
1417 unsigned int total_node_count; /* total node block count */
1418 unsigned int total_valid_node_count; /* valid node block count */
1419 loff_t max_file_blocks; /* max block index of file */
1420 int dir_level; /* directory level */
1421 int readdir_ra; /* readahead inode in readdir */
1422
1423 block_t user_block_count; /* # of user blocks */
1424 block_t total_valid_block_count; /* # of valid blocks */
1425 block_t discard_blks; /* discard command candidats */
1426 block_t last_valid_block_count; /* for recovery */
1427 block_t reserved_blocks; /* configurable reserved blocks */
1428 block_t current_reserved_blocks; /* current reserved blocks */
1429
1430 /* Additional tracking for no checkpoint mode */
1431 block_t unusable_block_count; /* # of blocks saved by last cp */
1432
1433 unsigned int nquota_files; /* # of quota sysfile */
1434 struct rw_semaphore quota_sem; /* blocking cp for flags */
1435
1436 /* # of pages, see count_type */
1437 atomic_t nr_pages[NR_COUNT_TYPE];
1438 /* # of allocated blocks */
1439 struct percpu_counter alloc_valid_block_count;
1440
1441 /* writeback control */
1442 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1443
1444 /* valid inode count */
1445 struct percpu_counter total_valid_inode_count;
1446
1447 struct f2fs_mount_info mount_opt; /* mount options */
1448
1449 /* for cleaning operations */
1450 struct rw_semaphore gc_lock; /*
1451 * semaphore for GC, avoid
1452 * race between GC and GC or CP
1453 */
1454 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1455 struct atgc_management am; /* atgc management */
1456 unsigned int cur_victim_sec; /* current victim section num */
1457 unsigned int gc_mode; /* current GC state */
1458 unsigned int next_victim_seg[2]; /* next segment in victim section */
1459
1460 /* for skip statistic */
1461 unsigned int atomic_files; /* # of opened atomic file */
1462 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1463 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1464
1465 /* threshold for gc trials on pinned files */
1466 u64 gc_pin_file_threshold;
1467 struct rw_semaphore pin_sem;
1468
1469 /* maximum # of trials to find a victim segment for SSR and GC */
1470 unsigned int max_victim_search;
1471 /* migration granularity of garbage collection, unit: segment */
1472 unsigned int migration_granularity;
1473
1474 /*
1475 * for stat information.
1476 * one is for the LFS mode, and the other is for the SSR mode.
1477 */
1478#ifdef CONFIG_F2FS_STAT_FS
1479 struct f2fs_stat_info *stat_info; /* FS status information */
1480 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1481 unsigned int segment_count[2]; /* # of allocated segments */
1482 unsigned int block_count[2]; /* # of allocated blocks */
1483 atomic_t inplace_count; /* # of inplace update */
1484 atomic64_t total_hit_ext; /* # of lookup extent cache */
1485 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1486 atomic64_t read_hit_largest; /* # of hit largest extent node */
1487 atomic64_t read_hit_cached; /* # of hit cached extent node */
1488 atomic_t inline_xattr; /* # of inline_xattr inodes */
1489 atomic_t inline_inode; /* # of inline_data inodes */
1490 atomic_t inline_dir; /* # of inline_dentry inodes */
1491 atomic_t compr_inode; /* # of compressed inodes */
1492 atomic64_t compr_blocks; /* # of compressed blocks */
1493 atomic_t vw_cnt; /* # of volatile writes */
1494 atomic_t max_aw_cnt; /* max # of atomic writes */
1495 atomic_t max_vw_cnt; /* max # of volatile writes */
1496 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1497 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1498 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1499#endif
1500 spinlock_t stat_lock; /* lock for stat operations */
1501
1502 /* For app/fs IO statistics */
1503 spinlock_t iostat_lock;
1504 unsigned long long rw_iostat[NR_IO_TYPE];
1505 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1506 bool iostat_enable;
1507 unsigned long iostat_next_period;
1508 unsigned int iostat_period_ms;
1509
1510 /* to attach REQ_META|REQ_FUA flags */
1511 unsigned int data_io_flag;
1512 unsigned int node_io_flag;
1513
1514 /* For sysfs suppport */
1515 struct kobject s_kobj;
1516 struct completion s_kobj_unregister;
1517
1518 /* For shrinker support */
1519 struct list_head s_list;
1520 int s_ndevs; /* number of devices */
1521 struct f2fs_dev_info *devs; /* for device list */
1522 unsigned int dirty_device; /* for checkpoint data flush */
1523 spinlock_t dev_lock; /* protect dirty_device */
1524 struct mutex umount_mutex;
1525 unsigned int shrinker_run_no;
1526
1527 /* For write statistics */
1528 u64 sectors_written_start;
1529 u64 kbytes_written;
1530
1531 /* Reference to checksum algorithm driver via cryptoapi */
1532 struct crypto_shash *s_chksum_driver;
1533
1534 /* Precomputed FS UUID checksum for seeding other checksums */
1535 __u32 s_chksum_seed;
1536
1537 struct workqueue_struct *post_read_wq; /* post read workqueue */
1538
1539 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1540 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1541
1542#ifdef CONFIG_F2FS_FS_COMPRESSION
1543 struct kmem_cache *page_array_slab; /* page array entry */
1544 unsigned int page_array_slab_size; /* default page array slab size */
1545#endif
1546};
1547
1548struct f2fs_private_dio {
1549 struct inode *inode;
1550 void *orig_private;
1551 bio_end_io_t *orig_end_io;
1552 bool write;
1553};
1554
1555#ifdef CONFIG_F2FS_FAULT_INJECTION
1556#define f2fs_show_injection_info(sbi, type) \
1557 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1558 KERN_INFO, sbi->sb->s_id, \
1559 f2fs_fault_name[type], \
1560 __func__, __builtin_return_address(0))
1561static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1562{
1563 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1564
1565 if (!ffi->inject_rate)
1566 return false;
1567
1568 if (!IS_FAULT_SET(ffi, type))
1569 return false;
1570
1571 atomic_inc(&ffi->inject_ops);
1572 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1573 atomic_set(&ffi->inject_ops, 0);
1574 return true;
1575 }
1576 return false;
1577}
1578#else
1579#define f2fs_show_injection_info(sbi, type) do { } while (0)
1580static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1581{
1582 return false;
1583}
1584#endif
1585
1586/*
1587 * Test if the mounted volume is a multi-device volume.
1588 * - For a single regular disk volume, sbi->s_ndevs is 0.
1589 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1590 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1591 */
1592static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1593{
1594 return sbi->s_ndevs > 1;
1595}
1596
1597/* For write statistics. Suppose sector size is 512 bytes,
1598 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1599 */
1600#define BD_PART_WRITTEN(s) \
1601(((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1602 (s)->sectors_written_start) >> 1)
1603
1604static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1605{
1606 unsigned long now = jiffies;
1607
1608 sbi->last_time[type] = now;
1609
1610 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1611 if (type == REQ_TIME) {
1612 sbi->last_time[DISCARD_TIME] = now;
1613 sbi->last_time[GC_TIME] = now;
1614 }
1615}
1616
1617static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1618{
1619 unsigned long interval = sbi->interval_time[type] * HZ;
1620
1621 return time_after(jiffies, sbi->last_time[type] + interval);
1622}
1623
1624static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1625 int type)
1626{
1627 unsigned long interval = sbi->interval_time[type] * HZ;
1628 unsigned int wait_ms = 0;
1629 long delta;
1630
1631 delta = (sbi->last_time[type] + interval) - jiffies;
1632 if (delta > 0)
1633 wait_ms = jiffies_to_msecs(delta);
1634
1635 return wait_ms;
1636}
1637
1638/*
1639 * Inline functions
1640 */
1641static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1642 const void *address, unsigned int length)
1643{
1644 struct {
1645 struct shash_desc shash;
1646 char ctx[4];
1647 } desc;
1648 int err;
1649
1650 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1651
1652 desc.shash.tfm = sbi->s_chksum_driver;
1653 *(u32 *)desc.ctx = crc;
1654
1655 err = crypto_shash_update(&desc.shash, address, length);
1656 BUG_ON(err);
1657
1658 return *(u32 *)desc.ctx;
1659}
1660
1661static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1662 unsigned int length)
1663{
1664 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1665}
1666
1667static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1668 void *buf, size_t buf_size)
1669{
1670 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1671}
1672
1673static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1674 const void *address, unsigned int length)
1675{
1676 return __f2fs_crc32(sbi, crc, address, length);
1677}
1678
1679static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1680{
1681 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1682}
1683
1684static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1685{
1686 return sb->s_fs_info;
1687}
1688
1689static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1690{
1691 return F2FS_SB(inode->i_sb);
1692}
1693
1694static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1695{
1696 return F2FS_I_SB(mapping->host);
1697}
1698
1699static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1700{
1701 return F2FS_M_SB(page_file_mapping(page));
1702}
1703
1704static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1705{
1706 return (struct f2fs_super_block *)(sbi->raw_super);
1707}
1708
1709static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1710{
1711 return (struct f2fs_checkpoint *)(sbi->ckpt);
1712}
1713
1714static inline struct f2fs_node *F2FS_NODE(struct page *page)
1715{
1716 return (struct f2fs_node *)page_address(page);
1717}
1718
1719static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1720{
1721 return &((struct f2fs_node *)page_address(page))->i;
1722}
1723
1724static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1725{
1726 return (struct f2fs_nm_info *)(sbi->nm_info);
1727}
1728
1729static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1730{
1731 return (struct f2fs_sm_info *)(sbi->sm_info);
1732}
1733
1734static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1735{
1736 return (struct sit_info *)(SM_I(sbi)->sit_info);
1737}
1738
1739static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1740{
1741 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1742}
1743
1744static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1745{
1746 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1747}
1748
1749static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1750{
1751 return sbi->meta_inode->i_mapping;
1752}
1753
1754static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1755{
1756 return sbi->node_inode->i_mapping;
1757}
1758
1759static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1760{
1761 return test_bit(type, &sbi->s_flag);
1762}
1763
1764static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1765{
1766 set_bit(type, &sbi->s_flag);
1767}
1768
1769static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1770{
1771 clear_bit(type, &sbi->s_flag);
1772}
1773
1774static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1775{
1776 return le64_to_cpu(cp->checkpoint_ver);
1777}
1778
1779static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1780{
1781 if (type < F2FS_MAX_QUOTAS)
1782 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1783 return 0;
1784}
1785
1786static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1787{
1788 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1789 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1790}
1791
1792static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1793{
1794 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1795
1796 return ckpt_flags & f;
1797}
1798
1799static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1800{
1801 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1802}
1803
1804static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1805{
1806 unsigned int ckpt_flags;
1807
1808 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1809 ckpt_flags |= f;
1810 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1811}
1812
1813static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1814{
1815 unsigned long flags;
1816
1817 spin_lock_irqsave(&sbi->cp_lock, flags);
1818 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1819 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1820}
1821
1822static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1823{
1824 unsigned int ckpt_flags;
1825
1826 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1827 ckpt_flags &= (~f);
1828 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1829}
1830
1831static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1832{
1833 unsigned long flags;
1834
1835 spin_lock_irqsave(&sbi->cp_lock, flags);
1836 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1837 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1838}
1839
1840static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1841{
1842 unsigned long flags;
1843 unsigned char *nat_bits;
1844
1845 /*
1846 * In order to re-enable nat_bits we need to call fsck.f2fs by
1847 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1848 * so let's rely on regular fsck or unclean shutdown.
1849 */
1850
1851 if (lock)
1852 spin_lock_irqsave(&sbi->cp_lock, flags);
1853 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1854 nat_bits = NM_I(sbi)->nat_bits;
1855 NM_I(sbi)->nat_bits = NULL;
1856 if (lock)
1857 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1858
1859 kvfree(nat_bits);
1860}
1861
1862static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1863 struct cp_control *cpc)
1864{
1865 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1866
1867 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1868}
1869
1870static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1871{
1872 down_read(&sbi->cp_rwsem);
1873}
1874
1875static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1876{
1877 return down_read_trylock(&sbi->cp_rwsem);
1878}
1879
1880static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1881{
1882 up_read(&sbi->cp_rwsem);
1883}
1884
1885static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1886{
1887 down_write(&sbi->cp_rwsem);
1888}
1889
1890static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1891{
1892 up_write(&sbi->cp_rwsem);
1893}
1894
1895static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1896{
1897 int reason = CP_SYNC;
1898
1899 if (test_opt(sbi, FASTBOOT))
1900 reason = CP_FASTBOOT;
1901 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1902 reason = CP_UMOUNT;
1903 return reason;
1904}
1905
1906static inline bool __remain_node_summaries(int reason)
1907{
1908 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1909}
1910
1911static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1912{
1913 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1914 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1915}
1916
1917/*
1918 * Check whether the inode has blocks or not
1919 */
1920static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1921{
1922 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1923
1924 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1925}
1926
1927static inline bool f2fs_has_xattr_block(unsigned int ofs)
1928{
1929 return ofs == XATTR_NODE_OFFSET;
1930}
1931
1932static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1933 struct inode *inode, bool cap)
1934{
1935 if (!inode)
1936 return true;
1937 if (!test_opt(sbi, RESERVE_ROOT))
1938 return false;
1939 if (IS_NOQUOTA(inode))
1940 return true;
1941 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1942 return true;
1943 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1944 in_group_p(F2FS_OPTION(sbi).s_resgid))
1945 return true;
1946 if (cap && capable(CAP_SYS_RESOURCE))
1947 return true;
1948 return false;
1949}
1950
1951static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1952static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1953 struct inode *inode, blkcnt_t *count)
1954{
1955 blkcnt_t diff = 0, release = 0;
1956 block_t avail_user_block_count;
1957 int ret;
1958
1959 ret = dquot_reserve_block(inode, *count);
1960 if (ret)
1961 return ret;
1962
1963 if (time_to_inject(sbi, FAULT_BLOCK)) {
1964 f2fs_show_injection_info(sbi, FAULT_BLOCK);
1965 release = *count;
1966 goto release_quota;
1967 }
1968
1969 /*
1970 * let's increase this in prior to actual block count change in order
1971 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1972 */
1973 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1974
1975 spin_lock(&sbi->stat_lock);
1976 sbi->total_valid_block_count += (block_t)(*count);
1977 avail_user_block_count = sbi->user_block_count -
1978 sbi->current_reserved_blocks;
1979
1980 if (!__allow_reserved_blocks(sbi, inode, true))
1981 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1982 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1983 if (avail_user_block_count > sbi->unusable_block_count)
1984 avail_user_block_count -= sbi->unusable_block_count;
1985 else
1986 avail_user_block_count = 0;
1987 }
1988 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1989 diff = sbi->total_valid_block_count - avail_user_block_count;
1990 if (diff > *count)
1991 diff = *count;
1992 *count -= diff;
1993 release = diff;
1994 sbi->total_valid_block_count -= diff;
1995 if (!*count) {
1996 spin_unlock(&sbi->stat_lock);
1997 goto enospc;
1998 }
1999 }
2000 spin_unlock(&sbi->stat_lock);
2001
2002 if (unlikely(release)) {
2003 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2004 dquot_release_reservation_block(inode, release);
2005 }
2006 f2fs_i_blocks_write(inode, *count, true, true);
2007 return 0;
2008
2009enospc:
2010 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2011release_quota:
2012 dquot_release_reservation_block(inode, release);
2013 return -ENOSPC;
2014}
2015
2016__printf(2, 3)
2017void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2018
2019#define f2fs_err(sbi, fmt, ...) \
2020 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2021#define f2fs_warn(sbi, fmt, ...) \
2022 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2023#define f2fs_notice(sbi, fmt, ...) \
2024 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2025#define f2fs_info(sbi, fmt, ...) \
2026 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2027#define f2fs_debug(sbi, fmt, ...) \
2028 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2029
2030static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2031 struct inode *inode,
2032 block_t count)
2033{
2034 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2035
2036 spin_lock(&sbi->stat_lock);
2037 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2038 sbi->total_valid_block_count -= (block_t)count;
2039 if (sbi->reserved_blocks &&
2040 sbi->current_reserved_blocks < sbi->reserved_blocks)
2041 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2042 sbi->current_reserved_blocks + count);
2043 spin_unlock(&sbi->stat_lock);
2044 if (unlikely(inode->i_blocks < sectors)) {
2045 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2046 inode->i_ino,
2047 (unsigned long long)inode->i_blocks,
2048 (unsigned long long)sectors);
2049 set_sbi_flag(sbi, SBI_NEED_FSCK);
2050 return;
2051 }
2052 f2fs_i_blocks_write(inode, count, false, true);
2053}
2054
2055static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2056{
2057 atomic_inc(&sbi->nr_pages[count_type]);
2058
2059 if (count_type == F2FS_DIRTY_DENTS ||
2060 count_type == F2FS_DIRTY_NODES ||
2061 count_type == F2FS_DIRTY_META ||
2062 count_type == F2FS_DIRTY_QDATA ||
2063 count_type == F2FS_DIRTY_IMETA)
2064 set_sbi_flag(sbi, SBI_IS_DIRTY);
2065}
2066
2067static inline void inode_inc_dirty_pages(struct inode *inode)
2068{
2069 atomic_inc(&F2FS_I(inode)->dirty_pages);
2070 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2071 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2072 if (IS_NOQUOTA(inode))
2073 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2074}
2075
2076static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2077{
2078 atomic_dec(&sbi->nr_pages[count_type]);
2079}
2080
2081static inline void inode_dec_dirty_pages(struct inode *inode)
2082{
2083 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2084 !S_ISLNK(inode->i_mode))
2085 return;
2086
2087 atomic_dec(&F2FS_I(inode)->dirty_pages);
2088 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2089 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2090 if (IS_NOQUOTA(inode))
2091 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2092}
2093
2094static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2095{
2096 return atomic_read(&sbi->nr_pages[count_type]);
2097}
2098
2099static inline int get_dirty_pages(struct inode *inode)
2100{
2101 return atomic_read(&F2FS_I(inode)->dirty_pages);
2102}
2103
2104static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2105{
2106 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2107 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2108 sbi->log_blocks_per_seg;
2109
2110 return segs / sbi->segs_per_sec;
2111}
2112
2113static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2114{
2115 return sbi->total_valid_block_count;
2116}
2117
2118static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2119{
2120 return sbi->discard_blks;
2121}
2122
2123static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2124{
2125 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2126
2127 /* return NAT or SIT bitmap */
2128 if (flag == NAT_BITMAP)
2129 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2130 else if (flag == SIT_BITMAP)
2131 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2132
2133 return 0;
2134}
2135
2136static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2137{
2138 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2139}
2140
2141static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2142{
2143 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2144 int offset;
2145
2146 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2147 offset = (flag == SIT_BITMAP) ?
2148 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2149 /*
2150 * if large_nat_bitmap feature is enabled, leave checksum
2151 * protection for all nat/sit bitmaps.
2152 */
2153 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2154 }
2155
2156 if (__cp_payload(sbi) > 0) {
2157 if (flag == NAT_BITMAP)
2158 return &ckpt->sit_nat_version_bitmap;
2159 else
2160 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2161 } else {
2162 offset = (flag == NAT_BITMAP) ?
2163 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2164 return &ckpt->sit_nat_version_bitmap + offset;
2165 }
2166}
2167
2168static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2169{
2170 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2171
2172 if (sbi->cur_cp_pack == 2)
2173 start_addr += sbi->blocks_per_seg;
2174 return start_addr;
2175}
2176
2177static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2178{
2179 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2180
2181 if (sbi->cur_cp_pack == 1)
2182 start_addr += sbi->blocks_per_seg;
2183 return start_addr;
2184}
2185
2186static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2187{
2188 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2189}
2190
2191static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2192{
2193 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2194}
2195
2196static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2197 struct inode *inode, bool is_inode)
2198{
2199 block_t valid_block_count;
2200 unsigned int valid_node_count, user_block_count;
2201 int err;
2202
2203 if (is_inode) {
2204 if (inode) {
2205 err = dquot_alloc_inode(inode);
2206 if (err)
2207 return err;
2208 }
2209 } else {
2210 err = dquot_reserve_block(inode, 1);
2211 if (err)
2212 return err;
2213 }
2214
2215 if (time_to_inject(sbi, FAULT_BLOCK)) {
2216 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2217 goto enospc;
2218 }
2219
2220 spin_lock(&sbi->stat_lock);
2221
2222 valid_block_count = sbi->total_valid_block_count +
2223 sbi->current_reserved_blocks + 1;
2224
2225 if (!__allow_reserved_blocks(sbi, inode, false))
2226 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2227 user_block_count = sbi->user_block_count;
2228 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2229 user_block_count -= sbi->unusable_block_count;
2230
2231 if (unlikely(valid_block_count > user_block_count)) {
2232 spin_unlock(&sbi->stat_lock);
2233 goto enospc;
2234 }
2235
2236 valid_node_count = sbi->total_valid_node_count + 1;
2237 if (unlikely(valid_node_count > sbi->total_node_count)) {
2238 spin_unlock(&sbi->stat_lock);
2239 goto enospc;
2240 }
2241
2242 sbi->total_valid_node_count++;
2243 sbi->total_valid_block_count++;
2244 spin_unlock(&sbi->stat_lock);
2245
2246 if (inode) {
2247 if (is_inode)
2248 f2fs_mark_inode_dirty_sync(inode, true);
2249 else
2250 f2fs_i_blocks_write(inode, 1, true, true);
2251 }
2252
2253 percpu_counter_inc(&sbi->alloc_valid_block_count);
2254 return 0;
2255
2256enospc:
2257 if (is_inode) {
2258 if (inode)
2259 dquot_free_inode(inode);
2260 } else {
2261 dquot_release_reservation_block(inode, 1);
2262 }
2263 return -ENOSPC;
2264}
2265
2266static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2267 struct inode *inode, bool is_inode)
2268{
2269 spin_lock(&sbi->stat_lock);
2270
2271 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2272 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2273
2274 sbi->total_valid_node_count--;
2275 sbi->total_valid_block_count--;
2276 if (sbi->reserved_blocks &&
2277 sbi->current_reserved_blocks < sbi->reserved_blocks)
2278 sbi->current_reserved_blocks++;
2279
2280 spin_unlock(&sbi->stat_lock);
2281
2282 if (is_inode) {
2283 dquot_free_inode(inode);
2284 } else {
2285 if (unlikely(inode->i_blocks == 0)) {
2286 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2287 inode->i_ino,
2288 (unsigned long long)inode->i_blocks);
2289 set_sbi_flag(sbi, SBI_NEED_FSCK);
2290 return;
2291 }
2292 f2fs_i_blocks_write(inode, 1, false, true);
2293 }
2294}
2295
2296static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2297{
2298 return sbi->total_valid_node_count;
2299}
2300
2301static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2302{
2303 percpu_counter_inc(&sbi->total_valid_inode_count);
2304}
2305
2306static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2307{
2308 percpu_counter_dec(&sbi->total_valid_inode_count);
2309}
2310
2311static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2312{
2313 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2314}
2315
2316static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2317 pgoff_t index, bool for_write)
2318{
2319 struct page *page;
2320
2321 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2322 if (!for_write)
2323 page = find_get_page_flags(mapping, index,
2324 FGP_LOCK | FGP_ACCESSED);
2325 else
2326 page = find_lock_page(mapping, index);
2327 if (page)
2328 return page;
2329
2330 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2331 f2fs_show_injection_info(F2FS_M_SB(mapping),
2332 FAULT_PAGE_ALLOC);
2333 return NULL;
2334 }
2335 }
2336
2337 if (!for_write)
2338 return grab_cache_page(mapping, index);
2339 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2340}
2341
2342static inline struct page *f2fs_pagecache_get_page(
2343 struct address_space *mapping, pgoff_t index,
2344 int fgp_flags, gfp_t gfp_mask)
2345{
2346 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2347 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2348 return NULL;
2349 }
2350
2351 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2352}
2353
2354static inline void f2fs_copy_page(struct page *src, struct page *dst)
2355{
2356 char *src_kaddr = kmap(src);
2357 char *dst_kaddr = kmap(dst);
2358
2359 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2360 kunmap(dst);
2361 kunmap(src);
2362}
2363
2364static inline void f2fs_put_page(struct page *page, int unlock)
2365{
2366 if (!page)
2367 return;
2368
2369 if (unlock) {
2370 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2371 unlock_page(page);
2372 }
2373 put_page(page);
2374}
2375
2376static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2377{
2378 if (dn->node_page)
2379 f2fs_put_page(dn->node_page, 1);
2380 if (dn->inode_page && dn->node_page != dn->inode_page)
2381 f2fs_put_page(dn->inode_page, 0);
2382 dn->node_page = NULL;
2383 dn->inode_page = NULL;
2384}
2385
2386static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2387 size_t size)
2388{
2389 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2390}
2391
2392static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2393 gfp_t flags)
2394{
2395 void *entry;
2396
2397 entry = kmem_cache_alloc(cachep, flags);
2398 if (!entry)
2399 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2400 return entry;
2401}
2402
2403static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2404{
2405 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2406 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2407 get_pages(sbi, F2FS_WB_CP_DATA) ||
2408 get_pages(sbi, F2FS_DIO_READ) ||
2409 get_pages(sbi, F2FS_DIO_WRITE))
2410 return true;
2411
2412 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2413 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2414 return true;
2415
2416 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2417 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2418 return true;
2419 return false;
2420}
2421
2422static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2423{
2424 if (sbi->gc_mode == GC_URGENT_HIGH)
2425 return true;
2426
2427 if (is_inflight_io(sbi, type))
2428 return false;
2429
2430 if (sbi->gc_mode == GC_URGENT_LOW &&
2431 (type == DISCARD_TIME || type == GC_TIME))
2432 return true;
2433
2434 return f2fs_time_over(sbi, type);
2435}
2436
2437static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2438 unsigned long index, void *item)
2439{
2440 while (radix_tree_insert(root, index, item))
2441 cond_resched();
2442}
2443
2444#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2445
2446static inline bool IS_INODE(struct page *page)
2447{
2448 struct f2fs_node *p = F2FS_NODE(page);
2449
2450 return RAW_IS_INODE(p);
2451}
2452
2453static inline int offset_in_addr(struct f2fs_inode *i)
2454{
2455 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2456 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2457}
2458
2459static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2460{
2461 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2462}
2463
2464static inline int f2fs_has_extra_attr(struct inode *inode);
2465static inline block_t data_blkaddr(struct inode *inode,
2466 struct page *node_page, unsigned int offset)
2467{
2468 struct f2fs_node *raw_node;
2469 __le32 *addr_array;
2470 int base = 0;
2471 bool is_inode = IS_INODE(node_page);
2472
2473 raw_node = F2FS_NODE(node_page);
2474
2475 if (is_inode) {
2476 if (!inode)
2477 /* from GC path only */
2478 base = offset_in_addr(&raw_node->i);
2479 else if (f2fs_has_extra_attr(inode))
2480 base = get_extra_isize(inode);
2481 }
2482
2483 addr_array = blkaddr_in_node(raw_node);
2484 return le32_to_cpu(addr_array[base + offset]);
2485}
2486
2487static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2488{
2489 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2490}
2491
2492static inline int f2fs_test_bit(unsigned int nr, char *addr)
2493{
2494 int mask;
2495
2496 addr += (nr >> 3);
2497 mask = 1 << (7 - (nr & 0x07));
2498 return mask & *addr;
2499}
2500
2501static inline void f2fs_set_bit(unsigned int nr, char *addr)
2502{
2503 int mask;
2504
2505 addr += (nr >> 3);
2506 mask = 1 << (7 - (nr & 0x07));
2507 *addr |= mask;
2508}
2509
2510static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2511{
2512 int mask;
2513
2514 addr += (nr >> 3);
2515 mask = 1 << (7 - (nr & 0x07));
2516 *addr &= ~mask;
2517}
2518
2519static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2520{
2521 int mask;
2522 int ret;
2523
2524 addr += (nr >> 3);
2525 mask = 1 << (7 - (nr & 0x07));
2526 ret = mask & *addr;
2527 *addr |= mask;
2528 return ret;
2529}
2530
2531static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2532{
2533 int mask;
2534 int ret;
2535
2536 addr += (nr >> 3);
2537 mask = 1 << (7 - (nr & 0x07));
2538 ret = mask & *addr;
2539 *addr &= ~mask;
2540 return ret;
2541}
2542
2543static inline void f2fs_change_bit(unsigned int nr, char *addr)
2544{
2545 int mask;
2546
2547 addr += (nr >> 3);
2548 mask = 1 << (7 - (nr & 0x07));
2549 *addr ^= mask;
2550}
2551
2552/*
2553 * On-disk inode flags (f2fs_inode::i_flags)
2554 */
2555#define F2FS_COMPR_FL 0x00000004 /* Compress file */
2556#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2557#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2558#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2559#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2560#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2561#define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2562#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2563#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2564#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2565#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2566
2567/* Flags that should be inherited by new inodes from their parent. */
2568#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2569 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2570 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2571
2572/* Flags that are appropriate for regular files (all but dir-specific ones). */
2573#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2574 F2FS_CASEFOLD_FL))
2575
2576/* Flags that are appropriate for non-directories/regular files. */
2577#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2578
2579static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2580{
2581 if (S_ISDIR(mode))
2582 return flags;
2583 else if (S_ISREG(mode))
2584 return flags & F2FS_REG_FLMASK;
2585 else
2586 return flags & F2FS_OTHER_FLMASK;
2587}
2588
2589static inline void __mark_inode_dirty_flag(struct inode *inode,
2590 int flag, bool set)
2591{
2592 switch (flag) {
2593 case FI_INLINE_XATTR:
2594 case FI_INLINE_DATA:
2595 case FI_INLINE_DENTRY:
2596 case FI_NEW_INODE:
2597 if (set)
2598 return;
2599 fallthrough;
2600 case FI_DATA_EXIST:
2601 case FI_INLINE_DOTS:
2602 case FI_PIN_FILE:
2603 f2fs_mark_inode_dirty_sync(inode, true);
2604 }
2605}
2606
2607static inline void set_inode_flag(struct inode *inode, int flag)
2608{
2609 set_bit(flag, F2FS_I(inode)->flags);
2610 __mark_inode_dirty_flag(inode, flag, true);
2611}
2612
2613static inline int is_inode_flag_set(struct inode *inode, int flag)
2614{
2615 return test_bit(flag, F2FS_I(inode)->flags);
2616}
2617
2618static inline void clear_inode_flag(struct inode *inode, int flag)
2619{
2620 clear_bit(flag, F2FS_I(inode)->flags);
2621 __mark_inode_dirty_flag(inode, flag, false);
2622}
2623
2624static inline bool f2fs_verity_in_progress(struct inode *inode)
2625{
2626 return IS_ENABLED(CONFIG_FS_VERITY) &&
2627 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2628}
2629
2630static inline void set_acl_inode(struct inode *inode, umode_t mode)
2631{
2632 F2FS_I(inode)->i_acl_mode = mode;
2633 set_inode_flag(inode, FI_ACL_MODE);
2634 f2fs_mark_inode_dirty_sync(inode, false);
2635}
2636
2637static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2638{
2639 if (inc)
2640 inc_nlink(inode);
2641 else
2642 drop_nlink(inode);
2643 f2fs_mark_inode_dirty_sync(inode, true);
2644}
2645
2646static inline void f2fs_i_blocks_write(struct inode *inode,
2647 block_t diff, bool add, bool claim)
2648{
2649 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2650 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2651
2652 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2653 if (add) {
2654 if (claim)
2655 dquot_claim_block(inode, diff);
2656 else
2657 dquot_alloc_block_nofail(inode, diff);
2658 } else {
2659 dquot_free_block(inode, diff);
2660 }
2661
2662 f2fs_mark_inode_dirty_sync(inode, true);
2663 if (clean || recover)
2664 set_inode_flag(inode, FI_AUTO_RECOVER);
2665}
2666
2667static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2668{
2669 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2670 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2671
2672 if (i_size_read(inode) == i_size)
2673 return;
2674
2675 i_size_write(inode, i_size);
2676 f2fs_mark_inode_dirty_sync(inode, true);
2677 if (clean || recover)
2678 set_inode_flag(inode, FI_AUTO_RECOVER);
2679}
2680
2681static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2682{
2683 F2FS_I(inode)->i_current_depth = depth;
2684 f2fs_mark_inode_dirty_sync(inode, true);
2685}
2686
2687static inline void f2fs_i_gc_failures_write(struct inode *inode,
2688 unsigned int count)
2689{
2690 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2691 f2fs_mark_inode_dirty_sync(inode, true);
2692}
2693
2694static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2695{
2696 F2FS_I(inode)->i_xattr_nid = xnid;
2697 f2fs_mark_inode_dirty_sync(inode, true);
2698}
2699
2700static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2701{
2702 F2FS_I(inode)->i_pino = pino;
2703 f2fs_mark_inode_dirty_sync(inode, true);
2704}
2705
2706static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2707{
2708 struct f2fs_inode_info *fi = F2FS_I(inode);
2709
2710 if (ri->i_inline & F2FS_INLINE_XATTR)
2711 set_bit(FI_INLINE_XATTR, fi->flags);
2712 if (ri->i_inline & F2FS_INLINE_DATA)
2713 set_bit(FI_INLINE_DATA, fi->flags);
2714 if (ri->i_inline & F2FS_INLINE_DENTRY)
2715 set_bit(FI_INLINE_DENTRY, fi->flags);
2716 if (ri->i_inline & F2FS_DATA_EXIST)
2717 set_bit(FI_DATA_EXIST, fi->flags);
2718 if (ri->i_inline & F2FS_INLINE_DOTS)
2719 set_bit(FI_INLINE_DOTS, fi->flags);
2720 if (ri->i_inline & F2FS_EXTRA_ATTR)
2721 set_bit(FI_EXTRA_ATTR, fi->flags);
2722 if (ri->i_inline & F2FS_PIN_FILE)
2723 set_bit(FI_PIN_FILE, fi->flags);
2724}
2725
2726static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2727{
2728 ri->i_inline = 0;
2729
2730 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2731 ri->i_inline |= F2FS_INLINE_XATTR;
2732 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2733 ri->i_inline |= F2FS_INLINE_DATA;
2734 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2735 ri->i_inline |= F2FS_INLINE_DENTRY;
2736 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2737 ri->i_inline |= F2FS_DATA_EXIST;
2738 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2739 ri->i_inline |= F2FS_INLINE_DOTS;
2740 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2741 ri->i_inline |= F2FS_EXTRA_ATTR;
2742 if (is_inode_flag_set(inode, FI_PIN_FILE))
2743 ri->i_inline |= F2FS_PIN_FILE;
2744}
2745
2746static inline int f2fs_has_extra_attr(struct inode *inode)
2747{
2748 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2749}
2750
2751static inline int f2fs_has_inline_xattr(struct inode *inode)
2752{
2753 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2754}
2755
2756static inline int f2fs_compressed_file(struct inode *inode)
2757{
2758 return S_ISREG(inode->i_mode) &&
2759 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2760}
2761
2762static inline unsigned int addrs_per_inode(struct inode *inode)
2763{
2764 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2765 get_inline_xattr_addrs(inode);
2766
2767 if (!f2fs_compressed_file(inode))
2768 return addrs;
2769 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2770}
2771
2772static inline unsigned int addrs_per_block(struct inode *inode)
2773{
2774 if (!f2fs_compressed_file(inode))
2775 return DEF_ADDRS_PER_BLOCK;
2776 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2777}
2778
2779static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2780{
2781 struct f2fs_inode *ri = F2FS_INODE(page);
2782
2783 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2784 get_inline_xattr_addrs(inode)]);
2785}
2786
2787static inline int inline_xattr_size(struct inode *inode)
2788{
2789 if (f2fs_has_inline_xattr(inode))
2790 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2791 return 0;
2792}
2793
2794static inline int f2fs_has_inline_data(struct inode *inode)
2795{
2796 return is_inode_flag_set(inode, FI_INLINE_DATA);
2797}
2798
2799static inline int f2fs_exist_data(struct inode *inode)
2800{
2801 return is_inode_flag_set(inode, FI_DATA_EXIST);
2802}
2803
2804static inline int f2fs_has_inline_dots(struct inode *inode)
2805{
2806 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2807}
2808
2809static inline int f2fs_is_mmap_file(struct inode *inode)
2810{
2811 return is_inode_flag_set(inode, FI_MMAP_FILE);
2812}
2813
2814static inline bool f2fs_is_pinned_file(struct inode *inode)
2815{
2816 return is_inode_flag_set(inode, FI_PIN_FILE);
2817}
2818
2819static inline bool f2fs_is_atomic_file(struct inode *inode)
2820{
2821 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2822}
2823
2824static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2825{
2826 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2827}
2828
2829static inline bool f2fs_is_volatile_file(struct inode *inode)
2830{
2831 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2832}
2833
2834static inline bool f2fs_is_first_block_written(struct inode *inode)
2835{
2836 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2837}
2838
2839static inline bool f2fs_is_drop_cache(struct inode *inode)
2840{
2841 return is_inode_flag_set(inode, FI_DROP_CACHE);
2842}
2843
2844static inline void *inline_data_addr(struct inode *inode, struct page *page)
2845{
2846 struct f2fs_inode *ri = F2FS_INODE(page);
2847 int extra_size = get_extra_isize(inode);
2848
2849 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2850}
2851
2852static inline int f2fs_has_inline_dentry(struct inode *inode)
2853{
2854 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2855}
2856
2857static inline int is_file(struct inode *inode, int type)
2858{
2859 return F2FS_I(inode)->i_advise & type;
2860}
2861
2862static inline void set_file(struct inode *inode, int type)
2863{
2864 F2FS_I(inode)->i_advise |= type;
2865 f2fs_mark_inode_dirty_sync(inode, true);
2866}
2867
2868static inline void clear_file(struct inode *inode, int type)
2869{
2870 F2FS_I(inode)->i_advise &= ~type;
2871 f2fs_mark_inode_dirty_sync(inode, true);
2872}
2873
2874static inline bool f2fs_is_time_consistent(struct inode *inode)
2875{
2876 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2877 return false;
2878 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2879 return false;
2880 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2881 return false;
2882 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2883 &F2FS_I(inode)->i_crtime))
2884 return false;
2885 return true;
2886}
2887
2888static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2889{
2890 bool ret;
2891
2892 if (dsync) {
2893 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2894
2895 spin_lock(&sbi->inode_lock[DIRTY_META]);
2896 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2897 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2898 return ret;
2899 }
2900 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2901 file_keep_isize(inode) ||
2902 i_size_read(inode) & ~PAGE_MASK)
2903 return false;
2904
2905 if (!f2fs_is_time_consistent(inode))
2906 return false;
2907
2908 spin_lock(&F2FS_I(inode)->i_size_lock);
2909 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2910 spin_unlock(&F2FS_I(inode)->i_size_lock);
2911
2912 return ret;
2913}
2914
2915static inline bool f2fs_readonly(struct super_block *sb)
2916{
2917 return sb_rdonly(sb);
2918}
2919
2920static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2921{
2922 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2923}
2924
2925static inline bool is_dot_dotdot(const u8 *name, size_t len)
2926{
2927 if (len == 1 && name[0] == '.')
2928 return true;
2929
2930 if (len == 2 && name[0] == '.' && name[1] == '.')
2931 return true;
2932
2933 return false;
2934}
2935
2936static inline bool f2fs_may_extent_tree(struct inode *inode)
2937{
2938 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2939
2940 if (!test_opt(sbi, EXTENT_CACHE) ||
2941 is_inode_flag_set(inode, FI_NO_EXTENT) ||
2942 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2943 return false;
2944
2945 /*
2946 * for recovered files during mount do not create extents
2947 * if shrinker is not registered.
2948 */
2949 if (list_empty(&sbi->s_list))
2950 return false;
2951
2952 return S_ISREG(inode->i_mode);
2953}
2954
2955static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2956 size_t size, gfp_t flags)
2957{
2958 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2959 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2960 return NULL;
2961 }
2962
2963 return kmalloc(size, flags);
2964}
2965
2966static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2967 size_t size, gfp_t flags)
2968{
2969 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2970}
2971
2972static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2973 size_t size, gfp_t flags)
2974{
2975 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2976 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2977 return NULL;
2978 }
2979
2980 return kvmalloc(size, flags);
2981}
2982
2983static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2984 size_t size, gfp_t flags)
2985{
2986 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2987}
2988
2989static inline int get_extra_isize(struct inode *inode)
2990{
2991 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2992}
2993
2994static inline int get_inline_xattr_addrs(struct inode *inode)
2995{
2996 return F2FS_I(inode)->i_inline_xattr_size;
2997}
2998
2999#define f2fs_get_inode_mode(i) \
3000 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3001 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3002
3003#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3004 (offsetof(struct f2fs_inode, i_extra_end) - \
3005 offsetof(struct f2fs_inode, i_extra_isize)) \
3006
3007#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3008#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3009 ((offsetof(typeof(*(f2fs_inode)), field) + \
3010 sizeof((f2fs_inode)->field)) \
3011 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3012
3013#define DEFAULT_IOSTAT_PERIOD_MS 3000
3014#define MIN_IOSTAT_PERIOD_MS 100
3015/* maximum period of iostat tracing is 1 day */
3016#define MAX_IOSTAT_PERIOD_MS 8640000
3017
3018static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3019{
3020 int i;
3021
3022 spin_lock(&sbi->iostat_lock);
3023 for (i = 0; i < NR_IO_TYPE; i++) {
3024 sbi->rw_iostat[i] = 0;
3025 sbi->prev_rw_iostat[i] = 0;
3026 }
3027 spin_unlock(&sbi->iostat_lock);
3028}
3029
3030extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3031
3032static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3033 enum iostat_type type, unsigned long long io_bytes)
3034{
3035 if (!sbi->iostat_enable)
3036 return;
3037 spin_lock(&sbi->iostat_lock);
3038 sbi->rw_iostat[type] += io_bytes;
3039
3040 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3041 sbi->rw_iostat[APP_BUFFERED_IO] =
3042 sbi->rw_iostat[APP_WRITE_IO] -
3043 sbi->rw_iostat[APP_DIRECT_IO];
3044
3045 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3046 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3047 sbi->rw_iostat[APP_READ_IO] -
3048 sbi->rw_iostat[APP_DIRECT_READ_IO];
3049 spin_unlock(&sbi->iostat_lock);
3050
3051 f2fs_record_iostat(sbi);
3052}
3053
3054#define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3055
3056#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3057
3058bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3059 block_t blkaddr, int type);
3060static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3061 block_t blkaddr, int type)
3062{
3063 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3064 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3065 blkaddr, type);
3066 f2fs_bug_on(sbi, 1);
3067 }
3068}
3069
3070static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3071{
3072 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3073 blkaddr == COMPRESS_ADDR)
3074 return false;
3075 return true;
3076}
3077
3078static inline void f2fs_set_page_private(struct page *page,
3079 unsigned long data)
3080{
3081 if (PagePrivate(page))
3082 return;
3083
3084 attach_page_private(page, (void *)data);
3085}
3086
3087static inline void f2fs_clear_page_private(struct page *page)
3088{
3089 detach_page_private(page);
3090}
3091
3092/*
3093 * file.c
3094 */
3095int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3096void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3097int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3098int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3099int f2fs_truncate(struct inode *inode);
3100int f2fs_getattr(const struct path *path, struct kstat *stat,
3101 u32 request_mask, unsigned int flags);
3102int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3103int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3104void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3105int f2fs_precache_extents(struct inode *inode);
3106long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3107long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3108int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3109int f2fs_pin_file_control(struct inode *inode, bool inc);
3110
3111/*
3112 * inode.c
3113 */
3114void f2fs_set_inode_flags(struct inode *inode);
3115bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3116void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3117struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3118struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3119int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3120void f2fs_update_inode(struct inode *inode, struct page *node_page);
3121void f2fs_update_inode_page(struct inode *inode);
3122int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3123void f2fs_evict_inode(struct inode *inode);
3124void f2fs_handle_failed_inode(struct inode *inode);
3125
3126/*
3127 * namei.c
3128 */
3129int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3130 bool hot, bool set);
3131struct dentry *f2fs_get_parent(struct dentry *child);
3132
3133/*
3134 * dir.c
3135 */
3136unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3137int f2fs_init_casefolded_name(const struct inode *dir,
3138 struct f2fs_filename *fname);
3139int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3140 int lookup, struct f2fs_filename *fname);
3141int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3142 struct f2fs_filename *fname);
3143void f2fs_free_filename(struct f2fs_filename *fname);
3144struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3145 const struct f2fs_filename *fname, int *max_slots);
3146int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3147 unsigned int start_pos, struct fscrypt_str *fstr);
3148void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3149 struct f2fs_dentry_ptr *d);
3150struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3151 const struct f2fs_filename *fname, struct page *dpage);
3152void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3153 unsigned int current_depth);
3154int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3155void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3156struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3157 const struct f2fs_filename *fname,
3158 struct page **res_page);
3159struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3160 const struct qstr *child, struct page **res_page);
3161struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3162ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3163 struct page **page);
3164void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3165 struct page *page, struct inode *inode);
3166bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3167 const struct f2fs_filename *fname);
3168void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3169 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3170 unsigned int bit_pos);
3171int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3172 struct inode *inode, nid_t ino, umode_t mode);
3173int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3174 struct inode *inode, nid_t ino, umode_t mode);
3175int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3176 struct inode *inode, nid_t ino, umode_t mode);
3177void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3178 struct inode *dir, struct inode *inode);
3179int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3180bool f2fs_empty_dir(struct inode *dir);
3181
3182static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3183{
3184 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3185 inode, inode->i_ino, inode->i_mode);
3186}
3187
3188/*
3189 * super.c
3190 */
3191int f2fs_inode_dirtied(struct inode *inode, bool sync);
3192void f2fs_inode_synced(struct inode *inode);
3193int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3194int f2fs_quota_sync(struct super_block *sb, int type);
3195void f2fs_quota_off_umount(struct super_block *sb);
3196int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3197int f2fs_sync_fs(struct super_block *sb, int sync);
3198int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3199
3200/*
3201 * hash.c
3202 */
3203void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3204
3205/*
3206 * node.c
3207 */
3208struct dnode_of_data;
3209struct node_info;
3210
3211int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3212bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3213bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3214void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3215void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3216void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3217int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3218bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3219bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3220int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3221 struct node_info *ni);
3222pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3223int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3224int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3225int f2fs_truncate_xattr_node(struct inode *inode);
3226int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3227 unsigned int seq_id);
3228int f2fs_remove_inode_page(struct inode *inode);
3229struct page *f2fs_new_inode_page(struct inode *inode);
3230struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3231void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3232struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3233struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3234int f2fs_move_node_page(struct page *node_page, int gc_type);
3235void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3236int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3237 struct writeback_control *wbc, bool atomic,
3238 unsigned int *seq_id);
3239int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3240 struct writeback_control *wbc,
3241 bool do_balance, enum iostat_type io_type);
3242int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3243bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3244void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3245void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3246int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3247int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3248int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3249int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3250int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3251 unsigned int segno, struct f2fs_summary_block *sum);
3252int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3253int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3254void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3255int __init f2fs_create_node_manager_caches(void);
3256void f2fs_destroy_node_manager_caches(void);
3257
3258/*
3259 * segment.c
3260 */
3261bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3262void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3263void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3264void f2fs_drop_inmem_pages(struct inode *inode);
3265void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3266int f2fs_commit_inmem_pages(struct inode *inode);
3267void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3268void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3269int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3270int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3271int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3272void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3273void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3274bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3275void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3276void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3277bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3278void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3279 struct cp_control *cpc);
3280void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3281block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3282int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3283void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3284int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3285void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3286void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3287void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3288void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3289 unsigned int *newseg, bool new_sec, int dir);
3290void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3291 unsigned int start, unsigned int end);
3292void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3293void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3294int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3295bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3296 struct cp_control *cpc);
3297struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3298void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3299 block_t blk_addr);
3300void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3301 enum iostat_type io_type);
3302void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3303void f2fs_outplace_write_data(struct dnode_of_data *dn,
3304 struct f2fs_io_info *fio);
3305int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3306void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3307 block_t old_blkaddr, block_t new_blkaddr,
3308 bool recover_curseg, bool recover_newaddr,
3309 bool from_gc);
3310void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3311 block_t old_addr, block_t new_addr,
3312 unsigned char version, bool recover_curseg,
3313 bool recover_newaddr);
3314void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3315 block_t old_blkaddr, block_t *new_blkaddr,
3316 struct f2fs_summary *sum, int type,
3317 struct f2fs_io_info *fio);
3318void f2fs_wait_on_page_writeback(struct page *page,
3319 enum page_type type, bool ordered, bool locked);
3320void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3321void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3322 block_t len);
3323void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3324void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3325int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3326 unsigned int val, int alloc);
3327void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3328int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3329int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3330int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3331void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3332int __init f2fs_create_segment_manager_caches(void);
3333void f2fs_destroy_segment_manager_caches(void);
3334int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3335enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3336 enum page_type type, enum temp_type temp);
3337unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3338 unsigned int segno);
3339unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3340 unsigned int segno);
3341
3342/*
3343 * checkpoint.c
3344 */
3345void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3346struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3347struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3348struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3349struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3350bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3351 block_t blkaddr, int type);
3352int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3353 int type, bool sync);
3354void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3355long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3356 long nr_to_write, enum iostat_type io_type);
3357void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3358void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3359void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3360bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3361void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3362 unsigned int devidx, int type);
3363bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3364 unsigned int devidx, int type);
3365int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3366int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3367void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3368void f2fs_add_orphan_inode(struct inode *inode);
3369void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3370int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3371int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3372void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3373void f2fs_remove_dirty_inode(struct inode *inode);
3374int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3375void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3376int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3377void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3378int __init f2fs_create_checkpoint_caches(void);
3379void f2fs_destroy_checkpoint_caches(void);
3380
3381/*
3382 * data.c
3383 */
3384int __init f2fs_init_bioset(void);
3385void f2fs_destroy_bioset(void);
3386struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3387int f2fs_init_bio_entry_cache(void);
3388void f2fs_destroy_bio_entry_cache(void);
3389void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3390 struct bio *bio, enum page_type type);
3391void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3392void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3393 struct inode *inode, struct page *page,
3394 nid_t ino, enum page_type type);
3395void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3396 struct bio **bio, struct page *page);
3397void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3398int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3399int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3400void f2fs_submit_page_write(struct f2fs_io_info *fio);
3401struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3402 block_t blk_addr, struct bio *bio);
3403int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3404void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3405void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3406int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3407int f2fs_reserve_new_block(struct dnode_of_data *dn);
3408int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3409int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3410int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3411struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3412 int op_flags, bool for_write);
3413struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3414struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3415 bool for_write);
3416struct page *f2fs_get_new_data_page(struct inode *inode,
3417 struct page *ipage, pgoff_t index, bool new_i_size);
3418int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3419void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3420int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3421 int create, int flag);
3422int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3423 u64 start, u64 len);
3424int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3425bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3426bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3427int f2fs_write_single_data_page(struct page *page, int *submitted,
3428 struct bio **bio, sector_t *last_block,
3429 struct writeback_control *wbc,
3430 enum iostat_type io_type,
3431 int compr_blocks);
3432void f2fs_invalidate_page(struct page *page, unsigned int offset,
3433 unsigned int length);
3434int f2fs_release_page(struct page *page, gfp_t wait);
3435#ifdef CONFIG_MIGRATION
3436int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3437 struct page *page, enum migrate_mode mode);
3438#endif
3439bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3440void f2fs_clear_page_cache_dirty_tag(struct page *page);
3441int f2fs_init_post_read_processing(void);
3442void f2fs_destroy_post_read_processing(void);
3443int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3444void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3445
3446/*
3447 * gc.c
3448 */
3449int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3450void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3451block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3452int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3453 unsigned int segno);
3454void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3455int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3456int __init f2fs_create_garbage_collection_cache(void);
3457void f2fs_destroy_garbage_collection_cache(void);
3458
3459/*
3460 * recovery.c
3461 */
3462int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3463bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3464
3465/*
3466 * debug.c
3467 */
3468#ifdef CONFIG_F2FS_STAT_FS
3469struct f2fs_stat_info {
3470 struct list_head stat_list;
3471 struct f2fs_sb_info *sbi;
3472 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3473 int main_area_segs, main_area_sections, main_area_zones;
3474 unsigned long long hit_largest, hit_cached, hit_rbtree;
3475 unsigned long long hit_total, total_ext;
3476 int ext_tree, zombie_tree, ext_node;
3477 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3478 int ndirty_data, ndirty_qdata;
3479 int inmem_pages;
3480 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3481 int nats, dirty_nats, sits, dirty_sits;
3482 int free_nids, avail_nids, alloc_nids;
3483 int total_count, utilization;
3484 int bg_gc, nr_wb_cp_data, nr_wb_data;
3485 int nr_rd_data, nr_rd_node, nr_rd_meta;
3486 int nr_dio_read, nr_dio_write;
3487 unsigned int io_skip_bggc, other_skip_bggc;
3488 int nr_flushing, nr_flushed, flush_list_empty;
3489 int nr_discarding, nr_discarded;
3490 int nr_discard_cmd;
3491 unsigned int undiscard_blks;
3492 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3493 int compr_inode;
3494 unsigned long long compr_blocks;
3495 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3496 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3497 unsigned int bimodal, avg_vblocks;
3498 int util_free, util_valid, util_invalid;
3499 int rsvd_segs, overp_segs;
3500 int dirty_count, node_pages, meta_pages;
3501 int prefree_count, call_count, cp_count, bg_cp_count;
3502 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3503 int bg_node_segs, bg_data_segs;
3504 int tot_blks, data_blks, node_blks;
3505 int bg_data_blks, bg_node_blks;
3506 unsigned long long skipped_atomic_files[2];
3507 int curseg[NR_CURSEG_TYPE];
3508 int cursec[NR_CURSEG_TYPE];
3509 int curzone[NR_CURSEG_TYPE];
3510 unsigned int dirty_seg[NR_CURSEG_TYPE];
3511 unsigned int full_seg[NR_CURSEG_TYPE];
3512 unsigned int valid_blks[NR_CURSEG_TYPE];
3513
3514 unsigned int meta_count[META_MAX];
3515 unsigned int segment_count[2];
3516 unsigned int block_count[2];
3517 unsigned int inplace_count;
3518 unsigned long long base_mem, cache_mem, page_mem;
3519};
3520
3521static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3522{
3523 return (struct f2fs_stat_info *)sbi->stat_info;
3524}
3525
3526#define stat_inc_cp_count(si) ((si)->cp_count++)
3527#define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3528#define stat_inc_call_count(si) ((si)->call_count++)
3529#define stat_inc_bggc_count(si) ((si)->bg_gc++)
3530#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3531#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3532#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3533#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3534#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3535#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3536#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3537#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3538#define stat_inc_inline_xattr(inode) \
3539 do { \
3540 if (f2fs_has_inline_xattr(inode)) \
3541 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3542 } while (0)
3543#define stat_dec_inline_xattr(inode) \
3544 do { \
3545 if (f2fs_has_inline_xattr(inode)) \
3546 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3547 } while (0)
3548#define stat_inc_inline_inode(inode) \
3549 do { \
3550 if (f2fs_has_inline_data(inode)) \
3551 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3552 } while (0)
3553#define stat_dec_inline_inode(inode) \
3554 do { \
3555 if (f2fs_has_inline_data(inode)) \
3556 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3557 } while (0)
3558#define stat_inc_inline_dir(inode) \
3559 do { \
3560 if (f2fs_has_inline_dentry(inode)) \
3561 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3562 } while (0)
3563#define stat_dec_inline_dir(inode) \
3564 do { \
3565 if (f2fs_has_inline_dentry(inode)) \
3566 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3567 } while (0)
3568#define stat_inc_compr_inode(inode) \
3569 do { \
3570 if (f2fs_compressed_file(inode)) \
3571 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3572 } while (0)
3573#define stat_dec_compr_inode(inode) \
3574 do { \
3575 if (f2fs_compressed_file(inode)) \
3576 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3577 } while (0)
3578#define stat_add_compr_blocks(inode, blocks) \
3579 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3580#define stat_sub_compr_blocks(inode, blocks) \
3581 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3582#define stat_inc_meta_count(sbi, blkaddr) \
3583 do { \
3584 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3585 atomic_inc(&(sbi)->meta_count[META_CP]); \
3586 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3587 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3588 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3589 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3590 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3591 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3592 } while (0)
3593#define stat_inc_seg_type(sbi, curseg) \
3594 ((sbi)->segment_count[(curseg)->alloc_type]++)
3595#define stat_inc_block_count(sbi, curseg) \
3596 ((sbi)->block_count[(curseg)->alloc_type]++)
3597#define stat_inc_inplace_blocks(sbi) \
3598 (atomic_inc(&(sbi)->inplace_count))
3599#define stat_update_max_atomic_write(inode) \
3600 do { \
3601 int cur = F2FS_I_SB(inode)->atomic_files; \
3602 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3603 if (cur > max) \
3604 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3605 } while (0)
3606#define stat_inc_volatile_write(inode) \
3607 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3608#define stat_dec_volatile_write(inode) \
3609 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3610#define stat_update_max_volatile_write(inode) \
3611 do { \
3612 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3613 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3614 if (cur > max) \
3615 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3616 } while (0)
3617#define stat_inc_seg_count(sbi, type, gc_type) \
3618 do { \
3619 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3620 si->tot_segs++; \
3621 if ((type) == SUM_TYPE_DATA) { \
3622 si->data_segs++; \
3623 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3624 } else { \
3625 si->node_segs++; \
3626 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3627 } \
3628 } while (0)
3629
3630#define stat_inc_tot_blk_count(si, blks) \
3631 ((si)->tot_blks += (blks))
3632
3633#define stat_inc_data_blk_count(sbi, blks, gc_type) \
3634 do { \
3635 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3636 stat_inc_tot_blk_count(si, blks); \
3637 si->data_blks += (blks); \
3638 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3639 } while (0)
3640
3641#define stat_inc_node_blk_count(sbi, blks, gc_type) \
3642 do { \
3643 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3644 stat_inc_tot_blk_count(si, blks); \
3645 si->node_blks += (blks); \
3646 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3647 } while (0)
3648
3649int f2fs_build_stats(struct f2fs_sb_info *sbi);
3650void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3651void __init f2fs_create_root_stats(void);
3652void f2fs_destroy_root_stats(void);
3653void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3654#else
3655#define stat_inc_cp_count(si) do { } while (0)
3656#define stat_inc_bg_cp_count(si) do { } while (0)
3657#define stat_inc_call_count(si) do { } while (0)
3658#define stat_inc_bggc_count(si) do { } while (0)
3659#define stat_io_skip_bggc_count(sbi) do { } while (0)
3660#define stat_other_skip_bggc_count(sbi) do { } while (0)
3661#define stat_inc_dirty_inode(sbi, type) do { } while (0)
3662#define stat_dec_dirty_inode(sbi, type) do { } while (0)
3663#define stat_inc_total_hit(sbi) do { } while (0)
3664#define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3665#define stat_inc_largest_node_hit(sbi) do { } while (0)
3666#define stat_inc_cached_node_hit(sbi) do { } while (0)
3667#define stat_inc_inline_xattr(inode) do { } while (0)
3668#define stat_dec_inline_xattr(inode) do { } while (0)
3669#define stat_inc_inline_inode(inode) do { } while (0)
3670#define stat_dec_inline_inode(inode) do { } while (0)
3671#define stat_inc_inline_dir(inode) do { } while (0)
3672#define stat_dec_inline_dir(inode) do { } while (0)
3673#define stat_inc_compr_inode(inode) do { } while (0)
3674#define stat_dec_compr_inode(inode) do { } while (0)
3675#define stat_add_compr_blocks(inode, blocks) do { } while (0)
3676#define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3677#define stat_inc_atomic_write(inode) do { } while (0)
3678#define stat_dec_atomic_write(inode) do { } while (0)
3679#define stat_update_max_atomic_write(inode) do { } while (0)
3680#define stat_inc_volatile_write(inode) do { } while (0)
3681#define stat_dec_volatile_write(inode) do { } while (0)
3682#define stat_update_max_volatile_write(inode) do { } while (0)
3683#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3684#define stat_inc_seg_type(sbi, curseg) do { } while (0)
3685#define stat_inc_block_count(sbi, curseg) do { } while (0)
3686#define stat_inc_inplace_blocks(sbi) do { } while (0)
3687#define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3688#define stat_inc_tot_blk_count(si, blks) do { } while (0)
3689#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3690#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3691
3692static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3693static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3694static inline void __init f2fs_create_root_stats(void) { }
3695static inline void f2fs_destroy_root_stats(void) { }
3696static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3697#endif
3698
3699extern const struct file_operations f2fs_dir_operations;
3700extern const struct file_operations f2fs_file_operations;
3701extern const struct inode_operations f2fs_file_inode_operations;
3702extern const struct address_space_operations f2fs_dblock_aops;
3703extern const struct address_space_operations f2fs_node_aops;
3704extern const struct address_space_operations f2fs_meta_aops;
3705extern const struct inode_operations f2fs_dir_inode_operations;
3706extern const struct inode_operations f2fs_symlink_inode_operations;
3707extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3708extern const struct inode_operations f2fs_special_inode_operations;
3709extern struct kmem_cache *f2fs_inode_entry_slab;
3710
3711/*
3712 * inline.c
3713 */
3714bool f2fs_may_inline_data(struct inode *inode);
3715bool f2fs_may_inline_dentry(struct inode *inode);
3716void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3717void f2fs_truncate_inline_inode(struct inode *inode,
3718 struct page *ipage, u64 from);
3719int f2fs_read_inline_data(struct inode *inode, struct page *page);
3720int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3721int f2fs_convert_inline_inode(struct inode *inode);
3722int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3723int f2fs_write_inline_data(struct inode *inode, struct page *page);
3724int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3725struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3726 const struct f2fs_filename *fname,
3727 struct page **res_page);
3728int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3729 struct page *ipage);
3730int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3731 struct inode *inode, nid_t ino, umode_t mode);
3732void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3733 struct page *page, struct inode *dir,
3734 struct inode *inode);
3735bool f2fs_empty_inline_dir(struct inode *dir);
3736int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3737 struct fscrypt_str *fstr);
3738int f2fs_inline_data_fiemap(struct inode *inode,
3739 struct fiemap_extent_info *fieinfo,
3740 __u64 start, __u64 len);
3741
3742/*
3743 * shrinker.c
3744 */
3745unsigned long f2fs_shrink_count(struct shrinker *shrink,
3746 struct shrink_control *sc);
3747unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3748 struct shrink_control *sc);
3749void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3750void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3751
3752/*
3753 * extent_cache.c
3754 */
3755struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3756 struct rb_entry *cached_re, unsigned int ofs);
3757struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3758 struct rb_root_cached *root,
3759 struct rb_node **parent,
3760 unsigned long long key, bool *left_most);
3761struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3762 struct rb_root_cached *root,
3763 struct rb_node **parent,
3764 unsigned int ofs, bool *leftmost);
3765struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3766 struct rb_entry *cached_re, unsigned int ofs,
3767 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3768 struct rb_node ***insert_p, struct rb_node **insert_parent,
3769 bool force, bool *leftmost);
3770bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3771 struct rb_root_cached *root, bool check_key);
3772unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3773void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3774void f2fs_drop_extent_tree(struct inode *inode);
3775unsigned int f2fs_destroy_extent_node(struct inode *inode);
3776void f2fs_destroy_extent_tree(struct inode *inode);
3777bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3778 struct extent_info *ei);
3779void f2fs_update_extent_cache(struct dnode_of_data *dn);
3780void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3781 pgoff_t fofs, block_t blkaddr, unsigned int len);
3782void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3783int __init f2fs_create_extent_cache(void);
3784void f2fs_destroy_extent_cache(void);
3785
3786/*
3787 * sysfs.c
3788 */
3789int __init f2fs_init_sysfs(void);
3790void f2fs_exit_sysfs(void);
3791int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3792void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3793
3794/* verity.c */
3795extern const struct fsverity_operations f2fs_verityops;
3796
3797/*
3798 * crypto support
3799 */
3800static inline bool f2fs_encrypted_file(struct inode *inode)
3801{
3802 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3803}
3804
3805static inline void f2fs_set_encrypted_inode(struct inode *inode)
3806{
3807#ifdef CONFIG_FS_ENCRYPTION
3808 file_set_encrypt(inode);
3809 f2fs_set_inode_flags(inode);
3810#endif
3811}
3812
3813/*
3814 * Returns true if the reads of the inode's data need to undergo some
3815 * postprocessing step, like decryption or authenticity verification.
3816 */
3817static inline bool f2fs_post_read_required(struct inode *inode)
3818{
3819 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3820 f2fs_compressed_file(inode);
3821}
3822
3823/*
3824 * compress.c
3825 */
3826#ifdef CONFIG_F2FS_FS_COMPRESSION
3827bool f2fs_is_compressed_page(struct page *page);
3828struct page *f2fs_compress_control_page(struct page *page);
3829int f2fs_prepare_compress_overwrite(struct inode *inode,
3830 struct page **pagep, pgoff_t index, void **fsdata);
3831bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3832 pgoff_t index, unsigned copied);
3833int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3834void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3835bool f2fs_is_compress_backend_ready(struct inode *inode);
3836int f2fs_init_compress_mempool(void);
3837void f2fs_destroy_compress_mempool(void);
3838void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3839bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3840bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3841void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3842int f2fs_write_multi_pages(struct compress_ctx *cc,
3843 int *submitted,
3844 struct writeback_control *wbc,
3845 enum iostat_type io_type);
3846int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3847int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3848 unsigned nr_pages, sector_t *last_block_in_bio,
3849 bool is_readahead, bool for_write);
3850struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3851void f2fs_free_dic(struct decompress_io_ctx *dic);
3852void f2fs_decompress_end_io(struct page **rpages,
3853 unsigned int cluster_size, bool err, bool verity);
3854int f2fs_init_compress_ctx(struct compress_ctx *cc);
3855void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3856void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3857int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3858void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3859int __init f2fs_init_compress_cache(void);
3860void f2fs_destroy_compress_cache(void);
3861#else
3862static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3863static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3864{
3865 if (!f2fs_compressed_file(inode))
3866 return true;
3867 /* not support compression */
3868 return false;
3869}
3870static inline struct page *f2fs_compress_control_page(struct page *page)
3871{
3872 WARN_ON_ONCE(1);
3873 return ERR_PTR(-EINVAL);
3874}
3875static inline int f2fs_init_compress_mempool(void) { return 0; }
3876static inline void f2fs_destroy_compress_mempool(void) { }
3877static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3878static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3879static inline int __init f2fs_init_compress_cache(void) { return 0; }
3880static inline void f2fs_destroy_compress_cache(void) { }
3881#endif
3882
3883static inline void set_compress_context(struct inode *inode)
3884{
3885 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3886
3887 F2FS_I(inode)->i_compress_algorithm =
3888 F2FS_OPTION(sbi).compress_algorithm;
3889 F2FS_I(inode)->i_log_cluster_size =
3890 F2FS_OPTION(sbi).compress_log_size;
3891 F2FS_I(inode)->i_cluster_size =
3892 1 << F2FS_I(inode)->i_log_cluster_size;
3893 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3894 set_inode_flag(inode, FI_COMPRESSED_FILE);
3895 stat_inc_compr_inode(inode);
3896 f2fs_mark_inode_dirty_sync(inode, true);
3897}
3898
3899static inline bool f2fs_disable_compressed_file(struct inode *inode)
3900{
3901 struct f2fs_inode_info *fi = F2FS_I(inode);
3902
3903 if (!f2fs_compressed_file(inode))
3904 return true;
3905 if (S_ISREG(inode->i_mode) &&
3906 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3907 return false;
3908
3909 fi->i_flags &= ~F2FS_COMPR_FL;
3910 stat_dec_compr_inode(inode);
3911 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3912 f2fs_mark_inode_dirty_sync(inode, true);
3913 return true;
3914}
3915
3916#define F2FS_FEATURE_FUNCS(name, flagname) \
3917static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3918{ \
3919 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3920}
3921
3922F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3923F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3924F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3925F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3926F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3927F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3928F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3929F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3930F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3931F2FS_FEATURE_FUNCS(verity, VERITY);
3932F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3933F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3934F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3935
3936#ifdef CONFIG_BLK_DEV_ZONED
3937static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3938 block_t blkaddr)
3939{
3940 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3941
3942 return test_bit(zno, FDEV(devi).blkz_seq);
3943}
3944#endif
3945
3946static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3947{
3948 return f2fs_sb_has_blkzoned(sbi);
3949}
3950
3951static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3952{
3953 return blk_queue_discard(bdev_get_queue(bdev)) ||
3954 bdev_is_zoned(bdev);
3955}
3956
3957static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3958{
3959 int i;
3960
3961 if (!f2fs_is_multi_device(sbi))
3962 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3963
3964 for (i = 0; i < sbi->s_ndevs; i++)
3965 if (f2fs_bdev_support_discard(FDEV(i).bdev))
3966 return true;
3967 return false;
3968}
3969
3970static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3971{
3972 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3973 f2fs_hw_should_discard(sbi);
3974}
3975
3976static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3977{
3978 int i;
3979
3980 if (!f2fs_is_multi_device(sbi))
3981 return bdev_read_only(sbi->sb->s_bdev);
3982
3983 for (i = 0; i < sbi->s_ndevs; i++)
3984 if (bdev_read_only(FDEV(i).bdev))
3985 return true;
3986 return false;
3987}
3988
3989static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
3990{
3991 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
3992}
3993
3994static inline bool f2fs_may_compress(struct inode *inode)
3995{
3996 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
3997 f2fs_is_atomic_file(inode) ||
3998 f2fs_is_volatile_file(inode))
3999 return false;
4000 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4001}
4002
4003static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4004 u64 blocks, bool add)
4005{
4006 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4007 struct f2fs_inode_info *fi = F2FS_I(inode);
4008
4009 /* don't update i_compr_blocks if saved blocks were released */
4010 if (!add && !atomic_read(&fi->i_compr_blocks))
4011 return;
4012
4013 if (add) {
4014 atomic_add(diff, &fi->i_compr_blocks);
4015 stat_add_compr_blocks(inode, diff);
4016 } else {
4017 atomic_sub(diff, &fi->i_compr_blocks);
4018 stat_sub_compr_blocks(inode, diff);
4019 }
4020 f2fs_mark_inode_dirty_sync(inode, true);
4021}
4022
4023static inline int block_unaligned_IO(struct inode *inode,
4024 struct kiocb *iocb, struct iov_iter *iter)
4025{
4026 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4027 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4028 loff_t offset = iocb->ki_pos;
4029 unsigned long align = offset | iov_iter_alignment(iter);
4030
4031 return align & blocksize_mask;
4032}
4033
4034static inline int allow_outplace_dio(struct inode *inode,
4035 struct kiocb *iocb, struct iov_iter *iter)
4036{
4037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4038 int rw = iov_iter_rw(iter);
4039
4040 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4041 !block_unaligned_IO(inode, iocb, iter));
4042}
4043
4044static inline bool f2fs_force_buffered_io(struct inode *inode,
4045 struct kiocb *iocb, struct iov_iter *iter)
4046{
4047 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4048 int rw = iov_iter_rw(iter);
4049
4050 if (f2fs_post_read_required(inode))
4051 return true;
4052 if (f2fs_is_multi_device(sbi))
4053 return true;
4054 /*
4055 * for blkzoned device, fallback direct IO to buffered IO, so
4056 * all IOs can be serialized by log-structured write.
4057 */
4058 if (f2fs_sb_has_blkzoned(sbi))
4059 return true;
4060 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4061 if (block_unaligned_IO(inode, iocb, iter))
4062 return true;
4063 if (F2FS_IO_ALIGNED(sbi))
4064 return true;
4065 }
4066 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4067 !IS_SWAPFILE(inode))
4068 return true;
4069
4070 return false;
4071}
4072
4073#ifdef CONFIG_F2FS_FAULT_INJECTION
4074extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4075 unsigned int type);
4076#else
4077#define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4078#endif
4079
4080static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4081{
4082#ifdef CONFIG_QUOTA
4083 if (f2fs_sb_has_quota_ino(sbi))
4084 return true;
4085 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4086 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4087 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4088 return true;
4089#endif
4090 return false;
4091}
4092
4093#define EFSBADCRC EBADMSG /* Bad CRC detected */
4094#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4095
4096#endif /* _LINUX_F2FS_H */