]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/kernfs/dir.c
mm/util: add kstrdup_const
[mirror_ubuntu-zesty-kernel.git] / fs / kernfs / dir.c
... / ...
CommitLineData
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/sched.h>
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
21DEFINE_MUTEX(kernfs_mutex);
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49{
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92}
93
94/**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
99 *
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
104 */
105char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106{
107 unsigned long flags;
108 char *p;
109
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
114}
115EXPORT_SYMBOL_GPL(kernfs_path);
116
117/**
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
120 *
121 * This function can be called from any context.
122 */
123void pr_cont_kernfs_name(struct kernfs_node *kn)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
128
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
131
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133}
134
135/**
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
138 *
139 * This function can be called from any context.
140 */
141void pr_cont_kernfs_path(struct kernfs_node *kn)
142{
143 unsigned long flags;
144 char *p;
145
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
147
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
161 *
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
164 */
165struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166{
167 struct kernfs_node *parent;
168 unsigned long flags;
169
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174
175 return parent;
176}
177
178/**
179 * kernfs_name_hash
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
182 *
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
184 */
185static unsigned int kernfs_name_hash(const char *name, const void *ns)
186{
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 if (hash < 2)
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
199}
200
201static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
203{
204 if (hash < kn->hash)
205 return -1;
206 if (hash > kn->hash)
207 return 1;
208 if (ns < kn->ns)
209 return -1;
210 if (ns > kn->ns)
211 return 1;
212 return strcmp(name, kn->name);
213}
214
215static int kernfs_sd_compare(const struct kernfs_node *left,
216 const struct kernfs_node *right)
217{
218 return kernfs_name_compare(left->hash, left->name, left->ns, right);
219}
220
221/**
222 * kernfs_link_sibling - link kernfs_node into sibling rbtree
223 * @kn: kernfs_node of interest
224 *
225 * Link @kn into its sibling rbtree which starts from
226 * @kn->parent->dir.children.
227 *
228 * Locking:
229 * mutex_lock(kernfs_mutex)
230 *
231 * RETURNS:
232 * 0 on susccess -EEXIST on failure.
233 */
234static int kernfs_link_sibling(struct kernfs_node *kn)
235{
236 struct rb_node **node = &kn->parent->dir.children.rb_node;
237 struct rb_node *parent = NULL;
238
239 while (*node) {
240 struct kernfs_node *pos;
241 int result;
242
243 pos = rb_to_kn(*node);
244 parent = *node;
245 result = kernfs_sd_compare(kn, pos);
246 if (result < 0)
247 node = &pos->rb.rb_left;
248 else if (result > 0)
249 node = &pos->rb.rb_right;
250 else
251 return -EEXIST;
252 }
253
254 /* add new node and rebalance the tree */
255 rb_link_node(&kn->rb, parent, node);
256 rb_insert_color(&kn->rb, &kn->parent->dir.children);
257
258 /* successfully added, account subdir number */
259 if (kernfs_type(kn) == KERNFS_DIR)
260 kn->parent->dir.subdirs++;
261
262 return 0;
263}
264
265/**
266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
267 * @kn: kernfs_node of interest
268 *
269 * Try to unlink @kn from its sibling rbtree which starts from
270 * kn->parent->dir.children. Returns %true if @kn was actually
271 * removed, %false if @kn wasn't on the rbtree.
272 *
273 * Locking:
274 * mutex_lock(kernfs_mutex)
275 */
276static bool kernfs_unlink_sibling(struct kernfs_node *kn)
277{
278 if (RB_EMPTY_NODE(&kn->rb))
279 return false;
280
281 if (kernfs_type(kn) == KERNFS_DIR)
282 kn->parent->dir.subdirs--;
283
284 rb_erase(&kn->rb, &kn->parent->dir.children);
285 RB_CLEAR_NODE(&kn->rb);
286 return true;
287}
288
289/**
290 * kernfs_get_active - get an active reference to kernfs_node
291 * @kn: kernfs_node to get an active reference to
292 *
293 * Get an active reference of @kn. This function is noop if @kn
294 * is NULL.
295 *
296 * RETURNS:
297 * Pointer to @kn on success, NULL on failure.
298 */
299struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
300{
301 if (unlikely(!kn))
302 return NULL;
303
304 if (!atomic_inc_unless_negative(&kn->active))
305 return NULL;
306
307 if (kernfs_lockdep(kn))
308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
309 return kn;
310}
311
312/**
313 * kernfs_put_active - put an active reference to kernfs_node
314 * @kn: kernfs_node to put an active reference to
315 *
316 * Put an active reference to @kn. This function is noop if @kn
317 * is NULL.
318 */
319void kernfs_put_active(struct kernfs_node *kn)
320{
321 struct kernfs_root *root = kernfs_root(kn);
322 int v;
323
324 if (unlikely(!kn))
325 return;
326
327 if (kernfs_lockdep(kn))
328 rwsem_release(&kn->dep_map, 1, _RET_IP_);
329 v = atomic_dec_return(&kn->active);
330 if (likely(v != KN_DEACTIVATED_BIAS))
331 return;
332
333 wake_up_all(&root->deactivate_waitq);
334}
335
336/**
337 * kernfs_drain - drain kernfs_node
338 * @kn: kernfs_node to drain
339 *
340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
341 * removers may invoke this function concurrently on @kn and all will
342 * return after draining is complete.
343 */
344static void kernfs_drain(struct kernfs_node *kn)
345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
346{
347 struct kernfs_root *root = kernfs_root(kn);
348
349 lockdep_assert_held(&kernfs_mutex);
350 WARN_ON_ONCE(kernfs_active(kn));
351
352 mutex_unlock(&kernfs_mutex);
353
354 if (kernfs_lockdep(kn)) {
355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
357 lock_contended(&kn->dep_map, _RET_IP_);
358 }
359
360 /* but everyone should wait for draining */
361 wait_event(root->deactivate_waitq,
362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
363
364 if (kernfs_lockdep(kn)) {
365 lock_acquired(&kn->dep_map, _RET_IP_);
366 rwsem_release(&kn->dep_map, 1, _RET_IP_);
367 }
368
369 kernfs_unmap_bin_file(kn);
370
371 mutex_lock(&kernfs_mutex);
372}
373
374/**
375 * kernfs_get - get a reference count on a kernfs_node
376 * @kn: the target kernfs_node
377 */
378void kernfs_get(struct kernfs_node *kn)
379{
380 if (kn) {
381 WARN_ON(!atomic_read(&kn->count));
382 atomic_inc(&kn->count);
383 }
384}
385EXPORT_SYMBOL_GPL(kernfs_get);
386
387/**
388 * kernfs_put - put a reference count on a kernfs_node
389 * @kn: the target kernfs_node
390 *
391 * Put a reference count of @kn and destroy it if it reached zero.
392 */
393void kernfs_put(struct kernfs_node *kn)
394{
395 struct kernfs_node *parent;
396 struct kernfs_root *root;
397
398 if (!kn || !atomic_dec_and_test(&kn->count))
399 return;
400 root = kernfs_root(kn);
401 repeat:
402 /*
403 * Moving/renaming is always done while holding reference.
404 * kn->parent won't change beneath us.
405 */
406 parent = kn->parent;
407
408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
410 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
411
412 if (kernfs_type(kn) == KERNFS_LINK)
413 kernfs_put(kn->symlink.target_kn);
414 if (!(kn->flags & KERNFS_STATIC_NAME))
415 kfree(kn->name);
416 if (kn->iattr) {
417 if (kn->iattr->ia_secdata)
418 security_release_secctx(kn->iattr->ia_secdata,
419 kn->iattr->ia_secdata_len);
420 simple_xattrs_free(&kn->iattr->xattrs);
421 }
422 kfree(kn->iattr);
423 ida_simple_remove(&root->ino_ida, kn->ino);
424 kmem_cache_free(kernfs_node_cache, kn);
425
426 kn = parent;
427 if (kn) {
428 if (atomic_dec_and_test(&kn->count))
429 goto repeat;
430 } else {
431 /* just released the root kn, free @root too */
432 ida_destroy(&root->ino_ida);
433 kfree(root);
434 }
435}
436EXPORT_SYMBOL_GPL(kernfs_put);
437
438static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
439{
440 struct kernfs_node *kn;
441
442 if (flags & LOOKUP_RCU)
443 return -ECHILD;
444
445 /* Always perform fresh lookup for negatives */
446 if (!dentry->d_inode)
447 goto out_bad_unlocked;
448
449 kn = dentry->d_fsdata;
450 mutex_lock(&kernfs_mutex);
451
452 /* The kernfs node has been deactivated */
453 if (!kernfs_active(kn))
454 goto out_bad;
455
456 /* The kernfs node has been moved? */
457 if (dentry->d_parent->d_fsdata != kn->parent)
458 goto out_bad;
459
460 /* The kernfs node has been renamed */
461 if (strcmp(dentry->d_name.name, kn->name) != 0)
462 goto out_bad;
463
464 /* The kernfs node has been moved to a different namespace */
465 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
466 kernfs_info(dentry->d_sb)->ns != kn->ns)
467 goto out_bad;
468
469 mutex_unlock(&kernfs_mutex);
470 return 1;
471out_bad:
472 mutex_unlock(&kernfs_mutex);
473out_bad_unlocked:
474 return 0;
475}
476
477static void kernfs_dop_release(struct dentry *dentry)
478{
479 kernfs_put(dentry->d_fsdata);
480}
481
482const struct dentry_operations kernfs_dops = {
483 .d_revalidate = kernfs_dop_revalidate,
484 .d_release = kernfs_dop_release,
485};
486
487/**
488 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
489 * @dentry: the dentry in question
490 *
491 * Return the kernfs_node associated with @dentry. If @dentry is not a
492 * kernfs one, %NULL is returned.
493 *
494 * While the returned kernfs_node will stay accessible as long as @dentry
495 * is accessible, the returned node can be in any state and the caller is
496 * fully responsible for determining what's accessible.
497 */
498struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
499{
500 if (dentry->d_sb->s_op == &kernfs_sops)
501 return dentry->d_fsdata;
502 return NULL;
503}
504
505static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
506 const char *name, umode_t mode,
507 unsigned flags)
508{
509 char *dup_name = NULL;
510 struct kernfs_node *kn;
511 int ret;
512
513 if (!(flags & KERNFS_STATIC_NAME)) {
514 name = dup_name = kstrdup(name, GFP_KERNEL);
515 if (!name)
516 return NULL;
517 }
518
519 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
520 if (!kn)
521 goto err_out1;
522
523 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
524 if (ret < 0)
525 goto err_out2;
526 kn->ino = ret;
527
528 atomic_set(&kn->count, 1);
529 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
530 RB_CLEAR_NODE(&kn->rb);
531
532 kn->name = name;
533 kn->mode = mode;
534 kn->flags = flags;
535
536 return kn;
537
538 err_out2:
539 kmem_cache_free(kernfs_node_cache, kn);
540 err_out1:
541 kfree(dup_name);
542 return NULL;
543}
544
545struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
546 const char *name, umode_t mode,
547 unsigned flags)
548{
549 struct kernfs_node *kn;
550
551 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
552 if (kn) {
553 kernfs_get(parent);
554 kn->parent = parent;
555 }
556 return kn;
557}
558
559/**
560 * kernfs_add_one - add kernfs_node to parent without warning
561 * @kn: kernfs_node to be added
562 *
563 * The caller must already have initialized @kn->parent. This
564 * function increments nlink of the parent's inode if @kn is a
565 * directory and link into the children list of the parent.
566 *
567 * RETURNS:
568 * 0 on success, -EEXIST if entry with the given name already
569 * exists.
570 */
571int kernfs_add_one(struct kernfs_node *kn)
572{
573 struct kernfs_node *parent = kn->parent;
574 struct kernfs_iattrs *ps_iattr;
575 bool has_ns;
576 int ret;
577
578 mutex_lock(&kernfs_mutex);
579
580 ret = -EINVAL;
581 has_ns = kernfs_ns_enabled(parent);
582 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
583 has_ns ? "required" : "invalid", parent->name, kn->name))
584 goto out_unlock;
585
586 if (kernfs_type(parent) != KERNFS_DIR)
587 goto out_unlock;
588
589 ret = -ENOENT;
590 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
591 goto out_unlock;
592
593 kn->hash = kernfs_name_hash(kn->name, kn->ns);
594
595 ret = kernfs_link_sibling(kn);
596 if (ret)
597 goto out_unlock;
598
599 /* Update timestamps on the parent */
600 ps_iattr = parent->iattr;
601 if (ps_iattr) {
602 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
603 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
604 }
605
606 mutex_unlock(&kernfs_mutex);
607
608 /*
609 * Activate the new node unless CREATE_DEACTIVATED is requested.
610 * If not activated here, the kernfs user is responsible for
611 * activating the node with kernfs_activate(). A node which hasn't
612 * been activated is not visible to userland and its removal won't
613 * trigger deactivation.
614 */
615 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
616 kernfs_activate(kn);
617 return 0;
618
619out_unlock:
620 mutex_unlock(&kernfs_mutex);
621 return ret;
622}
623
624/**
625 * kernfs_find_ns - find kernfs_node with the given name
626 * @parent: kernfs_node to search under
627 * @name: name to look for
628 * @ns: the namespace tag to use
629 *
630 * Look for kernfs_node with name @name under @parent. Returns pointer to
631 * the found kernfs_node on success, %NULL on failure.
632 */
633static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
634 const unsigned char *name,
635 const void *ns)
636{
637 struct rb_node *node = parent->dir.children.rb_node;
638 bool has_ns = kernfs_ns_enabled(parent);
639 unsigned int hash;
640
641 lockdep_assert_held(&kernfs_mutex);
642
643 if (has_ns != (bool)ns) {
644 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
645 has_ns ? "required" : "invalid", parent->name, name);
646 return NULL;
647 }
648
649 hash = kernfs_name_hash(name, ns);
650 while (node) {
651 struct kernfs_node *kn;
652 int result;
653
654 kn = rb_to_kn(node);
655 result = kernfs_name_compare(hash, name, ns, kn);
656 if (result < 0)
657 node = node->rb_left;
658 else if (result > 0)
659 node = node->rb_right;
660 else
661 return kn;
662 }
663 return NULL;
664}
665
666/**
667 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
668 * @parent: kernfs_node to search under
669 * @name: name to look for
670 * @ns: the namespace tag to use
671 *
672 * Look for kernfs_node with name @name under @parent and get a reference
673 * if found. This function may sleep and returns pointer to the found
674 * kernfs_node on success, %NULL on failure.
675 */
676struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
677 const char *name, const void *ns)
678{
679 struct kernfs_node *kn;
680
681 mutex_lock(&kernfs_mutex);
682 kn = kernfs_find_ns(parent, name, ns);
683 kernfs_get(kn);
684 mutex_unlock(&kernfs_mutex);
685
686 return kn;
687}
688EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
689
690/**
691 * kernfs_create_root - create a new kernfs hierarchy
692 * @scops: optional syscall operations for the hierarchy
693 * @flags: KERNFS_ROOT_* flags
694 * @priv: opaque data associated with the new directory
695 *
696 * Returns the root of the new hierarchy on success, ERR_PTR() value on
697 * failure.
698 */
699struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
700 unsigned int flags, void *priv)
701{
702 struct kernfs_root *root;
703 struct kernfs_node *kn;
704
705 root = kzalloc(sizeof(*root), GFP_KERNEL);
706 if (!root)
707 return ERR_PTR(-ENOMEM);
708
709 ida_init(&root->ino_ida);
710 INIT_LIST_HEAD(&root->supers);
711
712 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
713 KERNFS_DIR);
714 if (!kn) {
715 ida_destroy(&root->ino_ida);
716 kfree(root);
717 return ERR_PTR(-ENOMEM);
718 }
719
720 kn->priv = priv;
721 kn->dir.root = root;
722
723 root->syscall_ops = scops;
724 root->flags = flags;
725 root->kn = kn;
726 init_waitqueue_head(&root->deactivate_waitq);
727
728 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
729 kernfs_activate(kn);
730
731 return root;
732}
733
734/**
735 * kernfs_destroy_root - destroy a kernfs hierarchy
736 * @root: root of the hierarchy to destroy
737 *
738 * Destroy the hierarchy anchored at @root by removing all existing
739 * directories and destroying @root.
740 */
741void kernfs_destroy_root(struct kernfs_root *root)
742{
743 kernfs_remove(root->kn); /* will also free @root */
744}
745
746/**
747 * kernfs_create_dir_ns - create a directory
748 * @parent: parent in which to create a new directory
749 * @name: name of the new directory
750 * @mode: mode of the new directory
751 * @priv: opaque data associated with the new directory
752 * @ns: optional namespace tag of the directory
753 *
754 * Returns the created node on success, ERR_PTR() value on failure.
755 */
756struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
757 const char *name, umode_t mode,
758 void *priv, const void *ns)
759{
760 struct kernfs_node *kn;
761 int rc;
762
763 /* allocate */
764 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
765 if (!kn)
766 return ERR_PTR(-ENOMEM);
767
768 kn->dir.root = parent->dir.root;
769 kn->ns = ns;
770 kn->priv = priv;
771
772 /* link in */
773 rc = kernfs_add_one(kn);
774 if (!rc)
775 return kn;
776
777 kernfs_put(kn);
778 return ERR_PTR(rc);
779}
780
781static struct dentry *kernfs_iop_lookup(struct inode *dir,
782 struct dentry *dentry,
783 unsigned int flags)
784{
785 struct dentry *ret;
786 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
787 struct kernfs_node *kn;
788 struct inode *inode;
789 const void *ns = NULL;
790
791 mutex_lock(&kernfs_mutex);
792
793 if (kernfs_ns_enabled(parent))
794 ns = kernfs_info(dir->i_sb)->ns;
795
796 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
797
798 /* no such entry */
799 if (!kn || !kernfs_active(kn)) {
800 ret = NULL;
801 goto out_unlock;
802 }
803 kernfs_get(kn);
804 dentry->d_fsdata = kn;
805
806 /* attach dentry and inode */
807 inode = kernfs_get_inode(dir->i_sb, kn);
808 if (!inode) {
809 ret = ERR_PTR(-ENOMEM);
810 goto out_unlock;
811 }
812
813 /* instantiate and hash dentry */
814 ret = d_splice_alias(inode, dentry);
815 out_unlock:
816 mutex_unlock(&kernfs_mutex);
817 return ret;
818}
819
820static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
821 umode_t mode)
822{
823 struct kernfs_node *parent = dir->i_private;
824 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
825 int ret;
826
827 if (!scops || !scops->mkdir)
828 return -EPERM;
829
830 if (!kernfs_get_active(parent))
831 return -ENODEV;
832
833 ret = scops->mkdir(parent, dentry->d_name.name, mode);
834
835 kernfs_put_active(parent);
836 return ret;
837}
838
839static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
840{
841 struct kernfs_node *kn = dentry->d_fsdata;
842 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
843 int ret;
844
845 if (!scops || !scops->rmdir)
846 return -EPERM;
847
848 if (!kernfs_get_active(kn))
849 return -ENODEV;
850
851 ret = scops->rmdir(kn);
852
853 kernfs_put_active(kn);
854 return ret;
855}
856
857static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
858 struct inode *new_dir, struct dentry *new_dentry)
859{
860 struct kernfs_node *kn = old_dentry->d_fsdata;
861 struct kernfs_node *new_parent = new_dir->i_private;
862 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
863 int ret;
864
865 if (!scops || !scops->rename)
866 return -EPERM;
867
868 if (!kernfs_get_active(kn))
869 return -ENODEV;
870
871 if (!kernfs_get_active(new_parent)) {
872 kernfs_put_active(kn);
873 return -ENODEV;
874 }
875
876 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
877
878 kernfs_put_active(new_parent);
879 kernfs_put_active(kn);
880 return ret;
881}
882
883const struct inode_operations kernfs_dir_iops = {
884 .lookup = kernfs_iop_lookup,
885 .permission = kernfs_iop_permission,
886 .setattr = kernfs_iop_setattr,
887 .getattr = kernfs_iop_getattr,
888 .setxattr = kernfs_iop_setxattr,
889 .removexattr = kernfs_iop_removexattr,
890 .getxattr = kernfs_iop_getxattr,
891 .listxattr = kernfs_iop_listxattr,
892
893 .mkdir = kernfs_iop_mkdir,
894 .rmdir = kernfs_iop_rmdir,
895 .rename = kernfs_iop_rename,
896};
897
898static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
899{
900 struct kernfs_node *last;
901
902 while (true) {
903 struct rb_node *rbn;
904
905 last = pos;
906
907 if (kernfs_type(pos) != KERNFS_DIR)
908 break;
909
910 rbn = rb_first(&pos->dir.children);
911 if (!rbn)
912 break;
913
914 pos = rb_to_kn(rbn);
915 }
916
917 return last;
918}
919
920/**
921 * kernfs_next_descendant_post - find the next descendant for post-order walk
922 * @pos: the current position (%NULL to initiate traversal)
923 * @root: kernfs_node whose descendants to walk
924 *
925 * Find the next descendant to visit for post-order traversal of @root's
926 * descendants. @root is included in the iteration and the last node to be
927 * visited.
928 */
929static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
930 struct kernfs_node *root)
931{
932 struct rb_node *rbn;
933
934 lockdep_assert_held(&kernfs_mutex);
935
936 /* if first iteration, visit leftmost descendant which may be root */
937 if (!pos)
938 return kernfs_leftmost_descendant(root);
939
940 /* if we visited @root, we're done */
941 if (pos == root)
942 return NULL;
943
944 /* if there's an unvisited sibling, visit its leftmost descendant */
945 rbn = rb_next(&pos->rb);
946 if (rbn)
947 return kernfs_leftmost_descendant(rb_to_kn(rbn));
948
949 /* no sibling left, visit parent */
950 return pos->parent;
951}
952
953/**
954 * kernfs_activate - activate a node which started deactivated
955 * @kn: kernfs_node whose subtree is to be activated
956 *
957 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
958 * needs to be explicitly activated. A node which hasn't been activated
959 * isn't visible to userland and deactivation is skipped during its
960 * removal. This is useful to construct atomic init sequences where
961 * creation of multiple nodes should either succeed or fail atomically.
962 *
963 * The caller is responsible for ensuring that this function is not called
964 * after kernfs_remove*() is invoked on @kn.
965 */
966void kernfs_activate(struct kernfs_node *kn)
967{
968 struct kernfs_node *pos;
969
970 mutex_lock(&kernfs_mutex);
971
972 pos = NULL;
973 while ((pos = kernfs_next_descendant_post(pos, kn))) {
974 if (!pos || (pos->flags & KERNFS_ACTIVATED))
975 continue;
976
977 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
978 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
979
980 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
981 pos->flags |= KERNFS_ACTIVATED;
982 }
983
984 mutex_unlock(&kernfs_mutex);
985}
986
987static void __kernfs_remove(struct kernfs_node *kn)
988{
989 struct kernfs_node *pos;
990
991 lockdep_assert_held(&kernfs_mutex);
992
993 /*
994 * Short-circuit if non-root @kn has already finished removal.
995 * This is for kernfs_remove_self() which plays with active ref
996 * after removal.
997 */
998 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
999 return;
1000
1001 pr_debug("kernfs %s: removing\n", kn->name);
1002
1003 /* prevent any new usage under @kn by deactivating all nodes */
1004 pos = NULL;
1005 while ((pos = kernfs_next_descendant_post(pos, kn)))
1006 if (kernfs_active(pos))
1007 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1008
1009 /* deactivate and unlink the subtree node-by-node */
1010 do {
1011 pos = kernfs_leftmost_descendant(kn);
1012
1013 /*
1014 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1015 * base ref could have been put by someone else by the time
1016 * the function returns. Make sure it doesn't go away
1017 * underneath us.
1018 */
1019 kernfs_get(pos);
1020
1021 /*
1022 * Drain iff @kn was activated. This avoids draining and
1023 * its lockdep annotations for nodes which have never been
1024 * activated and allows embedding kernfs_remove() in create
1025 * error paths without worrying about draining.
1026 */
1027 if (kn->flags & KERNFS_ACTIVATED)
1028 kernfs_drain(pos);
1029 else
1030 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1031
1032 /*
1033 * kernfs_unlink_sibling() succeeds once per node. Use it
1034 * to decide who's responsible for cleanups.
1035 */
1036 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1037 struct kernfs_iattrs *ps_iattr =
1038 pos->parent ? pos->parent->iattr : NULL;
1039
1040 /* update timestamps on the parent */
1041 if (ps_iattr) {
1042 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1043 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1044 }
1045
1046 kernfs_put(pos);
1047 }
1048
1049 kernfs_put(pos);
1050 } while (pos != kn);
1051}
1052
1053/**
1054 * kernfs_remove - remove a kernfs_node recursively
1055 * @kn: the kernfs_node to remove
1056 *
1057 * Remove @kn along with all its subdirectories and files.
1058 */
1059void kernfs_remove(struct kernfs_node *kn)
1060{
1061 mutex_lock(&kernfs_mutex);
1062 __kernfs_remove(kn);
1063 mutex_unlock(&kernfs_mutex);
1064}
1065
1066/**
1067 * kernfs_break_active_protection - break out of active protection
1068 * @kn: the self kernfs_node
1069 *
1070 * The caller must be running off of a kernfs operation which is invoked
1071 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1072 * this function must also be matched with an invocation of
1073 * kernfs_unbreak_active_protection().
1074 *
1075 * This function releases the active reference of @kn the caller is
1076 * holding. Once this function is called, @kn may be removed at any point
1077 * and the caller is solely responsible for ensuring that the objects it
1078 * dereferences are accessible.
1079 */
1080void kernfs_break_active_protection(struct kernfs_node *kn)
1081{
1082 /*
1083 * Take out ourself out of the active ref dependency chain. If
1084 * we're called without an active ref, lockdep will complain.
1085 */
1086 kernfs_put_active(kn);
1087}
1088
1089/**
1090 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1091 * @kn: the self kernfs_node
1092 *
1093 * If kernfs_break_active_protection() was called, this function must be
1094 * invoked before finishing the kernfs operation. Note that while this
1095 * function restores the active reference, it doesn't and can't actually
1096 * restore the active protection - @kn may already or be in the process of
1097 * being removed. Once kernfs_break_active_protection() is invoked, that
1098 * protection is irreversibly gone for the kernfs operation instance.
1099 *
1100 * While this function may be called at any point after
1101 * kernfs_break_active_protection() is invoked, its most useful location
1102 * would be right before the enclosing kernfs operation returns.
1103 */
1104void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1105{
1106 /*
1107 * @kn->active could be in any state; however, the increment we do
1108 * here will be undone as soon as the enclosing kernfs operation
1109 * finishes and this temporary bump can't break anything. If @kn
1110 * is alive, nothing changes. If @kn is being deactivated, the
1111 * soon-to-follow put will either finish deactivation or restore
1112 * deactivated state. If @kn is already removed, the temporary
1113 * bump is guaranteed to be gone before @kn is released.
1114 */
1115 atomic_inc(&kn->active);
1116 if (kernfs_lockdep(kn))
1117 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1118}
1119
1120/**
1121 * kernfs_remove_self - remove a kernfs_node from its own method
1122 * @kn: the self kernfs_node to remove
1123 *
1124 * The caller must be running off of a kernfs operation which is invoked
1125 * with an active reference - e.g. one of kernfs_ops. This can be used to
1126 * implement a file operation which deletes itself.
1127 *
1128 * For example, the "delete" file for a sysfs device directory can be
1129 * implemented by invoking kernfs_remove_self() on the "delete" file
1130 * itself. This function breaks the circular dependency of trying to
1131 * deactivate self while holding an active ref itself. It isn't necessary
1132 * to modify the usual removal path to use kernfs_remove_self(). The
1133 * "delete" implementation can simply invoke kernfs_remove_self() on self
1134 * before proceeding with the usual removal path. kernfs will ignore later
1135 * kernfs_remove() on self.
1136 *
1137 * kernfs_remove_self() can be called multiple times concurrently on the
1138 * same kernfs_node. Only the first one actually performs removal and
1139 * returns %true. All others will wait until the kernfs operation which
1140 * won self-removal finishes and return %false. Note that the losers wait
1141 * for the completion of not only the winning kernfs_remove_self() but also
1142 * the whole kernfs_ops which won the arbitration. This can be used to
1143 * guarantee, for example, all concurrent writes to a "delete" file to
1144 * finish only after the whole operation is complete.
1145 */
1146bool kernfs_remove_self(struct kernfs_node *kn)
1147{
1148 bool ret;
1149
1150 mutex_lock(&kernfs_mutex);
1151 kernfs_break_active_protection(kn);
1152
1153 /*
1154 * SUICIDAL is used to arbitrate among competing invocations. Only
1155 * the first one will actually perform removal. When the removal
1156 * is complete, SUICIDED is set and the active ref is restored
1157 * while holding kernfs_mutex. The ones which lost arbitration
1158 * waits for SUICDED && drained which can happen only after the
1159 * enclosing kernfs operation which executed the winning instance
1160 * of kernfs_remove_self() finished.
1161 */
1162 if (!(kn->flags & KERNFS_SUICIDAL)) {
1163 kn->flags |= KERNFS_SUICIDAL;
1164 __kernfs_remove(kn);
1165 kn->flags |= KERNFS_SUICIDED;
1166 ret = true;
1167 } else {
1168 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1169 DEFINE_WAIT(wait);
1170
1171 while (true) {
1172 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1173
1174 if ((kn->flags & KERNFS_SUICIDED) &&
1175 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1176 break;
1177
1178 mutex_unlock(&kernfs_mutex);
1179 schedule();
1180 mutex_lock(&kernfs_mutex);
1181 }
1182 finish_wait(waitq, &wait);
1183 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1184 ret = false;
1185 }
1186
1187 /*
1188 * This must be done while holding kernfs_mutex; otherwise, waiting
1189 * for SUICIDED && deactivated could finish prematurely.
1190 */
1191 kernfs_unbreak_active_protection(kn);
1192
1193 mutex_unlock(&kernfs_mutex);
1194 return ret;
1195}
1196
1197/**
1198 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1199 * @parent: parent of the target
1200 * @name: name of the kernfs_node to remove
1201 * @ns: namespace tag of the kernfs_node to remove
1202 *
1203 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1204 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1205 */
1206int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1207 const void *ns)
1208{
1209 struct kernfs_node *kn;
1210
1211 if (!parent) {
1212 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1213 name);
1214 return -ENOENT;
1215 }
1216
1217 mutex_lock(&kernfs_mutex);
1218
1219 kn = kernfs_find_ns(parent, name, ns);
1220 if (kn)
1221 __kernfs_remove(kn);
1222
1223 mutex_unlock(&kernfs_mutex);
1224
1225 if (kn)
1226 return 0;
1227 else
1228 return -ENOENT;
1229}
1230
1231/**
1232 * kernfs_rename_ns - move and rename a kernfs_node
1233 * @kn: target node
1234 * @new_parent: new parent to put @sd under
1235 * @new_name: new name
1236 * @new_ns: new namespace tag
1237 */
1238int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1239 const char *new_name, const void *new_ns)
1240{
1241 struct kernfs_node *old_parent;
1242 const char *old_name = NULL;
1243 int error;
1244
1245 /* can't move or rename root */
1246 if (!kn->parent)
1247 return -EINVAL;
1248
1249 mutex_lock(&kernfs_mutex);
1250
1251 error = -ENOENT;
1252 if (!kernfs_active(kn) || !kernfs_active(new_parent))
1253 goto out;
1254
1255 error = 0;
1256 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1257 (strcmp(kn->name, new_name) == 0))
1258 goto out; /* nothing to rename */
1259
1260 error = -EEXIST;
1261 if (kernfs_find_ns(new_parent, new_name, new_ns))
1262 goto out;
1263
1264 /* rename kernfs_node */
1265 if (strcmp(kn->name, new_name) != 0) {
1266 error = -ENOMEM;
1267 new_name = kstrdup(new_name, GFP_KERNEL);
1268 if (!new_name)
1269 goto out;
1270 } else {
1271 new_name = NULL;
1272 }
1273
1274 /*
1275 * Move to the appropriate place in the appropriate directories rbtree.
1276 */
1277 kernfs_unlink_sibling(kn);
1278 kernfs_get(new_parent);
1279
1280 /* rename_lock protects ->parent and ->name accessors */
1281 spin_lock_irq(&kernfs_rename_lock);
1282
1283 old_parent = kn->parent;
1284 kn->parent = new_parent;
1285
1286 kn->ns = new_ns;
1287 if (new_name) {
1288 if (!(kn->flags & KERNFS_STATIC_NAME))
1289 old_name = kn->name;
1290 kn->flags &= ~KERNFS_STATIC_NAME;
1291 kn->name = new_name;
1292 }
1293
1294 spin_unlock_irq(&kernfs_rename_lock);
1295
1296 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1297 kernfs_link_sibling(kn);
1298
1299 kernfs_put(old_parent);
1300 kfree(old_name);
1301
1302 error = 0;
1303 out:
1304 mutex_unlock(&kernfs_mutex);
1305 return error;
1306}
1307
1308/* Relationship between s_mode and the DT_xxx types */
1309static inline unsigned char dt_type(struct kernfs_node *kn)
1310{
1311 return (kn->mode >> 12) & 15;
1312}
1313
1314static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1315{
1316 kernfs_put(filp->private_data);
1317 return 0;
1318}
1319
1320static struct kernfs_node *kernfs_dir_pos(const void *ns,
1321 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1322{
1323 if (pos) {
1324 int valid = kernfs_active(pos) &&
1325 pos->parent == parent && hash == pos->hash;
1326 kernfs_put(pos);
1327 if (!valid)
1328 pos = NULL;
1329 }
1330 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1331 struct rb_node *node = parent->dir.children.rb_node;
1332 while (node) {
1333 pos = rb_to_kn(node);
1334
1335 if (hash < pos->hash)
1336 node = node->rb_left;
1337 else if (hash > pos->hash)
1338 node = node->rb_right;
1339 else
1340 break;
1341 }
1342 }
1343 /* Skip over entries which are dying/dead or in the wrong namespace */
1344 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1345 struct rb_node *node = rb_next(&pos->rb);
1346 if (!node)
1347 pos = NULL;
1348 else
1349 pos = rb_to_kn(node);
1350 }
1351 return pos;
1352}
1353
1354static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1355 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1356{
1357 pos = kernfs_dir_pos(ns, parent, ino, pos);
1358 if (pos) {
1359 do {
1360 struct rb_node *node = rb_next(&pos->rb);
1361 if (!node)
1362 pos = NULL;
1363 else
1364 pos = rb_to_kn(node);
1365 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1366 }
1367 return pos;
1368}
1369
1370static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1371{
1372 struct dentry *dentry = file->f_path.dentry;
1373 struct kernfs_node *parent = dentry->d_fsdata;
1374 struct kernfs_node *pos = file->private_data;
1375 const void *ns = NULL;
1376
1377 if (!dir_emit_dots(file, ctx))
1378 return 0;
1379 mutex_lock(&kernfs_mutex);
1380
1381 if (kernfs_ns_enabled(parent))
1382 ns = kernfs_info(dentry->d_sb)->ns;
1383
1384 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1385 pos;
1386 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1387 const char *name = pos->name;
1388 unsigned int type = dt_type(pos);
1389 int len = strlen(name);
1390 ino_t ino = pos->ino;
1391
1392 ctx->pos = pos->hash;
1393 file->private_data = pos;
1394 kernfs_get(pos);
1395
1396 mutex_unlock(&kernfs_mutex);
1397 if (!dir_emit(ctx, name, len, ino, type))
1398 return 0;
1399 mutex_lock(&kernfs_mutex);
1400 }
1401 mutex_unlock(&kernfs_mutex);
1402 file->private_data = NULL;
1403 ctx->pos = INT_MAX;
1404 return 0;
1405}
1406
1407static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1408 int whence)
1409{
1410 struct inode *inode = file_inode(file);
1411 loff_t ret;
1412
1413 mutex_lock(&inode->i_mutex);
1414 ret = generic_file_llseek(file, offset, whence);
1415 mutex_unlock(&inode->i_mutex);
1416
1417 return ret;
1418}
1419
1420const struct file_operations kernfs_dir_fops = {
1421 .read = generic_read_dir,
1422 .iterate = kernfs_fop_readdir,
1423 .release = kernfs_dir_fop_release,
1424 .llseek = kernfs_dir_fop_llseek,
1425};