]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/inode.c
memcg: free memcg_caches slot on css offline
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
... / ...
CommitLineData
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include "internal.h"
22
23/*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54static unsigned int i_hash_mask __read_mostly;
55static unsigned int i_hash_shift __read_mostly;
56static struct hlist_head *inode_hashtable __read_mostly;
57static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61/*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65const struct address_space_operations empty_aops = {
66};
67EXPORT_SYMBOL(empty_aops);
68
69/*
70 * Statistics gathering..
71 */
72struct inodes_stat_t inodes_stat;
73
74static DEFINE_PER_CPU(unsigned long, nr_inodes);
75static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77static struct kmem_cache *inode_cachep __read_mostly;
78
79static long get_nr_inodes(void)
80{
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86}
87
88static inline long get_nr_inodes_unused(void)
89{
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95}
96
97long get_nr_dirty_inodes(void)
98{
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102}
103
104/*
105 * Handle nr_inode sysctl
106 */
107#ifdef CONFIG_SYSCTL
108int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110{
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114}
115#endif
116
117static int no_open(struct inode *inode, struct file *file)
118{
119 return -ENXIO;
120}
121
122/**
123 * inode_init_always - perform inode structure intialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130int inode_init_always(struct super_block *sb, struct inode *inode)
131{
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 i_uid_write(inode, 0);
145 i_gid_write(inode, 0);
146 atomic_set(&inode->i_writecount, 0);
147 inode->i_size = 0;
148 inode->i_blocks = 0;
149 inode->i_bytes = 0;
150 inode->i_generation = 0;
151 inode->i_pipe = NULL;
152 inode->i_bdev = NULL;
153 inode->i_cdev = NULL;
154 inode->i_rdev = 0;
155 inode->dirtied_when = 0;
156
157 if (security_inode_alloc(inode))
158 goto out;
159 spin_lock_init(&inode->i_lock);
160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161
162 mutex_init(&inode->i_mutex);
163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164
165 atomic_set(&inode->i_dio_count, 0);
166
167 mapping->a_ops = &empty_aops;
168 mapping->host = inode;
169 mapping->flags = 0;
170 atomic_set(&mapping->i_mmap_writable, 0);
171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 mapping->private_data = NULL;
173 mapping->backing_dev_info = &default_backing_dev_info;
174 mapping->writeback_index = 0;
175
176 /*
177 * If the block_device provides a backing_dev_info for client
178 * inodes then use that. Otherwise the inode share the bdev's
179 * backing_dev_info.
180 */
181 if (sb->s_bdev) {
182 struct backing_dev_info *bdi;
183
184 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
185 mapping->backing_dev_info = bdi;
186 }
187 inode->i_private = NULL;
188 inode->i_mapping = mapping;
189 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
190#ifdef CONFIG_FS_POSIX_ACL
191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192#endif
193
194#ifdef CONFIG_FSNOTIFY
195 inode->i_fsnotify_mask = 0;
196#endif
197 inode->i_flctx = NULL;
198 this_cpu_inc(nr_inodes);
199
200 return 0;
201out:
202 return -ENOMEM;
203}
204EXPORT_SYMBOL(inode_init_always);
205
206static struct inode *alloc_inode(struct super_block *sb)
207{
208 struct inode *inode;
209
210 if (sb->s_op->alloc_inode)
211 inode = sb->s_op->alloc_inode(sb);
212 else
213 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214
215 if (!inode)
216 return NULL;
217
218 if (unlikely(inode_init_always(sb, inode))) {
219 if (inode->i_sb->s_op->destroy_inode)
220 inode->i_sb->s_op->destroy_inode(inode);
221 else
222 kmem_cache_free(inode_cachep, inode);
223 return NULL;
224 }
225
226 return inode;
227}
228
229void free_inode_nonrcu(struct inode *inode)
230{
231 kmem_cache_free(inode_cachep, inode);
232}
233EXPORT_SYMBOL(free_inode_nonrcu);
234
235void __destroy_inode(struct inode *inode)
236{
237 BUG_ON(inode_has_buffers(inode));
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 locks_free_lock_context(inode->i_flctx);
241 if (!inode->i_nlink) {
242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 atomic_long_dec(&inode->i_sb->s_remove_count);
244 }
245
246#ifdef CONFIG_FS_POSIX_ACL
247 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
248 posix_acl_release(inode->i_acl);
249 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
250 posix_acl_release(inode->i_default_acl);
251#endif
252 this_cpu_dec(nr_inodes);
253}
254EXPORT_SYMBOL(__destroy_inode);
255
256static void i_callback(struct rcu_head *head)
257{
258 struct inode *inode = container_of(head, struct inode, i_rcu);
259 kmem_cache_free(inode_cachep, inode);
260}
261
262static void destroy_inode(struct inode *inode)
263{
264 BUG_ON(!list_empty(&inode->i_lru));
265 __destroy_inode(inode);
266 if (inode->i_sb->s_op->destroy_inode)
267 inode->i_sb->s_op->destroy_inode(inode);
268 else
269 call_rcu(&inode->i_rcu, i_callback);
270}
271
272/**
273 * drop_nlink - directly drop an inode's link count
274 * @inode: inode
275 *
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
281 * on the filesystem.
282 */
283void drop_nlink(struct inode *inode)
284{
285 WARN_ON(inode->i_nlink == 0);
286 inode->__i_nlink--;
287 if (!inode->i_nlink)
288 atomic_long_inc(&inode->i_sb->s_remove_count);
289}
290EXPORT_SYMBOL(drop_nlink);
291
292/**
293 * clear_nlink - directly zero an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
299 */
300void clear_nlink(struct inode *inode)
301{
302 if (inode->i_nlink) {
303 inode->__i_nlink = 0;
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306}
307EXPORT_SYMBOL(clear_nlink);
308
309/**
310 * set_nlink - directly set an inode's link count
311 * @inode: inode
312 * @nlink: new nlink (should be non-zero)
313 *
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
316 */
317void set_nlink(struct inode *inode, unsigned int nlink)
318{
319 if (!nlink) {
320 clear_nlink(inode);
321 } else {
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode->i_nlink == 0)
324 atomic_long_dec(&inode->i_sb->s_remove_count);
325
326 inode->__i_nlink = nlink;
327 }
328}
329EXPORT_SYMBOL(set_nlink);
330
331/**
332 * inc_nlink - directly increment an inode's link count
333 * @inode: inode
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
338 */
339void inc_nlink(struct inode *inode)
340{
341 if (unlikely(inode->i_nlink == 0)) {
342 WARN_ON(!(inode->i_state & I_LINKABLE));
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344 }
345
346 inode->__i_nlink++;
347}
348EXPORT_SYMBOL(inc_nlink);
349
350void address_space_init_once(struct address_space *mapping)
351{
352 memset(mapping, 0, sizeof(*mapping));
353 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
354 spin_lock_init(&mapping->tree_lock);
355 init_rwsem(&mapping->i_mmap_rwsem);
356 INIT_LIST_HEAD(&mapping->private_list);
357 spin_lock_init(&mapping->private_lock);
358 mapping->i_mmap = RB_ROOT;
359}
360EXPORT_SYMBOL(address_space_init_once);
361
362/*
363 * These are initializations that only need to be done
364 * once, because the fields are idempotent across use
365 * of the inode, so let the slab aware of that.
366 */
367void inode_init_once(struct inode *inode)
368{
369 memset(inode, 0, sizeof(*inode));
370 INIT_HLIST_NODE(&inode->i_hash);
371 INIT_LIST_HEAD(&inode->i_devices);
372 INIT_LIST_HEAD(&inode->i_wb_list);
373 INIT_LIST_HEAD(&inode->i_lru);
374 address_space_init_once(&inode->i_data);
375 i_size_ordered_init(inode);
376#ifdef CONFIG_FSNOTIFY
377 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
378#endif
379}
380EXPORT_SYMBOL(inode_init_once);
381
382static void init_once(void *foo)
383{
384 struct inode *inode = (struct inode *) foo;
385
386 inode_init_once(inode);
387}
388
389/*
390 * inode->i_lock must be held
391 */
392void __iget(struct inode *inode)
393{
394 atomic_inc(&inode->i_count);
395}
396
397/*
398 * get additional reference to inode; caller must already hold one.
399 */
400void ihold(struct inode *inode)
401{
402 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
403}
404EXPORT_SYMBOL(ihold);
405
406static void inode_lru_list_add(struct inode *inode)
407{
408 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
409 this_cpu_inc(nr_unused);
410}
411
412/*
413 * Add inode to LRU if needed (inode is unused and clean).
414 *
415 * Needs inode->i_lock held.
416 */
417void inode_add_lru(struct inode *inode)
418{
419 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
420 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
421 inode_lru_list_add(inode);
422}
423
424
425static void inode_lru_list_del(struct inode *inode)
426{
427
428 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 this_cpu_dec(nr_unused);
430}
431
432/**
433 * inode_sb_list_add - add inode to the superblock list of inodes
434 * @inode: inode to add
435 */
436void inode_sb_list_add(struct inode *inode)
437{
438 spin_lock(&inode_sb_list_lock);
439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 spin_unlock(&inode_sb_list_lock);
441}
442EXPORT_SYMBOL_GPL(inode_sb_list_add);
443
444static inline void inode_sb_list_del(struct inode *inode)
445{
446 if (!list_empty(&inode->i_sb_list)) {
447 spin_lock(&inode_sb_list_lock);
448 list_del_init(&inode->i_sb_list);
449 spin_unlock(&inode_sb_list_lock);
450 }
451}
452
453static unsigned long hash(struct super_block *sb, unsigned long hashval)
454{
455 unsigned long tmp;
456
457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 L1_CACHE_BYTES;
459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 return tmp & i_hash_mask;
461}
462
463/**
464 * __insert_inode_hash - hash an inode
465 * @inode: unhashed inode
466 * @hashval: unsigned long value used to locate this object in the
467 * inode_hashtable.
468 *
469 * Add an inode to the inode hash for this superblock.
470 */
471void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472{
473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474
475 spin_lock(&inode_hash_lock);
476 spin_lock(&inode->i_lock);
477 hlist_add_head(&inode->i_hash, b);
478 spin_unlock(&inode->i_lock);
479 spin_unlock(&inode_hash_lock);
480}
481EXPORT_SYMBOL(__insert_inode_hash);
482
483/**
484 * __remove_inode_hash - remove an inode from the hash
485 * @inode: inode to unhash
486 *
487 * Remove an inode from the superblock.
488 */
489void __remove_inode_hash(struct inode *inode)
490{
491 spin_lock(&inode_hash_lock);
492 spin_lock(&inode->i_lock);
493 hlist_del_init(&inode->i_hash);
494 spin_unlock(&inode->i_lock);
495 spin_unlock(&inode_hash_lock);
496}
497EXPORT_SYMBOL(__remove_inode_hash);
498
499void clear_inode(struct inode *inode)
500{
501 might_sleep();
502 /*
503 * We have to cycle tree_lock here because reclaim can be still in the
504 * process of removing the last page (in __delete_from_page_cache())
505 * and we must not free mapping under it.
506 */
507 spin_lock_irq(&inode->i_data.tree_lock);
508 BUG_ON(inode->i_data.nrpages);
509 BUG_ON(inode->i_data.nrshadows);
510 spin_unlock_irq(&inode->i_data.tree_lock);
511 BUG_ON(!list_empty(&inode->i_data.private_list));
512 BUG_ON(!(inode->i_state & I_FREEING));
513 BUG_ON(inode->i_state & I_CLEAR);
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
516}
517EXPORT_SYMBOL(clear_inode);
518
519/*
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
523 *
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
527 *
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
531 */
532static void evict(struct inode *inode)
533{
534 const struct super_operations *op = inode->i_sb->s_op;
535
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
538
539 if (!list_empty(&inode->i_wb_list))
540 inode_wb_list_del(inode);
541
542 inode_sb_list_del(inode);
543
544 /*
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
549 */
550 inode_wait_for_writeback(inode);
551
552 if (op->evict_inode) {
553 op->evict_inode(inode);
554 } else {
555 truncate_inode_pages_final(&inode->i_data);
556 clear_inode(inode);
557 }
558 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 bd_forget(inode);
560 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 cd_forget(inode);
562
563 remove_inode_hash(inode);
564
565 spin_lock(&inode->i_lock);
566 wake_up_bit(&inode->i_state, __I_NEW);
567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 spin_unlock(&inode->i_lock);
569
570 destroy_inode(inode);
571}
572
573/*
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
576 *
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
579 */
580static void dispose_list(struct list_head *head)
581{
582 while (!list_empty(head)) {
583 struct inode *inode;
584
585 inode = list_first_entry(head, struct inode, i_lru);
586 list_del_init(&inode->i_lru);
587
588 evict(inode);
589 }
590}
591
592/**
593 * evict_inodes - evict all evictable inodes for a superblock
594 * @sb: superblock to operate on
595 *
596 * Make sure that no inodes with zero refcount are retained. This is
597 * called by superblock shutdown after having MS_ACTIVE flag removed,
598 * so any inode reaching zero refcount during or after that call will
599 * be immediately evicted.
600 */
601void evict_inodes(struct super_block *sb)
602{
603 struct inode *inode, *next;
604 LIST_HEAD(dispose);
605
606 spin_lock(&inode_sb_list_lock);
607 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
608 if (atomic_read(&inode->i_count))
609 continue;
610
611 spin_lock(&inode->i_lock);
612 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
613 spin_unlock(&inode->i_lock);
614 continue;
615 }
616
617 inode->i_state |= I_FREEING;
618 inode_lru_list_del(inode);
619 spin_unlock(&inode->i_lock);
620 list_add(&inode->i_lru, &dispose);
621 }
622 spin_unlock(&inode_sb_list_lock);
623
624 dispose_list(&dispose);
625}
626
627/**
628 * invalidate_inodes - attempt to free all inodes on a superblock
629 * @sb: superblock to operate on
630 * @kill_dirty: flag to guide handling of dirty inodes
631 *
632 * Attempts to free all inodes for a given superblock. If there were any
633 * busy inodes return a non-zero value, else zero.
634 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
635 * them as busy.
636 */
637int invalidate_inodes(struct super_block *sb, bool kill_dirty)
638{
639 int busy = 0;
640 struct inode *inode, *next;
641 LIST_HEAD(dispose);
642
643 spin_lock(&inode_sb_list_lock);
644 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
645 spin_lock(&inode->i_lock);
646 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
647 spin_unlock(&inode->i_lock);
648 continue;
649 }
650 if (inode->i_state & I_DIRTY && !kill_dirty) {
651 spin_unlock(&inode->i_lock);
652 busy = 1;
653 continue;
654 }
655 if (atomic_read(&inode->i_count)) {
656 spin_unlock(&inode->i_lock);
657 busy = 1;
658 continue;
659 }
660
661 inode->i_state |= I_FREEING;
662 inode_lru_list_del(inode);
663 spin_unlock(&inode->i_lock);
664 list_add(&inode->i_lru, &dispose);
665 }
666 spin_unlock(&inode_sb_list_lock);
667
668 dispose_list(&dispose);
669
670 return busy;
671}
672
673/*
674 * Isolate the inode from the LRU in preparation for freeing it.
675 *
676 * Any inodes which are pinned purely because of attached pagecache have their
677 * pagecache removed. If the inode has metadata buffers attached to
678 * mapping->private_list then try to remove them.
679 *
680 * If the inode has the I_REFERENCED flag set, then it means that it has been
681 * used recently - the flag is set in iput_final(). When we encounter such an
682 * inode, clear the flag and move it to the back of the LRU so it gets another
683 * pass through the LRU before it gets reclaimed. This is necessary because of
684 * the fact we are doing lazy LRU updates to minimise lock contention so the
685 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
686 * with this flag set because they are the inodes that are out of order.
687 */
688static enum lru_status
689inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
690{
691 struct list_head *freeable = arg;
692 struct inode *inode = container_of(item, struct inode, i_lru);
693
694 /*
695 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
696 * If we fail to get the lock, just skip it.
697 */
698 if (!spin_trylock(&inode->i_lock))
699 return LRU_SKIP;
700
701 /*
702 * Referenced or dirty inodes are still in use. Give them another pass
703 * through the LRU as we canot reclaim them now.
704 */
705 if (atomic_read(&inode->i_count) ||
706 (inode->i_state & ~I_REFERENCED)) {
707 list_del_init(&inode->i_lru);
708 spin_unlock(&inode->i_lock);
709 this_cpu_dec(nr_unused);
710 return LRU_REMOVED;
711 }
712
713 /* recently referenced inodes get one more pass */
714 if (inode->i_state & I_REFERENCED) {
715 inode->i_state &= ~I_REFERENCED;
716 spin_unlock(&inode->i_lock);
717 return LRU_ROTATE;
718 }
719
720 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
721 __iget(inode);
722 spin_unlock(&inode->i_lock);
723 spin_unlock(lru_lock);
724 if (remove_inode_buffers(inode)) {
725 unsigned long reap;
726 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
727 if (current_is_kswapd())
728 __count_vm_events(KSWAPD_INODESTEAL, reap);
729 else
730 __count_vm_events(PGINODESTEAL, reap);
731 if (current->reclaim_state)
732 current->reclaim_state->reclaimed_slab += reap;
733 }
734 iput(inode);
735 spin_lock(lru_lock);
736 return LRU_RETRY;
737 }
738
739 WARN_ON(inode->i_state & I_NEW);
740 inode->i_state |= I_FREEING;
741 list_move(&inode->i_lru, freeable);
742 spin_unlock(&inode->i_lock);
743
744 this_cpu_dec(nr_unused);
745 return LRU_REMOVED;
746}
747
748/*
749 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
750 * This is called from the superblock shrinker function with a number of inodes
751 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
752 * then are freed outside inode_lock by dispose_list().
753 */
754long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
755{
756 LIST_HEAD(freeable);
757 long freed;
758
759 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
760 inode_lru_isolate, &freeable);
761 dispose_list(&freeable);
762 return freed;
763}
764
765static void __wait_on_freeing_inode(struct inode *inode);
766/*
767 * Called with the inode lock held.
768 */
769static struct inode *find_inode(struct super_block *sb,
770 struct hlist_head *head,
771 int (*test)(struct inode *, void *),
772 void *data)
773{
774 struct inode *inode = NULL;
775
776repeat:
777 hlist_for_each_entry(inode, head, i_hash) {
778 if (inode->i_sb != sb)
779 continue;
780 if (!test(inode, data))
781 continue;
782 spin_lock(&inode->i_lock);
783 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
784 __wait_on_freeing_inode(inode);
785 goto repeat;
786 }
787 __iget(inode);
788 spin_unlock(&inode->i_lock);
789 return inode;
790 }
791 return NULL;
792}
793
794/*
795 * find_inode_fast is the fast path version of find_inode, see the comment at
796 * iget_locked for details.
797 */
798static struct inode *find_inode_fast(struct super_block *sb,
799 struct hlist_head *head, unsigned long ino)
800{
801 struct inode *inode = NULL;
802
803repeat:
804 hlist_for_each_entry(inode, head, i_hash) {
805 if (inode->i_ino != ino)
806 continue;
807 if (inode->i_sb != sb)
808 continue;
809 spin_lock(&inode->i_lock);
810 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
811 __wait_on_freeing_inode(inode);
812 goto repeat;
813 }
814 __iget(inode);
815 spin_unlock(&inode->i_lock);
816 return inode;
817 }
818 return NULL;
819}
820
821/*
822 * Each cpu owns a range of LAST_INO_BATCH numbers.
823 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
824 * to renew the exhausted range.
825 *
826 * This does not significantly increase overflow rate because every CPU can
827 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
828 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
829 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
830 * overflow rate by 2x, which does not seem too significant.
831 *
832 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
833 * error if st_ino won't fit in target struct field. Use 32bit counter
834 * here to attempt to avoid that.
835 */
836#define LAST_INO_BATCH 1024
837static DEFINE_PER_CPU(unsigned int, last_ino);
838
839unsigned int get_next_ino(void)
840{
841 unsigned int *p = &get_cpu_var(last_ino);
842 unsigned int res = *p;
843
844#ifdef CONFIG_SMP
845 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
846 static atomic_t shared_last_ino;
847 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
848
849 res = next - LAST_INO_BATCH;
850 }
851#endif
852
853 *p = ++res;
854 put_cpu_var(last_ino);
855 return res;
856}
857EXPORT_SYMBOL(get_next_ino);
858
859/**
860 * new_inode_pseudo - obtain an inode
861 * @sb: superblock
862 *
863 * Allocates a new inode for given superblock.
864 * Inode wont be chained in superblock s_inodes list
865 * This means :
866 * - fs can't be unmount
867 * - quotas, fsnotify, writeback can't work
868 */
869struct inode *new_inode_pseudo(struct super_block *sb)
870{
871 struct inode *inode = alloc_inode(sb);
872
873 if (inode) {
874 spin_lock(&inode->i_lock);
875 inode->i_state = 0;
876 spin_unlock(&inode->i_lock);
877 INIT_LIST_HEAD(&inode->i_sb_list);
878 }
879 return inode;
880}
881
882/**
883 * new_inode - obtain an inode
884 * @sb: superblock
885 *
886 * Allocates a new inode for given superblock. The default gfp_mask
887 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
888 * If HIGHMEM pages are unsuitable or it is known that pages allocated
889 * for the page cache are not reclaimable or migratable,
890 * mapping_set_gfp_mask() must be called with suitable flags on the
891 * newly created inode's mapping
892 *
893 */
894struct inode *new_inode(struct super_block *sb)
895{
896 struct inode *inode;
897
898 spin_lock_prefetch(&inode_sb_list_lock);
899
900 inode = new_inode_pseudo(sb);
901 if (inode)
902 inode_sb_list_add(inode);
903 return inode;
904}
905EXPORT_SYMBOL(new_inode);
906
907#ifdef CONFIG_DEBUG_LOCK_ALLOC
908void lockdep_annotate_inode_mutex_key(struct inode *inode)
909{
910 if (S_ISDIR(inode->i_mode)) {
911 struct file_system_type *type = inode->i_sb->s_type;
912
913 /* Set new key only if filesystem hasn't already changed it */
914 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
915 /*
916 * ensure nobody is actually holding i_mutex
917 */
918 mutex_destroy(&inode->i_mutex);
919 mutex_init(&inode->i_mutex);
920 lockdep_set_class(&inode->i_mutex,
921 &type->i_mutex_dir_key);
922 }
923 }
924}
925EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
926#endif
927
928/**
929 * unlock_new_inode - clear the I_NEW state and wake up any waiters
930 * @inode: new inode to unlock
931 *
932 * Called when the inode is fully initialised to clear the new state of the
933 * inode and wake up anyone waiting for the inode to finish initialisation.
934 */
935void unlock_new_inode(struct inode *inode)
936{
937 lockdep_annotate_inode_mutex_key(inode);
938 spin_lock(&inode->i_lock);
939 WARN_ON(!(inode->i_state & I_NEW));
940 inode->i_state &= ~I_NEW;
941 smp_mb();
942 wake_up_bit(&inode->i_state, __I_NEW);
943 spin_unlock(&inode->i_lock);
944}
945EXPORT_SYMBOL(unlock_new_inode);
946
947/**
948 * lock_two_nondirectories - take two i_mutexes on non-directory objects
949 *
950 * Lock any non-NULL argument that is not a directory.
951 * Zero, one or two objects may be locked by this function.
952 *
953 * @inode1: first inode to lock
954 * @inode2: second inode to lock
955 */
956void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
957{
958 if (inode1 > inode2)
959 swap(inode1, inode2);
960
961 if (inode1 && !S_ISDIR(inode1->i_mode))
962 mutex_lock(&inode1->i_mutex);
963 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
964 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
965}
966EXPORT_SYMBOL(lock_two_nondirectories);
967
968/**
969 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
970 * @inode1: first inode to unlock
971 * @inode2: second inode to unlock
972 */
973void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
974{
975 if (inode1 && !S_ISDIR(inode1->i_mode))
976 mutex_unlock(&inode1->i_mutex);
977 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
978 mutex_unlock(&inode2->i_mutex);
979}
980EXPORT_SYMBOL(unlock_two_nondirectories);
981
982/**
983 * iget5_locked - obtain an inode from a mounted file system
984 * @sb: super block of file system
985 * @hashval: hash value (usually inode number) to get
986 * @test: callback used for comparisons between inodes
987 * @set: callback used to initialize a new struct inode
988 * @data: opaque data pointer to pass to @test and @set
989 *
990 * Search for the inode specified by @hashval and @data in the inode cache,
991 * and if present it is return it with an increased reference count. This is
992 * a generalized version of iget_locked() for file systems where the inode
993 * number is not sufficient for unique identification of an inode.
994 *
995 * If the inode is not in cache, allocate a new inode and return it locked,
996 * hashed, and with the I_NEW flag set. The file system gets to fill it in
997 * before unlocking it via unlock_new_inode().
998 *
999 * Note both @test and @set are called with the inode_hash_lock held, so can't
1000 * sleep.
1001 */
1002struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1003 int (*test)(struct inode *, void *),
1004 int (*set)(struct inode *, void *), void *data)
1005{
1006 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1007 struct inode *inode;
1008
1009 spin_lock(&inode_hash_lock);
1010 inode = find_inode(sb, head, test, data);
1011 spin_unlock(&inode_hash_lock);
1012
1013 if (inode) {
1014 wait_on_inode(inode);
1015 return inode;
1016 }
1017
1018 inode = alloc_inode(sb);
1019 if (inode) {
1020 struct inode *old;
1021
1022 spin_lock(&inode_hash_lock);
1023 /* We released the lock, so.. */
1024 old = find_inode(sb, head, test, data);
1025 if (!old) {
1026 if (set(inode, data))
1027 goto set_failed;
1028
1029 spin_lock(&inode->i_lock);
1030 inode->i_state = I_NEW;
1031 hlist_add_head(&inode->i_hash, head);
1032 spin_unlock(&inode->i_lock);
1033 inode_sb_list_add(inode);
1034 spin_unlock(&inode_hash_lock);
1035
1036 /* Return the locked inode with I_NEW set, the
1037 * caller is responsible for filling in the contents
1038 */
1039 return inode;
1040 }
1041
1042 /*
1043 * Uhhuh, somebody else created the same inode under
1044 * us. Use the old inode instead of the one we just
1045 * allocated.
1046 */
1047 spin_unlock(&inode_hash_lock);
1048 destroy_inode(inode);
1049 inode = old;
1050 wait_on_inode(inode);
1051 }
1052 return inode;
1053
1054set_failed:
1055 spin_unlock(&inode_hash_lock);
1056 destroy_inode(inode);
1057 return NULL;
1058}
1059EXPORT_SYMBOL(iget5_locked);
1060
1061/**
1062 * iget_locked - obtain an inode from a mounted file system
1063 * @sb: super block of file system
1064 * @ino: inode number to get
1065 *
1066 * Search for the inode specified by @ino in the inode cache and if present
1067 * return it with an increased reference count. This is for file systems
1068 * where the inode number is sufficient for unique identification of an inode.
1069 *
1070 * If the inode is not in cache, allocate a new inode and return it locked,
1071 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1072 * before unlocking it via unlock_new_inode().
1073 */
1074struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1075{
1076 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1077 struct inode *inode;
1078
1079 spin_lock(&inode_hash_lock);
1080 inode = find_inode_fast(sb, head, ino);
1081 spin_unlock(&inode_hash_lock);
1082 if (inode) {
1083 wait_on_inode(inode);
1084 return inode;
1085 }
1086
1087 inode = alloc_inode(sb);
1088 if (inode) {
1089 struct inode *old;
1090
1091 spin_lock(&inode_hash_lock);
1092 /* We released the lock, so.. */
1093 old = find_inode_fast(sb, head, ino);
1094 if (!old) {
1095 inode->i_ino = ino;
1096 spin_lock(&inode->i_lock);
1097 inode->i_state = I_NEW;
1098 hlist_add_head(&inode->i_hash, head);
1099 spin_unlock(&inode->i_lock);
1100 inode_sb_list_add(inode);
1101 spin_unlock(&inode_hash_lock);
1102
1103 /* Return the locked inode with I_NEW set, the
1104 * caller is responsible for filling in the contents
1105 */
1106 return inode;
1107 }
1108
1109 /*
1110 * Uhhuh, somebody else created the same inode under
1111 * us. Use the old inode instead of the one we just
1112 * allocated.
1113 */
1114 spin_unlock(&inode_hash_lock);
1115 destroy_inode(inode);
1116 inode = old;
1117 wait_on_inode(inode);
1118 }
1119 return inode;
1120}
1121EXPORT_SYMBOL(iget_locked);
1122
1123/*
1124 * search the inode cache for a matching inode number.
1125 * If we find one, then the inode number we are trying to
1126 * allocate is not unique and so we should not use it.
1127 *
1128 * Returns 1 if the inode number is unique, 0 if it is not.
1129 */
1130static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1131{
1132 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1133 struct inode *inode;
1134
1135 spin_lock(&inode_hash_lock);
1136 hlist_for_each_entry(inode, b, i_hash) {
1137 if (inode->i_ino == ino && inode->i_sb == sb) {
1138 spin_unlock(&inode_hash_lock);
1139 return 0;
1140 }
1141 }
1142 spin_unlock(&inode_hash_lock);
1143
1144 return 1;
1145}
1146
1147/**
1148 * iunique - get a unique inode number
1149 * @sb: superblock
1150 * @max_reserved: highest reserved inode number
1151 *
1152 * Obtain an inode number that is unique on the system for a given
1153 * superblock. This is used by file systems that have no natural
1154 * permanent inode numbering system. An inode number is returned that
1155 * is higher than the reserved limit but unique.
1156 *
1157 * BUGS:
1158 * With a large number of inodes live on the file system this function
1159 * currently becomes quite slow.
1160 */
1161ino_t iunique(struct super_block *sb, ino_t max_reserved)
1162{
1163 /*
1164 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1165 * error if st_ino won't fit in target struct field. Use 32bit counter
1166 * here to attempt to avoid that.
1167 */
1168 static DEFINE_SPINLOCK(iunique_lock);
1169 static unsigned int counter;
1170 ino_t res;
1171
1172 spin_lock(&iunique_lock);
1173 do {
1174 if (counter <= max_reserved)
1175 counter = max_reserved + 1;
1176 res = counter++;
1177 } while (!test_inode_iunique(sb, res));
1178 spin_unlock(&iunique_lock);
1179
1180 return res;
1181}
1182EXPORT_SYMBOL(iunique);
1183
1184struct inode *igrab(struct inode *inode)
1185{
1186 spin_lock(&inode->i_lock);
1187 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1188 __iget(inode);
1189 spin_unlock(&inode->i_lock);
1190 } else {
1191 spin_unlock(&inode->i_lock);
1192 /*
1193 * Handle the case where s_op->clear_inode is not been
1194 * called yet, and somebody is calling igrab
1195 * while the inode is getting freed.
1196 */
1197 inode = NULL;
1198 }
1199 return inode;
1200}
1201EXPORT_SYMBOL(igrab);
1202
1203/**
1204 * ilookup5_nowait - search for an inode in the inode cache
1205 * @sb: super block of file system to search
1206 * @hashval: hash value (usually inode number) to search for
1207 * @test: callback used for comparisons between inodes
1208 * @data: opaque data pointer to pass to @test
1209 *
1210 * Search for the inode specified by @hashval and @data in the inode cache.
1211 * If the inode is in the cache, the inode is returned with an incremented
1212 * reference count.
1213 *
1214 * Note: I_NEW is not waited upon so you have to be very careful what you do
1215 * with the returned inode. You probably should be using ilookup5() instead.
1216 *
1217 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1218 */
1219struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1220 int (*test)(struct inode *, void *), void *data)
1221{
1222 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1223 struct inode *inode;
1224
1225 spin_lock(&inode_hash_lock);
1226 inode = find_inode(sb, head, test, data);
1227 spin_unlock(&inode_hash_lock);
1228
1229 return inode;
1230}
1231EXPORT_SYMBOL(ilookup5_nowait);
1232
1233/**
1234 * ilookup5 - search for an inode in the inode cache
1235 * @sb: super block of file system to search
1236 * @hashval: hash value (usually inode number) to search for
1237 * @test: callback used for comparisons between inodes
1238 * @data: opaque data pointer to pass to @test
1239 *
1240 * Search for the inode specified by @hashval and @data in the inode cache,
1241 * and if the inode is in the cache, return the inode with an incremented
1242 * reference count. Waits on I_NEW before returning the inode.
1243 * returned with an incremented reference count.
1244 *
1245 * This is a generalized version of ilookup() for file systems where the
1246 * inode number is not sufficient for unique identification of an inode.
1247 *
1248 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1249 */
1250struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1251 int (*test)(struct inode *, void *), void *data)
1252{
1253 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1254
1255 if (inode)
1256 wait_on_inode(inode);
1257 return inode;
1258}
1259EXPORT_SYMBOL(ilookup5);
1260
1261/**
1262 * ilookup - search for an inode in the inode cache
1263 * @sb: super block of file system to search
1264 * @ino: inode number to search for
1265 *
1266 * Search for the inode @ino in the inode cache, and if the inode is in the
1267 * cache, the inode is returned with an incremented reference count.
1268 */
1269struct inode *ilookup(struct super_block *sb, unsigned long ino)
1270{
1271 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1272 struct inode *inode;
1273
1274 spin_lock(&inode_hash_lock);
1275 inode = find_inode_fast(sb, head, ino);
1276 spin_unlock(&inode_hash_lock);
1277
1278 if (inode)
1279 wait_on_inode(inode);
1280 return inode;
1281}
1282EXPORT_SYMBOL(ilookup);
1283
1284int insert_inode_locked(struct inode *inode)
1285{
1286 struct super_block *sb = inode->i_sb;
1287 ino_t ino = inode->i_ino;
1288 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1289
1290 while (1) {
1291 struct inode *old = NULL;
1292 spin_lock(&inode_hash_lock);
1293 hlist_for_each_entry(old, head, i_hash) {
1294 if (old->i_ino != ino)
1295 continue;
1296 if (old->i_sb != sb)
1297 continue;
1298 spin_lock(&old->i_lock);
1299 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1300 spin_unlock(&old->i_lock);
1301 continue;
1302 }
1303 break;
1304 }
1305 if (likely(!old)) {
1306 spin_lock(&inode->i_lock);
1307 inode->i_state |= I_NEW;
1308 hlist_add_head(&inode->i_hash, head);
1309 spin_unlock(&inode->i_lock);
1310 spin_unlock(&inode_hash_lock);
1311 return 0;
1312 }
1313 __iget(old);
1314 spin_unlock(&old->i_lock);
1315 spin_unlock(&inode_hash_lock);
1316 wait_on_inode(old);
1317 if (unlikely(!inode_unhashed(old))) {
1318 iput(old);
1319 return -EBUSY;
1320 }
1321 iput(old);
1322 }
1323}
1324EXPORT_SYMBOL(insert_inode_locked);
1325
1326int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1327 int (*test)(struct inode *, void *), void *data)
1328{
1329 struct super_block *sb = inode->i_sb;
1330 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1331
1332 while (1) {
1333 struct inode *old = NULL;
1334
1335 spin_lock(&inode_hash_lock);
1336 hlist_for_each_entry(old, head, i_hash) {
1337 if (old->i_sb != sb)
1338 continue;
1339 if (!test(old, data))
1340 continue;
1341 spin_lock(&old->i_lock);
1342 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1343 spin_unlock(&old->i_lock);
1344 continue;
1345 }
1346 break;
1347 }
1348 if (likely(!old)) {
1349 spin_lock(&inode->i_lock);
1350 inode->i_state |= I_NEW;
1351 hlist_add_head(&inode->i_hash, head);
1352 spin_unlock(&inode->i_lock);
1353 spin_unlock(&inode_hash_lock);
1354 return 0;
1355 }
1356 __iget(old);
1357 spin_unlock(&old->i_lock);
1358 spin_unlock(&inode_hash_lock);
1359 wait_on_inode(old);
1360 if (unlikely(!inode_unhashed(old))) {
1361 iput(old);
1362 return -EBUSY;
1363 }
1364 iput(old);
1365 }
1366}
1367EXPORT_SYMBOL(insert_inode_locked4);
1368
1369
1370int generic_delete_inode(struct inode *inode)
1371{
1372 return 1;
1373}
1374EXPORT_SYMBOL(generic_delete_inode);
1375
1376/*
1377 * Called when we're dropping the last reference
1378 * to an inode.
1379 *
1380 * Call the FS "drop_inode()" function, defaulting to
1381 * the legacy UNIX filesystem behaviour. If it tells
1382 * us to evict inode, do so. Otherwise, retain inode
1383 * in cache if fs is alive, sync and evict if fs is
1384 * shutting down.
1385 */
1386static void iput_final(struct inode *inode)
1387{
1388 struct super_block *sb = inode->i_sb;
1389 const struct super_operations *op = inode->i_sb->s_op;
1390 int drop;
1391
1392 WARN_ON(inode->i_state & I_NEW);
1393
1394 if (op->drop_inode)
1395 drop = op->drop_inode(inode);
1396 else
1397 drop = generic_drop_inode(inode);
1398
1399 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1400 inode->i_state |= I_REFERENCED;
1401 inode_add_lru(inode);
1402 spin_unlock(&inode->i_lock);
1403 return;
1404 }
1405
1406 if (!drop) {
1407 inode->i_state |= I_WILL_FREE;
1408 spin_unlock(&inode->i_lock);
1409 write_inode_now(inode, 1);
1410 spin_lock(&inode->i_lock);
1411 WARN_ON(inode->i_state & I_NEW);
1412 inode->i_state &= ~I_WILL_FREE;
1413 }
1414
1415 inode->i_state |= I_FREEING;
1416 if (!list_empty(&inode->i_lru))
1417 inode_lru_list_del(inode);
1418 spin_unlock(&inode->i_lock);
1419
1420 evict(inode);
1421}
1422
1423/**
1424 * iput - put an inode
1425 * @inode: inode to put
1426 *
1427 * Puts an inode, dropping its usage count. If the inode use count hits
1428 * zero, the inode is then freed and may also be destroyed.
1429 *
1430 * Consequently, iput() can sleep.
1431 */
1432void iput(struct inode *inode)
1433{
1434 if (inode) {
1435 BUG_ON(inode->i_state & I_CLEAR);
1436
1437 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1438 iput_final(inode);
1439 }
1440}
1441EXPORT_SYMBOL(iput);
1442
1443/**
1444 * bmap - find a block number in a file
1445 * @inode: inode of file
1446 * @block: block to find
1447 *
1448 * Returns the block number on the device holding the inode that
1449 * is the disk block number for the block of the file requested.
1450 * That is, asked for block 4 of inode 1 the function will return the
1451 * disk block relative to the disk start that holds that block of the
1452 * file.
1453 */
1454sector_t bmap(struct inode *inode, sector_t block)
1455{
1456 sector_t res = 0;
1457 if (inode->i_mapping->a_ops->bmap)
1458 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1459 return res;
1460}
1461EXPORT_SYMBOL(bmap);
1462
1463/*
1464 * With relative atime, only update atime if the previous atime is
1465 * earlier than either the ctime or mtime or if at least a day has
1466 * passed since the last atime update.
1467 */
1468static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1469 struct timespec now)
1470{
1471
1472 if (!(mnt->mnt_flags & MNT_RELATIME))
1473 return 1;
1474 /*
1475 * Is mtime younger than atime? If yes, update atime:
1476 */
1477 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1478 return 1;
1479 /*
1480 * Is ctime younger than atime? If yes, update atime:
1481 */
1482 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1483 return 1;
1484
1485 /*
1486 * Is the previous atime value older than a day? If yes,
1487 * update atime:
1488 */
1489 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1490 return 1;
1491 /*
1492 * Good, we can skip the atime update:
1493 */
1494 return 0;
1495}
1496
1497/*
1498 * This does the actual work of updating an inodes time or version. Must have
1499 * had called mnt_want_write() before calling this.
1500 */
1501static int update_time(struct inode *inode, struct timespec *time, int flags)
1502{
1503 if (inode->i_op->update_time)
1504 return inode->i_op->update_time(inode, time, flags);
1505
1506 if (flags & S_ATIME)
1507 inode->i_atime = *time;
1508 if (flags & S_VERSION)
1509 inode_inc_iversion(inode);
1510 if (flags & S_CTIME)
1511 inode->i_ctime = *time;
1512 if (flags & S_MTIME)
1513 inode->i_mtime = *time;
1514 mark_inode_dirty_sync(inode);
1515 return 0;
1516}
1517
1518/**
1519 * touch_atime - update the access time
1520 * @path: the &struct path to update
1521 *
1522 * Update the accessed time on an inode and mark it for writeback.
1523 * This function automatically handles read only file systems and media,
1524 * as well as the "noatime" flag and inode specific "noatime" markers.
1525 */
1526void touch_atime(const struct path *path)
1527{
1528 struct vfsmount *mnt = path->mnt;
1529 struct inode *inode = path->dentry->d_inode;
1530 struct timespec now;
1531
1532 if (inode->i_flags & S_NOATIME)
1533 return;
1534 if (IS_NOATIME(inode))
1535 return;
1536 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1537 return;
1538
1539 if (mnt->mnt_flags & MNT_NOATIME)
1540 return;
1541 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1542 return;
1543
1544 now = current_fs_time(inode->i_sb);
1545
1546 if (!relatime_need_update(mnt, inode, now))
1547 return;
1548
1549 if (timespec_equal(&inode->i_atime, &now))
1550 return;
1551
1552 if (!sb_start_write_trylock(inode->i_sb))
1553 return;
1554
1555 if (__mnt_want_write(mnt))
1556 goto skip_update;
1557 /*
1558 * File systems can error out when updating inodes if they need to
1559 * allocate new space to modify an inode (such is the case for
1560 * Btrfs), but since we touch atime while walking down the path we
1561 * really don't care if we failed to update the atime of the file,
1562 * so just ignore the return value.
1563 * We may also fail on filesystems that have the ability to make parts
1564 * of the fs read only, e.g. subvolumes in Btrfs.
1565 */
1566 update_time(inode, &now, S_ATIME);
1567 __mnt_drop_write(mnt);
1568skip_update:
1569 sb_end_write(inode->i_sb);
1570}
1571EXPORT_SYMBOL(touch_atime);
1572
1573/*
1574 * The logic we want is
1575 *
1576 * if suid or (sgid and xgrp)
1577 * remove privs
1578 */
1579int should_remove_suid(struct dentry *dentry)
1580{
1581 umode_t mode = dentry->d_inode->i_mode;
1582 int kill = 0;
1583
1584 /* suid always must be killed */
1585 if (unlikely(mode & S_ISUID))
1586 kill = ATTR_KILL_SUID;
1587
1588 /*
1589 * sgid without any exec bits is just a mandatory locking mark; leave
1590 * it alone. If some exec bits are set, it's a real sgid; kill it.
1591 */
1592 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1593 kill |= ATTR_KILL_SGID;
1594
1595 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1596 return kill;
1597
1598 return 0;
1599}
1600EXPORT_SYMBOL(should_remove_suid);
1601
1602static int __remove_suid(struct dentry *dentry, int kill)
1603{
1604 struct iattr newattrs;
1605
1606 newattrs.ia_valid = ATTR_FORCE | kill;
1607 /*
1608 * Note we call this on write, so notify_change will not
1609 * encounter any conflicting delegations:
1610 */
1611 return notify_change(dentry, &newattrs, NULL);
1612}
1613
1614int file_remove_suid(struct file *file)
1615{
1616 struct dentry *dentry = file->f_path.dentry;
1617 struct inode *inode = dentry->d_inode;
1618 int killsuid;
1619 int killpriv;
1620 int error = 0;
1621
1622 /* Fast path for nothing security related */
1623 if (IS_NOSEC(inode))
1624 return 0;
1625
1626 killsuid = should_remove_suid(dentry);
1627 killpriv = security_inode_need_killpriv(dentry);
1628
1629 if (killpriv < 0)
1630 return killpriv;
1631 if (killpriv)
1632 error = security_inode_killpriv(dentry);
1633 if (!error && killsuid)
1634 error = __remove_suid(dentry, killsuid);
1635 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1636 inode->i_flags |= S_NOSEC;
1637
1638 return error;
1639}
1640EXPORT_SYMBOL(file_remove_suid);
1641
1642/**
1643 * file_update_time - update mtime and ctime time
1644 * @file: file accessed
1645 *
1646 * Update the mtime and ctime members of an inode and mark the inode
1647 * for writeback. Note that this function is meant exclusively for
1648 * usage in the file write path of filesystems, and filesystems may
1649 * choose to explicitly ignore update via this function with the
1650 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1651 * timestamps are handled by the server. This can return an error for
1652 * file systems who need to allocate space in order to update an inode.
1653 */
1654
1655int file_update_time(struct file *file)
1656{
1657 struct inode *inode = file_inode(file);
1658 struct timespec now;
1659 int sync_it = 0;
1660 int ret;
1661
1662 /* First try to exhaust all avenues to not sync */
1663 if (IS_NOCMTIME(inode))
1664 return 0;
1665
1666 now = current_fs_time(inode->i_sb);
1667 if (!timespec_equal(&inode->i_mtime, &now))
1668 sync_it = S_MTIME;
1669
1670 if (!timespec_equal(&inode->i_ctime, &now))
1671 sync_it |= S_CTIME;
1672
1673 if (IS_I_VERSION(inode))
1674 sync_it |= S_VERSION;
1675
1676 if (!sync_it)
1677 return 0;
1678
1679 /* Finally allowed to write? Takes lock. */
1680 if (__mnt_want_write_file(file))
1681 return 0;
1682
1683 ret = update_time(inode, &now, sync_it);
1684 __mnt_drop_write_file(file);
1685
1686 return ret;
1687}
1688EXPORT_SYMBOL(file_update_time);
1689
1690int inode_needs_sync(struct inode *inode)
1691{
1692 if (IS_SYNC(inode))
1693 return 1;
1694 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1695 return 1;
1696 return 0;
1697}
1698EXPORT_SYMBOL(inode_needs_sync);
1699
1700/*
1701 * If we try to find an inode in the inode hash while it is being
1702 * deleted, we have to wait until the filesystem completes its
1703 * deletion before reporting that it isn't found. This function waits
1704 * until the deletion _might_ have completed. Callers are responsible
1705 * to recheck inode state.
1706 *
1707 * It doesn't matter if I_NEW is not set initially, a call to
1708 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1709 * will DTRT.
1710 */
1711static void __wait_on_freeing_inode(struct inode *inode)
1712{
1713 wait_queue_head_t *wq;
1714 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1715 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1716 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1717 spin_unlock(&inode->i_lock);
1718 spin_unlock(&inode_hash_lock);
1719 schedule();
1720 finish_wait(wq, &wait.wait);
1721 spin_lock(&inode_hash_lock);
1722}
1723
1724static __initdata unsigned long ihash_entries;
1725static int __init set_ihash_entries(char *str)
1726{
1727 if (!str)
1728 return 0;
1729 ihash_entries = simple_strtoul(str, &str, 0);
1730 return 1;
1731}
1732__setup("ihash_entries=", set_ihash_entries);
1733
1734/*
1735 * Initialize the waitqueues and inode hash table.
1736 */
1737void __init inode_init_early(void)
1738{
1739 unsigned int loop;
1740
1741 /* If hashes are distributed across NUMA nodes, defer
1742 * hash allocation until vmalloc space is available.
1743 */
1744 if (hashdist)
1745 return;
1746
1747 inode_hashtable =
1748 alloc_large_system_hash("Inode-cache",
1749 sizeof(struct hlist_head),
1750 ihash_entries,
1751 14,
1752 HASH_EARLY,
1753 &i_hash_shift,
1754 &i_hash_mask,
1755 0,
1756 0);
1757
1758 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1759 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1760}
1761
1762void __init inode_init(void)
1763{
1764 unsigned int loop;
1765
1766 /* inode slab cache */
1767 inode_cachep = kmem_cache_create("inode_cache",
1768 sizeof(struct inode),
1769 0,
1770 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1771 SLAB_MEM_SPREAD),
1772 init_once);
1773
1774 /* Hash may have been set up in inode_init_early */
1775 if (!hashdist)
1776 return;
1777
1778 inode_hashtable =
1779 alloc_large_system_hash("Inode-cache",
1780 sizeof(struct hlist_head),
1781 ihash_entries,
1782 14,
1783 0,
1784 &i_hash_shift,
1785 &i_hash_mask,
1786 0,
1787 0);
1788
1789 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1790 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1791}
1792
1793void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1794{
1795 inode->i_mode = mode;
1796 if (S_ISCHR(mode)) {
1797 inode->i_fop = &def_chr_fops;
1798 inode->i_rdev = rdev;
1799 } else if (S_ISBLK(mode)) {
1800 inode->i_fop = &def_blk_fops;
1801 inode->i_rdev = rdev;
1802 } else if (S_ISFIFO(mode))
1803 inode->i_fop = &pipefifo_fops;
1804 else if (S_ISSOCK(mode))
1805 ; /* leave it no_open_fops */
1806 else
1807 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1808 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1809 inode->i_ino);
1810}
1811EXPORT_SYMBOL(init_special_inode);
1812
1813/**
1814 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1815 * @inode: New inode
1816 * @dir: Directory inode
1817 * @mode: mode of the new inode
1818 */
1819void inode_init_owner(struct inode *inode, const struct inode *dir,
1820 umode_t mode)
1821{
1822 inode->i_uid = current_fsuid();
1823 if (dir && dir->i_mode & S_ISGID) {
1824 inode->i_gid = dir->i_gid;
1825 if (S_ISDIR(mode))
1826 mode |= S_ISGID;
1827 } else
1828 inode->i_gid = current_fsgid();
1829 inode->i_mode = mode;
1830}
1831EXPORT_SYMBOL(inode_init_owner);
1832
1833/**
1834 * inode_owner_or_capable - check current task permissions to inode
1835 * @inode: inode being checked
1836 *
1837 * Return true if current either has CAP_FOWNER in a namespace with the
1838 * inode owner uid mapped, or owns the file.
1839 */
1840bool inode_owner_or_capable(const struct inode *inode)
1841{
1842 struct user_namespace *ns;
1843
1844 if (uid_eq(current_fsuid(), inode->i_uid))
1845 return true;
1846
1847 ns = current_user_ns();
1848 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1849 return true;
1850 return false;
1851}
1852EXPORT_SYMBOL(inode_owner_or_capable);
1853
1854/*
1855 * Direct i/o helper functions
1856 */
1857static void __inode_dio_wait(struct inode *inode)
1858{
1859 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1860 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1861
1862 do {
1863 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1864 if (atomic_read(&inode->i_dio_count))
1865 schedule();
1866 } while (atomic_read(&inode->i_dio_count));
1867 finish_wait(wq, &q.wait);
1868}
1869
1870/**
1871 * inode_dio_wait - wait for outstanding DIO requests to finish
1872 * @inode: inode to wait for
1873 *
1874 * Waits for all pending direct I/O requests to finish so that we can
1875 * proceed with a truncate or equivalent operation.
1876 *
1877 * Must be called under a lock that serializes taking new references
1878 * to i_dio_count, usually by inode->i_mutex.
1879 */
1880void inode_dio_wait(struct inode *inode)
1881{
1882 if (atomic_read(&inode->i_dio_count))
1883 __inode_dio_wait(inode);
1884}
1885EXPORT_SYMBOL(inode_dio_wait);
1886
1887/*
1888 * inode_dio_done - signal finish of a direct I/O requests
1889 * @inode: inode the direct I/O happens on
1890 *
1891 * This is called once we've finished processing a direct I/O request,
1892 * and is used to wake up callers waiting for direct I/O to be quiesced.
1893 */
1894void inode_dio_done(struct inode *inode)
1895{
1896 if (atomic_dec_and_test(&inode->i_dio_count))
1897 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1898}
1899EXPORT_SYMBOL(inode_dio_done);
1900
1901/*
1902 * inode_set_flags - atomically set some inode flags
1903 *
1904 * Note: the caller should be holding i_mutex, or else be sure that
1905 * they have exclusive access to the inode structure (i.e., while the
1906 * inode is being instantiated). The reason for the cmpxchg() loop
1907 * --- which wouldn't be necessary if all code paths which modify
1908 * i_flags actually followed this rule, is that there is at least one
1909 * code path which doesn't today --- for example,
1910 * __generic_file_aio_write() calls file_remove_suid() without holding
1911 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1912 *
1913 * In the long run, i_mutex is overkill, and we should probably look
1914 * at using the i_lock spinlock to protect i_flags, and then make sure
1915 * it is so documented in include/linux/fs.h and that all code follows
1916 * the locking convention!!
1917 */
1918void inode_set_flags(struct inode *inode, unsigned int flags,
1919 unsigned int mask)
1920{
1921 unsigned int old_flags, new_flags;
1922
1923 WARN_ON_ONCE(flags & ~mask);
1924 do {
1925 old_flags = ACCESS_ONCE(inode->i_flags);
1926 new_flags = (old_flags & ~mask) | flags;
1927 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1928 new_flags) != old_flags));
1929}
1930EXPORT_SYMBOL(inode_set_flags);