]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/f2fs/segment.c
f2fs: clean up duplicated assignment in init_discard_policy
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / segment.c
... / ...
CommitLineData
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/swap.h>
18#include <linux/timer.h>
19#include <linux/freezer.h>
20#include <linux/sched/signal.h>
21
22#include "f2fs.h"
23#include "segment.h"
24#include "node.h"
25#include "gc.h"
26#include "trace.h"
27#include <trace/events/f2fs.h>
28
29#define __reverse_ffz(x) __reverse_ffs(~(x))
30
31static struct kmem_cache *discard_entry_slab;
32static struct kmem_cache *discard_cmd_slab;
33static struct kmem_cache *sit_entry_set_slab;
34static struct kmem_cache *inmem_entry_slab;
35
36static unsigned long __reverse_ulong(unsigned char *str)
37{
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41#if BITS_PER_LONG == 64
42 shift = 56;
43#endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49}
50
51/*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
55static inline unsigned long __reverse_ffs(unsigned long word)
56{
57 int num = 0;
58
59#if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64#endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88}
89
90/*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
99static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101{
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131found:
132 return result - size + __reverse_ffs(tmp);
133}
134
135static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137{
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168found:
169 return result - size + __reverse_ffz(tmp);
170}
171
172bool need_SSR(struct f2fs_sb_info *sbi)
173{
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185}
186
187void register_inmem_page(struct inode *inode, struct page *page)
188{
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
214
215 trace_f2fs_register_inmem_page(page, INMEM);
216}
217
218static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover)
220{
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct inmem_pages *cur, *tmp;
223 int err = 0;
224
225 list_for_each_entry_safe(cur, tmp, head, list) {
226 struct page *page = cur->page;
227
228 if (drop)
229 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231 lock_page(page);
232
233 if (recover) {
234 struct dnode_of_data dn;
235 struct node_info ni;
236
237 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238retry:
239 set_new_dnode(&dn, inode, NULL, NULL, 0);
240 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 if (err) {
242 if (err == -ENOMEM) {
243 congestion_wait(BLK_RW_ASYNC, HZ/50);
244 cond_resched();
245 goto retry;
246 }
247 err = -EAGAIN;
248 goto next;
249 }
250 get_node_info(sbi, dn.nid, &ni);
251 if (cur->old_addr == NEW_ADDR) {
252 invalidate_blocks(sbi, dn.data_blkaddr);
253 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254 } else
255 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256 cur->old_addr, ni.version, true, true);
257 f2fs_put_dnode(&dn);
258 }
259next:
260 /* we don't need to invalidate this in the sccessful status */
261 if (drop || recover)
262 ClearPageUptodate(page);
263 set_page_private(page, 0);
264 ClearPagePrivate(page);
265 f2fs_put_page(page, 1);
266
267 list_del(&cur->list);
268 kmem_cache_free(inmem_entry_slab, cur);
269 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
270 }
271 return err;
272}
273
274void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
275{
276 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277 struct inode *inode;
278 struct f2fs_inode_info *fi;
279next:
280 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281 if (list_empty(head)) {
282 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283 return;
284 }
285 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286 inode = igrab(&fi->vfs_inode);
287 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
288
289 if (inode) {
290 drop_inmem_pages(inode);
291 iput(inode);
292 }
293 congestion_wait(BLK_RW_ASYNC, HZ/50);
294 cond_resched();
295 goto next;
296}
297
298void drop_inmem_pages(struct inode *inode)
299{
300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302
303 mutex_lock(&fi->inmem_lock);
304 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306 if (!list_empty(&fi->inmem_ilist))
307 list_del_init(&fi->inmem_ilist);
308 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309 mutex_unlock(&fi->inmem_lock);
310
311 clear_inode_flag(inode, FI_ATOMIC_FILE);
312 clear_inode_flag(inode, FI_HOT_DATA);
313 stat_dec_atomic_write(inode);
314}
315
316void drop_inmem_page(struct inode *inode, struct page *page)
317{
318 struct f2fs_inode_info *fi = F2FS_I(inode);
319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320 struct list_head *head = &fi->inmem_pages;
321 struct inmem_pages *cur = NULL;
322
323 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
324
325 mutex_lock(&fi->inmem_lock);
326 list_for_each_entry(cur, head, list) {
327 if (cur->page == page)
328 break;
329 }
330
331 f2fs_bug_on(sbi, !cur || cur->page != page);
332 list_del(&cur->list);
333 mutex_unlock(&fi->inmem_lock);
334
335 dec_page_count(sbi, F2FS_INMEM_PAGES);
336 kmem_cache_free(inmem_entry_slab, cur);
337
338 ClearPageUptodate(page);
339 set_page_private(page, 0);
340 ClearPagePrivate(page);
341 f2fs_put_page(page, 0);
342
343 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
344}
345
346static int __commit_inmem_pages(struct inode *inode,
347 struct list_head *revoke_list)
348{
349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 struct f2fs_inode_info *fi = F2FS_I(inode);
351 struct inmem_pages *cur, *tmp;
352 struct f2fs_io_info fio = {
353 .sbi = sbi,
354 .ino = inode->i_ino,
355 .type = DATA,
356 .op = REQ_OP_WRITE,
357 .op_flags = REQ_SYNC | REQ_PRIO,
358 .io_type = FS_DATA_IO,
359 };
360 pgoff_t last_idx = ULONG_MAX;
361 int err = 0;
362
363 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364 struct page *page = cur->page;
365
366 lock_page(page);
367 if (page->mapping == inode->i_mapping) {
368 trace_f2fs_commit_inmem_page(page, INMEM);
369
370 set_page_dirty(page);
371 f2fs_wait_on_page_writeback(page, DATA, true);
372 if (clear_page_dirty_for_io(page)) {
373 inode_dec_dirty_pages(inode);
374 remove_dirty_inode(inode);
375 }
376retry:
377 fio.page = page;
378 fio.old_blkaddr = NULL_ADDR;
379 fio.encrypted_page = NULL;
380 fio.need_lock = LOCK_DONE;
381 err = do_write_data_page(&fio);
382 if (err) {
383 if (err == -ENOMEM) {
384 congestion_wait(BLK_RW_ASYNC, HZ/50);
385 cond_resched();
386 goto retry;
387 }
388 unlock_page(page);
389 break;
390 }
391 /* record old blkaddr for revoking */
392 cur->old_addr = fio.old_blkaddr;
393 last_idx = page->index;
394 }
395 unlock_page(page);
396 list_move_tail(&cur->list, revoke_list);
397 }
398
399 if (last_idx != ULONG_MAX)
400 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
401
402 if (!err)
403 __revoke_inmem_pages(inode, revoke_list, false, false);
404
405 return err;
406}
407
408int commit_inmem_pages(struct inode *inode)
409{
410 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411 struct f2fs_inode_info *fi = F2FS_I(inode);
412 struct list_head revoke_list;
413 int err;
414
415 INIT_LIST_HEAD(&revoke_list);
416 f2fs_balance_fs(sbi, true);
417 f2fs_lock_op(sbi);
418
419 set_inode_flag(inode, FI_ATOMIC_COMMIT);
420
421 mutex_lock(&fi->inmem_lock);
422 err = __commit_inmem_pages(inode, &revoke_list);
423 if (err) {
424 int ret;
425 /*
426 * try to revoke all committed pages, but still we could fail
427 * due to no memory or other reason, if that happened, EAGAIN
428 * will be returned, which means in such case, transaction is
429 * already not integrity, caller should use journal to do the
430 * recovery or rewrite & commit last transaction. For other
431 * error number, revoking was done by filesystem itself.
432 */
433 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 if (ret)
435 err = ret;
436
437 /* drop all uncommitted pages */
438 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
439 }
440 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441 if (!list_empty(&fi->inmem_ilist))
442 list_del_init(&fi->inmem_ilist);
443 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444 mutex_unlock(&fi->inmem_lock);
445
446 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
447
448 f2fs_unlock_op(sbi);
449 return err;
450}
451
452/*
453 * This function balances dirty node and dentry pages.
454 * In addition, it controls garbage collection.
455 */
456void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
457{
458#ifdef CONFIG_F2FS_FAULT_INJECTION
459 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460 f2fs_show_injection_info(FAULT_CHECKPOINT);
461 f2fs_stop_checkpoint(sbi, false);
462 }
463#endif
464
465 /* balance_fs_bg is able to be pending */
466 if (need && excess_cached_nats(sbi))
467 f2fs_balance_fs_bg(sbi);
468
469 /*
470 * We should do GC or end up with checkpoint, if there are so many dirty
471 * dir/node pages without enough free segments.
472 */
473 if (has_not_enough_free_secs(sbi, 0, 0)) {
474 mutex_lock(&sbi->gc_mutex);
475 f2fs_gc(sbi, false, false, NULL_SEGNO);
476 }
477}
478
479void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
480{
481 /* try to shrink extent cache when there is no enough memory */
482 if (!available_free_memory(sbi, EXTENT_CACHE))
483 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
484
485 /* check the # of cached NAT entries */
486 if (!available_free_memory(sbi, NAT_ENTRIES))
487 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
488
489 if (!available_free_memory(sbi, FREE_NIDS))
490 try_to_free_nids(sbi, MAX_FREE_NIDS);
491 else
492 build_free_nids(sbi, false, false);
493
494 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
495 return;
496
497 /* checkpoint is the only way to shrink partial cached entries */
498 if (!available_free_memory(sbi, NAT_ENTRIES) ||
499 !available_free_memory(sbi, INO_ENTRIES) ||
500 excess_prefree_segs(sbi) ||
501 excess_dirty_nats(sbi) ||
502 f2fs_time_over(sbi, CP_TIME)) {
503 if (test_opt(sbi, DATA_FLUSH)) {
504 struct blk_plug plug;
505
506 blk_start_plug(&plug);
507 sync_dirty_inodes(sbi, FILE_INODE);
508 blk_finish_plug(&plug);
509 }
510 f2fs_sync_fs(sbi->sb, true);
511 stat_inc_bg_cp_count(sbi->stat_info);
512 }
513}
514
515static int __submit_flush_wait(struct f2fs_sb_info *sbi,
516 struct block_device *bdev)
517{
518 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
519 int ret;
520
521 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
522 bio_set_dev(bio, bdev);
523 ret = submit_bio_wait(bio);
524 bio_put(bio);
525
526 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
527 test_opt(sbi, FLUSH_MERGE), ret);
528 return ret;
529}
530
531static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
532{
533 int ret = 0;
534 int i;
535
536 if (!sbi->s_ndevs)
537 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
538
539 for (i = 0; i < sbi->s_ndevs; i++) {
540 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
541 continue;
542 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
543 if (ret)
544 break;
545 }
546 return ret;
547}
548
549static int issue_flush_thread(void *data)
550{
551 struct f2fs_sb_info *sbi = data;
552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553 wait_queue_head_t *q = &fcc->flush_wait_queue;
554repeat:
555 if (kthread_should_stop())
556 return 0;
557
558 sb_start_intwrite(sbi->sb);
559
560 if (!llist_empty(&fcc->issue_list)) {
561 struct flush_cmd *cmd, *next;
562 int ret;
563
564 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
565 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
566
567 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
568
569 ret = submit_flush_wait(sbi, cmd->ino);
570 atomic_inc(&fcc->issued_flush);
571
572 llist_for_each_entry_safe(cmd, next,
573 fcc->dispatch_list, llnode) {
574 cmd->ret = ret;
575 complete(&cmd->wait);
576 }
577 fcc->dispatch_list = NULL;
578 }
579
580 sb_end_intwrite(sbi->sb);
581
582 wait_event_interruptible(*q,
583 kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 goto repeat;
585}
586
587int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588{
589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 struct flush_cmd cmd;
591 int ret;
592
593 if (test_opt(sbi, NOBARRIER))
594 return 0;
595
596 if (!test_opt(sbi, FLUSH_MERGE)) {
597 ret = submit_flush_wait(sbi, ino);
598 atomic_inc(&fcc->issued_flush);
599 return ret;
600 }
601
602 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
603 ret = submit_flush_wait(sbi, ino);
604 atomic_dec(&fcc->issing_flush);
605
606 atomic_inc(&fcc->issued_flush);
607 return ret;
608 }
609
610 cmd.ino = ino;
611 init_completion(&cmd.wait);
612
613 llist_add(&cmd.llnode, &fcc->issue_list);
614
615 /* update issue_list before we wake up issue_flush thread */
616 smp_mb();
617
618 if (waitqueue_active(&fcc->flush_wait_queue))
619 wake_up(&fcc->flush_wait_queue);
620
621 if (fcc->f2fs_issue_flush) {
622 wait_for_completion(&cmd.wait);
623 atomic_dec(&fcc->issing_flush);
624 } else {
625 struct llist_node *list;
626
627 list = llist_del_all(&fcc->issue_list);
628 if (!list) {
629 wait_for_completion(&cmd.wait);
630 atomic_dec(&fcc->issing_flush);
631 } else {
632 struct flush_cmd *tmp, *next;
633
634 ret = submit_flush_wait(sbi, ino);
635
636 llist_for_each_entry_safe(tmp, next, list, llnode) {
637 if (tmp == &cmd) {
638 cmd.ret = ret;
639 atomic_dec(&fcc->issing_flush);
640 continue;
641 }
642 tmp->ret = ret;
643 complete(&tmp->wait);
644 }
645 }
646 }
647
648 return cmd.ret;
649}
650
651int create_flush_cmd_control(struct f2fs_sb_info *sbi)
652{
653 dev_t dev = sbi->sb->s_bdev->bd_dev;
654 struct flush_cmd_control *fcc;
655 int err = 0;
656
657 if (SM_I(sbi)->fcc_info) {
658 fcc = SM_I(sbi)->fcc_info;
659 if (fcc->f2fs_issue_flush)
660 return err;
661 goto init_thread;
662 }
663
664 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
665 if (!fcc)
666 return -ENOMEM;
667 atomic_set(&fcc->issued_flush, 0);
668 atomic_set(&fcc->issing_flush, 0);
669 init_waitqueue_head(&fcc->flush_wait_queue);
670 init_llist_head(&fcc->issue_list);
671 SM_I(sbi)->fcc_info = fcc;
672 if (!test_opt(sbi, FLUSH_MERGE))
673 return err;
674
675init_thread:
676 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
677 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
678 if (IS_ERR(fcc->f2fs_issue_flush)) {
679 err = PTR_ERR(fcc->f2fs_issue_flush);
680 kfree(fcc);
681 SM_I(sbi)->fcc_info = NULL;
682 return err;
683 }
684
685 return err;
686}
687
688void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
689{
690 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
691
692 if (fcc && fcc->f2fs_issue_flush) {
693 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
694
695 fcc->f2fs_issue_flush = NULL;
696 kthread_stop(flush_thread);
697 }
698 if (free) {
699 kfree(fcc);
700 SM_I(sbi)->fcc_info = NULL;
701 }
702}
703
704int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
705{
706 int ret = 0, i;
707
708 if (!sbi->s_ndevs)
709 return 0;
710
711 for (i = 1; i < sbi->s_ndevs; i++) {
712 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
713 continue;
714 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
715 if (ret)
716 break;
717
718 spin_lock(&sbi->dev_lock);
719 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720 spin_unlock(&sbi->dev_lock);
721 }
722
723 return ret;
724}
725
726static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727 enum dirty_type dirty_type)
728{
729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
730
731 /* need not be added */
732 if (IS_CURSEG(sbi, segno))
733 return;
734
735 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736 dirty_i->nr_dirty[dirty_type]++;
737
738 if (dirty_type == DIRTY) {
739 struct seg_entry *sentry = get_seg_entry(sbi, segno);
740 enum dirty_type t = sentry->type;
741
742 if (unlikely(t >= DIRTY)) {
743 f2fs_bug_on(sbi, 1);
744 return;
745 }
746 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747 dirty_i->nr_dirty[t]++;
748 }
749}
750
751static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
752 enum dirty_type dirty_type)
753{
754 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
755
756 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
757 dirty_i->nr_dirty[dirty_type]--;
758
759 if (dirty_type == DIRTY) {
760 struct seg_entry *sentry = get_seg_entry(sbi, segno);
761 enum dirty_type t = sentry->type;
762
763 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
764 dirty_i->nr_dirty[t]--;
765
766 if (get_valid_blocks(sbi, segno, true) == 0)
767 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
768 dirty_i->victim_secmap);
769 }
770}
771
772/*
773 * Should not occur error such as -ENOMEM.
774 * Adding dirty entry into seglist is not critical operation.
775 * If a given segment is one of current working segments, it won't be added.
776 */
777static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
778{
779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780 unsigned short valid_blocks;
781
782 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
783 return;
784
785 mutex_lock(&dirty_i->seglist_lock);
786
787 valid_blocks = get_valid_blocks(sbi, segno, false);
788
789 if (valid_blocks == 0) {
790 __locate_dirty_segment(sbi, segno, PRE);
791 __remove_dirty_segment(sbi, segno, DIRTY);
792 } else if (valid_blocks < sbi->blocks_per_seg) {
793 __locate_dirty_segment(sbi, segno, DIRTY);
794 } else {
795 /* Recovery routine with SSR needs this */
796 __remove_dirty_segment(sbi, segno, DIRTY);
797 }
798
799 mutex_unlock(&dirty_i->seglist_lock);
800}
801
802static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
803 struct block_device *bdev, block_t lstart,
804 block_t start, block_t len)
805{
806 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
807 struct list_head *pend_list;
808 struct discard_cmd *dc;
809
810 f2fs_bug_on(sbi, !len);
811
812 pend_list = &dcc->pend_list[plist_idx(len)];
813
814 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
815 INIT_LIST_HEAD(&dc->list);
816 dc->bdev = bdev;
817 dc->lstart = lstart;
818 dc->start = start;
819 dc->len = len;
820 dc->ref = 0;
821 dc->state = D_PREP;
822 dc->error = 0;
823 init_completion(&dc->wait);
824 list_add_tail(&dc->list, pend_list);
825 atomic_inc(&dcc->discard_cmd_cnt);
826 dcc->undiscard_blks += len;
827
828 return dc;
829}
830
831static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
832 struct block_device *bdev, block_t lstart,
833 block_t start, block_t len,
834 struct rb_node *parent, struct rb_node **p)
835{
836 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
837 struct discard_cmd *dc;
838
839 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
840
841 rb_link_node(&dc->rb_node, parent, p);
842 rb_insert_color(&dc->rb_node, &dcc->root);
843
844 return dc;
845}
846
847static void __detach_discard_cmd(struct discard_cmd_control *dcc,
848 struct discard_cmd *dc)
849{
850 if (dc->state == D_DONE)
851 atomic_dec(&dcc->issing_discard);
852
853 list_del(&dc->list);
854 rb_erase(&dc->rb_node, &dcc->root);
855 dcc->undiscard_blks -= dc->len;
856
857 kmem_cache_free(discard_cmd_slab, dc);
858
859 atomic_dec(&dcc->discard_cmd_cnt);
860}
861
862static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
863 struct discard_cmd *dc)
864{
865 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
866
867 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
868
869 f2fs_bug_on(sbi, dc->ref);
870
871 if (dc->error == -EOPNOTSUPP)
872 dc->error = 0;
873
874 if (dc->error)
875 f2fs_msg(sbi->sb, KERN_INFO,
876 "Issue discard(%u, %u, %u) failed, ret: %d",
877 dc->lstart, dc->start, dc->len, dc->error);
878 __detach_discard_cmd(dcc, dc);
879}
880
881static void f2fs_submit_discard_endio(struct bio *bio)
882{
883 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
884
885 dc->error = blk_status_to_errno(bio->bi_status);
886 dc->state = D_DONE;
887 complete_all(&dc->wait);
888 bio_put(bio);
889}
890
891static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
892 block_t start, block_t end)
893{
894#ifdef CONFIG_F2FS_CHECK_FS
895 struct seg_entry *sentry;
896 unsigned int segno;
897 block_t blk = start;
898 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
899 unsigned long *map;
900
901 while (blk < end) {
902 segno = GET_SEGNO(sbi, blk);
903 sentry = get_seg_entry(sbi, segno);
904 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
905
906 if (end < START_BLOCK(sbi, segno + 1))
907 size = GET_BLKOFF_FROM_SEG0(sbi, end);
908 else
909 size = max_blocks;
910 map = (unsigned long *)(sentry->cur_valid_map);
911 offset = __find_rev_next_bit(map, size, offset);
912 f2fs_bug_on(sbi, offset != size);
913 blk = START_BLOCK(sbi, segno + 1);
914 }
915#endif
916}
917
918/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
919static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
920 struct discard_policy *dpolicy,
921 struct discard_cmd *dc)
922{
923 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
924 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
925 &(dcc->fstrim_list) : &(dcc->wait_list);
926 struct bio *bio = NULL;
927 int flag = dpolicy->sync ? REQ_SYNC : 0;
928
929 if (dc->state != D_PREP)
930 return;
931
932 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
933
934 dc->error = __blkdev_issue_discard(dc->bdev,
935 SECTOR_FROM_BLOCK(dc->start),
936 SECTOR_FROM_BLOCK(dc->len),
937 GFP_NOFS, 0, &bio);
938 if (!dc->error) {
939 /* should keep before submission to avoid D_DONE right away */
940 dc->state = D_SUBMIT;
941 atomic_inc(&dcc->issued_discard);
942 atomic_inc(&dcc->issing_discard);
943 if (bio) {
944 bio->bi_private = dc;
945 bio->bi_end_io = f2fs_submit_discard_endio;
946 bio->bi_opf |= flag;
947 submit_bio(bio);
948 list_move_tail(&dc->list, wait_list);
949 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
950
951 f2fs_update_iostat(sbi, FS_DISCARD, 1);
952 }
953 } else {
954 __remove_discard_cmd(sbi, dc);
955 }
956}
957
958static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
959 struct block_device *bdev, block_t lstart,
960 block_t start, block_t len,
961 struct rb_node **insert_p,
962 struct rb_node *insert_parent)
963{
964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
965 struct rb_node **p;
966 struct rb_node *parent = NULL;
967 struct discard_cmd *dc = NULL;
968
969 if (insert_p && insert_parent) {
970 parent = insert_parent;
971 p = insert_p;
972 goto do_insert;
973 }
974
975 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
976do_insert:
977 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
978 if (!dc)
979 return NULL;
980
981 return dc;
982}
983
984static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
985 struct discard_cmd *dc)
986{
987 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
988}
989
990static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
991 struct discard_cmd *dc, block_t blkaddr)
992{
993 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
994 struct discard_info di = dc->di;
995 bool modified = false;
996
997 if (dc->state == D_DONE || dc->len == 1) {
998 __remove_discard_cmd(sbi, dc);
999 return;
1000 }
1001
1002 dcc->undiscard_blks -= di.len;
1003
1004 if (blkaddr > di.lstart) {
1005 dc->len = blkaddr - dc->lstart;
1006 dcc->undiscard_blks += dc->len;
1007 __relocate_discard_cmd(dcc, dc);
1008 modified = true;
1009 }
1010
1011 if (blkaddr < di.lstart + di.len - 1) {
1012 if (modified) {
1013 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1014 di.start + blkaddr + 1 - di.lstart,
1015 di.lstart + di.len - 1 - blkaddr,
1016 NULL, NULL);
1017 } else {
1018 dc->lstart++;
1019 dc->len--;
1020 dc->start++;
1021 dcc->undiscard_blks += dc->len;
1022 __relocate_discard_cmd(dcc, dc);
1023 }
1024 }
1025}
1026
1027static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1028 struct block_device *bdev, block_t lstart,
1029 block_t start, block_t len)
1030{
1031 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1032 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1033 struct discard_cmd *dc;
1034 struct discard_info di = {0};
1035 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1036 block_t end = lstart + len;
1037
1038 mutex_lock(&dcc->cmd_lock);
1039
1040 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1041 NULL, lstart,
1042 (struct rb_entry **)&prev_dc,
1043 (struct rb_entry **)&next_dc,
1044 &insert_p, &insert_parent, true);
1045 if (dc)
1046 prev_dc = dc;
1047
1048 if (!prev_dc) {
1049 di.lstart = lstart;
1050 di.len = next_dc ? next_dc->lstart - lstart : len;
1051 di.len = min(di.len, len);
1052 di.start = start;
1053 }
1054
1055 while (1) {
1056 struct rb_node *node;
1057 bool merged = false;
1058 struct discard_cmd *tdc = NULL;
1059
1060 if (prev_dc) {
1061 di.lstart = prev_dc->lstart + prev_dc->len;
1062 if (di.lstart < lstart)
1063 di.lstart = lstart;
1064 if (di.lstart >= end)
1065 break;
1066
1067 if (!next_dc || next_dc->lstart > end)
1068 di.len = end - di.lstart;
1069 else
1070 di.len = next_dc->lstart - di.lstart;
1071 di.start = start + di.lstart - lstart;
1072 }
1073
1074 if (!di.len)
1075 goto next;
1076
1077 if (prev_dc && prev_dc->state == D_PREP &&
1078 prev_dc->bdev == bdev &&
1079 __is_discard_back_mergeable(&di, &prev_dc->di)) {
1080 prev_dc->di.len += di.len;
1081 dcc->undiscard_blks += di.len;
1082 __relocate_discard_cmd(dcc, prev_dc);
1083 di = prev_dc->di;
1084 tdc = prev_dc;
1085 merged = true;
1086 }
1087
1088 if (next_dc && next_dc->state == D_PREP &&
1089 next_dc->bdev == bdev &&
1090 __is_discard_front_mergeable(&di, &next_dc->di)) {
1091 next_dc->di.lstart = di.lstart;
1092 next_dc->di.len += di.len;
1093 next_dc->di.start = di.start;
1094 dcc->undiscard_blks += di.len;
1095 __relocate_discard_cmd(dcc, next_dc);
1096 if (tdc)
1097 __remove_discard_cmd(sbi, tdc);
1098 merged = true;
1099 }
1100
1101 if (!merged) {
1102 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1103 di.len, NULL, NULL);
1104 }
1105 next:
1106 prev_dc = next_dc;
1107 if (!prev_dc)
1108 break;
1109
1110 node = rb_next(&prev_dc->rb_node);
1111 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1112 }
1113
1114 mutex_unlock(&dcc->cmd_lock);
1115}
1116
1117static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1118 struct block_device *bdev, block_t blkstart, block_t blklen)
1119{
1120 block_t lblkstart = blkstart;
1121
1122 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1123
1124 if (sbi->s_ndevs) {
1125 int devi = f2fs_target_device_index(sbi, blkstart);
1126
1127 blkstart -= FDEV(devi).start_blk;
1128 }
1129 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1130 return 0;
1131}
1132
1133static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1134 struct discard_policy *dpolicy,
1135 unsigned int start, unsigned int end)
1136{
1137 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1139 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1140 struct discard_cmd *dc;
1141 struct blk_plug plug;
1142 int issued;
1143
1144next:
1145 issued = 0;
1146
1147 mutex_lock(&dcc->cmd_lock);
1148 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1149
1150 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1151 NULL, start,
1152 (struct rb_entry **)&prev_dc,
1153 (struct rb_entry **)&next_dc,
1154 &insert_p, &insert_parent, true);
1155 if (!dc)
1156 dc = next_dc;
1157
1158 blk_start_plug(&plug);
1159
1160 while (dc && dc->lstart <= end) {
1161 struct rb_node *node;
1162
1163 if (dc->len < dpolicy->granularity)
1164 goto skip;
1165
1166 if (dc->state != D_PREP) {
1167 list_move_tail(&dc->list, &dcc->fstrim_list);
1168 goto skip;
1169 }
1170
1171 __submit_discard_cmd(sbi, dpolicy, dc);
1172
1173 if (++issued >= dpolicy->max_requests) {
1174 start = dc->lstart + dc->len;
1175
1176 blk_finish_plug(&plug);
1177 mutex_unlock(&dcc->cmd_lock);
1178
1179 schedule();
1180
1181 goto next;
1182 }
1183skip:
1184 node = rb_next(&dc->rb_node);
1185 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1186
1187 if (fatal_signal_pending(current))
1188 break;
1189 }
1190
1191 blk_finish_plug(&plug);
1192 mutex_unlock(&dcc->cmd_lock);
1193}
1194
1195static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1196 struct discard_policy *dpolicy)
1197{
1198 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1199 struct list_head *pend_list;
1200 struct discard_cmd *dc, *tmp;
1201 struct blk_plug plug;
1202 int i, iter = 0, issued = 0;
1203 bool io_interrupted = false;
1204
1205 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1206 if (i + 1 < dpolicy->granularity)
1207 break;
1208 pend_list = &dcc->pend_list[i];
1209
1210 mutex_lock(&dcc->cmd_lock);
1211 if (list_empty(pend_list))
1212 goto next;
1213 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1214 blk_start_plug(&plug);
1215 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1216 f2fs_bug_on(sbi, dc->state != D_PREP);
1217
1218 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1219 !is_idle(sbi)) {
1220 io_interrupted = true;
1221 goto skip;
1222 }
1223
1224 __submit_discard_cmd(sbi, dpolicy, dc);
1225 issued++;
1226skip:
1227 if (++iter >= dpolicy->max_requests)
1228 break;
1229 }
1230 blk_finish_plug(&plug);
1231next:
1232 mutex_unlock(&dcc->cmd_lock);
1233
1234 if (iter >= dpolicy->max_requests)
1235 break;
1236 }
1237
1238 if (!issued && io_interrupted)
1239 issued = -1;
1240
1241 return issued;
1242}
1243
1244static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1245{
1246 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1247 struct list_head *pend_list;
1248 struct discard_cmd *dc, *tmp;
1249 int i;
1250 bool dropped = false;
1251
1252 mutex_lock(&dcc->cmd_lock);
1253 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1254 pend_list = &dcc->pend_list[i];
1255 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1256 f2fs_bug_on(sbi, dc->state != D_PREP);
1257 __remove_discard_cmd(sbi, dc);
1258 dropped = true;
1259 }
1260 }
1261 mutex_unlock(&dcc->cmd_lock);
1262
1263 return dropped;
1264}
1265
1266void drop_discard_cmd(struct f2fs_sb_info *sbi)
1267{
1268 __drop_discard_cmd(sbi);
1269}
1270
1271static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1272 struct discard_cmd *dc)
1273{
1274 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1275 unsigned int len = 0;
1276
1277 wait_for_completion_io(&dc->wait);
1278 mutex_lock(&dcc->cmd_lock);
1279 f2fs_bug_on(sbi, dc->state != D_DONE);
1280 dc->ref--;
1281 if (!dc->ref) {
1282 if (!dc->error)
1283 len = dc->len;
1284 __remove_discard_cmd(sbi, dc);
1285 }
1286 mutex_unlock(&dcc->cmd_lock);
1287
1288 return len;
1289}
1290
1291static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1292 struct discard_policy *dpolicy,
1293 block_t start, block_t end)
1294{
1295 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1296 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1297 &(dcc->fstrim_list) : &(dcc->wait_list);
1298 struct discard_cmd *dc, *tmp;
1299 bool need_wait;
1300 unsigned int trimmed = 0;
1301
1302next:
1303 need_wait = false;
1304
1305 mutex_lock(&dcc->cmd_lock);
1306 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1307 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1308 continue;
1309 if (dc->len < dpolicy->granularity)
1310 continue;
1311 if (dc->state == D_DONE && !dc->ref) {
1312 wait_for_completion_io(&dc->wait);
1313 if (!dc->error)
1314 trimmed += dc->len;
1315 __remove_discard_cmd(sbi, dc);
1316 } else {
1317 dc->ref++;
1318 need_wait = true;
1319 break;
1320 }
1321 }
1322 mutex_unlock(&dcc->cmd_lock);
1323
1324 if (need_wait) {
1325 trimmed += __wait_one_discard_bio(sbi, dc);
1326 goto next;
1327 }
1328
1329 return trimmed;
1330}
1331
1332static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1333 struct discard_policy *dpolicy)
1334{
1335 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1336}
1337
1338/* This should be covered by global mutex, &sit_i->sentry_lock */
1339static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1340{
1341 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1342 struct discard_cmd *dc;
1343 bool need_wait = false;
1344
1345 mutex_lock(&dcc->cmd_lock);
1346 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1347 if (dc) {
1348 if (dc->state == D_PREP) {
1349 __punch_discard_cmd(sbi, dc, blkaddr);
1350 } else {
1351 dc->ref++;
1352 need_wait = true;
1353 }
1354 }
1355 mutex_unlock(&dcc->cmd_lock);
1356
1357 if (need_wait)
1358 __wait_one_discard_bio(sbi, dc);
1359}
1360
1361void stop_discard_thread(struct f2fs_sb_info *sbi)
1362{
1363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1364
1365 if (dcc && dcc->f2fs_issue_discard) {
1366 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1367
1368 dcc->f2fs_issue_discard = NULL;
1369 kthread_stop(discard_thread);
1370 }
1371}
1372
1373/* This comes from f2fs_put_super */
1374bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1375{
1376 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1377 struct discard_policy dpolicy;
1378 bool dropped;
1379
1380 init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1381 __issue_discard_cmd(sbi, &dpolicy);
1382 dropped = __drop_discard_cmd(sbi);
1383 __wait_all_discard_cmd(sbi, &dpolicy);
1384
1385 return dropped;
1386}
1387
1388static int issue_discard_thread(void *data)
1389{
1390 struct f2fs_sb_info *sbi = data;
1391 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1392 wait_queue_head_t *q = &dcc->discard_wait_queue;
1393 struct discard_policy dpolicy;
1394 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1395 int issued;
1396
1397 set_freezable();
1398
1399 do {
1400 init_discard_policy(&dpolicy, DPOLICY_BG,
1401 dcc->discard_granularity);
1402
1403 wait_event_interruptible_timeout(*q,
1404 kthread_should_stop() || freezing(current) ||
1405 dcc->discard_wake,
1406 msecs_to_jiffies(wait_ms));
1407 if (try_to_freeze())
1408 continue;
1409 if (kthread_should_stop())
1410 return 0;
1411
1412 if (dcc->discard_wake) {
1413 dcc->discard_wake = 0;
1414 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1415 init_discard_policy(&dpolicy,
1416 DPOLICY_FORCE, 1);
1417 }
1418
1419 sb_start_intwrite(sbi->sb);
1420
1421 issued = __issue_discard_cmd(sbi, &dpolicy);
1422 if (issued) {
1423 __wait_all_discard_cmd(sbi, &dpolicy);
1424 wait_ms = dpolicy.min_interval;
1425 } else {
1426 wait_ms = dpolicy.max_interval;
1427 }
1428
1429 sb_end_intwrite(sbi->sb);
1430
1431 } while (!kthread_should_stop());
1432 return 0;
1433}
1434
1435#ifdef CONFIG_BLK_DEV_ZONED
1436static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1437 struct block_device *bdev, block_t blkstart, block_t blklen)
1438{
1439 sector_t sector, nr_sects;
1440 block_t lblkstart = blkstart;
1441 int devi = 0;
1442
1443 if (sbi->s_ndevs) {
1444 devi = f2fs_target_device_index(sbi, blkstart);
1445 blkstart -= FDEV(devi).start_blk;
1446 }
1447
1448 /*
1449 * We need to know the type of the zone: for conventional zones,
1450 * use regular discard if the drive supports it. For sequential
1451 * zones, reset the zone write pointer.
1452 */
1453 switch (get_blkz_type(sbi, bdev, blkstart)) {
1454
1455 case BLK_ZONE_TYPE_CONVENTIONAL:
1456 if (!blk_queue_discard(bdev_get_queue(bdev)))
1457 return 0;
1458 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1459 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1460 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1461 sector = SECTOR_FROM_BLOCK(blkstart);
1462 nr_sects = SECTOR_FROM_BLOCK(blklen);
1463
1464 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1465 nr_sects != bdev_zone_sectors(bdev)) {
1466 f2fs_msg(sbi->sb, KERN_INFO,
1467 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1468 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1469 blkstart, blklen);
1470 return -EIO;
1471 }
1472 trace_f2fs_issue_reset_zone(bdev, blkstart);
1473 return blkdev_reset_zones(bdev, sector,
1474 nr_sects, GFP_NOFS);
1475 default:
1476 /* Unknown zone type: broken device ? */
1477 return -EIO;
1478 }
1479}
1480#endif
1481
1482static int __issue_discard_async(struct f2fs_sb_info *sbi,
1483 struct block_device *bdev, block_t blkstart, block_t blklen)
1484{
1485#ifdef CONFIG_BLK_DEV_ZONED
1486 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1487 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1488 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1489#endif
1490 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1491}
1492
1493static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1494 block_t blkstart, block_t blklen)
1495{
1496 sector_t start = blkstart, len = 0;
1497 struct block_device *bdev;
1498 struct seg_entry *se;
1499 unsigned int offset;
1500 block_t i;
1501 int err = 0;
1502
1503 bdev = f2fs_target_device(sbi, blkstart, NULL);
1504
1505 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1506 if (i != start) {
1507 struct block_device *bdev2 =
1508 f2fs_target_device(sbi, i, NULL);
1509
1510 if (bdev2 != bdev) {
1511 err = __issue_discard_async(sbi, bdev,
1512 start, len);
1513 if (err)
1514 return err;
1515 bdev = bdev2;
1516 start = i;
1517 len = 0;
1518 }
1519 }
1520
1521 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1522 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1523
1524 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1525 sbi->discard_blks--;
1526 }
1527
1528 if (len)
1529 err = __issue_discard_async(sbi, bdev, start, len);
1530 return err;
1531}
1532
1533static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1534 bool check_only)
1535{
1536 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1537 int max_blocks = sbi->blocks_per_seg;
1538 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1539 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1540 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1541 unsigned long *discard_map = (unsigned long *)se->discard_map;
1542 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1543 unsigned int start = 0, end = -1;
1544 bool force = (cpc->reason & CP_DISCARD);
1545 struct discard_entry *de = NULL;
1546 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1547 int i;
1548
1549 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1550 return false;
1551
1552 if (!force) {
1553 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1554 SM_I(sbi)->dcc_info->nr_discards >=
1555 SM_I(sbi)->dcc_info->max_discards)
1556 return false;
1557 }
1558
1559 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1560 for (i = 0; i < entries; i++)
1561 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1562 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1563
1564 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1565 SM_I(sbi)->dcc_info->max_discards) {
1566 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1567 if (start >= max_blocks)
1568 break;
1569
1570 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1571 if (force && start && end != max_blocks
1572 && (end - start) < cpc->trim_minlen)
1573 continue;
1574
1575 if (check_only)
1576 return true;
1577
1578 if (!de) {
1579 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1580 GFP_F2FS_ZERO);
1581 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1582 list_add_tail(&de->list, head);
1583 }
1584
1585 for (i = start; i < end; i++)
1586 __set_bit_le(i, (void *)de->discard_map);
1587
1588 SM_I(sbi)->dcc_info->nr_discards += end - start;
1589 }
1590 return false;
1591}
1592
1593void release_discard_addrs(struct f2fs_sb_info *sbi)
1594{
1595 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1596 struct discard_entry *entry, *this;
1597
1598 /* drop caches */
1599 list_for_each_entry_safe(entry, this, head, list) {
1600 list_del(&entry->list);
1601 kmem_cache_free(discard_entry_slab, entry);
1602 }
1603}
1604
1605/*
1606 * Should call clear_prefree_segments after checkpoint is done.
1607 */
1608static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1609{
1610 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1611 unsigned int segno;
1612
1613 mutex_lock(&dirty_i->seglist_lock);
1614 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1615 __set_test_and_free(sbi, segno);
1616 mutex_unlock(&dirty_i->seglist_lock);
1617}
1618
1619void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1620{
1621 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1622 struct list_head *head = &dcc->entry_list;
1623 struct discard_entry *entry, *this;
1624 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1625 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1626 unsigned int start = 0, end = -1;
1627 unsigned int secno, start_segno;
1628 bool force = (cpc->reason & CP_DISCARD);
1629
1630 mutex_lock(&dirty_i->seglist_lock);
1631
1632 while (1) {
1633 int i;
1634 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1635 if (start >= MAIN_SEGS(sbi))
1636 break;
1637 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1638 start + 1);
1639
1640 for (i = start; i < end; i++)
1641 clear_bit(i, prefree_map);
1642
1643 dirty_i->nr_dirty[PRE] -= end - start;
1644
1645 if (!test_opt(sbi, DISCARD))
1646 continue;
1647
1648 if (force && start >= cpc->trim_start &&
1649 (end - 1) <= cpc->trim_end)
1650 continue;
1651
1652 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1653 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1654 (end - start) << sbi->log_blocks_per_seg);
1655 continue;
1656 }
1657next:
1658 secno = GET_SEC_FROM_SEG(sbi, start);
1659 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1660 if (!IS_CURSEC(sbi, secno) &&
1661 !get_valid_blocks(sbi, start, true))
1662 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1663 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1664
1665 start = start_segno + sbi->segs_per_sec;
1666 if (start < end)
1667 goto next;
1668 else
1669 end = start - 1;
1670 }
1671 mutex_unlock(&dirty_i->seglist_lock);
1672
1673 /* send small discards */
1674 list_for_each_entry_safe(entry, this, head, list) {
1675 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1676 bool is_valid = test_bit_le(0, entry->discard_map);
1677
1678find_next:
1679 if (is_valid) {
1680 next_pos = find_next_zero_bit_le(entry->discard_map,
1681 sbi->blocks_per_seg, cur_pos);
1682 len = next_pos - cur_pos;
1683
1684 if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1685 (force && len < cpc->trim_minlen))
1686 goto skip;
1687
1688 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1689 len);
1690 total_len += len;
1691 } else {
1692 next_pos = find_next_bit_le(entry->discard_map,
1693 sbi->blocks_per_seg, cur_pos);
1694 }
1695skip:
1696 cur_pos = next_pos;
1697 is_valid = !is_valid;
1698
1699 if (cur_pos < sbi->blocks_per_seg)
1700 goto find_next;
1701
1702 list_del(&entry->list);
1703 dcc->nr_discards -= total_len;
1704 kmem_cache_free(discard_entry_slab, entry);
1705 }
1706
1707 wake_up_discard_thread(sbi, false);
1708}
1709
1710void init_discard_policy(struct discard_policy *dpolicy,
1711 int discard_type, unsigned int granularity)
1712{
1713 /* common policy */
1714 dpolicy->type = discard_type;
1715 dpolicy->sync = true;
1716 dpolicy->granularity = granularity;
1717
1718 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1719 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1720
1721 if (discard_type == DPOLICY_BG) {
1722 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1723 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1724 dpolicy->io_aware = true;
1725 } else if (discard_type == DPOLICY_FORCE) {
1726 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1727 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1728 dpolicy->io_aware = true;
1729 } else if (discard_type == DPOLICY_FSTRIM) {
1730 dpolicy->io_aware = false;
1731 } else if (discard_type == DPOLICY_UMOUNT) {
1732 dpolicy->io_aware = false;
1733 }
1734}
1735
1736static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1737{
1738 dev_t dev = sbi->sb->s_bdev->bd_dev;
1739 struct discard_cmd_control *dcc;
1740 int err = 0, i;
1741
1742 if (SM_I(sbi)->dcc_info) {
1743 dcc = SM_I(sbi)->dcc_info;
1744 goto init_thread;
1745 }
1746
1747 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1748 if (!dcc)
1749 return -ENOMEM;
1750
1751 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1752 INIT_LIST_HEAD(&dcc->entry_list);
1753 for (i = 0; i < MAX_PLIST_NUM; i++)
1754 INIT_LIST_HEAD(&dcc->pend_list[i]);
1755 INIT_LIST_HEAD(&dcc->wait_list);
1756 INIT_LIST_HEAD(&dcc->fstrim_list);
1757 mutex_init(&dcc->cmd_lock);
1758 atomic_set(&dcc->issued_discard, 0);
1759 atomic_set(&dcc->issing_discard, 0);
1760 atomic_set(&dcc->discard_cmd_cnt, 0);
1761 dcc->nr_discards = 0;
1762 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1763 dcc->undiscard_blks = 0;
1764 dcc->root = RB_ROOT;
1765
1766 init_waitqueue_head(&dcc->discard_wait_queue);
1767 SM_I(sbi)->dcc_info = dcc;
1768init_thread:
1769 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1770 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1771 if (IS_ERR(dcc->f2fs_issue_discard)) {
1772 err = PTR_ERR(dcc->f2fs_issue_discard);
1773 kfree(dcc);
1774 SM_I(sbi)->dcc_info = NULL;
1775 return err;
1776 }
1777
1778 return err;
1779}
1780
1781static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1782{
1783 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1784
1785 if (!dcc)
1786 return;
1787
1788 stop_discard_thread(sbi);
1789
1790 kfree(dcc);
1791 SM_I(sbi)->dcc_info = NULL;
1792}
1793
1794static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1795{
1796 struct sit_info *sit_i = SIT_I(sbi);
1797
1798 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1799 sit_i->dirty_sentries++;
1800 return false;
1801 }
1802
1803 return true;
1804}
1805
1806static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1807 unsigned int segno, int modified)
1808{
1809 struct seg_entry *se = get_seg_entry(sbi, segno);
1810 se->type = type;
1811 if (modified)
1812 __mark_sit_entry_dirty(sbi, segno);
1813}
1814
1815static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1816{
1817 struct seg_entry *se;
1818 unsigned int segno, offset;
1819 long int new_vblocks;
1820 bool exist;
1821#ifdef CONFIG_F2FS_CHECK_FS
1822 bool mir_exist;
1823#endif
1824
1825 segno = GET_SEGNO(sbi, blkaddr);
1826
1827 se = get_seg_entry(sbi, segno);
1828 new_vblocks = se->valid_blocks + del;
1829 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1830
1831 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1832 (new_vblocks > sbi->blocks_per_seg)));
1833
1834 se->valid_blocks = new_vblocks;
1835 se->mtime = get_mtime(sbi);
1836 SIT_I(sbi)->max_mtime = se->mtime;
1837
1838 /* Update valid block bitmap */
1839 if (del > 0) {
1840 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1841#ifdef CONFIG_F2FS_CHECK_FS
1842 mir_exist = f2fs_test_and_set_bit(offset,
1843 se->cur_valid_map_mir);
1844 if (unlikely(exist != mir_exist)) {
1845 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1846 "when setting bitmap, blk:%u, old bit:%d",
1847 blkaddr, exist);
1848 f2fs_bug_on(sbi, 1);
1849 }
1850#endif
1851 if (unlikely(exist)) {
1852 f2fs_msg(sbi->sb, KERN_ERR,
1853 "Bitmap was wrongly set, blk:%u", blkaddr);
1854 f2fs_bug_on(sbi, 1);
1855 se->valid_blocks--;
1856 del = 0;
1857 }
1858
1859 if (f2fs_discard_en(sbi) &&
1860 !f2fs_test_and_set_bit(offset, se->discard_map))
1861 sbi->discard_blks--;
1862
1863 /* don't overwrite by SSR to keep node chain */
1864 if (se->type == CURSEG_WARM_NODE) {
1865 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1866 se->ckpt_valid_blocks++;
1867 }
1868 } else {
1869 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1870#ifdef CONFIG_F2FS_CHECK_FS
1871 mir_exist = f2fs_test_and_clear_bit(offset,
1872 se->cur_valid_map_mir);
1873 if (unlikely(exist != mir_exist)) {
1874 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1875 "when clearing bitmap, blk:%u, old bit:%d",
1876 blkaddr, exist);
1877 f2fs_bug_on(sbi, 1);
1878 }
1879#endif
1880 if (unlikely(!exist)) {
1881 f2fs_msg(sbi->sb, KERN_ERR,
1882 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1883 f2fs_bug_on(sbi, 1);
1884 se->valid_blocks++;
1885 del = 0;
1886 }
1887
1888 if (f2fs_discard_en(sbi) &&
1889 f2fs_test_and_clear_bit(offset, se->discard_map))
1890 sbi->discard_blks++;
1891 }
1892 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1893 se->ckpt_valid_blocks += del;
1894
1895 __mark_sit_entry_dirty(sbi, segno);
1896
1897 /* update total number of valid blocks to be written in ckpt area */
1898 SIT_I(sbi)->written_valid_blocks += del;
1899
1900 if (sbi->segs_per_sec > 1)
1901 get_sec_entry(sbi, segno)->valid_blocks += del;
1902}
1903
1904void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1905{
1906 unsigned int segno = GET_SEGNO(sbi, addr);
1907 struct sit_info *sit_i = SIT_I(sbi);
1908
1909 f2fs_bug_on(sbi, addr == NULL_ADDR);
1910 if (addr == NEW_ADDR)
1911 return;
1912
1913 /* add it into sit main buffer */
1914 down_write(&sit_i->sentry_lock);
1915
1916 update_sit_entry(sbi, addr, -1);
1917
1918 /* add it into dirty seglist */
1919 locate_dirty_segment(sbi, segno);
1920
1921 up_write(&sit_i->sentry_lock);
1922}
1923
1924bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1925{
1926 struct sit_info *sit_i = SIT_I(sbi);
1927 unsigned int segno, offset;
1928 struct seg_entry *se;
1929 bool is_cp = false;
1930
1931 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1932 return true;
1933
1934 down_read(&sit_i->sentry_lock);
1935
1936 segno = GET_SEGNO(sbi, blkaddr);
1937 se = get_seg_entry(sbi, segno);
1938 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1939
1940 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1941 is_cp = true;
1942
1943 up_read(&sit_i->sentry_lock);
1944
1945 return is_cp;
1946}
1947
1948/*
1949 * This function should be resided under the curseg_mutex lock
1950 */
1951static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1952 struct f2fs_summary *sum)
1953{
1954 struct curseg_info *curseg = CURSEG_I(sbi, type);
1955 void *addr = curseg->sum_blk;
1956 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1957 memcpy(addr, sum, sizeof(struct f2fs_summary));
1958}
1959
1960/*
1961 * Calculate the number of current summary pages for writing
1962 */
1963int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1964{
1965 int valid_sum_count = 0;
1966 int i, sum_in_page;
1967
1968 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1969 if (sbi->ckpt->alloc_type[i] == SSR)
1970 valid_sum_count += sbi->blocks_per_seg;
1971 else {
1972 if (for_ra)
1973 valid_sum_count += le16_to_cpu(
1974 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1975 else
1976 valid_sum_count += curseg_blkoff(sbi, i);
1977 }
1978 }
1979
1980 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1981 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1982 if (valid_sum_count <= sum_in_page)
1983 return 1;
1984 else if ((valid_sum_count - sum_in_page) <=
1985 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1986 return 2;
1987 return 3;
1988}
1989
1990/*
1991 * Caller should put this summary page
1992 */
1993struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1994{
1995 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1996}
1997
1998void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1999{
2000 struct page *page = grab_meta_page(sbi, blk_addr);
2001
2002 memcpy(page_address(page), src, PAGE_SIZE);
2003 set_page_dirty(page);
2004 f2fs_put_page(page, 1);
2005}
2006
2007static void write_sum_page(struct f2fs_sb_info *sbi,
2008 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2009{
2010 update_meta_page(sbi, (void *)sum_blk, blk_addr);
2011}
2012
2013static void write_current_sum_page(struct f2fs_sb_info *sbi,
2014 int type, block_t blk_addr)
2015{
2016 struct curseg_info *curseg = CURSEG_I(sbi, type);
2017 struct page *page = grab_meta_page(sbi, blk_addr);
2018 struct f2fs_summary_block *src = curseg->sum_blk;
2019 struct f2fs_summary_block *dst;
2020
2021 dst = (struct f2fs_summary_block *)page_address(page);
2022
2023 mutex_lock(&curseg->curseg_mutex);
2024
2025 down_read(&curseg->journal_rwsem);
2026 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2027 up_read(&curseg->journal_rwsem);
2028
2029 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2030 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2031
2032 mutex_unlock(&curseg->curseg_mutex);
2033
2034 set_page_dirty(page);
2035 f2fs_put_page(page, 1);
2036}
2037
2038static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2039{
2040 struct curseg_info *curseg = CURSEG_I(sbi, type);
2041 unsigned int segno = curseg->segno + 1;
2042 struct free_segmap_info *free_i = FREE_I(sbi);
2043
2044 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2045 return !test_bit(segno, free_i->free_segmap);
2046 return 0;
2047}
2048
2049/*
2050 * Find a new segment from the free segments bitmap to right order
2051 * This function should be returned with success, otherwise BUG
2052 */
2053static void get_new_segment(struct f2fs_sb_info *sbi,
2054 unsigned int *newseg, bool new_sec, int dir)
2055{
2056 struct free_segmap_info *free_i = FREE_I(sbi);
2057 unsigned int segno, secno, zoneno;
2058 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2059 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2060 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2061 unsigned int left_start = hint;
2062 bool init = true;
2063 int go_left = 0;
2064 int i;
2065
2066 spin_lock(&free_i->segmap_lock);
2067
2068 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2069 segno = find_next_zero_bit(free_i->free_segmap,
2070 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2071 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2072 goto got_it;
2073 }
2074find_other_zone:
2075 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2076 if (secno >= MAIN_SECS(sbi)) {
2077 if (dir == ALLOC_RIGHT) {
2078 secno = find_next_zero_bit(free_i->free_secmap,
2079 MAIN_SECS(sbi), 0);
2080 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2081 } else {
2082 go_left = 1;
2083 left_start = hint - 1;
2084 }
2085 }
2086 if (go_left == 0)
2087 goto skip_left;
2088
2089 while (test_bit(left_start, free_i->free_secmap)) {
2090 if (left_start > 0) {
2091 left_start--;
2092 continue;
2093 }
2094 left_start = find_next_zero_bit(free_i->free_secmap,
2095 MAIN_SECS(sbi), 0);
2096 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2097 break;
2098 }
2099 secno = left_start;
2100skip_left:
2101 segno = GET_SEG_FROM_SEC(sbi, secno);
2102 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2103
2104 /* give up on finding another zone */
2105 if (!init)
2106 goto got_it;
2107 if (sbi->secs_per_zone == 1)
2108 goto got_it;
2109 if (zoneno == old_zoneno)
2110 goto got_it;
2111 if (dir == ALLOC_LEFT) {
2112 if (!go_left && zoneno + 1 >= total_zones)
2113 goto got_it;
2114 if (go_left && zoneno == 0)
2115 goto got_it;
2116 }
2117 for (i = 0; i < NR_CURSEG_TYPE; i++)
2118 if (CURSEG_I(sbi, i)->zone == zoneno)
2119 break;
2120
2121 if (i < NR_CURSEG_TYPE) {
2122 /* zone is in user, try another */
2123 if (go_left)
2124 hint = zoneno * sbi->secs_per_zone - 1;
2125 else if (zoneno + 1 >= total_zones)
2126 hint = 0;
2127 else
2128 hint = (zoneno + 1) * sbi->secs_per_zone;
2129 init = false;
2130 goto find_other_zone;
2131 }
2132got_it:
2133 /* set it as dirty segment in free segmap */
2134 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2135 __set_inuse(sbi, segno);
2136 *newseg = segno;
2137 spin_unlock(&free_i->segmap_lock);
2138}
2139
2140static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2141{
2142 struct curseg_info *curseg = CURSEG_I(sbi, type);
2143 struct summary_footer *sum_footer;
2144
2145 curseg->segno = curseg->next_segno;
2146 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2147 curseg->next_blkoff = 0;
2148 curseg->next_segno = NULL_SEGNO;
2149
2150 sum_footer = &(curseg->sum_blk->footer);
2151 memset(sum_footer, 0, sizeof(struct summary_footer));
2152 if (IS_DATASEG(type))
2153 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2154 if (IS_NODESEG(type))
2155 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2156 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2157}
2158
2159static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2160{
2161 /* if segs_per_sec is large than 1, we need to keep original policy. */
2162 if (sbi->segs_per_sec != 1)
2163 return CURSEG_I(sbi, type)->segno;
2164
2165 if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
2166 return 0;
2167
2168 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2169 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2170 return CURSEG_I(sbi, type)->segno;
2171}
2172
2173/*
2174 * Allocate a current working segment.
2175 * This function always allocates a free segment in LFS manner.
2176 */
2177static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2178{
2179 struct curseg_info *curseg = CURSEG_I(sbi, type);
2180 unsigned int segno = curseg->segno;
2181 int dir = ALLOC_LEFT;
2182
2183 write_sum_page(sbi, curseg->sum_blk,
2184 GET_SUM_BLOCK(sbi, segno));
2185 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2186 dir = ALLOC_RIGHT;
2187
2188 if (test_opt(sbi, NOHEAP))
2189 dir = ALLOC_RIGHT;
2190
2191 segno = __get_next_segno(sbi, type);
2192 get_new_segment(sbi, &segno, new_sec, dir);
2193 curseg->next_segno = segno;
2194 reset_curseg(sbi, type, 1);
2195 curseg->alloc_type = LFS;
2196}
2197
2198static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2199 struct curseg_info *seg, block_t start)
2200{
2201 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2202 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2203 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2204 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2205 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2206 int i, pos;
2207
2208 for (i = 0; i < entries; i++)
2209 target_map[i] = ckpt_map[i] | cur_map[i];
2210
2211 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2212
2213 seg->next_blkoff = pos;
2214}
2215
2216/*
2217 * If a segment is written by LFS manner, next block offset is just obtained
2218 * by increasing the current block offset. However, if a segment is written by
2219 * SSR manner, next block offset obtained by calling __next_free_blkoff
2220 */
2221static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2222 struct curseg_info *seg)
2223{
2224 if (seg->alloc_type == SSR)
2225 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2226 else
2227 seg->next_blkoff++;
2228}
2229
2230/*
2231 * This function always allocates a used segment(from dirty seglist) by SSR
2232 * manner, so it should recover the existing segment information of valid blocks
2233 */
2234static void change_curseg(struct f2fs_sb_info *sbi, int type)
2235{
2236 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2237 struct curseg_info *curseg = CURSEG_I(sbi, type);
2238 unsigned int new_segno = curseg->next_segno;
2239 struct f2fs_summary_block *sum_node;
2240 struct page *sum_page;
2241
2242 write_sum_page(sbi, curseg->sum_blk,
2243 GET_SUM_BLOCK(sbi, curseg->segno));
2244 __set_test_and_inuse(sbi, new_segno);
2245
2246 mutex_lock(&dirty_i->seglist_lock);
2247 __remove_dirty_segment(sbi, new_segno, PRE);
2248 __remove_dirty_segment(sbi, new_segno, DIRTY);
2249 mutex_unlock(&dirty_i->seglist_lock);
2250
2251 reset_curseg(sbi, type, 1);
2252 curseg->alloc_type = SSR;
2253 __next_free_blkoff(sbi, curseg, 0);
2254
2255 sum_page = get_sum_page(sbi, new_segno);
2256 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2257 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2258 f2fs_put_page(sum_page, 1);
2259}
2260
2261static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2262{
2263 struct curseg_info *curseg = CURSEG_I(sbi, type);
2264 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2265 unsigned segno = NULL_SEGNO;
2266 int i, cnt;
2267 bool reversed = false;
2268
2269 /* need_SSR() already forces to do this */
2270 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2271 curseg->next_segno = segno;
2272 return 1;
2273 }
2274
2275 /* For node segments, let's do SSR more intensively */
2276 if (IS_NODESEG(type)) {
2277 if (type >= CURSEG_WARM_NODE) {
2278 reversed = true;
2279 i = CURSEG_COLD_NODE;
2280 } else {
2281 i = CURSEG_HOT_NODE;
2282 }
2283 cnt = NR_CURSEG_NODE_TYPE;
2284 } else {
2285 if (type >= CURSEG_WARM_DATA) {
2286 reversed = true;
2287 i = CURSEG_COLD_DATA;
2288 } else {
2289 i = CURSEG_HOT_DATA;
2290 }
2291 cnt = NR_CURSEG_DATA_TYPE;
2292 }
2293
2294 for (; cnt-- > 0; reversed ? i-- : i++) {
2295 if (i == type)
2296 continue;
2297 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2298 curseg->next_segno = segno;
2299 return 1;
2300 }
2301 }
2302 return 0;
2303}
2304
2305/*
2306 * flush out current segment and replace it with new segment
2307 * This function should be returned with success, otherwise BUG
2308 */
2309static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2310 int type, bool force)
2311{
2312 struct curseg_info *curseg = CURSEG_I(sbi, type);
2313
2314 if (force)
2315 new_curseg(sbi, type, true);
2316 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2317 type == CURSEG_WARM_NODE)
2318 new_curseg(sbi, type, false);
2319 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2320 new_curseg(sbi, type, false);
2321 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2322 change_curseg(sbi, type);
2323 else
2324 new_curseg(sbi, type, false);
2325
2326 stat_inc_seg_type(sbi, curseg);
2327}
2328
2329void allocate_new_segments(struct f2fs_sb_info *sbi)
2330{
2331 struct curseg_info *curseg;
2332 unsigned int old_segno;
2333 int i;
2334
2335 down_write(&SIT_I(sbi)->sentry_lock);
2336
2337 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2338 curseg = CURSEG_I(sbi, i);
2339 old_segno = curseg->segno;
2340 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2341 locate_dirty_segment(sbi, old_segno);
2342 }
2343
2344 up_write(&SIT_I(sbi)->sentry_lock);
2345}
2346
2347static const struct segment_allocation default_salloc_ops = {
2348 .allocate_segment = allocate_segment_by_default,
2349};
2350
2351bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2352{
2353 __u64 trim_start = cpc->trim_start;
2354 bool has_candidate = false;
2355
2356 down_write(&SIT_I(sbi)->sentry_lock);
2357 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2358 if (add_discard_addrs(sbi, cpc, true)) {
2359 has_candidate = true;
2360 break;
2361 }
2362 }
2363 up_write(&SIT_I(sbi)->sentry_lock);
2364
2365 cpc->trim_start = trim_start;
2366 return has_candidate;
2367}
2368
2369int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2370{
2371 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2372 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2373 unsigned int start_segno, end_segno, cur_segno;
2374 block_t start_block, end_block;
2375 struct cp_control cpc;
2376 struct discard_policy dpolicy;
2377 unsigned long long trimmed = 0;
2378 int err = 0;
2379
2380 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2381 return -EINVAL;
2382
2383 if (end <= MAIN_BLKADDR(sbi))
2384 goto out;
2385
2386 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2387 f2fs_msg(sbi->sb, KERN_WARNING,
2388 "Found FS corruption, run fsck to fix.");
2389 goto out;
2390 }
2391
2392 /* start/end segment number in main_area */
2393 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2394 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2395 GET_SEGNO(sbi, end);
2396
2397 cpc.reason = CP_DISCARD;
2398 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2399
2400 /* do checkpoint to issue discard commands safely */
2401 for (cur_segno = start_segno; cur_segno <= end_segno;
2402 cur_segno = cpc.trim_end + 1) {
2403 cpc.trim_start = cur_segno;
2404
2405 if (sbi->discard_blks == 0)
2406 break;
2407 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2408 cpc.trim_end = end_segno;
2409 else
2410 cpc.trim_end = min_t(unsigned int,
2411 rounddown(cur_segno +
2412 BATCHED_TRIM_SEGMENTS(sbi),
2413 sbi->segs_per_sec) - 1, end_segno);
2414
2415 mutex_lock(&sbi->gc_mutex);
2416 err = write_checkpoint(sbi, &cpc);
2417 mutex_unlock(&sbi->gc_mutex);
2418 if (err)
2419 break;
2420
2421 schedule();
2422 }
2423
2424 start_block = START_BLOCK(sbi, start_segno);
2425 end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2426
2427 init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2428 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2429 trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2430 start_block, end_block);
2431out:
2432 range->len = F2FS_BLK_TO_BYTES(trimmed);
2433 return err;
2434}
2435
2436static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2437{
2438 struct curseg_info *curseg = CURSEG_I(sbi, type);
2439 if (curseg->next_blkoff < sbi->blocks_per_seg)
2440 return true;
2441 return false;
2442}
2443
2444int rw_hint_to_seg_type(enum rw_hint hint)
2445{
2446 switch (hint) {
2447 case WRITE_LIFE_SHORT:
2448 return CURSEG_HOT_DATA;
2449 case WRITE_LIFE_EXTREME:
2450 return CURSEG_COLD_DATA;
2451 default:
2452 return CURSEG_WARM_DATA;
2453 }
2454}
2455
2456static int __get_segment_type_2(struct f2fs_io_info *fio)
2457{
2458 if (fio->type == DATA)
2459 return CURSEG_HOT_DATA;
2460 else
2461 return CURSEG_HOT_NODE;
2462}
2463
2464static int __get_segment_type_4(struct f2fs_io_info *fio)
2465{
2466 if (fio->type == DATA) {
2467 struct inode *inode = fio->page->mapping->host;
2468
2469 if (S_ISDIR(inode->i_mode))
2470 return CURSEG_HOT_DATA;
2471 else
2472 return CURSEG_COLD_DATA;
2473 } else {
2474 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2475 return CURSEG_WARM_NODE;
2476 else
2477 return CURSEG_COLD_NODE;
2478 }
2479}
2480
2481static int __get_segment_type_6(struct f2fs_io_info *fio)
2482{
2483 if (fio->type == DATA) {
2484 struct inode *inode = fio->page->mapping->host;
2485
2486 if (is_cold_data(fio->page) || file_is_cold(inode))
2487 return CURSEG_COLD_DATA;
2488 if (is_inode_flag_set(inode, FI_HOT_DATA))
2489 return CURSEG_HOT_DATA;
2490 return rw_hint_to_seg_type(inode->i_write_hint);
2491 } else {
2492 if (IS_DNODE(fio->page))
2493 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2494 CURSEG_HOT_NODE;
2495 return CURSEG_COLD_NODE;
2496 }
2497}
2498
2499static int __get_segment_type(struct f2fs_io_info *fio)
2500{
2501 int type = 0;
2502
2503 switch (fio->sbi->active_logs) {
2504 case 2:
2505 type = __get_segment_type_2(fio);
2506 break;
2507 case 4:
2508 type = __get_segment_type_4(fio);
2509 break;
2510 case 6:
2511 type = __get_segment_type_6(fio);
2512 break;
2513 default:
2514 f2fs_bug_on(fio->sbi, true);
2515 }
2516
2517 if (IS_HOT(type))
2518 fio->temp = HOT;
2519 else if (IS_WARM(type))
2520 fio->temp = WARM;
2521 else
2522 fio->temp = COLD;
2523 return type;
2524}
2525
2526void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2527 block_t old_blkaddr, block_t *new_blkaddr,
2528 struct f2fs_summary *sum, int type,
2529 struct f2fs_io_info *fio, bool add_list)
2530{
2531 struct sit_info *sit_i = SIT_I(sbi);
2532 struct curseg_info *curseg = CURSEG_I(sbi, type);
2533
2534 down_read(&SM_I(sbi)->curseg_lock);
2535
2536 mutex_lock(&curseg->curseg_mutex);
2537 down_write(&sit_i->sentry_lock);
2538
2539 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2540
2541 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2542
2543 /*
2544 * __add_sum_entry should be resided under the curseg_mutex
2545 * because, this function updates a summary entry in the
2546 * current summary block.
2547 */
2548 __add_sum_entry(sbi, type, sum);
2549
2550 __refresh_next_blkoff(sbi, curseg);
2551
2552 stat_inc_block_count(sbi, curseg);
2553
2554 /*
2555 * SIT information should be updated before segment allocation,
2556 * since SSR needs latest valid block information.
2557 */
2558 update_sit_entry(sbi, *new_blkaddr, 1);
2559 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2560 update_sit_entry(sbi, old_blkaddr, -1);
2561
2562 if (!__has_curseg_space(sbi, type))
2563 sit_i->s_ops->allocate_segment(sbi, type, false);
2564
2565 /*
2566 * segment dirty status should be updated after segment allocation,
2567 * so we just need to update status only one time after previous
2568 * segment being closed.
2569 */
2570 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2571 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2572
2573 up_write(&sit_i->sentry_lock);
2574
2575 if (page && IS_NODESEG(type)) {
2576 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2577
2578 f2fs_inode_chksum_set(sbi, page);
2579 }
2580
2581 if (add_list) {
2582 struct f2fs_bio_info *io;
2583
2584 INIT_LIST_HEAD(&fio->list);
2585 fio->in_list = true;
2586 io = sbi->write_io[fio->type] + fio->temp;
2587 spin_lock(&io->io_lock);
2588 list_add_tail(&fio->list, &io->io_list);
2589 spin_unlock(&io->io_lock);
2590 }
2591
2592 mutex_unlock(&curseg->curseg_mutex);
2593
2594 up_read(&SM_I(sbi)->curseg_lock);
2595}
2596
2597static void update_device_state(struct f2fs_io_info *fio)
2598{
2599 struct f2fs_sb_info *sbi = fio->sbi;
2600 unsigned int devidx;
2601
2602 if (!sbi->s_ndevs)
2603 return;
2604
2605 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2606
2607 /* update device state for fsync */
2608 set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2609
2610 /* update device state for checkpoint */
2611 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2612 spin_lock(&sbi->dev_lock);
2613 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2614 spin_unlock(&sbi->dev_lock);
2615 }
2616}
2617
2618static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2619{
2620 int type = __get_segment_type(fio);
2621 int err;
2622
2623reallocate:
2624 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2625 &fio->new_blkaddr, sum, type, fio, true);
2626
2627 /* writeout dirty page into bdev */
2628 err = f2fs_submit_page_write(fio);
2629 if (err == -EAGAIN) {
2630 fio->old_blkaddr = fio->new_blkaddr;
2631 goto reallocate;
2632 } else if (!err) {
2633 update_device_state(fio);
2634 }
2635}
2636
2637void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2638 enum iostat_type io_type)
2639{
2640 struct f2fs_io_info fio = {
2641 .sbi = sbi,
2642 .type = META,
2643 .op = REQ_OP_WRITE,
2644 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2645 .old_blkaddr = page->index,
2646 .new_blkaddr = page->index,
2647 .page = page,
2648 .encrypted_page = NULL,
2649 .in_list = false,
2650 };
2651
2652 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2653 fio.op_flags &= ~REQ_META;
2654
2655 set_page_writeback(page);
2656 f2fs_submit_page_write(&fio);
2657
2658 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2659}
2660
2661void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2662{
2663 struct f2fs_summary sum;
2664
2665 set_summary(&sum, nid, 0, 0);
2666 do_write_page(&sum, fio);
2667
2668 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2669}
2670
2671void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2672{
2673 struct f2fs_sb_info *sbi = fio->sbi;
2674 struct f2fs_summary sum;
2675 struct node_info ni;
2676
2677 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2678 get_node_info(sbi, dn->nid, &ni);
2679 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2680 do_write_page(&sum, fio);
2681 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2682
2683 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2684}
2685
2686int rewrite_data_page(struct f2fs_io_info *fio)
2687{
2688 int err;
2689
2690 fio->new_blkaddr = fio->old_blkaddr;
2691 stat_inc_inplace_blocks(fio->sbi);
2692
2693 err = f2fs_submit_page_bio(fio);
2694 if (!err)
2695 update_device_state(fio);
2696
2697 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2698
2699 return err;
2700}
2701
2702static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2703 unsigned int segno)
2704{
2705 int i;
2706
2707 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2708 if (CURSEG_I(sbi, i)->segno == segno)
2709 break;
2710 }
2711 return i;
2712}
2713
2714void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2715 block_t old_blkaddr, block_t new_blkaddr,
2716 bool recover_curseg, bool recover_newaddr)
2717{
2718 struct sit_info *sit_i = SIT_I(sbi);
2719 struct curseg_info *curseg;
2720 unsigned int segno, old_cursegno;
2721 struct seg_entry *se;
2722 int type;
2723 unsigned short old_blkoff;
2724
2725 segno = GET_SEGNO(sbi, new_blkaddr);
2726 se = get_seg_entry(sbi, segno);
2727 type = se->type;
2728
2729 down_write(&SM_I(sbi)->curseg_lock);
2730
2731 if (!recover_curseg) {
2732 /* for recovery flow */
2733 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2734 if (old_blkaddr == NULL_ADDR)
2735 type = CURSEG_COLD_DATA;
2736 else
2737 type = CURSEG_WARM_DATA;
2738 }
2739 } else {
2740 if (IS_CURSEG(sbi, segno)) {
2741 /* se->type is volatile as SSR allocation */
2742 type = __f2fs_get_curseg(sbi, segno);
2743 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2744 } else {
2745 type = CURSEG_WARM_DATA;
2746 }
2747 }
2748
2749 f2fs_bug_on(sbi, !IS_DATASEG(type));
2750 curseg = CURSEG_I(sbi, type);
2751
2752 mutex_lock(&curseg->curseg_mutex);
2753 down_write(&sit_i->sentry_lock);
2754
2755 old_cursegno = curseg->segno;
2756 old_blkoff = curseg->next_blkoff;
2757
2758 /* change the current segment */
2759 if (segno != curseg->segno) {
2760 curseg->next_segno = segno;
2761 change_curseg(sbi, type);
2762 }
2763
2764 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2765 __add_sum_entry(sbi, type, sum);
2766
2767 if (!recover_curseg || recover_newaddr)
2768 update_sit_entry(sbi, new_blkaddr, 1);
2769 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2770 update_sit_entry(sbi, old_blkaddr, -1);
2771
2772 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2773 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2774
2775 locate_dirty_segment(sbi, old_cursegno);
2776
2777 if (recover_curseg) {
2778 if (old_cursegno != curseg->segno) {
2779 curseg->next_segno = old_cursegno;
2780 change_curseg(sbi, type);
2781 }
2782 curseg->next_blkoff = old_blkoff;
2783 }
2784
2785 up_write(&sit_i->sentry_lock);
2786 mutex_unlock(&curseg->curseg_mutex);
2787 up_write(&SM_I(sbi)->curseg_lock);
2788}
2789
2790void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2791 block_t old_addr, block_t new_addr,
2792 unsigned char version, bool recover_curseg,
2793 bool recover_newaddr)
2794{
2795 struct f2fs_summary sum;
2796
2797 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2798
2799 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2800 recover_curseg, recover_newaddr);
2801
2802 f2fs_update_data_blkaddr(dn, new_addr);
2803}
2804
2805void f2fs_wait_on_page_writeback(struct page *page,
2806 enum page_type type, bool ordered)
2807{
2808 if (PageWriteback(page)) {
2809 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2810
2811 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2812 0, page->index, type);
2813 if (ordered)
2814 wait_on_page_writeback(page);
2815 else
2816 wait_for_stable_page(page);
2817 }
2818}
2819
2820void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2821{
2822 struct page *cpage;
2823
2824 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2825 return;
2826
2827 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2828 if (cpage) {
2829 f2fs_wait_on_page_writeback(cpage, DATA, true);
2830 f2fs_put_page(cpage, 1);
2831 }
2832}
2833
2834static void read_compacted_summaries(struct f2fs_sb_info *sbi)
2835{
2836 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2837 struct curseg_info *seg_i;
2838 unsigned char *kaddr;
2839 struct page *page;
2840 block_t start;
2841 int i, j, offset;
2842
2843 start = start_sum_block(sbi);
2844
2845 page = get_meta_page(sbi, start++);
2846 kaddr = (unsigned char *)page_address(page);
2847
2848 /* Step 1: restore nat cache */
2849 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2850 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2851
2852 /* Step 2: restore sit cache */
2853 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2854 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2855 offset = 2 * SUM_JOURNAL_SIZE;
2856
2857 /* Step 3: restore summary entries */
2858 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2859 unsigned short blk_off;
2860 unsigned int segno;
2861
2862 seg_i = CURSEG_I(sbi, i);
2863 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2864 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2865 seg_i->next_segno = segno;
2866 reset_curseg(sbi, i, 0);
2867 seg_i->alloc_type = ckpt->alloc_type[i];
2868 seg_i->next_blkoff = blk_off;
2869
2870 if (seg_i->alloc_type == SSR)
2871 blk_off = sbi->blocks_per_seg;
2872
2873 for (j = 0; j < blk_off; j++) {
2874 struct f2fs_summary *s;
2875 s = (struct f2fs_summary *)(kaddr + offset);
2876 seg_i->sum_blk->entries[j] = *s;
2877 offset += SUMMARY_SIZE;
2878 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2879 SUM_FOOTER_SIZE)
2880 continue;
2881
2882 f2fs_put_page(page, 1);
2883 page = NULL;
2884
2885 page = get_meta_page(sbi, start++);
2886 kaddr = (unsigned char *)page_address(page);
2887 offset = 0;
2888 }
2889 }
2890 f2fs_put_page(page, 1);
2891}
2892
2893static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2894{
2895 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2896 struct f2fs_summary_block *sum;
2897 struct curseg_info *curseg;
2898 struct page *new;
2899 unsigned short blk_off;
2900 unsigned int segno = 0;
2901 block_t blk_addr = 0;
2902
2903 /* get segment number and block addr */
2904 if (IS_DATASEG(type)) {
2905 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2906 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2907 CURSEG_HOT_DATA]);
2908 if (__exist_node_summaries(sbi))
2909 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2910 else
2911 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2912 } else {
2913 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2914 CURSEG_HOT_NODE]);
2915 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2916 CURSEG_HOT_NODE]);
2917 if (__exist_node_summaries(sbi))
2918 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2919 type - CURSEG_HOT_NODE);
2920 else
2921 blk_addr = GET_SUM_BLOCK(sbi, segno);
2922 }
2923
2924 new = get_meta_page(sbi, blk_addr);
2925 sum = (struct f2fs_summary_block *)page_address(new);
2926
2927 if (IS_NODESEG(type)) {
2928 if (__exist_node_summaries(sbi)) {
2929 struct f2fs_summary *ns = &sum->entries[0];
2930 int i;
2931 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2932 ns->version = 0;
2933 ns->ofs_in_node = 0;
2934 }
2935 } else {
2936 restore_node_summary(sbi, segno, sum);
2937 }
2938 }
2939
2940 /* set uncompleted segment to curseg */
2941 curseg = CURSEG_I(sbi, type);
2942 mutex_lock(&curseg->curseg_mutex);
2943
2944 /* update journal info */
2945 down_write(&curseg->journal_rwsem);
2946 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2947 up_write(&curseg->journal_rwsem);
2948
2949 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2950 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2951 curseg->next_segno = segno;
2952 reset_curseg(sbi, type, 0);
2953 curseg->alloc_type = ckpt->alloc_type[type];
2954 curseg->next_blkoff = blk_off;
2955 mutex_unlock(&curseg->curseg_mutex);
2956 f2fs_put_page(new, 1);
2957 return 0;
2958}
2959
2960static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2961{
2962 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2963 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2964 int type = CURSEG_HOT_DATA;
2965 int err;
2966
2967 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2968 int npages = npages_for_summary_flush(sbi, true);
2969
2970 if (npages >= 2)
2971 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2972 META_CP, true);
2973
2974 /* restore for compacted data summary */
2975 read_compacted_summaries(sbi);
2976 type = CURSEG_HOT_NODE;
2977 }
2978
2979 if (__exist_node_summaries(sbi))
2980 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2981 NR_CURSEG_TYPE - type, META_CP, true);
2982
2983 for (; type <= CURSEG_COLD_NODE; type++) {
2984 err = read_normal_summaries(sbi, type);
2985 if (err)
2986 return err;
2987 }
2988
2989 /* sanity check for summary blocks */
2990 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2991 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2992 return -EINVAL;
2993
2994 return 0;
2995}
2996
2997static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2998{
2999 struct page *page;
3000 unsigned char *kaddr;
3001 struct f2fs_summary *summary;
3002 struct curseg_info *seg_i;
3003 int written_size = 0;
3004 int i, j;
3005
3006 page = grab_meta_page(sbi, blkaddr++);
3007 kaddr = (unsigned char *)page_address(page);
3008
3009 /* Step 1: write nat cache */
3010 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3011 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3012 written_size += SUM_JOURNAL_SIZE;
3013
3014 /* Step 2: write sit cache */
3015 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3016 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3017 written_size += SUM_JOURNAL_SIZE;
3018
3019 /* Step 3: write summary entries */
3020 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3021 unsigned short blkoff;
3022 seg_i = CURSEG_I(sbi, i);
3023 if (sbi->ckpt->alloc_type[i] == SSR)
3024 blkoff = sbi->blocks_per_seg;
3025 else
3026 blkoff = curseg_blkoff(sbi, i);
3027
3028 for (j = 0; j < blkoff; j++) {
3029 if (!page) {
3030 page = grab_meta_page(sbi, blkaddr++);
3031 kaddr = (unsigned char *)page_address(page);
3032 written_size = 0;
3033 }
3034 summary = (struct f2fs_summary *)(kaddr + written_size);
3035 *summary = seg_i->sum_blk->entries[j];
3036 written_size += SUMMARY_SIZE;
3037
3038 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3039 SUM_FOOTER_SIZE)
3040 continue;
3041
3042 set_page_dirty(page);
3043 f2fs_put_page(page, 1);
3044 page = NULL;
3045 }
3046 }
3047 if (page) {
3048 set_page_dirty(page);
3049 f2fs_put_page(page, 1);
3050 }
3051}
3052
3053static void write_normal_summaries(struct f2fs_sb_info *sbi,
3054 block_t blkaddr, int type)
3055{
3056 int i, end;
3057 if (IS_DATASEG(type))
3058 end = type + NR_CURSEG_DATA_TYPE;
3059 else
3060 end = type + NR_CURSEG_NODE_TYPE;
3061
3062 for (i = type; i < end; i++)
3063 write_current_sum_page(sbi, i, blkaddr + (i - type));
3064}
3065
3066void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3067{
3068 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3069 write_compacted_summaries(sbi, start_blk);
3070 else
3071 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3072}
3073
3074void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3075{
3076 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3077}
3078
3079int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3080 unsigned int val, int alloc)
3081{
3082 int i;
3083
3084 if (type == NAT_JOURNAL) {
3085 for (i = 0; i < nats_in_cursum(journal); i++) {
3086 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3087 return i;
3088 }
3089 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3090 return update_nats_in_cursum(journal, 1);
3091 } else if (type == SIT_JOURNAL) {
3092 for (i = 0; i < sits_in_cursum(journal); i++)
3093 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3094 return i;
3095 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3096 return update_sits_in_cursum(journal, 1);
3097 }
3098 return -1;
3099}
3100
3101static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3102 unsigned int segno)
3103{
3104 return get_meta_page(sbi, current_sit_addr(sbi, segno));
3105}
3106
3107static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3108 unsigned int start)
3109{
3110 struct sit_info *sit_i = SIT_I(sbi);
3111 struct page *src_page, *dst_page;
3112 pgoff_t src_off, dst_off;
3113 void *src_addr, *dst_addr;
3114
3115 src_off = current_sit_addr(sbi, start);
3116 dst_off = next_sit_addr(sbi, src_off);
3117
3118 /* get current sit block page without lock */
3119 src_page = get_meta_page(sbi, src_off);
3120 dst_page = grab_meta_page(sbi, dst_off);
3121 f2fs_bug_on(sbi, PageDirty(src_page));
3122
3123 src_addr = page_address(src_page);
3124 dst_addr = page_address(dst_page);
3125 memcpy(dst_addr, src_addr, PAGE_SIZE);
3126
3127 set_page_dirty(dst_page);
3128 f2fs_put_page(src_page, 1);
3129
3130 set_to_next_sit(sit_i, start);
3131
3132 return dst_page;
3133}
3134
3135static struct sit_entry_set *grab_sit_entry_set(void)
3136{
3137 struct sit_entry_set *ses =
3138 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3139
3140 ses->entry_cnt = 0;
3141 INIT_LIST_HEAD(&ses->set_list);
3142 return ses;
3143}
3144
3145static void release_sit_entry_set(struct sit_entry_set *ses)
3146{
3147 list_del(&ses->set_list);
3148 kmem_cache_free(sit_entry_set_slab, ses);
3149}
3150
3151static void adjust_sit_entry_set(struct sit_entry_set *ses,
3152 struct list_head *head)
3153{
3154 struct sit_entry_set *next = ses;
3155
3156 if (list_is_last(&ses->set_list, head))
3157 return;
3158
3159 list_for_each_entry_continue(next, head, set_list)
3160 if (ses->entry_cnt <= next->entry_cnt)
3161 break;
3162
3163 list_move_tail(&ses->set_list, &next->set_list);
3164}
3165
3166static void add_sit_entry(unsigned int segno, struct list_head *head)
3167{
3168 struct sit_entry_set *ses;
3169 unsigned int start_segno = START_SEGNO(segno);
3170
3171 list_for_each_entry(ses, head, set_list) {
3172 if (ses->start_segno == start_segno) {
3173 ses->entry_cnt++;
3174 adjust_sit_entry_set(ses, head);
3175 return;
3176 }
3177 }
3178
3179 ses = grab_sit_entry_set();
3180
3181 ses->start_segno = start_segno;
3182 ses->entry_cnt++;
3183 list_add(&ses->set_list, head);
3184}
3185
3186static void add_sits_in_set(struct f2fs_sb_info *sbi)
3187{
3188 struct f2fs_sm_info *sm_info = SM_I(sbi);
3189 struct list_head *set_list = &sm_info->sit_entry_set;
3190 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3191 unsigned int segno;
3192
3193 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3194 add_sit_entry(segno, set_list);
3195}
3196
3197static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3198{
3199 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3200 struct f2fs_journal *journal = curseg->journal;
3201 int i;
3202
3203 down_write(&curseg->journal_rwsem);
3204 for (i = 0; i < sits_in_cursum(journal); i++) {
3205 unsigned int segno;
3206 bool dirtied;
3207
3208 segno = le32_to_cpu(segno_in_journal(journal, i));
3209 dirtied = __mark_sit_entry_dirty(sbi, segno);
3210
3211 if (!dirtied)
3212 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3213 }
3214 update_sits_in_cursum(journal, -i);
3215 up_write(&curseg->journal_rwsem);
3216}
3217
3218/*
3219 * CP calls this function, which flushes SIT entries including sit_journal,
3220 * and moves prefree segs to free segs.
3221 */
3222void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3223{
3224 struct sit_info *sit_i = SIT_I(sbi);
3225 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3226 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3227 struct f2fs_journal *journal = curseg->journal;
3228 struct sit_entry_set *ses, *tmp;
3229 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3230 bool to_journal = true;
3231 struct seg_entry *se;
3232
3233 down_write(&sit_i->sentry_lock);
3234
3235 if (!sit_i->dirty_sentries)
3236 goto out;
3237
3238 /*
3239 * add and account sit entries of dirty bitmap in sit entry
3240 * set temporarily
3241 */
3242 add_sits_in_set(sbi);
3243
3244 /*
3245 * if there are no enough space in journal to store dirty sit
3246 * entries, remove all entries from journal and add and account
3247 * them in sit entry set.
3248 */
3249 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3250 remove_sits_in_journal(sbi);
3251
3252 /*
3253 * there are two steps to flush sit entries:
3254 * #1, flush sit entries to journal in current cold data summary block.
3255 * #2, flush sit entries to sit page.
3256 */
3257 list_for_each_entry_safe(ses, tmp, head, set_list) {
3258 struct page *page = NULL;
3259 struct f2fs_sit_block *raw_sit = NULL;
3260 unsigned int start_segno = ses->start_segno;
3261 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3262 (unsigned long)MAIN_SEGS(sbi));
3263 unsigned int segno = start_segno;
3264
3265 if (to_journal &&
3266 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3267 to_journal = false;
3268
3269 if (to_journal) {
3270 down_write(&curseg->journal_rwsem);
3271 } else {
3272 page = get_next_sit_page(sbi, start_segno);
3273 raw_sit = page_address(page);
3274 }
3275
3276 /* flush dirty sit entries in region of current sit set */
3277 for_each_set_bit_from(segno, bitmap, end) {
3278 int offset, sit_offset;
3279
3280 se = get_seg_entry(sbi, segno);
3281
3282 /* add discard candidates */
3283 if (!(cpc->reason & CP_DISCARD)) {
3284 cpc->trim_start = segno;
3285 add_discard_addrs(sbi, cpc, false);
3286 }
3287
3288 if (to_journal) {
3289 offset = lookup_journal_in_cursum(journal,
3290 SIT_JOURNAL, segno, 1);
3291 f2fs_bug_on(sbi, offset < 0);
3292 segno_in_journal(journal, offset) =
3293 cpu_to_le32(segno);
3294 seg_info_to_raw_sit(se,
3295 &sit_in_journal(journal, offset));
3296 } else {
3297 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3298 seg_info_to_raw_sit(se,
3299 &raw_sit->entries[sit_offset]);
3300 }
3301
3302 __clear_bit(segno, bitmap);
3303 sit_i->dirty_sentries--;
3304 ses->entry_cnt--;
3305 }
3306
3307 if (to_journal)
3308 up_write(&curseg->journal_rwsem);
3309 else
3310 f2fs_put_page(page, 1);
3311
3312 f2fs_bug_on(sbi, ses->entry_cnt);
3313 release_sit_entry_set(ses);
3314 }
3315
3316 f2fs_bug_on(sbi, !list_empty(head));
3317 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3318out:
3319 if (cpc->reason & CP_DISCARD) {
3320 __u64 trim_start = cpc->trim_start;
3321
3322 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3323 add_discard_addrs(sbi, cpc, false);
3324
3325 cpc->trim_start = trim_start;
3326 }
3327 up_write(&sit_i->sentry_lock);
3328
3329 set_prefree_as_free_segments(sbi);
3330}
3331
3332static int build_sit_info(struct f2fs_sb_info *sbi)
3333{
3334 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3335 struct sit_info *sit_i;
3336 unsigned int sit_segs, start;
3337 char *src_bitmap;
3338 unsigned int bitmap_size;
3339
3340 /* allocate memory for SIT information */
3341 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3342 if (!sit_i)
3343 return -ENOMEM;
3344
3345 SM_I(sbi)->sit_info = sit_i;
3346
3347 sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3348 sizeof(struct seg_entry), GFP_KERNEL);
3349 if (!sit_i->sentries)
3350 return -ENOMEM;
3351
3352 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3353 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3354 GFP_KERNEL);
3355 if (!sit_i->dirty_sentries_bitmap)
3356 return -ENOMEM;
3357
3358 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3359 sit_i->sentries[start].cur_valid_map
3360 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3361 sit_i->sentries[start].ckpt_valid_map
3362 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3363 if (!sit_i->sentries[start].cur_valid_map ||
3364 !sit_i->sentries[start].ckpt_valid_map)
3365 return -ENOMEM;
3366
3367#ifdef CONFIG_F2FS_CHECK_FS
3368 sit_i->sentries[start].cur_valid_map_mir
3369 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3370 if (!sit_i->sentries[start].cur_valid_map_mir)
3371 return -ENOMEM;
3372#endif
3373
3374 if (f2fs_discard_en(sbi)) {
3375 sit_i->sentries[start].discard_map
3376 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3377 GFP_KERNEL);
3378 if (!sit_i->sentries[start].discard_map)
3379 return -ENOMEM;
3380 }
3381 }
3382
3383 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3384 if (!sit_i->tmp_map)
3385 return -ENOMEM;
3386
3387 if (sbi->segs_per_sec > 1) {
3388 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3389 sizeof(struct sec_entry), GFP_KERNEL);
3390 if (!sit_i->sec_entries)
3391 return -ENOMEM;
3392 }
3393
3394 /* get information related with SIT */
3395 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3396
3397 /* setup SIT bitmap from ckeckpoint pack */
3398 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3399 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3400
3401 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3402 if (!sit_i->sit_bitmap)
3403 return -ENOMEM;
3404
3405#ifdef CONFIG_F2FS_CHECK_FS
3406 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3407 if (!sit_i->sit_bitmap_mir)
3408 return -ENOMEM;
3409#endif
3410
3411 /* init SIT information */
3412 sit_i->s_ops = &default_salloc_ops;
3413
3414 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3415 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3416 sit_i->written_valid_blocks = 0;
3417 sit_i->bitmap_size = bitmap_size;
3418 sit_i->dirty_sentries = 0;
3419 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3420 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3421 sit_i->mounted_time = ktime_get_real_seconds();
3422 init_rwsem(&sit_i->sentry_lock);
3423 return 0;
3424}
3425
3426static int build_free_segmap(struct f2fs_sb_info *sbi)
3427{
3428 struct free_segmap_info *free_i;
3429 unsigned int bitmap_size, sec_bitmap_size;
3430
3431 /* allocate memory for free segmap information */
3432 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3433 if (!free_i)
3434 return -ENOMEM;
3435
3436 SM_I(sbi)->free_info = free_i;
3437
3438 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3439 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3440 if (!free_i->free_segmap)
3441 return -ENOMEM;
3442
3443 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3444 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3445 if (!free_i->free_secmap)
3446 return -ENOMEM;
3447
3448 /* set all segments as dirty temporarily */
3449 memset(free_i->free_segmap, 0xff, bitmap_size);
3450 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3451
3452 /* init free segmap information */
3453 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3454 free_i->free_segments = 0;
3455 free_i->free_sections = 0;
3456 spin_lock_init(&free_i->segmap_lock);
3457 return 0;
3458}
3459
3460static int build_curseg(struct f2fs_sb_info *sbi)
3461{
3462 struct curseg_info *array;
3463 int i;
3464
3465 array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3466 if (!array)
3467 return -ENOMEM;
3468
3469 SM_I(sbi)->curseg_array = array;
3470
3471 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3472 mutex_init(&array[i].curseg_mutex);
3473 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3474 if (!array[i].sum_blk)
3475 return -ENOMEM;
3476 init_rwsem(&array[i].journal_rwsem);
3477 array[i].journal = f2fs_kzalloc(sbi,
3478 sizeof(struct f2fs_journal), GFP_KERNEL);
3479 if (!array[i].journal)
3480 return -ENOMEM;
3481 array[i].segno = NULL_SEGNO;
3482 array[i].next_blkoff = 0;
3483 }
3484 return restore_curseg_summaries(sbi);
3485}
3486
3487static int build_sit_entries(struct f2fs_sb_info *sbi)
3488{
3489 struct sit_info *sit_i = SIT_I(sbi);
3490 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3491 struct f2fs_journal *journal = curseg->journal;
3492 struct seg_entry *se;
3493 struct f2fs_sit_entry sit;
3494 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3495 unsigned int i, start, end;
3496 unsigned int readed, start_blk = 0;
3497 int err = 0;
3498
3499 do {
3500 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3501 META_SIT, true);
3502
3503 start = start_blk * sit_i->sents_per_block;
3504 end = (start_blk + readed) * sit_i->sents_per_block;
3505
3506 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3507 struct f2fs_sit_block *sit_blk;
3508 struct page *page;
3509
3510 se = &sit_i->sentries[start];
3511 page = get_current_sit_page(sbi, start);
3512 sit_blk = (struct f2fs_sit_block *)page_address(page);
3513 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3514 f2fs_put_page(page, 1);
3515
3516 err = check_block_count(sbi, start, &sit);
3517 if (err)
3518 return err;
3519 seg_info_from_raw_sit(se, &sit);
3520
3521 /* build discard map only one time */
3522 if (f2fs_discard_en(sbi)) {
3523 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3524 memset(se->discard_map, 0xff,
3525 SIT_VBLOCK_MAP_SIZE);
3526 } else {
3527 memcpy(se->discard_map,
3528 se->cur_valid_map,
3529 SIT_VBLOCK_MAP_SIZE);
3530 sbi->discard_blks +=
3531 sbi->blocks_per_seg -
3532 se->valid_blocks;
3533 }
3534 }
3535
3536 if (sbi->segs_per_sec > 1)
3537 get_sec_entry(sbi, start)->valid_blocks +=
3538 se->valid_blocks;
3539 }
3540 start_blk += readed;
3541 } while (start_blk < sit_blk_cnt);
3542
3543 down_read(&curseg->journal_rwsem);
3544 for (i = 0; i < sits_in_cursum(journal); i++) {
3545 unsigned int old_valid_blocks;
3546
3547 start = le32_to_cpu(segno_in_journal(journal, i));
3548 se = &sit_i->sentries[start];
3549 sit = sit_in_journal(journal, i);
3550
3551 old_valid_blocks = se->valid_blocks;
3552
3553 err = check_block_count(sbi, start, &sit);
3554 if (err)
3555 break;
3556 seg_info_from_raw_sit(se, &sit);
3557
3558 if (f2fs_discard_en(sbi)) {
3559 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3560 memset(se->discard_map, 0xff,
3561 SIT_VBLOCK_MAP_SIZE);
3562 } else {
3563 memcpy(se->discard_map, se->cur_valid_map,
3564 SIT_VBLOCK_MAP_SIZE);
3565 sbi->discard_blks += old_valid_blocks -
3566 se->valid_blocks;
3567 }
3568 }
3569
3570 if (sbi->segs_per_sec > 1)
3571 get_sec_entry(sbi, start)->valid_blocks +=
3572 se->valid_blocks - old_valid_blocks;
3573 }
3574 up_read(&curseg->journal_rwsem);
3575 return err;
3576}
3577
3578static void init_free_segmap(struct f2fs_sb_info *sbi)
3579{
3580 unsigned int start;
3581 int type;
3582
3583 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3584 struct seg_entry *sentry = get_seg_entry(sbi, start);
3585 if (!sentry->valid_blocks)
3586 __set_free(sbi, start);
3587 else
3588 SIT_I(sbi)->written_valid_blocks +=
3589 sentry->valid_blocks;
3590 }
3591
3592 /* set use the current segments */
3593 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3594 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3595 __set_test_and_inuse(sbi, curseg_t->segno);
3596 }
3597}
3598
3599static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3600{
3601 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3602 struct free_segmap_info *free_i = FREE_I(sbi);
3603 unsigned int segno = 0, offset = 0;
3604 unsigned short valid_blocks;
3605
3606 while (1) {
3607 /* find dirty segment based on free segmap */
3608 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3609 if (segno >= MAIN_SEGS(sbi))
3610 break;
3611 offset = segno + 1;
3612 valid_blocks = get_valid_blocks(sbi, segno, false);
3613 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3614 continue;
3615 if (valid_blocks > sbi->blocks_per_seg) {
3616 f2fs_bug_on(sbi, 1);
3617 continue;
3618 }
3619 mutex_lock(&dirty_i->seglist_lock);
3620 __locate_dirty_segment(sbi, segno, DIRTY);
3621 mutex_unlock(&dirty_i->seglist_lock);
3622 }
3623}
3624
3625static int init_victim_secmap(struct f2fs_sb_info *sbi)
3626{
3627 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3628 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3629
3630 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3631 if (!dirty_i->victim_secmap)
3632 return -ENOMEM;
3633 return 0;
3634}
3635
3636static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3637{
3638 struct dirty_seglist_info *dirty_i;
3639 unsigned int bitmap_size, i;
3640
3641 /* allocate memory for dirty segments list information */
3642 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3643 GFP_KERNEL);
3644 if (!dirty_i)
3645 return -ENOMEM;
3646
3647 SM_I(sbi)->dirty_info = dirty_i;
3648 mutex_init(&dirty_i->seglist_lock);
3649
3650 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3651
3652 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3653 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3654 GFP_KERNEL);
3655 if (!dirty_i->dirty_segmap[i])
3656 return -ENOMEM;
3657 }
3658
3659 init_dirty_segmap(sbi);
3660 return init_victim_secmap(sbi);
3661}
3662
3663/*
3664 * Update min, max modified time for cost-benefit GC algorithm
3665 */
3666static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3667{
3668 struct sit_info *sit_i = SIT_I(sbi);
3669 unsigned int segno;
3670
3671 down_write(&sit_i->sentry_lock);
3672
3673 sit_i->min_mtime = LLONG_MAX;
3674
3675 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3676 unsigned int i;
3677 unsigned long long mtime = 0;
3678
3679 for (i = 0; i < sbi->segs_per_sec; i++)
3680 mtime += get_seg_entry(sbi, segno + i)->mtime;
3681
3682 mtime = div_u64(mtime, sbi->segs_per_sec);
3683
3684 if (sit_i->min_mtime > mtime)
3685 sit_i->min_mtime = mtime;
3686 }
3687 sit_i->max_mtime = get_mtime(sbi);
3688 up_write(&sit_i->sentry_lock);
3689}
3690
3691int build_segment_manager(struct f2fs_sb_info *sbi)
3692{
3693 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3694 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3695 struct f2fs_sm_info *sm_info;
3696 int err;
3697
3698 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3699 if (!sm_info)
3700 return -ENOMEM;
3701
3702 /* init sm info */
3703 sbi->sm_info = sm_info;
3704 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3705 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3706 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3707 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3708 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3709 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3710 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3711 sm_info->rec_prefree_segments = sm_info->main_segments *
3712 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3713 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3714 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3715
3716 if (!test_opt(sbi, LFS))
3717 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3718 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3719 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3720 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3721 sm_info->min_ssr_sections = reserved_sections(sbi);
3722
3723 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3724
3725 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3726
3727 init_rwsem(&sm_info->curseg_lock);
3728
3729 if (!f2fs_readonly(sbi->sb)) {
3730 err = create_flush_cmd_control(sbi);
3731 if (err)
3732 return err;
3733 }
3734
3735 err = create_discard_cmd_control(sbi);
3736 if (err)
3737 return err;
3738
3739 err = build_sit_info(sbi);
3740 if (err)
3741 return err;
3742 err = build_free_segmap(sbi);
3743 if (err)
3744 return err;
3745 err = build_curseg(sbi);
3746 if (err)
3747 return err;
3748
3749 /* reinit free segmap based on SIT */
3750 err = build_sit_entries(sbi);
3751 if (err)
3752 return err;
3753
3754 init_free_segmap(sbi);
3755 err = build_dirty_segmap(sbi);
3756 if (err)
3757 return err;
3758
3759 init_min_max_mtime(sbi);
3760 return 0;
3761}
3762
3763static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3764 enum dirty_type dirty_type)
3765{
3766 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3767
3768 mutex_lock(&dirty_i->seglist_lock);
3769 kvfree(dirty_i->dirty_segmap[dirty_type]);
3770 dirty_i->nr_dirty[dirty_type] = 0;
3771 mutex_unlock(&dirty_i->seglist_lock);
3772}
3773
3774static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3775{
3776 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3777 kvfree(dirty_i->victim_secmap);
3778}
3779
3780static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3781{
3782 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3783 int i;
3784
3785 if (!dirty_i)
3786 return;
3787
3788 /* discard pre-free/dirty segments list */
3789 for (i = 0; i < NR_DIRTY_TYPE; i++)
3790 discard_dirty_segmap(sbi, i);
3791
3792 destroy_victim_secmap(sbi);
3793 SM_I(sbi)->dirty_info = NULL;
3794 kfree(dirty_i);
3795}
3796
3797static void destroy_curseg(struct f2fs_sb_info *sbi)
3798{
3799 struct curseg_info *array = SM_I(sbi)->curseg_array;
3800 int i;
3801
3802 if (!array)
3803 return;
3804 SM_I(sbi)->curseg_array = NULL;
3805 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3806 kfree(array[i].sum_blk);
3807 kfree(array[i].journal);
3808 }
3809 kfree(array);
3810}
3811
3812static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3813{
3814 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3815 if (!free_i)
3816 return;
3817 SM_I(sbi)->free_info = NULL;
3818 kvfree(free_i->free_segmap);
3819 kvfree(free_i->free_secmap);
3820 kfree(free_i);
3821}
3822
3823static void destroy_sit_info(struct f2fs_sb_info *sbi)
3824{
3825 struct sit_info *sit_i = SIT_I(sbi);
3826 unsigned int start;
3827
3828 if (!sit_i)
3829 return;
3830
3831 if (sit_i->sentries) {
3832 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3833 kfree(sit_i->sentries[start].cur_valid_map);
3834#ifdef CONFIG_F2FS_CHECK_FS
3835 kfree(sit_i->sentries[start].cur_valid_map_mir);
3836#endif
3837 kfree(sit_i->sentries[start].ckpt_valid_map);
3838 kfree(sit_i->sentries[start].discard_map);
3839 }
3840 }
3841 kfree(sit_i->tmp_map);
3842
3843 kvfree(sit_i->sentries);
3844 kvfree(sit_i->sec_entries);
3845 kvfree(sit_i->dirty_sentries_bitmap);
3846
3847 SM_I(sbi)->sit_info = NULL;
3848 kfree(sit_i->sit_bitmap);
3849#ifdef CONFIG_F2FS_CHECK_FS
3850 kfree(sit_i->sit_bitmap_mir);
3851#endif
3852 kfree(sit_i);
3853}
3854
3855void destroy_segment_manager(struct f2fs_sb_info *sbi)
3856{
3857 struct f2fs_sm_info *sm_info = SM_I(sbi);
3858
3859 if (!sm_info)
3860 return;
3861 destroy_flush_cmd_control(sbi, true);
3862 destroy_discard_cmd_control(sbi);
3863 destroy_dirty_segmap(sbi);
3864 destroy_curseg(sbi);
3865 destroy_free_segmap(sbi);
3866 destroy_sit_info(sbi);
3867 sbi->sm_info = NULL;
3868 kfree(sm_info);
3869}
3870
3871int __init create_segment_manager_caches(void)
3872{
3873 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3874 sizeof(struct discard_entry));
3875 if (!discard_entry_slab)
3876 goto fail;
3877
3878 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3879 sizeof(struct discard_cmd));
3880 if (!discard_cmd_slab)
3881 goto destroy_discard_entry;
3882
3883 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3884 sizeof(struct sit_entry_set));
3885 if (!sit_entry_set_slab)
3886 goto destroy_discard_cmd;
3887
3888 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3889 sizeof(struct inmem_pages));
3890 if (!inmem_entry_slab)
3891 goto destroy_sit_entry_set;
3892 return 0;
3893
3894destroy_sit_entry_set:
3895 kmem_cache_destroy(sit_entry_set_slab);
3896destroy_discard_cmd:
3897 kmem_cache_destroy(discard_cmd_slab);
3898destroy_discard_entry:
3899 kmem_cache_destroy(discard_entry_slab);
3900fail:
3901 return -ENOMEM;
3902}
3903
3904void destroy_segment_manager_caches(void)
3905{
3906 kmem_cache_destroy(sit_entry_set_slab);
3907 kmem_cache_destroy(discard_cmd_slab);
3908 kmem_cache_destroy(discard_entry_slab);
3909 kmem_cache_destroy(inmem_entry_slab);
3910}