]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/fs-writeback.c
HID: wacom: drop WACOM_PKGLEN_STATUS
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
... / ...
CommitLineData
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/spinlock.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
23#include <linux/pagemap.h>
24#include <linux/kthread.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/tracepoint.h>
29#include <linux/device.h>
30#include "internal.h"
31
32/*
33 * 4MB minimal write chunk size
34 */
35#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54};
55
56/**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
63int writeback_in_progress(struct backing_dev_info *bdi)
64{
65 return test_bit(BDI_writeback_running, &bdi->state);
66}
67EXPORT_SYMBOL(writeback_in_progress);
68
69static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70{
71 struct super_block *sb = inode->i_sb;
72
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
75
76 return sb->s_bdi;
77}
78
79static inline struct inode *wb_inode(struct list_head *head)
80{
81 return list_entry(head, struct inode, i_wb_list);
82}
83
84/*
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
88 */
89#define CREATE_TRACE_POINTS
90#include <trace/events/writeback.h>
91
92EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
93
94static void bdi_wakeup_thread(struct backing_dev_info *bdi)
95{
96 spin_lock_bh(&bdi->wb_lock);
97 if (test_bit(BDI_registered, &bdi->state))
98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 spin_unlock_bh(&bdi->wb_lock);
100}
101
102static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
104{
105 trace_writeback_queue(bdi, work);
106
107 spin_lock_bh(&bdi->wb_lock);
108 if (!test_bit(BDI_registered, &bdi->state)) {
109 if (work->done)
110 complete(work->done);
111 goto out_unlock;
112 }
113 list_add_tail(&work->list, &bdi->work_list);
114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115out_unlock:
116 spin_unlock_bh(&bdi->wb_lock);
117}
118
119static void
120__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 bool range_cyclic, enum wb_reason reason)
122{
123 struct wb_writeback_work *work;
124
125 /*
126 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 * wakeup the thread for old dirty data writeback
128 */
129 work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 if (!work) {
131 trace_writeback_nowork(bdi);
132 bdi_wakeup_thread(bdi);
133 return;
134 }
135
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
140
141 bdi_queue_work(bdi, work);
142}
143
144/**
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
149 *
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
154 *
155 */
156void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
158{
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
160}
161
162/**
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
165 *
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
171 */
172void bdi_start_background_writeback(struct backing_dev_info *bdi)
173{
174 /*
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
177 */
178 trace_writeback_wake_background(bdi);
179 bdi_wakeup_thread(bdi);
180}
181
182/*
183 * Remove the inode from the writeback list it is on.
184 */
185void inode_wb_list_del(struct inode *inode)
186{
187 struct backing_dev_info *bdi = inode_to_bdi(inode);
188
189 spin_lock(&bdi->wb.list_lock);
190 list_del_init(&inode->i_wb_list);
191 spin_unlock(&bdi->wb.list_lock);
192}
193
194/*
195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196 * furthest end of its superblock's dirty-inode list.
197 *
198 * Before stamping the inode's ->dirtied_when, we check to see whether it is
199 * already the most-recently-dirtied inode on the b_dirty list. If that is
200 * the case then the inode must have been redirtied while it was being written
201 * out and we don't reset its dirtied_when.
202 */
203static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
204{
205 assert_spin_locked(&wb->list_lock);
206 if (!list_empty(&wb->b_dirty)) {
207 struct inode *tail;
208
209 tail = wb_inode(wb->b_dirty.next);
210 if (time_before(inode->dirtied_when, tail->dirtied_when))
211 inode->dirtied_when = jiffies;
212 }
213 list_move(&inode->i_wb_list, &wb->b_dirty);
214}
215
216/*
217 * requeue inode for re-scanning after bdi->b_io list is exhausted.
218 */
219static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
220{
221 assert_spin_locked(&wb->list_lock);
222 list_move(&inode->i_wb_list, &wb->b_more_io);
223}
224
225static void inode_sync_complete(struct inode *inode)
226{
227 inode->i_state &= ~I_SYNC;
228 /* If inode is clean an unused, put it into LRU now... */
229 inode_add_lru(inode);
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233}
234
235static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236{
237 bool ret = time_after(inode->dirtied_when, t);
238#ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246#endif
247 return ret;
248}
249
250/*
251 * Move expired (dirtied before work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
253 */
254static int move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 struct wb_writeback_work *work)
257{
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263 int moved = 0;
264
265 while (!list_empty(delaying_queue)) {
266 inode = wb_inode(delaying_queue->prev);
267 if (work->older_than_this &&
268 inode_dirtied_after(inode, *work->older_than_this))
269 break;
270 list_move(&inode->i_wb_list, &tmp);
271 moved++;
272 if (sb_is_blkdev_sb(inode->i_sb))
273 continue;
274 if (sb && sb != inode->i_sb)
275 do_sb_sort = 1;
276 sb = inode->i_sb;
277 }
278
279 /* just one sb in list, splice to dispatch_queue and we're done */
280 if (!do_sb_sort) {
281 list_splice(&tmp, dispatch_queue);
282 goto out;
283 }
284
285 /* Move inodes from one superblock together */
286 while (!list_empty(&tmp)) {
287 sb = wb_inode(tmp.prev)->i_sb;
288 list_for_each_prev_safe(pos, node, &tmp) {
289 inode = wb_inode(pos);
290 if (inode->i_sb == sb)
291 list_move(&inode->i_wb_list, dispatch_queue);
292 }
293 }
294out:
295 return moved;
296}
297
298/*
299 * Queue all expired dirty inodes for io, eldest first.
300 * Before
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> gf edc BA
303 * After
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> g fBAedc
306 * |
307 * +--> dequeue for IO
308 */
309static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
310{
311 int moved;
312 assert_spin_locked(&wb->list_lock);
313 list_splice_init(&wb->b_more_io, &wb->b_io);
314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 trace_writeback_queue_io(wb, work, moved);
316}
317
318static int write_inode(struct inode *inode, struct writeback_control *wbc)
319{
320 int ret;
321
322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
323 trace_writeback_write_inode_start(inode, wbc);
324 ret = inode->i_sb->s_op->write_inode(inode, wbc);
325 trace_writeback_write_inode(inode, wbc);
326 return ret;
327 }
328 return 0;
329}
330
331/*
332 * Wait for writeback on an inode to complete. Called with i_lock held.
333 * Caller must make sure inode cannot go away when we drop i_lock.
334 */
335static void __inode_wait_for_writeback(struct inode *inode)
336 __releases(inode->i_lock)
337 __acquires(inode->i_lock)
338{
339 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
340 wait_queue_head_t *wqh;
341
342 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
343 while (inode->i_state & I_SYNC) {
344 spin_unlock(&inode->i_lock);
345 __wait_on_bit(wqh, &wq, bit_wait,
346 TASK_UNINTERRUPTIBLE);
347 spin_lock(&inode->i_lock);
348 }
349}
350
351/*
352 * Wait for writeback on an inode to complete. Caller must have inode pinned.
353 */
354void inode_wait_for_writeback(struct inode *inode)
355{
356 spin_lock(&inode->i_lock);
357 __inode_wait_for_writeback(inode);
358 spin_unlock(&inode->i_lock);
359}
360
361/*
362 * Sleep until I_SYNC is cleared. This function must be called with i_lock
363 * held and drops it. It is aimed for callers not holding any inode reference
364 * so once i_lock is dropped, inode can go away.
365 */
366static void inode_sleep_on_writeback(struct inode *inode)
367 __releases(inode->i_lock)
368{
369 DEFINE_WAIT(wait);
370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
371 int sleep;
372
373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
374 sleep = inode->i_state & I_SYNC;
375 spin_unlock(&inode->i_lock);
376 if (sleep)
377 schedule();
378 finish_wait(wqh, &wait);
379}
380
381/*
382 * Find proper writeback list for the inode depending on its current state and
383 * possibly also change of its state while we were doing writeback. Here we
384 * handle things such as livelock prevention or fairness of writeback among
385 * inodes. This function can be called only by flusher thread - noone else
386 * processes all inodes in writeback lists and requeueing inodes behind flusher
387 * thread's back can have unexpected consequences.
388 */
389static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
390 struct writeback_control *wbc)
391{
392 if (inode->i_state & I_FREEING)
393 return;
394
395 /*
396 * Sync livelock prevention. Each inode is tagged and synced in one
397 * shot. If still dirty, it will be redirty_tail()'ed below. Update
398 * the dirty time to prevent enqueue and sync it again.
399 */
400 if ((inode->i_state & I_DIRTY) &&
401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
402 inode->dirtied_when = jiffies;
403
404 if (wbc->pages_skipped) {
405 /*
406 * writeback is not making progress due to locked
407 * buffers. Skip this inode for now.
408 */
409 redirty_tail(inode, wb);
410 return;
411 }
412
413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
414 /*
415 * We didn't write back all the pages. nfs_writepages()
416 * sometimes bales out without doing anything.
417 */
418 if (wbc->nr_to_write <= 0) {
419 /* Slice used up. Queue for next turn. */
420 requeue_io(inode, wb);
421 } else {
422 /*
423 * Writeback blocked by something other than
424 * congestion. Delay the inode for some time to
425 * avoid spinning on the CPU (100% iowait)
426 * retrying writeback of the dirty page/inode
427 * that cannot be performed immediately.
428 */
429 redirty_tail(inode, wb);
430 }
431 } else if (inode->i_state & I_DIRTY) {
432 /*
433 * Filesystems can dirty the inode during writeback operations,
434 * such as delayed allocation during submission or metadata
435 * updates after data IO completion.
436 */
437 redirty_tail(inode, wb);
438 } else {
439 /* The inode is clean. Remove from writeback lists. */
440 list_del_init(&inode->i_wb_list);
441 }
442}
443
444/*
445 * Write out an inode and its dirty pages. Do not update the writeback list
446 * linkage. That is left to the caller. The caller is also responsible for
447 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
448 */
449static int
450__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
451{
452 struct address_space *mapping = inode->i_mapping;
453 long nr_to_write = wbc->nr_to_write;
454 unsigned dirty;
455 int ret;
456
457 WARN_ON(!(inode->i_state & I_SYNC));
458
459 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
460
461 ret = do_writepages(mapping, wbc);
462
463 /*
464 * Make sure to wait on the data before writing out the metadata.
465 * This is important for filesystems that modify metadata on data
466 * I/O completion. We don't do it for sync(2) writeback because it has a
467 * separate, external IO completion path and ->sync_fs for guaranteeing
468 * inode metadata is written back correctly.
469 */
470 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
471 int err = filemap_fdatawait(mapping);
472 if (ret == 0)
473 ret = err;
474 }
475
476 /*
477 * Some filesystems may redirty the inode during the writeback
478 * due to delalloc, clear dirty metadata flags right before
479 * write_inode()
480 */
481 spin_lock(&inode->i_lock);
482
483 dirty = inode->i_state & I_DIRTY;
484 inode->i_state &= ~I_DIRTY;
485
486 /*
487 * Paired with smp_mb() in __mark_inode_dirty(). This allows
488 * __mark_inode_dirty() to test i_state without grabbing i_lock -
489 * either they see the I_DIRTY bits cleared or we see the dirtied
490 * inode.
491 *
492 * I_DIRTY_PAGES is always cleared together above even if @mapping
493 * still has dirty pages. The flag is reinstated after smp_mb() if
494 * necessary. This guarantees that either __mark_inode_dirty()
495 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
496 */
497 smp_mb();
498
499 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
500 inode->i_state |= I_DIRTY_PAGES;
501
502 spin_unlock(&inode->i_lock);
503
504 /* Don't write the inode if only I_DIRTY_PAGES was set */
505 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
506 int err = write_inode(inode, wbc);
507 if (ret == 0)
508 ret = err;
509 }
510 trace_writeback_single_inode(inode, wbc, nr_to_write);
511 return ret;
512}
513
514/*
515 * Write out an inode's dirty pages. Either the caller has an active reference
516 * on the inode or the inode has I_WILL_FREE set.
517 *
518 * This function is designed to be called for writing back one inode which
519 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
520 * and does more profound writeback list handling in writeback_sb_inodes().
521 */
522static int
523writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
524 struct writeback_control *wbc)
525{
526 int ret = 0;
527
528 spin_lock(&inode->i_lock);
529 if (!atomic_read(&inode->i_count))
530 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
531 else
532 WARN_ON(inode->i_state & I_WILL_FREE);
533
534 if (inode->i_state & I_SYNC) {
535 if (wbc->sync_mode != WB_SYNC_ALL)
536 goto out;
537 /*
538 * It's a data-integrity sync. We must wait. Since callers hold
539 * inode reference or inode has I_WILL_FREE set, it cannot go
540 * away under us.
541 */
542 __inode_wait_for_writeback(inode);
543 }
544 WARN_ON(inode->i_state & I_SYNC);
545 /*
546 * Skip inode if it is clean and we have no outstanding writeback in
547 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
548 * function since flusher thread may be doing for example sync in
549 * parallel and if we move the inode, it could get skipped. So here we
550 * make sure inode is on some writeback list and leave it there unless
551 * we have completely cleaned the inode.
552 */
553 if (!(inode->i_state & I_DIRTY) &&
554 (wbc->sync_mode != WB_SYNC_ALL ||
555 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
556 goto out;
557 inode->i_state |= I_SYNC;
558 spin_unlock(&inode->i_lock);
559
560 ret = __writeback_single_inode(inode, wbc);
561
562 spin_lock(&wb->list_lock);
563 spin_lock(&inode->i_lock);
564 /*
565 * If inode is clean, remove it from writeback lists. Otherwise don't
566 * touch it. See comment above for explanation.
567 */
568 if (!(inode->i_state & I_DIRTY))
569 list_del_init(&inode->i_wb_list);
570 spin_unlock(&wb->list_lock);
571 inode_sync_complete(inode);
572out:
573 spin_unlock(&inode->i_lock);
574 return ret;
575}
576
577static long writeback_chunk_size(struct backing_dev_info *bdi,
578 struct wb_writeback_work *work)
579{
580 long pages;
581
582 /*
583 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
584 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
585 * here avoids calling into writeback_inodes_wb() more than once.
586 *
587 * The intended call sequence for WB_SYNC_ALL writeback is:
588 *
589 * wb_writeback()
590 * writeback_sb_inodes() <== called only once
591 * write_cache_pages() <== called once for each inode
592 * (quickly) tag currently dirty pages
593 * (maybe slowly) sync all tagged pages
594 */
595 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
596 pages = LONG_MAX;
597 else {
598 pages = min(bdi->avg_write_bandwidth / 2,
599 global_dirty_limit / DIRTY_SCOPE);
600 pages = min(pages, work->nr_pages);
601 pages = round_down(pages + MIN_WRITEBACK_PAGES,
602 MIN_WRITEBACK_PAGES);
603 }
604
605 return pages;
606}
607
608/*
609 * Write a portion of b_io inodes which belong to @sb.
610 *
611 * Return the number of pages and/or inodes written.
612 */
613static long writeback_sb_inodes(struct super_block *sb,
614 struct bdi_writeback *wb,
615 struct wb_writeback_work *work)
616{
617 struct writeback_control wbc = {
618 .sync_mode = work->sync_mode,
619 .tagged_writepages = work->tagged_writepages,
620 .for_kupdate = work->for_kupdate,
621 .for_background = work->for_background,
622 .for_sync = work->for_sync,
623 .range_cyclic = work->range_cyclic,
624 .range_start = 0,
625 .range_end = LLONG_MAX,
626 };
627 unsigned long start_time = jiffies;
628 long write_chunk;
629 long wrote = 0; /* count both pages and inodes */
630
631 while (!list_empty(&wb->b_io)) {
632 struct inode *inode = wb_inode(wb->b_io.prev);
633
634 if (inode->i_sb != sb) {
635 if (work->sb) {
636 /*
637 * We only want to write back data for this
638 * superblock, move all inodes not belonging
639 * to it back onto the dirty list.
640 */
641 redirty_tail(inode, wb);
642 continue;
643 }
644
645 /*
646 * The inode belongs to a different superblock.
647 * Bounce back to the caller to unpin this and
648 * pin the next superblock.
649 */
650 break;
651 }
652
653 /*
654 * Don't bother with new inodes or inodes being freed, first
655 * kind does not need periodic writeout yet, and for the latter
656 * kind writeout is handled by the freer.
657 */
658 spin_lock(&inode->i_lock);
659 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
660 spin_unlock(&inode->i_lock);
661 redirty_tail(inode, wb);
662 continue;
663 }
664 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
665 /*
666 * If this inode is locked for writeback and we are not
667 * doing writeback-for-data-integrity, move it to
668 * b_more_io so that writeback can proceed with the
669 * other inodes on s_io.
670 *
671 * We'll have another go at writing back this inode
672 * when we completed a full scan of b_io.
673 */
674 spin_unlock(&inode->i_lock);
675 requeue_io(inode, wb);
676 trace_writeback_sb_inodes_requeue(inode);
677 continue;
678 }
679 spin_unlock(&wb->list_lock);
680
681 /*
682 * We already requeued the inode if it had I_SYNC set and we
683 * are doing WB_SYNC_NONE writeback. So this catches only the
684 * WB_SYNC_ALL case.
685 */
686 if (inode->i_state & I_SYNC) {
687 /* Wait for I_SYNC. This function drops i_lock... */
688 inode_sleep_on_writeback(inode);
689 /* Inode may be gone, start again */
690 spin_lock(&wb->list_lock);
691 continue;
692 }
693 inode->i_state |= I_SYNC;
694 spin_unlock(&inode->i_lock);
695
696 write_chunk = writeback_chunk_size(wb->bdi, work);
697 wbc.nr_to_write = write_chunk;
698 wbc.pages_skipped = 0;
699
700 /*
701 * We use I_SYNC to pin the inode in memory. While it is set
702 * evict_inode() will wait so the inode cannot be freed.
703 */
704 __writeback_single_inode(inode, &wbc);
705
706 work->nr_pages -= write_chunk - wbc.nr_to_write;
707 wrote += write_chunk - wbc.nr_to_write;
708 spin_lock(&wb->list_lock);
709 spin_lock(&inode->i_lock);
710 if (!(inode->i_state & I_DIRTY))
711 wrote++;
712 requeue_inode(inode, wb, &wbc);
713 inode_sync_complete(inode);
714 spin_unlock(&inode->i_lock);
715 cond_resched_lock(&wb->list_lock);
716 /*
717 * bail out to wb_writeback() often enough to check
718 * background threshold and other termination conditions.
719 */
720 if (wrote) {
721 if (time_is_before_jiffies(start_time + HZ / 10UL))
722 break;
723 if (work->nr_pages <= 0)
724 break;
725 }
726 }
727 return wrote;
728}
729
730static long __writeback_inodes_wb(struct bdi_writeback *wb,
731 struct wb_writeback_work *work)
732{
733 unsigned long start_time = jiffies;
734 long wrote = 0;
735
736 while (!list_empty(&wb->b_io)) {
737 struct inode *inode = wb_inode(wb->b_io.prev);
738 struct super_block *sb = inode->i_sb;
739
740 if (!grab_super_passive(sb)) {
741 /*
742 * grab_super_passive() may fail consistently due to
743 * s_umount being grabbed by someone else. Don't use
744 * requeue_io() to avoid busy retrying the inode/sb.
745 */
746 redirty_tail(inode, wb);
747 continue;
748 }
749 wrote += writeback_sb_inodes(sb, wb, work);
750 drop_super(sb);
751
752 /* refer to the same tests at the end of writeback_sb_inodes */
753 if (wrote) {
754 if (time_is_before_jiffies(start_time + HZ / 10UL))
755 break;
756 if (work->nr_pages <= 0)
757 break;
758 }
759 }
760 /* Leave any unwritten inodes on b_io */
761 return wrote;
762}
763
764static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
765 enum wb_reason reason)
766{
767 struct wb_writeback_work work = {
768 .nr_pages = nr_pages,
769 .sync_mode = WB_SYNC_NONE,
770 .range_cyclic = 1,
771 .reason = reason,
772 };
773
774 spin_lock(&wb->list_lock);
775 if (list_empty(&wb->b_io))
776 queue_io(wb, &work);
777 __writeback_inodes_wb(wb, &work);
778 spin_unlock(&wb->list_lock);
779
780 return nr_pages - work.nr_pages;
781}
782
783static bool over_bground_thresh(struct backing_dev_info *bdi)
784{
785 unsigned long background_thresh, dirty_thresh;
786
787 global_dirty_limits(&background_thresh, &dirty_thresh);
788
789 if (global_page_state(NR_FILE_DIRTY) +
790 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
791 return true;
792
793 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
794 bdi_dirty_limit(bdi, background_thresh))
795 return true;
796
797 return false;
798}
799
800/*
801 * Called under wb->list_lock. If there are multiple wb per bdi,
802 * only the flusher working on the first wb should do it.
803 */
804static void wb_update_bandwidth(struct bdi_writeback *wb,
805 unsigned long start_time)
806{
807 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
808}
809
810/*
811 * Explicit flushing or periodic writeback of "old" data.
812 *
813 * Define "old": the first time one of an inode's pages is dirtied, we mark the
814 * dirtying-time in the inode's address_space. So this periodic writeback code
815 * just walks the superblock inode list, writing back any inodes which are
816 * older than a specific point in time.
817 *
818 * Try to run once per dirty_writeback_interval. But if a writeback event
819 * takes longer than a dirty_writeback_interval interval, then leave a
820 * one-second gap.
821 *
822 * older_than_this takes precedence over nr_to_write. So we'll only write back
823 * all dirty pages if they are all attached to "old" mappings.
824 */
825static long wb_writeback(struct bdi_writeback *wb,
826 struct wb_writeback_work *work)
827{
828 unsigned long wb_start = jiffies;
829 long nr_pages = work->nr_pages;
830 unsigned long oldest_jif;
831 struct inode *inode;
832 long progress;
833
834 oldest_jif = jiffies;
835 work->older_than_this = &oldest_jif;
836
837 spin_lock(&wb->list_lock);
838 for (;;) {
839 /*
840 * Stop writeback when nr_pages has been consumed
841 */
842 if (work->nr_pages <= 0)
843 break;
844
845 /*
846 * Background writeout and kupdate-style writeback may
847 * run forever. Stop them if there is other work to do
848 * so that e.g. sync can proceed. They'll be restarted
849 * after the other works are all done.
850 */
851 if ((work->for_background || work->for_kupdate) &&
852 !list_empty(&wb->bdi->work_list))
853 break;
854
855 /*
856 * For background writeout, stop when we are below the
857 * background dirty threshold
858 */
859 if (work->for_background && !over_bground_thresh(wb->bdi))
860 break;
861
862 /*
863 * Kupdate and background works are special and we want to
864 * include all inodes that need writing. Livelock avoidance is
865 * handled by these works yielding to any other work so we are
866 * safe.
867 */
868 if (work->for_kupdate) {
869 oldest_jif = jiffies -
870 msecs_to_jiffies(dirty_expire_interval * 10);
871 } else if (work->for_background)
872 oldest_jif = jiffies;
873
874 trace_writeback_start(wb->bdi, work);
875 if (list_empty(&wb->b_io))
876 queue_io(wb, work);
877 if (work->sb)
878 progress = writeback_sb_inodes(work->sb, wb, work);
879 else
880 progress = __writeback_inodes_wb(wb, work);
881 trace_writeback_written(wb->bdi, work);
882
883 wb_update_bandwidth(wb, wb_start);
884
885 /*
886 * Did we write something? Try for more
887 *
888 * Dirty inodes are moved to b_io for writeback in batches.
889 * The completion of the current batch does not necessarily
890 * mean the overall work is done. So we keep looping as long
891 * as made some progress on cleaning pages or inodes.
892 */
893 if (progress)
894 continue;
895 /*
896 * No more inodes for IO, bail
897 */
898 if (list_empty(&wb->b_more_io))
899 break;
900 /*
901 * Nothing written. Wait for some inode to
902 * become available for writeback. Otherwise
903 * we'll just busyloop.
904 */
905 if (!list_empty(&wb->b_more_io)) {
906 trace_writeback_wait(wb->bdi, work);
907 inode = wb_inode(wb->b_more_io.prev);
908 spin_lock(&inode->i_lock);
909 spin_unlock(&wb->list_lock);
910 /* This function drops i_lock... */
911 inode_sleep_on_writeback(inode);
912 spin_lock(&wb->list_lock);
913 }
914 }
915 spin_unlock(&wb->list_lock);
916
917 return nr_pages - work->nr_pages;
918}
919
920/*
921 * Return the next wb_writeback_work struct that hasn't been processed yet.
922 */
923static struct wb_writeback_work *
924get_next_work_item(struct backing_dev_info *bdi)
925{
926 struct wb_writeback_work *work = NULL;
927
928 spin_lock_bh(&bdi->wb_lock);
929 if (!list_empty(&bdi->work_list)) {
930 work = list_entry(bdi->work_list.next,
931 struct wb_writeback_work, list);
932 list_del_init(&work->list);
933 }
934 spin_unlock_bh(&bdi->wb_lock);
935 return work;
936}
937
938/*
939 * Add in the number of potentially dirty inodes, because each inode
940 * write can dirty pagecache in the underlying blockdev.
941 */
942static unsigned long get_nr_dirty_pages(void)
943{
944 return global_page_state(NR_FILE_DIRTY) +
945 global_page_state(NR_UNSTABLE_NFS) +
946 get_nr_dirty_inodes();
947}
948
949static long wb_check_background_flush(struct bdi_writeback *wb)
950{
951 if (over_bground_thresh(wb->bdi)) {
952
953 struct wb_writeback_work work = {
954 .nr_pages = LONG_MAX,
955 .sync_mode = WB_SYNC_NONE,
956 .for_background = 1,
957 .range_cyclic = 1,
958 .reason = WB_REASON_BACKGROUND,
959 };
960
961 return wb_writeback(wb, &work);
962 }
963
964 return 0;
965}
966
967static long wb_check_old_data_flush(struct bdi_writeback *wb)
968{
969 unsigned long expired;
970 long nr_pages;
971
972 /*
973 * When set to zero, disable periodic writeback
974 */
975 if (!dirty_writeback_interval)
976 return 0;
977
978 expired = wb->last_old_flush +
979 msecs_to_jiffies(dirty_writeback_interval * 10);
980 if (time_before(jiffies, expired))
981 return 0;
982
983 wb->last_old_flush = jiffies;
984 nr_pages = get_nr_dirty_pages();
985
986 if (nr_pages) {
987 struct wb_writeback_work work = {
988 .nr_pages = nr_pages,
989 .sync_mode = WB_SYNC_NONE,
990 .for_kupdate = 1,
991 .range_cyclic = 1,
992 .reason = WB_REASON_PERIODIC,
993 };
994
995 return wb_writeback(wb, &work);
996 }
997
998 return 0;
999}
1000
1001/*
1002 * Retrieve work items and do the writeback they describe
1003 */
1004static long wb_do_writeback(struct bdi_writeback *wb)
1005{
1006 struct backing_dev_info *bdi = wb->bdi;
1007 struct wb_writeback_work *work;
1008 long wrote = 0;
1009
1010 set_bit(BDI_writeback_running, &wb->bdi->state);
1011 while ((work = get_next_work_item(bdi)) != NULL) {
1012
1013 trace_writeback_exec(bdi, work);
1014
1015 wrote += wb_writeback(wb, work);
1016
1017 /*
1018 * Notify the caller of completion if this is a synchronous
1019 * work item, otherwise just free it.
1020 */
1021 if (work->done)
1022 complete(work->done);
1023 else
1024 kfree(work);
1025 }
1026
1027 /*
1028 * Check for periodic writeback, kupdated() style
1029 */
1030 wrote += wb_check_old_data_flush(wb);
1031 wrote += wb_check_background_flush(wb);
1032 clear_bit(BDI_writeback_running, &wb->bdi->state);
1033
1034 return wrote;
1035}
1036
1037/*
1038 * Handle writeback of dirty data for the device backed by this bdi. Also
1039 * reschedules periodically and does kupdated style flushing.
1040 */
1041void bdi_writeback_workfn(struct work_struct *work)
1042{
1043 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1044 struct bdi_writeback, dwork);
1045 struct backing_dev_info *bdi = wb->bdi;
1046 long pages_written;
1047
1048 set_worker_desc("flush-%s", dev_name(bdi->dev));
1049 current->flags |= PF_SWAPWRITE;
1050
1051 if (likely(!current_is_workqueue_rescuer() ||
1052 !test_bit(BDI_registered, &bdi->state))) {
1053 /*
1054 * The normal path. Keep writing back @bdi until its
1055 * work_list is empty. Note that this path is also taken
1056 * if @bdi is shutting down even when we're running off the
1057 * rescuer as work_list needs to be drained.
1058 */
1059 do {
1060 pages_written = wb_do_writeback(wb);
1061 trace_writeback_pages_written(pages_written);
1062 } while (!list_empty(&bdi->work_list));
1063 } else {
1064 /*
1065 * bdi_wq can't get enough workers and we're running off
1066 * the emergency worker. Don't hog it. Hopefully, 1024 is
1067 * enough for efficient IO.
1068 */
1069 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1070 WB_REASON_FORKER_THREAD);
1071 trace_writeback_pages_written(pages_written);
1072 }
1073
1074 if (!list_empty(&bdi->work_list))
1075 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1076 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1077 bdi_wakeup_thread_delayed(bdi);
1078
1079 current->flags &= ~PF_SWAPWRITE;
1080}
1081
1082/*
1083 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1084 * the whole world.
1085 */
1086void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1087{
1088 struct backing_dev_info *bdi;
1089
1090 if (!nr_pages)
1091 nr_pages = get_nr_dirty_pages();
1092
1093 rcu_read_lock();
1094 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1095 if (!bdi_has_dirty_io(bdi))
1096 continue;
1097 __bdi_start_writeback(bdi, nr_pages, false, reason);
1098 }
1099 rcu_read_unlock();
1100}
1101
1102static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1103{
1104 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1105 struct dentry *dentry;
1106 const char *name = "?";
1107
1108 dentry = d_find_alias(inode);
1109 if (dentry) {
1110 spin_lock(&dentry->d_lock);
1111 name = (const char *) dentry->d_name.name;
1112 }
1113 printk(KERN_DEBUG
1114 "%s(%d): dirtied inode %lu (%s) on %s\n",
1115 current->comm, task_pid_nr(current), inode->i_ino,
1116 name, inode->i_sb->s_id);
1117 if (dentry) {
1118 spin_unlock(&dentry->d_lock);
1119 dput(dentry);
1120 }
1121 }
1122}
1123
1124/**
1125 * __mark_inode_dirty - internal function
1126 * @inode: inode to mark
1127 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1128 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1129 * mark_inode_dirty_sync.
1130 *
1131 * Put the inode on the super block's dirty list.
1132 *
1133 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1134 * dirty list only if it is hashed or if it refers to a blockdev.
1135 * If it was not hashed, it will never be added to the dirty list
1136 * even if it is later hashed, as it will have been marked dirty already.
1137 *
1138 * In short, make sure you hash any inodes _before_ you start marking
1139 * them dirty.
1140 *
1141 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1142 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1143 * the kernel-internal blockdev inode represents the dirtying time of the
1144 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1145 * page->mapping->host, so the page-dirtying time is recorded in the internal
1146 * blockdev inode.
1147 */
1148void __mark_inode_dirty(struct inode *inode, int flags)
1149{
1150 struct super_block *sb = inode->i_sb;
1151 struct backing_dev_info *bdi = NULL;
1152
1153 /*
1154 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1155 * dirty the inode itself
1156 */
1157 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1158 trace_writeback_dirty_inode_start(inode, flags);
1159
1160 if (sb->s_op->dirty_inode)
1161 sb->s_op->dirty_inode(inode, flags);
1162
1163 trace_writeback_dirty_inode(inode, flags);
1164 }
1165
1166 /*
1167 * Paired with smp_mb() in __writeback_single_inode() for the
1168 * following lockless i_state test. See there for details.
1169 */
1170 smp_mb();
1171
1172 if ((inode->i_state & flags) == flags)
1173 return;
1174
1175 if (unlikely(block_dump))
1176 block_dump___mark_inode_dirty(inode);
1177
1178 spin_lock(&inode->i_lock);
1179 if ((inode->i_state & flags) != flags) {
1180 const int was_dirty = inode->i_state & I_DIRTY;
1181
1182 inode->i_state |= flags;
1183
1184 /*
1185 * If the inode is being synced, just update its dirty state.
1186 * The unlocker will place the inode on the appropriate
1187 * superblock list, based upon its state.
1188 */
1189 if (inode->i_state & I_SYNC)
1190 goto out_unlock_inode;
1191
1192 /*
1193 * Only add valid (hashed) inodes to the superblock's
1194 * dirty list. Add blockdev inodes as well.
1195 */
1196 if (!S_ISBLK(inode->i_mode)) {
1197 if (inode_unhashed(inode))
1198 goto out_unlock_inode;
1199 }
1200 if (inode->i_state & I_FREEING)
1201 goto out_unlock_inode;
1202
1203 /*
1204 * If the inode was already on b_dirty/b_io/b_more_io, don't
1205 * reposition it (that would break b_dirty time-ordering).
1206 */
1207 if (!was_dirty) {
1208 bool wakeup_bdi = false;
1209 bdi = inode_to_bdi(inode);
1210
1211 spin_unlock(&inode->i_lock);
1212 spin_lock(&bdi->wb.list_lock);
1213 if (bdi_cap_writeback_dirty(bdi)) {
1214 WARN(!test_bit(BDI_registered, &bdi->state),
1215 "bdi-%s not registered\n", bdi->name);
1216
1217 /*
1218 * If this is the first dirty inode for this
1219 * bdi, we have to wake-up the corresponding
1220 * bdi thread to make sure background
1221 * write-back happens later.
1222 */
1223 if (!wb_has_dirty_io(&bdi->wb))
1224 wakeup_bdi = true;
1225 }
1226
1227 inode->dirtied_when = jiffies;
1228 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1229 spin_unlock(&bdi->wb.list_lock);
1230
1231 if (wakeup_bdi)
1232 bdi_wakeup_thread_delayed(bdi);
1233 return;
1234 }
1235 }
1236out_unlock_inode:
1237 spin_unlock(&inode->i_lock);
1238
1239}
1240EXPORT_SYMBOL(__mark_inode_dirty);
1241
1242static void wait_sb_inodes(struct super_block *sb)
1243{
1244 struct inode *inode, *old_inode = NULL;
1245
1246 /*
1247 * We need to be protected against the filesystem going from
1248 * r/o to r/w or vice versa.
1249 */
1250 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1251
1252 spin_lock(&inode_sb_list_lock);
1253
1254 /*
1255 * Data integrity sync. Must wait for all pages under writeback,
1256 * because there may have been pages dirtied before our sync
1257 * call, but which had writeout started before we write it out.
1258 * In which case, the inode may not be on the dirty list, but
1259 * we still have to wait for that writeout.
1260 */
1261 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1262 struct address_space *mapping = inode->i_mapping;
1263
1264 spin_lock(&inode->i_lock);
1265 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1266 (mapping->nrpages == 0)) {
1267 spin_unlock(&inode->i_lock);
1268 continue;
1269 }
1270 __iget(inode);
1271 spin_unlock(&inode->i_lock);
1272 spin_unlock(&inode_sb_list_lock);
1273
1274 /*
1275 * We hold a reference to 'inode' so it couldn't have been
1276 * removed from s_inodes list while we dropped the
1277 * inode_sb_list_lock. We cannot iput the inode now as we can
1278 * be holding the last reference and we cannot iput it under
1279 * inode_sb_list_lock. So we keep the reference and iput it
1280 * later.
1281 */
1282 iput(old_inode);
1283 old_inode = inode;
1284
1285 filemap_fdatawait(mapping);
1286
1287 cond_resched();
1288
1289 spin_lock(&inode_sb_list_lock);
1290 }
1291 spin_unlock(&inode_sb_list_lock);
1292 iput(old_inode);
1293}
1294
1295/**
1296 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1297 * @sb: the superblock
1298 * @nr: the number of pages to write
1299 * @reason: reason why some writeback work initiated
1300 *
1301 * Start writeback on some inodes on this super_block. No guarantees are made
1302 * on how many (if any) will be written, and this function does not wait
1303 * for IO completion of submitted IO.
1304 */
1305void writeback_inodes_sb_nr(struct super_block *sb,
1306 unsigned long nr,
1307 enum wb_reason reason)
1308{
1309 DECLARE_COMPLETION_ONSTACK(done);
1310 struct wb_writeback_work work = {
1311 .sb = sb,
1312 .sync_mode = WB_SYNC_NONE,
1313 .tagged_writepages = 1,
1314 .done = &done,
1315 .nr_pages = nr,
1316 .reason = reason,
1317 };
1318
1319 if (sb->s_bdi == &noop_backing_dev_info)
1320 return;
1321 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1322 bdi_queue_work(sb->s_bdi, &work);
1323 wait_for_completion(&done);
1324}
1325EXPORT_SYMBOL(writeback_inodes_sb_nr);
1326
1327/**
1328 * writeback_inodes_sb - writeback dirty inodes from given super_block
1329 * @sb: the superblock
1330 * @reason: reason why some writeback work was initiated
1331 *
1332 * Start writeback on some inodes on this super_block. No guarantees are made
1333 * on how many (if any) will be written, and this function does not wait
1334 * for IO completion of submitted IO.
1335 */
1336void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1337{
1338 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1339}
1340EXPORT_SYMBOL(writeback_inodes_sb);
1341
1342/**
1343 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1344 * @sb: the superblock
1345 * @nr: the number of pages to write
1346 * @reason: the reason of writeback
1347 *
1348 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1349 * Returns 1 if writeback was started, 0 if not.
1350 */
1351int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1352 unsigned long nr,
1353 enum wb_reason reason)
1354{
1355 if (writeback_in_progress(sb->s_bdi))
1356 return 1;
1357
1358 if (!down_read_trylock(&sb->s_umount))
1359 return 0;
1360
1361 writeback_inodes_sb_nr(sb, nr, reason);
1362 up_read(&sb->s_umount);
1363 return 1;
1364}
1365EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1366
1367/**
1368 * try_to_writeback_inodes_sb - try to start writeback if none underway
1369 * @sb: the superblock
1370 * @reason: reason why some writeback work was initiated
1371 *
1372 * Implement by try_to_writeback_inodes_sb_nr()
1373 * Returns 1 if writeback was started, 0 if not.
1374 */
1375int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1376{
1377 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1378}
1379EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1380
1381/**
1382 * sync_inodes_sb - sync sb inode pages
1383 * @sb: the superblock
1384 *
1385 * This function writes and waits on any dirty inode belonging to this
1386 * super_block.
1387 */
1388void sync_inodes_sb(struct super_block *sb)
1389{
1390 DECLARE_COMPLETION_ONSTACK(done);
1391 struct wb_writeback_work work = {
1392 .sb = sb,
1393 .sync_mode = WB_SYNC_ALL,
1394 .nr_pages = LONG_MAX,
1395 .range_cyclic = 0,
1396 .done = &done,
1397 .reason = WB_REASON_SYNC,
1398 .for_sync = 1,
1399 };
1400
1401 /* Nothing to do? */
1402 if (sb->s_bdi == &noop_backing_dev_info)
1403 return;
1404 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1405
1406 bdi_queue_work(sb->s_bdi, &work);
1407 wait_for_completion(&done);
1408
1409 wait_sb_inodes(sb);
1410}
1411EXPORT_SYMBOL(sync_inodes_sb);
1412
1413/**
1414 * write_inode_now - write an inode to disk
1415 * @inode: inode to write to disk
1416 * @sync: whether the write should be synchronous or not
1417 *
1418 * This function commits an inode to disk immediately if it is dirty. This is
1419 * primarily needed by knfsd.
1420 *
1421 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1422 */
1423int write_inode_now(struct inode *inode, int sync)
1424{
1425 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1426 struct writeback_control wbc = {
1427 .nr_to_write = LONG_MAX,
1428 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1429 .range_start = 0,
1430 .range_end = LLONG_MAX,
1431 };
1432
1433 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1434 wbc.nr_to_write = 0;
1435
1436 might_sleep();
1437 return writeback_single_inode(inode, wb, &wbc);
1438}
1439EXPORT_SYMBOL(write_inode_now);
1440
1441/**
1442 * sync_inode - write an inode and its pages to disk.
1443 * @inode: the inode to sync
1444 * @wbc: controls the writeback mode
1445 *
1446 * sync_inode() will write an inode and its pages to disk. It will also
1447 * correctly update the inode on its superblock's dirty inode lists and will
1448 * update inode->i_state.
1449 *
1450 * The caller must have a ref on the inode.
1451 */
1452int sync_inode(struct inode *inode, struct writeback_control *wbc)
1453{
1454 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1455}
1456EXPORT_SYMBOL(sync_inode);
1457
1458/**
1459 * sync_inode_metadata - write an inode to disk
1460 * @inode: the inode to sync
1461 * @wait: wait for I/O to complete.
1462 *
1463 * Write an inode to disk and adjust its dirty state after completion.
1464 *
1465 * Note: only writes the actual inode, no associated data or other metadata.
1466 */
1467int sync_inode_metadata(struct inode *inode, int wait)
1468{
1469 struct writeback_control wbc = {
1470 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1471 .nr_to_write = 0, /* metadata-only */
1472 };
1473
1474 return sync_inode(inode, &wbc);
1475}
1476EXPORT_SYMBOL(sync_inode_metadata);