]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/f2fs/f2fs.h
f2fs: avoid get_valid_blocks() for cleanup
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/buffer_head.h>
15#include <linux/slab.h>
16#include <linux/crc32.h>
17#include <linux/magic.h>
18#include <linux/kobject.h>
19#include <linux/sched.h>
20#include <linux/cred.h>
21#include <linux/vmalloc.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/quotaops.h>
25#include <crypto/hash.h>
26
27#include <linux/fscrypt.h>
28
29#ifdef CONFIG_F2FS_CHECK_FS
30#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
31#else
32#define f2fs_bug_on(sbi, condition) \
33 do { \
34 if (unlikely(condition)) { \
35 WARN_ON(1); \
36 set_sbi_flag(sbi, SBI_NEED_FSCK); \
37 } \
38 } while (0)
39#endif
40
41enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO,
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_MAX,
58};
59
60#ifdef CONFIG_F2FS_FAULT_INJECTION
61#define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
62
63struct f2fs_fault_info {
64 atomic_t inject_ops;
65 unsigned int inject_rate;
66 unsigned int inject_type;
67};
68
69extern const char *f2fs_fault_name[FAULT_MAX];
70#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71#endif
72
73/*
74 * For mount options
75 */
76#define F2FS_MOUNT_BG_GC 0x00000001
77#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
78#define F2FS_MOUNT_DISCARD 0x00000004
79#define F2FS_MOUNT_NOHEAP 0x00000008
80#define F2FS_MOUNT_XATTR_USER 0x00000010
81#define F2FS_MOUNT_POSIX_ACL 0x00000020
82#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
83#define F2FS_MOUNT_INLINE_XATTR 0x00000080
84#define F2FS_MOUNT_INLINE_DATA 0x00000100
85#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
86#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
87#define F2FS_MOUNT_NOBARRIER 0x00000800
88#define F2FS_MOUNT_FASTBOOT 0x00001000
89#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
90#define F2FS_MOUNT_FORCE_FG_GC 0x00004000
91#define F2FS_MOUNT_DATA_FLUSH 0x00008000
92#define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93#define F2FS_MOUNT_ADAPTIVE 0x00020000
94#define F2FS_MOUNT_LFS 0x00040000
95#define F2FS_MOUNT_USRQUOTA 0x00080000
96#define F2FS_MOUNT_GRPQUOTA 0x00100000
97#define F2FS_MOUNT_PRJQUOTA 0x00200000
98#define F2FS_MOUNT_QUOTA 0x00400000
99#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
100#define F2FS_MOUNT_RESERVE_ROOT 0x01000000
101#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
102
103#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
104#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107
108#define ver_after(a, b) (typecheck(unsigned long long, a) && \
109 typecheck(unsigned long long, b) && \
110 ((long long)((a) - (b)) > 0))
111
112typedef u32 block_t; /*
113 * should not change u32, since it is the on-disk block
114 * address format, __le32.
115 */
116typedef u32 nid_t;
117
118struct f2fs_mount_info {
119 unsigned int opt;
120 int write_io_size_bits; /* Write IO size bits */
121 block_t root_reserved_blocks; /* root reserved blocks */
122 kuid_t s_resuid; /* reserved blocks for uid */
123 kgid_t s_resgid; /* reserved blocks for gid */
124 int active_logs; /* # of active logs */
125 int inline_xattr_size; /* inline xattr size */
126#ifdef CONFIG_F2FS_FAULT_INJECTION
127 struct f2fs_fault_info fault_info; /* For fault injection */
128#endif
129#ifdef CONFIG_QUOTA
130 /* Names of quota files with journalled quota */
131 char *s_qf_names[MAXQUOTAS];
132 int s_jquota_fmt; /* Format of quota to use */
133#endif
134 /* For which write hints are passed down to block layer */
135 int whint_mode;
136 int alloc_mode; /* segment allocation policy */
137 int fsync_mode; /* fsync policy */
138 bool test_dummy_encryption; /* test dummy encryption */
139 block_t unusable_cap; /* Amount of space allowed to be
140 * unusable when disabling checkpoint
141 */
142};
143
144#define F2FS_FEATURE_ENCRYPT 0x0001
145#define F2FS_FEATURE_BLKZONED 0x0002
146#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
147#define F2FS_FEATURE_EXTRA_ATTR 0x0008
148#define F2FS_FEATURE_PRJQUOTA 0x0010
149#define F2FS_FEATURE_INODE_CHKSUM 0x0020
150#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
151#define F2FS_FEATURE_QUOTA_INO 0x0080
152#define F2FS_FEATURE_INODE_CRTIME 0x0100
153#define F2FS_FEATURE_LOST_FOUND 0x0200
154#define F2FS_FEATURE_VERITY 0x0400 /* reserved */
155#define F2FS_FEATURE_SB_CHKSUM 0x0800
156
157#define __F2FS_HAS_FEATURE(raw_super, mask) \
158 ((raw_super->feature & cpu_to_le32(mask)) != 0)
159#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
160#define F2FS_SET_FEATURE(sbi, mask) \
161 (sbi->raw_super->feature |= cpu_to_le32(mask))
162#define F2FS_CLEAR_FEATURE(sbi, mask) \
163 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
164
165/*
166 * Default values for user and/or group using reserved blocks
167 */
168#define F2FS_DEF_RESUID 0
169#define F2FS_DEF_RESGID 0
170
171/*
172 * For checkpoint manager
173 */
174enum {
175 NAT_BITMAP,
176 SIT_BITMAP
177};
178
179#define CP_UMOUNT 0x00000001
180#define CP_FASTBOOT 0x00000002
181#define CP_SYNC 0x00000004
182#define CP_RECOVERY 0x00000008
183#define CP_DISCARD 0x00000010
184#define CP_TRIMMED 0x00000020
185#define CP_PAUSE 0x00000040
186
187#define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
188#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
189#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
190#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
191#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
192#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
193#define DEF_CP_INTERVAL 60 /* 60 secs */
194#define DEF_IDLE_INTERVAL 5 /* 5 secs */
195#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
196#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
197#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
198
199struct cp_control {
200 int reason;
201 __u64 trim_start;
202 __u64 trim_end;
203 __u64 trim_minlen;
204};
205
206/*
207 * indicate meta/data type
208 */
209enum {
210 META_CP,
211 META_NAT,
212 META_SIT,
213 META_SSA,
214 META_MAX,
215 META_POR,
216 DATA_GENERIC, /* check range only */
217 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
218 DATA_GENERIC_ENHANCE_READ, /*
219 * strong check on range and segment
220 * bitmap but no warning due to race
221 * condition of read on truncated area
222 * by extent_cache
223 */
224 META_GENERIC,
225};
226
227/* for the list of ino */
228enum {
229 ORPHAN_INO, /* for orphan ino list */
230 APPEND_INO, /* for append ino list */
231 UPDATE_INO, /* for update ino list */
232 TRANS_DIR_INO, /* for trasactions dir ino list */
233 FLUSH_INO, /* for multiple device flushing */
234 MAX_INO_ENTRY, /* max. list */
235};
236
237struct ino_entry {
238 struct list_head list; /* list head */
239 nid_t ino; /* inode number */
240 unsigned int dirty_device; /* dirty device bitmap */
241};
242
243/* for the list of inodes to be GCed */
244struct inode_entry {
245 struct list_head list; /* list head */
246 struct inode *inode; /* vfs inode pointer */
247};
248
249struct fsync_node_entry {
250 struct list_head list; /* list head */
251 struct page *page; /* warm node page pointer */
252 unsigned int seq_id; /* sequence id */
253};
254
255/* for the bitmap indicate blocks to be discarded */
256struct discard_entry {
257 struct list_head list; /* list head */
258 block_t start_blkaddr; /* start blockaddr of current segment */
259 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
260};
261
262/* default discard granularity of inner discard thread, unit: block count */
263#define DEFAULT_DISCARD_GRANULARITY 16
264
265/* max discard pend list number */
266#define MAX_PLIST_NUM 512
267#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
268 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
269
270enum {
271 D_PREP, /* initial */
272 D_PARTIAL, /* partially submitted */
273 D_SUBMIT, /* all submitted */
274 D_DONE, /* finished */
275};
276
277struct discard_info {
278 block_t lstart; /* logical start address */
279 block_t len; /* length */
280 block_t start; /* actual start address in dev */
281};
282
283struct discard_cmd {
284 struct rb_node rb_node; /* rb node located in rb-tree */
285 union {
286 struct {
287 block_t lstart; /* logical start address */
288 block_t len; /* length */
289 block_t start; /* actual start address in dev */
290 };
291 struct discard_info di; /* discard info */
292
293 };
294 struct list_head list; /* command list */
295 struct completion wait; /* compleation */
296 struct block_device *bdev; /* bdev */
297 unsigned short ref; /* reference count */
298 unsigned char state; /* state */
299 unsigned char queued; /* queued discard */
300 int error; /* bio error */
301 spinlock_t lock; /* for state/bio_ref updating */
302 unsigned short bio_ref; /* bio reference count */
303};
304
305enum {
306 DPOLICY_BG,
307 DPOLICY_FORCE,
308 DPOLICY_FSTRIM,
309 DPOLICY_UMOUNT,
310 MAX_DPOLICY,
311};
312
313struct discard_policy {
314 int type; /* type of discard */
315 unsigned int min_interval; /* used for candidates exist */
316 unsigned int mid_interval; /* used for device busy */
317 unsigned int max_interval; /* used for candidates not exist */
318 unsigned int max_requests; /* # of discards issued per round */
319 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
320 bool io_aware; /* issue discard in idle time */
321 bool sync; /* submit discard with REQ_SYNC flag */
322 bool ordered; /* issue discard by lba order */
323 unsigned int granularity; /* discard granularity */
324 int timeout; /* discard timeout for put_super */
325};
326
327struct discard_cmd_control {
328 struct task_struct *f2fs_issue_discard; /* discard thread */
329 struct list_head entry_list; /* 4KB discard entry list */
330 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
331 struct list_head wait_list; /* store on-flushing entries */
332 struct list_head fstrim_list; /* in-flight discard from fstrim */
333 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
334 unsigned int discard_wake; /* to wake up discard thread */
335 struct mutex cmd_lock;
336 unsigned int nr_discards; /* # of discards in the list */
337 unsigned int max_discards; /* max. discards to be issued */
338 unsigned int discard_granularity; /* discard granularity */
339 unsigned int undiscard_blks; /* # of undiscard blocks */
340 unsigned int next_pos; /* next discard position */
341 atomic_t issued_discard; /* # of issued discard */
342 atomic_t queued_discard; /* # of queued discard */
343 atomic_t discard_cmd_cnt; /* # of cached cmd count */
344 struct rb_root_cached root; /* root of discard rb-tree */
345 bool rbtree_check; /* config for consistence check */
346};
347
348/* for the list of fsync inodes, used only during recovery */
349struct fsync_inode_entry {
350 struct list_head list; /* list head */
351 struct inode *inode; /* vfs inode pointer */
352 block_t blkaddr; /* block address locating the last fsync */
353 block_t last_dentry; /* block address locating the last dentry */
354};
355
356#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
357#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
358
359#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
360#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
361#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
362#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
363
364#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
365#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
366
367static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
368{
369 int before = nats_in_cursum(journal);
370
371 journal->n_nats = cpu_to_le16(before + i);
372 return before;
373}
374
375static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
376{
377 int before = sits_in_cursum(journal);
378
379 journal->n_sits = cpu_to_le16(before + i);
380 return before;
381}
382
383static inline bool __has_cursum_space(struct f2fs_journal *journal,
384 int size, int type)
385{
386 if (type == NAT_JOURNAL)
387 return size <= MAX_NAT_JENTRIES(journal);
388 return size <= MAX_SIT_JENTRIES(journal);
389}
390
391/*
392 * ioctl commands
393 */
394#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
395#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
396#define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
397
398#define F2FS_IOCTL_MAGIC 0xf5
399#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
400#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
401#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
402#define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
403#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
404#define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
405#define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
406#define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
407 struct f2fs_defragment)
408#define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
409 struct f2fs_move_range)
410#define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
411 struct f2fs_flush_device)
412#define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
413 struct f2fs_gc_range)
414#define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
415#define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
416#define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
417#define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
418#define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64)
419
420#define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
421#define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
422#define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
423
424/*
425 * should be same as XFS_IOC_GOINGDOWN.
426 * Flags for going down operation used by FS_IOC_GOINGDOWN
427 */
428#define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
429#define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
430#define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
431#define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
432#define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
433#define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
434
435#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
436/*
437 * ioctl commands in 32 bit emulation
438 */
439#define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
440#define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
441#define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
442#endif
443
444#define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
445#define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
446
447struct f2fs_gc_range {
448 u32 sync;
449 u64 start;
450 u64 len;
451};
452
453struct f2fs_defragment {
454 u64 start;
455 u64 len;
456};
457
458struct f2fs_move_range {
459 u32 dst_fd; /* destination fd */
460 u64 pos_in; /* start position in src_fd */
461 u64 pos_out; /* start position in dst_fd */
462 u64 len; /* size to move */
463};
464
465struct f2fs_flush_device {
466 u32 dev_num; /* device number to flush */
467 u32 segments; /* # of segments to flush */
468};
469
470/* for inline stuff */
471#define DEF_INLINE_RESERVED_SIZE 1
472static inline int get_extra_isize(struct inode *inode);
473static inline int get_inline_xattr_addrs(struct inode *inode);
474#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
475 (CUR_ADDRS_PER_INODE(inode) - \
476 get_inline_xattr_addrs(inode) - \
477 DEF_INLINE_RESERVED_SIZE))
478
479/* for inline dir */
480#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
481 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
482 BITS_PER_BYTE + 1))
483#define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
484 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
485#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
486 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
487 NR_INLINE_DENTRY(inode) + \
488 INLINE_DENTRY_BITMAP_SIZE(inode)))
489
490/*
491 * For INODE and NODE manager
492 */
493/* for directory operations */
494struct f2fs_dentry_ptr {
495 struct inode *inode;
496 void *bitmap;
497 struct f2fs_dir_entry *dentry;
498 __u8 (*filename)[F2FS_SLOT_LEN];
499 int max;
500 int nr_bitmap;
501};
502
503static inline void make_dentry_ptr_block(struct inode *inode,
504 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
505{
506 d->inode = inode;
507 d->max = NR_DENTRY_IN_BLOCK;
508 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
509 d->bitmap = t->dentry_bitmap;
510 d->dentry = t->dentry;
511 d->filename = t->filename;
512}
513
514static inline void make_dentry_ptr_inline(struct inode *inode,
515 struct f2fs_dentry_ptr *d, void *t)
516{
517 int entry_cnt = NR_INLINE_DENTRY(inode);
518 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
519 int reserved_size = INLINE_RESERVED_SIZE(inode);
520
521 d->inode = inode;
522 d->max = entry_cnt;
523 d->nr_bitmap = bitmap_size;
524 d->bitmap = t;
525 d->dentry = t + bitmap_size + reserved_size;
526 d->filename = t + bitmap_size + reserved_size +
527 SIZE_OF_DIR_ENTRY * entry_cnt;
528}
529
530/*
531 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
532 * as its node offset to distinguish from index node blocks.
533 * But some bits are used to mark the node block.
534 */
535#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
536 >> OFFSET_BIT_SHIFT)
537enum {
538 ALLOC_NODE, /* allocate a new node page if needed */
539 LOOKUP_NODE, /* look up a node without readahead */
540 LOOKUP_NODE_RA, /*
541 * look up a node with readahead called
542 * by get_data_block.
543 */
544};
545
546#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
547
548/* maximum retry quota flush count */
549#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
550
551#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
552
553#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
554
555/* for in-memory extent cache entry */
556#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
557
558/* number of extent info in extent cache we try to shrink */
559#define EXTENT_CACHE_SHRINK_NUMBER 128
560
561struct rb_entry {
562 struct rb_node rb_node; /* rb node located in rb-tree */
563 unsigned int ofs; /* start offset of the entry */
564 unsigned int len; /* length of the entry */
565};
566
567struct extent_info {
568 unsigned int fofs; /* start offset in a file */
569 unsigned int len; /* length of the extent */
570 u32 blk; /* start block address of the extent */
571};
572
573struct extent_node {
574 struct rb_node rb_node; /* rb node located in rb-tree */
575 struct extent_info ei; /* extent info */
576 struct list_head list; /* node in global extent list of sbi */
577 struct extent_tree *et; /* extent tree pointer */
578};
579
580struct extent_tree {
581 nid_t ino; /* inode number */
582 struct rb_root_cached root; /* root of extent info rb-tree */
583 struct extent_node *cached_en; /* recently accessed extent node */
584 struct extent_info largest; /* largested extent info */
585 struct list_head list; /* to be used by sbi->zombie_list */
586 rwlock_t lock; /* protect extent info rb-tree */
587 atomic_t node_cnt; /* # of extent node in rb-tree*/
588 bool largest_updated; /* largest extent updated */
589};
590
591/*
592 * This structure is taken from ext4_map_blocks.
593 *
594 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
595 */
596#define F2FS_MAP_NEW (1 << BH_New)
597#define F2FS_MAP_MAPPED (1 << BH_Mapped)
598#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
599#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
600 F2FS_MAP_UNWRITTEN)
601
602struct f2fs_map_blocks {
603 block_t m_pblk;
604 block_t m_lblk;
605 unsigned int m_len;
606 unsigned int m_flags;
607 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
608 pgoff_t *m_next_extent; /* point to next possible extent */
609 int m_seg_type;
610 bool m_may_create; /* indicate it is from write path */
611};
612
613/* for flag in get_data_block */
614enum {
615 F2FS_GET_BLOCK_DEFAULT,
616 F2FS_GET_BLOCK_FIEMAP,
617 F2FS_GET_BLOCK_BMAP,
618 F2FS_GET_BLOCK_DIO,
619 F2FS_GET_BLOCK_PRE_DIO,
620 F2FS_GET_BLOCK_PRE_AIO,
621 F2FS_GET_BLOCK_PRECACHE,
622};
623
624/*
625 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
626 */
627#define FADVISE_COLD_BIT 0x01
628#define FADVISE_LOST_PINO_BIT 0x02
629#define FADVISE_ENCRYPT_BIT 0x04
630#define FADVISE_ENC_NAME_BIT 0x08
631#define FADVISE_KEEP_SIZE_BIT 0x10
632#define FADVISE_HOT_BIT 0x20
633#define FADVISE_VERITY_BIT 0x40 /* reserved */
634
635#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
636
637#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
638#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
639#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
640#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
641#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
642#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
643#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
644#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
645#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
646#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
647#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
648#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
649#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
650#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
651#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
652#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
653
654#define DEF_DIR_LEVEL 0
655
656enum {
657 GC_FAILURE_PIN,
658 GC_FAILURE_ATOMIC,
659 MAX_GC_FAILURE
660};
661
662struct f2fs_inode_info {
663 struct inode vfs_inode; /* serve a vfs inode */
664 unsigned long i_flags; /* keep an inode flags for ioctl */
665 unsigned char i_advise; /* use to give file attribute hints */
666 unsigned char i_dir_level; /* use for dentry level for large dir */
667 unsigned int i_current_depth; /* only for directory depth */
668 /* for gc failure statistic */
669 unsigned int i_gc_failures[MAX_GC_FAILURE];
670 unsigned int i_pino; /* parent inode number */
671 umode_t i_acl_mode; /* keep file acl mode temporarily */
672
673 /* Use below internally in f2fs*/
674 unsigned long flags; /* use to pass per-file flags */
675 struct rw_semaphore i_sem; /* protect fi info */
676 atomic_t dirty_pages; /* # of dirty pages */
677 f2fs_hash_t chash; /* hash value of given file name */
678 unsigned int clevel; /* maximum level of given file name */
679 struct task_struct *task; /* lookup and create consistency */
680 struct task_struct *cp_task; /* separate cp/wb IO stats*/
681 nid_t i_xattr_nid; /* node id that contains xattrs */
682 loff_t last_disk_size; /* lastly written file size */
683
684#ifdef CONFIG_QUOTA
685 struct dquot *i_dquot[MAXQUOTAS];
686
687 /* quota space reservation, managed internally by quota code */
688 qsize_t i_reserved_quota;
689#endif
690 struct list_head dirty_list; /* dirty list for dirs and files */
691 struct list_head gdirty_list; /* linked in global dirty list */
692 struct list_head inmem_ilist; /* list for inmem inodes */
693 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
694 struct task_struct *inmem_task; /* store inmemory task */
695 struct mutex inmem_lock; /* lock for inmemory pages */
696 struct extent_tree *extent_tree; /* cached extent_tree entry */
697
698 /* avoid racing between foreground op and gc */
699 struct rw_semaphore i_gc_rwsem[2];
700 struct rw_semaphore i_mmap_sem;
701 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
702
703 int i_extra_isize; /* size of extra space located in i_addr */
704 kprojid_t i_projid; /* id for project quota */
705 int i_inline_xattr_size; /* inline xattr size */
706 struct timespec64 i_crtime; /* inode creation time */
707 struct timespec64 i_disk_time[4];/* inode disk times */
708};
709
710static inline void get_extent_info(struct extent_info *ext,
711 struct f2fs_extent *i_ext)
712{
713 ext->fofs = le32_to_cpu(i_ext->fofs);
714 ext->blk = le32_to_cpu(i_ext->blk);
715 ext->len = le32_to_cpu(i_ext->len);
716}
717
718static inline void set_raw_extent(struct extent_info *ext,
719 struct f2fs_extent *i_ext)
720{
721 i_ext->fofs = cpu_to_le32(ext->fofs);
722 i_ext->blk = cpu_to_le32(ext->blk);
723 i_ext->len = cpu_to_le32(ext->len);
724}
725
726static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
727 u32 blk, unsigned int len)
728{
729 ei->fofs = fofs;
730 ei->blk = blk;
731 ei->len = len;
732}
733
734static inline bool __is_discard_mergeable(struct discard_info *back,
735 struct discard_info *front, unsigned int max_len)
736{
737 return (back->lstart + back->len == front->lstart) &&
738 (back->len + front->len <= max_len);
739}
740
741static inline bool __is_discard_back_mergeable(struct discard_info *cur,
742 struct discard_info *back, unsigned int max_len)
743{
744 return __is_discard_mergeable(back, cur, max_len);
745}
746
747static inline bool __is_discard_front_mergeable(struct discard_info *cur,
748 struct discard_info *front, unsigned int max_len)
749{
750 return __is_discard_mergeable(cur, front, max_len);
751}
752
753static inline bool __is_extent_mergeable(struct extent_info *back,
754 struct extent_info *front)
755{
756 return (back->fofs + back->len == front->fofs &&
757 back->blk + back->len == front->blk);
758}
759
760static inline bool __is_back_mergeable(struct extent_info *cur,
761 struct extent_info *back)
762{
763 return __is_extent_mergeable(back, cur);
764}
765
766static inline bool __is_front_mergeable(struct extent_info *cur,
767 struct extent_info *front)
768{
769 return __is_extent_mergeable(cur, front);
770}
771
772extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
773static inline void __try_update_largest_extent(struct extent_tree *et,
774 struct extent_node *en)
775{
776 if (en->ei.len > et->largest.len) {
777 et->largest = en->ei;
778 et->largest_updated = true;
779 }
780}
781
782/*
783 * For free nid management
784 */
785enum nid_state {
786 FREE_NID, /* newly added to free nid list */
787 PREALLOC_NID, /* it is preallocated */
788 MAX_NID_STATE,
789};
790
791struct f2fs_nm_info {
792 block_t nat_blkaddr; /* base disk address of NAT */
793 nid_t max_nid; /* maximum possible node ids */
794 nid_t available_nids; /* # of available node ids */
795 nid_t next_scan_nid; /* the next nid to be scanned */
796 unsigned int ram_thresh; /* control the memory footprint */
797 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
798 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
799
800 /* NAT cache management */
801 struct radix_tree_root nat_root;/* root of the nat entry cache */
802 struct radix_tree_root nat_set_root;/* root of the nat set cache */
803 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
804 struct list_head nat_entries; /* cached nat entry list (clean) */
805 spinlock_t nat_list_lock; /* protect clean nat entry list */
806 unsigned int nat_cnt; /* the # of cached nat entries */
807 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
808 unsigned int nat_blocks; /* # of nat blocks */
809
810 /* free node ids management */
811 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
812 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
813 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
814 spinlock_t nid_list_lock; /* protect nid lists ops */
815 struct mutex build_lock; /* lock for build free nids */
816 unsigned char **free_nid_bitmap;
817 unsigned char *nat_block_bitmap;
818 unsigned short *free_nid_count; /* free nid count of NAT block */
819
820 /* for checkpoint */
821 char *nat_bitmap; /* NAT bitmap pointer */
822
823 unsigned int nat_bits_blocks; /* # of nat bits blocks */
824 unsigned char *nat_bits; /* NAT bits blocks */
825 unsigned char *full_nat_bits; /* full NAT pages */
826 unsigned char *empty_nat_bits; /* empty NAT pages */
827#ifdef CONFIG_F2FS_CHECK_FS
828 char *nat_bitmap_mir; /* NAT bitmap mirror */
829#endif
830 int bitmap_size; /* bitmap size */
831};
832
833/*
834 * this structure is used as one of function parameters.
835 * all the information are dedicated to a given direct node block determined
836 * by the data offset in a file.
837 */
838struct dnode_of_data {
839 struct inode *inode; /* vfs inode pointer */
840 struct page *inode_page; /* its inode page, NULL is possible */
841 struct page *node_page; /* cached direct node page */
842 nid_t nid; /* node id of the direct node block */
843 unsigned int ofs_in_node; /* data offset in the node page */
844 bool inode_page_locked; /* inode page is locked or not */
845 bool node_changed; /* is node block changed */
846 char cur_level; /* level of hole node page */
847 char max_level; /* level of current page located */
848 block_t data_blkaddr; /* block address of the node block */
849};
850
851static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
852 struct page *ipage, struct page *npage, nid_t nid)
853{
854 memset(dn, 0, sizeof(*dn));
855 dn->inode = inode;
856 dn->inode_page = ipage;
857 dn->node_page = npage;
858 dn->nid = nid;
859}
860
861/*
862 * For SIT manager
863 *
864 * By default, there are 6 active log areas across the whole main area.
865 * When considering hot and cold data separation to reduce cleaning overhead,
866 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
867 * respectively.
868 * In the current design, you should not change the numbers intentionally.
869 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
870 * logs individually according to the underlying devices. (default: 6)
871 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
872 * data and 8 for node logs.
873 */
874#define NR_CURSEG_DATA_TYPE (3)
875#define NR_CURSEG_NODE_TYPE (3)
876#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
877
878enum {
879 CURSEG_HOT_DATA = 0, /* directory entry blocks */
880 CURSEG_WARM_DATA, /* data blocks */
881 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
882 CURSEG_HOT_NODE, /* direct node blocks of directory files */
883 CURSEG_WARM_NODE, /* direct node blocks of normal files */
884 CURSEG_COLD_NODE, /* indirect node blocks */
885 NO_CHECK_TYPE,
886};
887
888struct flush_cmd {
889 struct completion wait;
890 struct llist_node llnode;
891 nid_t ino;
892 int ret;
893};
894
895struct flush_cmd_control {
896 struct task_struct *f2fs_issue_flush; /* flush thread */
897 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
898 atomic_t issued_flush; /* # of issued flushes */
899 atomic_t queued_flush; /* # of queued flushes */
900 struct llist_head issue_list; /* list for command issue */
901 struct llist_node *dispatch_list; /* list for command dispatch */
902};
903
904struct f2fs_sm_info {
905 struct sit_info *sit_info; /* whole segment information */
906 struct free_segmap_info *free_info; /* free segment information */
907 struct dirty_seglist_info *dirty_info; /* dirty segment information */
908 struct curseg_info *curseg_array; /* active segment information */
909
910 struct rw_semaphore curseg_lock; /* for preventing curseg change */
911
912 block_t seg0_blkaddr; /* block address of 0'th segment */
913 block_t main_blkaddr; /* start block address of main area */
914 block_t ssa_blkaddr; /* start block address of SSA area */
915
916 unsigned int segment_count; /* total # of segments */
917 unsigned int main_segments; /* # of segments in main area */
918 unsigned int reserved_segments; /* # of reserved segments */
919 unsigned int ovp_segments; /* # of overprovision segments */
920
921 /* a threshold to reclaim prefree segments */
922 unsigned int rec_prefree_segments;
923
924 /* for batched trimming */
925 unsigned int trim_sections; /* # of sections to trim */
926
927 struct list_head sit_entry_set; /* sit entry set list */
928
929 unsigned int ipu_policy; /* in-place-update policy */
930 unsigned int min_ipu_util; /* in-place-update threshold */
931 unsigned int min_fsync_blocks; /* threshold for fsync */
932 unsigned int min_seq_blocks; /* threshold for sequential blocks */
933 unsigned int min_hot_blocks; /* threshold for hot block allocation */
934 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
935
936 /* for flush command control */
937 struct flush_cmd_control *fcc_info;
938
939 /* for discard command control */
940 struct discard_cmd_control *dcc_info;
941};
942
943/*
944 * For superblock
945 */
946/*
947 * COUNT_TYPE for monitoring
948 *
949 * f2fs monitors the number of several block types such as on-writeback,
950 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
951 */
952#define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
953enum count_type {
954 F2FS_DIRTY_DENTS,
955 F2FS_DIRTY_DATA,
956 F2FS_DIRTY_QDATA,
957 F2FS_DIRTY_NODES,
958 F2FS_DIRTY_META,
959 F2FS_INMEM_PAGES,
960 F2FS_DIRTY_IMETA,
961 F2FS_WB_CP_DATA,
962 F2FS_WB_DATA,
963 F2FS_RD_DATA,
964 F2FS_RD_NODE,
965 F2FS_RD_META,
966 F2FS_DIO_WRITE,
967 F2FS_DIO_READ,
968 NR_COUNT_TYPE,
969};
970
971/*
972 * The below are the page types of bios used in submit_bio().
973 * The available types are:
974 * DATA User data pages. It operates as async mode.
975 * NODE Node pages. It operates as async mode.
976 * META FS metadata pages such as SIT, NAT, CP.
977 * NR_PAGE_TYPE The number of page types.
978 * META_FLUSH Make sure the previous pages are written
979 * with waiting the bio's completion
980 * ... Only can be used with META.
981 */
982#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
983enum page_type {
984 DATA,
985 NODE,
986 META,
987 NR_PAGE_TYPE,
988 META_FLUSH,
989 INMEM, /* the below types are used by tracepoints only. */
990 INMEM_DROP,
991 INMEM_INVALIDATE,
992 INMEM_REVOKE,
993 IPU,
994 OPU,
995};
996
997enum temp_type {
998 HOT = 0, /* must be zero for meta bio */
999 WARM,
1000 COLD,
1001 NR_TEMP_TYPE,
1002};
1003
1004enum need_lock_type {
1005 LOCK_REQ = 0,
1006 LOCK_DONE,
1007 LOCK_RETRY,
1008};
1009
1010enum cp_reason_type {
1011 CP_NO_NEEDED,
1012 CP_NON_REGULAR,
1013 CP_HARDLINK,
1014 CP_SB_NEED_CP,
1015 CP_WRONG_PINO,
1016 CP_NO_SPC_ROLL,
1017 CP_NODE_NEED_CP,
1018 CP_FASTBOOT_MODE,
1019 CP_SPEC_LOG_NUM,
1020 CP_RECOVER_DIR,
1021};
1022
1023enum iostat_type {
1024 APP_DIRECT_IO, /* app direct IOs */
1025 APP_BUFFERED_IO, /* app buffered IOs */
1026 APP_WRITE_IO, /* app write IOs */
1027 APP_MAPPED_IO, /* app mapped IOs */
1028 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1029 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1030 FS_META_IO, /* meta IOs from kworker/reclaimer */
1031 FS_GC_DATA_IO, /* data IOs from forground gc */
1032 FS_GC_NODE_IO, /* node IOs from forground gc */
1033 FS_CP_DATA_IO, /* data IOs from checkpoint */
1034 FS_CP_NODE_IO, /* node IOs from checkpoint */
1035 FS_CP_META_IO, /* meta IOs from checkpoint */
1036 FS_DISCARD, /* discard */
1037 NR_IO_TYPE,
1038};
1039
1040struct f2fs_io_info {
1041 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1042 nid_t ino; /* inode number */
1043 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1044 enum temp_type temp; /* contains HOT/WARM/COLD */
1045 int op; /* contains REQ_OP_ */
1046 int op_flags; /* req_flag_bits */
1047 block_t new_blkaddr; /* new block address to be written */
1048 block_t old_blkaddr; /* old block address before Cow */
1049 struct page *page; /* page to be written */
1050 struct page *encrypted_page; /* encrypted page */
1051 struct list_head list; /* serialize IOs */
1052 bool submitted; /* indicate IO submission */
1053 int need_lock; /* indicate we need to lock cp_rwsem */
1054 bool in_list; /* indicate fio is in io_list */
1055 bool is_por; /* indicate IO is from recovery or not */
1056 bool retry; /* need to reallocate block address */
1057 enum iostat_type io_type; /* io type */
1058 struct writeback_control *io_wbc; /* writeback control */
1059 struct bio **bio; /* bio for ipu */
1060 sector_t *last_block; /* last block number in bio */
1061 unsigned char version; /* version of the node */
1062};
1063
1064#define is_read_io(rw) ((rw) == READ)
1065struct f2fs_bio_info {
1066 struct f2fs_sb_info *sbi; /* f2fs superblock */
1067 struct bio *bio; /* bios to merge */
1068 sector_t last_block_in_bio; /* last block number */
1069 struct f2fs_io_info fio; /* store buffered io info. */
1070 struct rw_semaphore io_rwsem; /* blocking op for bio */
1071 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1072 struct list_head io_list; /* track fios */
1073};
1074
1075#define FDEV(i) (sbi->devs[i])
1076#define RDEV(i) (raw_super->devs[i])
1077struct f2fs_dev_info {
1078 struct block_device *bdev;
1079 char path[MAX_PATH_LEN];
1080 unsigned int total_segments;
1081 block_t start_blk;
1082 block_t end_blk;
1083#ifdef CONFIG_BLK_DEV_ZONED
1084 unsigned int nr_blkz; /* Total number of zones */
1085 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1086#endif
1087};
1088
1089enum inode_type {
1090 DIR_INODE, /* for dirty dir inode */
1091 FILE_INODE, /* for dirty regular/symlink inode */
1092 DIRTY_META, /* for all dirtied inode metadata */
1093 ATOMIC_FILE, /* for all atomic files */
1094 NR_INODE_TYPE,
1095};
1096
1097/* for inner inode cache management */
1098struct inode_management {
1099 struct radix_tree_root ino_root; /* ino entry array */
1100 spinlock_t ino_lock; /* for ino entry lock */
1101 struct list_head ino_list; /* inode list head */
1102 unsigned long ino_num; /* number of entries */
1103};
1104
1105/* For s_flag in struct f2fs_sb_info */
1106enum {
1107 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1108 SBI_IS_CLOSE, /* specify unmounting */
1109 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1110 SBI_POR_DOING, /* recovery is doing or not */
1111 SBI_NEED_SB_WRITE, /* need to recover superblock */
1112 SBI_NEED_CP, /* need to checkpoint */
1113 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1114 SBI_IS_RECOVERED, /* recovered orphan/data */
1115 SBI_CP_DISABLED, /* CP was disabled last mount */
1116 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1117 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1118 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1119 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1120 SBI_IS_RESIZEFS, /* resizefs is in process */
1121};
1122
1123enum {
1124 CP_TIME,
1125 REQ_TIME,
1126 DISCARD_TIME,
1127 GC_TIME,
1128 DISABLE_TIME,
1129 UMOUNT_DISCARD_TIMEOUT,
1130 MAX_TIME,
1131};
1132
1133enum {
1134 GC_NORMAL,
1135 GC_IDLE_CB,
1136 GC_IDLE_GREEDY,
1137 GC_URGENT,
1138};
1139
1140enum {
1141 WHINT_MODE_OFF, /* not pass down write hints */
1142 WHINT_MODE_USER, /* try to pass down hints given by users */
1143 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1144};
1145
1146enum {
1147 ALLOC_MODE_DEFAULT, /* stay default */
1148 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1149};
1150
1151enum fsync_mode {
1152 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1153 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1154 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1155};
1156
1157#ifdef CONFIG_FS_ENCRYPTION
1158#define DUMMY_ENCRYPTION_ENABLED(sbi) \
1159 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1160#else
1161#define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1162#endif
1163
1164struct f2fs_sb_info {
1165 struct super_block *sb; /* pointer to VFS super block */
1166 struct proc_dir_entry *s_proc; /* proc entry */
1167 struct f2fs_super_block *raw_super; /* raw super block pointer */
1168 struct rw_semaphore sb_lock; /* lock for raw super block */
1169 int valid_super_block; /* valid super block no */
1170 unsigned long s_flag; /* flags for sbi */
1171 struct mutex writepages; /* mutex for writepages() */
1172
1173#ifdef CONFIG_BLK_DEV_ZONED
1174 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1175 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1176#endif
1177
1178 /* for node-related operations */
1179 struct f2fs_nm_info *nm_info; /* node manager */
1180 struct inode *node_inode; /* cache node blocks */
1181
1182 /* for segment-related operations */
1183 struct f2fs_sm_info *sm_info; /* segment manager */
1184
1185 /* for bio operations */
1186 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1187 /* keep migration IO order for LFS mode */
1188 struct rw_semaphore io_order_lock;
1189 mempool_t *write_io_dummy; /* Dummy pages */
1190
1191 /* for checkpoint */
1192 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1193 int cur_cp_pack; /* remain current cp pack */
1194 spinlock_t cp_lock; /* for flag in ckpt */
1195 struct inode *meta_inode; /* cache meta blocks */
1196 struct mutex cp_mutex; /* checkpoint procedure lock */
1197 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1198 struct rw_semaphore node_write; /* locking node writes */
1199 struct rw_semaphore node_change; /* locking node change */
1200 wait_queue_head_t cp_wait;
1201 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1202 long interval_time[MAX_TIME]; /* to store thresholds */
1203
1204 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1205
1206 spinlock_t fsync_node_lock; /* for node entry lock */
1207 struct list_head fsync_node_list; /* node list head */
1208 unsigned int fsync_seg_id; /* sequence id */
1209 unsigned int fsync_node_num; /* number of node entries */
1210
1211 /* for orphan inode, use 0'th array */
1212 unsigned int max_orphans; /* max orphan inodes */
1213
1214 /* for inode management */
1215 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1216 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1217 struct mutex flush_lock; /* for flush exclusion */
1218
1219 /* for extent tree cache */
1220 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1221 struct mutex extent_tree_lock; /* locking extent radix tree */
1222 struct list_head extent_list; /* lru list for shrinker */
1223 spinlock_t extent_lock; /* locking extent lru list */
1224 atomic_t total_ext_tree; /* extent tree count */
1225 struct list_head zombie_list; /* extent zombie tree list */
1226 atomic_t total_zombie_tree; /* extent zombie tree count */
1227 atomic_t total_ext_node; /* extent info count */
1228
1229 /* basic filesystem units */
1230 unsigned int log_sectors_per_block; /* log2 sectors per block */
1231 unsigned int log_blocksize; /* log2 block size */
1232 unsigned int blocksize; /* block size */
1233 unsigned int root_ino_num; /* root inode number*/
1234 unsigned int node_ino_num; /* node inode number*/
1235 unsigned int meta_ino_num; /* meta inode number*/
1236 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1237 unsigned int blocks_per_seg; /* blocks per segment */
1238 unsigned int segs_per_sec; /* segments per section */
1239 unsigned int secs_per_zone; /* sections per zone */
1240 unsigned int total_sections; /* total section count */
1241 struct mutex resize_mutex; /* for resize exclusion */
1242 unsigned int total_node_count; /* total node block count */
1243 unsigned int total_valid_node_count; /* valid node block count */
1244 loff_t max_file_blocks; /* max block index of file */
1245 int dir_level; /* directory level */
1246 int readdir_ra; /* readahead inode in readdir */
1247
1248 block_t user_block_count; /* # of user blocks */
1249 block_t total_valid_block_count; /* # of valid blocks */
1250 block_t discard_blks; /* discard command candidats */
1251 block_t last_valid_block_count; /* for recovery */
1252 block_t reserved_blocks; /* configurable reserved blocks */
1253 block_t current_reserved_blocks; /* current reserved blocks */
1254
1255 /* Additional tracking for no checkpoint mode */
1256 block_t unusable_block_count; /* # of blocks saved by last cp */
1257
1258 unsigned int nquota_files; /* # of quota sysfile */
1259
1260 /* # of pages, see count_type */
1261 atomic_t nr_pages[NR_COUNT_TYPE];
1262 /* # of allocated blocks */
1263 struct percpu_counter alloc_valid_block_count;
1264
1265 /* writeback control */
1266 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1267
1268 /* valid inode count */
1269 struct percpu_counter total_valid_inode_count;
1270
1271 struct f2fs_mount_info mount_opt; /* mount options */
1272
1273 /* for cleaning operations */
1274 struct mutex gc_mutex; /* mutex for GC */
1275 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1276 unsigned int cur_victim_sec; /* current victim section num */
1277 unsigned int gc_mode; /* current GC state */
1278 unsigned int next_victim_seg[2]; /* next segment in victim section */
1279 /* for skip statistic */
1280 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1281 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1282
1283 /* threshold for gc trials on pinned files */
1284 u64 gc_pin_file_threshold;
1285
1286 /* maximum # of trials to find a victim segment for SSR and GC */
1287 unsigned int max_victim_search;
1288 /* migration granularity of garbage collection, unit: segment */
1289 unsigned int migration_granularity;
1290
1291 /*
1292 * for stat information.
1293 * one is for the LFS mode, and the other is for the SSR mode.
1294 */
1295#ifdef CONFIG_F2FS_STAT_FS
1296 struct f2fs_stat_info *stat_info; /* FS status information */
1297 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1298 unsigned int segment_count[2]; /* # of allocated segments */
1299 unsigned int block_count[2]; /* # of allocated blocks */
1300 atomic_t inplace_count; /* # of inplace update */
1301 atomic64_t total_hit_ext; /* # of lookup extent cache */
1302 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1303 atomic64_t read_hit_largest; /* # of hit largest extent node */
1304 atomic64_t read_hit_cached; /* # of hit cached extent node */
1305 atomic_t inline_xattr; /* # of inline_xattr inodes */
1306 atomic_t inline_inode; /* # of inline_data inodes */
1307 atomic_t inline_dir; /* # of inline_dentry inodes */
1308 atomic_t aw_cnt; /* # of atomic writes */
1309 atomic_t vw_cnt; /* # of volatile writes */
1310 atomic_t max_aw_cnt; /* max # of atomic writes */
1311 atomic_t max_vw_cnt; /* max # of volatile writes */
1312 int bg_gc; /* background gc calls */
1313 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1314 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1315 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1316#endif
1317 spinlock_t stat_lock; /* lock for stat operations */
1318
1319 /* For app/fs IO statistics */
1320 spinlock_t iostat_lock;
1321 unsigned long long write_iostat[NR_IO_TYPE];
1322 bool iostat_enable;
1323
1324 /* For sysfs suppport */
1325 struct kobject s_kobj;
1326 struct completion s_kobj_unregister;
1327
1328 /* For shrinker support */
1329 struct list_head s_list;
1330 int s_ndevs; /* number of devices */
1331 struct f2fs_dev_info *devs; /* for device list */
1332 unsigned int dirty_device; /* for checkpoint data flush */
1333 spinlock_t dev_lock; /* protect dirty_device */
1334 struct mutex umount_mutex;
1335 unsigned int shrinker_run_no;
1336
1337 /* For write statistics */
1338 u64 sectors_written_start;
1339 u64 kbytes_written;
1340
1341 /* Reference to checksum algorithm driver via cryptoapi */
1342 struct crypto_shash *s_chksum_driver;
1343
1344 /* Precomputed FS UUID checksum for seeding other checksums */
1345 __u32 s_chksum_seed;
1346};
1347
1348struct f2fs_private_dio {
1349 struct inode *inode;
1350 void *orig_private;
1351 bio_end_io_t *orig_end_io;
1352 bool write;
1353};
1354
1355#ifdef CONFIG_F2FS_FAULT_INJECTION
1356#define f2fs_show_injection_info(type) \
1357 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n", \
1358 KERN_INFO, f2fs_fault_name[type], \
1359 __func__, __builtin_return_address(0))
1360static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1361{
1362 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1363
1364 if (!ffi->inject_rate)
1365 return false;
1366
1367 if (!IS_FAULT_SET(ffi, type))
1368 return false;
1369
1370 atomic_inc(&ffi->inject_ops);
1371 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1372 atomic_set(&ffi->inject_ops, 0);
1373 return true;
1374 }
1375 return false;
1376}
1377#else
1378#define f2fs_show_injection_info(type) do { } while (0)
1379static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1380{
1381 return false;
1382}
1383#endif
1384
1385/*
1386 * Test if the mounted volume is a multi-device volume.
1387 * - For a single regular disk volume, sbi->s_ndevs is 0.
1388 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1389 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1390 */
1391static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1392{
1393 return sbi->s_ndevs > 1;
1394}
1395
1396/* For write statistics. Suppose sector size is 512 bytes,
1397 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1398 */
1399#define BD_PART_WRITTEN(s) \
1400(((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1401 (s)->sectors_written_start) >> 1)
1402
1403static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1404{
1405 unsigned long now = jiffies;
1406
1407 sbi->last_time[type] = now;
1408
1409 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1410 if (type == REQ_TIME) {
1411 sbi->last_time[DISCARD_TIME] = now;
1412 sbi->last_time[GC_TIME] = now;
1413 }
1414}
1415
1416static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1417{
1418 unsigned long interval = sbi->interval_time[type] * HZ;
1419
1420 return time_after(jiffies, sbi->last_time[type] + interval);
1421}
1422
1423static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1424 int type)
1425{
1426 unsigned long interval = sbi->interval_time[type] * HZ;
1427 unsigned int wait_ms = 0;
1428 long delta;
1429
1430 delta = (sbi->last_time[type] + interval) - jiffies;
1431 if (delta > 0)
1432 wait_ms = jiffies_to_msecs(delta);
1433
1434 return wait_ms;
1435}
1436
1437/*
1438 * Inline functions
1439 */
1440static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1441 const void *address, unsigned int length)
1442{
1443 struct {
1444 struct shash_desc shash;
1445 char ctx[4];
1446 } desc;
1447 int err;
1448
1449 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1450
1451 desc.shash.tfm = sbi->s_chksum_driver;
1452 *(u32 *)desc.ctx = crc;
1453
1454 err = crypto_shash_update(&desc.shash, address, length);
1455 BUG_ON(err);
1456
1457 return *(u32 *)desc.ctx;
1458}
1459
1460static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1461 unsigned int length)
1462{
1463 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1464}
1465
1466static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1467 void *buf, size_t buf_size)
1468{
1469 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1470}
1471
1472static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1473 const void *address, unsigned int length)
1474{
1475 return __f2fs_crc32(sbi, crc, address, length);
1476}
1477
1478static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1479{
1480 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1481}
1482
1483static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1484{
1485 return sb->s_fs_info;
1486}
1487
1488static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1489{
1490 return F2FS_SB(inode->i_sb);
1491}
1492
1493static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1494{
1495 return F2FS_I_SB(mapping->host);
1496}
1497
1498static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1499{
1500 return F2FS_M_SB(page->mapping);
1501}
1502
1503static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1504{
1505 return (struct f2fs_super_block *)(sbi->raw_super);
1506}
1507
1508static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1509{
1510 return (struct f2fs_checkpoint *)(sbi->ckpt);
1511}
1512
1513static inline struct f2fs_node *F2FS_NODE(struct page *page)
1514{
1515 return (struct f2fs_node *)page_address(page);
1516}
1517
1518static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1519{
1520 return &((struct f2fs_node *)page_address(page))->i;
1521}
1522
1523static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1524{
1525 return (struct f2fs_nm_info *)(sbi->nm_info);
1526}
1527
1528static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1529{
1530 return (struct f2fs_sm_info *)(sbi->sm_info);
1531}
1532
1533static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1534{
1535 return (struct sit_info *)(SM_I(sbi)->sit_info);
1536}
1537
1538static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1539{
1540 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1541}
1542
1543static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1544{
1545 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1546}
1547
1548static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1549{
1550 return sbi->meta_inode->i_mapping;
1551}
1552
1553static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1554{
1555 return sbi->node_inode->i_mapping;
1556}
1557
1558static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1559{
1560 return test_bit(type, &sbi->s_flag);
1561}
1562
1563static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1564{
1565 set_bit(type, &sbi->s_flag);
1566}
1567
1568static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1569{
1570 clear_bit(type, &sbi->s_flag);
1571}
1572
1573static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1574{
1575 return le64_to_cpu(cp->checkpoint_ver);
1576}
1577
1578static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1579{
1580 if (type < F2FS_MAX_QUOTAS)
1581 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1582 return 0;
1583}
1584
1585static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1586{
1587 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1588 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1589}
1590
1591static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1592{
1593 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1594
1595 return ckpt_flags & f;
1596}
1597
1598static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1599{
1600 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1601}
1602
1603static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1604{
1605 unsigned int ckpt_flags;
1606
1607 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1608 ckpt_flags |= f;
1609 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1610}
1611
1612static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1613{
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&sbi->cp_lock, flags);
1617 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1618 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1619}
1620
1621static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1622{
1623 unsigned int ckpt_flags;
1624
1625 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1626 ckpt_flags &= (~f);
1627 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1628}
1629
1630static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1631{
1632 unsigned long flags;
1633
1634 spin_lock_irqsave(&sbi->cp_lock, flags);
1635 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1636 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1637}
1638
1639static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1640{
1641 unsigned long flags;
1642
1643 /*
1644 * In order to re-enable nat_bits we need to call fsck.f2fs by
1645 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1646 * so let's rely on regular fsck or unclean shutdown.
1647 */
1648
1649 if (lock)
1650 spin_lock_irqsave(&sbi->cp_lock, flags);
1651 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1652 kvfree(NM_I(sbi)->nat_bits);
1653 NM_I(sbi)->nat_bits = NULL;
1654 if (lock)
1655 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1656}
1657
1658static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1659 struct cp_control *cpc)
1660{
1661 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1662
1663 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1664}
1665
1666static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1667{
1668 down_read(&sbi->cp_rwsem);
1669}
1670
1671static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1672{
1673 return down_read_trylock(&sbi->cp_rwsem);
1674}
1675
1676static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1677{
1678 up_read(&sbi->cp_rwsem);
1679}
1680
1681static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1682{
1683 down_write(&sbi->cp_rwsem);
1684}
1685
1686static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1687{
1688 up_write(&sbi->cp_rwsem);
1689}
1690
1691static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1692{
1693 int reason = CP_SYNC;
1694
1695 if (test_opt(sbi, FASTBOOT))
1696 reason = CP_FASTBOOT;
1697 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1698 reason = CP_UMOUNT;
1699 return reason;
1700}
1701
1702static inline bool __remain_node_summaries(int reason)
1703{
1704 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1705}
1706
1707static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1708{
1709 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1710 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1711}
1712
1713/*
1714 * Check whether the inode has blocks or not
1715 */
1716static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1717{
1718 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1719
1720 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1721}
1722
1723static inline bool f2fs_has_xattr_block(unsigned int ofs)
1724{
1725 return ofs == XATTR_NODE_OFFSET;
1726}
1727
1728static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1729 struct inode *inode, bool cap)
1730{
1731 if (!inode)
1732 return true;
1733 if (!test_opt(sbi, RESERVE_ROOT))
1734 return false;
1735 if (IS_NOQUOTA(inode))
1736 return true;
1737 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1738 return true;
1739 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1740 in_group_p(F2FS_OPTION(sbi).s_resgid))
1741 return true;
1742 if (cap && capable(CAP_SYS_RESOURCE))
1743 return true;
1744 return false;
1745}
1746
1747static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1748static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1749 struct inode *inode, blkcnt_t *count)
1750{
1751 blkcnt_t diff = 0, release = 0;
1752 block_t avail_user_block_count;
1753 int ret;
1754
1755 ret = dquot_reserve_block(inode, *count);
1756 if (ret)
1757 return ret;
1758
1759 if (time_to_inject(sbi, FAULT_BLOCK)) {
1760 f2fs_show_injection_info(FAULT_BLOCK);
1761 release = *count;
1762 goto enospc;
1763 }
1764
1765 /*
1766 * let's increase this in prior to actual block count change in order
1767 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1768 */
1769 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1770
1771 spin_lock(&sbi->stat_lock);
1772 sbi->total_valid_block_count += (block_t)(*count);
1773 avail_user_block_count = sbi->user_block_count -
1774 sbi->current_reserved_blocks;
1775
1776 if (!__allow_reserved_blocks(sbi, inode, true))
1777 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1778 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1779 if (avail_user_block_count > sbi->unusable_block_count)
1780 avail_user_block_count -= sbi->unusable_block_count;
1781 else
1782 avail_user_block_count = 0;
1783 }
1784 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1785 diff = sbi->total_valid_block_count - avail_user_block_count;
1786 if (diff > *count)
1787 diff = *count;
1788 *count -= diff;
1789 release = diff;
1790 sbi->total_valid_block_count -= diff;
1791 if (!*count) {
1792 spin_unlock(&sbi->stat_lock);
1793 goto enospc;
1794 }
1795 }
1796 spin_unlock(&sbi->stat_lock);
1797
1798 if (unlikely(release)) {
1799 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1800 dquot_release_reservation_block(inode, release);
1801 }
1802 f2fs_i_blocks_write(inode, *count, true, true);
1803 return 0;
1804
1805enospc:
1806 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1807 dquot_release_reservation_block(inode, release);
1808 return -ENOSPC;
1809}
1810
1811void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
1812static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1813 struct inode *inode,
1814 block_t count)
1815{
1816 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1817
1818 spin_lock(&sbi->stat_lock);
1819 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1820 sbi->total_valid_block_count -= (block_t)count;
1821 if (sbi->reserved_blocks &&
1822 sbi->current_reserved_blocks < sbi->reserved_blocks)
1823 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1824 sbi->current_reserved_blocks + count);
1825 spin_unlock(&sbi->stat_lock);
1826 if (unlikely(inode->i_blocks < sectors)) {
1827 f2fs_msg(sbi->sb, KERN_WARNING,
1828 "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1829 inode->i_ino,
1830 (unsigned long long)inode->i_blocks,
1831 (unsigned long long)sectors);
1832 set_sbi_flag(sbi, SBI_NEED_FSCK);
1833 return;
1834 }
1835 f2fs_i_blocks_write(inode, count, false, true);
1836}
1837
1838static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1839{
1840 atomic_inc(&sbi->nr_pages[count_type]);
1841
1842 if (count_type == F2FS_DIRTY_DENTS ||
1843 count_type == F2FS_DIRTY_NODES ||
1844 count_type == F2FS_DIRTY_META ||
1845 count_type == F2FS_DIRTY_QDATA ||
1846 count_type == F2FS_DIRTY_IMETA)
1847 set_sbi_flag(sbi, SBI_IS_DIRTY);
1848}
1849
1850static inline void inode_inc_dirty_pages(struct inode *inode)
1851{
1852 atomic_inc(&F2FS_I(inode)->dirty_pages);
1853 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1854 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1855 if (IS_NOQUOTA(inode))
1856 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1857}
1858
1859static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1860{
1861 atomic_dec(&sbi->nr_pages[count_type]);
1862}
1863
1864static inline void inode_dec_dirty_pages(struct inode *inode)
1865{
1866 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1867 !S_ISLNK(inode->i_mode))
1868 return;
1869
1870 atomic_dec(&F2FS_I(inode)->dirty_pages);
1871 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1872 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1873 if (IS_NOQUOTA(inode))
1874 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1875}
1876
1877static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1878{
1879 return atomic_read(&sbi->nr_pages[count_type]);
1880}
1881
1882static inline int get_dirty_pages(struct inode *inode)
1883{
1884 return atomic_read(&F2FS_I(inode)->dirty_pages);
1885}
1886
1887static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1888{
1889 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1890 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1891 sbi->log_blocks_per_seg;
1892
1893 return segs / sbi->segs_per_sec;
1894}
1895
1896static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1897{
1898 return sbi->total_valid_block_count;
1899}
1900
1901static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1902{
1903 return sbi->discard_blks;
1904}
1905
1906static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1907{
1908 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1909
1910 /* return NAT or SIT bitmap */
1911 if (flag == NAT_BITMAP)
1912 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1913 else if (flag == SIT_BITMAP)
1914 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1915
1916 return 0;
1917}
1918
1919static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1920{
1921 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1922}
1923
1924static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1925{
1926 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1927 int offset;
1928
1929 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1930 offset = (flag == SIT_BITMAP) ?
1931 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1932 /*
1933 * if large_nat_bitmap feature is enabled, leave checksum
1934 * protection for all nat/sit bitmaps.
1935 */
1936 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1937 }
1938
1939 if (__cp_payload(sbi) > 0) {
1940 if (flag == NAT_BITMAP)
1941 return &ckpt->sit_nat_version_bitmap;
1942 else
1943 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1944 } else {
1945 offset = (flag == NAT_BITMAP) ?
1946 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1947 return &ckpt->sit_nat_version_bitmap + offset;
1948 }
1949}
1950
1951static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1952{
1953 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1954
1955 if (sbi->cur_cp_pack == 2)
1956 start_addr += sbi->blocks_per_seg;
1957 return start_addr;
1958}
1959
1960static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1961{
1962 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1963
1964 if (sbi->cur_cp_pack == 1)
1965 start_addr += sbi->blocks_per_seg;
1966 return start_addr;
1967}
1968
1969static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1970{
1971 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1972}
1973
1974static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1975{
1976 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1977}
1978
1979static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1980 struct inode *inode, bool is_inode)
1981{
1982 block_t valid_block_count;
1983 unsigned int valid_node_count, user_block_count;
1984 int err;
1985
1986 if (is_inode) {
1987 if (inode) {
1988 err = dquot_alloc_inode(inode);
1989 if (err)
1990 return err;
1991 }
1992 } else {
1993 err = dquot_reserve_block(inode, 1);
1994 if (err)
1995 return err;
1996 }
1997
1998 if (time_to_inject(sbi, FAULT_BLOCK)) {
1999 f2fs_show_injection_info(FAULT_BLOCK);
2000 goto enospc;
2001 }
2002
2003 spin_lock(&sbi->stat_lock);
2004
2005 valid_block_count = sbi->total_valid_block_count +
2006 sbi->current_reserved_blocks + 1;
2007
2008 if (!__allow_reserved_blocks(sbi, inode, false))
2009 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2010 user_block_count = sbi->user_block_count;
2011 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2012 user_block_count -= sbi->unusable_block_count;
2013
2014 if (unlikely(valid_block_count > user_block_count)) {
2015 spin_unlock(&sbi->stat_lock);
2016 goto enospc;
2017 }
2018
2019 valid_node_count = sbi->total_valid_node_count + 1;
2020 if (unlikely(valid_node_count > sbi->total_node_count)) {
2021 spin_unlock(&sbi->stat_lock);
2022 goto enospc;
2023 }
2024
2025 sbi->total_valid_node_count++;
2026 sbi->total_valid_block_count++;
2027 spin_unlock(&sbi->stat_lock);
2028
2029 if (inode) {
2030 if (is_inode)
2031 f2fs_mark_inode_dirty_sync(inode, true);
2032 else
2033 f2fs_i_blocks_write(inode, 1, true, true);
2034 }
2035
2036 percpu_counter_inc(&sbi->alloc_valid_block_count);
2037 return 0;
2038
2039enospc:
2040 if (is_inode) {
2041 if (inode)
2042 dquot_free_inode(inode);
2043 } else {
2044 dquot_release_reservation_block(inode, 1);
2045 }
2046 return -ENOSPC;
2047}
2048
2049static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2050 struct inode *inode, bool is_inode)
2051{
2052 spin_lock(&sbi->stat_lock);
2053
2054 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2055 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2056
2057 sbi->total_valid_node_count--;
2058 sbi->total_valid_block_count--;
2059 if (sbi->reserved_blocks &&
2060 sbi->current_reserved_blocks < sbi->reserved_blocks)
2061 sbi->current_reserved_blocks++;
2062
2063 spin_unlock(&sbi->stat_lock);
2064
2065 if (is_inode) {
2066 dquot_free_inode(inode);
2067 } else {
2068 if (unlikely(inode->i_blocks == 0)) {
2069 f2fs_msg(sbi->sb, KERN_WARNING,
2070 "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2071 inode->i_ino,
2072 (unsigned long long)inode->i_blocks);
2073 set_sbi_flag(sbi, SBI_NEED_FSCK);
2074 return;
2075 }
2076 f2fs_i_blocks_write(inode, 1, false, true);
2077 }
2078}
2079
2080static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2081{
2082 return sbi->total_valid_node_count;
2083}
2084
2085static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2086{
2087 percpu_counter_inc(&sbi->total_valid_inode_count);
2088}
2089
2090static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2091{
2092 percpu_counter_dec(&sbi->total_valid_inode_count);
2093}
2094
2095static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2096{
2097 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2098}
2099
2100static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2101 pgoff_t index, bool for_write)
2102{
2103 struct page *page;
2104
2105 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2106 if (!for_write)
2107 page = find_get_page_flags(mapping, index,
2108 FGP_LOCK | FGP_ACCESSED);
2109 else
2110 page = find_lock_page(mapping, index);
2111 if (page)
2112 return page;
2113
2114 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2115 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2116 return NULL;
2117 }
2118 }
2119
2120 if (!for_write)
2121 return grab_cache_page(mapping, index);
2122 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2123}
2124
2125static inline struct page *f2fs_pagecache_get_page(
2126 struct address_space *mapping, pgoff_t index,
2127 int fgp_flags, gfp_t gfp_mask)
2128{
2129 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2130 f2fs_show_injection_info(FAULT_PAGE_GET);
2131 return NULL;
2132 }
2133
2134 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2135}
2136
2137static inline void f2fs_copy_page(struct page *src, struct page *dst)
2138{
2139 char *src_kaddr = kmap(src);
2140 char *dst_kaddr = kmap(dst);
2141
2142 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2143 kunmap(dst);
2144 kunmap(src);
2145}
2146
2147static inline void f2fs_put_page(struct page *page, int unlock)
2148{
2149 if (!page)
2150 return;
2151
2152 if (unlock) {
2153 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2154 unlock_page(page);
2155 }
2156 put_page(page);
2157}
2158
2159static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2160{
2161 if (dn->node_page)
2162 f2fs_put_page(dn->node_page, 1);
2163 if (dn->inode_page && dn->node_page != dn->inode_page)
2164 f2fs_put_page(dn->inode_page, 0);
2165 dn->node_page = NULL;
2166 dn->inode_page = NULL;
2167}
2168
2169static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2170 size_t size)
2171{
2172 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2173}
2174
2175static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2176 gfp_t flags)
2177{
2178 void *entry;
2179
2180 entry = kmem_cache_alloc(cachep, flags);
2181 if (!entry)
2182 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2183 return entry;
2184}
2185
2186static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2187 int npages, bool no_fail)
2188{
2189 struct bio *bio;
2190
2191 if (no_fail) {
2192 /* No failure on bio allocation */
2193 bio = bio_alloc(GFP_NOIO, npages);
2194 if (!bio)
2195 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2196 return bio;
2197 }
2198 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2199 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2200 return NULL;
2201 }
2202
2203 return bio_alloc(GFP_KERNEL, npages);
2204}
2205
2206static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2207{
2208 if (sbi->gc_mode == GC_URGENT)
2209 return true;
2210
2211 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2212 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2213 get_pages(sbi, F2FS_WB_CP_DATA) ||
2214 get_pages(sbi, F2FS_DIO_READ) ||
2215 get_pages(sbi, F2FS_DIO_WRITE))
2216 return false;
2217
2218 if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2219 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2220 return false;
2221
2222 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2223 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2224 return false;
2225
2226 return f2fs_time_over(sbi, type);
2227}
2228
2229static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2230 unsigned long index, void *item)
2231{
2232 while (radix_tree_insert(root, index, item))
2233 cond_resched();
2234}
2235
2236#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2237
2238static inline bool IS_INODE(struct page *page)
2239{
2240 struct f2fs_node *p = F2FS_NODE(page);
2241
2242 return RAW_IS_INODE(p);
2243}
2244
2245static inline int offset_in_addr(struct f2fs_inode *i)
2246{
2247 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2248 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2249}
2250
2251static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2252{
2253 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2254}
2255
2256static inline int f2fs_has_extra_attr(struct inode *inode);
2257static inline block_t datablock_addr(struct inode *inode,
2258 struct page *node_page, unsigned int offset)
2259{
2260 struct f2fs_node *raw_node;
2261 __le32 *addr_array;
2262 int base = 0;
2263 bool is_inode = IS_INODE(node_page);
2264
2265 raw_node = F2FS_NODE(node_page);
2266
2267 /* from GC path only */
2268 if (is_inode) {
2269 if (!inode)
2270 base = offset_in_addr(&raw_node->i);
2271 else if (f2fs_has_extra_attr(inode))
2272 base = get_extra_isize(inode);
2273 }
2274
2275 addr_array = blkaddr_in_node(raw_node);
2276 return le32_to_cpu(addr_array[base + offset]);
2277}
2278
2279static inline int f2fs_test_bit(unsigned int nr, char *addr)
2280{
2281 int mask;
2282
2283 addr += (nr >> 3);
2284 mask = 1 << (7 - (nr & 0x07));
2285 return mask & *addr;
2286}
2287
2288static inline void f2fs_set_bit(unsigned int nr, char *addr)
2289{
2290 int mask;
2291
2292 addr += (nr >> 3);
2293 mask = 1 << (7 - (nr & 0x07));
2294 *addr |= mask;
2295}
2296
2297static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2298{
2299 int mask;
2300
2301 addr += (nr >> 3);
2302 mask = 1 << (7 - (nr & 0x07));
2303 *addr &= ~mask;
2304}
2305
2306static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2307{
2308 int mask;
2309 int ret;
2310
2311 addr += (nr >> 3);
2312 mask = 1 << (7 - (nr & 0x07));
2313 ret = mask & *addr;
2314 *addr |= mask;
2315 return ret;
2316}
2317
2318static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2319{
2320 int mask;
2321 int ret;
2322
2323 addr += (nr >> 3);
2324 mask = 1 << (7 - (nr & 0x07));
2325 ret = mask & *addr;
2326 *addr &= ~mask;
2327 return ret;
2328}
2329
2330static inline void f2fs_change_bit(unsigned int nr, char *addr)
2331{
2332 int mask;
2333
2334 addr += (nr >> 3);
2335 mask = 1 << (7 - (nr & 0x07));
2336 *addr ^= mask;
2337}
2338
2339/*
2340 * On-disk inode flags (f2fs_inode::i_flags)
2341 */
2342#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2343#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2344#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2345#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2346#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2347#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2348#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2349#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2350
2351/* Flags that should be inherited by new inodes from their parent. */
2352#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2353 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL)
2354
2355/* Flags that are appropriate for regular files (all but dir-specific ones). */
2356#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL))
2357
2358/* Flags that are appropriate for non-directories/regular files. */
2359#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2360
2361static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2362{
2363 if (S_ISDIR(mode))
2364 return flags;
2365 else if (S_ISREG(mode))
2366 return flags & F2FS_REG_FLMASK;
2367 else
2368 return flags & F2FS_OTHER_FLMASK;
2369}
2370
2371/* used for f2fs_inode_info->flags */
2372enum {
2373 FI_NEW_INODE, /* indicate newly allocated inode */
2374 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2375 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2376 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2377 FI_INC_LINK, /* need to increment i_nlink */
2378 FI_ACL_MODE, /* indicate acl mode */
2379 FI_NO_ALLOC, /* should not allocate any blocks */
2380 FI_FREE_NID, /* free allocated nide */
2381 FI_NO_EXTENT, /* not to use the extent cache */
2382 FI_INLINE_XATTR, /* used for inline xattr */
2383 FI_INLINE_DATA, /* used for inline data*/
2384 FI_INLINE_DENTRY, /* used for inline dentry */
2385 FI_APPEND_WRITE, /* inode has appended data */
2386 FI_UPDATE_WRITE, /* inode has in-place-update data */
2387 FI_NEED_IPU, /* used for ipu per file */
2388 FI_ATOMIC_FILE, /* indicate atomic file */
2389 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2390 FI_VOLATILE_FILE, /* indicate volatile file */
2391 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2392 FI_DROP_CACHE, /* drop dirty page cache */
2393 FI_DATA_EXIST, /* indicate data exists */
2394 FI_INLINE_DOTS, /* indicate inline dot dentries */
2395 FI_DO_DEFRAG, /* indicate defragment is running */
2396 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2397 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2398 FI_HOT_DATA, /* indicate file is hot */
2399 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2400 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2401 FI_PIN_FILE, /* indicate file should not be gced */
2402 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2403};
2404
2405static inline void __mark_inode_dirty_flag(struct inode *inode,
2406 int flag, bool set)
2407{
2408 switch (flag) {
2409 case FI_INLINE_XATTR:
2410 case FI_INLINE_DATA:
2411 case FI_INLINE_DENTRY:
2412 case FI_NEW_INODE:
2413 if (set)
2414 return;
2415 /* fall through */
2416 case FI_DATA_EXIST:
2417 case FI_INLINE_DOTS:
2418 case FI_PIN_FILE:
2419 f2fs_mark_inode_dirty_sync(inode, true);
2420 }
2421}
2422
2423static inline void set_inode_flag(struct inode *inode, int flag)
2424{
2425 if (!test_bit(flag, &F2FS_I(inode)->flags))
2426 set_bit(flag, &F2FS_I(inode)->flags);
2427 __mark_inode_dirty_flag(inode, flag, true);
2428}
2429
2430static inline int is_inode_flag_set(struct inode *inode, int flag)
2431{
2432 return test_bit(flag, &F2FS_I(inode)->flags);
2433}
2434
2435static inline void clear_inode_flag(struct inode *inode, int flag)
2436{
2437 if (test_bit(flag, &F2FS_I(inode)->flags))
2438 clear_bit(flag, &F2FS_I(inode)->flags);
2439 __mark_inode_dirty_flag(inode, flag, false);
2440}
2441
2442static inline void set_acl_inode(struct inode *inode, umode_t mode)
2443{
2444 F2FS_I(inode)->i_acl_mode = mode;
2445 set_inode_flag(inode, FI_ACL_MODE);
2446 f2fs_mark_inode_dirty_sync(inode, false);
2447}
2448
2449static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2450{
2451 if (inc)
2452 inc_nlink(inode);
2453 else
2454 drop_nlink(inode);
2455 f2fs_mark_inode_dirty_sync(inode, true);
2456}
2457
2458static inline void f2fs_i_blocks_write(struct inode *inode,
2459 block_t diff, bool add, bool claim)
2460{
2461 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2462 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2463
2464 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2465 if (add) {
2466 if (claim)
2467 dquot_claim_block(inode, diff);
2468 else
2469 dquot_alloc_block_nofail(inode, diff);
2470 } else {
2471 dquot_free_block(inode, diff);
2472 }
2473
2474 f2fs_mark_inode_dirty_sync(inode, true);
2475 if (clean || recover)
2476 set_inode_flag(inode, FI_AUTO_RECOVER);
2477}
2478
2479static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2480{
2481 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2482 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2483
2484 if (i_size_read(inode) == i_size)
2485 return;
2486
2487 i_size_write(inode, i_size);
2488 f2fs_mark_inode_dirty_sync(inode, true);
2489 if (clean || recover)
2490 set_inode_flag(inode, FI_AUTO_RECOVER);
2491}
2492
2493static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2494{
2495 F2FS_I(inode)->i_current_depth = depth;
2496 f2fs_mark_inode_dirty_sync(inode, true);
2497}
2498
2499static inline void f2fs_i_gc_failures_write(struct inode *inode,
2500 unsigned int count)
2501{
2502 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2503 f2fs_mark_inode_dirty_sync(inode, true);
2504}
2505
2506static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2507{
2508 F2FS_I(inode)->i_xattr_nid = xnid;
2509 f2fs_mark_inode_dirty_sync(inode, true);
2510}
2511
2512static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2513{
2514 F2FS_I(inode)->i_pino = pino;
2515 f2fs_mark_inode_dirty_sync(inode, true);
2516}
2517
2518static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2519{
2520 struct f2fs_inode_info *fi = F2FS_I(inode);
2521
2522 if (ri->i_inline & F2FS_INLINE_XATTR)
2523 set_bit(FI_INLINE_XATTR, &fi->flags);
2524 if (ri->i_inline & F2FS_INLINE_DATA)
2525 set_bit(FI_INLINE_DATA, &fi->flags);
2526 if (ri->i_inline & F2FS_INLINE_DENTRY)
2527 set_bit(FI_INLINE_DENTRY, &fi->flags);
2528 if (ri->i_inline & F2FS_DATA_EXIST)
2529 set_bit(FI_DATA_EXIST, &fi->flags);
2530 if (ri->i_inline & F2FS_INLINE_DOTS)
2531 set_bit(FI_INLINE_DOTS, &fi->flags);
2532 if (ri->i_inline & F2FS_EXTRA_ATTR)
2533 set_bit(FI_EXTRA_ATTR, &fi->flags);
2534 if (ri->i_inline & F2FS_PIN_FILE)
2535 set_bit(FI_PIN_FILE, &fi->flags);
2536}
2537
2538static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2539{
2540 ri->i_inline = 0;
2541
2542 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2543 ri->i_inline |= F2FS_INLINE_XATTR;
2544 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2545 ri->i_inline |= F2FS_INLINE_DATA;
2546 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2547 ri->i_inline |= F2FS_INLINE_DENTRY;
2548 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2549 ri->i_inline |= F2FS_DATA_EXIST;
2550 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2551 ri->i_inline |= F2FS_INLINE_DOTS;
2552 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2553 ri->i_inline |= F2FS_EXTRA_ATTR;
2554 if (is_inode_flag_set(inode, FI_PIN_FILE))
2555 ri->i_inline |= F2FS_PIN_FILE;
2556}
2557
2558static inline int f2fs_has_extra_attr(struct inode *inode)
2559{
2560 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2561}
2562
2563static inline int f2fs_has_inline_xattr(struct inode *inode)
2564{
2565 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2566}
2567
2568static inline unsigned int addrs_per_inode(struct inode *inode)
2569{
2570 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2571 get_inline_xattr_addrs(inode);
2572 return ALIGN_DOWN(addrs, 1);
2573}
2574
2575static inline unsigned int addrs_per_block(struct inode *inode)
2576{
2577 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2578}
2579
2580static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2581{
2582 struct f2fs_inode *ri = F2FS_INODE(page);
2583
2584 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2585 get_inline_xattr_addrs(inode)]);
2586}
2587
2588static inline int inline_xattr_size(struct inode *inode)
2589{
2590 if (f2fs_has_inline_xattr(inode))
2591 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2592 return 0;
2593}
2594
2595static inline int f2fs_has_inline_data(struct inode *inode)
2596{
2597 return is_inode_flag_set(inode, FI_INLINE_DATA);
2598}
2599
2600static inline int f2fs_exist_data(struct inode *inode)
2601{
2602 return is_inode_flag_set(inode, FI_DATA_EXIST);
2603}
2604
2605static inline int f2fs_has_inline_dots(struct inode *inode)
2606{
2607 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2608}
2609
2610static inline bool f2fs_is_pinned_file(struct inode *inode)
2611{
2612 return is_inode_flag_set(inode, FI_PIN_FILE);
2613}
2614
2615static inline bool f2fs_is_atomic_file(struct inode *inode)
2616{
2617 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2618}
2619
2620static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2621{
2622 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2623}
2624
2625static inline bool f2fs_is_volatile_file(struct inode *inode)
2626{
2627 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2628}
2629
2630static inline bool f2fs_is_first_block_written(struct inode *inode)
2631{
2632 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2633}
2634
2635static inline bool f2fs_is_drop_cache(struct inode *inode)
2636{
2637 return is_inode_flag_set(inode, FI_DROP_CACHE);
2638}
2639
2640static inline void *inline_data_addr(struct inode *inode, struct page *page)
2641{
2642 struct f2fs_inode *ri = F2FS_INODE(page);
2643 int extra_size = get_extra_isize(inode);
2644
2645 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2646}
2647
2648static inline int f2fs_has_inline_dentry(struct inode *inode)
2649{
2650 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2651}
2652
2653static inline int is_file(struct inode *inode, int type)
2654{
2655 return F2FS_I(inode)->i_advise & type;
2656}
2657
2658static inline void set_file(struct inode *inode, int type)
2659{
2660 F2FS_I(inode)->i_advise |= type;
2661 f2fs_mark_inode_dirty_sync(inode, true);
2662}
2663
2664static inline void clear_file(struct inode *inode, int type)
2665{
2666 F2FS_I(inode)->i_advise &= ~type;
2667 f2fs_mark_inode_dirty_sync(inode, true);
2668}
2669
2670static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2671{
2672 bool ret;
2673
2674 if (dsync) {
2675 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2676
2677 spin_lock(&sbi->inode_lock[DIRTY_META]);
2678 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2679 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2680 return ret;
2681 }
2682 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2683 file_keep_isize(inode) ||
2684 i_size_read(inode) & ~PAGE_MASK)
2685 return false;
2686
2687 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2688 return false;
2689 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2690 return false;
2691 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2692 return false;
2693 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2694 &F2FS_I(inode)->i_crtime))
2695 return false;
2696
2697 down_read(&F2FS_I(inode)->i_sem);
2698 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2699 up_read(&F2FS_I(inode)->i_sem);
2700
2701 return ret;
2702}
2703
2704static inline bool f2fs_readonly(struct super_block *sb)
2705{
2706 return sb_rdonly(sb);
2707}
2708
2709static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2710{
2711 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2712}
2713
2714static inline bool is_dot_dotdot(const struct qstr *str)
2715{
2716 if (str->len == 1 && str->name[0] == '.')
2717 return true;
2718
2719 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2720 return true;
2721
2722 return false;
2723}
2724
2725static inline bool f2fs_may_extent_tree(struct inode *inode)
2726{
2727 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2728
2729 if (!test_opt(sbi, EXTENT_CACHE) ||
2730 is_inode_flag_set(inode, FI_NO_EXTENT))
2731 return false;
2732
2733 /*
2734 * for recovered files during mount do not create extents
2735 * if shrinker is not registered.
2736 */
2737 if (list_empty(&sbi->s_list))
2738 return false;
2739
2740 return S_ISREG(inode->i_mode);
2741}
2742
2743static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2744 size_t size, gfp_t flags)
2745{
2746 void *ret;
2747
2748 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2749 f2fs_show_injection_info(FAULT_KMALLOC);
2750 return NULL;
2751 }
2752
2753 ret = kmalloc(size, flags);
2754 if (ret)
2755 return ret;
2756
2757 return kvmalloc(size, flags);
2758}
2759
2760static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2761 size_t size, gfp_t flags)
2762{
2763 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2764}
2765
2766static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2767 size_t size, gfp_t flags)
2768{
2769 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2770 f2fs_show_injection_info(FAULT_KVMALLOC);
2771 return NULL;
2772 }
2773
2774 return kvmalloc(size, flags);
2775}
2776
2777static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2778 size_t size, gfp_t flags)
2779{
2780 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2781}
2782
2783static inline int get_extra_isize(struct inode *inode)
2784{
2785 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2786}
2787
2788static inline int get_inline_xattr_addrs(struct inode *inode)
2789{
2790 return F2FS_I(inode)->i_inline_xattr_size;
2791}
2792
2793#define f2fs_get_inode_mode(i) \
2794 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2795 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2796
2797#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2798 (offsetof(struct f2fs_inode, i_extra_end) - \
2799 offsetof(struct f2fs_inode, i_extra_isize)) \
2800
2801#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2802#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2803 ((offsetof(typeof(*(f2fs_inode)), field) + \
2804 sizeof((f2fs_inode)->field)) \
2805 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
2806
2807static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2808{
2809 int i;
2810
2811 spin_lock(&sbi->iostat_lock);
2812 for (i = 0; i < NR_IO_TYPE; i++)
2813 sbi->write_iostat[i] = 0;
2814 spin_unlock(&sbi->iostat_lock);
2815}
2816
2817static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2818 enum iostat_type type, unsigned long long io_bytes)
2819{
2820 if (!sbi->iostat_enable)
2821 return;
2822 spin_lock(&sbi->iostat_lock);
2823 sbi->write_iostat[type] += io_bytes;
2824
2825 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2826 sbi->write_iostat[APP_BUFFERED_IO] =
2827 sbi->write_iostat[APP_WRITE_IO] -
2828 sbi->write_iostat[APP_DIRECT_IO];
2829 spin_unlock(&sbi->iostat_lock);
2830}
2831
2832#define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
2833
2834#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2835
2836bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2837 block_t blkaddr, int type);
2838static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2839 block_t blkaddr, int type)
2840{
2841 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2842 f2fs_msg(sbi->sb, KERN_ERR,
2843 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2844 blkaddr, type);
2845 f2fs_bug_on(sbi, 1);
2846 }
2847}
2848
2849static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2850{
2851 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2852 return false;
2853 return true;
2854}
2855
2856static inline void f2fs_set_page_private(struct page *page,
2857 unsigned long data)
2858{
2859 if (PagePrivate(page))
2860 return;
2861
2862 get_page(page);
2863 SetPagePrivate(page);
2864 set_page_private(page, data);
2865}
2866
2867static inline void f2fs_clear_page_private(struct page *page)
2868{
2869 if (!PagePrivate(page))
2870 return;
2871
2872 set_page_private(page, 0);
2873 ClearPagePrivate(page);
2874 f2fs_put_page(page, 0);
2875}
2876
2877/*
2878 * file.c
2879 */
2880int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2881void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2882int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2883int f2fs_truncate(struct inode *inode);
2884int f2fs_getattr(const struct path *path, struct kstat *stat,
2885 u32 request_mask, unsigned int flags);
2886int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2887int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2888void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2889int f2fs_precache_extents(struct inode *inode);
2890long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2891long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2892int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2893int f2fs_pin_file_control(struct inode *inode, bool inc);
2894
2895/*
2896 * inode.c
2897 */
2898void f2fs_set_inode_flags(struct inode *inode);
2899bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2900void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2901struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2902struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2903int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2904void f2fs_update_inode(struct inode *inode, struct page *node_page);
2905void f2fs_update_inode_page(struct inode *inode);
2906int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2907void f2fs_evict_inode(struct inode *inode);
2908void f2fs_handle_failed_inode(struct inode *inode);
2909
2910/*
2911 * namei.c
2912 */
2913int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2914 bool hot, bool set);
2915struct dentry *f2fs_get_parent(struct dentry *child);
2916
2917/*
2918 * dir.c
2919 */
2920unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2921struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2922 f2fs_hash_t namehash, int *max_slots,
2923 struct f2fs_dentry_ptr *d);
2924int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2925 unsigned int start_pos, struct fscrypt_str *fstr);
2926void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2927 struct f2fs_dentry_ptr *d);
2928struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2929 const struct qstr *new_name,
2930 const struct qstr *orig_name, struct page *dpage);
2931void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2932 unsigned int current_depth);
2933int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2934void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2935struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2936 struct fscrypt_name *fname, struct page **res_page);
2937struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2938 const struct qstr *child, struct page **res_page);
2939struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2940ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2941 struct page **page);
2942void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2943 struct page *page, struct inode *inode);
2944void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2945 const struct qstr *name, f2fs_hash_t name_hash,
2946 unsigned int bit_pos);
2947int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2948 const struct qstr *orig_name,
2949 struct inode *inode, nid_t ino, umode_t mode);
2950int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2951 struct inode *inode, nid_t ino, umode_t mode);
2952int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2953 struct inode *inode, nid_t ino, umode_t mode);
2954void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2955 struct inode *dir, struct inode *inode);
2956int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2957bool f2fs_empty_dir(struct inode *dir);
2958
2959static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2960{
2961 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2962 inode, inode->i_ino, inode->i_mode);
2963}
2964
2965/*
2966 * super.c
2967 */
2968int f2fs_inode_dirtied(struct inode *inode, bool sync);
2969void f2fs_inode_synced(struct inode *inode);
2970int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2971int f2fs_quota_sync(struct super_block *sb, int type);
2972void f2fs_quota_off_umount(struct super_block *sb);
2973int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2974int f2fs_sync_fs(struct super_block *sb, int sync);
2975extern __printf(3, 4)
2976void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2977int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2978
2979/*
2980 * hash.c
2981 */
2982f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2983 struct fscrypt_name *fname);
2984
2985/*
2986 * node.c
2987 */
2988struct dnode_of_data;
2989struct node_info;
2990
2991int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2992bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2993bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2994void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2995void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2996void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2997int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2998bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2999bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3000int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3001 struct node_info *ni);
3002pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3003int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3004int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3005int f2fs_truncate_xattr_node(struct inode *inode);
3006int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3007 unsigned int seq_id);
3008int f2fs_remove_inode_page(struct inode *inode);
3009struct page *f2fs_new_inode_page(struct inode *inode);
3010struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3011void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3012struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3013struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3014int f2fs_move_node_page(struct page *node_page, int gc_type);
3015int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3016 struct writeback_control *wbc, bool atomic,
3017 unsigned int *seq_id);
3018int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3019 struct writeback_control *wbc,
3020 bool do_balance, enum iostat_type io_type);
3021int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3022bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3023void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3024void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3025int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3026void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3027int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3028int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3029int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3030 unsigned int segno, struct f2fs_summary_block *sum);
3031int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3032int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3033void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3034int __init f2fs_create_node_manager_caches(void);
3035void f2fs_destroy_node_manager_caches(void);
3036
3037/*
3038 * segment.c
3039 */
3040bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3041void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3042void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3043void f2fs_drop_inmem_pages(struct inode *inode);
3044void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3045int f2fs_commit_inmem_pages(struct inode *inode);
3046void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3047void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3048int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3049int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3050int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3051void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3052void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3053bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3054void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3055void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3056bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3057void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3058 struct cp_control *cpc);
3059void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3060block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3061int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3062void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3063int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3064void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3065 unsigned int start, unsigned int end);
3066void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3067int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3068bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3069 struct cp_control *cpc);
3070struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3071void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3072 block_t blk_addr);
3073void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3074 enum iostat_type io_type);
3075void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3076void f2fs_outplace_write_data(struct dnode_of_data *dn,
3077 struct f2fs_io_info *fio);
3078int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3079void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3080 block_t old_blkaddr, block_t new_blkaddr,
3081 bool recover_curseg, bool recover_newaddr);
3082void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3083 block_t old_addr, block_t new_addr,
3084 unsigned char version, bool recover_curseg,
3085 bool recover_newaddr);
3086void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3087 block_t old_blkaddr, block_t *new_blkaddr,
3088 struct f2fs_summary *sum, int type,
3089 struct f2fs_io_info *fio, bool add_list);
3090void f2fs_wait_on_page_writeback(struct page *page,
3091 enum page_type type, bool ordered, bool locked);
3092void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3093void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3094 block_t len);
3095void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3096void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3097int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3098 unsigned int val, int alloc);
3099void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3100int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3101void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3102int __init f2fs_create_segment_manager_caches(void);
3103void f2fs_destroy_segment_manager_caches(void);
3104int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3105enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3106 enum page_type type, enum temp_type temp);
3107
3108/*
3109 * checkpoint.c
3110 */
3111void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3112struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3113struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3114struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3115struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3116bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3117 block_t blkaddr, int type);
3118int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3119 int type, bool sync);
3120void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3121long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3122 long nr_to_write, enum iostat_type io_type);
3123void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3124void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3125void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3126bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3127void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3128 unsigned int devidx, int type);
3129bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3130 unsigned int devidx, int type);
3131int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3132int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3133void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3134void f2fs_add_orphan_inode(struct inode *inode);
3135void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3136int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3137int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3138void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3139void f2fs_remove_dirty_inode(struct inode *inode);
3140int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3141void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3142int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3143void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3144int __init f2fs_create_checkpoint_caches(void);
3145void f2fs_destroy_checkpoint_caches(void);
3146
3147/*
3148 * data.c
3149 */
3150int f2fs_init_post_read_processing(void);
3151void f2fs_destroy_post_read_processing(void);
3152void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3153void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3154 struct inode *inode, struct page *page,
3155 nid_t ino, enum page_type type);
3156void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3157int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3158int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3159void f2fs_submit_page_write(struct f2fs_io_info *fio);
3160struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3161 block_t blk_addr, struct bio *bio);
3162int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3163void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3164void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3165int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3166int f2fs_reserve_new_block(struct dnode_of_data *dn);
3167int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3168int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3169int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3170struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3171 int op_flags, bool for_write);
3172struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3173struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3174 bool for_write);
3175struct page *f2fs_get_new_data_page(struct inode *inode,
3176 struct page *ipage, pgoff_t index, bool new_i_size);
3177int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3178void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3179int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3180 int create, int flag);
3181int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3182 u64 start, u64 len);
3183bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3184bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3185void f2fs_invalidate_page(struct page *page, unsigned int offset,
3186 unsigned int length);
3187int f2fs_release_page(struct page *page, gfp_t wait);
3188#ifdef CONFIG_MIGRATION
3189int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3190 struct page *page, enum migrate_mode mode);
3191#endif
3192bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3193void f2fs_clear_page_cache_dirty_tag(struct page *page);
3194
3195/*
3196 * gc.c
3197 */
3198int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3199void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3200block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3201int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3202 unsigned int segno);
3203void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3204int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3205
3206/*
3207 * recovery.c
3208 */
3209int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3210bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3211
3212/*
3213 * debug.c
3214 */
3215#ifdef CONFIG_F2FS_STAT_FS
3216struct f2fs_stat_info {
3217 struct list_head stat_list;
3218 struct f2fs_sb_info *sbi;
3219 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3220 int main_area_segs, main_area_sections, main_area_zones;
3221 unsigned long long hit_largest, hit_cached, hit_rbtree;
3222 unsigned long long hit_total, total_ext;
3223 int ext_tree, zombie_tree, ext_node;
3224 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3225 int ndirty_data, ndirty_qdata;
3226 int inmem_pages;
3227 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3228 int nats, dirty_nats, sits, dirty_sits;
3229 int free_nids, avail_nids, alloc_nids;
3230 int total_count, utilization;
3231 int bg_gc, nr_wb_cp_data, nr_wb_data;
3232 int nr_rd_data, nr_rd_node, nr_rd_meta;
3233 int nr_dio_read, nr_dio_write;
3234 unsigned int io_skip_bggc, other_skip_bggc;
3235 int nr_flushing, nr_flushed, flush_list_empty;
3236 int nr_discarding, nr_discarded;
3237 int nr_discard_cmd;
3238 unsigned int undiscard_blks;
3239 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3240 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3241 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3242 unsigned int bimodal, avg_vblocks;
3243 int util_free, util_valid, util_invalid;
3244 int rsvd_segs, overp_segs;
3245 int dirty_count, node_pages, meta_pages;
3246 int prefree_count, call_count, cp_count, bg_cp_count;
3247 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3248 int bg_node_segs, bg_data_segs;
3249 int tot_blks, data_blks, node_blks;
3250 int bg_data_blks, bg_node_blks;
3251 unsigned long long skipped_atomic_files[2];
3252 int curseg[NR_CURSEG_TYPE];
3253 int cursec[NR_CURSEG_TYPE];
3254 int curzone[NR_CURSEG_TYPE];
3255
3256 unsigned int meta_count[META_MAX];
3257 unsigned int segment_count[2];
3258 unsigned int block_count[2];
3259 unsigned int inplace_count;
3260 unsigned long long base_mem, cache_mem, page_mem;
3261};
3262
3263static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3264{
3265 return (struct f2fs_stat_info *)sbi->stat_info;
3266}
3267
3268#define stat_inc_cp_count(si) ((si)->cp_count++)
3269#define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3270#define stat_inc_call_count(si) ((si)->call_count++)
3271#define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3272#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3273#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3274#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3275#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3276#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3277#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3278#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3279#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3280#define stat_inc_inline_xattr(inode) \
3281 do { \
3282 if (f2fs_has_inline_xattr(inode)) \
3283 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3284 } while (0)
3285#define stat_dec_inline_xattr(inode) \
3286 do { \
3287 if (f2fs_has_inline_xattr(inode)) \
3288 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3289 } while (0)
3290#define stat_inc_inline_inode(inode) \
3291 do { \
3292 if (f2fs_has_inline_data(inode)) \
3293 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3294 } while (0)
3295#define stat_dec_inline_inode(inode) \
3296 do { \
3297 if (f2fs_has_inline_data(inode)) \
3298 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3299 } while (0)
3300#define stat_inc_inline_dir(inode) \
3301 do { \
3302 if (f2fs_has_inline_dentry(inode)) \
3303 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3304 } while (0)
3305#define stat_dec_inline_dir(inode) \
3306 do { \
3307 if (f2fs_has_inline_dentry(inode)) \
3308 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3309 } while (0)
3310#define stat_inc_meta_count(sbi, blkaddr) \
3311 do { \
3312 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3313 atomic_inc(&(sbi)->meta_count[META_CP]); \
3314 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3315 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3316 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3317 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3318 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3319 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3320 } while (0)
3321#define stat_inc_seg_type(sbi, curseg) \
3322 ((sbi)->segment_count[(curseg)->alloc_type]++)
3323#define stat_inc_block_count(sbi, curseg) \
3324 ((sbi)->block_count[(curseg)->alloc_type]++)
3325#define stat_inc_inplace_blocks(sbi) \
3326 (atomic_inc(&(sbi)->inplace_count))
3327#define stat_inc_atomic_write(inode) \
3328 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3329#define stat_dec_atomic_write(inode) \
3330 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3331#define stat_update_max_atomic_write(inode) \
3332 do { \
3333 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3334 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3335 if (cur > max) \
3336 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3337 } while (0)
3338#define stat_inc_volatile_write(inode) \
3339 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3340#define stat_dec_volatile_write(inode) \
3341 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3342#define stat_update_max_volatile_write(inode) \
3343 do { \
3344 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3345 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3346 if (cur > max) \
3347 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3348 } while (0)
3349#define stat_inc_seg_count(sbi, type, gc_type) \
3350 do { \
3351 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3352 si->tot_segs++; \
3353 if ((type) == SUM_TYPE_DATA) { \
3354 si->data_segs++; \
3355 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3356 } else { \
3357 si->node_segs++; \
3358 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3359 } \
3360 } while (0)
3361
3362#define stat_inc_tot_blk_count(si, blks) \
3363 ((si)->tot_blks += (blks))
3364
3365#define stat_inc_data_blk_count(sbi, blks, gc_type) \
3366 do { \
3367 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3368 stat_inc_tot_blk_count(si, blks); \
3369 si->data_blks += (blks); \
3370 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3371 } while (0)
3372
3373#define stat_inc_node_blk_count(sbi, blks, gc_type) \
3374 do { \
3375 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3376 stat_inc_tot_blk_count(si, blks); \
3377 si->node_blks += (blks); \
3378 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3379 } while (0)
3380
3381int f2fs_build_stats(struct f2fs_sb_info *sbi);
3382void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3383void __init f2fs_create_root_stats(void);
3384void f2fs_destroy_root_stats(void);
3385#else
3386#define stat_inc_cp_count(si) do { } while (0)
3387#define stat_inc_bg_cp_count(si) do { } while (0)
3388#define stat_inc_call_count(si) do { } while (0)
3389#define stat_inc_bggc_count(si) do { } while (0)
3390#define stat_io_skip_bggc_count(sbi) do { } while (0)
3391#define stat_other_skip_bggc_count(sbi) do { } while (0)
3392#define stat_inc_dirty_inode(sbi, type) do { } while (0)
3393#define stat_dec_dirty_inode(sbi, type) do { } while (0)
3394#define stat_inc_total_hit(sb) do { } while (0)
3395#define stat_inc_rbtree_node_hit(sb) do { } while (0)
3396#define stat_inc_largest_node_hit(sbi) do { } while (0)
3397#define stat_inc_cached_node_hit(sbi) do { } while (0)
3398#define stat_inc_inline_xattr(inode) do { } while (0)
3399#define stat_dec_inline_xattr(inode) do { } while (0)
3400#define stat_inc_inline_inode(inode) do { } while (0)
3401#define stat_dec_inline_inode(inode) do { } while (0)
3402#define stat_inc_inline_dir(inode) do { } while (0)
3403#define stat_dec_inline_dir(inode) do { } while (0)
3404#define stat_inc_atomic_write(inode) do { } while (0)
3405#define stat_dec_atomic_write(inode) do { } while (0)
3406#define stat_update_max_atomic_write(inode) do { } while (0)
3407#define stat_inc_volatile_write(inode) do { } while (0)
3408#define stat_dec_volatile_write(inode) do { } while (0)
3409#define stat_update_max_volatile_write(inode) do { } while (0)
3410#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3411#define stat_inc_seg_type(sbi, curseg) do { } while (0)
3412#define stat_inc_block_count(sbi, curseg) do { } while (0)
3413#define stat_inc_inplace_blocks(sbi) do { } while (0)
3414#define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3415#define stat_inc_tot_blk_count(si, blks) do { } while (0)
3416#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3417#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3418
3419static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3420static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3421static inline void __init f2fs_create_root_stats(void) { }
3422static inline void f2fs_destroy_root_stats(void) { }
3423#endif
3424
3425extern const struct file_operations f2fs_dir_operations;
3426extern const struct file_operations f2fs_file_operations;
3427extern const struct inode_operations f2fs_file_inode_operations;
3428extern const struct address_space_operations f2fs_dblock_aops;
3429extern const struct address_space_operations f2fs_node_aops;
3430extern const struct address_space_operations f2fs_meta_aops;
3431extern const struct inode_operations f2fs_dir_inode_operations;
3432extern const struct inode_operations f2fs_symlink_inode_operations;
3433extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3434extern const struct inode_operations f2fs_special_inode_operations;
3435extern struct kmem_cache *f2fs_inode_entry_slab;
3436
3437/*
3438 * inline.c
3439 */
3440bool f2fs_may_inline_data(struct inode *inode);
3441bool f2fs_may_inline_dentry(struct inode *inode);
3442void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3443void f2fs_truncate_inline_inode(struct inode *inode,
3444 struct page *ipage, u64 from);
3445int f2fs_read_inline_data(struct inode *inode, struct page *page);
3446int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3447int f2fs_convert_inline_inode(struct inode *inode);
3448int f2fs_write_inline_data(struct inode *inode, struct page *page);
3449bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3450struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3451 struct fscrypt_name *fname, struct page **res_page);
3452int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3453 struct page *ipage);
3454int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3455 const struct qstr *orig_name,
3456 struct inode *inode, nid_t ino, umode_t mode);
3457void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3458 struct page *page, struct inode *dir,
3459 struct inode *inode);
3460bool f2fs_empty_inline_dir(struct inode *dir);
3461int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3462 struct fscrypt_str *fstr);
3463int f2fs_inline_data_fiemap(struct inode *inode,
3464 struct fiemap_extent_info *fieinfo,
3465 __u64 start, __u64 len);
3466
3467/*
3468 * shrinker.c
3469 */
3470unsigned long f2fs_shrink_count(struct shrinker *shrink,
3471 struct shrink_control *sc);
3472unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3473 struct shrink_control *sc);
3474void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3475void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3476
3477/*
3478 * extent_cache.c
3479 */
3480struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3481 struct rb_entry *cached_re, unsigned int ofs);
3482struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3483 struct rb_root_cached *root,
3484 struct rb_node **parent,
3485 unsigned int ofs, bool *leftmost);
3486struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3487 struct rb_entry *cached_re, unsigned int ofs,
3488 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3489 struct rb_node ***insert_p, struct rb_node **insert_parent,
3490 bool force, bool *leftmost);
3491bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3492 struct rb_root_cached *root);
3493unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3494bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3495void f2fs_drop_extent_tree(struct inode *inode);
3496unsigned int f2fs_destroy_extent_node(struct inode *inode);
3497void f2fs_destroy_extent_tree(struct inode *inode);
3498bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3499 struct extent_info *ei);
3500void f2fs_update_extent_cache(struct dnode_of_data *dn);
3501void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3502 pgoff_t fofs, block_t blkaddr, unsigned int len);
3503void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3504int __init f2fs_create_extent_cache(void);
3505void f2fs_destroy_extent_cache(void);
3506
3507/*
3508 * sysfs.c
3509 */
3510int __init f2fs_init_sysfs(void);
3511void f2fs_exit_sysfs(void);
3512int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3513void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3514
3515/*
3516 * crypto support
3517 */
3518static inline bool f2fs_encrypted_file(struct inode *inode)
3519{
3520 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3521}
3522
3523static inline void f2fs_set_encrypted_inode(struct inode *inode)
3524{
3525#ifdef CONFIG_FS_ENCRYPTION
3526 file_set_encrypt(inode);
3527 f2fs_set_inode_flags(inode);
3528#endif
3529}
3530
3531/*
3532 * Returns true if the reads of the inode's data need to undergo some
3533 * postprocessing step, like decryption or authenticity verification.
3534 */
3535static inline bool f2fs_post_read_required(struct inode *inode)
3536{
3537 return f2fs_encrypted_file(inode);
3538}
3539
3540#define F2FS_FEATURE_FUNCS(name, flagname) \
3541static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3542{ \
3543 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3544}
3545
3546F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3547F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3548F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3549F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3550F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3551F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3552F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3553F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3554F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3555F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3556
3557#ifdef CONFIG_BLK_DEV_ZONED
3558static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3559 block_t blkaddr)
3560{
3561 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3562
3563 return test_bit(zno, FDEV(devi).blkz_seq);
3564}
3565#endif
3566
3567static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3568{
3569 return f2fs_sb_has_blkzoned(sbi);
3570}
3571
3572static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3573{
3574 return blk_queue_discard(bdev_get_queue(bdev)) ||
3575 bdev_is_zoned(bdev);
3576}
3577
3578static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3579{
3580 int i;
3581
3582 if (!f2fs_is_multi_device(sbi))
3583 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3584
3585 for (i = 0; i < sbi->s_ndevs; i++)
3586 if (f2fs_bdev_support_discard(FDEV(i).bdev))
3587 return true;
3588 return false;
3589}
3590
3591static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3592{
3593 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3594 f2fs_hw_should_discard(sbi);
3595}
3596
3597static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3598{
3599 int i;
3600
3601 if (!f2fs_is_multi_device(sbi))
3602 return bdev_read_only(sbi->sb->s_bdev);
3603
3604 for (i = 0; i < sbi->s_ndevs; i++)
3605 if (bdev_read_only(FDEV(i).bdev))
3606 return true;
3607 return false;
3608}
3609
3610
3611static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3612{
3613 clear_opt(sbi, ADAPTIVE);
3614 clear_opt(sbi, LFS);
3615
3616 switch (mt) {
3617 case F2FS_MOUNT_ADAPTIVE:
3618 set_opt(sbi, ADAPTIVE);
3619 break;
3620 case F2FS_MOUNT_LFS:
3621 set_opt(sbi, LFS);
3622 break;
3623 }
3624}
3625
3626static inline bool f2fs_may_encrypt(struct inode *inode)
3627{
3628#ifdef CONFIG_FS_ENCRYPTION
3629 umode_t mode = inode->i_mode;
3630
3631 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3632#else
3633 return false;
3634#endif
3635}
3636
3637static inline int block_unaligned_IO(struct inode *inode,
3638 struct kiocb *iocb, struct iov_iter *iter)
3639{
3640 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3641 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3642 loff_t offset = iocb->ki_pos;
3643 unsigned long align = offset | iov_iter_alignment(iter);
3644
3645 return align & blocksize_mask;
3646}
3647
3648static inline int allow_outplace_dio(struct inode *inode,
3649 struct kiocb *iocb, struct iov_iter *iter)
3650{
3651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3652 int rw = iov_iter_rw(iter);
3653
3654 return (test_opt(sbi, LFS) && (rw == WRITE) &&
3655 !block_unaligned_IO(inode, iocb, iter));
3656}
3657
3658static inline bool f2fs_force_buffered_io(struct inode *inode,
3659 struct kiocb *iocb, struct iov_iter *iter)
3660{
3661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3662 int rw = iov_iter_rw(iter);
3663
3664 if (f2fs_post_read_required(inode))
3665 return true;
3666 if (f2fs_is_multi_device(sbi))
3667 return true;
3668 /*
3669 * for blkzoned device, fallback direct IO to buffered IO, so
3670 * all IOs can be serialized by log-structured write.
3671 */
3672 if (f2fs_sb_has_blkzoned(sbi))
3673 return true;
3674 if (test_opt(sbi, LFS) && (rw == WRITE) &&
3675 block_unaligned_IO(inode, iocb, iter))
3676 return true;
3677 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3678 return true;
3679
3680 return false;
3681}
3682
3683#ifdef CONFIG_F2FS_FAULT_INJECTION
3684extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3685 unsigned int type);
3686#else
3687#define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
3688#endif
3689
3690static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3691{
3692#ifdef CONFIG_QUOTA
3693 if (f2fs_sb_has_quota_ino(sbi))
3694 return true;
3695 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3696 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3697 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3698 return true;
3699#endif
3700 return false;
3701}
3702
3703#endif /* _LINUX_F2FS_H */