]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/f2fs/f2fs.h
f2fs: compress: Allow modular (de)compression algorithms
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/buffer_head.h>
15#include <linux/slab.h>
16#include <linux/crc32.h>
17#include <linux/magic.h>
18#include <linux/kobject.h>
19#include <linux/sched.h>
20#include <linux/cred.h>
21#include <linux/vmalloc.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/quotaops.h>
25#include <linux/part_stat.h>
26#include <crypto/hash.h>
27
28#include <linux/fscrypt.h>
29#include <linux/fsverity.h>
30
31#ifdef CONFIG_F2FS_CHECK_FS
32#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33#else
34#define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (WARN_ON(condition)) \
37 set_sbi_flag(sbi, SBI_NEED_FSCK); \
38 } while (0)
39#endif
40
41enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_NID,
47 FAULT_ORPHAN,
48 FAULT_BLOCK,
49 FAULT_DIR_DEPTH,
50 FAULT_EVICT_INODE,
51 FAULT_TRUNCATE,
52 FAULT_READ_IO,
53 FAULT_CHECKPOINT,
54 FAULT_DISCARD,
55 FAULT_WRITE_IO,
56 FAULT_MAX,
57};
58
59#ifdef CONFIG_F2FS_FAULT_INJECTION
60#define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
61
62struct f2fs_fault_info {
63 atomic_t inject_ops;
64 unsigned int inject_rate;
65 unsigned int inject_type;
66};
67
68extern const char *f2fs_fault_name[FAULT_MAX];
69#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70#endif
71
72/*
73 * For mount options
74 */
75#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
76#define F2FS_MOUNT_DISCARD 0x00000004
77#define F2FS_MOUNT_NOHEAP 0x00000008
78#define F2FS_MOUNT_XATTR_USER 0x00000010
79#define F2FS_MOUNT_POSIX_ACL 0x00000020
80#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
81#define F2FS_MOUNT_INLINE_XATTR 0x00000080
82#define F2FS_MOUNT_INLINE_DATA 0x00000100
83#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
84#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
85#define F2FS_MOUNT_NOBARRIER 0x00000800
86#define F2FS_MOUNT_FASTBOOT 0x00001000
87#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
88#define F2FS_MOUNT_DATA_FLUSH 0x00008000
89#define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90#define F2FS_MOUNT_USRQUOTA 0x00080000
91#define F2FS_MOUNT_GRPQUOTA 0x00100000
92#define F2FS_MOUNT_PRJQUOTA 0x00200000
93#define F2FS_MOUNT_QUOTA 0x00400000
94#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
95#define F2FS_MOUNT_RESERVE_ROOT 0x01000000
96#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
97#define F2FS_MOUNT_NORECOVERY 0x04000000
98#define F2FS_MOUNT_ATGC 0x08000000
99#define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000
100
101#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
102#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105
106#define ver_after(a, b) (typecheck(unsigned long long, a) && \
107 typecheck(unsigned long long, b) && \
108 ((long long)((a) - (b)) > 0))
109
110typedef u32 block_t; /*
111 * should not change u32, since it is the on-disk block
112 * address format, __le32.
113 */
114typedef u32 nid_t;
115
116#define COMPRESS_EXT_NUM 16
117
118struct f2fs_mount_info {
119 unsigned int opt;
120 int write_io_size_bits; /* Write IO size bits */
121 block_t root_reserved_blocks; /* root reserved blocks */
122 kuid_t s_resuid; /* reserved blocks for uid */
123 kgid_t s_resgid; /* reserved blocks for gid */
124 int active_logs; /* # of active logs */
125 int inline_xattr_size; /* inline xattr size */
126#ifdef CONFIG_F2FS_FAULT_INJECTION
127 struct f2fs_fault_info fault_info; /* For fault injection */
128#endif
129#ifdef CONFIG_QUOTA
130 /* Names of quota files with journalled quota */
131 char *s_qf_names[MAXQUOTAS];
132 int s_jquota_fmt; /* Format of quota to use */
133#endif
134 /* For which write hints are passed down to block layer */
135 int whint_mode;
136 int alloc_mode; /* segment allocation policy */
137 int fsync_mode; /* fsync policy */
138 int fs_mode; /* fs mode: LFS or ADAPTIVE */
139 int bggc_mode; /* bggc mode: off, on or sync */
140 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 block_t unusable_cap_perc; /* percentage for cap */
142 block_t unusable_cap; /* Amount of space allowed to be
143 * unusable when disabling checkpoint
144 */
145
146 /* For compression */
147 unsigned char compress_algorithm; /* algorithm type */
148 unsigned char compress_log_size; /* cluster log size */
149 unsigned char compress_level; /* compress level */
150 bool compress_chksum; /* compressed data chksum */
151 unsigned char compress_ext_cnt; /* extension count */
152 int compress_mode; /* compression mode */
153 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
154};
155
156#define F2FS_FEATURE_ENCRYPT 0x0001
157#define F2FS_FEATURE_BLKZONED 0x0002
158#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
159#define F2FS_FEATURE_EXTRA_ATTR 0x0008
160#define F2FS_FEATURE_PRJQUOTA 0x0010
161#define F2FS_FEATURE_INODE_CHKSUM 0x0020
162#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
163#define F2FS_FEATURE_QUOTA_INO 0x0080
164#define F2FS_FEATURE_INODE_CRTIME 0x0100
165#define F2FS_FEATURE_LOST_FOUND 0x0200
166#define F2FS_FEATURE_VERITY 0x0400
167#define F2FS_FEATURE_SB_CHKSUM 0x0800
168#define F2FS_FEATURE_CASEFOLD 0x1000
169#define F2FS_FEATURE_COMPRESSION 0x2000
170
171#define __F2FS_HAS_FEATURE(raw_super, mask) \
172 ((raw_super->feature & cpu_to_le32(mask)) != 0)
173#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
174#define F2FS_SET_FEATURE(sbi, mask) \
175 (sbi->raw_super->feature |= cpu_to_le32(mask))
176#define F2FS_CLEAR_FEATURE(sbi, mask) \
177 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
178
179/*
180 * Default values for user and/or group using reserved blocks
181 */
182#define F2FS_DEF_RESUID 0
183#define F2FS_DEF_RESGID 0
184
185/*
186 * For checkpoint manager
187 */
188enum {
189 NAT_BITMAP,
190 SIT_BITMAP
191};
192
193#define CP_UMOUNT 0x00000001
194#define CP_FASTBOOT 0x00000002
195#define CP_SYNC 0x00000004
196#define CP_RECOVERY 0x00000008
197#define CP_DISCARD 0x00000010
198#define CP_TRIMMED 0x00000020
199#define CP_PAUSE 0x00000040
200#define CP_RESIZE 0x00000080
201
202#define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
203#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
204#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
205#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
206#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
207#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
208#define DEF_CP_INTERVAL 60 /* 60 secs */
209#define DEF_IDLE_INTERVAL 5 /* 5 secs */
210#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
211#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
212#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
213
214struct cp_control {
215 int reason;
216 __u64 trim_start;
217 __u64 trim_end;
218 __u64 trim_minlen;
219};
220
221/*
222 * indicate meta/data type
223 */
224enum {
225 META_CP,
226 META_NAT,
227 META_SIT,
228 META_SSA,
229 META_MAX,
230 META_POR,
231 DATA_GENERIC, /* check range only */
232 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
233 DATA_GENERIC_ENHANCE_READ, /*
234 * strong check on range and segment
235 * bitmap but no warning due to race
236 * condition of read on truncated area
237 * by extent_cache
238 */
239 META_GENERIC,
240};
241
242/* for the list of ino */
243enum {
244 ORPHAN_INO, /* for orphan ino list */
245 APPEND_INO, /* for append ino list */
246 UPDATE_INO, /* for update ino list */
247 TRANS_DIR_INO, /* for trasactions dir ino list */
248 FLUSH_INO, /* for multiple device flushing */
249 MAX_INO_ENTRY, /* max. list */
250};
251
252struct ino_entry {
253 struct list_head list; /* list head */
254 nid_t ino; /* inode number */
255 unsigned int dirty_device; /* dirty device bitmap */
256};
257
258/* for the list of inodes to be GCed */
259struct inode_entry {
260 struct list_head list; /* list head */
261 struct inode *inode; /* vfs inode pointer */
262};
263
264struct fsync_node_entry {
265 struct list_head list; /* list head */
266 struct page *page; /* warm node page pointer */
267 unsigned int seq_id; /* sequence id */
268};
269
270struct ckpt_req {
271 struct completion wait; /* completion for checkpoint done */
272 struct llist_node llnode; /* llist_node to be linked in wait queue */
273 int ret; /* return code of checkpoint */
274 ktime_t queue_time; /* request queued time */
275};
276
277struct ckpt_req_control {
278 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
279 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
280 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
281 atomic_t issued_ckpt; /* # of actually issued ckpts */
282 atomic_t total_ckpt; /* # of total ckpts */
283 atomic_t queued_ckpt; /* # of queued ckpts */
284 struct llist_head issue_list; /* list for command issue */
285 spinlock_t stat_lock; /* lock for below checkpoint time stats */
286 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
287 unsigned int peak_time; /* peak wait time in msec until now */
288};
289
290/* for the bitmap indicate blocks to be discarded */
291struct discard_entry {
292 struct list_head list; /* list head */
293 block_t start_blkaddr; /* start blockaddr of current segment */
294 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
295};
296
297/* default discard granularity of inner discard thread, unit: block count */
298#define DEFAULT_DISCARD_GRANULARITY 16
299
300/* max discard pend list number */
301#define MAX_PLIST_NUM 512
302#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
303 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
304
305enum {
306 D_PREP, /* initial */
307 D_PARTIAL, /* partially submitted */
308 D_SUBMIT, /* all submitted */
309 D_DONE, /* finished */
310};
311
312struct discard_info {
313 block_t lstart; /* logical start address */
314 block_t len; /* length */
315 block_t start; /* actual start address in dev */
316};
317
318struct discard_cmd {
319 struct rb_node rb_node; /* rb node located in rb-tree */
320 union {
321 struct {
322 block_t lstart; /* logical start address */
323 block_t len; /* length */
324 block_t start; /* actual start address in dev */
325 };
326 struct discard_info di; /* discard info */
327
328 };
329 struct list_head list; /* command list */
330 struct completion wait; /* compleation */
331 struct block_device *bdev; /* bdev */
332 unsigned short ref; /* reference count */
333 unsigned char state; /* state */
334 unsigned char queued; /* queued discard */
335 int error; /* bio error */
336 spinlock_t lock; /* for state/bio_ref updating */
337 unsigned short bio_ref; /* bio reference count */
338};
339
340enum {
341 DPOLICY_BG,
342 DPOLICY_FORCE,
343 DPOLICY_FSTRIM,
344 DPOLICY_UMOUNT,
345 MAX_DPOLICY,
346};
347
348struct discard_policy {
349 int type; /* type of discard */
350 unsigned int min_interval; /* used for candidates exist */
351 unsigned int mid_interval; /* used for device busy */
352 unsigned int max_interval; /* used for candidates not exist */
353 unsigned int max_requests; /* # of discards issued per round */
354 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
355 bool io_aware; /* issue discard in idle time */
356 bool sync; /* submit discard with REQ_SYNC flag */
357 bool ordered; /* issue discard by lba order */
358 bool timeout; /* discard timeout for put_super */
359 unsigned int granularity; /* discard granularity */
360};
361
362struct discard_cmd_control {
363 struct task_struct *f2fs_issue_discard; /* discard thread */
364 struct list_head entry_list; /* 4KB discard entry list */
365 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
366 struct list_head wait_list; /* store on-flushing entries */
367 struct list_head fstrim_list; /* in-flight discard from fstrim */
368 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
369 unsigned int discard_wake; /* to wake up discard thread */
370 struct mutex cmd_lock;
371 unsigned int nr_discards; /* # of discards in the list */
372 unsigned int max_discards; /* max. discards to be issued */
373 unsigned int discard_granularity; /* discard granularity */
374 unsigned int undiscard_blks; /* # of undiscard blocks */
375 unsigned int next_pos; /* next discard position */
376 atomic_t issued_discard; /* # of issued discard */
377 atomic_t queued_discard; /* # of queued discard */
378 atomic_t discard_cmd_cnt; /* # of cached cmd count */
379 struct rb_root_cached root; /* root of discard rb-tree */
380 bool rbtree_check; /* config for consistence check */
381};
382
383/* for the list of fsync inodes, used only during recovery */
384struct fsync_inode_entry {
385 struct list_head list; /* list head */
386 struct inode *inode; /* vfs inode pointer */
387 block_t blkaddr; /* block address locating the last fsync */
388 block_t last_dentry; /* block address locating the last dentry */
389};
390
391#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
392#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
393
394#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
395#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
396#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
397#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
398
399#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
400#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
401
402static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
403{
404 int before = nats_in_cursum(journal);
405
406 journal->n_nats = cpu_to_le16(before + i);
407 return before;
408}
409
410static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
411{
412 int before = sits_in_cursum(journal);
413
414 journal->n_sits = cpu_to_le16(before + i);
415 return before;
416}
417
418static inline bool __has_cursum_space(struct f2fs_journal *journal,
419 int size, int type)
420{
421 if (type == NAT_JOURNAL)
422 return size <= MAX_NAT_JENTRIES(journal);
423 return size <= MAX_SIT_JENTRIES(journal);
424}
425
426/* for inline stuff */
427#define DEF_INLINE_RESERVED_SIZE 1
428static inline int get_extra_isize(struct inode *inode);
429static inline int get_inline_xattr_addrs(struct inode *inode);
430#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
431 (CUR_ADDRS_PER_INODE(inode) - \
432 get_inline_xattr_addrs(inode) - \
433 DEF_INLINE_RESERVED_SIZE))
434
435/* for inline dir */
436#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
437 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
438 BITS_PER_BYTE + 1))
439#define INLINE_DENTRY_BITMAP_SIZE(inode) \
440 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
441#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
442 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
443 NR_INLINE_DENTRY(inode) + \
444 INLINE_DENTRY_BITMAP_SIZE(inode)))
445
446/*
447 * For INODE and NODE manager
448 */
449/* for directory operations */
450
451struct f2fs_filename {
452 /*
453 * The filename the user specified. This is NULL for some
454 * filesystem-internal operations, e.g. converting an inline directory
455 * to a non-inline one, or roll-forward recovering an encrypted dentry.
456 */
457 const struct qstr *usr_fname;
458
459 /*
460 * The on-disk filename. For encrypted directories, this is encrypted.
461 * This may be NULL for lookups in an encrypted dir without the key.
462 */
463 struct fscrypt_str disk_name;
464
465 /* The dirhash of this filename */
466 f2fs_hash_t hash;
467
468#ifdef CONFIG_FS_ENCRYPTION
469 /*
470 * For lookups in encrypted directories: either the buffer backing
471 * disk_name, or a buffer that holds the decoded no-key name.
472 */
473 struct fscrypt_str crypto_buf;
474#endif
475#ifdef CONFIG_UNICODE
476 /*
477 * For casefolded directories: the casefolded name, but it's left NULL
478 * if the original name is not valid Unicode, if the directory is both
479 * casefolded and encrypted and its encryption key is unavailable, or if
480 * the filesystem is doing an internal operation where usr_fname is also
481 * NULL. In all these cases we fall back to treating the name as an
482 * opaque byte sequence.
483 */
484 struct fscrypt_str cf_name;
485#endif
486};
487
488struct f2fs_dentry_ptr {
489 struct inode *inode;
490 void *bitmap;
491 struct f2fs_dir_entry *dentry;
492 __u8 (*filename)[F2FS_SLOT_LEN];
493 int max;
494 int nr_bitmap;
495};
496
497static inline void make_dentry_ptr_block(struct inode *inode,
498 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
499{
500 d->inode = inode;
501 d->max = NR_DENTRY_IN_BLOCK;
502 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
503 d->bitmap = t->dentry_bitmap;
504 d->dentry = t->dentry;
505 d->filename = t->filename;
506}
507
508static inline void make_dentry_ptr_inline(struct inode *inode,
509 struct f2fs_dentry_ptr *d, void *t)
510{
511 int entry_cnt = NR_INLINE_DENTRY(inode);
512 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
513 int reserved_size = INLINE_RESERVED_SIZE(inode);
514
515 d->inode = inode;
516 d->max = entry_cnt;
517 d->nr_bitmap = bitmap_size;
518 d->bitmap = t;
519 d->dentry = t + bitmap_size + reserved_size;
520 d->filename = t + bitmap_size + reserved_size +
521 SIZE_OF_DIR_ENTRY * entry_cnt;
522}
523
524/*
525 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
526 * as its node offset to distinguish from index node blocks.
527 * But some bits are used to mark the node block.
528 */
529#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
530 >> OFFSET_BIT_SHIFT)
531enum {
532 ALLOC_NODE, /* allocate a new node page if needed */
533 LOOKUP_NODE, /* look up a node without readahead */
534 LOOKUP_NODE_RA, /*
535 * look up a node with readahead called
536 * by get_data_block.
537 */
538};
539
540#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
541
542/* congestion wait timeout value, default: 20ms */
543#define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
544
545/* maximum retry quota flush count */
546#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
547
548#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
549
550#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
551
552/* for in-memory extent cache entry */
553#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
554
555/* number of extent info in extent cache we try to shrink */
556#define EXTENT_CACHE_SHRINK_NUMBER 128
557
558struct rb_entry {
559 struct rb_node rb_node; /* rb node located in rb-tree */
560 union {
561 struct {
562 unsigned int ofs; /* start offset of the entry */
563 unsigned int len; /* length of the entry */
564 };
565 unsigned long long key; /* 64-bits key */
566 } __packed;
567};
568
569struct extent_info {
570 unsigned int fofs; /* start offset in a file */
571 unsigned int len; /* length of the extent */
572 u32 blk; /* start block address of the extent */
573};
574
575struct extent_node {
576 struct rb_node rb_node; /* rb node located in rb-tree */
577 struct extent_info ei; /* extent info */
578 struct list_head list; /* node in global extent list of sbi */
579 struct extent_tree *et; /* extent tree pointer */
580};
581
582struct extent_tree {
583 nid_t ino; /* inode number */
584 struct rb_root_cached root; /* root of extent info rb-tree */
585 struct extent_node *cached_en; /* recently accessed extent node */
586 struct extent_info largest; /* largested extent info */
587 struct list_head list; /* to be used by sbi->zombie_list */
588 rwlock_t lock; /* protect extent info rb-tree */
589 atomic_t node_cnt; /* # of extent node in rb-tree*/
590 bool largest_updated; /* largest extent updated */
591};
592
593/*
594 * This structure is taken from ext4_map_blocks.
595 *
596 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
597 */
598#define F2FS_MAP_NEW (1 << BH_New)
599#define F2FS_MAP_MAPPED (1 << BH_Mapped)
600#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
601#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
602 F2FS_MAP_UNWRITTEN)
603
604struct f2fs_map_blocks {
605 block_t m_pblk;
606 block_t m_lblk;
607 unsigned int m_len;
608 unsigned int m_flags;
609 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
610 pgoff_t *m_next_extent; /* point to next possible extent */
611 int m_seg_type;
612 bool m_may_create; /* indicate it is from write path */
613};
614
615/* for flag in get_data_block */
616enum {
617 F2FS_GET_BLOCK_DEFAULT,
618 F2FS_GET_BLOCK_FIEMAP,
619 F2FS_GET_BLOCK_BMAP,
620 F2FS_GET_BLOCK_DIO,
621 F2FS_GET_BLOCK_PRE_DIO,
622 F2FS_GET_BLOCK_PRE_AIO,
623 F2FS_GET_BLOCK_PRECACHE,
624};
625
626/*
627 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
628 */
629#define FADVISE_COLD_BIT 0x01
630#define FADVISE_LOST_PINO_BIT 0x02
631#define FADVISE_ENCRYPT_BIT 0x04
632#define FADVISE_ENC_NAME_BIT 0x08
633#define FADVISE_KEEP_SIZE_BIT 0x10
634#define FADVISE_HOT_BIT 0x20
635#define FADVISE_VERITY_BIT 0x40
636
637#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
638
639#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
640#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
641#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
642#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
643#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
644#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
645#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
646#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
647#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
648#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
649#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
650#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
651#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
652#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
653#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
654#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
655#define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
656#define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
657
658#define DEF_DIR_LEVEL 0
659
660enum {
661 GC_FAILURE_PIN,
662 GC_FAILURE_ATOMIC,
663 MAX_GC_FAILURE
664};
665
666/* used for f2fs_inode_info->flags */
667enum {
668 FI_NEW_INODE, /* indicate newly allocated inode */
669 FI_DIRTY_INODE, /* indicate inode is dirty or not */
670 FI_AUTO_RECOVER, /* indicate inode is recoverable */
671 FI_DIRTY_DIR, /* indicate directory has dirty pages */
672 FI_INC_LINK, /* need to increment i_nlink */
673 FI_ACL_MODE, /* indicate acl mode */
674 FI_NO_ALLOC, /* should not allocate any blocks */
675 FI_FREE_NID, /* free allocated nide */
676 FI_NO_EXTENT, /* not to use the extent cache */
677 FI_INLINE_XATTR, /* used for inline xattr */
678 FI_INLINE_DATA, /* used for inline data*/
679 FI_INLINE_DENTRY, /* used for inline dentry */
680 FI_APPEND_WRITE, /* inode has appended data */
681 FI_UPDATE_WRITE, /* inode has in-place-update data */
682 FI_NEED_IPU, /* used for ipu per file */
683 FI_ATOMIC_FILE, /* indicate atomic file */
684 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
685 FI_VOLATILE_FILE, /* indicate volatile file */
686 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
687 FI_DROP_CACHE, /* drop dirty page cache */
688 FI_DATA_EXIST, /* indicate data exists */
689 FI_INLINE_DOTS, /* indicate inline dot dentries */
690 FI_DO_DEFRAG, /* indicate defragment is running */
691 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
692 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
693 FI_HOT_DATA, /* indicate file is hot */
694 FI_EXTRA_ATTR, /* indicate file has extra attribute */
695 FI_PROJ_INHERIT, /* indicate file inherits projectid */
696 FI_PIN_FILE, /* indicate file should not be gced */
697 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
698 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
699 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
700 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
701 FI_MMAP_FILE, /* indicate file was mmapped */
702 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
703 FI_MAX, /* max flag, never be used */
704};
705
706struct f2fs_inode_info {
707 struct inode vfs_inode; /* serve a vfs inode */
708 unsigned long i_flags; /* keep an inode flags for ioctl */
709 unsigned char i_advise; /* use to give file attribute hints */
710 unsigned char i_dir_level; /* use for dentry level for large dir */
711 unsigned int i_current_depth; /* only for directory depth */
712 /* for gc failure statistic */
713 unsigned int i_gc_failures[MAX_GC_FAILURE];
714 unsigned int i_pino; /* parent inode number */
715 umode_t i_acl_mode; /* keep file acl mode temporarily */
716
717 /* Use below internally in f2fs*/
718 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
719 struct rw_semaphore i_sem; /* protect fi info */
720 atomic_t dirty_pages; /* # of dirty pages */
721 f2fs_hash_t chash; /* hash value of given file name */
722 unsigned int clevel; /* maximum level of given file name */
723 struct task_struct *task; /* lookup and create consistency */
724 struct task_struct *cp_task; /* separate cp/wb IO stats*/
725 nid_t i_xattr_nid; /* node id that contains xattrs */
726 loff_t last_disk_size; /* lastly written file size */
727 spinlock_t i_size_lock; /* protect last_disk_size */
728
729#ifdef CONFIG_QUOTA
730 struct dquot *i_dquot[MAXQUOTAS];
731
732 /* quota space reservation, managed internally by quota code */
733 qsize_t i_reserved_quota;
734#endif
735 struct list_head dirty_list; /* dirty list for dirs and files */
736 struct list_head gdirty_list; /* linked in global dirty list */
737 struct list_head inmem_ilist; /* list for inmem inodes */
738 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
739 struct task_struct *inmem_task; /* store inmemory task */
740 struct mutex inmem_lock; /* lock for inmemory pages */
741 struct extent_tree *extent_tree; /* cached extent_tree entry */
742
743 /* avoid racing between foreground op and gc */
744 struct rw_semaphore i_gc_rwsem[2];
745 struct rw_semaphore i_mmap_sem;
746 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
747
748 int i_extra_isize; /* size of extra space located in i_addr */
749 kprojid_t i_projid; /* id for project quota */
750 int i_inline_xattr_size; /* inline xattr size */
751 struct timespec64 i_crtime; /* inode creation time */
752 struct timespec64 i_disk_time[4];/* inode disk times */
753
754 /* for file compress */
755 atomic_t i_compr_blocks; /* # of compressed blocks */
756 unsigned char i_compress_algorithm; /* algorithm type */
757 unsigned char i_log_cluster_size; /* log of cluster size */
758 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
759 unsigned short i_compress_flag; /* compress flag */
760 unsigned int i_cluster_size; /* cluster size */
761};
762
763static inline void get_extent_info(struct extent_info *ext,
764 struct f2fs_extent *i_ext)
765{
766 ext->fofs = le32_to_cpu(i_ext->fofs);
767 ext->blk = le32_to_cpu(i_ext->blk);
768 ext->len = le32_to_cpu(i_ext->len);
769}
770
771static inline void set_raw_extent(struct extent_info *ext,
772 struct f2fs_extent *i_ext)
773{
774 i_ext->fofs = cpu_to_le32(ext->fofs);
775 i_ext->blk = cpu_to_le32(ext->blk);
776 i_ext->len = cpu_to_le32(ext->len);
777}
778
779static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
780 u32 blk, unsigned int len)
781{
782 ei->fofs = fofs;
783 ei->blk = blk;
784 ei->len = len;
785}
786
787static inline bool __is_discard_mergeable(struct discard_info *back,
788 struct discard_info *front, unsigned int max_len)
789{
790 return (back->lstart + back->len == front->lstart) &&
791 (back->len + front->len <= max_len);
792}
793
794static inline bool __is_discard_back_mergeable(struct discard_info *cur,
795 struct discard_info *back, unsigned int max_len)
796{
797 return __is_discard_mergeable(back, cur, max_len);
798}
799
800static inline bool __is_discard_front_mergeable(struct discard_info *cur,
801 struct discard_info *front, unsigned int max_len)
802{
803 return __is_discard_mergeable(cur, front, max_len);
804}
805
806static inline bool __is_extent_mergeable(struct extent_info *back,
807 struct extent_info *front)
808{
809 return (back->fofs + back->len == front->fofs &&
810 back->blk + back->len == front->blk);
811}
812
813static inline bool __is_back_mergeable(struct extent_info *cur,
814 struct extent_info *back)
815{
816 return __is_extent_mergeable(back, cur);
817}
818
819static inline bool __is_front_mergeable(struct extent_info *cur,
820 struct extent_info *front)
821{
822 return __is_extent_mergeable(cur, front);
823}
824
825extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
826static inline void __try_update_largest_extent(struct extent_tree *et,
827 struct extent_node *en)
828{
829 if (en->ei.len > et->largest.len) {
830 et->largest = en->ei;
831 et->largest_updated = true;
832 }
833}
834
835/*
836 * For free nid management
837 */
838enum nid_state {
839 FREE_NID, /* newly added to free nid list */
840 PREALLOC_NID, /* it is preallocated */
841 MAX_NID_STATE,
842};
843
844enum nat_state {
845 TOTAL_NAT,
846 DIRTY_NAT,
847 RECLAIMABLE_NAT,
848 MAX_NAT_STATE,
849};
850
851struct f2fs_nm_info {
852 block_t nat_blkaddr; /* base disk address of NAT */
853 nid_t max_nid; /* maximum possible node ids */
854 nid_t available_nids; /* # of available node ids */
855 nid_t next_scan_nid; /* the next nid to be scanned */
856 unsigned int ram_thresh; /* control the memory footprint */
857 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
858 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
859
860 /* NAT cache management */
861 struct radix_tree_root nat_root;/* root of the nat entry cache */
862 struct radix_tree_root nat_set_root;/* root of the nat set cache */
863 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
864 struct list_head nat_entries; /* cached nat entry list (clean) */
865 spinlock_t nat_list_lock; /* protect clean nat entry list */
866 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
867 unsigned int nat_blocks; /* # of nat blocks */
868
869 /* free node ids management */
870 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
871 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
872 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
873 spinlock_t nid_list_lock; /* protect nid lists ops */
874 struct mutex build_lock; /* lock for build free nids */
875 unsigned char **free_nid_bitmap;
876 unsigned char *nat_block_bitmap;
877 unsigned short *free_nid_count; /* free nid count of NAT block */
878
879 /* for checkpoint */
880 char *nat_bitmap; /* NAT bitmap pointer */
881
882 unsigned int nat_bits_blocks; /* # of nat bits blocks */
883 unsigned char *nat_bits; /* NAT bits blocks */
884 unsigned char *full_nat_bits; /* full NAT pages */
885 unsigned char *empty_nat_bits; /* empty NAT pages */
886#ifdef CONFIG_F2FS_CHECK_FS
887 char *nat_bitmap_mir; /* NAT bitmap mirror */
888#endif
889 int bitmap_size; /* bitmap size */
890};
891
892/*
893 * this structure is used as one of function parameters.
894 * all the information are dedicated to a given direct node block determined
895 * by the data offset in a file.
896 */
897struct dnode_of_data {
898 struct inode *inode; /* vfs inode pointer */
899 struct page *inode_page; /* its inode page, NULL is possible */
900 struct page *node_page; /* cached direct node page */
901 nid_t nid; /* node id of the direct node block */
902 unsigned int ofs_in_node; /* data offset in the node page */
903 bool inode_page_locked; /* inode page is locked or not */
904 bool node_changed; /* is node block changed */
905 char cur_level; /* level of hole node page */
906 char max_level; /* level of current page located */
907 block_t data_blkaddr; /* block address of the node block */
908};
909
910static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
911 struct page *ipage, struct page *npage, nid_t nid)
912{
913 memset(dn, 0, sizeof(*dn));
914 dn->inode = inode;
915 dn->inode_page = ipage;
916 dn->node_page = npage;
917 dn->nid = nid;
918}
919
920/*
921 * For SIT manager
922 *
923 * By default, there are 6 active log areas across the whole main area.
924 * When considering hot and cold data separation to reduce cleaning overhead,
925 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
926 * respectively.
927 * In the current design, you should not change the numbers intentionally.
928 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
929 * logs individually according to the underlying devices. (default: 6)
930 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
931 * data and 8 for node logs.
932 */
933#define NR_CURSEG_DATA_TYPE (3)
934#define NR_CURSEG_NODE_TYPE (3)
935#define NR_CURSEG_INMEM_TYPE (2)
936#define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
937#define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
938
939enum {
940 CURSEG_HOT_DATA = 0, /* directory entry blocks */
941 CURSEG_WARM_DATA, /* data blocks */
942 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
943 CURSEG_HOT_NODE, /* direct node blocks of directory files */
944 CURSEG_WARM_NODE, /* direct node blocks of normal files */
945 CURSEG_COLD_NODE, /* indirect node blocks */
946 NR_PERSISTENT_LOG, /* number of persistent log */
947 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
948 /* pinned file that needs consecutive block address */
949 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
950 NO_CHECK_TYPE, /* number of persistent & inmem log */
951};
952
953struct flush_cmd {
954 struct completion wait;
955 struct llist_node llnode;
956 nid_t ino;
957 int ret;
958};
959
960struct flush_cmd_control {
961 struct task_struct *f2fs_issue_flush; /* flush thread */
962 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
963 atomic_t issued_flush; /* # of issued flushes */
964 atomic_t queued_flush; /* # of queued flushes */
965 struct llist_head issue_list; /* list for command issue */
966 struct llist_node *dispatch_list; /* list for command dispatch */
967};
968
969struct f2fs_sm_info {
970 struct sit_info *sit_info; /* whole segment information */
971 struct free_segmap_info *free_info; /* free segment information */
972 struct dirty_seglist_info *dirty_info; /* dirty segment information */
973 struct curseg_info *curseg_array; /* active segment information */
974
975 struct rw_semaphore curseg_lock; /* for preventing curseg change */
976
977 block_t seg0_blkaddr; /* block address of 0'th segment */
978 block_t main_blkaddr; /* start block address of main area */
979 block_t ssa_blkaddr; /* start block address of SSA area */
980
981 unsigned int segment_count; /* total # of segments */
982 unsigned int main_segments; /* # of segments in main area */
983 unsigned int reserved_segments; /* # of reserved segments */
984 unsigned int ovp_segments; /* # of overprovision segments */
985
986 /* a threshold to reclaim prefree segments */
987 unsigned int rec_prefree_segments;
988
989 /* for batched trimming */
990 unsigned int trim_sections; /* # of sections to trim */
991
992 struct list_head sit_entry_set; /* sit entry set list */
993
994 unsigned int ipu_policy; /* in-place-update policy */
995 unsigned int min_ipu_util; /* in-place-update threshold */
996 unsigned int min_fsync_blocks; /* threshold for fsync */
997 unsigned int min_seq_blocks; /* threshold for sequential blocks */
998 unsigned int min_hot_blocks; /* threshold for hot block allocation */
999 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1000
1001 /* for flush command control */
1002 struct flush_cmd_control *fcc_info;
1003
1004 /* for discard command control */
1005 struct discard_cmd_control *dcc_info;
1006};
1007
1008/*
1009 * For superblock
1010 */
1011/*
1012 * COUNT_TYPE for monitoring
1013 *
1014 * f2fs monitors the number of several block types such as on-writeback,
1015 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1016 */
1017#define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1018enum count_type {
1019 F2FS_DIRTY_DENTS,
1020 F2FS_DIRTY_DATA,
1021 F2FS_DIRTY_QDATA,
1022 F2FS_DIRTY_NODES,
1023 F2FS_DIRTY_META,
1024 F2FS_INMEM_PAGES,
1025 F2FS_DIRTY_IMETA,
1026 F2FS_WB_CP_DATA,
1027 F2FS_WB_DATA,
1028 F2FS_RD_DATA,
1029 F2FS_RD_NODE,
1030 F2FS_RD_META,
1031 F2FS_DIO_WRITE,
1032 F2FS_DIO_READ,
1033 NR_COUNT_TYPE,
1034};
1035
1036/*
1037 * The below are the page types of bios used in submit_bio().
1038 * The available types are:
1039 * DATA User data pages. It operates as async mode.
1040 * NODE Node pages. It operates as async mode.
1041 * META FS metadata pages such as SIT, NAT, CP.
1042 * NR_PAGE_TYPE The number of page types.
1043 * META_FLUSH Make sure the previous pages are written
1044 * with waiting the bio's completion
1045 * ... Only can be used with META.
1046 */
1047#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1048enum page_type {
1049 DATA,
1050 NODE,
1051 META,
1052 NR_PAGE_TYPE,
1053 META_FLUSH,
1054 INMEM, /* the below types are used by tracepoints only. */
1055 INMEM_DROP,
1056 INMEM_INVALIDATE,
1057 INMEM_REVOKE,
1058 IPU,
1059 OPU,
1060};
1061
1062enum temp_type {
1063 HOT = 0, /* must be zero for meta bio */
1064 WARM,
1065 COLD,
1066 NR_TEMP_TYPE,
1067};
1068
1069enum need_lock_type {
1070 LOCK_REQ = 0,
1071 LOCK_DONE,
1072 LOCK_RETRY,
1073};
1074
1075enum cp_reason_type {
1076 CP_NO_NEEDED,
1077 CP_NON_REGULAR,
1078 CP_COMPRESSED,
1079 CP_HARDLINK,
1080 CP_SB_NEED_CP,
1081 CP_WRONG_PINO,
1082 CP_NO_SPC_ROLL,
1083 CP_NODE_NEED_CP,
1084 CP_FASTBOOT_MODE,
1085 CP_SPEC_LOG_NUM,
1086 CP_RECOVER_DIR,
1087};
1088
1089enum iostat_type {
1090 /* WRITE IO */
1091 APP_DIRECT_IO, /* app direct write IOs */
1092 APP_BUFFERED_IO, /* app buffered write IOs */
1093 APP_WRITE_IO, /* app write IOs */
1094 APP_MAPPED_IO, /* app mapped IOs */
1095 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1096 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1097 FS_META_IO, /* meta IOs from kworker/reclaimer */
1098 FS_GC_DATA_IO, /* data IOs from forground gc */
1099 FS_GC_NODE_IO, /* node IOs from forground gc */
1100 FS_CP_DATA_IO, /* data IOs from checkpoint */
1101 FS_CP_NODE_IO, /* node IOs from checkpoint */
1102 FS_CP_META_IO, /* meta IOs from checkpoint */
1103
1104 /* READ IO */
1105 APP_DIRECT_READ_IO, /* app direct read IOs */
1106 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1107 APP_READ_IO, /* app read IOs */
1108 APP_MAPPED_READ_IO, /* app mapped read IOs */
1109 FS_DATA_READ_IO, /* data read IOs */
1110 FS_GDATA_READ_IO, /* data read IOs from background gc */
1111 FS_CDATA_READ_IO, /* compressed data read IOs */
1112 FS_NODE_READ_IO, /* node read IOs */
1113 FS_META_READ_IO, /* meta read IOs */
1114
1115 /* other */
1116 FS_DISCARD, /* discard */
1117 NR_IO_TYPE,
1118};
1119
1120struct f2fs_io_info {
1121 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1122 nid_t ino; /* inode number */
1123 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1124 enum temp_type temp; /* contains HOT/WARM/COLD */
1125 int op; /* contains REQ_OP_ */
1126 int op_flags; /* req_flag_bits */
1127 block_t new_blkaddr; /* new block address to be written */
1128 block_t old_blkaddr; /* old block address before Cow */
1129 struct page *page; /* page to be written */
1130 struct page *encrypted_page; /* encrypted page */
1131 struct page *compressed_page; /* compressed page */
1132 struct list_head list; /* serialize IOs */
1133 bool submitted; /* indicate IO submission */
1134 int need_lock; /* indicate we need to lock cp_rwsem */
1135 bool in_list; /* indicate fio is in io_list */
1136 bool is_por; /* indicate IO is from recovery or not */
1137 bool retry; /* need to reallocate block address */
1138 int compr_blocks; /* # of compressed block addresses */
1139 bool encrypted; /* indicate file is encrypted */
1140 enum iostat_type io_type; /* io type */
1141 struct writeback_control *io_wbc; /* writeback control */
1142 struct bio **bio; /* bio for ipu */
1143 sector_t *last_block; /* last block number in bio */
1144 unsigned char version; /* version of the node */
1145};
1146
1147struct bio_entry {
1148 struct bio *bio;
1149 struct list_head list;
1150};
1151
1152#define is_read_io(rw) ((rw) == READ)
1153struct f2fs_bio_info {
1154 struct f2fs_sb_info *sbi; /* f2fs superblock */
1155 struct bio *bio; /* bios to merge */
1156 sector_t last_block_in_bio; /* last block number */
1157 struct f2fs_io_info fio; /* store buffered io info. */
1158 struct rw_semaphore io_rwsem; /* blocking op for bio */
1159 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1160 struct list_head io_list; /* track fios */
1161 struct list_head bio_list; /* bio entry list head */
1162 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1163};
1164
1165#define FDEV(i) (sbi->devs[i])
1166#define RDEV(i) (raw_super->devs[i])
1167struct f2fs_dev_info {
1168 struct block_device *bdev;
1169 char path[MAX_PATH_LEN];
1170 unsigned int total_segments;
1171 block_t start_blk;
1172 block_t end_blk;
1173#ifdef CONFIG_BLK_DEV_ZONED
1174 unsigned int nr_blkz; /* Total number of zones */
1175 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1176 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1177#endif
1178};
1179
1180enum inode_type {
1181 DIR_INODE, /* for dirty dir inode */
1182 FILE_INODE, /* for dirty regular/symlink inode */
1183 DIRTY_META, /* for all dirtied inode metadata */
1184 ATOMIC_FILE, /* for all atomic files */
1185 NR_INODE_TYPE,
1186};
1187
1188/* for inner inode cache management */
1189struct inode_management {
1190 struct radix_tree_root ino_root; /* ino entry array */
1191 spinlock_t ino_lock; /* for ino entry lock */
1192 struct list_head ino_list; /* inode list head */
1193 unsigned long ino_num; /* number of entries */
1194};
1195
1196/* for GC_AT */
1197struct atgc_management {
1198 bool atgc_enabled; /* ATGC is enabled or not */
1199 struct rb_root_cached root; /* root of victim rb-tree */
1200 struct list_head victim_list; /* linked with all victim entries */
1201 unsigned int victim_count; /* victim count in rb-tree */
1202 unsigned int candidate_ratio; /* candidate ratio */
1203 unsigned int max_candidate_count; /* max candidate count */
1204 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1205 unsigned long long age_threshold; /* age threshold */
1206};
1207
1208/* For s_flag in struct f2fs_sb_info */
1209enum {
1210 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1211 SBI_IS_CLOSE, /* specify unmounting */
1212 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1213 SBI_POR_DOING, /* recovery is doing or not */
1214 SBI_NEED_SB_WRITE, /* need to recover superblock */
1215 SBI_NEED_CP, /* need to checkpoint */
1216 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1217 SBI_IS_RECOVERED, /* recovered orphan/data */
1218 SBI_CP_DISABLED, /* CP was disabled last mount */
1219 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1220 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1221 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1222 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1223 SBI_IS_RESIZEFS, /* resizefs is in process */
1224};
1225
1226enum {
1227 CP_TIME,
1228 REQ_TIME,
1229 DISCARD_TIME,
1230 GC_TIME,
1231 DISABLE_TIME,
1232 UMOUNT_DISCARD_TIMEOUT,
1233 MAX_TIME,
1234};
1235
1236enum {
1237 GC_NORMAL,
1238 GC_IDLE_CB,
1239 GC_IDLE_GREEDY,
1240 GC_IDLE_AT,
1241 GC_URGENT_HIGH,
1242 GC_URGENT_LOW,
1243};
1244
1245enum {
1246 BGGC_MODE_ON, /* background gc is on */
1247 BGGC_MODE_OFF, /* background gc is off */
1248 BGGC_MODE_SYNC, /*
1249 * background gc is on, migrating blocks
1250 * like foreground gc
1251 */
1252};
1253
1254enum {
1255 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1256 FS_MODE_LFS, /* use lfs allocation only */
1257};
1258
1259enum {
1260 WHINT_MODE_OFF, /* not pass down write hints */
1261 WHINT_MODE_USER, /* try to pass down hints given by users */
1262 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1263};
1264
1265enum {
1266 ALLOC_MODE_DEFAULT, /* stay default */
1267 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1268};
1269
1270enum fsync_mode {
1271 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1272 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1273 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1274};
1275
1276enum {
1277 COMPR_MODE_FS, /*
1278 * automatically compress compression
1279 * enabled files
1280 */
1281 COMPR_MODE_USER, /*
1282 * automatical compression is disabled.
1283 * user can control the file compression
1284 * using ioctls
1285 */
1286};
1287
1288/*
1289 * this value is set in page as a private data which indicate that
1290 * the page is atomically written, and it is in inmem_pages list.
1291 */
1292#define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1293#define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1294
1295#define IS_ATOMIC_WRITTEN_PAGE(page) \
1296 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1297#define IS_DUMMY_WRITTEN_PAGE(page) \
1298 (page_private(page) == DUMMY_WRITTEN_PAGE)
1299
1300#ifdef CONFIG_F2FS_IO_TRACE
1301#define IS_IO_TRACED_PAGE(page) \
1302 (page_private(page) > 0 && \
1303 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1304#else
1305#define IS_IO_TRACED_PAGE(page) (0)
1306#endif
1307
1308/* For compression */
1309enum compress_algorithm_type {
1310 COMPRESS_LZO,
1311 COMPRESS_LZ4,
1312 COMPRESS_ZSTD,
1313 COMPRESS_LZORLE,
1314 COMPRESS_MAX,
1315};
1316
1317enum compress_flag {
1318 COMPRESS_CHKSUM,
1319 COMPRESS_MAX_FLAG,
1320};
1321
1322#define COMPRESS_DATA_RESERVED_SIZE 4
1323struct compress_data {
1324 __le32 clen; /* compressed data size */
1325 __le32 chksum; /* compressed data chksum */
1326 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1327 u8 cdata[]; /* compressed data */
1328};
1329
1330#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1331
1332#define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1333
1334#define COMPRESS_LEVEL_OFFSET 8
1335
1336/* compress context */
1337struct compress_ctx {
1338 struct inode *inode; /* inode the context belong to */
1339 pgoff_t cluster_idx; /* cluster index number */
1340 unsigned int cluster_size; /* page count in cluster */
1341 unsigned int log_cluster_size; /* log of cluster size */
1342 struct page **rpages; /* pages store raw data in cluster */
1343 unsigned int nr_rpages; /* total page number in rpages */
1344 struct page **cpages; /* pages store compressed data in cluster */
1345 unsigned int nr_cpages; /* total page number in cpages */
1346 void *rbuf; /* virtual mapped address on rpages */
1347 struct compress_data *cbuf; /* virtual mapped address on cpages */
1348 size_t rlen; /* valid data length in rbuf */
1349 size_t clen; /* valid data length in cbuf */
1350 void *private; /* payload buffer for specified compression algorithm */
1351 void *private2; /* extra payload buffer */
1352};
1353
1354/* compress context for write IO path */
1355struct compress_io_ctx {
1356 u32 magic; /* magic number to indicate page is compressed */
1357 struct inode *inode; /* inode the context belong to */
1358 struct page **rpages; /* pages store raw data in cluster */
1359 unsigned int nr_rpages; /* total page number in rpages */
1360 atomic_t pending_pages; /* in-flight compressed page count */
1361};
1362
1363/* Context for decompressing one cluster on the read IO path */
1364struct decompress_io_ctx {
1365 u32 magic; /* magic number to indicate page is compressed */
1366 struct inode *inode; /* inode the context belong to */
1367 pgoff_t cluster_idx; /* cluster index number */
1368 unsigned int cluster_size; /* page count in cluster */
1369 unsigned int log_cluster_size; /* log of cluster size */
1370 struct page **rpages; /* pages store raw data in cluster */
1371 unsigned int nr_rpages; /* total page number in rpages */
1372 struct page **cpages; /* pages store compressed data in cluster */
1373 unsigned int nr_cpages; /* total page number in cpages */
1374 struct page **tpages; /* temp pages to pad holes in cluster */
1375 void *rbuf; /* virtual mapped address on rpages */
1376 struct compress_data *cbuf; /* virtual mapped address on cpages */
1377 size_t rlen; /* valid data length in rbuf */
1378 size_t clen; /* valid data length in cbuf */
1379
1380 /*
1381 * The number of compressed pages remaining to be read in this cluster.
1382 * This is initially nr_cpages. It is decremented by 1 each time a page
1383 * has been read (or failed to be read). When it reaches 0, the cluster
1384 * is decompressed (or an error is reported).
1385 *
1386 * If an error occurs before all the pages have been submitted for I/O,
1387 * then this will never reach 0. In this case the I/O submitter is
1388 * responsible for calling f2fs_decompress_end_io() instead.
1389 */
1390 atomic_t remaining_pages;
1391
1392 /*
1393 * Number of references to this decompress_io_ctx.
1394 *
1395 * One reference is held for I/O completion. This reference is dropped
1396 * after the pagecache pages are updated and unlocked -- either after
1397 * decompression (and verity if enabled), or after an error.
1398 *
1399 * In addition, each compressed page holds a reference while it is in a
1400 * bio. These references are necessary prevent compressed pages from
1401 * being freed while they are still in a bio.
1402 */
1403 refcount_t refcnt;
1404
1405 bool failed; /* IO error occurred before decompression? */
1406 bool need_verity; /* need fs-verity verification after decompression? */
1407 void *private; /* payload buffer for specified decompression algorithm */
1408 void *private2; /* extra payload buffer */
1409 struct work_struct verity_work; /* work to verify the decompressed pages */
1410};
1411
1412#define NULL_CLUSTER ((unsigned int)(~0))
1413#define MIN_COMPRESS_LOG_SIZE 2
1414#define MAX_COMPRESS_LOG_SIZE 8
1415#define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1416
1417struct f2fs_sb_info {
1418 struct super_block *sb; /* pointer to VFS super block */
1419 struct proc_dir_entry *s_proc; /* proc entry */
1420 struct f2fs_super_block *raw_super; /* raw super block pointer */
1421 struct rw_semaphore sb_lock; /* lock for raw super block */
1422 int valid_super_block; /* valid super block no */
1423 unsigned long s_flag; /* flags for sbi */
1424 struct mutex writepages; /* mutex for writepages() */
1425
1426#ifdef CONFIG_BLK_DEV_ZONED
1427 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1428 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1429#endif
1430
1431 /* for node-related operations */
1432 struct f2fs_nm_info *nm_info; /* node manager */
1433 struct inode *node_inode; /* cache node blocks */
1434
1435 /* for segment-related operations */
1436 struct f2fs_sm_info *sm_info; /* segment manager */
1437
1438 /* for bio operations */
1439 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1440 /* keep migration IO order for LFS mode */
1441 struct rw_semaphore io_order_lock;
1442 mempool_t *write_io_dummy; /* Dummy pages */
1443
1444 /* for checkpoint */
1445 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1446 int cur_cp_pack; /* remain current cp pack */
1447 spinlock_t cp_lock; /* for flag in ckpt */
1448 struct inode *meta_inode; /* cache meta blocks */
1449 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */
1450 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1451 struct rw_semaphore node_write; /* locking node writes */
1452 struct rw_semaphore node_change; /* locking node change */
1453 wait_queue_head_t cp_wait;
1454 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1455 long interval_time[MAX_TIME]; /* to store thresholds */
1456 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1457
1458 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1459
1460 spinlock_t fsync_node_lock; /* for node entry lock */
1461 struct list_head fsync_node_list; /* node list head */
1462 unsigned int fsync_seg_id; /* sequence id */
1463 unsigned int fsync_node_num; /* number of node entries */
1464
1465 /* for orphan inode, use 0'th array */
1466 unsigned int max_orphans; /* max orphan inodes */
1467
1468 /* for inode management */
1469 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1470 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1471 struct mutex flush_lock; /* for flush exclusion */
1472
1473 /* for extent tree cache */
1474 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1475 struct mutex extent_tree_lock; /* locking extent radix tree */
1476 struct list_head extent_list; /* lru list for shrinker */
1477 spinlock_t extent_lock; /* locking extent lru list */
1478 atomic_t total_ext_tree; /* extent tree count */
1479 struct list_head zombie_list; /* extent zombie tree list */
1480 atomic_t total_zombie_tree; /* extent zombie tree count */
1481 atomic_t total_ext_node; /* extent info count */
1482
1483 /* basic filesystem units */
1484 unsigned int log_sectors_per_block; /* log2 sectors per block */
1485 unsigned int log_blocksize; /* log2 block size */
1486 unsigned int blocksize; /* block size */
1487 unsigned int root_ino_num; /* root inode number*/
1488 unsigned int node_ino_num; /* node inode number*/
1489 unsigned int meta_ino_num; /* meta inode number*/
1490 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1491 unsigned int blocks_per_seg; /* blocks per segment */
1492 unsigned int segs_per_sec; /* segments per section */
1493 unsigned int secs_per_zone; /* sections per zone */
1494 unsigned int total_sections; /* total section count */
1495 unsigned int total_node_count; /* total node block count */
1496 unsigned int total_valid_node_count; /* valid node block count */
1497 int dir_level; /* directory level */
1498 int readdir_ra; /* readahead inode in readdir */
1499 u64 max_io_bytes; /* max io bytes to merge IOs */
1500
1501 block_t user_block_count; /* # of user blocks */
1502 block_t total_valid_block_count; /* # of valid blocks */
1503 block_t discard_blks; /* discard command candidats */
1504 block_t last_valid_block_count; /* for recovery */
1505 block_t reserved_blocks; /* configurable reserved blocks */
1506 block_t current_reserved_blocks; /* current reserved blocks */
1507
1508 /* Additional tracking for no checkpoint mode */
1509 block_t unusable_block_count; /* # of blocks saved by last cp */
1510
1511 unsigned int nquota_files; /* # of quota sysfile */
1512 struct rw_semaphore quota_sem; /* blocking cp for flags */
1513
1514 /* # of pages, see count_type */
1515 atomic_t nr_pages[NR_COUNT_TYPE];
1516 /* # of allocated blocks */
1517 struct percpu_counter alloc_valid_block_count;
1518
1519 /* writeback control */
1520 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1521
1522 /* valid inode count */
1523 struct percpu_counter total_valid_inode_count;
1524
1525 struct f2fs_mount_info mount_opt; /* mount options */
1526
1527 /* for cleaning operations */
1528 struct rw_semaphore gc_lock; /*
1529 * semaphore for GC, avoid
1530 * race between GC and GC or CP
1531 */
1532 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1533 struct atgc_management am; /* atgc management */
1534 unsigned int cur_victim_sec; /* current victim section num */
1535 unsigned int gc_mode; /* current GC state */
1536 unsigned int next_victim_seg[2]; /* next segment in victim section */
1537
1538 /* for skip statistic */
1539 unsigned int atomic_files; /* # of opened atomic file */
1540 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1541 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1542
1543 /* threshold for gc trials on pinned files */
1544 u64 gc_pin_file_threshold;
1545 struct rw_semaphore pin_sem;
1546
1547 /* maximum # of trials to find a victim segment for SSR and GC */
1548 unsigned int max_victim_search;
1549 /* migration granularity of garbage collection, unit: segment */
1550 unsigned int migration_granularity;
1551
1552 /*
1553 * for stat information.
1554 * one is for the LFS mode, and the other is for the SSR mode.
1555 */
1556#ifdef CONFIG_F2FS_STAT_FS
1557 struct f2fs_stat_info *stat_info; /* FS status information */
1558 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1559 unsigned int segment_count[2]; /* # of allocated segments */
1560 unsigned int block_count[2]; /* # of allocated blocks */
1561 atomic_t inplace_count; /* # of inplace update */
1562 atomic64_t total_hit_ext; /* # of lookup extent cache */
1563 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1564 atomic64_t read_hit_largest; /* # of hit largest extent node */
1565 atomic64_t read_hit_cached; /* # of hit cached extent node */
1566 atomic_t inline_xattr; /* # of inline_xattr inodes */
1567 atomic_t inline_inode; /* # of inline_data inodes */
1568 atomic_t inline_dir; /* # of inline_dentry inodes */
1569 atomic_t compr_inode; /* # of compressed inodes */
1570 atomic64_t compr_blocks; /* # of compressed blocks */
1571 atomic_t vw_cnt; /* # of volatile writes */
1572 atomic_t max_aw_cnt; /* max # of atomic writes */
1573 atomic_t max_vw_cnt; /* max # of volatile writes */
1574 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1575 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1576 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1577#endif
1578 spinlock_t stat_lock; /* lock for stat operations */
1579
1580 /* For app/fs IO statistics */
1581 spinlock_t iostat_lock;
1582 unsigned long long rw_iostat[NR_IO_TYPE];
1583 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1584 bool iostat_enable;
1585 unsigned long iostat_next_period;
1586 unsigned int iostat_period_ms;
1587
1588 /* to attach REQ_META|REQ_FUA flags */
1589 unsigned int data_io_flag;
1590 unsigned int node_io_flag;
1591
1592 /* For sysfs suppport */
1593 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1594 struct completion s_kobj_unregister;
1595
1596 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1597 struct completion s_stat_kobj_unregister;
1598
1599 /* For shrinker support */
1600 struct list_head s_list;
1601 int s_ndevs; /* number of devices */
1602 struct f2fs_dev_info *devs; /* for device list */
1603 unsigned int dirty_device; /* for checkpoint data flush */
1604 spinlock_t dev_lock; /* protect dirty_device */
1605 struct mutex umount_mutex;
1606 unsigned int shrinker_run_no;
1607
1608 /* For write statistics */
1609 u64 sectors_written_start;
1610 u64 kbytes_written;
1611
1612 /* Reference to checksum algorithm driver via cryptoapi */
1613 struct crypto_shash *s_chksum_driver;
1614
1615 /* Precomputed FS UUID checksum for seeding other checksums */
1616 __u32 s_chksum_seed;
1617
1618 struct workqueue_struct *post_read_wq; /* post read workqueue */
1619
1620 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1621 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1622
1623#ifdef CONFIG_F2FS_FS_COMPRESSION
1624 struct kmem_cache *page_array_slab; /* page array entry */
1625 unsigned int page_array_slab_size; /* default page array slab size */
1626#endif
1627};
1628
1629struct f2fs_private_dio {
1630 struct inode *inode;
1631 void *orig_private;
1632 bio_end_io_t *orig_end_io;
1633 bool write;
1634};
1635
1636#ifdef CONFIG_F2FS_FAULT_INJECTION
1637#define f2fs_show_injection_info(sbi, type) \
1638 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1639 KERN_INFO, sbi->sb->s_id, \
1640 f2fs_fault_name[type], \
1641 __func__, __builtin_return_address(0))
1642static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1643{
1644 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1645
1646 if (!ffi->inject_rate)
1647 return false;
1648
1649 if (!IS_FAULT_SET(ffi, type))
1650 return false;
1651
1652 atomic_inc(&ffi->inject_ops);
1653 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1654 atomic_set(&ffi->inject_ops, 0);
1655 return true;
1656 }
1657 return false;
1658}
1659#else
1660#define f2fs_show_injection_info(sbi, type) do { } while (0)
1661static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1662{
1663 return false;
1664}
1665#endif
1666
1667/*
1668 * Test if the mounted volume is a multi-device volume.
1669 * - For a single regular disk volume, sbi->s_ndevs is 0.
1670 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1671 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1672 */
1673static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1674{
1675 return sbi->s_ndevs > 1;
1676}
1677
1678static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1679{
1680 unsigned long now = jiffies;
1681
1682 sbi->last_time[type] = now;
1683
1684 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1685 if (type == REQ_TIME) {
1686 sbi->last_time[DISCARD_TIME] = now;
1687 sbi->last_time[GC_TIME] = now;
1688 }
1689}
1690
1691static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1692{
1693 unsigned long interval = sbi->interval_time[type] * HZ;
1694
1695 return time_after(jiffies, sbi->last_time[type] + interval);
1696}
1697
1698static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1699 int type)
1700{
1701 unsigned long interval = sbi->interval_time[type] * HZ;
1702 unsigned int wait_ms = 0;
1703 long delta;
1704
1705 delta = (sbi->last_time[type] + interval) - jiffies;
1706 if (delta > 0)
1707 wait_ms = jiffies_to_msecs(delta);
1708
1709 return wait_ms;
1710}
1711
1712/*
1713 * Inline functions
1714 */
1715static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1716 const void *address, unsigned int length)
1717{
1718 struct {
1719 struct shash_desc shash;
1720 char ctx[4];
1721 } desc;
1722 int err;
1723
1724 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1725
1726 desc.shash.tfm = sbi->s_chksum_driver;
1727 *(u32 *)desc.ctx = crc;
1728
1729 err = crypto_shash_update(&desc.shash, address, length);
1730 BUG_ON(err);
1731
1732 return *(u32 *)desc.ctx;
1733}
1734
1735static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1736 unsigned int length)
1737{
1738 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1739}
1740
1741static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1742 void *buf, size_t buf_size)
1743{
1744 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1745}
1746
1747static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1748 const void *address, unsigned int length)
1749{
1750 return __f2fs_crc32(sbi, crc, address, length);
1751}
1752
1753static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1754{
1755 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1756}
1757
1758static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1759{
1760 return sb->s_fs_info;
1761}
1762
1763static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1764{
1765 return F2FS_SB(inode->i_sb);
1766}
1767
1768static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1769{
1770 return F2FS_I_SB(mapping->host);
1771}
1772
1773static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1774{
1775 return F2FS_M_SB(page_file_mapping(page));
1776}
1777
1778static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1779{
1780 return (struct f2fs_super_block *)(sbi->raw_super);
1781}
1782
1783static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1784{
1785 return (struct f2fs_checkpoint *)(sbi->ckpt);
1786}
1787
1788static inline struct f2fs_node *F2FS_NODE(struct page *page)
1789{
1790 return (struct f2fs_node *)page_address(page);
1791}
1792
1793static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1794{
1795 return &((struct f2fs_node *)page_address(page))->i;
1796}
1797
1798static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1799{
1800 return (struct f2fs_nm_info *)(sbi->nm_info);
1801}
1802
1803static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1804{
1805 return (struct f2fs_sm_info *)(sbi->sm_info);
1806}
1807
1808static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1809{
1810 return (struct sit_info *)(SM_I(sbi)->sit_info);
1811}
1812
1813static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1814{
1815 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1816}
1817
1818static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1819{
1820 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1821}
1822
1823static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1824{
1825 return sbi->meta_inode->i_mapping;
1826}
1827
1828static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1829{
1830 return sbi->node_inode->i_mapping;
1831}
1832
1833static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1834{
1835 return test_bit(type, &sbi->s_flag);
1836}
1837
1838static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1839{
1840 set_bit(type, &sbi->s_flag);
1841}
1842
1843static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1844{
1845 clear_bit(type, &sbi->s_flag);
1846}
1847
1848static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1849{
1850 return le64_to_cpu(cp->checkpoint_ver);
1851}
1852
1853static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1854{
1855 if (type < F2FS_MAX_QUOTAS)
1856 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1857 return 0;
1858}
1859
1860static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1861{
1862 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1863 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1864}
1865
1866static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1867{
1868 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1869
1870 return ckpt_flags & f;
1871}
1872
1873static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1874{
1875 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1876}
1877
1878static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1879{
1880 unsigned int ckpt_flags;
1881
1882 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1883 ckpt_flags |= f;
1884 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1885}
1886
1887static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1888{
1889 unsigned long flags;
1890
1891 spin_lock_irqsave(&sbi->cp_lock, flags);
1892 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1893 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1894}
1895
1896static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1897{
1898 unsigned int ckpt_flags;
1899
1900 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1901 ckpt_flags &= (~f);
1902 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1903}
1904
1905static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1906{
1907 unsigned long flags;
1908
1909 spin_lock_irqsave(&sbi->cp_lock, flags);
1910 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1911 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1912}
1913
1914static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1915{
1916 unsigned long flags;
1917 unsigned char *nat_bits;
1918
1919 /*
1920 * In order to re-enable nat_bits we need to call fsck.f2fs by
1921 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1922 * so let's rely on regular fsck or unclean shutdown.
1923 */
1924
1925 if (lock)
1926 spin_lock_irqsave(&sbi->cp_lock, flags);
1927 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1928 nat_bits = NM_I(sbi)->nat_bits;
1929 NM_I(sbi)->nat_bits = NULL;
1930 if (lock)
1931 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1932
1933 kvfree(nat_bits);
1934}
1935
1936static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1937 struct cp_control *cpc)
1938{
1939 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1940
1941 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1942}
1943
1944static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1945{
1946 down_read(&sbi->cp_rwsem);
1947}
1948
1949static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1950{
1951 return down_read_trylock(&sbi->cp_rwsem);
1952}
1953
1954static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1955{
1956 up_read(&sbi->cp_rwsem);
1957}
1958
1959static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1960{
1961 down_write(&sbi->cp_rwsem);
1962}
1963
1964static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1965{
1966 up_write(&sbi->cp_rwsem);
1967}
1968
1969static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1970{
1971 int reason = CP_SYNC;
1972
1973 if (test_opt(sbi, FASTBOOT))
1974 reason = CP_FASTBOOT;
1975 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1976 reason = CP_UMOUNT;
1977 return reason;
1978}
1979
1980static inline bool __remain_node_summaries(int reason)
1981{
1982 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1983}
1984
1985static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1986{
1987 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1988 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1989}
1990
1991/*
1992 * Check whether the inode has blocks or not
1993 */
1994static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1995{
1996 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1997
1998 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1999}
2000
2001static inline bool f2fs_has_xattr_block(unsigned int ofs)
2002{
2003 return ofs == XATTR_NODE_OFFSET;
2004}
2005
2006static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2007 struct inode *inode, bool cap)
2008{
2009 if (!inode)
2010 return true;
2011 if (!test_opt(sbi, RESERVE_ROOT))
2012 return false;
2013 if (IS_NOQUOTA(inode))
2014 return true;
2015 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2016 return true;
2017 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2018 in_group_p(F2FS_OPTION(sbi).s_resgid))
2019 return true;
2020 if (cap && capable(CAP_SYS_RESOURCE))
2021 return true;
2022 return false;
2023}
2024
2025static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2026static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2027 struct inode *inode, blkcnt_t *count)
2028{
2029 blkcnt_t diff = 0, release = 0;
2030 block_t avail_user_block_count;
2031 int ret;
2032
2033 ret = dquot_reserve_block(inode, *count);
2034 if (ret)
2035 return ret;
2036
2037 if (time_to_inject(sbi, FAULT_BLOCK)) {
2038 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2039 release = *count;
2040 goto release_quota;
2041 }
2042
2043 /*
2044 * let's increase this in prior to actual block count change in order
2045 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2046 */
2047 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2048
2049 spin_lock(&sbi->stat_lock);
2050 sbi->total_valid_block_count += (block_t)(*count);
2051 avail_user_block_count = sbi->user_block_count -
2052 sbi->current_reserved_blocks;
2053
2054 if (!__allow_reserved_blocks(sbi, inode, true))
2055 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2056 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2057 if (avail_user_block_count > sbi->unusable_block_count)
2058 avail_user_block_count -= sbi->unusable_block_count;
2059 else
2060 avail_user_block_count = 0;
2061 }
2062 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2063 diff = sbi->total_valid_block_count - avail_user_block_count;
2064 if (diff > *count)
2065 diff = *count;
2066 *count -= diff;
2067 release = diff;
2068 sbi->total_valid_block_count -= diff;
2069 if (!*count) {
2070 spin_unlock(&sbi->stat_lock);
2071 goto enospc;
2072 }
2073 }
2074 spin_unlock(&sbi->stat_lock);
2075
2076 if (unlikely(release)) {
2077 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2078 dquot_release_reservation_block(inode, release);
2079 }
2080 f2fs_i_blocks_write(inode, *count, true, true);
2081 return 0;
2082
2083enospc:
2084 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2085release_quota:
2086 dquot_release_reservation_block(inode, release);
2087 return -ENOSPC;
2088}
2089
2090__printf(2, 3)
2091void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2092
2093#define f2fs_err(sbi, fmt, ...) \
2094 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2095#define f2fs_warn(sbi, fmt, ...) \
2096 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2097#define f2fs_notice(sbi, fmt, ...) \
2098 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2099#define f2fs_info(sbi, fmt, ...) \
2100 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2101#define f2fs_debug(sbi, fmt, ...) \
2102 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2103
2104static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2105 struct inode *inode,
2106 block_t count)
2107{
2108 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2109
2110 spin_lock(&sbi->stat_lock);
2111 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2112 sbi->total_valid_block_count -= (block_t)count;
2113 if (sbi->reserved_blocks &&
2114 sbi->current_reserved_blocks < sbi->reserved_blocks)
2115 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2116 sbi->current_reserved_blocks + count);
2117 spin_unlock(&sbi->stat_lock);
2118 if (unlikely(inode->i_blocks < sectors)) {
2119 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2120 inode->i_ino,
2121 (unsigned long long)inode->i_blocks,
2122 (unsigned long long)sectors);
2123 set_sbi_flag(sbi, SBI_NEED_FSCK);
2124 return;
2125 }
2126 f2fs_i_blocks_write(inode, count, false, true);
2127}
2128
2129static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2130{
2131 atomic_inc(&sbi->nr_pages[count_type]);
2132
2133 if (count_type == F2FS_DIRTY_DENTS ||
2134 count_type == F2FS_DIRTY_NODES ||
2135 count_type == F2FS_DIRTY_META ||
2136 count_type == F2FS_DIRTY_QDATA ||
2137 count_type == F2FS_DIRTY_IMETA)
2138 set_sbi_flag(sbi, SBI_IS_DIRTY);
2139}
2140
2141static inline void inode_inc_dirty_pages(struct inode *inode)
2142{
2143 atomic_inc(&F2FS_I(inode)->dirty_pages);
2144 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2145 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2146 if (IS_NOQUOTA(inode))
2147 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2148}
2149
2150static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2151{
2152 atomic_dec(&sbi->nr_pages[count_type]);
2153}
2154
2155static inline void inode_dec_dirty_pages(struct inode *inode)
2156{
2157 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2158 !S_ISLNK(inode->i_mode))
2159 return;
2160
2161 atomic_dec(&F2FS_I(inode)->dirty_pages);
2162 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2163 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2164 if (IS_NOQUOTA(inode))
2165 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2166}
2167
2168static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2169{
2170 return atomic_read(&sbi->nr_pages[count_type]);
2171}
2172
2173static inline int get_dirty_pages(struct inode *inode)
2174{
2175 return atomic_read(&F2FS_I(inode)->dirty_pages);
2176}
2177
2178static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2179{
2180 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2181 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2182 sbi->log_blocks_per_seg;
2183
2184 return segs / sbi->segs_per_sec;
2185}
2186
2187static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2188{
2189 return sbi->total_valid_block_count;
2190}
2191
2192static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2193{
2194 return sbi->discard_blks;
2195}
2196
2197static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2198{
2199 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2200
2201 /* return NAT or SIT bitmap */
2202 if (flag == NAT_BITMAP)
2203 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2204 else if (flag == SIT_BITMAP)
2205 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2206
2207 return 0;
2208}
2209
2210static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2211{
2212 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2213}
2214
2215static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2216{
2217 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2218 int offset;
2219
2220 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2221 offset = (flag == SIT_BITMAP) ?
2222 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2223 /*
2224 * if large_nat_bitmap feature is enabled, leave checksum
2225 * protection for all nat/sit bitmaps.
2226 */
2227 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2228 }
2229
2230 if (__cp_payload(sbi) > 0) {
2231 if (flag == NAT_BITMAP)
2232 return &ckpt->sit_nat_version_bitmap;
2233 else
2234 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2235 } else {
2236 offset = (flag == NAT_BITMAP) ?
2237 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2238 return &ckpt->sit_nat_version_bitmap + offset;
2239 }
2240}
2241
2242static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2243{
2244 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2245
2246 if (sbi->cur_cp_pack == 2)
2247 start_addr += sbi->blocks_per_seg;
2248 return start_addr;
2249}
2250
2251static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2252{
2253 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2254
2255 if (sbi->cur_cp_pack == 1)
2256 start_addr += sbi->blocks_per_seg;
2257 return start_addr;
2258}
2259
2260static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2261{
2262 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2263}
2264
2265static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2266{
2267 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2268}
2269
2270static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2271 struct inode *inode, bool is_inode)
2272{
2273 block_t valid_block_count;
2274 unsigned int valid_node_count, user_block_count;
2275 int err;
2276
2277 if (is_inode) {
2278 if (inode) {
2279 err = dquot_alloc_inode(inode);
2280 if (err)
2281 return err;
2282 }
2283 } else {
2284 err = dquot_reserve_block(inode, 1);
2285 if (err)
2286 return err;
2287 }
2288
2289 if (time_to_inject(sbi, FAULT_BLOCK)) {
2290 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2291 goto enospc;
2292 }
2293
2294 spin_lock(&sbi->stat_lock);
2295
2296 valid_block_count = sbi->total_valid_block_count +
2297 sbi->current_reserved_blocks + 1;
2298
2299 if (!__allow_reserved_blocks(sbi, inode, false))
2300 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2301 user_block_count = sbi->user_block_count;
2302 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2303 user_block_count -= sbi->unusable_block_count;
2304
2305 if (unlikely(valid_block_count > user_block_count)) {
2306 spin_unlock(&sbi->stat_lock);
2307 goto enospc;
2308 }
2309
2310 valid_node_count = sbi->total_valid_node_count + 1;
2311 if (unlikely(valid_node_count > sbi->total_node_count)) {
2312 spin_unlock(&sbi->stat_lock);
2313 goto enospc;
2314 }
2315
2316 sbi->total_valid_node_count++;
2317 sbi->total_valid_block_count++;
2318 spin_unlock(&sbi->stat_lock);
2319
2320 if (inode) {
2321 if (is_inode)
2322 f2fs_mark_inode_dirty_sync(inode, true);
2323 else
2324 f2fs_i_blocks_write(inode, 1, true, true);
2325 }
2326
2327 percpu_counter_inc(&sbi->alloc_valid_block_count);
2328 return 0;
2329
2330enospc:
2331 if (is_inode) {
2332 if (inode)
2333 dquot_free_inode(inode);
2334 } else {
2335 dquot_release_reservation_block(inode, 1);
2336 }
2337 return -ENOSPC;
2338}
2339
2340static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2341 struct inode *inode, bool is_inode)
2342{
2343 spin_lock(&sbi->stat_lock);
2344
2345 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2346 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2347
2348 sbi->total_valid_node_count--;
2349 sbi->total_valid_block_count--;
2350 if (sbi->reserved_blocks &&
2351 sbi->current_reserved_blocks < sbi->reserved_blocks)
2352 sbi->current_reserved_blocks++;
2353
2354 spin_unlock(&sbi->stat_lock);
2355
2356 if (is_inode) {
2357 dquot_free_inode(inode);
2358 } else {
2359 if (unlikely(inode->i_blocks == 0)) {
2360 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2361 inode->i_ino,
2362 (unsigned long long)inode->i_blocks);
2363 set_sbi_flag(sbi, SBI_NEED_FSCK);
2364 return;
2365 }
2366 f2fs_i_blocks_write(inode, 1, false, true);
2367 }
2368}
2369
2370static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2371{
2372 return sbi->total_valid_node_count;
2373}
2374
2375static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2376{
2377 percpu_counter_inc(&sbi->total_valid_inode_count);
2378}
2379
2380static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2381{
2382 percpu_counter_dec(&sbi->total_valid_inode_count);
2383}
2384
2385static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2386{
2387 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2388}
2389
2390static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2391 pgoff_t index, bool for_write)
2392{
2393 struct page *page;
2394
2395 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2396 if (!for_write)
2397 page = find_get_page_flags(mapping, index,
2398 FGP_LOCK | FGP_ACCESSED);
2399 else
2400 page = find_lock_page(mapping, index);
2401 if (page)
2402 return page;
2403
2404 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2405 f2fs_show_injection_info(F2FS_M_SB(mapping),
2406 FAULT_PAGE_ALLOC);
2407 return NULL;
2408 }
2409 }
2410
2411 if (!for_write)
2412 return grab_cache_page(mapping, index);
2413 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2414}
2415
2416static inline struct page *f2fs_pagecache_get_page(
2417 struct address_space *mapping, pgoff_t index,
2418 int fgp_flags, gfp_t gfp_mask)
2419{
2420 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2421 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2422 return NULL;
2423 }
2424
2425 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2426}
2427
2428static inline void f2fs_copy_page(struct page *src, struct page *dst)
2429{
2430 char *src_kaddr = kmap(src);
2431 char *dst_kaddr = kmap(dst);
2432
2433 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2434 kunmap(dst);
2435 kunmap(src);
2436}
2437
2438static inline void f2fs_put_page(struct page *page, int unlock)
2439{
2440 if (!page)
2441 return;
2442
2443 if (unlock) {
2444 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2445 unlock_page(page);
2446 }
2447 put_page(page);
2448}
2449
2450static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2451{
2452 if (dn->node_page)
2453 f2fs_put_page(dn->node_page, 1);
2454 if (dn->inode_page && dn->node_page != dn->inode_page)
2455 f2fs_put_page(dn->inode_page, 0);
2456 dn->node_page = NULL;
2457 dn->inode_page = NULL;
2458}
2459
2460static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2461 size_t size)
2462{
2463 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2464}
2465
2466static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2467 gfp_t flags)
2468{
2469 void *entry;
2470
2471 entry = kmem_cache_alloc(cachep, flags);
2472 if (!entry)
2473 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2474 return entry;
2475}
2476
2477static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2478{
2479 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2480 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2481 get_pages(sbi, F2FS_WB_CP_DATA) ||
2482 get_pages(sbi, F2FS_DIO_READ) ||
2483 get_pages(sbi, F2FS_DIO_WRITE))
2484 return true;
2485
2486 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2487 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2488 return true;
2489
2490 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2491 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2492 return true;
2493 return false;
2494}
2495
2496static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2497{
2498 if (sbi->gc_mode == GC_URGENT_HIGH)
2499 return true;
2500
2501 if (is_inflight_io(sbi, type))
2502 return false;
2503
2504 if (sbi->gc_mode == GC_URGENT_LOW &&
2505 (type == DISCARD_TIME || type == GC_TIME))
2506 return true;
2507
2508 return f2fs_time_over(sbi, type);
2509}
2510
2511static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2512 unsigned long index, void *item)
2513{
2514 while (radix_tree_insert(root, index, item))
2515 cond_resched();
2516}
2517
2518#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2519
2520static inline bool IS_INODE(struct page *page)
2521{
2522 struct f2fs_node *p = F2FS_NODE(page);
2523
2524 return RAW_IS_INODE(p);
2525}
2526
2527static inline int offset_in_addr(struct f2fs_inode *i)
2528{
2529 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2530 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2531}
2532
2533static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2534{
2535 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2536}
2537
2538static inline int f2fs_has_extra_attr(struct inode *inode);
2539static inline block_t data_blkaddr(struct inode *inode,
2540 struct page *node_page, unsigned int offset)
2541{
2542 struct f2fs_node *raw_node;
2543 __le32 *addr_array;
2544 int base = 0;
2545 bool is_inode = IS_INODE(node_page);
2546
2547 raw_node = F2FS_NODE(node_page);
2548
2549 if (is_inode) {
2550 if (!inode)
2551 /* from GC path only */
2552 base = offset_in_addr(&raw_node->i);
2553 else if (f2fs_has_extra_attr(inode))
2554 base = get_extra_isize(inode);
2555 }
2556
2557 addr_array = blkaddr_in_node(raw_node);
2558 return le32_to_cpu(addr_array[base + offset]);
2559}
2560
2561static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2562{
2563 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2564}
2565
2566static inline int f2fs_test_bit(unsigned int nr, char *addr)
2567{
2568 int mask;
2569
2570 addr += (nr >> 3);
2571 mask = 1 << (7 - (nr & 0x07));
2572 return mask & *addr;
2573}
2574
2575static inline void f2fs_set_bit(unsigned int nr, char *addr)
2576{
2577 int mask;
2578
2579 addr += (nr >> 3);
2580 mask = 1 << (7 - (nr & 0x07));
2581 *addr |= mask;
2582}
2583
2584static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2585{
2586 int mask;
2587
2588 addr += (nr >> 3);
2589 mask = 1 << (7 - (nr & 0x07));
2590 *addr &= ~mask;
2591}
2592
2593static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2594{
2595 int mask;
2596 int ret;
2597
2598 addr += (nr >> 3);
2599 mask = 1 << (7 - (nr & 0x07));
2600 ret = mask & *addr;
2601 *addr |= mask;
2602 return ret;
2603}
2604
2605static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2606{
2607 int mask;
2608 int ret;
2609
2610 addr += (nr >> 3);
2611 mask = 1 << (7 - (nr & 0x07));
2612 ret = mask & *addr;
2613 *addr &= ~mask;
2614 return ret;
2615}
2616
2617static inline void f2fs_change_bit(unsigned int nr, char *addr)
2618{
2619 int mask;
2620
2621 addr += (nr >> 3);
2622 mask = 1 << (7 - (nr & 0x07));
2623 *addr ^= mask;
2624}
2625
2626/*
2627 * On-disk inode flags (f2fs_inode::i_flags)
2628 */
2629#define F2FS_COMPR_FL 0x00000004 /* Compress file */
2630#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2631#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2632#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2633#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2634#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2635#define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2636#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2637#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2638#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2639#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2640
2641/* Flags that should be inherited by new inodes from their parent. */
2642#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2643 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2644 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2645
2646/* Flags that are appropriate for regular files (all but dir-specific ones). */
2647#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2648 F2FS_CASEFOLD_FL))
2649
2650/* Flags that are appropriate for non-directories/regular files. */
2651#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2652
2653static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2654{
2655 if (S_ISDIR(mode))
2656 return flags;
2657 else if (S_ISREG(mode))
2658 return flags & F2FS_REG_FLMASK;
2659 else
2660 return flags & F2FS_OTHER_FLMASK;
2661}
2662
2663static inline void __mark_inode_dirty_flag(struct inode *inode,
2664 int flag, bool set)
2665{
2666 switch (flag) {
2667 case FI_INLINE_XATTR:
2668 case FI_INLINE_DATA:
2669 case FI_INLINE_DENTRY:
2670 case FI_NEW_INODE:
2671 if (set)
2672 return;
2673 fallthrough;
2674 case FI_DATA_EXIST:
2675 case FI_INLINE_DOTS:
2676 case FI_PIN_FILE:
2677 f2fs_mark_inode_dirty_sync(inode, true);
2678 }
2679}
2680
2681static inline void set_inode_flag(struct inode *inode, int flag)
2682{
2683 set_bit(flag, F2FS_I(inode)->flags);
2684 __mark_inode_dirty_flag(inode, flag, true);
2685}
2686
2687static inline int is_inode_flag_set(struct inode *inode, int flag)
2688{
2689 return test_bit(flag, F2FS_I(inode)->flags);
2690}
2691
2692static inline void clear_inode_flag(struct inode *inode, int flag)
2693{
2694 clear_bit(flag, F2FS_I(inode)->flags);
2695 __mark_inode_dirty_flag(inode, flag, false);
2696}
2697
2698static inline bool f2fs_verity_in_progress(struct inode *inode)
2699{
2700 return IS_ENABLED(CONFIG_FS_VERITY) &&
2701 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2702}
2703
2704static inline void set_acl_inode(struct inode *inode, umode_t mode)
2705{
2706 F2FS_I(inode)->i_acl_mode = mode;
2707 set_inode_flag(inode, FI_ACL_MODE);
2708 f2fs_mark_inode_dirty_sync(inode, false);
2709}
2710
2711static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2712{
2713 if (inc)
2714 inc_nlink(inode);
2715 else
2716 drop_nlink(inode);
2717 f2fs_mark_inode_dirty_sync(inode, true);
2718}
2719
2720static inline void f2fs_i_blocks_write(struct inode *inode,
2721 block_t diff, bool add, bool claim)
2722{
2723 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2724 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2725
2726 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2727 if (add) {
2728 if (claim)
2729 dquot_claim_block(inode, diff);
2730 else
2731 dquot_alloc_block_nofail(inode, diff);
2732 } else {
2733 dquot_free_block(inode, diff);
2734 }
2735
2736 f2fs_mark_inode_dirty_sync(inode, true);
2737 if (clean || recover)
2738 set_inode_flag(inode, FI_AUTO_RECOVER);
2739}
2740
2741static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2742{
2743 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2744 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2745
2746 if (i_size_read(inode) == i_size)
2747 return;
2748
2749 i_size_write(inode, i_size);
2750 f2fs_mark_inode_dirty_sync(inode, true);
2751 if (clean || recover)
2752 set_inode_flag(inode, FI_AUTO_RECOVER);
2753}
2754
2755static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2756{
2757 F2FS_I(inode)->i_current_depth = depth;
2758 f2fs_mark_inode_dirty_sync(inode, true);
2759}
2760
2761static inline void f2fs_i_gc_failures_write(struct inode *inode,
2762 unsigned int count)
2763{
2764 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2765 f2fs_mark_inode_dirty_sync(inode, true);
2766}
2767
2768static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2769{
2770 F2FS_I(inode)->i_xattr_nid = xnid;
2771 f2fs_mark_inode_dirty_sync(inode, true);
2772}
2773
2774static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2775{
2776 F2FS_I(inode)->i_pino = pino;
2777 f2fs_mark_inode_dirty_sync(inode, true);
2778}
2779
2780static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2781{
2782 struct f2fs_inode_info *fi = F2FS_I(inode);
2783
2784 if (ri->i_inline & F2FS_INLINE_XATTR)
2785 set_bit(FI_INLINE_XATTR, fi->flags);
2786 if (ri->i_inline & F2FS_INLINE_DATA)
2787 set_bit(FI_INLINE_DATA, fi->flags);
2788 if (ri->i_inline & F2FS_INLINE_DENTRY)
2789 set_bit(FI_INLINE_DENTRY, fi->flags);
2790 if (ri->i_inline & F2FS_DATA_EXIST)
2791 set_bit(FI_DATA_EXIST, fi->flags);
2792 if (ri->i_inline & F2FS_INLINE_DOTS)
2793 set_bit(FI_INLINE_DOTS, fi->flags);
2794 if (ri->i_inline & F2FS_EXTRA_ATTR)
2795 set_bit(FI_EXTRA_ATTR, fi->flags);
2796 if (ri->i_inline & F2FS_PIN_FILE)
2797 set_bit(FI_PIN_FILE, fi->flags);
2798}
2799
2800static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2801{
2802 ri->i_inline = 0;
2803
2804 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2805 ri->i_inline |= F2FS_INLINE_XATTR;
2806 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2807 ri->i_inline |= F2FS_INLINE_DATA;
2808 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2809 ri->i_inline |= F2FS_INLINE_DENTRY;
2810 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2811 ri->i_inline |= F2FS_DATA_EXIST;
2812 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2813 ri->i_inline |= F2FS_INLINE_DOTS;
2814 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2815 ri->i_inline |= F2FS_EXTRA_ATTR;
2816 if (is_inode_flag_set(inode, FI_PIN_FILE))
2817 ri->i_inline |= F2FS_PIN_FILE;
2818}
2819
2820static inline int f2fs_has_extra_attr(struct inode *inode)
2821{
2822 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2823}
2824
2825static inline int f2fs_has_inline_xattr(struct inode *inode)
2826{
2827 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2828}
2829
2830static inline int f2fs_compressed_file(struct inode *inode)
2831{
2832 return S_ISREG(inode->i_mode) &&
2833 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2834}
2835
2836static inline bool f2fs_need_compress_data(struct inode *inode)
2837{
2838 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2839
2840 if (!f2fs_compressed_file(inode))
2841 return false;
2842
2843 if (compress_mode == COMPR_MODE_FS)
2844 return true;
2845 else if (compress_mode == COMPR_MODE_USER &&
2846 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2847 return true;
2848
2849 return false;
2850}
2851
2852static inline unsigned int addrs_per_inode(struct inode *inode)
2853{
2854 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2855 get_inline_xattr_addrs(inode);
2856
2857 if (!f2fs_compressed_file(inode))
2858 return addrs;
2859 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2860}
2861
2862static inline unsigned int addrs_per_block(struct inode *inode)
2863{
2864 if (!f2fs_compressed_file(inode))
2865 return DEF_ADDRS_PER_BLOCK;
2866 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2867}
2868
2869static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2870{
2871 struct f2fs_inode *ri = F2FS_INODE(page);
2872
2873 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2874 get_inline_xattr_addrs(inode)]);
2875}
2876
2877static inline int inline_xattr_size(struct inode *inode)
2878{
2879 if (f2fs_has_inline_xattr(inode))
2880 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2881 return 0;
2882}
2883
2884static inline int f2fs_has_inline_data(struct inode *inode)
2885{
2886 return is_inode_flag_set(inode, FI_INLINE_DATA);
2887}
2888
2889static inline int f2fs_exist_data(struct inode *inode)
2890{
2891 return is_inode_flag_set(inode, FI_DATA_EXIST);
2892}
2893
2894static inline int f2fs_has_inline_dots(struct inode *inode)
2895{
2896 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2897}
2898
2899static inline int f2fs_is_mmap_file(struct inode *inode)
2900{
2901 return is_inode_flag_set(inode, FI_MMAP_FILE);
2902}
2903
2904static inline bool f2fs_is_pinned_file(struct inode *inode)
2905{
2906 return is_inode_flag_set(inode, FI_PIN_FILE);
2907}
2908
2909static inline bool f2fs_is_atomic_file(struct inode *inode)
2910{
2911 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2912}
2913
2914static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2915{
2916 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2917}
2918
2919static inline bool f2fs_is_volatile_file(struct inode *inode)
2920{
2921 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2922}
2923
2924static inline bool f2fs_is_first_block_written(struct inode *inode)
2925{
2926 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2927}
2928
2929static inline bool f2fs_is_drop_cache(struct inode *inode)
2930{
2931 return is_inode_flag_set(inode, FI_DROP_CACHE);
2932}
2933
2934static inline void *inline_data_addr(struct inode *inode, struct page *page)
2935{
2936 struct f2fs_inode *ri = F2FS_INODE(page);
2937 int extra_size = get_extra_isize(inode);
2938
2939 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2940}
2941
2942static inline int f2fs_has_inline_dentry(struct inode *inode)
2943{
2944 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2945}
2946
2947static inline int is_file(struct inode *inode, int type)
2948{
2949 return F2FS_I(inode)->i_advise & type;
2950}
2951
2952static inline void set_file(struct inode *inode, int type)
2953{
2954 F2FS_I(inode)->i_advise |= type;
2955 f2fs_mark_inode_dirty_sync(inode, true);
2956}
2957
2958static inline void clear_file(struct inode *inode, int type)
2959{
2960 F2FS_I(inode)->i_advise &= ~type;
2961 f2fs_mark_inode_dirty_sync(inode, true);
2962}
2963
2964static inline bool f2fs_is_time_consistent(struct inode *inode)
2965{
2966 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2967 return false;
2968 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2969 return false;
2970 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2971 return false;
2972 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2973 &F2FS_I(inode)->i_crtime))
2974 return false;
2975 return true;
2976}
2977
2978static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2979{
2980 bool ret;
2981
2982 if (dsync) {
2983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2984
2985 spin_lock(&sbi->inode_lock[DIRTY_META]);
2986 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2987 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2988 return ret;
2989 }
2990 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2991 file_keep_isize(inode) ||
2992 i_size_read(inode) & ~PAGE_MASK)
2993 return false;
2994
2995 if (!f2fs_is_time_consistent(inode))
2996 return false;
2997
2998 spin_lock(&F2FS_I(inode)->i_size_lock);
2999 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3000 spin_unlock(&F2FS_I(inode)->i_size_lock);
3001
3002 return ret;
3003}
3004
3005static inline bool f2fs_readonly(struct super_block *sb)
3006{
3007 return sb_rdonly(sb);
3008}
3009
3010static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3011{
3012 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3013}
3014
3015static inline bool is_dot_dotdot(const u8 *name, size_t len)
3016{
3017 if (len == 1 && name[0] == '.')
3018 return true;
3019
3020 if (len == 2 && name[0] == '.' && name[1] == '.')
3021 return true;
3022
3023 return false;
3024}
3025
3026static inline bool f2fs_may_extent_tree(struct inode *inode)
3027{
3028 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3029
3030 if (!test_opt(sbi, EXTENT_CACHE) ||
3031 is_inode_flag_set(inode, FI_NO_EXTENT) ||
3032 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3033 return false;
3034
3035 /*
3036 * for recovered files during mount do not create extents
3037 * if shrinker is not registered.
3038 */
3039 if (list_empty(&sbi->s_list))
3040 return false;
3041
3042 return S_ISREG(inode->i_mode);
3043}
3044
3045static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3046 size_t size, gfp_t flags)
3047{
3048 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3049 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3050 return NULL;
3051 }
3052
3053 return kmalloc(size, flags);
3054}
3055
3056static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3057 size_t size, gfp_t flags)
3058{
3059 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3060}
3061
3062static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3063 size_t size, gfp_t flags)
3064{
3065 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3066 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3067 return NULL;
3068 }
3069
3070 return kvmalloc(size, flags);
3071}
3072
3073static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3074 size_t size, gfp_t flags)
3075{
3076 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3077}
3078
3079static inline int get_extra_isize(struct inode *inode)
3080{
3081 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3082}
3083
3084static inline int get_inline_xattr_addrs(struct inode *inode)
3085{
3086 return F2FS_I(inode)->i_inline_xattr_size;
3087}
3088
3089#define f2fs_get_inode_mode(i) \
3090 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3091 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3092
3093#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3094 (offsetof(struct f2fs_inode, i_extra_end) - \
3095 offsetof(struct f2fs_inode, i_extra_isize)) \
3096
3097#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3098#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3099 ((offsetof(typeof(*(f2fs_inode)), field) + \
3100 sizeof((f2fs_inode)->field)) \
3101 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3102
3103#define DEFAULT_IOSTAT_PERIOD_MS 3000
3104#define MIN_IOSTAT_PERIOD_MS 100
3105/* maximum period of iostat tracing is 1 day */
3106#define MAX_IOSTAT_PERIOD_MS 8640000
3107
3108static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3109{
3110 int i;
3111
3112 spin_lock(&sbi->iostat_lock);
3113 for (i = 0; i < NR_IO_TYPE; i++) {
3114 sbi->rw_iostat[i] = 0;
3115 sbi->prev_rw_iostat[i] = 0;
3116 }
3117 spin_unlock(&sbi->iostat_lock);
3118}
3119
3120extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3121
3122static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3123 enum iostat_type type, unsigned long long io_bytes)
3124{
3125 if (!sbi->iostat_enable)
3126 return;
3127 spin_lock(&sbi->iostat_lock);
3128 sbi->rw_iostat[type] += io_bytes;
3129
3130 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3131 sbi->rw_iostat[APP_BUFFERED_IO] =
3132 sbi->rw_iostat[APP_WRITE_IO] -
3133 sbi->rw_iostat[APP_DIRECT_IO];
3134
3135 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3136 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3137 sbi->rw_iostat[APP_READ_IO] -
3138 sbi->rw_iostat[APP_DIRECT_READ_IO];
3139 spin_unlock(&sbi->iostat_lock);
3140
3141 f2fs_record_iostat(sbi);
3142}
3143
3144#define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3145
3146#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3147
3148bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3149 block_t blkaddr, int type);
3150static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3151 block_t blkaddr, int type)
3152{
3153 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3154 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3155 blkaddr, type);
3156 f2fs_bug_on(sbi, 1);
3157 }
3158}
3159
3160static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3161{
3162 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3163 blkaddr == COMPRESS_ADDR)
3164 return false;
3165 return true;
3166}
3167
3168static inline void f2fs_set_page_private(struct page *page,
3169 unsigned long data)
3170{
3171 if (PagePrivate(page))
3172 return;
3173
3174 attach_page_private(page, (void *)data);
3175}
3176
3177static inline void f2fs_clear_page_private(struct page *page)
3178{
3179 detach_page_private(page);
3180}
3181
3182/*
3183 * file.c
3184 */
3185int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3186void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3187int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3188int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3189int f2fs_truncate(struct inode *inode);
3190int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3191 struct kstat *stat, u32 request_mask, unsigned int flags);
3192int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3193 struct iattr *attr);
3194int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3195void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3196int f2fs_precache_extents(struct inode *inode);
3197long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3198long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3199int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3200int f2fs_pin_file_control(struct inode *inode, bool inc);
3201
3202/*
3203 * inode.c
3204 */
3205void f2fs_set_inode_flags(struct inode *inode);
3206bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3207void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3208struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3209struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3210int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3211void f2fs_update_inode(struct inode *inode, struct page *node_page);
3212void f2fs_update_inode_page(struct inode *inode);
3213int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3214void f2fs_evict_inode(struct inode *inode);
3215void f2fs_handle_failed_inode(struct inode *inode);
3216
3217/*
3218 * namei.c
3219 */
3220int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3221 bool hot, bool set);
3222struct dentry *f2fs_get_parent(struct dentry *child);
3223
3224/*
3225 * dir.c
3226 */
3227unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3228int f2fs_init_casefolded_name(const struct inode *dir,
3229 struct f2fs_filename *fname);
3230int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3231 int lookup, struct f2fs_filename *fname);
3232int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3233 struct f2fs_filename *fname);
3234void f2fs_free_filename(struct f2fs_filename *fname);
3235struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3236 const struct f2fs_filename *fname, int *max_slots);
3237int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3238 unsigned int start_pos, struct fscrypt_str *fstr);
3239void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3240 struct f2fs_dentry_ptr *d);
3241struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3242 const struct f2fs_filename *fname, struct page *dpage);
3243void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3244 unsigned int current_depth);
3245int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3246void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3247struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3248 const struct f2fs_filename *fname,
3249 struct page **res_page);
3250struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3251 const struct qstr *child, struct page **res_page);
3252struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3253ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3254 struct page **page);
3255void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3256 struct page *page, struct inode *inode);
3257bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3258 const struct f2fs_filename *fname);
3259void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3260 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3261 unsigned int bit_pos);
3262int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3263 struct inode *inode, nid_t ino, umode_t mode);
3264int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3265 struct inode *inode, nid_t ino, umode_t mode);
3266int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3267 struct inode *inode, nid_t ino, umode_t mode);
3268void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3269 struct inode *dir, struct inode *inode);
3270int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3271bool f2fs_empty_dir(struct inode *dir);
3272
3273static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3274{
3275 if (fscrypt_is_nokey_name(dentry))
3276 return -ENOKEY;
3277 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3278 inode, inode->i_ino, inode->i_mode);
3279}
3280
3281/*
3282 * super.c
3283 */
3284int f2fs_inode_dirtied(struct inode *inode, bool sync);
3285void f2fs_inode_synced(struct inode *inode);
3286int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3287int f2fs_quota_sync(struct super_block *sb, int type);
3288loff_t max_file_blocks(struct inode *inode);
3289void f2fs_quota_off_umount(struct super_block *sb);
3290int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3291int f2fs_sync_fs(struct super_block *sb, int sync);
3292int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3293
3294/*
3295 * hash.c
3296 */
3297void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3298
3299/*
3300 * node.c
3301 */
3302struct dnode_of_data;
3303struct node_info;
3304
3305int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3306bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3307bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3308void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3309void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3310void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3311int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3312bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3313bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3314int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3315 struct node_info *ni);
3316pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3317int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3318int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3319int f2fs_truncate_xattr_node(struct inode *inode);
3320int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3321 unsigned int seq_id);
3322int f2fs_remove_inode_page(struct inode *inode);
3323struct page *f2fs_new_inode_page(struct inode *inode);
3324struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3325void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3326struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3327struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3328int f2fs_move_node_page(struct page *node_page, int gc_type);
3329void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3330int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3331 struct writeback_control *wbc, bool atomic,
3332 unsigned int *seq_id);
3333int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3334 struct writeback_control *wbc,
3335 bool do_balance, enum iostat_type io_type);
3336int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3337bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3338void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3339void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3340int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3341int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3342int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3343int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3344int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3345 unsigned int segno, struct f2fs_summary_block *sum);
3346int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3347int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3348void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3349int __init f2fs_create_node_manager_caches(void);
3350void f2fs_destroy_node_manager_caches(void);
3351
3352/*
3353 * segment.c
3354 */
3355bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3356void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3357void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3358void f2fs_drop_inmem_pages(struct inode *inode);
3359void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3360int f2fs_commit_inmem_pages(struct inode *inode);
3361void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3362void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3363int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3364int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3365int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3366void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3367void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3368bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3369void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3370void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3371bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3372void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3373 struct cp_control *cpc);
3374void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3375block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3376int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3377void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3378int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3379void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3380void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3381void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3382void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3383 unsigned int *newseg, bool new_sec, int dir);
3384void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3385 unsigned int start, unsigned int end);
3386void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3387void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3388int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3389bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3390 struct cp_control *cpc);
3391struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3392void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3393 block_t blk_addr);
3394void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3395 enum iostat_type io_type);
3396void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3397void f2fs_outplace_write_data(struct dnode_of_data *dn,
3398 struct f2fs_io_info *fio);
3399int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3400void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3401 block_t old_blkaddr, block_t new_blkaddr,
3402 bool recover_curseg, bool recover_newaddr,
3403 bool from_gc);
3404void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3405 block_t old_addr, block_t new_addr,
3406 unsigned char version, bool recover_curseg,
3407 bool recover_newaddr);
3408void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3409 block_t old_blkaddr, block_t *new_blkaddr,
3410 struct f2fs_summary *sum, int type,
3411 struct f2fs_io_info *fio);
3412void f2fs_wait_on_page_writeback(struct page *page,
3413 enum page_type type, bool ordered, bool locked);
3414void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3415void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3416 block_t len);
3417void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3418void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3419int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3420 unsigned int val, int alloc);
3421void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3422int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3423int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3424int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3425void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3426int __init f2fs_create_segment_manager_caches(void);
3427void f2fs_destroy_segment_manager_caches(void);
3428int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3429enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3430 enum page_type type, enum temp_type temp);
3431unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3432 unsigned int segno);
3433unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3434 unsigned int segno);
3435
3436/*
3437 * checkpoint.c
3438 */
3439void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3440struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3441struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3442struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3443struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3444bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3445 block_t blkaddr, int type);
3446int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3447 int type, bool sync);
3448void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3449long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3450 long nr_to_write, enum iostat_type io_type);
3451void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3452void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3453void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3454bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3455void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3456 unsigned int devidx, int type);
3457bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3458 unsigned int devidx, int type);
3459int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3460int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3461void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3462void f2fs_add_orphan_inode(struct inode *inode);
3463void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3464int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3465int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3466void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3467void f2fs_remove_dirty_inode(struct inode *inode);
3468int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3469void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3470u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3471int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3472void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3473int __init f2fs_create_checkpoint_caches(void);
3474void f2fs_destroy_checkpoint_caches(void);
3475int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3476int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3477void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3478void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3479
3480/*
3481 * data.c
3482 */
3483int __init f2fs_init_bioset(void);
3484void f2fs_destroy_bioset(void);
3485int f2fs_init_bio_entry_cache(void);
3486void f2fs_destroy_bio_entry_cache(void);
3487void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3488 struct bio *bio, enum page_type type);
3489void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3490void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3491 struct inode *inode, struct page *page,
3492 nid_t ino, enum page_type type);
3493void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3494 struct bio **bio, struct page *page);
3495void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3496int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3497int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3498void f2fs_submit_page_write(struct f2fs_io_info *fio);
3499struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3500 block_t blk_addr, struct bio *bio);
3501int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3502void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3503void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3504int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3505int f2fs_reserve_new_block(struct dnode_of_data *dn);
3506int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3507int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3508int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3509struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3510 int op_flags, bool for_write);
3511struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3512struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3513 bool for_write);
3514struct page *f2fs_get_new_data_page(struct inode *inode,
3515 struct page *ipage, pgoff_t index, bool new_i_size);
3516int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3517void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3518int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3519 int create, int flag);
3520int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3521 u64 start, u64 len);
3522int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3523bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3524bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3525int f2fs_write_single_data_page(struct page *page, int *submitted,
3526 struct bio **bio, sector_t *last_block,
3527 struct writeback_control *wbc,
3528 enum iostat_type io_type,
3529 int compr_blocks, bool allow_balance);
3530void f2fs_invalidate_page(struct page *page, unsigned int offset,
3531 unsigned int length);
3532int f2fs_release_page(struct page *page, gfp_t wait);
3533#ifdef CONFIG_MIGRATION
3534int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3535 struct page *page, enum migrate_mode mode);
3536#endif
3537bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3538void f2fs_clear_page_cache_dirty_tag(struct page *page);
3539int f2fs_init_post_read_processing(void);
3540void f2fs_destroy_post_read_processing(void);
3541int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3542void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3543
3544/*
3545 * gc.c
3546 */
3547int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3548void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3549block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3550int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3551 unsigned int segno);
3552void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3553int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3554int __init f2fs_create_garbage_collection_cache(void);
3555void f2fs_destroy_garbage_collection_cache(void);
3556
3557/*
3558 * recovery.c
3559 */
3560int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3561bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3562
3563/*
3564 * debug.c
3565 */
3566#ifdef CONFIG_F2FS_STAT_FS
3567struct f2fs_stat_info {
3568 struct list_head stat_list;
3569 struct f2fs_sb_info *sbi;
3570 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3571 int main_area_segs, main_area_sections, main_area_zones;
3572 unsigned long long hit_largest, hit_cached, hit_rbtree;
3573 unsigned long long hit_total, total_ext;
3574 int ext_tree, zombie_tree, ext_node;
3575 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3576 int ndirty_data, ndirty_qdata;
3577 int inmem_pages;
3578 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3579 int nats, dirty_nats, sits, dirty_sits;
3580 int free_nids, avail_nids, alloc_nids;
3581 int total_count, utilization;
3582 int bg_gc, nr_wb_cp_data, nr_wb_data;
3583 int nr_rd_data, nr_rd_node, nr_rd_meta;
3584 int nr_dio_read, nr_dio_write;
3585 unsigned int io_skip_bggc, other_skip_bggc;
3586 int nr_flushing, nr_flushed, flush_list_empty;
3587 int nr_discarding, nr_discarded;
3588 int nr_discard_cmd;
3589 unsigned int undiscard_blks;
3590 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3591 unsigned int cur_ckpt_time, peak_ckpt_time;
3592 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3593 int compr_inode;
3594 unsigned long long compr_blocks;
3595 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3596 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3597 unsigned int bimodal, avg_vblocks;
3598 int util_free, util_valid, util_invalid;
3599 int rsvd_segs, overp_segs;
3600 int dirty_count, node_pages, meta_pages;
3601 int prefree_count, call_count, cp_count, bg_cp_count;
3602 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3603 int bg_node_segs, bg_data_segs;
3604 int tot_blks, data_blks, node_blks;
3605 int bg_data_blks, bg_node_blks;
3606 unsigned long long skipped_atomic_files[2];
3607 int curseg[NR_CURSEG_TYPE];
3608 int cursec[NR_CURSEG_TYPE];
3609 int curzone[NR_CURSEG_TYPE];
3610 unsigned int dirty_seg[NR_CURSEG_TYPE];
3611 unsigned int full_seg[NR_CURSEG_TYPE];
3612 unsigned int valid_blks[NR_CURSEG_TYPE];
3613
3614 unsigned int meta_count[META_MAX];
3615 unsigned int segment_count[2];
3616 unsigned int block_count[2];
3617 unsigned int inplace_count;
3618 unsigned long long base_mem, cache_mem, page_mem;
3619};
3620
3621static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3622{
3623 return (struct f2fs_stat_info *)sbi->stat_info;
3624}
3625
3626#define stat_inc_cp_count(si) ((si)->cp_count++)
3627#define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3628#define stat_inc_call_count(si) ((si)->call_count++)
3629#define stat_inc_bggc_count(si) ((si)->bg_gc++)
3630#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3631#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3632#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3633#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3634#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3635#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3636#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3637#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3638#define stat_inc_inline_xattr(inode) \
3639 do { \
3640 if (f2fs_has_inline_xattr(inode)) \
3641 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3642 } while (0)
3643#define stat_dec_inline_xattr(inode) \
3644 do { \
3645 if (f2fs_has_inline_xattr(inode)) \
3646 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3647 } while (0)
3648#define stat_inc_inline_inode(inode) \
3649 do { \
3650 if (f2fs_has_inline_data(inode)) \
3651 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3652 } while (0)
3653#define stat_dec_inline_inode(inode) \
3654 do { \
3655 if (f2fs_has_inline_data(inode)) \
3656 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3657 } while (0)
3658#define stat_inc_inline_dir(inode) \
3659 do { \
3660 if (f2fs_has_inline_dentry(inode)) \
3661 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3662 } while (0)
3663#define stat_dec_inline_dir(inode) \
3664 do { \
3665 if (f2fs_has_inline_dentry(inode)) \
3666 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3667 } while (0)
3668#define stat_inc_compr_inode(inode) \
3669 do { \
3670 if (f2fs_compressed_file(inode)) \
3671 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3672 } while (0)
3673#define stat_dec_compr_inode(inode) \
3674 do { \
3675 if (f2fs_compressed_file(inode)) \
3676 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3677 } while (0)
3678#define stat_add_compr_blocks(inode, blocks) \
3679 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3680#define stat_sub_compr_blocks(inode, blocks) \
3681 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3682#define stat_inc_meta_count(sbi, blkaddr) \
3683 do { \
3684 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3685 atomic_inc(&(sbi)->meta_count[META_CP]); \
3686 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3687 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3688 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3689 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3690 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3691 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3692 } while (0)
3693#define stat_inc_seg_type(sbi, curseg) \
3694 ((sbi)->segment_count[(curseg)->alloc_type]++)
3695#define stat_inc_block_count(sbi, curseg) \
3696 ((sbi)->block_count[(curseg)->alloc_type]++)
3697#define stat_inc_inplace_blocks(sbi) \
3698 (atomic_inc(&(sbi)->inplace_count))
3699#define stat_update_max_atomic_write(inode) \
3700 do { \
3701 int cur = F2FS_I_SB(inode)->atomic_files; \
3702 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3703 if (cur > max) \
3704 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3705 } while (0)
3706#define stat_inc_volatile_write(inode) \
3707 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3708#define stat_dec_volatile_write(inode) \
3709 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3710#define stat_update_max_volatile_write(inode) \
3711 do { \
3712 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3713 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3714 if (cur > max) \
3715 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3716 } while (0)
3717#define stat_inc_seg_count(sbi, type, gc_type) \
3718 do { \
3719 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3720 si->tot_segs++; \
3721 if ((type) == SUM_TYPE_DATA) { \
3722 si->data_segs++; \
3723 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3724 } else { \
3725 si->node_segs++; \
3726 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3727 } \
3728 } while (0)
3729
3730#define stat_inc_tot_blk_count(si, blks) \
3731 ((si)->tot_blks += (blks))
3732
3733#define stat_inc_data_blk_count(sbi, blks, gc_type) \
3734 do { \
3735 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3736 stat_inc_tot_blk_count(si, blks); \
3737 si->data_blks += (blks); \
3738 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3739 } while (0)
3740
3741#define stat_inc_node_blk_count(sbi, blks, gc_type) \
3742 do { \
3743 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3744 stat_inc_tot_blk_count(si, blks); \
3745 si->node_blks += (blks); \
3746 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3747 } while (0)
3748
3749int f2fs_build_stats(struct f2fs_sb_info *sbi);
3750void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3751void __init f2fs_create_root_stats(void);
3752void f2fs_destroy_root_stats(void);
3753void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3754#else
3755#define stat_inc_cp_count(si) do { } while (0)
3756#define stat_inc_bg_cp_count(si) do { } while (0)
3757#define stat_inc_call_count(si) do { } while (0)
3758#define stat_inc_bggc_count(si) do { } while (0)
3759#define stat_io_skip_bggc_count(sbi) do { } while (0)
3760#define stat_other_skip_bggc_count(sbi) do { } while (0)
3761#define stat_inc_dirty_inode(sbi, type) do { } while (0)
3762#define stat_dec_dirty_inode(sbi, type) do { } while (0)
3763#define stat_inc_total_hit(sbi) do { } while (0)
3764#define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3765#define stat_inc_largest_node_hit(sbi) do { } while (0)
3766#define stat_inc_cached_node_hit(sbi) do { } while (0)
3767#define stat_inc_inline_xattr(inode) do { } while (0)
3768#define stat_dec_inline_xattr(inode) do { } while (0)
3769#define stat_inc_inline_inode(inode) do { } while (0)
3770#define stat_dec_inline_inode(inode) do { } while (0)
3771#define stat_inc_inline_dir(inode) do { } while (0)
3772#define stat_dec_inline_dir(inode) do { } while (0)
3773#define stat_inc_compr_inode(inode) do { } while (0)
3774#define stat_dec_compr_inode(inode) do { } while (0)
3775#define stat_add_compr_blocks(inode, blocks) do { } while (0)
3776#define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3777#define stat_update_max_atomic_write(inode) do { } while (0)
3778#define stat_inc_volatile_write(inode) do { } while (0)
3779#define stat_dec_volatile_write(inode) do { } while (0)
3780#define stat_update_max_volatile_write(inode) do { } while (0)
3781#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3782#define stat_inc_seg_type(sbi, curseg) do { } while (0)
3783#define stat_inc_block_count(sbi, curseg) do { } while (0)
3784#define stat_inc_inplace_blocks(sbi) do { } while (0)
3785#define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3786#define stat_inc_tot_blk_count(si, blks) do { } while (0)
3787#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3788#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3789
3790static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3791static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3792static inline void __init f2fs_create_root_stats(void) { }
3793static inline void f2fs_destroy_root_stats(void) { }
3794static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3795#endif
3796
3797extern const struct file_operations f2fs_dir_operations;
3798extern const struct file_operations f2fs_file_operations;
3799extern const struct inode_operations f2fs_file_inode_operations;
3800extern const struct address_space_operations f2fs_dblock_aops;
3801extern const struct address_space_operations f2fs_node_aops;
3802extern const struct address_space_operations f2fs_meta_aops;
3803extern const struct inode_operations f2fs_dir_inode_operations;
3804extern const struct inode_operations f2fs_symlink_inode_operations;
3805extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3806extern const struct inode_operations f2fs_special_inode_operations;
3807extern struct kmem_cache *f2fs_inode_entry_slab;
3808
3809/*
3810 * inline.c
3811 */
3812bool f2fs_may_inline_data(struct inode *inode);
3813bool f2fs_may_inline_dentry(struct inode *inode);
3814void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3815void f2fs_truncate_inline_inode(struct inode *inode,
3816 struct page *ipage, u64 from);
3817int f2fs_read_inline_data(struct inode *inode, struct page *page);
3818int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3819int f2fs_convert_inline_inode(struct inode *inode);
3820int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3821int f2fs_write_inline_data(struct inode *inode, struct page *page);
3822int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3823struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3824 const struct f2fs_filename *fname,
3825 struct page **res_page);
3826int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3827 struct page *ipage);
3828int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3829 struct inode *inode, nid_t ino, umode_t mode);
3830void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3831 struct page *page, struct inode *dir,
3832 struct inode *inode);
3833bool f2fs_empty_inline_dir(struct inode *dir);
3834int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3835 struct fscrypt_str *fstr);
3836int f2fs_inline_data_fiemap(struct inode *inode,
3837 struct fiemap_extent_info *fieinfo,
3838 __u64 start, __u64 len);
3839
3840/*
3841 * shrinker.c
3842 */
3843unsigned long f2fs_shrink_count(struct shrinker *shrink,
3844 struct shrink_control *sc);
3845unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3846 struct shrink_control *sc);
3847void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3848void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3849
3850/*
3851 * extent_cache.c
3852 */
3853struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3854 struct rb_entry *cached_re, unsigned int ofs);
3855struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3856 struct rb_root_cached *root,
3857 struct rb_node **parent,
3858 unsigned long long key, bool *left_most);
3859struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3860 struct rb_root_cached *root,
3861 struct rb_node **parent,
3862 unsigned int ofs, bool *leftmost);
3863struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3864 struct rb_entry *cached_re, unsigned int ofs,
3865 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3866 struct rb_node ***insert_p, struct rb_node **insert_parent,
3867 bool force, bool *leftmost);
3868bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3869 struct rb_root_cached *root, bool check_key);
3870unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3871void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3872void f2fs_drop_extent_tree(struct inode *inode);
3873unsigned int f2fs_destroy_extent_node(struct inode *inode);
3874void f2fs_destroy_extent_tree(struct inode *inode);
3875bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3876 struct extent_info *ei);
3877void f2fs_update_extent_cache(struct dnode_of_data *dn);
3878void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3879 pgoff_t fofs, block_t blkaddr, unsigned int len);
3880void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3881int __init f2fs_create_extent_cache(void);
3882void f2fs_destroy_extent_cache(void);
3883
3884/*
3885 * sysfs.c
3886 */
3887int __init f2fs_init_sysfs(void);
3888void f2fs_exit_sysfs(void);
3889int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3890void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3891
3892/* verity.c */
3893extern const struct fsverity_operations f2fs_verityops;
3894
3895/*
3896 * crypto support
3897 */
3898static inline bool f2fs_encrypted_file(struct inode *inode)
3899{
3900 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3901}
3902
3903static inline void f2fs_set_encrypted_inode(struct inode *inode)
3904{
3905#ifdef CONFIG_FS_ENCRYPTION
3906 file_set_encrypt(inode);
3907 f2fs_set_inode_flags(inode);
3908#endif
3909}
3910
3911/*
3912 * Returns true if the reads of the inode's data need to undergo some
3913 * postprocessing step, like decryption or authenticity verification.
3914 */
3915static inline bool f2fs_post_read_required(struct inode *inode)
3916{
3917 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3918 f2fs_compressed_file(inode);
3919}
3920
3921/*
3922 * compress.c
3923 */
3924#ifdef CONFIG_F2FS_FS_COMPRESSION
3925bool f2fs_is_compressed_page(struct page *page);
3926struct page *f2fs_compress_control_page(struct page *page);
3927int f2fs_prepare_compress_overwrite(struct inode *inode,
3928 struct page **pagep, pgoff_t index, void **fsdata);
3929bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3930 pgoff_t index, unsigned copied);
3931int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3932void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3933bool f2fs_is_compress_backend_ready(struct inode *inode);
3934int f2fs_init_compress_mempool(void);
3935void f2fs_destroy_compress_mempool(void);
3936void f2fs_end_read_compressed_page(struct page *page, bool failed);
3937bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3938bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3939void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3940int f2fs_write_multi_pages(struct compress_ctx *cc,
3941 int *submitted,
3942 struct writeback_control *wbc,
3943 enum iostat_type io_type);
3944int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3945int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3946 unsigned nr_pages, sector_t *last_block_in_bio,
3947 bool is_readahead, bool for_write);
3948struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3949void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
3950void f2fs_put_page_dic(struct page *page);
3951int f2fs_init_compress_ctx(struct compress_ctx *cc);
3952void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3953void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3954int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3955void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3956int __init f2fs_init_compress_cache(void);
3957void f2fs_destroy_compress_cache(void);
3958#else
3959static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3960static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3961{
3962 if (!f2fs_compressed_file(inode))
3963 return true;
3964 /* not support compression */
3965 return false;
3966}
3967static inline struct page *f2fs_compress_control_page(struct page *page)
3968{
3969 WARN_ON_ONCE(1);
3970 return ERR_PTR(-EINVAL);
3971}
3972static inline int f2fs_init_compress_mempool(void) { return 0; }
3973static inline void f2fs_destroy_compress_mempool(void) { }
3974static inline void f2fs_end_read_compressed_page(struct page *page, bool failed)
3975{
3976 WARN_ON_ONCE(1);
3977}
3978static inline void f2fs_put_page_dic(struct page *page)
3979{
3980 WARN_ON_ONCE(1);
3981}
3982static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3983static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3984static inline int __init f2fs_init_compress_cache(void) { return 0; }
3985static inline void f2fs_destroy_compress_cache(void) { }
3986#endif
3987
3988static inline void set_compress_context(struct inode *inode)
3989{
3990 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3991
3992 F2FS_I(inode)->i_compress_algorithm =
3993 F2FS_OPTION(sbi).compress_algorithm;
3994 F2FS_I(inode)->i_log_cluster_size =
3995 F2FS_OPTION(sbi).compress_log_size;
3996 F2FS_I(inode)->i_compress_flag =
3997 F2FS_OPTION(sbi).compress_chksum ?
3998 1 << COMPRESS_CHKSUM : 0;
3999 F2FS_I(inode)->i_cluster_size =
4000 1 << F2FS_I(inode)->i_log_cluster_size;
4001 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4002 F2FS_OPTION(sbi).compress_level)
4003 F2FS_I(inode)->i_compress_flag |=
4004 F2FS_OPTION(sbi).compress_level <<
4005 COMPRESS_LEVEL_OFFSET;
4006 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4007 set_inode_flag(inode, FI_COMPRESSED_FILE);
4008 stat_inc_compr_inode(inode);
4009 f2fs_mark_inode_dirty_sync(inode, true);
4010}
4011
4012static inline bool f2fs_disable_compressed_file(struct inode *inode)
4013{
4014 struct f2fs_inode_info *fi = F2FS_I(inode);
4015
4016 if (!f2fs_compressed_file(inode))
4017 return true;
4018 if (S_ISREG(inode->i_mode) &&
4019 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4020 return false;
4021
4022 fi->i_flags &= ~F2FS_COMPR_FL;
4023 stat_dec_compr_inode(inode);
4024 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4025 f2fs_mark_inode_dirty_sync(inode, true);
4026 return true;
4027}
4028
4029#define F2FS_FEATURE_FUNCS(name, flagname) \
4030static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4031{ \
4032 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4033}
4034
4035F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4036F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4037F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4038F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4039F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4040F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4041F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4042F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4043F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4044F2FS_FEATURE_FUNCS(verity, VERITY);
4045F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4046F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4047F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4048
4049#ifdef CONFIG_BLK_DEV_ZONED
4050static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4051 block_t blkaddr)
4052{
4053 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4054
4055 return test_bit(zno, FDEV(devi).blkz_seq);
4056}
4057#endif
4058
4059static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4060{
4061 return f2fs_sb_has_blkzoned(sbi);
4062}
4063
4064static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4065{
4066 return blk_queue_discard(bdev_get_queue(bdev)) ||
4067 bdev_is_zoned(bdev);
4068}
4069
4070static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4071{
4072 int i;
4073
4074 if (!f2fs_is_multi_device(sbi))
4075 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4076
4077 for (i = 0; i < sbi->s_ndevs; i++)
4078 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4079 return true;
4080 return false;
4081}
4082
4083static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4084{
4085 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4086 f2fs_hw_should_discard(sbi);
4087}
4088
4089static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4090{
4091 int i;
4092
4093 if (!f2fs_is_multi_device(sbi))
4094 return bdev_read_only(sbi->sb->s_bdev);
4095
4096 for (i = 0; i < sbi->s_ndevs; i++)
4097 if (bdev_read_only(FDEV(i).bdev))
4098 return true;
4099 return false;
4100}
4101
4102static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4103{
4104 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4105}
4106
4107static inline bool f2fs_may_compress(struct inode *inode)
4108{
4109 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4110 f2fs_is_atomic_file(inode) ||
4111 f2fs_is_volatile_file(inode))
4112 return false;
4113 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4114}
4115
4116static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4117 u64 blocks, bool add)
4118{
4119 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4120 struct f2fs_inode_info *fi = F2FS_I(inode);
4121
4122 /* don't update i_compr_blocks if saved blocks were released */
4123 if (!add && !atomic_read(&fi->i_compr_blocks))
4124 return;
4125
4126 if (add) {
4127 atomic_add(diff, &fi->i_compr_blocks);
4128 stat_add_compr_blocks(inode, diff);
4129 } else {
4130 atomic_sub(diff, &fi->i_compr_blocks);
4131 stat_sub_compr_blocks(inode, diff);
4132 }
4133 f2fs_mark_inode_dirty_sync(inode, true);
4134}
4135
4136static inline int block_unaligned_IO(struct inode *inode,
4137 struct kiocb *iocb, struct iov_iter *iter)
4138{
4139 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4140 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4141 loff_t offset = iocb->ki_pos;
4142 unsigned long align = offset | iov_iter_alignment(iter);
4143
4144 return align & blocksize_mask;
4145}
4146
4147static inline int allow_outplace_dio(struct inode *inode,
4148 struct kiocb *iocb, struct iov_iter *iter)
4149{
4150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4151 int rw = iov_iter_rw(iter);
4152
4153 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4154 !block_unaligned_IO(inode, iocb, iter));
4155}
4156
4157static inline bool f2fs_force_buffered_io(struct inode *inode,
4158 struct kiocb *iocb, struct iov_iter *iter)
4159{
4160 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4161 int rw = iov_iter_rw(iter);
4162
4163 if (f2fs_post_read_required(inode))
4164 return true;
4165 if (f2fs_is_multi_device(sbi))
4166 return true;
4167 /*
4168 * for blkzoned device, fallback direct IO to buffered IO, so
4169 * all IOs can be serialized by log-structured write.
4170 */
4171 if (f2fs_sb_has_blkzoned(sbi))
4172 return true;
4173 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4174 if (block_unaligned_IO(inode, iocb, iter))
4175 return true;
4176 if (F2FS_IO_ALIGNED(sbi))
4177 return true;
4178 }
4179 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4180 !IS_SWAPFILE(inode))
4181 return true;
4182
4183 return false;
4184}
4185
4186static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4187{
4188 return fsverity_active(inode) &&
4189 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4190}
4191
4192#ifdef CONFIG_F2FS_FAULT_INJECTION
4193extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4194 unsigned int type);
4195#else
4196#define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4197#endif
4198
4199static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4200{
4201#ifdef CONFIG_QUOTA
4202 if (f2fs_sb_has_quota_ino(sbi))
4203 return true;
4204 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4205 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4206 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4207 return true;
4208#endif
4209 return false;
4210}
4211
4212#define EFSBADCRC EBADMSG /* Bad CRC detected */
4213#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4214
4215#endif /* _LINUX_F2FS_H */