]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/f2fs/f2fs.h
fscrypt: add fscrypt_add_test_dummy_key()
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/buffer_head.h>
15#include <linux/slab.h>
16#include <linux/crc32.h>
17#include <linux/magic.h>
18#include <linux/kobject.h>
19#include <linux/sched.h>
20#include <linux/cred.h>
21#include <linux/vmalloc.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/quotaops.h>
25#include <linux/part_stat.h>
26#include <crypto/hash.h>
27
28#include <linux/fscrypt.h>
29#include <linux/fsverity.h>
30
31#ifdef CONFIG_F2FS_CHECK_FS
32#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33#else
34#define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41#endif
42
43enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60};
61
62#ifdef CONFIG_F2FS_FAULT_INJECTION
63#define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69};
70
71extern const char *f2fs_fault_name[FAULT_MAX];
72#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73#endif
74
75/*
76 * For mount options
77 */
78#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79#define F2FS_MOUNT_DISCARD 0x00000004
80#define F2FS_MOUNT_NOHEAP 0x00000008
81#define F2FS_MOUNT_XATTR_USER 0x00000010
82#define F2FS_MOUNT_POSIX_ACL 0x00000020
83#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84#define F2FS_MOUNT_INLINE_XATTR 0x00000080
85#define F2FS_MOUNT_INLINE_DATA 0x00000100
86#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88#define F2FS_MOUNT_NOBARRIER 0x00000800
89#define F2FS_MOUNT_FASTBOOT 0x00001000
90#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91#define F2FS_MOUNT_DATA_FLUSH 0x00008000
92#define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93#define F2FS_MOUNT_USRQUOTA 0x00080000
94#define F2FS_MOUNT_GRPQUOTA 0x00100000
95#define F2FS_MOUNT_PRJQUOTA 0x00200000
96#define F2FS_MOUNT_QUOTA 0x00400000
97#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98#define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100#define F2FS_MOUNT_NORECOVERY 0x04000000
101
102#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
103#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106
107#define ver_after(a, b) (typecheck(unsigned long long, a) && \
108 typecheck(unsigned long long, b) && \
109 ((long long)((a) - (b)) > 0))
110
111typedef u32 block_t; /*
112 * should not change u32, since it is the on-disk block
113 * address format, __le32.
114 */
115typedef u32 nid_t;
116
117#define COMPRESS_EXT_NUM 16
118
119struct f2fs_mount_info {
120 unsigned int opt;
121 int write_io_size_bits; /* Write IO size bits */
122 block_t root_reserved_blocks; /* root reserved blocks */
123 kuid_t s_resuid; /* reserved blocks for uid */
124 kgid_t s_resgid; /* reserved blocks for gid */
125 int active_logs; /* # of active logs */
126 int inline_xattr_size; /* inline xattr size */
127#ifdef CONFIG_F2FS_FAULT_INJECTION
128 struct f2fs_fault_info fault_info; /* For fault injection */
129#endif
130#ifdef CONFIG_QUOTA
131 /* Names of quota files with journalled quota */
132 char *s_qf_names[MAXQUOTAS];
133 int s_jquota_fmt; /* Format of quota to use */
134#endif
135 /* For which write hints are passed down to block layer */
136 int whint_mode;
137 int alloc_mode; /* segment allocation policy */
138 int fsync_mode; /* fsync policy */
139 int fs_mode; /* fs mode: LFS or ADAPTIVE */
140 int bggc_mode; /* bggc mode: off, on or sync */
141 bool test_dummy_encryption; /* test dummy encryption */
142 block_t unusable_cap; /* Amount of space allowed to be
143 * unusable when disabling checkpoint
144 */
145
146 /* For compression */
147 unsigned char compress_algorithm; /* algorithm type */
148 unsigned compress_log_size; /* cluster log size */
149 unsigned char compress_ext_cnt; /* extension count */
150 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
151};
152
153#define F2FS_FEATURE_ENCRYPT 0x0001
154#define F2FS_FEATURE_BLKZONED 0x0002
155#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
156#define F2FS_FEATURE_EXTRA_ATTR 0x0008
157#define F2FS_FEATURE_PRJQUOTA 0x0010
158#define F2FS_FEATURE_INODE_CHKSUM 0x0020
159#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
160#define F2FS_FEATURE_QUOTA_INO 0x0080
161#define F2FS_FEATURE_INODE_CRTIME 0x0100
162#define F2FS_FEATURE_LOST_FOUND 0x0200
163#define F2FS_FEATURE_VERITY 0x0400
164#define F2FS_FEATURE_SB_CHKSUM 0x0800
165#define F2FS_FEATURE_CASEFOLD 0x1000
166#define F2FS_FEATURE_COMPRESSION 0x2000
167
168#define __F2FS_HAS_FEATURE(raw_super, mask) \
169 ((raw_super->feature & cpu_to_le32(mask)) != 0)
170#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
171#define F2FS_SET_FEATURE(sbi, mask) \
172 (sbi->raw_super->feature |= cpu_to_le32(mask))
173#define F2FS_CLEAR_FEATURE(sbi, mask) \
174 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
175
176/*
177 * Default values for user and/or group using reserved blocks
178 */
179#define F2FS_DEF_RESUID 0
180#define F2FS_DEF_RESGID 0
181
182/*
183 * For checkpoint manager
184 */
185enum {
186 NAT_BITMAP,
187 SIT_BITMAP
188};
189
190#define CP_UMOUNT 0x00000001
191#define CP_FASTBOOT 0x00000002
192#define CP_SYNC 0x00000004
193#define CP_RECOVERY 0x00000008
194#define CP_DISCARD 0x00000010
195#define CP_TRIMMED 0x00000020
196#define CP_PAUSE 0x00000040
197
198#define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
199#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
200#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
201#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
202#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
203#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
204#define DEF_CP_INTERVAL 60 /* 60 secs */
205#define DEF_IDLE_INTERVAL 5 /* 5 secs */
206#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
207#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
208#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
209
210struct cp_control {
211 int reason;
212 __u64 trim_start;
213 __u64 trim_end;
214 __u64 trim_minlen;
215};
216
217/*
218 * indicate meta/data type
219 */
220enum {
221 META_CP,
222 META_NAT,
223 META_SIT,
224 META_SSA,
225 META_MAX,
226 META_POR,
227 DATA_GENERIC, /* check range only */
228 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
229 DATA_GENERIC_ENHANCE_READ, /*
230 * strong check on range and segment
231 * bitmap but no warning due to race
232 * condition of read on truncated area
233 * by extent_cache
234 */
235 META_GENERIC,
236};
237
238/* for the list of ino */
239enum {
240 ORPHAN_INO, /* for orphan ino list */
241 APPEND_INO, /* for append ino list */
242 UPDATE_INO, /* for update ino list */
243 TRANS_DIR_INO, /* for trasactions dir ino list */
244 FLUSH_INO, /* for multiple device flushing */
245 MAX_INO_ENTRY, /* max. list */
246};
247
248struct ino_entry {
249 struct list_head list; /* list head */
250 nid_t ino; /* inode number */
251 unsigned int dirty_device; /* dirty device bitmap */
252};
253
254/* for the list of inodes to be GCed */
255struct inode_entry {
256 struct list_head list; /* list head */
257 struct inode *inode; /* vfs inode pointer */
258};
259
260struct fsync_node_entry {
261 struct list_head list; /* list head */
262 struct page *page; /* warm node page pointer */
263 unsigned int seq_id; /* sequence id */
264};
265
266/* for the bitmap indicate blocks to be discarded */
267struct discard_entry {
268 struct list_head list; /* list head */
269 block_t start_blkaddr; /* start blockaddr of current segment */
270 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
271};
272
273/* default discard granularity of inner discard thread, unit: block count */
274#define DEFAULT_DISCARD_GRANULARITY 16
275
276/* max discard pend list number */
277#define MAX_PLIST_NUM 512
278#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
279 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
280
281enum {
282 D_PREP, /* initial */
283 D_PARTIAL, /* partially submitted */
284 D_SUBMIT, /* all submitted */
285 D_DONE, /* finished */
286};
287
288struct discard_info {
289 block_t lstart; /* logical start address */
290 block_t len; /* length */
291 block_t start; /* actual start address in dev */
292};
293
294struct discard_cmd {
295 struct rb_node rb_node; /* rb node located in rb-tree */
296 union {
297 struct {
298 block_t lstart; /* logical start address */
299 block_t len; /* length */
300 block_t start; /* actual start address in dev */
301 };
302 struct discard_info di; /* discard info */
303
304 };
305 struct list_head list; /* command list */
306 struct completion wait; /* compleation */
307 struct block_device *bdev; /* bdev */
308 unsigned short ref; /* reference count */
309 unsigned char state; /* state */
310 unsigned char queued; /* queued discard */
311 int error; /* bio error */
312 spinlock_t lock; /* for state/bio_ref updating */
313 unsigned short bio_ref; /* bio reference count */
314};
315
316enum {
317 DPOLICY_BG,
318 DPOLICY_FORCE,
319 DPOLICY_FSTRIM,
320 DPOLICY_UMOUNT,
321 MAX_DPOLICY,
322};
323
324struct discard_policy {
325 int type; /* type of discard */
326 unsigned int min_interval; /* used for candidates exist */
327 unsigned int mid_interval; /* used for device busy */
328 unsigned int max_interval; /* used for candidates not exist */
329 unsigned int max_requests; /* # of discards issued per round */
330 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
331 bool io_aware; /* issue discard in idle time */
332 bool sync; /* submit discard with REQ_SYNC flag */
333 bool ordered; /* issue discard by lba order */
334 bool timeout; /* discard timeout for put_super */
335 unsigned int granularity; /* discard granularity */
336};
337
338struct discard_cmd_control {
339 struct task_struct *f2fs_issue_discard; /* discard thread */
340 struct list_head entry_list; /* 4KB discard entry list */
341 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
342 struct list_head wait_list; /* store on-flushing entries */
343 struct list_head fstrim_list; /* in-flight discard from fstrim */
344 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
345 unsigned int discard_wake; /* to wake up discard thread */
346 struct mutex cmd_lock;
347 unsigned int nr_discards; /* # of discards in the list */
348 unsigned int max_discards; /* max. discards to be issued */
349 unsigned int discard_granularity; /* discard granularity */
350 unsigned int undiscard_blks; /* # of undiscard blocks */
351 unsigned int next_pos; /* next discard position */
352 atomic_t issued_discard; /* # of issued discard */
353 atomic_t queued_discard; /* # of queued discard */
354 atomic_t discard_cmd_cnt; /* # of cached cmd count */
355 struct rb_root_cached root; /* root of discard rb-tree */
356 bool rbtree_check; /* config for consistence check */
357};
358
359/* for the list of fsync inodes, used only during recovery */
360struct fsync_inode_entry {
361 struct list_head list; /* list head */
362 struct inode *inode; /* vfs inode pointer */
363 block_t blkaddr; /* block address locating the last fsync */
364 block_t last_dentry; /* block address locating the last dentry */
365};
366
367#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
368#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
369
370#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
371#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
372#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
373#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
374
375#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
376#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
377
378static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
379{
380 int before = nats_in_cursum(journal);
381
382 journal->n_nats = cpu_to_le16(before + i);
383 return before;
384}
385
386static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
387{
388 int before = sits_in_cursum(journal);
389
390 journal->n_sits = cpu_to_le16(before + i);
391 return before;
392}
393
394static inline bool __has_cursum_space(struct f2fs_journal *journal,
395 int size, int type)
396{
397 if (type == NAT_JOURNAL)
398 return size <= MAX_NAT_JENTRIES(journal);
399 return size <= MAX_SIT_JENTRIES(journal);
400}
401
402/*
403 * ioctl commands
404 */
405#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
406#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
407#define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
408
409#define F2FS_IOCTL_MAGIC 0xf5
410#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
411#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
412#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
413#define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
414#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
415#define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
416#define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
417#define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
418 struct f2fs_defragment)
419#define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
420 struct f2fs_move_range)
421#define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
422 struct f2fs_flush_device)
423#define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
424 struct f2fs_gc_range)
425#define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
426#define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
427#define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
428#define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
429#define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64)
430#define F2FS_IOC_GET_COMPRESS_BLOCKS _IOR(F2FS_IOCTL_MAGIC, 17, __u64)
431
432#define F2FS_IOC_GET_VOLUME_NAME FS_IOC_GETFSLABEL
433#define F2FS_IOC_SET_VOLUME_NAME FS_IOC_SETFSLABEL
434
435#define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
436#define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
437#define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
438
439/*
440 * should be same as XFS_IOC_GOINGDOWN.
441 * Flags for going down operation used by FS_IOC_GOINGDOWN
442 */
443#define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
444#define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
445#define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
446#define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
447#define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
448#define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
449
450#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
451/*
452 * ioctl commands in 32 bit emulation
453 */
454#define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
455#define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
456#define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
457#endif
458
459#define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
460#define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
461
462struct f2fs_gc_range {
463 u32 sync;
464 u64 start;
465 u64 len;
466};
467
468struct f2fs_defragment {
469 u64 start;
470 u64 len;
471};
472
473struct f2fs_move_range {
474 u32 dst_fd; /* destination fd */
475 u64 pos_in; /* start position in src_fd */
476 u64 pos_out; /* start position in dst_fd */
477 u64 len; /* size to move */
478};
479
480struct f2fs_flush_device {
481 u32 dev_num; /* device number to flush */
482 u32 segments; /* # of segments to flush */
483};
484
485/* for inline stuff */
486#define DEF_INLINE_RESERVED_SIZE 1
487static inline int get_extra_isize(struct inode *inode);
488static inline int get_inline_xattr_addrs(struct inode *inode);
489#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
490 (CUR_ADDRS_PER_INODE(inode) - \
491 get_inline_xattr_addrs(inode) - \
492 DEF_INLINE_RESERVED_SIZE))
493
494/* for inline dir */
495#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
496 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
497 BITS_PER_BYTE + 1))
498#define INLINE_DENTRY_BITMAP_SIZE(inode) \
499 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
500#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
501 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
502 NR_INLINE_DENTRY(inode) + \
503 INLINE_DENTRY_BITMAP_SIZE(inode)))
504
505/*
506 * For INODE and NODE manager
507 */
508/* for directory operations */
509struct f2fs_dentry_ptr {
510 struct inode *inode;
511 void *bitmap;
512 struct f2fs_dir_entry *dentry;
513 __u8 (*filename)[F2FS_SLOT_LEN];
514 int max;
515 int nr_bitmap;
516};
517
518static inline void make_dentry_ptr_block(struct inode *inode,
519 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
520{
521 d->inode = inode;
522 d->max = NR_DENTRY_IN_BLOCK;
523 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
524 d->bitmap = t->dentry_bitmap;
525 d->dentry = t->dentry;
526 d->filename = t->filename;
527}
528
529static inline void make_dentry_ptr_inline(struct inode *inode,
530 struct f2fs_dentry_ptr *d, void *t)
531{
532 int entry_cnt = NR_INLINE_DENTRY(inode);
533 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
534 int reserved_size = INLINE_RESERVED_SIZE(inode);
535
536 d->inode = inode;
537 d->max = entry_cnt;
538 d->nr_bitmap = bitmap_size;
539 d->bitmap = t;
540 d->dentry = t + bitmap_size + reserved_size;
541 d->filename = t + bitmap_size + reserved_size +
542 SIZE_OF_DIR_ENTRY * entry_cnt;
543}
544
545/*
546 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
547 * as its node offset to distinguish from index node blocks.
548 * But some bits are used to mark the node block.
549 */
550#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
551 >> OFFSET_BIT_SHIFT)
552enum {
553 ALLOC_NODE, /* allocate a new node page if needed */
554 LOOKUP_NODE, /* look up a node without readahead */
555 LOOKUP_NODE_RA, /*
556 * look up a node with readahead called
557 * by get_data_block.
558 */
559};
560
561#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
562
563/* congestion wait timeout value, default: 20ms */
564#define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
565
566/* maximum retry quota flush count */
567#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
568
569#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
570
571#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
572
573/* for in-memory extent cache entry */
574#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
575
576/* number of extent info in extent cache we try to shrink */
577#define EXTENT_CACHE_SHRINK_NUMBER 128
578
579struct rb_entry {
580 struct rb_node rb_node; /* rb node located in rb-tree */
581 unsigned int ofs; /* start offset of the entry */
582 unsigned int len; /* length of the entry */
583};
584
585struct extent_info {
586 unsigned int fofs; /* start offset in a file */
587 unsigned int len; /* length of the extent */
588 u32 blk; /* start block address of the extent */
589};
590
591struct extent_node {
592 struct rb_node rb_node; /* rb node located in rb-tree */
593 struct extent_info ei; /* extent info */
594 struct list_head list; /* node in global extent list of sbi */
595 struct extent_tree *et; /* extent tree pointer */
596};
597
598struct extent_tree {
599 nid_t ino; /* inode number */
600 struct rb_root_cached root; /* root of extent info rb-tree */
601 struct extent_node *cached_en; /* recently accessed extent node */
602 struct extent_info largest; /* largested extent info */
603 struct list_head list; /* to be used by sbi->zombie_list */
604 rwlock_t lock; /* protect extent info rb-tree */
605 atomic_t node_cnt; /* # of extent node in rb-tree*/
606 bool largest_updated; /* largest extent updated */
607};
608
609/*
610 * This structure is taken from ext4_map_blocks.
611 *
612 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
613 */
614#define F2FS_MAP_NEW (1 << BH_New)
615#define F2FS_MAP_MAPPED (1 << BH_Mapped)
616#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
617#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
618 F2FS_MAP_UNWRITTEN)
619
620struct f2fs_map_blocks {
621 block_t m_pblk;
622 block_t m_lblk;
623 unsigned int m_len;
624 unsigned int m_flags;
625 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
626 pgoff_t *m_next_extent; /* point to next possible extent */
627 int m_seg_type;
628 bool m_may_create; /* indicate it is from write path */
629};
630
631/* for flag in get_data_block */
632enum {
633 F2FS_GET_BLOCK_DEFAULT,
634 F2FS_GET_BLOCK_FIEMAP,
635 F2FS_GET_BLOCK_BMAP,
636 F2FS_GET_BLOCK_DIO,
637 F2FS_GET_BLOCK_PRE_DIO,
638 F2FS_GET_BLOCK_PRE_AIO,
639 F2FS_GET_BLOCK_PRECACHE,
640};
641
642/*
643 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
644 */
645#define FADVISE_COLD_BIT 0x01
646#define FADVISE_LOST_PINO_BIT 0x02
647#define FADVISE_ENCRYPT_BIT 0x04
648#define FADVISE_ENC_NAME_BIT 0x08
649#define FADVISE_KEEP_SIZE_BIT 0x10
650#define FADVISE_HOT_BIT 0x20
651#define FADVISE_VERITY_BIT 0x40
652
653#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
654
655#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
656#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
657#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
658#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
659#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
660#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
661#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
662#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
663#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
664#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
665#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
666#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
667#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
668#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
669#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
670#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
671#define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
672#define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
673
674#define DEF_DIR_LEVEL 0
675
676enum {
677 GC_FAILURE_PIN,
678 GC_FAILURE_ATOMIC,
679 MAX_GC_FAILURE
680};
681
682/* used for f2fs_inode_info->flags */
683enum {
684 FI_NEW_INODE, /* indicate newly allocated inode */
685 FI_DIRTY_INODE, /* indicate inode is dirty or not */
686 FI_AUTO_RECOVER, /* indicate inode is recoverable */
687 FI_DIRTY_DIR, /* indicate directory has dirty pages */
688 FI_INC_LINK, /* need to increment i_nlink */
689 FI_ACL_MODE, /* indicate acl mode */
690 FI_NO_ALLOC, /* should not allocate any blocks */
691 FI_FREE_NID, /* free allocated nide */
692 FI_NO_EXTENT, /* not to use the extent cache */
693 FI_INLINE_XATTR, /* used for inline xattr */
694 FI_INLINE_DATA, /* used for inline data*/
695 FI_INLINE_DENTRY, /* used for inline dentry */
696 FI_APPEND_WRITE, /* inode has appended data */
697 FI_UPDATE_WRITE, /* inode has in-place-update data */
698 FI_NEED_IPU, /* used for ipu per file */
699 FI_ATOMIC_FILE, /* indicate atomic file */
700 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
701 FI_VOLATILE_FILE, /* indicate volatile file */
702 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
703 FI_DROP_CACHE, /* drop dirty page cache */
704 FI_DATA_EXIST, /* indicate data exists */
705 FI_INLINE_DOTS, /* indicate inline dot dentries */
706 FI_DO_DEFRAG, /* indicate defragment is running */
707 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
708 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
709 FI_HOT_DATA, /* indicate file is hot */
710 FI_EXTRA_ATTR, /* indicate file has extra attribute */
711 FI_PROJ_INHERIT, /* indicate file inherits projectid */
712 FI_PIN_FILE, /* indicate file should not be gced */
713 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
714 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
715 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
716 FI_MMAP_FILE, /* indicate file was mmapped */
717 FI_MAX, /* max flag, never be used */
718};
719
720struct f2fs_inode_info {
721 struct inode vfs_inode; /* serve a vfs inode */
722 unsigned long i_flags; /* keep an inode flags for ioctl */
723 unsigned char i_advise; /* use to give file attribute hints */
724 unsigned char i_dir_level; /* use for dentry level for large dir */
725 unsigned int i_current_depth; /* only for directory depth */
726 /* for gc failure statistic */
727 unsigned int i_gc_failures[MAX_GC_FAILURE];
728 unsigned int i_pino; /* parent inode number */
729 umode_t i_acl_mode; /* keep file acl mode temporarily */
730
731 /* Use below internally in f2fs*/
732 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
733 struct rw_semaphore i_sem; /* protect fi info */
734 atomic_t dirty_pages; /* # of dirty pages */
735 f2fs_hash_t chash; /* hash value of given file name */
736 unsigned int clevel; /* maximum level of given file name */
737 struct task_struct *task; /* lookup and create consistency */
738 struct task_struct *cp_task; /* separate cp/wb IO stats*/
739 nid_t i_xattr_nid; /* node id that contains xattrs */
740 loff_t last_disk_size; /* lastly written file size */
741 spinlock_t i_size_lock; /* protect last_disk_size */
742
743#ifdef CONFIG_QUOTA
744 struct dquot *i_dquot[MAXQUOTAS];
745
746 /* quota space reservation, managed internally by quota code */
747 qsize_t i_reserved_quota;
748#endif
749 struct list_head dirty_list; /* dirty list for dirs and files */
750 struct list_head gdirty_list; /* linked in global dirty list */
751 struct list_head inmem_ilist; /* list for inmem inodes */
752 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
753 struct task_struct *inmem_task; /* store inmemory task */
754 struct mutex inmem_lock; /* lock for inmemory pages */
755 struct extent_tree *extent_tree; /* cached extent_tree entry */
756
757 /* avoid racing between foreground op and gc */
758 struct rw_semaphore i_gc_rwsem[2];
759 struct rw_semaphore i_mmap_sem;
760 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
761
762 int i_extra_isize; /* size of extra space located in i_addr */
763 kprojid_t i_projid; /* id for project quota */
764 int i_inline_xattr_size; /* inline xattr size */
765 struct timespec64 i_crtime; /* inode creation time */
766 struct timespec64 i_disk_time[4];/* inode disk times */
767
768 /* for file compress */
769 u64 i_compr_blocks; /* # of compressed blocks */
770 unsigned char i_compress_algorithm; /* algorithm type */
771 unsigned char i_log_cluster_size; /* log of cluster size */
772 unsigned int i_cluster_size; /* cluster size */
773};
774
775static inline void get_extent_info(struct extent_info *ext,
776 struct f2fs_extent *i_ext)
777{
778 ext->fofs = le32_to_cpu(i_ext->fofs);
779 ext->blk = le32_to_cpu(i_ext->blk);
780 ext->len = le32_to_cpu(i_ext->len);
781}
782
783static inline void set_raw_extent(struct extent_info *ext,
784 struct f2fs_extent *i_ext)
785{
786 i_ext->fofs = cpu_to_le32(ext->fofs);
787 i_ext->blk = cpu_to_le32(ext->blk);
788 i_ext->len = cpu_to_le32(ext->len);
789}
790
791static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
792 u32 blk, unsigned int len)
793{
794 ei->fofs = fofs;
795 ei->blk = blk;
796 ei->len = len;
797}
798
799static inline bool __is_discard_mergeable(struct discard_info *back,
800 struct discard_info *front, unsigned int max_len)
801{
802 return (back->lstart + back->len == front->lstart) &&
803 (back->len + front->len <= max_len);
804}
805
806static inline bool __is_discard_back_mergeable(struct discard_info *cur,
807 struct discard_info *back, unsigned int max_len)
808{
809 return __is_discard_mergeable(back, cur, max_len);
810}
811
812static inline bool __is_discard_front_mergeable(struct discard_info *cur,
813 struct discard_info *front, unsigned int max_len)
814{
815 return __is_discard_mergeable(cur, front, max_len);
816}
817
818static inline bool __is_extent_mergeable(struct extent_info *back,
819 struct extent_info *front)
820{
821 return (back->fofs + back->len == front->fofs &&
822 back->blk + back->len == front->blk);
823}
824
825static inline bool __is_back_mergeable(struct extent_info *cur,
826 struct extent_info *back)
827{
828 return __is_extent_mergeable(back, cur);
829}
830
831static inline bool __is_front_mergeable(struct extent_info *cur,
832 struct extent_info *front)
833{
834 return __is_extent_mergeable(cur, front);
835}
836
837extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
838static inline void __try_update_largest_extent(struct extent_tree *et,
839 struct extent_node *en)
840{
841 if (en->ei.len > et->largest.len) {
842 et->largest = en->ei;
843 et->largest_updated = true;
844 }
845}
846
847/*
848 * For free nid management
849 */
850enum nid_state {
851 FREE_NID, /* newly added to free nid list */
852 PREALLOC_NID, /* it is preallocated */
853 MAX_NID_STATE,
854};
855
856struct f2fs_nm_info {
857 block_t nat_blkaddr; /* base disk address of NAT */
858 nid_t max_nid; /* maximum possible node ids */
859 nid_t available_nids; /* # of available node ids */
860 nid_t next_scan_nid; /* the next nid to be scanned */
861 unsigned int ram_thresh; /* control the memory footprint */
862 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
863 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
864
865 /* NAT cache management */
866 struct radix_tree_root nat_root;/* root of the nat entry cache */
867 struct radix_tree_root nat_set_root;/* root of the nat set cache */
868 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
869 struct list_head nat_entries; /* cached nat entry list (clean) */
870 spinlock_t nat_list_lock; /* protect clean nat entry list */
871 unsigned int nat_cnt; /* the # of cached nat entries */
872 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
873 unsigned int nat_blocks; /* # of nat blocks */
874
875 /* free node ids management */
876 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
877 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
878 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
879 spinlock_t nid_list_lock; /* protect nid lists ops */
880 struct mutex build_lock; /* lock for build free nids */
881 unsigned char **free_nid_bitmap;
882 unsigned char *nat_block_bitmap;
883 unsigned short *free_nid_count; /* free nid count of NAT block */
884
885 /* for checkpoint */
886 char *nat_bitmap; /* NAT bitmap pointer */
887
888 unsigned int nat_bits_blocks; /* # of nat bits blocks */
889 unsigned char *nat_bits; /* NAT bits blocks */
890 unsigned char *full_nat_bits; /* full NAT pages */
891 unsigned char *empty_nat_bits; /* empty NAT pages */
892#ifdef CONFIG_F2FS_CHECK_FS
893 char *nat_bitmap_mir; /* NAT bitmap mirror */
894#endif
895 int bitmap_size; /* bitmap size */
896};
897
898/*
899 * this structure is used as one of function parameters.
900 * all the information are dedicated to a given direct node block determined
901 * by the data offset in a file.
902 */
903struct dnode_of_data {
904 struct inode *inode; /* vfs inode pointer */
905 struct page *inode_page; /* its inode page, NULL is possible */
906 struct page *node_page; /* cached direct node page */
907 nid_t nid; /* node id of the direct node block */
908 unsigned int ofs_in_node; /* data offset in the node page */
909 bool inode_page_locked; /* inode page is locked or not */
910 bool node_changed; /* is node block changed */
911 char cur_level; /* level of hole node page */
912 char max_level; /* level of current page located */
913 block_t data_blkaddr; /* block address of the node block */
914};
915
916static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
917 struct page *ipage, struct page *npage, nid_t nid)
918{
919 memset(dn, 0, sizeof(*dn));
920 dn->inode = inode;
921 dn->inode_page = ipage;
922 dn->node_page = npage;
923 dn->nid = nid;
924}
925
926/*
927 * For SIT manager
928 *
929 * By default, there are 6 active log areas across the whole main area.
930 * When considering hot and cold data separation to reduce cleaning overhead,
931 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
932 * respectively.
933 * In the current design, you should not change the numbers intentionally.
934 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
935 * logs individually according to the underlying devices. (default: 6)
936 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
937 * data and 8 for node logs.
938 */
939#define NR_CURSEG_DATA_TYPE (3)
940#define NR_CURSEG_NODE_TYPE (3)
941#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
942
943enum {
944 CURSEG_HOT_DATA = 0, /* directory entry blocks */
945 CURSEG_WARM_DATA, /* data blocks */
946 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
947 CURSEG_HOT_NODE, /* direct node blocks of directory files */
948 CURSEG_WARM_NODE, /* direct node blocks of normal files */
949 CURSEG_COLD_NODE, /* indirect node blocks */
950 NO_CHECK_TYPE,
951 CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
952};
953
954struct flush_cmd {
955 struct completion wait;
956 struct llist_node llnode;
957 nid_t ino;
958 int ret;
959};
960
961struct flush_cmd_control {
962 struct task_struct *f2fs_issue_flush; /* flush thread */
963 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
964 atomic_t issued_flush; /* # of issued flushes */
965 atomic_t queued_flush; /* # of queued flushes */
966 struct llist_head issue_list; /* list for command issue */
967 struct llist_node *dispatch_list; /* list for command dispatch */
968};
969
970struct f2fs_sm_info {
971 struct sit_info *sit_info; /* whole segment information */
972 struct free_segmap_info *free_info; /* free segment information */
973 struct dirty_seglist_info *dirty_info; /* dirty segment information */
974 struct curseg_info *curseg_array; /* active segment information */
975
976 struct rw_semaphore curseg_lock; /* for preventing curseg change */
977
978 block_t seg0_blkaddr; /* block address of 0'th segment */
979 block_t main_blkaddr; /* start block address of main area */
980 block_t ssa_blkaddr; /* start block address of SSA area */
981
982 unsigned int segment_count; /* total # of segments */
983 unsigned int main_segments; /* # of segments in main area */
984 unsigned int reserved_segments; /* # of reserved segments */
985 unsigned int ovp_segments; /* # of overprovision segments */
986
987 /* a threshold to reclaim prefree segments */
988 unsigned int rec_prefree_segments;
989
990 /* for batched trimming */
991 unsigned int trim_sections; /* # of sections to trim */
992
993 struct list_head sit_entry_set; /* sit entry set list */
994
995 unsigned int ipu_policy; /* in-place-update policy */
996 unsigned int min_ipu_util; /* in-place-update threshold */
997 unsigned int min_fsync_blocks; /* threshold for fsync */
998 unsigned int min_seq_blocks; /* threshold for sequential blocks */
999 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1000 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1001
1002 /* for flush command control */
1003 struct flush_cmd_control *fcc_info;
1004
1005 /* for discard command control */
1006 struct discard_cmd_control *dcc_info;
1007};
1008
1009/*
1010 * For superblock
1011 */
1012/*
1013 * COUNT_TYPE for monitoring
1014 *
1015 * f2fs monitors the number of several block types such as on-writeback,
1016 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1017 */
1018#define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1019enum count_type {
1020 F2FS_DIRTY_DENTS,
1021 F2FS_DIRTY_DATA,
1022 F2FS_DIRTY_QDATA,
1023 F2FS_DIRTY_NODES,
1024 F2FS_DIRTY_META,
1025 F2FS_INMEM_PAGES,
1026 F2FS_DIRTY_IMETA,
1027 F2FS_WB_CP_DATA,
1028 F2FS_WB_DATA,
1029 F2FS_RD_DATA,
1030 F2FS_RD_NODE,
1031 F2FS_RD_META,
1032 F2FS_DIO_WRITE,
1033 F2FS_DIO_READ,
1034 NR_COUNT_TYPE,
1035};
1036
1037/*
1038 * The below are the page types of bios used in submit_bio().
1039 * The available types are:
1040 * DATA User data pages. It operates as async mode.
1041 * NODE Node pages. It operates as async mode.
1042 * META FS metadata pages such as SIT, NAT, CP.
1043 * NR_PAGE_TYPE The number of page types.
1044 * META_FLUSH Make sure the previous pages are written
1045 * with waiting the bio's completion
1046 * ... Only can be used with META.
1047 */
1048#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1049enum page_type {
1050 DATA,
1051 NODE,
1052 META,
1053 NR_PAGE_TYPE,
1054 META_FLUSH,
1055 INMEM, /* the below types are used by tracepoints only. */
1056 INMEM_DROP,
1057 INMEM_INVALIDATE,
1058 INMEM_REVOKE,
1059 IPU,
1060 OPU,
1061};
1062
1063enum temp_type {
1064 HOT = 0, /* must be zero for meta bio */
1065 WARM,
1066 COLD,
1067 NR_TEMP_TYPE,
1068};
1069
1070enum need_lock_type {
1071 LOCK_REQ = 0,
1072 LOCK_DONE,
1073 LOCK_RETRY,
1074};
1075
1076enum cp_reason_type {
1077 CP_NO_NEEDED,
1078 CP_NON_REGULAR,
1079 CP_COMPRESSED,
1080 CP_HARDLINK,
1081 CP_SB_NEED_CP,
1082 CP_WRONG_PINO,
1083 CP_NO_SPC_ROLL,
1084 CP_NODE_NEED_CP,
1085 CP_FASTBOOT_MODE,
1086 CP_SPEC_LOG_NUM,
1087 CP_RECOVER_DIR,
1088};
1089
1090enum iostat_type {
1091 APP_DIRECT_IO, /* app direct IOs */
1092 APP_BUFFERED_IO, /* app buffered IOs */
1093 APP_WRITE_IO, /* app write IOs */
1094 APP_MAPPED_IO, /* app mapped IOs */
1095 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1096 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1097 FS_META_IO, /* meta IOs from kworker/reclaimer */
1098 FS_GC_DATA_IO, /* data IOs from forground gc */
1099 FS_GC_NODE_IO, /* node IOs from forground gc */
1100 FS_CP_DATA_IO, /* data IOs from checkpoint */
1101 FS_CP_NODE_IO, /* node IOs from checkpoint */
1102 FS_CP_META_IO, /* meta IOs from checkpoint */
1103 FS_DISCARD, /* discard */
1104 NR_IO_TYPE,
1105};
1106
1107struct f2fs_io_info {
1108 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1109 nid_t ino; /* inode number */
1110 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1111 enum temp_type temp; /* contains HOT/WARM/COLD */
1112 int op; /* contains REQ_OP_ */
1113 int op_flags; /* req_flag_bits */
1114 block_t new_blkaddr; /* new block address to be written */
1115 block_t old_blkaddr; /* old block address before Cow */
1116 struct page *page; /* page to be written */
1117 struct page *encrypted_page; /* encrypted page */
1118 struct page *compressed_page; /* compressed page */
1119 struct list_head list; /* serialize IOs */
1120 bool submitted; /* indicate IO submission */
1121 int need_lock; /* indicate we need to lock cp_rwsem */
1122 bool in_list; /* indicate fio is in io_list */
1123 bool is_por; /* indicate IO is from recovery or not */
1124 bool retry; /* need to reallocate block address */
1125 int compr_blocks; /* # of compressed block addresses */
1126 bool encrypted; /* indicate file is encrypted */
1127 enum iostat_type io_type; /* io type */
1128 struct writeback_control *io_wbc; /* writeback control */
1129 struct bio **bio; /* bio for ipu */
1130 sector_t *last_block; /* last block number in bio */
1131 unsigned char version; /* version of the node */
1132};
1133
1134struct bio_entry {
1135 struct bio *bio;
1136 struct list_head list;
1137};
1138
1139#define is_read_io(rw) ((rw) == READ)
1140struct f2fs_bio_info {
1141 struct f2fs_sb_info *sbi; /* f2fs superblock */
1142 struct bio *bio; /* bios to merge */
1143 sector_t last_block_in_bio; /* last block number */
1144 struct f2fs_io_info fio; /* store buffered io info. */
1145 struct rw_semaphore io_rwsem; /* blocking op for bio */
1146 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1147 struct list_head io_list; /* track fios */
1148 struct list_head bio_list; /* bio entry list head */
1149 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1150};
1151
1152#define FDEV(i) (sbi->devs[i])
1153#define RDEV(i) (raw_super->devs[i])
1154struct f2fs_dev_info {
1155 struct block_device *bdev;
1156 char path[MAX_PATH_LEN];
1157 unsigned int total_segments;
1158 block_t start_blk;
1159 block_t end_blk;
1160#ifdef CONFIG_BLK_DEV_ZONED
1161 unsigned int nr_blkz; /* Total number of zones */
1162 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1163#endif
1164};
1165
1166enum inode_type {
1167 DIR_INODE, /* for dirty dir inode */
1168 FILE_INODE, /* for dirty regular/symlink inode */
1169 DIRTY_META, /* for all dirtied inode metadata */
1170 ATOMIC_FILE, /* for all atomic files */
1171 NR_INODE_TYPE,
1172};
1173
1174/* for inner inode cache management */
1175struct inode_management {
1176 struct radix_tree_root ino_root; /* ino entry array */
1177 spinlock_t ino_lock; /* for ino entry lock */
1178 struct list_head ino_list; /* inode list head */
1179 unsigned long ino_num; /* number of entries */
1180};
1181
1182/* For s_flag in struct f2fs_sb_info */
1183enum {
1184 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1185 SBI_IS_CLOSE, /* specify unmounting */
1186 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1187 SBI_POR_DOING, /* recovery is doing or not */
1188 SBI_NEED_SB_WRITE, /* need to recover superblock */
1189 SBI_NEED_CP, /* need to checkpoint */
1190 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1191 SBI_IS_RECOVERED, /* recovered orphan/data */
1192 SBI_CP_DISABLED, /* CP was disabled last mount */
1193 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1194 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1195 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1196 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1197 SBI_IS_RESIZEFS, /* resizefs is in process */
1198};
1199
1200enum {
1201 CP_TIME,
1202 REQ_TIME,
1203 DISCARD_TIME,
1204 GC_TIME,
1205 DISABLE_TIME,
1206 UMOUNT_DISCARD_TIMEOUT,
1207 MAX_TIME,
1208};
1209
1210enum {
1211 GC_NORMAL,
1212 GC_IDLE_CB,
1213 GC_IDLE_GREEDY,
1214 GC_URGENT,
1215};
1216
1217enum {
1218 BGGC_MODE_ON, /* background gc is on */
1219 BGGC_MODE_OFF, /* background gc is off */
1220 BGGC_MODE_SYNC, /*
1221 * background gc is on, migrating blocks
1222 * like foreground gc
1223 */
1224};
1225
1226enum {
1227 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1228 FS_MODE_LFS, /* use lfs allocation only */
1229};
1230
1231enum {
1232 WHINT_MODE_OFF, /* not pass down write hints */
1233 WHINT_MODE_USER, /* try to pass down hints given by users */
1234 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1235};
1236
1237enum {
1238 ALLOC_MODE_DEFAULT, /* stay default */
1239 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1240};
1241
1242enum fsync_mode {
1243 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1244 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1245 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1246};
1247
1248/*
1249 * this value is set in page as a private data which indicate that
1250 * the page is atomically written, and it is in inmem_pages list.
1251 */
1252#define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1253#define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1254
1255#define IS_ATOMIC_WRITTEN_PAGE(page) \
1256 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1257#define IS_DUMMY_WRITTEN_PAGE(page) \
1258 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1259
1260#ifdef CONFIG_FS_ENCRYPTION
1261#define DUMMY_ENCRYPTION_ENABLED(sbi) \
1262 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1263#else
1264#define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1265#endif
1266
1267/* For compression */
1268enum compress_algorithm_type {
1269 COMPRESS_LZO,
1270 COMPRESS_LZ4,
1271 COMPRESS_ZSTD,
1272 COMPRESS_MAX,
1273};
1274
1275#define COMPRESS_DATA_RESERVED_SIZE 5
1276struct compress_data {
1277 __le32 clen; /* compressed data size */
1278 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1279 u8 cdata[]; /* compressed data */
1280};
1281
1282#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1283
1284#define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1285
1286/* compress context */
1287struct compress_ctx {
1288 struct inode *inode; /* inode the context belong to */
1289 pgoff_t cluster_idx; /* cluster index number */
1290 unsigned int cluster_size; /* page count in cluster */
1291 unsigned int log_cluster_size; /* log of cluster size */
1292 struct page **rpages; /* pages store raw data in cluster */
1293 unsigned int nr_rpages; /* total page number in rpages */
1294 struct page **cpages; /* pages store compressed data in cluster */
1295 unsigned int nr_cpages; /* total page number in cpages */
1296 void *rbuf; /* virtual mapped address on rpages */
1297 struct compress_data *cbuf; /* virtual mapped address on cpages */
1298 size_t rlen; /* valid data length in rbuf */
1299 size_t clen; /* valid data length in cbuf */
1300 void *private; /* payload buffer for specified compression algorithm */
1301 void *private2; /* extra payload buffer */
1302};
1303
1304/* compress context for write IO path */
1305struct compress_io_ctx {
1306 u32 magic; /* magic number to indicate page is compressed */
1307 struct inode *inode; /* inode the context belong to */
1308 struct page **rpages; /* pages store raw data in cluster */
1309 unsigned int nr_rpages; /* total page number in rpages */
1310 refcount_t ref; /* referrence count of raw page */
1311};
1312
1313/* decompress io context for read IO path */
1314struct decompress_io_ctx {
1315 u32 magic; /* magic number to indicate page is compressed */
1316 struct inode *inode; /* inode the context belong to */
1317 pgoff_t cluster_idx; /* cluster index number */
1318 unsigned int cluster_size; /* page count in cluster */
1319 unsigned int log_cluster_size; /* log of cluster size */
1320 struct page **rpages; /* pages store raw data in cluster */
1321 unsigned int nr_rpages; /* total page number in rpages */
1322 struct page **cpages; /* pages store compressed data in cluster */
1323 unsigned int nr_cpages; /* total page number in cpages */
1324 struct page **tpages; /* temp pages to pad holes in cluster */
1325 void *rbuf; /* virtual mapped address on rpages */
1326 struct compress_data *cbuf; /* virtual mapped address on cpages */
1327 size_t rlen; /* valid data length in rbuf */
1328 size_t clen; /* valid data length in cbuf */
1329 refcount_t ref; /* referrence count of compressed page */
1330 bool failed; /* indicate IO error during decompression */
1331 void *private; /* payload buffer for specified decompression algorithm */
1332 void *private2; /* extra payload buffer */
1333};
1334
1335#define NULL_CLUSTER ((unsigned int)(~0))
1336#define MIN_COMPRESS_LOG_SIZE 2
1337#define MAX_COMPRESS_LOG_SIZE 8
1338#define MAX_COMPRESS_WINDOW_SIZE ((PAGE_SIZE) << MAX_COMPRESS_LOG_SIZE)
1339
1340struct f2fs_sb_info {
1341 struct super_block *sb; /* pointer to VFS super block */
1342 struct proc_dir_entry *s_proc; /* proc entry */
1343 struct f2fs_super_block *raw_super; /* raw super block pointer */
1344 struct rw_semaphore sb_lock; /* lock for raw super block */
1345 int valid_super_block; /* valid super block no */
1346 unsigned long s_flag; /* flags for sbi */
1347 struct mutex writepages; /* mutex for writepages() */
1348#ifdef CONFIG_UNICODE
1349 struct unicode_map *s_encoding;
1350 __u16 s_encoding_flags;
1351#endif
1352
1353#ifdef CONFIG_BLK_DEV_ZONED
1354 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1355 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1356#endif
1357
1358 /* for node-related operations */
1359 struct f2fs_nm_info *nm_info; /* node manager */
1360 struct inode *node_inode; /* cache node blocks */
1361
1362 /* for segment-related operations */
1363 struct f2fs_sm_info *sm_info; /* segment manager */
1364
1365 /* for bio operations */
1366 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1367 /* keep migration IO order for LFS mode */
1368 struct rw_semaphore io_order_lock;
1369 mempool_t *write_io_dummy; /* Dummy pages */
1370
1371 /* for checkpoint */
1372 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1373 int cur_cp_pack; /* remain current cp pack */
1374 spinlock_t cp_lock; /* for flag in ckpt */
1375 struct inode *meta_inode; /* cache meta blocks */
1376 struct mutex cp_mutex; /* checkpoint procedure lock */
1377 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1378 struct rw_semaphore node_write; /* locking node writes */
1379 struct rw_semaphore node_change; /* locking node change */
1380 wait_queue_head_t cp_wait;
1381 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1382 long interval_time[MAX_TIME]; /* to store thresholds */
1383
1384 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1385
1386 spinlock_t fsync_node_lock; /* for node entry lock */
1387 struct list_head fsync_node_list; /* node list head */
1388 unsigned int fsync_seg_id; /* sequence id */
1389 unsigned int fsync_node_num; /* number of node entries */
1390
1391 /* for orphan inode, use 0'th array */
1392 unsigned int max_orphans; /* max orphan inodes */
1393
1394 /* for inode management */
1395 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1396 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1397 struct mutex flush_lock; /* for flush exclusion */
1398
1399 /* for extent tree cache */
1400 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1401 struct mutex extent_tree_lock; /* locking extent radix tree */
1402 struct list_head extent_list; /* lru list for shrinker */
1403 spinlock_t extent_lock; /* locking extent lru list */
1404 atomic_t total_ext_tree; /* extent tree count */
1405 struct list_head zombie_list; /* extent zombie tree list */
1406 atomic_t total_zombie_tree; /* extent zombie tree count */
1407 atomic_t total_ext_node; /* extent info count */
1408
1409 /* basic filesystem units */
1410 unsigned int log_sectors_per_block; /* log2 sectors per block */
1411 unsigned int log_blocksize; /* log2 block size */
1412 unsigned int blocksize; /* block size */
1413 unsigned int root_ino_num; /* root inode number*/
1414 unsigned int node_ino_num; /* node inode number*/
1415 unsigned int meta_ino_num; /* meta inode number*/
1416 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1417 unsigned int blocks_per_seg; /* blocks per segment */
1418 unsigned int segs_per_sec; /* segments per section */
1419 unsigned int secs_per_zone; /* sections per zone */
1420 unsigned int total_sections; /* total section count */
1421 struct mutex resize_mutex; /* for resize exclusion */
1422 unsigned int total_node_count; /* total node block count */
1423 unsigned int total_valid_node_count; /* valid node block count */
1424 loff_t max_file_blocks; /* max block index of file */
1425 int dir_level; /* directory level */
1426 int readdir_ra; /* readahead inode in readdir */
1427
1428 block_t user_block_count; /* # of user blocks */
1429 block_t total_valid_block_count; /* # of valid blocks */
1430 block_t discard_blks; /* discard command candidats */
1431 block_t last_valid_block_count; /* for recovery */
1432 block_t reserved_blocks; /* configurable reserved blocks */
1433 block_t current_reserved_blocks; /* current reserved blocks */
1434
1435 /* Additional tracking for no checkpoint mode */
1436 block_t unusable_block_count; /* # of blocks saved by last cp */
1437
1438 unsigned int nquota_files; /* # of quota sysfile */
1439 struct rw_semaphore quota_sem; /* blocking cp for flags */
1440
1441 /* # of pages, see count_type */
1442 atomic_t nr_pages[NR_COUNT_TYPE];
1443 /* # of allocated blocks */
1444 struct percpu_counter alloc_valid_block_count;
1445
1446 /* writeback control */
1447 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1448
1449 /* valid inode count */
1450 struct percpu_counter total_valid_inode_count;
1451
1452 struct f2fs_mount_info mount_opt; /* mount options */
1453
1454 /* for cleaning operations */
1455 struct rw_semaphore gc_lock; /*
1456 * semaphore for GC, avoid
1457 * race between GC and GC or CP
1458 */
1459 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1460 unsigned int cur_victim_sec; /* current victim section num */
1461 unsigned int gc_mode; /* current GC state */
1462 unsigned int next_victim_seg[2]; /* next segment in victim section */
1463 /* for skip statistic */
1464 unsigned int atomic_files; /* # of opened atomic file */
1465 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1466 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1467
1468 /* threshold for gc trials on pinned files */
1469 u64 gc_pin_file_threshold;
1470 struct rw_semaphore pin_sem;
1471
1472 /* maximum # of trials to find a victim segment for SSR and GC */
1473 unsigned int max_victim_search;
1474 /* migration granularity of garbage collection, unit: segment */
1475 unsigned int migration_granularity;
1476
1477 /*
1478 * for stat information.
1479 * one is for the LFS mode, and the other is for the SSR mode.
1480 */
1481#ifdef CONFIG_F2FS_STAT_FS
1482 struct f2fs_stat_info *stat_info; /* FS status information */
1483 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1484 unsigned int segment_count[2]; /* # of allocated segments */
1485 unsigned int block_count[2]; /* # of allocated blocks */
1486 atomic_t inplace_count; /* # of inplace update */
1487 atomic64_t total_hit_ext; /* # of lookup extent cache */
1488 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1489 atomic64_t read_hit_largest; /* # of hit largest extent node */
1490 atomic64_t read_hit_cached; /* # of hit cached extent node */
1491 atomic_t inline_xattr; /* # of inline_xattr inodes */
1492 atomic_t inline_inode; /* # of inline_data inodes */
1493 atomic_t inline_dir; /* # of inline_dentry inodes */
1494 atomic_t compr_inode; /* # of compressed inodes */
1495 atomic_t compr_blocks; /* # of compressed blocks */
1496 atomic_t vw_cnt; /* # of volatile writes */
1497 atomic_t max_aw_cnt; /* max # of atomic writes */
1498 atomic_t max_vw_cnt; /* max # of volatile writes */
1499 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1500 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1501 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1502#endif
1503 spinlock_t stat_lock; /* lock for stat operations */
1504
1505 /* For app/fs IO statistics */
1506 spinlock_t iostat_lock;
1507 unsigned long long write_iostat[NR_IO_TYPE];
1508 bool iostat_enable;
1509
1510 /* For sysfs suppport */
1511 struct kobject s_kobj;
1512 struct completion s_kobj_unregister;
1513
1514 /* For shrinker support */
1515 struct list_head s_list;
1516 int s_ndevs; /* number of devices */
1517 struct f2fs_dev_info *devs; /* for device list */
1518 unsigned int dirty_device; /* for checkpoint data flush */
1519 spinlock_t dev_lock; /* protect dirty_device */
1520 struct mutex umount_mutex;
1521 unsigned int shrinker_run_no;
1522
1523 /* For write statistics */
1524 u64 sectors_written_start;
1525 u64 kbytes_written;
1526
1527 /* Reference to checksum algorithm driver via cryptoapi */
1528 struct crypto_shash *s_chksum_driver;
1529
1530 /* Precomputed FS UUID checksum for seeding other checksums */
1531 __u32 s_chksum_seed;
1532
1533 struct workqueue_struct *post_read_wq; /* post read workqueue */
1534
1535 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1536 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1537};
1538
1539struct f2fs_private_dio {
1540 struct inode *inode;
1541 void *orig_private;
1542 bio_end_io_t *orig_end_io;
1543 bool write;
1544};
1545
1546#ifdef CONFIG_F2FS_FAULT_INJECTION
1547#define f2fs_show_injection_info(sbi, type) \
1548 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1549 KERN_INFO, sbi->sb->s_id, \
1550 f2fs_fault_name[type], \
1551 __func__, __builtin_return_address(0))
1552static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1553{
1554 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1555
1556 if (!ffi->inject_rate)
1557 return false;
1558
1559 if (!IS_FAULT_SET(ffi, type))
1560 return false;
1561
1562 atomic_inc(&ffi->inject_ops);
1563 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1564 atomic_set(&ffi->inject_ops, 0);
1565 return true;
1566 }
1567 return false;
1568}
1569#else
1570#define f2fs_show_injection_info(sbi, type) do { } while (0)
1571static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1572{
1573 return false;
1574}
1575#endif
1576
1577/*
1578 * Test if the mounted volume is a multi-device volume.
1579 * - For a single regular disk volume, sbi->s_ndevs is 0.
1580 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1581 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1582 */
1583static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1584{
1585 return sbi->s_ndevs > 1;
1586}
1587
1588/* For write statistics. Suppose sector size is 512 bytes,
1589 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1590 */
1591#define BD_PART_WRITTEN(s) \
1592(((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1593 (s)->sectors_written_start) >> 1)
1594
1595static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1596{
1597 unsigned long now = jiffies;
1598
1599 sbi->last_time[type] = now;
1600
1601 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1602 if (type == REQ_TIME) {
1603 sbi->last_time[DISCARD_TIME] = now;
1604 sbi->last_time[GC_TIME] = now;
1605 }
1606}
1607
1608static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1609{
1610 unsigned long interval = sbi->interval_time[type] * HZ;
1611
1612 return time_after(jiffies, sbi->last_time[type] + interval);
1613}
1614
1615static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1616 int type)
1617{
1618 unsigned long interval = sbi->interval_time[type] * HZ;
1619 unsigned int wait_ms = 0;
1620 long delta;
1621
1622 delta = (sbi->last_time[type] + interval) - jiffies;
1623 if (delta > 0)
1624 wait_ms = jiffies_to_msecs(delta);
1625
1626 return wait_ms;
1627}
1628
1629/*
1630 * Inline functions
1631 */
1632static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1633 const void *address, unsigned int length)
1634{
1635 struct {
1636 struct shash_desc shash;
1637 char ctx[4];
1638 } desc;
1639 int err;
1640
1641 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1642
1643 desc.shash.tfm = sbi->s_chksum_driver;
1644 *(u32 *)desc.ctx = crc;
1645
1646 err = crypto_shash_update(&desc.shash, address, length);
1647 BUG_ON(err);
1648
1649 return *(u32 *)desc.ctx;
1650}
1651
1652static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1653 unsigned int length)
1654{
1655 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1656}
1657
1658static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1659 void *buf, size_t buf_size)
1660{
1661 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1662}
1663
1664static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1665 const void *address, unsigned int length)
1666{
1667 return __f2fs_crc32(sbi, crc, address, length);
1668}
1669
1670static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1671{
1672 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1673}
1674
1675static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1676{
1677 return sb->s_fs_info;
1678}
1679
1680static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1681{
1682 return F2FS_SB(inode->i_sb);
1683}
1684
1685static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1686{
1687 return F2FS_I_SB(mapping->host);
1688}
1689
1690static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1691{
1692 return F2FS_M_SB(page_file_mapping(page));
1693}
1694
1695static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1696{
1697 return (struct f2fs_super_block *)(sbi->raw_super);
1698}
1699
1700static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1701{
1702 return (struct f2fs_checkpoint *)(sbi->ckpt);
1703}
1704
1705static inline struct f2fs_node *F2FS_NODE(struct page *page)
1706{
1707 return (struct f2fs_node *)page_address(page);
1708}
1709
1710static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1711{
1712 return &((struct f2fs_node *)page_address(page))->i;
1713}
1714
1715static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1716{
1717 return (struct f2fs_nm_info *)(sbi->nm_info);
1718}
1719
1720static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1721{
1722 return (struct f2fs_sm_info *)(sbi->sm_info);
1723}
1724
1725static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1726{
1727 return (struct sit_info *)(SM_I(sbi)->sit_info);
1728}
1729
1730static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1731{
1732 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1733}
1734
1735static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1736{
1737 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1738}
1739
1740static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1741{
1742 return sbi->meta_inode->i_mapping;
1743}
1744
1745static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1746{
1747 return sbi->node_inode->i_mapping;
1748}
1749
1750static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1751{
1752 return test_bit(type, &sbi->s_flag);
1753}
1754
1755static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1756{
1757 set_bit(type, &sbi->s_flag);
1758}
1759
1760static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1761{
1762 clear_bit(type, &sbi->s_flag);
1763}
1764
1765static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1766{
1767 return le64_to_cpu(cp->checkpoint_ver);
1768}
1769
1770static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1771{
1772 if (type < F2FS_MAX_QUOTAS)
1773 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1774 return 0;
1775}
1776
1777static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1778{
1779 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1780 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1781}
1782
1783static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1784{
1785 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1786
1787 return ckpt_flags & f;
1788}
1789
1790static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1791{
1792 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1793}
1794
1795static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1796{
1797 unsigned int ckpt_flags;
1798
1799 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1800 ckpt_flags |= f;
1801 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1802}
1803
1804static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1805{
1806 unsigned long flags;
1807
1808 spin_lock_irqsave(&sbi->cp_lock, flags);
1809 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1810 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1811}
1812
1813static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1814{
1815 unsigned int ckpt_flags;
1816
1817 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1818 ckpt_flags &= (~f);
1819 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1820}
1821
1822static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1823{
1824 unsigned long flags;
1825
1826 spin_lock_irqsave(&sbi->cp_lock, flags);
1827 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1828 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1829}
1830
1831static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1832{
1833 unsigned long flags;
1834 unsigned char *nat_bits;
1835
1836 /*
1837 * In order to re-enable nat_bits we need to call fsck.f2fs by
1838 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1839 * so let's rely on regular fsck or unclean shutdown.
1840 */
1841
1842 if (lock)
1843 spin_lock_irqsave(&sbi->cp_lock, flags);
1844 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1845 nat_bits = NM_I(sbi)->nat_bits;
1846 NM_I(sbi)->nat_bits = NULL;
1847 if (lock)
1848 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1849
1850 kvfree(nat_bits);
1851}
1852
1853static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1854 struct cp_control *cpc)
1855{
1856 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1857
1858 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1859}
1860
1861static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1862{
1863 down_read(&sbi->cp_rwsem);
1864}
1865
1866static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1867{
1868 return down_read_trylock(&sbi->cp_rwsem);
1869}
1870
1871static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1872{
1873 up_read(&sbi->cp_rwsem);
1874}
1875
1876static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1877{
1878 down_write(&sbi->cp_rwsem);
1879}
1880
1881static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1882{
1883 up_write(&sbi->cp_rwsem);
1884}
1885
1886static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1887{
1888 int reason = CP_SYNC;
1889
1890 if (test_opt(sbi, FASTBOOT))
1891 reason = CP_FASTBOOT;
1892 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1893 reason = CP_UMOUNT;
1894 return reason;
1895}
1896
1897static inline bool __remain_node_summaries(int reason)
1898{
1899 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1900}
1901
1902static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1903{
1904 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1905 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1906}
1907
1908/*
1909 * Check whether the inode has blocks or not
1910 */
1911static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1912{
1913 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1914
1915 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1916}
1917
1918static inline bool f2fs_has_xattr_block(unsigned int ofs)
1919{
1920 return ofs == XATTR_NODE_OFFSET;
1921}
1922
1923static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1924 struct inode *inode, bool cap)
1925{
1926 if (!inode)
1927 return true;
1928 if (!test_opt(sbi, RESERVE_ROOT))
1929 return false;
1930 if (IS_NOQUOTA(inode))
1931 return true;
1932 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1933 return true;
1934 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1935 in_group_p(F2FS_OPTION(sbi).s_resgid))
1936 return true;
1937 if (cap && capable(CAP_SYS_RESOURCE))
1938 return true;
1939 return false;
1940}
1941
1942static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1943static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1944 struct inode *inode, blkcnt_t *count)
1945{
1946 blkcnt_t diff = 0, release = 0;
1947 block_t avail_user_block_count;
1948 int ret;
1949
1950 ret = dquot_reserve_block(inode, *count);
1951 if (ret)
1952 return ret;
1953
1954 if (time_to_inject(sbi, FAULT_BLOCK)) {
1955 f2fs_show_injection_info(sbi, FAULT_BLOCK);
1956 release = *count;
1957 goto release_quota;
1958 }
1959
1960 /*
1961 * let's increase this in prior to actual block count change in order
1962 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1963 */
1964 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1965
1966 spin_lock(&sbi->stat_lock);
1967 sbi->total_valid_block_count += (block_t)(*count);
1968 avail_user_block_count = sbi->user_block_count -
1969 sbi->current_reserved_blocks;
1970
1971 if (!__allow_reserved_blocks(sbi, inode, true))
1972 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1973 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1974 if (avail_user_block_count > sbi->unusable_block_count)
1975 avail_user_block_count -= sbi->unusable_block_count;
1976 else
1977 avail_user_block_count = 0;
1978 }
1979 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1980 diff = sbi->total_valid_block_count - avail_user_block_count;
1981 if (diff > *count)
1982 diff = *count;
1983 *count -= diff;
1984 release = diff;
1985 sbi->total_valid_block_count -= diff;
1986 if (!*count) {
1987 spin_unlock(&sbi->stat_lock);
1988 goto enospc;
1989 }
1990 }
1991 spin_unlock(&sbi->stat_lock);
1992
1993 if (unlikely(release)) {
1994 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1995 dquot_release_reservation_block(inode, release);
1996 }
1997 f2fs_i_blocks_write(inode, *count, true, true);
1998 return 0;
1999
2000enospc:
2001 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2002release_quota:
2003 dquot_release_reservation_block(inode, release);
2004 return -ENOSPC;
2005}
2006
2007__printf(2, 3)
2008void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2009
2010#define f2fs_err(sbi, fmt, ...) \
2011 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2012#define f2fs_warn(sbi, fmt, ...) \
2013 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2014#define f2fs_notice(sbi, fmt, ...) \
2015 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2016#define f2fs_info(sbi, fmt, ...) \
2017 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2018#define f2fs_debug(sbi, fmt, ...) \
2019 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2020
2021static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2022 struct inode *inode,
2023 block_t count)
2024{
2025 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2026
2027 spin_lock(&sbi->stat_lock);
2028 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2029 sbi->total_valid_block_count -= (block_t)count;
2030 if (sbi->reserved_blocks &&
2031 sbi->current_reserved_blocks < sbi->reserved_blocks)
2032 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2033 sbi->current_reserved_blocks + count);
2034 spin_unlock(&sbi->stat_lock);
2035 if (unlikely(inode->i_blocks < sectors)) {
2036 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2037 inode->i_ino,
2038 (unsigned long long)inode->i_blocks,
2039 (unsigned long long)sectors);
2040 set_sbi_flag(sbi, SBI_NEED_FSCK);
2041 return;
2042 }
2043 f2fs_i_blocks_write(inode, count, false, true);
2044}
2045
2046static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2047{
2048 atomic_inc(&sbi->nr_pages[count_type]);
2049
2050 if (count_type == F2FS_DIRTY_DENTS ||
2051 count_type == F2FS_DIRTY_NODES ||
2052 count_type == F2FS_DIRTY_META ||
2053 count_type == F2FS_DIRTY_QDATA ||
2054 count_type == F2FS_DIRTY_IMETA)
2055 set_sbi_flag(sbi, SBI_IS_DIRTY);
2056}
2057
2058static inline void inode_inc_dirty_pages(struct inode *inode)
2059{
2060 atomic_inc(&F2FS_I(inode)->dirty_pages);
2061 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2062 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2063 if (IS_NOQUOTA(inode))
2064 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2065}
2066
2067static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2068{
2069 atomic_dec(&sbi->nr_pages[count_type]);
2070}
2071
2072static inline void inode_dec_dirty_pages(struct inode *inode)
2073{
2074 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2075 !S_ISLNK(inode->i_mode))
2076 return;
2077
2078 atomic_dec(&F2FS_I(inode)->dirty_pages);
2079 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2080 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2081 if (IS_NOQUOTA(inode))
2082 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2083}
2084
2085static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2086{
2087 return atomic_read(&sbi->nr_pages[count_type]);
2088}
2089
2090static inline int get_dirty_pages(struct inode *inode)
2091{
2092 return atomic_read(&F2FS_I(inode)->dirty_pages);
2093}
2094
2095static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2096{
2097 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2098 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2099 sbi->log_blocks_per_seg;
2100
2101 return segs / sbi->segs_per_sec;
2102}
2103
2104static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2105{
2106 return sbi->total_valid_block_count;
2107}
2108
2109static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2110{
2111 return sbi->discard_blks;
2112}
2113
2114static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2115{
2116 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2117
2118 /* return NAT or SIT bitmap */
2119 if (flag == NAT_BITMAP)
2120 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2121 else if (flag == SIT_BITMAP)
2122 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2123
2124 return 0;
2125}
2126
2127static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2128{
2129 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2130}
2131
2132static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2133{
2134 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2135 int offset;
2136
2137 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2138 offset = (flag == SIT_BITMAP) ?
2139 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2140 /*
2141 * if large_nat_bitmap feature is enabled, leave checksum
2142 * protection for all nat/sit bitmaps.
2143 */
2144 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2145 }
2146
2147 if (__cp_payload(sbi) > 0) {
2148 if (flag == NAT_BITMAP)
2149 return &ckpt->sit_nat_version_bitmap;
2150 else
2151 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2152 } else {
2153 offset = (flag == NAT_BITMAP) ?
2154 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2155 return &ckpt->sit_nat_version_bitmap + offset;
2156 }
2157}
2158
2159static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2160{
2161 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2162
2163 if (sbi->cur_cp_pack == 2)
2164 start_addr += sbi->blocks_per_seg;
2165 return start_addr;
2166}
2167
2168static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2169{
2170 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2171
2172 if (sbi->cur_cp_pack == 1)
2173 start_addr += sbi->blocks_per_seg;
2174 return start_addr;
2175}
2176
2177static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2178{
2179 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2180}
2181
2182static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2183{
2184 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2185}
2186
2187static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2188 struct inode *inode, bool is_inode)
2189{
2190 block_t valid_block_count;
2191 unsigned int valid_node_count, user_block_count;
2192 int err;
2193
2194 if (is_inode) {
2195 if (inode) {
2196 err = dquot_alloc_inode(inode);
2197 if (err)
2198 return err;
2199 }
2200 } else {
2201 err = dquot_reserve_block(inode, 1);
2202 if (err)
2203 return err;
2204 }
2205
2206 if (time_to_inject(sbi, FAULT_BLOCK)) {
2207 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2208 goto enospc;
2209 }
2210
2211 spin_lock(&sbi->stat_lock);
2212
2213 valid_block_count = sbi->total_valid_block_count +
2214 sbi->current_reserved_blocks + 1;
2215
2216 if (!__allow_reserved_blocks(sbi, inode, false))
2217 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2218 user_block_count = sbi->user_block_count;
2219 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2220 user_block_count -= sbi->unusable_block_count;
2221
2222 if (unlikely(valid_block_count > user_block_count)) {
2223 spin_unlock(&sbi->stat_lock);
2224 goto enospc;
2225 }
2226
2227 valid_node_count = sbi->total_valid_node_count + 1;
2228 if (unlikely(valid_node_count > sbi->total_node_count)) {
2229 spin_unlock(&sbi->stat_lock);
2230 goto enospc;
2231 }
2232
2233 sbi->total_valid_node_count++;
2234 sbi->total_valid_block_count++;
2235 spin_unlock(&sbi->stat_lock);
2236
2237 if (inode) {
2238 if (is_inode)
2239 f2fs_mark_inode_dirty_sync(inode, true);
2240 else
2241 f2fs_i_blocks_write(inode, 1, true, true);
2242 }
2243
2244 percpu_counter_inc(&sbi->alloc_valid_block_count);
2245 return 0;
2246
2247enospc:
2248 if (is_inode) {
2249 if (inode)
2250 dquot_free_inode(inode);
2251 } else {
2252 dquot_release_reservation_block(inode, 1);
2253 }
2254 return -ENOSPC;
2255}
2256
2257static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2258 struct inode *inode, bool is_inode)
2259{
2260 spin_lock(&sbi->stat_lock);
2261
2262 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2263 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2264
2265 sbi->total_valid_node_count--;
2266 sbi->total_valid_block_count--;
2267 if (sbi->reserved_blocks &&
2268 sbi->current_reserved_blocks < sbi->reserved_blocks)
2269 sbi->current_reserved_blocks++;
2270
2271 spin_unlock(&sbi->stat_lock);
2272
2273 if (is_inode) {
2274 dquot_free_inode(inode);
2275 } else {
2276 if (unlikely(inode->i_blocks == 0)) {
2277 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2278 inode->i_ino,
2279 (unsigned long long)inode->i_blocks);
2280 set_sbi_flag(sbi, SBI_NEED_FSCK);
2281 return;
2282 }
2283 f2fs_i_blocks_write(inode, 1, false, true);
2284 }
2285}
2286
2287static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2288{
2289 return sbi->total_valid_node_count;
2290}
2291
2292static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2293{
2294 percpu_counter_inc(&sbi->total_valid_inode_count);
2295}
2296
2297static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2298{
2299 percpu_counter_dec(&sbi->total_valid_inode_count);
2300}
2301
2302static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2303{
2304 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2305}
2306
2307static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2308 pgoff_t index, bool for_write)
2309{
2310 struct page *page;
2311
2312 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2313 if (!for_write)
2314 page = find_get_page_flags(mapping, index,
2315 FGP_LOCK | FGP_ACCESSED);
2316 else
2317 page = find_lock_page(mapping, index);
2318 if (page)
2319 return page;
2320
2321 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2322 f2fs_show_injection_info(F2FS_M_SB(mapping),
2323 FAULT_PAGE_ALLOC);
2324 return NULL;
2325 }
2326 }
2327
2328 if (!for_write)
2329 return grab_cache_page(mapping, index);
2330 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2331}
2332
2333static inline struct page *f2fs_pagecache_get_page(
2334 struct address_space *mapping, pgoff_t index,
2335 int fgp_flags, gfp_t gfp_mask)
2336{
2337 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2338 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2339 return NULL;
2340 }
2341
2342 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2343}
2344
2345static inline void f2fs_copy_page(struct page *src, struct page *dst)
2346{
2347 char *src_kaddr = kmap(src);
2348 char *dst_kaddr = kmap(dst);
2349
2350 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2351 kunmap(dst);
2352 kunmap(src);
2353}
2354
2355static inline void f2fs_put_page(struct page *page, int unlock)
2356{
2357 if (!page)
2358 return;
2359
2360 if (unlock) {
2361 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2362 unlock_page(page);
2363 }
2364 put_page(page);
2365}
2366
2367static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2368{
2369 if (dn->node_page)
2370 f2fs_put_page(dn->node_page, 1);
2371 if (dn->inode_page && dn->node_page != dn->inode_page)
2372 f2fs_put_page(dn->inode_page, 0);
2373 dn->node_page = NULL;
2374 dn->inode_page = NULL;
2375}
2376
2377static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2378 size_t size)
2379{
2380 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2381}
2382
2383static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2384 gfp_t flags)
2385{
2386 void *entry;
2387
2388 entry = kmem_cache_alloc(cachep, flags);
2389 if (!entry)
2390 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2391 return entry;
2392}
2393
2394static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2395{
2396 if (sbi->gc_mode == GC_URGENT)
2397 return true;
2398
2399 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2400 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2401 get_pages(sbi, F2FS_WB_CP_DATA) ||
2402 get_pages(sbi, F2FS_DIO_READ) ||
2403 get_pages(sbi, F2FS_DIO_WRITE))
2404 return false;
2405
2406 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2407 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2408 return false;
2409
2410 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2411 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2412 return false;
2413
2414 return f2fs_time_over(sbi, type);
2415}
2416
2417static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2418 unsigned long index, void *item)
2419{
2420 while (radix_tree_insert(root, index, item))
2421 cond_resched();
2422}
2423
2424#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2425
2426static inline bool IS_INODE(struct page *page)
2427{
2428 struct f2fs_node *p = F2FS_NODE(page);
2429
2430 return RAW_IS_INODE(p);
2431}
2432
2433static inline int offset_in_addr(struct f2fs_inode *i)
2434{
2435 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2436 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2437}
2438
2439static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2440{
2441 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2442}
2443
2444static inline int f2fs_has_extra_attr(struct inode *inode);
2445static inline block_t data_blkaddr(struct inode *inode,
2446 struct page *node_page, unsigned int offset)
2447{
2448 struct f2fs_node *raw_node;
2449 __le32 *addr_array;
2450 int base = 0;
2451 bool is_inode = IS_INODE(node_page);
2452
2453 raw_node = F2FS_NODE(node_page);
2454
2455 if (is_inode) {
2456 if (!inode)
2457 /* from GC path only */
2458 base = offset_in_addr(&raw_node->i);
2459 else if (f2fs_has_extra_attr(inode))
2460 base = get_extra_isize(inode);
2461 }
2462
2463 addr_array = blkaddr_in_node(raw_node);
2464 return le32_to_cpu(addr_array[base + offset]);
2465}
2466
2467static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2468{
2469 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2470}
2471
2472static inline int f2fs_test_bit(unsigned int nr, char *addr)
2473{
2474 int mask;
2475
2476 addr += (nr >> 3);
2477 mask = 1 << (7 - (nr & 0x07));
2478 return mask & *addr;
2479}
2480
2481static inline void f2fs_set_bit(unsigned int nr, char *addr)
2482{
2483 int mask;
2484
2485 addr += (nr >> 3);
2486 mask = 1 << (7 - (nr & 0x07));
2487 *addr |= mask;
2488}
2489
2490static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2491{
2492 int mask;
2493
2494 addr += (nr >> 3);
2495 mask = 1 << (7 - (nr & 0x07));
2496 *addr &= ~mask;
2497}
2498
2499static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2500{
2501 int mask;
2502 int ret;
2503
2504 addr += (nr >> 3);
2505 mask = 1 << (7 - (nr & 0x07));
2506 ret = mask & *addr;
2507 *addr |= mask;
2508 return ret;
2509}
2510
2511static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2512{
2513 int mask;
2514 int ret;
2515
2516 addr += (nr >> 3);
2517 mask = 1 << (7 - (nr & 0x07));
2518 ret = mask & *addr;
2519 *addr &= ~mask;
2520 return ret;
2521}
2522
2523static inline void f2fs_change_bit(unsigned int nr, char *addr)
2524{
2525 int mask;
2526
2527 addr += (nr >> 3);
2528 mask = 1 << (7 - (nr & 0x07));
2529 *addr ^= mask;
2530}
2531
2532/*
2533 * On-disk inode flags (f2fs_inode::i_flags)
2534 */
2535#define F2FS_COMPR_FL 0x00000004 /* Compress file */
2536#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2537#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2538#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2539#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2540#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2541#define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2542#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2543#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2544#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2545#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2546
2547/* Flags that should be inherited by new inodes from their parent. */
2548#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2549 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2550 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2551
2552/* Flags that are appropriate for regular files (all but dir-specific ones). */
2553#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2554 F2FS_CASEFOLD_FL))
2555
2556/* Flags that are appropriate for non-directories/regular files. */
2557#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2558
2559static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2560{
2561 if (S_ISDIR(mode))
2562 return flags;
2563 else if (S_ISREG(mode))
2564 return flags & F2FS_REG_FLMASK;
2565 else
2566 return flags & F2FS_OTHER_FLMASK;
2567}
2568
2569static inline void __mark_inode_dirty_flag(struct inode *inode,
2570 int flag, bool set)
2571{
2572 switch (flag) {
2573 case FI_INLINE_XATTR:
2574 case FI_INLINE_DATA:
2575 case FI_INLINE_DENTRY:
2576 case FI_NEW_INODE:
2577 if (set)
2578 return;
2579 /* fall through */
2580 case FI_DATA_EXIST:
2581 case FI_INLINE_DOTS:
2582 case FI_PIN_FILE:
2583 f2fs_mark_inode_dirty_sync(inode, true);
2584 }
2585}
2586
2587static inline void set_inode_flag(struct inode *inode, int flag)
2588{
2589 test_and_set_bit(flag, F2FS_I(inode)->flags);
2590 __mark_inode_dirty_flag(inode, flag, true);
2591}
2592
2593static inline int is_inode_flag_set(struct inode *inode, int flag)
2594{
2595 return test_bit(flag, F2FS_I(inode)->flags);
2596}
2597
2598static inline void clear_inode_flag(struct inode *inode, int flag)
2599{
2600 test_and_clear_bit(flag, F2FS_I(inode)->flags);
2601 __mark_inode_dirty_flag(inode, flag, false);
2602}
2603
2604static inline bool f2fs_verity_in_progress(struct inode *inode)
2605{
2606 return IS_ENABLED(CONFIG_FS_VERITY) &&
2607 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2608}
2609
2610static inline void set_acl_inode(struct inode *inode, umode_t mode)
2611{
2612 F2FS_I(inode)->i_acl_mode = mode;
2613 set_inode_flag(inode, FI_ACL_MODE);
2614 f2fs_mark_inode_dirty_sync(inode, false);
2615}
2616
2617static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2618{
2619 if (inc)
2620 inc_nlink(inode);
2621 else
2622 drop_nlink(inode);
2623 f2fs_mark_inode_dirty_sync(inode, true);
2624}
2625
2626static inline void f2fs_i_blocks_write(struct inode *inode,
2627 block_t diff, bool add, bool claim)
2628{
2629 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2630 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2631
2632 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2633 if (add) {
2634 if (claim)
2635 dquot_claim_block(inode, diff);
2636 else
2637 dquot_alloc_block_nofail(inode, diff);
2638 } else {
2639 dquot_free_block(inode, diff);
2640 }
2641
2642 f2fs_mark_inode_dirty_sync(inode, true);
2643 if (clean || recover)
2644 set_inode_flag(inode, FI_AUTO_RECOVER);
2645}
2646
2647static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2648{
2649 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2650 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2651
2652 if (i_size_read(inode) == i_size)
2653 return;
2654
2655 i_size_write(inode, i_size);
2656 f2fs_mark_inode_dirty_sync(inode, true);
2657 if (clean || recover)
2658 set_inode_flag(inode, FI_AUTO_RECOVER);
2659}
2660
2661static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2662{
2663 F2FS_I(inode)->i_current_depth = depth;
2664 f2fs_mark_inode_dirty_sync(inode, true);
2665}
2666
2667static inline void f2fs_i_gc_failures_write(struct inode *inode,
2668 unsigned int count)
2669{
2670 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2671 f2fs_mark_inode_dirty_sync(inode, true);
2672}
2673
2674static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2675{
2676 F2FS_I(inode)->i_xattr_nid = xnid;
2677 f2fs_mark_inode_dirty_sync(inode, true);
2678}
2679
2680static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2681{
2682 F2FS_I(inode)->i_pino = pino;
2683 f2fs_mark_inode_dirty_sync(inode, true);
2684}
2685
2686static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2687{
2688 struct f2fs_inode_info *fi = F2FS_I(inode);
2689
2690 if (ri->i_inline & F2FS_INLINE_XATTR)
2691 set_bit(FI_INLINE_XATTR, fi->flags);
2692 if (ri->i_inline & F2FS_INLINE_DATA)
2693 set_bit(FI_INLINE_DATA, fi->flags);
2694 if (ri->i_inline & F2FS_INLINE_DENTRY)
2695 set_bit(FI_INLINE_DENTRY, fi->flags);
2696 if (ri->i_inline & F2FS_DATA_EXIST)
2697 set_bit(FI_DATA_EXIST, fi->flags);
2698 if (ri->i_inline & F2FS_INLINE_DOTS)
2699 set_bit(FI_INLINE_DOTS, fi->flags);
2700 if (ri->i_inline & F2FS_EXTRA_ATTR)
2701 set_bit(FI_EXTRA_ATTR, fi->flags);
2702 if (ri->i_inline & F2FS_PIN_FILE)
2703 set_bit(FI_PIN_FILE, fi->flags);
2704}
2705
2706static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2707{
2708 ri->i_inline = 0;
2709
2710 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2711 ri->i_inline |= F2FS_INLINE_XATTR;
2712 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2713 ri->i_inline |= F2FS_INLINE_DATA;
2714 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2715 ri->i_inline |= F2FS_INLINE_DENTRY;
2716 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2717 ri->i_inline |= F2FS_DATA_EXIST;
2718 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2719 ri->i_inline |= F2FS_INLINE_DOTS;
2720 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2721 ri->i_inline |= F2FS_EXTRA_ATTR;
2722 if (is_inode_flag_set(inode, FI_PIN_FILE))
2723 ri->i_inline |= F2FS_PIN_FILE;
2724}
2725
2726static inline int f2fs_has_extra_attr(struct inode *inode)
2727{
2728 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2729}
2730
2731static inline int f2fs_has_inline_xattr(struct inode *inode)
2732{
2733 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2734}
2735
2736static inline int f2fs_compressed_file(struct inode *inode)
2737{
2738 return S_ISREG(inode->i_mode) &&
2739 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2740}
2741
2742static inline unsigned int addrs_per_inode(struct inode *inode)
2743{
2744 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2745 get_inline_xattr_addrs(inode);
2746
2747 if (!f2fs_compressed_file(inode))
2748 return addrs;
2749 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2750}
2751
2752static inline unsigned int addrs_per_block(struct inode *inode)
2753{
2754 if (!f2fs_compressed_file(inode))
2755 return DEF_ADDRS_PER_BLOCK;
2756 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2757}
2758
2759static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2760{
2761 struct f2fs_inode *ri = F2FS_INODE(page);
2762
2763 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2764 get_inline_xattr_addrs(inode)]);
2765}
2766
2767static inline int inline_xattr_size(struct inode *inode)
2768{
2769 if (f2fs_has_inline_xattr(inode))
2770 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2771 return 0;
2772}
2773
2774static inline int f2fs_has_inline_data(struct inode *inode)
2775{
2776 return is_inode_flag_set(inode, FI_INLINE_DATA);
2777}
2778
2779static inline int f2fs_exist_data(struct inode *inode)
2780{
2781 return is_inode_flag_set(inode, FI_DATA_EXIST);
2782}
2783
2784static inline int f2fs_has_inline_dots(struct inode *inode)
2785{
2786 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2787}
2788
2789static inline int f2fs_is_mmap_file(struct inode *inode)
2790{
2791 return is_inode_flag_set(inode, FI_MMAP_FILE);
2792}
2793
2794static inline bool f2fs_is_pinned_file(struct inode *inode)
2795{
2796 return is_inode_flag_set(inode, FI_PIN_FILE);
2797}
2798
2799static inline bool f2fs_is_atomic_file(struct inode *inode)
2800{
2801 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2802}
2803
2804static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2805{
2806 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2807}
2808
2809static inline bool f2fs_is_volatile_file(struct inode *inode)
2810{
2811 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2812}
2813
2814static inline bool f2fs_is_first_block_written(struct inode *inode)
2815{
2816 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2817}
2818
2819static inline bool f2fs_is_drop_cache(struct inode *inode)
2820{
2821 return is_inode_flag_set(inode, FI_DROP_CACHE);
2822}
2823
2824static inline void *inline_data_addr(struct inode *inode, struct page *page)
2825{
2826 struct f2fs_inode *ri = F2FS_INODE(page);
2827 int extra_size = get_extra_isize(inode);
2828
2829 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2830}
2831
2832static inline int f2fs_has_inline_dentry(struct inode *inode)
2833{
2834 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2835}
2836
2837static inline int is_file(struct inode *inode, int type)
2838{
2839 return F2FS_I(inode)->i_advise & type;
2840}
2841
2842static inline void set_file(struct inode *inode, int type)
2843{
2844 F2FS_I(inode)->i_advise |= type;
2845 f2fs_mark_inode_dirty_sync(inode, true);
2846}
2847
2848static inline void clear_file(struct inode *inode, int type)
2849{
2850 F2FS_I(inode)->i_advise &= ~type;
2851 f2fs_mark_inode_dirty_sync(inode, true);
2852}
2853
2854static inline bool f2fs_is_time_consistent(struct inode *inode)
2855{
2856 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2857 return false;
2858 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2859 return false;
2860 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2861 return false;
2862 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2863 &F2FS_I(inode)->i_crtime))
2864 return false;
2865 return true;
2866}
2867
2868static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2869{
2870 bool ret;
2871
2872 if (dsync) {
2873 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2874
2875 spin_lock(&sbi->inode_lock[DIRTY_META]);
2876 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2877 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2878 return ret;
2879 }
2880 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2881 file_keep_isize(inode) ||
2882 i_size_read(inode) & ~PAGE_MASK)
2883 return false;
2884
2885 if (!f2fs_is_time_consistent(inode))
2886 return false;
2887
2888 spin_lock(&F2FS_I(inode)->i_size_lock);
2889 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2890 spin_unlock(&F2FS_I(inode)->i_size_lock);
2891
2892 return ret;
2893}
2894
2895static inline bool f2fs_readonly(struct super_block *sb)
2896{
2897 return sb_rdonly(sb);
2898}
2899
2900static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2901{
2902 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2903}
2904
2905static inline bool is_dot_dotdot(const struct qstr *str)
2906{
2907 if (str->len == 1 && str->name[0] == '.')
2908 return true;
2909
2910 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2911 return true;
2912
2913 return false;
2914}
2915
2916static inline bool f2fs_may_extent_tree(struct inode *inode)
2917{
2918 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2919
2920 if (!test_opt(sbi, EXTENT_CACHE) ||
2921 is_inode_flag_set(inode, FI_NO_EXTENT) ||
2922 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2923 return false;
2924
2925 /*
2926 * for recovered files during mount do not create extents
2927 * if shrinker is not registered.
2928 */
2929 if (list_empty(&sbi->s_list))
2930 return false;
2931
2932 return S_ISREG(inode->i_mode);
2933}
2934
2935static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2936 size_t size, gfp_t flags)
2937{
2938 void *ret;
2939
2940 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2941 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2942 return NULL;
2943 }
2944
2945 ret = kmalloc(size, flags);
2946 if (ret)
2947 return ret;
2948
2949 return kvmalloc(size, flags);
2950}
2951
2952static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2953 size_t size, gfp_t flags)
2954{
2955 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2956}
2957
2958static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2959 size_t size, gfp_t flags)
2960{
2961 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2962 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2963 return NULL;
2964 }
2965
2966 return kvmalloc(size, flags);
2967}
2968
2969static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2970 size_t size, gfp_t flags)
2971{
2972 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2973}
2974
2975static inline int get_extra_isize(struct inode *inode)
2976{
2977 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2978}
2979
2980static inline int get_inline_xattr_addrs(struct inode *inode)
2981{
2982 return F2FS_I(inode)->i_inline_xattr_size;
2983}
2984
2985#define f2fs_get_inode_mode(i) \
2986 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2987 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2988
2989#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2990 (offsetof(struct f2fs_inode, i_extra_end) - \
2991 offsetof(struct f2fs_inode, i_extra_isize)) \
2992
2993#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2994#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2995 ((offsetof(typeof(*(f2fs_inode)), field) + \
2996 sizeof((f2fs_inode)->field)) \
2997 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
2998
2999static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3000{
3001 int i;
3002
3003 spin_lock(&sbi->iostat_lock);
3004 for (i = 0; i < NR_IO_TYPE; i++)
3005 sbi->write_iostat[i] = 0;
3006 spin_unlock(&sbi->iostat_lock);
3007}
3008
3009static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3010 enum iostat_type type, unsigned long long io_bytes)
3011{
3012 if (!sbi->iostat_enable)
3013 return;
3014 spin_lock(&sbi->iostat_lock);
3015 sbi->write_iostat[type] += io_bytes;
3016
3017 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3018 sbi->write_iostat[APP_BUFFERED_IO] =
3019 sbi->write_iostat[APP_WRITE_IO] -
3020 sbi->write_iostat[APP_DIRECT_IO];
3021 spin_unlock(&sbi->iostat_lock);
3022}
3023
3024#define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3025
3026#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3027
3028bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3029 block_t blkaddr, int type);
3030static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3031 block_t blkaddr, int type)
3032{
3033 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3034 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3035 blkaddr, type);
3036 f2fs_bug_on(sbi, 1);
3037 }
3038}
3039
3040static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3041{
3042 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3043 blkaddr == COMPRESS_ADDR)
3044 return false;
3045 return true;
3046}
3047
3048static inline void f2fs_set_page_private(struct page *page,
3049 unsigned long data)
3050{
3051 if (PagePrivate(page))
3052 return;
3053
3054 get_page(page);
3055 SetPagePrivate(page);
3056 set_page_private(page, data);
3057}
3058
3059static inline void f2fs_clear_page_private(struct page *page)
3060{
3061 if (!PagePrivate(page))
3062 return;
3063
3064 set_page_private(page, 0);
3065 ClearPagePrivate(page);
3066 f2fs_put_page(page, 0);
3067}
3068
3069/*
3070 * file.c
3071 */
3072int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3073void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3074int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3075int f2fs_truncate(struct inode *inode);
3076int f2fs_getattr(const struct path *path, struct kstat *stat,
3077 u32 request_mask, unsigned int flags);
3078int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3079int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3080void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3081int f2fs_precache_extents(struct inode *inode);
3082long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3083long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3084int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3085int f2fs_pin_file_control(struct inode *inode, bool inc);
3086
3087/*
3088 * inode.c
3089 */
3090void f2fs_set_inode_flags(struct inode *inode);
3091bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3092void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3093struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3094struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3095int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3096void f2fs_update_inode(struct inode *inode, struct page *node_page);
3097void f2fs_update_inode_page(struct inode *inode);
3098int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3099void f2fs_evict_inode(struct inode *inode);
3100void f2fs_handle_failed_inode(struct inode *inode);
3101
3102/*
3103 * namei.c
3104 */
3105int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3106 bool hot, bool set);
3107struct dentry *f2fs_get_parent(struct dentry *child);
3108
3109extern int f2fs_ci_compare(const struct inode *parent,
3110 const struct qstr *name,
3111 const struct qstr *entry,
3112 bool quick);
3113
3114/*
3115 * dir.c
3116 */
3117unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3118struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
3119 f2fs_hash_t namehash, int *max_slots,
3120 struct f2fs_dentry_ptr *d);
3121int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3122 unsigned int start_pos, struct fscrypt_str *fstr);
3123void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3124 struct f2fs_dentry_ptr *d);
3125struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3126 const struct qstr *new_name,
3127 const struct qstr *orig_name, struct page *dpage);
3128void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3129 unsigned int current_depth);
3130int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3131void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3132struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3133 struct fscrypt_name *fname, struct page **res_page);
3134struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3135 const struct qstr *child, struct page **res_page);
3136struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3137ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3138 struct page **page);
3139void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3140 struct page *page, struct inode *inode);
3141bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3142 struct fscrypt_name *fname);
3143void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3144 const struct qstr *name, f2fs_hash_t name_hash,
3145 unsigned int bit_pos);
3146int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
3147 const struct qstr *orig_name,
3148 struct inode *inode, nid_t ino, umode_t mode);
3149int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
3150 struct inode *inode, nid_t ino, umode_t mode);
3151int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3152 struct inode *inode, nid_t ino, umode_t mode);
3153void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3154 struct inode *dir, struct inode *inode);
3155int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3156bool f2fs_empty_dir(struct inode *dir);
3157
3158static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3159{
3160 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3161 inode, inode->i_ino, inode->i_mode);
3162}
3163
3164/*
3165 * super.c
3166 */
3167int f2fs_inode_dirtied(struct inode *inode, bool sync);
3168void f2fs_inode_synced(struct inode *inode);
3169int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3170int f2fs_quota_sync(struct super_block *sb, int type);
3171void f2fs_quota_off_umount(struct super_block *sb);
3172int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3173int f2fs_sync_fs(struct super_block *sb, int sync);
3174int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3175
3176/*
3177 * hash.c
3178 */
3179f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3180 const struct qstr *name_info, struct fscrypt_name *fname);
3181
3182/*
3183 * node.c
3184 */
3185struct dnode_of_data;
3186struct node_info;
3187
3188int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3189bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3190bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3191void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3192void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3193void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3194int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3195bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3196bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3197int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3198 struct node_info *ni);
3199pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3200int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3201int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3202int f2fs_truncate_xattr_node(struct inode *inode);
3203int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3204 unsigned int seq_id);
3205int f2fs_remove_inode_page(struct inode *inode);
3206struct page *f2fs_new_inode_page(struct inode *inode);
3207struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3208void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3209struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3210struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3211int f2fs_move_node_page(struct page *node_page, int gc_type);
3212int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3213 struct writeback_control *wbc, bool atomic,
3214 unsigned int *seq_id);
3215int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3216 struct writeback_control *wbc,
3217 bool do_balance, enum iostat_type io_type);
3218int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3219bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3220void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3221void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3222int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3223void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3224int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3225int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3226int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3227 unsigned int segno, struct f2fs_summary_block *sum);
3228int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3229int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3230void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3231int __init f2fs_create_node_manager_caches(void);
3232void f2fs_destroy_node_manager_caches(void);
3233
3234/*
3235 * segment.c
3236 */
3237bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3238void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3239void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3240void f2fs_drop_inmem_pages(struct inode *inode);
3241void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3242int f2fs_commit_inmem_pages(struct inode *inode);
3243void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3244void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3245int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3246int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3247int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3248void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3249void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3250bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3251void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3252void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3253bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3254void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3255 struct cp_control *cpc);
3256void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3257block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3258int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3259void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3260int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3261void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3262 unsigned int start, unsigned int end);
3263void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3264int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3265bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3266 struct cp_control *cpc);
3267struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3268void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3269 block_t blk_addr);
3270void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3271 enum iostat_type io_type);
3272void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3273void f2fs_outplace_write_data(struct dnode_of_data *dn,
3274 struct f2fs_io_info *fio);
3275int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3276void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3277 block_t old_blkaddr, block_t new_blkaddr,
3278 bool recover_curseg, bool recover_newaddr);
3279void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3280 block_t old_addr, block_t new_addr,
3281 unsigned char version, bool recover_curseg,
3282 bool recover_newaddr);
3283void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3284 block_t old_blkaddr, block_t *new_blkaddr,
3285 struct f2fs_summary *sum, int type,
3286 struct f2fs_io_info *fio, bool add_list);
3287void f2fs_wait_on_page_writeback(struct page *page,
3288 enum page_type type, bool ordered, bool locked);
3289void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3290void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3291 block_t len);
3292void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3293void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3294int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3295 unsigned int val, int alloc);
3296void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3297int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3298int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3299int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3300void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3301int __init f2fs_create_segment_manager_caches(void);
3302void f2fs_destroy_segment_manager_caches(void);
3303int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3304enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3305 enum page_type type, enum temp_type temp);
3306
3307/*
3308 * checkpoint.c
3309 */
3310void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3311struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3312struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3313struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3314struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3315bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3316 block_t blkaddr, int type);
3317int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3318 int type, bool sync);
3319void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3320long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3321 long nr_to_write, enum iostat_type io_type);
3322void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3323void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3324void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3325bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3326void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3327 unsigned int devidx, int type);
3328bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3329 unsigned int devidx, int type);
3330int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3331int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3332void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3333void f2fs_add_orphan_inode(struct inode *inode);
3334void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3335int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3336int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3337void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3338void f2fs_remove_dirty_inode(struct inode *inode);
3339int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3340void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3341int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3342void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3343int __init f2fs_create_checkpoint_caches(void);
3344void f2fs_destroy_checkpoint_caches(void);
3345
3346/*
3347 * data.c
3348 */
3349int __init f2fs_init_bioset(void);
3350void f2fs_destroy_bioset(void);
3351struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3352int f2fs_init_bio_entry_cache(void);
3353void f2fs_destroy_bio_entry_cache(void);
3354void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3355 struct bio *bio, enum page_type type);
3356void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3357void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3358 struct inode *inode, struct page *page,
3359 nid_t ino, enum page_type type);
3360void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3361 struct bio **bio, struct page *page);
3362void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3363int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3364int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3365void f2fs_submit_page_write(struct f2fs_io_info *fio);
3366struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3367 block_t blk_addr, struct bio *bio);
3368int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3369void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3370void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3371int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3372int f2fs_reserve_new_block(struct dnode_of_data *dn);
3373int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3374int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3375int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3376int f2fs_mpage_readpages(struct address_space *mapping,
3377 struct list_head *pages, struct page *page,
3378 unsigned nr_pages, bool is_readahead);
3379struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3380 int op_flags, bool for_write);
3381struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3382struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3383 bool for_write);
3384struct page *f2fs_get_new_data_page(struct inode *inode,
3385 struct page *ipage, pgoff_t index, bool new_i_size);
3386int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3387void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3388int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3389 int create, int flag);
3390int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3391 u64 start, u64 len);
3392int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3393bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3394bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3395int f2fs_write_single_data_page(struct page *page, int *submitted,
3396 struct bio **bio, sector_t *last_block,
3397 struct writeback_control *wbc,
3398 enum iostat_type io_type,
3399 int compr_blocks);
3400void f2fs_invalidate_page(struct page *page, unsigned int offset,
3401 unsigned int length);
3402int f2fs_release_page(struct page *page, gfp_t wait);
3403#ifdef CONFIG_MIGRATION
3404int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3405 struct page *page, enum migrate_mode mode);
3406#endif
3407bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3408void f2fs_clear_page_cache_dirty_tag(struct page *page);
3409int f2fs_init_post_read_processing(void);
3410void f2fs_destroy_post_read_processing(void);
3411int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3412void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3413
3414/*
3415 * gc.c
3416 */
3417int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3418void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3419block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3420int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3421 unsigned int segno);
3422void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3423int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3424
3425/*
3426 * recovery.c
3427 */
3428int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3429bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3430
3431/*
3432 * debug.c
3433 */
3434#ifdef CONFIG_F2FS_STAT_FS
3435struct f2fs_stat_info {
3436 struct list_head stat_list;
3437 struct f2fs_sb_info *sbi;
3438 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3439 int main_area_segs, main_area_sections, main_area_zones;
3440 unsigned long long hit_largest, hit_cached, hit_rbtree;
3441 unsigned long long hit_total, total_ext;
3442 int ext_tree, zombie_tree, ext_node;
3443 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3444 int ndirty_data, ndirty_qdata;
3445 int inmem_pages;
3446 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3447 int nats, dirty_nats, sits, dirty_sits;
3448 int free_nids, avail_nids, alloc_nids;
3449 int total_count, utilization;
3450 int bg_gc, nr_wb_cp_data, nr_wb_data;
3451 int nr_rd_data, nr_rd_node, nr_rd_meta;
3452 int nr_dio_read, nr_dio_write;
3453 unsigned int io_skip_bggc, other_skip_bggc;
3454 int nr_flushing, nr_flushed, flush_list_empty;
3455 int nr_discarding, nr_discarded;
3456 int nr_discard_cmd;
3457 unsigned int undiscard_blks;
3458 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3459 int compr_inode, compr_blocks;
3460 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3461 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3462 unsigned int bimodal, avg_vblocks;
3463 int util_free, util_valid, util_invalid;
3464 int rsvd_segs, overp_segs;
3465 int dirty_count, node_pages, meta_pages;
3466 int prefree_count, call_count, cp_count, bg_cp_count;
3467 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3468 int bg_node_segs, bg_data_segs;
3469 int tot_blks, data_blks, node_blks;
3470 int bg_data_blks, bg_node_blks;
3471 unsigned long long skipped_atomic_files[2];
3472 int curseg[NR_CURSEG_TYPE];
3473 int cursec[NR_CURSEG_TYPE];
3474 int curzone[NR_CURSEG_TYPE];
3475
3476 unsigned int meta_count[META_MAX];
3477 unsigned int segment_count[2];
3478 unsigned int block_count[2];
3479 unsigned int inplace_count;
3480 unsigned long long base_mem, cache_mem, page_mem;
3481};
3482
3483static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3484{
3485 return (struct f2fs_stat_info *)sbi->stat_info;
3486}
3487
3488#define stat_inc_cp_count(si) ((si)->cp_count++)
3489#define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3490#define stat_inc_call_count(si) ((si)->call_count++)
3491#define stat_inc_bggc_count(si) ((si)->bg_gc++)
3492#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3493#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3494#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3495#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3496#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3497#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3498#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3499#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3500#define stat_inc_inline_xattr(inode) \
3501 do { \
3502 if (f2fs_has_inline_xattr(inode)) \
3503 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3504 } while (0)
3505#define stat_dec_inline_xattr(inode) \
3506 do { \
3507 if (f2fs_has_inline_xattr(inode)) \
3508 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3509 } while (0)
3510#define stat_inc_inline_inode(inode) \
3511 do { \
3512 if (f2fs_has_inline_data(inode)) \
3513 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3514 } while (0)
3515#define stat_dec_inline_inode(inode) \
3516 do { \
3517 if (f2fs_has_inline_data(inode)) \
3518 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3519 } while (0)
3520#define stat_inc_inline_dir(inode) \
3521 do { \
3522 if (f2fs_has_inline_dentry(inode)) \
3523 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3524 } while (0)
3525#define stat_dec_inline_dir(inode) \
3526 do { \
3527 if (f2fs_has_inline_dentry(inode)) \
3528 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3529 } while (0)
3530#define stat_inc_compr_inode(inode) \
3531 do { \
3532 if (f2fs_compressed_file(inode)) \
3533 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3534 } while (0)
3535#define stat_dec_compr_inode(inode) \
3536 do { \
3537 if (f2fs_compressed_file(inode)) \
3538 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3539 } while (0)
3540#define stat_add_compr_blocks(inode, blocks) \
3541 (atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3542#define stat_sub_compr_blocks(inode, blocks) \
3543 (atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3544#define stat_inc_meta_count(sbi, blkaddr) \
3545 do { \
3546 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3547 atomic_inc(&(sbi)->meta_count[META_CP]); \
3548 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3549 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3550 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3551 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3552 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3553 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3554 } while (0)
3555#define stat_inc_seg_type(sbi, curseg) \
3556 ((sbi)->segment_count[(curseg)->alloc_type]++)
3557#define stat_inc_block_count(sbi, curseg) \
3558 ((sbi)->block_count[(curseg)->alloc_type]++)
3559#define stat_inc_inplace_blocks(sbi) \
3560 (atomic_inc(&(sbi)->inplace_count))
3561#define stat_update_max_atomic_write(inode) \
3562 do { \
3563 int cur = F2FS_I_SB(inode)->atomic_files; \
3564 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3565 if (cur > max) \
3566 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3567 } while (0)
3568#define stat_inc_volatile_write(inode) \
3569 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3570#define stat_dec_volatile_write(inode) \
3571 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3572#define stat_update_max_volatile_write(inode) \
3573 do { \
3574 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3575 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3576 if (cur > max) \
3577 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3578 } while (0)
3579#define stat_inc_seg_count(sbi, type, gc_type) \
3580 do { \
3581 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3582 si->tot_segs++; \
3583 if ((type) == SUM_TYPE_DATA) { \
3584 si->data_segs++; \
3585 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3586 } else { \
3587 si->node_segs++; \
3588 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3589 } \
3590 } while (0)
3591
3592#define stat_inc_tot_blk_count(si, blks) \
3593 ((si)->tot_blks += (blks))
3594
3595#define stat_inc_data_blk_count(sbi, blks, gc_type) \
3596 do { \
3597 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3598 stat_inc_tot_blk_count(si, blks); \
3599 si->data_blks += (blks); \
3600 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3601 } while (0)
3602
3603#define stat_inc_node_blk_count(sbi, blks, gc_type) \
3604 do { \
3605 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3606 stat_inc_tot_blk_count(si, blks); \
3607 si->node_blks += (blks); \
3608 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3609 } while (0)
3610
3611int f2fs_build_stats(struct f2fs_sb_info *sbi);
3612void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3613void __init f2fs_create_root_stats(void);
3614void f2fs_destroy_root_stats(void);
3615void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3616#else
3617#define stat_inc_cp_count(si) do { } while (0)
3618#define stat_inc_bg_cp_count(si) do { } while (0)
3619#define stat_inc_call_count(si) do { } while (0)
3620#define stat_inc_bggc_count(si) do { } while (0)
3621#define stat_io_skip_bggc_count(sbi) do { } while (0)
3622#define stat_other_skip_bggc_count(sbi) do { } while (0)
3623#define stat_inc_dirty_inode(sbi, type) do { } while (0)
3624#define stat_dec_dirty_inode(sbi, type) do { } while (0)
3625#define stat_inc_total_hit(sbi) do { } while (0)
3626#define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3627#define stat_inc_largest_node_hit(sbi) do { } while (0)
3628#define stat_inc_cached_node_hit(sbi) do { } while (0)
3629#define stat_inc_inline_xattr(inode) do { } while (0)
3630#define stat_dec_inline_xattr(inode) do { } while (0)
3631#define stat_inc_inline_inode(inode) do { } while (0)
3632#define stat_dec_inline_inode(inode) do { } while (0)
3633#define stat_inc_inline_dir(inode) do { } while (0)
3634#define stat_dec_inline_dir(inode) do { } while (0)
3635#define stat_inc_compr_inode(inode) do { } while (0)
3636#define stat_dec_compr_inode(inode) do { } while (0)
3637#define stat_add_compr_blocks(inode, blocks) do { } while (0)
3638#define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3639#define stat_inc_atomic_write(inode) do { } while (0)
3640#define stat_dec_atomic_write(inode) do { } while (0)
3641#define stat_update_max_atomic_write(inode) do { } while (0)
3642#define stat_inc_volatile_write(inode) do { } while (0)
3643#define stat_dec_volatile_write(inode) do { } while (0)
3644#define stat_update_max_volatile_write(inode) do { } while (0)
3645#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3646#define stat_inc_seg_type(sbi, curseg) do { } while (0)
3647#define stat_inc_block_count(sbi, curseg) do { } while (0)
3648#define stat_inc_inplace_blocks(sbi) do { } while (0)
3649#define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3650#define stat_inc_tot_blk_count(si, blks) do { } while (0)
3651#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3652#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3653
3654static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3655static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3656static inline void __init f2fs_create_root_stats(void) { }
3657static inline void f2fs_destroy_root_stats(void) { }
3658static inline void update_sit_info(struct f2fs_sb_info *sbi) {}
3659#endif
3660
3661extern const struct file_operations f2fs_dir_operations;
3662#ifdef CONFIG_UNICODE
3663extern const struct dentry_operations f2fs_dentry_ops;
3664#endif
3665extern const struct file_operations f2fs_file_operations;
3666extern const struct inode_operations f2fs_file_inode_operations;
3667extern const struct address_space_operations f2fs_dblock_aops;
3668extern const struct address_space_operations f2fs_node_aops;
3669extern const struct address_space_operations f2fs_meta_aops;
3670extern const struct inode_operations f2fs_dir_inode_operations;
3671extern const struct inode_operations f2fs_symlink_inode_operations;
3672extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3673extern const struct inode_operations f2fs_special_inode_operations;
3674extern struct kmem_cache *f2fs_inode_entry_slab;
3675
3676/*
3677 * inline.c
3678 */
3679bool f2fs_may_inline_data(struct inode *inode);
3680bool f2fs_may_inline_dentry(struct inode *inode);
3681void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3682void f2fs_truncate_inline_inode(struct inode *inode,
3683 struct page *ipage, u64 from);
3684int f2fs_read_inline_data(struct inode *inode, struct page *page);
3685int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3686int f2fs_convert_inline_inode(struct inode *inode);
3687int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3688int f2fs_write_inline_data(struct inode *inode, struct page *page);
3689bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3690struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3691 struct fscrypt_name *fname, struct page **res_page);
3692int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3693 struct page *ipage);
3694int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3695 const struct qstr *orig_name,
3696 struct inode *inode, nid_t ino, umode_t mode);
3697void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3698 struct page *page, struct inode *dir,
3699 struct inode *inode);
3700bool f2fs_empty_inline_dir(struct inode *dir);
3701int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3702 struct fscrypt_str *fstr);
3703int f2fs_inline_data_fiemap(struct inode *inode,
3704 struct fiemap_extent_info *fieinfo,
3705 __u64 start, __u64 len);
3706
3707/*
3708 * shrinker.c
3709 */
3710unsigned long f2fs_shrink_count(struct shrinker *shrink,
3711 struct shrink_control *sc);
3712unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3713 struct shrink_control *sc);
3714void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3715void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3716
3717/*
3718 * extent_cache.c
3719 */
3720struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3721 struct rb_entry *cached_re, unsigned int ofs);
3722struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3723 struct rb_root_cached *root,
3724 struct rb_node **parent,
3725 unsigned int ofs, bool *leftmost);
3726struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3727 struct rb_entry *cached_re, unsigned int ofs,
3728 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3729 struct rb_node ***insert_p, struct rb_node **insert_parent,
3730 bool force, bool *leftmost);
3731bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3732 struct rb_root_cached *root);
3733unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3734bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3735void f2fs_drop_extent_tree(struct inode *inode);
3736unsigned int f2fs_destroy_extent_node(struct inode *inode);
3737void f2fs_destroy_extent_tree(struct inode *inode);
3738bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3739 struct extent_info *ei);
3740void f2fs_update_extent_cache(struct dnode_of_data *dn);
3741void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3742 pgoff_t fofs, block_t blkaddr, unsigned int len);
3743void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3744int __init f2fs_create_extent_cache(void);
3745void f2fs_destroy_extent_cache(void);
3746
3747/*
3748 * sysfs.c
3749 */
3750int __init f2fs_init_sysfs(void);
3751void f2fs_exit_sysfs(void);
3752int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3753void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3754
3755/* verity.c */
3756extern const struct fsverity_operations f2fs_verityops;
3757
3758/*
3759 * crypto support
3760 */
3761static inline bool f2fs_encrypted_file(struct inode *inode)
3762{
3763 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3764}
3765
3766static inline void f2fs_set_encrypted_inode(struct inode *inode)
3767{
3768#ifdef CONFIG_FS_ENCRYPTION
3769 file_set_encrypt(inode);
3770 f2fs_set_inode_flags(inode);
3771#endif
3772}
3773
3774/*
3775 * Returns true if the reads of the inode's data need to undergo some
3776 * postprocessing step, like decryption or authenticity verification.
3777 */
3778static inline bool f2fs_post_read_required(struct inode *inode)
3779{
3780 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3781 f2fs_compressed_file(inode);
3782}
3783
3784/*
3785 * compress.c
3786 */
3787#ifdef CONFIG_F2FS_FS_COMPRESSION
3788bool f2fs_is_compressed_page(struct page *page);
3789struct page *f2fs_compress_control_page(struct page *page);
3790int f2fs_prepare_compress_overwrite(struct inode *inode,
3791 struct page **pagep, pgoff_t index, void **fsdata);
3792bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3793 pgoff_t index, unsigned copied);
3794void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3795bool f2fs_is_compress_backend_ready(struct inode *inode);
3796void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3797bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3798bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3799void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3800int f2fs_write_multi_pages(struct compress_ctx *cc,
3801 int *submitted,
3802 struct writeback_control *wbc,
3803 enum iostat_type io_type);
3804int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3805int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3806 unsigned nr_pages, sector_t *last_block_in_bio,
3807 bool is_readahead, bool for_write);
3808struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3809void f2fs_free_dic(struct decompress_io_ctx *dic);
3810void f2fs_decompress_end_io(struct page **rpages,
3811 unsigned int cluster_size, bool err, bool verity);
3812int f2fs_init_compress_ctx(struct compress_ctx *cc);
3813void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3814void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3815#else
3816static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3817static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3818{
3819 if (!f2fs_compressed_file(inode))
3820 return true;
3821 /* not support compression */
3822 return false;
3823}
3824static inline struct page *f2fs_compress_control_page(struct page *page)
3825{
3826 WARN_ON_ONCE(1);
3827 return ERR_PTR(-EINVAL);
3828}
3829#endif
3830
3831static inline void set_compress_context(struct inode *inode)
3832{
3833 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3834
3835 F2FS_I(inode)->i_compress_algorithm =
3836 F2FS_OPTION(sbi).compress_algorithm;
3837 F2FS_I(inode)->i_log_cluster_size =
3838 F2FS_OPTION(sbi).compress_log_size;
3839 F2FS_I(inode)->i_cluster_size =
3840 1 << F2FS_I(inode)->i_log_cluster_size;
3841 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3842 set_inode_flag(inode, FI_COMPRESSED_FILE);
3843 stat_inc_compr_inode(inode);
3844 f2fs_mark_inode_dirty_sync(inode, true);
3845}
3846
3847static inline u64 f2fs_disable_compressed_file(struct inode *inode)
3848{
3849 struct f2fs_inode_info *fi = F2FS_I(inode);
3850
3851 if (!f2fs_compressed_file(inode))
3852 return 0;
3853 if (S_ISREG(inode->i_mode)) {
3854 if (get_dirty_pages(inode))
3855 return 1;
3856 if (fi->i_compr_blocks)
3857 return fi->i_compr_blocks;
3858 }
3859
3860 fi->i_flags &= ~F2FS_COMPR_FL;
3861 stat_dec_compr_inode(inode);
3862 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3863 f2fs_mark_inode_dirty_sync(inode, true);
3864 return 0;
3865}
3866
3867#define F2FS_FEATURE_FUNCS(name, flagname) \
3868static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3869{ \
3870 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3871}
3872
3873F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3874F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3875F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3876F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3877F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3878F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3879F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3880F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3881F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3882F2FS_FEATURE_FUNCS(verity, VERITY);
3883F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3884F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3885F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3886
3887#ifdef CONFIG_BLK_DEV_ZONED
3888static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3889 block_t blkaddr)
3890{
3891 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3892
3893 return test_bit(zno, FDEV(devi).blkz_seq);
3894}
3895#endif
3896
3897static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3898{
3899 return f2fs_sb_has_blkzoned(sbi);
3900}
3901
3902static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3903{
3904 return blk_queue_discard(bdev_get_queue(bdev)) ||
3905 bdev_is_zoned(bdev);
3906}
3907
3908static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3909{
3910 int i;
3911
3912 if (!f2fs_is_multi_device(sbi))
3913 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3914
3915 for (i = 0; i < sbi->s_ndevs; i++)
3916 if (f2fs_bdev_support_discard(FDEV(i).bdev))
3917 return true;
3918 return false;
3919}
3920
3921static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3922{
3923 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3924 f2fs_hw_should_discard(sbi);
3925}
3926
3927static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3928{
3929 int i;
3930
3931 if (!f2fs_is_multi_device(sbi))
3932 return bdev_read_only(sbi->sb->s_bdev);
3933
3934 for (i = 0; i < sbi->s_ndevs; i++)
3935 if (bdev_read_only(FDEV(i).bdev))
3936 return true;
3937 return false;
3938}
3939
3940static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
3941{
3942 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
3943}
3944
3945static inline bool f2fs_may_encrypt(struct inode *dir, struct inode *inode)
3946{
3947#ifdef CONFIG_FS_ENCRYPTION
3948 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
3949 umode_t mode = inode->i_mode;
3950
3951 /*
3952 * If the directory encrypted or dummy encryption enabled,
3953 * then we should encrypt the inode.
3954 */
3955 if (IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi))
3956 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3957#endif
3958 return false;
3959}
3960
3961static inline bool f2fs_may_compress(struct inode *inode)
3962{
3963 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
3964 f2fs_is_atomic_file(inode) ||
3965 f2fs_is_volatile_file(inode))
3966 return false;
3967 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
3968}
3969
3970static inline void f2fs_i_compr_blocks_update(struct inode *inode,
3971 u64 blocks, bool add)
3972{
3973 int diff = F2FS_I(inode)->i_cluster_size - blocks;
3974
3975 if (add) {
3976 F2FS_I(inode)->i_compr_blocks += diff;
3977 stat_add_compr_blocks(inode, diff);
3978 } else {
3979 F2FS_I(inode)->i_compr_blocks -= diff;
3980 stat_sub_compr_blocks(inode, diff);
3981 }
3982 f2fs_mark_inode_dirty_sync(inode, true);
3983}
3984
3985static inline int block_unaligned_IO(struct inode *inode,
3986 struct kiocb *iocb, struct iov_iter *iter)
3987{
3988 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3989 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3990 loff_t offset = iocb->ki_pos;
3991 unsigned long align = offset | iov_iter_alignment(iter);
3992
3993 return align & blocksize_mask;
3994}
3995
3996static inline int allow_outplace_dio(struct inode *inode,
3997 struct kiocb *iocb, struct iov_iter *iter)
3998{
3999 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4000 int rw = iov_iter_rw(iter);
4001
4002 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4003 !block_unaligned_IO(inode, iocb, iter));
4004}
4005
4006static inline bool f2fs_force_buffered_io(struct inode *inode,
4007 struct kiocb *iocb, struct iov_iter *iter)
4008{
4009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4010 int rw = iov_iter_rw(iter);
4011
4012 if (f2fs_post_read_required(inode))
4013 return true;
4014 if (f2fs_is_multi_device(sbi))
4015 return true;
4016 if (f2fs_compressed_file(inode))
4017 return true;
4018 /*
4019 * for blkzoned device, fallback direct IO to buffered IO, so
4020 * all IOs can be serialized by log-structured write.
4021 */
4022 if (f2fs_sb_has_blkzoned(sbi))
4023 return true;
4024 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4025 if (block_unaligned_IO(inode, iocb, iter))
4026 return true;
4027 if (F2FS_IO_ALIGNED(sbi))
4028 return true;
4029 }
4030 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4031 !IS_SWAPFILE(inode))
4032 return true;
4033
4034 return false;
4035}
4036
4037#ifdef CONFIG_F2FS_FAULT_INJECTION
4038extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4039 unsigned int type);
4040#else
4041#define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4042#endif
4043
4044static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4045{
4046#ifdef CONFIG_QUOTA
4047 if (f2fs_sb_has_quota_ino(sbi))
4048 return true;
4049 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4050 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4051 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4052 return true;
4053#endif
4054 return false;
4055}
4056
4057#define EFSBADCRC EBADMSG /* Bad CRC detected */
4058#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4059
4060#endif /* _LINUX_F2FS_H */