]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/namei.c
hpfs: implement the show_options method
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <linux/hash.h>
38#include <linux/bitops.h>
39#include <asm/uaccess.h>
40
41#include "internal.h"
42#include "mount.h"
43
44/* [Feb-1997 T. Schoebel-Theuer]
45 * Fundamental changes in the pathname lookup mechanisms (namei)
46 * were necessary because of omirr. The reason is that omirr needs
47 * to know the _real_ pathname, not the user-supplied one, in case
48 * of symlinks (and also when transname replacements occur).
49 *
50 * The new code replaces the old recursive symlink resolution with
51 * an iterative one (in case of non-nested symlink chains). It does
52 * this with calls to <fs>_follow_link().
53 * As a side effect, dir_namei(), _namei() and follow_link() are now
54 * replaced with a single function lookup_dentry() that can handle all
55 * the special cases of the former code.
56 *
57 * With the new dcache, the pathname is stored at each inode, at least as
58 * long as the refcount of the inode is positive. As a side effect, the
59 * size of the dcache depends on the inode cache and thus is dynamic.
60 *
61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62 * resolution to correspond with current state of the code.
63 *
64 * Note that the symlink resolution is not *completely* iterative.
65 * There is still a significant amount of tail- and mid- recursion in
66 * the algorithm. Also, note that <fs>_readlink() is not used in
67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68 * may return different results than <fs>_follow_link(). Many virtual
69 * filesystems (including /proc) exhibit this behavior.
70 */
71
72/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74 * and the name already exists in form of a symlink, try to create the new
75 * name indicated by the symlink. The old code always complained that the
76 * name already exists, due to not following the symlink even if its target
77 * is nonexistent. The new semantics affects also mknod() and link() when
78 * the name is a symlink pointing to a non-existent name.
79 *
80 * I don't know which semantics is the right one, since I have no access
81 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83 * "old" one. Personally, I think the new semantics is much more logical.
84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85 * file does succeed in both HP-UX and SunOs, but not in Solaris
86 * and in the old Linux semantics.
87 */
88
89/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90 * semantics. See the comments in "open_namei" and "do_link" below.
91 *
92 * [10-Sep-98 Alan Modra] Another symlink change.
93 */
94
95/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96 * inside the path - always follow.
97 * in the last component in creation/removal/renaming - never follow.
98 * if LOOKUP_FOLLOW passed - follow.
99 * if the pathname has trailing slashes - follow.
100 * otherwise - don't follow.
101 * (applied in that order).
102 *
103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105 * During the 2.4 we need to fix the userland stuff depending on it -
106 * hopefully we will be able to get rid of that wart in 2.5. So far only
107 * XEmacs seems to be relying on it...
108 */
109/*
110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
112 * any extra contention...
113 */
114
115/* In order to reduce some races, while at the same time doing additional
116 * checking and hopefully speeding things up, we copy filenames to the
117 * kernel data space before using them..
118 *
119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120 * PATH_MAX includes the nul terminator --RR.
121 */
122
123#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
124
125struct filename *
126getname_flags(const char __user *filename, int flags, int *empty)
127{
128 struct filename *result;
129 char *kname;
130 int len;
131
132 result = audit_reusename(filename);
133 if (result)
134 return result;
135
136 result = __getname();
137 if (unlikely(!result))
138 return ERR_PTR(-ENOMEM);
139
140 /*
141 * First, try to embed the struct filename inside the names_cache
142 * allocation
143 */
144 kname = (char *)result->iname;
145 result->name = kname;
146
147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 if (unlikely(len < 0)) {
149 __putname(result);
150 return ERR_PTR(len);
151 }
152
153 /*
154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 * separate struct filename so we can dedicate the entire
156 * names_cache allocation for the pathname, and re-do the copy from
157 * userland.
158 */
159 if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 const size_t size = offsetof(struct filename, iname[1]);
161 kname = (char *)result;
162
163 /*
164 * size is chosen that way we to guarantee that
165 * result->iname[0] is within the same object and that
166 * kname can't be equal to result->iname, no matter what.
167 */
168 result = kzalloc(size, GFP_KERNEL);
169 if (unlikely(!result)) {
170 __putname(kname);
171 return ERR_PTR(-ENOMEM);
172 }
173 result->name = kname;
174 len = strncpy_from_user(kname, filename, PATH_MAX);
175 if (unlikely(len < 0)) {
176 __putname(kname);
177 kfree(result);
178 return ERR_PTR(len);
179 }
180 if (unlikely(len == PATH_MAX)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(-ENAMETOOLONG);
184 }
185 }
186
187 result->refcnt = 1;
188 /* The empty path is special. */
189 if (unlikely(!len)) {
190 if (empty)
191 *empty = 1;
192 if (!(flags & LOOKUP_EMPTY)) {
193 putname(result);
194 return ERR_PTR(-ENOENT);
195 }
196 }
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202}
203
204struct filename *
205getname(const char __user * filename)
206{
207 return getname_flags(filename, 0, NULL);
208}
209
210struct filename *
211getname_kernel(const char * filename)
212{
213 struct filename *result;
214 int len = strlen(filename) + 1;
215
216 result = __getname();
217 if (unlikely(!result))
218 return ERR_PTR(-ENOMEM);
219
220 if (len <= EMBEDDED_NAME_MAX) {
221 result->name = (char *)result->iname;
222 } else if (len <= PATH_MAX) {
223 struct filename *tmp;
224
225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 if (unlikely(!tmp)) {
227 __putname(result);
228 return ERR_PTR(-ENOMEM);
229 }
230 tmp->name = (char *)result;
231 result = tmp;
232 } else {
233 __putname(result);
234 return ERR_PTR(-ENAMETOOLONG);
235 }
236 memcpy((char *)result->name, filename, len);
237 result->uptr = NULL;
238 result->aname = NULL;
239 result->refcnt = 1;
240 audit_getname(result);
241
242 return result;
243}
244
245void putname(struct filename *name)
246{
247 BUG_ON(name->refcnt <= 0);
248
249 if (--name->refcnt > 0)
250 return;
251
252 if (name->name != name->iname) {
253 __putname(name->name);
254 kfree(name);
255 } else
256 __putname(name);
257}
258
259static int check_acl(struct inode *inode, int mask)
260{
261#ifdef CONFIG_FS_POSIX_ACL
262 struct posix_acl *acl;
263
264 if (mask & MAY_NOT_BLOCK) {
265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 if (!acl)
267 return -EAGAIN;
268 /* no ->get_acl() calls in RCU mode... */
269 if (is_uncached_acl(acl))
270 return -ECHILD;
271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 }
273
274 acl = get_acl(inode, ACL_TYPE_ACCESS);
275 if (IS_ERR(acl))
276 return PTR_ERR(acl);
277 if (acl) {
278 int error = posix_acl_permission(inode, acl, mask);
279 posix_acl_release(acl);
280 return error;
281 }
282#endif
283
284 return -EAGAIN;
285}
286
287/*
288 * This does the basic permission checking
289 */
290static int acl_permission_check(struct inode *inode, int mask)
291{
292 unsigned int mode = inode->i_mode;
293
294 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 mode >>= 6;
296 else {
297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 int error = check_acl(inode, mask);
299 if (error != -EAGAIN)
300 return error;
301 }
302
303 if (in_group_p(inode->i_gid))
304 mode >>= 3;
305 }
306
307 /*
308 * If the DACs are ok we don't need any capability check.
309 */
310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 return 0;
312 return -EACCES;
313}
314
315/**
316 * generic_permission - check for access rights on a Posix-like filesystem
317 * @inode: inode to check access rights for
318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 *
320 * Used to check for read/write/execute permissions on a file.
321 * We use "fsuid" for this, letting us set arbitrary permissions
322 * for filesystem access without changing the "normal" uids which
323 * are used for other things.
324 *
325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326 * request cannot be satisfied (eg. requires blocking or too much complexity).
327 * It would then be called again in ref-walk mode.
328 */
329int generic_permission(struct inode *inode, int mask)
330{
331 int ret;
332
333 /*
334 * Do the basic permission checks.
335 */
336 ret = acl_permission_check(inode, mask);
337 if (ret != -EACCES)
338 return ret;
339
340 if (S_ISDIR(inode->i_mode)) {
341 /* DACs are overridable for directories */
342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 return 0;
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 return -EACCES;
349 }
350 /*
351 * Read/write DACs are always overridable.
352 * Executable DACs are overridable when there is
353 * at least one exec bit set.
354 */
355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 return 0;
358
359 /*
360 * Searching includes executable on directories, else just read.
361 */
362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 if (mask == MAY_READ)
364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 return 0;
366
367 return -EACCES;
368}
369EXPORT_SYMBOL(generic_permission);
370
371/*
372 * We _really_ want to just do "generic_permission()" without
373 * even looking at the inode->i_op values. So we keep a cache
374 * flag in inode->i_opflags, that says "this has not special
375 * permission function, use the fast case".
376 */
377static inline int do_inode_permission(struct inode *inode, int mask)
378{
379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 if (likely(inode->i_op->permission))
381 return inode->i_op->permission(inode, mask);
382
383 /* This gets set once for the inode lifetime */
384 spin_lock(&inode->i_lock);
385 inode->i_opflags |= IOP_FASTPERM;
386 spin_unlock(&inode->i_lock);
387 }
388 return generic_permission(inode, mask);
389}
390
391/**
392 * __inode_permission - Check for access rights to a given inode
393 * @inode: Inode to check permission on
394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 *
396 * Check for read/write/execute permissions on an inode.
397 *
398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 *
400 * This does not check for a read-only file system. You probably want
401 * inode_permission().
402 */
403int __inode_permission(struct inode *inode, int mask)
404{
405 int retval;
406
407 if (unlikely(mask & MAY_WRITE)) {
408 /*
409 * Nobody gets write access to an immutable file.
410 */
411 if (IS_IMMUTABLE(inode))
412 return -EACCES;
413 }
414
415 retval = do_inode_permission(inode, mask);
416 if (retval)
417 return retval;
418
419 retval = devcgroup_inode_permission(inode, mask);
420 if (retval)
421 return retval;
422
423 return security_inode_permission(inode, mask);
424}
425EXPORT_SYMBOL(__inode_permission);
426
427/**
428 * sb_permission - Check superblock-level permissions
429 * @sb: Superblock of inode to check permission on
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Separate out file-system wide checks from inode-specific permission checks.
434 */
435static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436{
437 if (unlikely(mask & MAY_WRITE)) {
438 umode_t mode = inode->i_mode;
439
440 /* Nobody gets write access to a read-only fs. */
441 if ((sb->s_flags & MS_RDONLY) &&
442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 return -EROFS;
444 }
445 return 0;
446}
447
448/**
449 * inode_permission - Check for access rights to a given inode
450 * @inode: Inode to check permission on
451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 *
453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
454 * this, letting us set arbitrary permissions for filesystem access without
455 * changing the "normal" UIDs which are used for other things.
456 *
457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458 */
459int inode_permission(struct inode *inode, int mask)
460{
461 int retval;
462
463 retval = sb_permission(inode->i_sb, inode, mask);
464 if (retval)
465 return retval;
466 return __inode_permission(inode, mask);
467}
468EXPORT_SYMBOL(inode_permission);
469
470/**
471 * path_get - get a reference to a path
472 * @path: path to get the reference to
473 *
474 * Given a path increment the reference count to the dentry and the vfsmount.
475 */
476void path_get(const struct path *path)
477{
478 mntget(path->mnt);
479 dget(path->dentry);
480}
481EXPORT_SYMBOL(path_get);
482
483/**
484 * path_put - put a reference to a path
485 * @path: path to put the reference to
486 *
487 * Given a path decrement the reference count to the dentry and the vfsmount.
488 */
489void path_put(const struct path *path)
490{
491 dput(path->dentry);
492 mntput(path->mnt);
493}
494EXPORT_SYMBOL(path_put);
495
496#define EMBEDDED_LEVELS 2
497struct nameidata {
498 struct path path;
499 struct qstr last;
500 struct path root;
501 struct inode *inode; /* path.dentry.d_inode */
502 unsigned int flags;
503 unsigned seq, m_seq;
504 int last_type;
505 unsigned depth;
506 int total_link_count;
507 struct saved {
508 struct path link;
509 struct delayed_call done;
510 const char *name;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 struct inode *link_inode;
516 unsigned root_seq;
517 int dfd;
518};
519
520static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
521{
522 struct nameidata *old = current->nameidata;
523 p->stack = p->internal;
524 p->dfd = dfd;
525 p->name = name;
526 p->total_link_count = old ? old->total_link_count : 0;
527 p->saved = old;
528 current->nameidata = p;
529}
530
531static void restore_nameidata(void)
532{
533 struct nameidata *now = current->nameidata, *old = now->saved;
534
535 current->nameidata = old;
536 if (old)
537 old->total_link_count = now->total_link_count;
538 if (now->stack != now->internal)
539 kfree(now->stack);
540}
541
542static int __nd_alloc_stack(struct nameidata *nd)
543{
544 struct saved *p;
545
546 if (nd->flags & LOOKUP_RCU) {
547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 GFP_ATOMIC);
549 if (unlikely(!p))
550 return -ECHILD;
551 } else {
552 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
553 GFP_KERNEL);
554 if (unlikely(!p))
555 return -ENOMEM;
556 }
557 memcpy(p, nd->internal, sizeof(nd->internal));
558 nd->stack = p;
559 return 0;
560}
561
562/**
563 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
564 * @path: nameidate to verify
565 *
566 * Rename can sometimes move a file or directory outside of a bind
567 * mount, path_connected allows those cases to be detected.
568 */
569static bool path_connected(const struct path *path)
570{
571 struct vfsmount *mnt = path->mnt;
572
573 /* Only bind mounts can have disconnected paths */
574 if (mnt->mnt_root == mnt->mnt_sb->s_root)
575 return true;
576
577 return is_subdir(path->dentry, mnt->mnt_root);
578}
579
580static inline int nd_alloc_stack(struct nameidata *nd)
581{
582 if (likely(nd->depth != EMBEDDED_LEVELS))
583 return 0;
584 if (likely(nd->stack != nd->internal))
585 return 0;
586 return __nd_alloc_stack(nd);
587}
588
589static void drop_links(struct nameidata *nd)
590{
591 int i = nd->depth;
592 while (i--) {
593 struct saved *last = nd->stack + i;
594 do_delayed_call(&last->done);
595 clear_delayed_call(&last->done);
596 }
597}
598
599static void terminate_walk(struct nameidata *nd)
600{
601 drop_links(nd);
602 if (!(nd->flags & LOOKUP_RCU)) {
603 int i;
604 path_put(&nd->path);
605 for (i = 0; i < nd->depth; i++)
606 path_put(&nd->stack[i].link);
607 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
608 path_put(&nd->root);
609 nd->root.mnt = NULL;
610 }
611 } else {
612 nd->flags &= ~LOOKUP_RCU;
613 if (!(nd->flags & LOOKUP_ROOT))
614 nd->root.mnt = NULL;
615 rcu_read_unlock();
616 }
617 nd->depth = 0;
618}
619
620/* path_put is needed afterwards regardless of success or failure */
621static bool legitimize_path(struct nameidata *nd,
622 struct path *path, unsigned seq)
623{
624 int res = __legitimize_mnt(path->mnt, nd->m_seq);
625 if (unlikely(res)) {
626 if (res > 0)
627 path->mnt = NULL;
628 path->dentry = NULL;
629 return false;
630 }
631 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
632 path->dentry = NULL;
633 return false;
634 }
635 return !read_seqcount_retry(&path->dentry->d_seq, seq);
636}
637
638static bool legitimize_links(struct nameidata *nd)
639{
640 int i;
641 for (i = 0; i < nd->depth; i++) {
642 struct saved *last = nd->stack + i;
643 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
644 drop_links(nd);
645 nd->depth = i + 1;
646 return false;
647 }
648 }
649 return true;
650}
651
652/*
653 * Path walking has 2 modes, rcu-walk and ref-walk (see
654 * Documentation/filesystems/path-lookup.txt). In situations when we can't
655 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
656 * normal reference counts on dentries and vfsmounts to transition to ref-walk
657 * mode. Refcounts are grabbed at the last known good point before rcu-walk
658 * got stuck, so ref-walk may continue from there. If this is not successful
659 * (eg. a seqcount has changed), then failure is returned and it's up to caller
660 * to restart the path walk from the beginning in ref-walk mode.
661 */
662
663/**
664 * unlazy_walk - try to switch to ref-walk mode.
665 * @nd: nameidata pathwalk data
666 * @dentry: child of nd->path.dentry or NULL
667 * @seq: seq number to check dentry against
668 * Returns: 0 on success, -ECHILD on failure
669 *
670 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
671 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
672 * @nd or NULL. Must be called from rcu-walk context.
673 * Nothing should touch nameidata between unlazy_walk() failure and
674 * terminate_walk().
675 */
676static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
677{
678 struct dentry *parent = nd->path.dentry;
679
680 BUG_ON(!(nd->flags & LOOKUP_RCU));
681
682 nd->flags &= ~LOOKUP_RCU;
683 if (unlikely(!legitimize_links(nd)))
684 goto out2;
685 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
686 goto out2;
687 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
688 goto out1;
689
690 /*
691 * For a negative lookup, the lookup sequence point is the parents
692 * sequence point, and it only needs to revalidate the parent dentry.
693 *
694 * For a positive lookup, we need to move both the parent and the
695 * dentry from the RCU domain to be properly refcounted. And the
696 * sequence number in the dentry validates *both* dentry counters,
697 * since we checked the sequence number of the parent after we got
698 * the child sequence number. So we know the parent must still
699 * be valid if the child sequence number is still valid.
700 */
701 if (!dentry) {
702 if (read_seqcount_retry(&parent->d_seq, nd->seq))
703 goto out;
704 BUG_ON(nd->inode != parent->d_inode);
705 } else {
706 if (!lockref_get_not_dead(&dentry->d_lockref))
707 goto out;
708 if (read_seqcount_retry(&dentry->d_seq, seq))
709 goto drop_dentry;
710 }
711
712 /*
713 * Sequence counts matched. Now make sure that the root is
714 * still valid and get it if required.
715 */
716 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
717 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
718 rcu_read_unlock();
719 dput(dentry);
720 return -ECHILD;
721 }
722 }
723
724 rcu_read_unlock();
725 return 0;
726
727drop_dentry:
728 rcu_read_unlock();
729 dput(dentry);
730 goto drop_root_mnt;
731out2:
732 nd->path.mnt = NULL;
733out1:
734 nd->path.dentry = NULL;
735out:
736 rcu_read_unlock();
737drop_root_mnt:
738 if (!(nd->flags & LOOKUP_ROOT))
739 nd->root.mnt = NULL;
740 return -ECHILD;
741}
742
743static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
744{
745 if (unlikely(!legitimize_path(nd, link, seq))) {
746 drop_links(nd);
747 nd->depth = 0;
748 nd->flags &= ~LOOKUP_RCU;
749 nd->path.mnt = NULL;
750 nd->path.dentry = NULL;
751 if (!(nd->flags & LOOKUP_ROOT))
752 nd->root.mnt = NULL;
753 rcu_read_unlock();
754 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
755 return 0;
756 }
757 path_put(link);
758 return -ECHILD;
759}
760
761static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
762{
763 return dentry->d_op->d_revalidate(dentry, flags);
764}
765
766/**
767 * complete_walk - successful completion of path walk
768 * @nd: pointer nameidata
769 *
770 * If we had been in RCU mode, drop out of it and legitimize nd->path.
771 * Revalidate the final result, unless we'd already done that during
772 * the path walk or the filesystem doesn't ask for it. Return 0 on
773 * success, -error on failure. In case of failure caller does not
774 * need to drop nd->path.
775 */
776static int complete_walk(struct nameidata *nd)
777{
778 struct dentry *dentry = nd->path.dentry;
779 int status;
780
781 if (nd->flags & LOOKUP_RCU) {
782 if (!(nd->flags & LOOKUP_ROOT))
783 nd->root.mnt = NULL;
784 if (unlikely(unlazy_walk(nd, NULL, 0)))
785 return -ECHILD;
786 }
787
788 if (likely(!(nd->flags & LOOKUP_JUMPED)))
789 return 0;
790
791 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
792 return 0;
793
794 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
795 if (status > 0)
796 return 0;
797
798 if (!status)
799 status = -ESTALE;
800
801 return status;
802}
803
804static void set_root(struct nameidata *nd)
805{
806 struct fs_struct *fs = current->fs;
807
808 if (nd->flags & LOOKUP_RCU) {
809 unsigned seq;
810
811 do {
812 seq = read_seqcount_begin(&fs->seq);
813 nd->root = fs->root;
814 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
815 } while (read_seqcount_retry(&fs->seq, seq));
816 } else {
817 get_fs_root(fs, &nd->root);
818 }
819}
820
821static void path_put_conditional(struct path *path, struct nameidata *nd)
822{
823 dput(path->dentry);
824 if (path->mnt != nd->path.mnt)
825 mntput(path->mnt);
826}
827
828static inline void path_to_nameidata(const struct path *path,
829 struct nameidata *nd)
830{
831 if (!(nd->flags & LOOKUP_RCU)) {
832 dput(nd->path.dentry);
833 if (nd->path.mnt != path->mnt)
834 mntput(nd->path.mnt);
835 }
836 nd->path.mnt = path->mnt;
837 nd->path.dentry = path->dentry;
838}
839
840static int nd_jump_root(struct nameidata *nd)
841{
842 if (nd->flags & LOOKUP_RCU) {
843 struct dentry *d;
844 nd->path = nd->root;
845 d = nd->path.dentry;
846 nd->inode = d->d_inode;
847 nd->seq = nd->root_seq;
848 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
849 return -ECHILD;
850 } else {
851 path_put(&nd->path);
852 nd->path = nd->root;
853 path_get(&nd->path);
854 nd->inode = nd->path.dentry->d_inode;
855 }
856 nd->flags |= LOOKUP_JUMPED;
857 return 0;
858}
859
860/*
861 * Helper to directly jump to a known parsed path from ->get_link,
862 * caller must have taken a reference to path beforehand.
863 */
864void nd_jump_link(struct path *path)
865{
866 struct nameidata *nd = current->nameidata;
867 path_put(&nd->path);
868
869 nd->path = *path;
870 nd->inode = nd->path.dentry->d_inode;
871 nd->flags |= LOOKUP_JUMPED;
872}
873
874static inline void put_link(struct nameidata *nd)
875{
876 struct saved *last = nd->stack + --nd->depth;
877 do_delayed_call(&last->done);
878 if (!(nd->flags & LOOKUP_RCU))
879 path_put(&last->link);
880}
881
882int sysctl_protected_symlinks __read_mostly = 0;
883int sysctl_protected_hardlinks __read_mostly = 0;
884
885/**
886 * may_follow_link - Check symlink following for unsafe situations
887 * @nd: nameidata pathwalk data
888 *
889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891 * in a sticky world-writable directory. This is to protect privileged
892 * processes from failing races against path names that may change out
893 * from under them by way of other users creating malicious symlinks.
894 * It will permit symlinks to be followed only when outside a sticky
895 * world-writable directory, or when the uid of the symlink and follower
896 * match, or when the directory owner matches the symlink's owner.
897 *
898 * Returns 0 if following the symlink is allowed, -ve on error.
899 */
900static inline int may_follow_link(struct nameidata *nd)
901{
902 const struct inode *inode;
903 const struct inode *parent;
904
905 if (!sysctl_protected_symlinks)
906 return 0;
907
908 /* Allowed if owner and follower match. */
909 inode = nd->link_inode;
910 if (uid_eq(current_cred()->fsuid, inode->i_uid))
911 return 0;
912
913 /* Allowed if parent directory not sticky and world-writable. */
914 parent = nd->inode;
915 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
916 return 0;
917
918 /* Allowed if parent directory and link owner match. */
919 if (uid_eq(parent->i_uid, inode->i_uid))
920 return 0;
921
922 if (nd->flags & LOOKUP_RCU)
923 return -ECHILD;
924
925 audit_log_link_denied("follow_link", &nd->stack[0].link);
926 return -EACCES;
927}
928
929/**
930 * safe_hardlink_source - Check for safe hardlink conditions
931 * @inode: the source inode to hardlink from
932 *
933 * Return false if at least one of the following conditions:
934 * - inode is not a regular file
935 * - inode is setuid
936 * - inode is setgid and group-exec
937 * - access failure for read and write
938 *
939 * Otherwise returns true.
940 */
941static bool safe_hardlink_source(struct inode *inode)
942{
943 umode_t mode = inode->i_mode;
944
945 /* Special files should not get pinned to the filesystem. */
946 if (!S_ISREG(mode))
947 return false;
948
949 /* Setuid files should not get pinned to the filesystem. */
950 if (mode & S_ISUID)
951 return false;
952
953 /* Executable setgid files should not get pinned to the filesystem. */
954 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
955 return false;
956
957 /* Hardlinking to unreadable or unwritable sources is dangerous. */
958 if (inode_permission(inode, MAY_READ | MAY_WRITE))
959 return false;
960
961 return true;
962}
963
964/**
965 * may_linkat - Check permissions for creating a hardlink
966 * @link: the source to hardlink from
967 *
968 * Block hardlink when all of:
969 * - sysctl_protected_hardlinks enabled
970 * - fsuid does not match inode
971 * - hardlink source is unsafe (see safe_hardlink_source() above)
972 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
973 *
974 * Returns 0 if successful, -ve on error.
975 */
976static int may_linkat(struct path *link)
977{
978 struct inode *inode;
979
980 if (!sysctl_protected_hardlinks)
981 return 0;
982
983 inode = link->dentry->d_inode;
984
985 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
986 * otherwise, it must be a safe source.
987 */
988 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
989 return 0;
990
991 audit_log_link_denied("linkat", link);
992 return -EPERM;
993}
994
995static __always_inline
996const char *get_link(struct nameidata *nd)
997{
998 struct saved *last = nd->stack + nd->depth - 1;
999 struct dentry *dentry = last->link.dentry;
1000 struct inode *inode = nd->link_inode;
1001 int error;
1002 const char *res;
1003
1004 if (!(nd->flags & LOOKUP_RCU)) {
1005 touch_atime(&last->link);
1006 cond_resched();
1007 } else if (atime_needs_update(&last->link, inode)) {
1008 if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 return ERR_PTR(-ECHILD);
1010 touch_atime(&last->link);
1011 }
1012
1013 error = security_inode_follow_link(dentry, inode,
1014 nd->flags & LOOKUP_RCU);
1015 if (unlikely(error))
1016 return ERR_PTR(error);
1017
1018 nd->last_type = LAST_BIND;
1019 res = inode->i_link;
1020 if (!res) {
1021 const char * (*get)(struct dentry *, struct inode *,
1022 struct delayed_call *);
1023 get = inode->i_op->get_link;
1024 if (nd->flags & LOOKUP_RCU) {
1025 res = get(NULL, inode, &last->done);
1026 if (res == ERR_PTR(-ECHILD)) {
1027 if (unlikely(unlazy_walk(nd, NULL, 0)))
1028 return ERR_PTR(-ECHILD);
1029 res = get(dentry, inode, &last->done);
1030 }
1031 } else {
1032 res = get(dentry, inode, &last->done);
1033 }
1034 if (IS_ERR_OR_NULL(res))
1035 return res;
1036 }
1037 if (*res == '/') {
1038 if (!nd->root.mnt)
1039 set_root(nd);
1040 if (unlikely(nd_jump_root(nd)))
1041 return ERR_PTR(-ECHILD);
1042 while (unlikely(*++res == '/'))
1043 ;
1044 }
1045 if (!*res)
1046 res = NULL;
1047 return res;
1048}
1049
1050/*
1051 * follow_up - Find the mountpoint of path's vfsmount
1052 *
1053 * Given a path, find the mountpoint of its source file system.
1054 * Replace @path with the path of the mountpoint in the parent mount.
1055 * Up is towards /.
1056 *
1057 * Return 1 if we went up a level and 0 if we were already at the
1058 * root.
1059 */
1060int follow_up(struct path *path)
1061{
1062 struct mount *mnt = real_mount(path->mnt);
1063 struct mount *parent;
1064 struct dentry *mountpoint;
1065
1066 read_seqlock_excl(&mount_lock);
1067 parent = mnt->mnt_parent;
1068 if (parent == mnt) {
1069 read_sequnlock_excl(&mount_lock);
1070 return 0;
1071 }
1072 mntget(&parent->mnt);
1073 mountpoint = dget(mnt->mnt_mountpoint);
1074 read_sequnlock_excl(&mount_lock);
1075 dput(path->dentry);
1076 path->dentry = mountpoint;
1077 mntput(path->mnt);
1078 path->mnt = &parent->mnt;
1079 return 1;
1080}
1081EXPORT_SYMBOL(follow_up);
1082
1083/*
1084 * Perform an automount
1085 * - return -EISDIR to tell follow_managed() to stop and return the path we
1086 * were called with.
1087 */
1088static int follow_automount(struct path *path, struct nameidata *nd,
1089 bool *need_mntput)
1090{
1091 struct vfsmount *mnt;
1092 int err;
1093
1094 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1095 return -EREMOTE;
1096
1097 /* We don't want to mount if someone's just doing a stat -
1098 * unless they're stat'ing a directory and appended a '/' to
1099 * the name.
1100 *
1101 * We do, however, want to mount if someone wants to open or
1102 * create a file of any type under the mountpoint, wants to
1103 * traverse through the mountpoint or wants to open the
1104 * mounted directory. Also, autofs may mark negative dentries
1105 * as being automount points. These will need the attentions
1106 * of the daemon to instantiate them before they can be used.
1107 */
1108 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1109 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1110 path->dentry->d_inode)
1111 return -EISDIR;
1112
1113 nd->total_link_count++;
1114 if (nd->total_link_count >= 40)
1115 return -ELOOP;
1116
1117 mnt = path->dentry->d_op->d_automount(path);
1118 if (IS_ERR(mnt)) {
1119 /*
1120 * The filesystem is allowed to return -EISDIR here to indicate
1121 * it doesn't want to automount. For instance, autofs would do
1122 * this so that its userspace daemon can mount on this dentry.
1123 *
1124 * However, we can only permit this if it's a terminal point in
1125 * the path being looked up; if it wasn't then the remainder of
1126 * the path is inaccessible and we should say so.
1127 */
1128 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1129 return -EREMOTE;
1130 return PTR_ERR(mnt);
1131 }
1132
1133 if (!mnt) /* mount collision */
1134 return 0;
1135
1136 if (!*need_mntput) {
1137 /* lock_mount() may release path->mnt on error */
1138 mntget(path->mnt);
1139 *need_mntput = true;
1140 }
1141 err = finish_automount(mnt, path);
1142
1143 switch (err) {
1144 case -EBUSY:
1145 /* Someone else made a mount here whilst we were busy */
1146 return 0;
1147 case 0:
1148 path_put(path);
1149 path->mnt = mnt;
1150 path->dentry = dget(mnt->mnt_root);
1151 return 0;
1152 default:
1153 return err;
1154 }
1155
1156}
1157
1158/*
1159 * Handle a dentry that is managed in some way.
1160 * - Flagged for transit management (autofs)
1161 * - Flagged as mountpoint
1162 * - Flagged as automount point
1163 *
1164 * This may only be called in refwalk mode.
1165 *
1166 * Serialization is taken care of in namespace.c
1167 */
1168static int follow_managed(struct path *path, struct nameidata *nd)
1169{
1170 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1171 unsigned managed;
1172 bool need_mntput = false;
1173 int ret = 0;
1174
1175 /* Given that we're not holding a lock here, we retain the value in a
1176 * local variable for each dentry as we look at it so that we don't see
1177 * the components of that value change under us */
1178 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1179 managed &= DCACHE_MANAGED_DENTRY,
1180 unlikely(managed != 0)) {
1181 /* Allow the filesystem to manage the transit without i_mutex
1182 * being held. */
1183 if (managed & DCACHE_MANAGE_TRANSIT) {
1184 BUG_ON(!path->dentry->d_op);
1185 BUG_ON(!path->dentry->d_op->d_manage);
1186 ret = path->dentry->d_op->d_manage(path->dentry, false);
1187 if (ret < 0)
1188 break;
1189 }
1190
1191 /* Transit to a mounted filesystem. */
1192 if (managed & DCACHE_MOUNTED) {
1193 struct vfsmount *mounted = lookup_mnt(path);
1194 if (mounted) {
1195 dput(path->dentry);
1196 if (need_mntput)
1197 mntput(path->mnt);
1198 path->mnt = mounted;
1199 path->dentry = dget(mounted->mnt_root);
1200 need_mntput = true;
1201 continue;
1202 }
1203
1204 /* Something is mounted on this dentry in another
1205 * namespace and/or whatever was mounted there in this
1206 * namespace got unmounted before lookup_mnt() could
1207 * get it */
1208 }
1209
1210 /* Handle an automount point */
1211 if (managed & DCACHE_NEED_AUTOMOUNT) {
1212 ret = follow_automount(path, nd, &need_mntput);
1213 if (ret < 0)
1214 break;
1215 continue;
1216 }
1217
1218 /* We didn't change the current path point */
1219 break;
1220 }
1221
1222 if (need_mntput && path->mnt == mnt)
1223 mntput(path->mnt);
1224 if (ret == -EISDIR || !ret)
1225 ret = 1;
1226 if (need_mntput)
1227 nd->flags |= LOOKUP_JUMPED;
1228 if (unlikely(ret < 0))
1229 path_put_conditional(path, nd);
1230 return ret;
1231}
1232
1233int follow_down_one(struct path *path)
1234{
1235 struct vfsmount *mounted;
1236
1237 mounted = lookup_mnt(path);
1238 if (mounted) {
1239 dput(path->dentry);
1240 mntput(path->mnt);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1243 return 1;
1244 }
1245 return 0;
1246}
1247EXPORT_SYMBOL(follow_down_one);
1248
1249static inline int managed_dentry_rcu(struct dentry *dentry)
1250{
1251 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1252 dentry->d_op->d_manage(dentry, true) : 0;
1253}
1254
1255/*
1256 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1257 * we meet a managed dentry that would need blocking.
1258 */
1259static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1260 struct inode **inode, unsigned *seqp)
1261{
1262 for (;;) {
1263 struct mount *mounted;
1264 /*
1265 * Don't forget we might have a non-mountpoint managed dentry
1266 * that wants to block transit.
1267 */
1268 switch (managed_dentry_rcu(path->dentry)) {
1269 case -ECHILD:
1270 default:
1271 return false;
1272 case -EISDIR:
1273 return true;
1274 case 0:
1275 break;
1276 }
1277
1278 if (!d_mountpoint(path->dentry))
1279 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1280
1281 mounted = __lookup_mnt(path->mnt, path->dentry);
1282 if (!mounted)
1283 break;
1284 path->mnt = &mounted->mnt;
1285 path->dentry = mounted->mnt.mnt_root;
1286 nd->flags |= LOOKUP_JUMPED;
1287 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1288 /*
1289 * Update the inode too. We don't need to re-check the
1290 * dentry sequence number here after this d_inode read,
1291 * because a mount-point is always pinned.
1292 */
1293 *inode = path->dentry->d_inode;
1294 }
1295 return !read_seqretry(&mount_lock, nd->m_seq) &&
1296 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297}
1298
1299static int follow_dotdot_rcu(struct nameidata *nd)
1300{
1301 struct inode *inode = nd->inode;
1302
1303 while (1) {
1304 if (path_equal(&nd->path, &nd->root))
1305 break;
1306 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 struct dentry *old = nd->path.dentry;
1308 struct dentry *parent = old->d_parent;
1309 unsigned seq;
1310
1311 inode = parent->d_inode;
1312 seq = read_seqcount_begin(&parent->d_seq);
1313 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 return -ECHILD;
1315 nd->path.dentry = parent;
1316 nd->seq = seq;
1317 if (unlikely(!path_connected(&nd->path)))
1318 return -ENOENT;
1319 break;
1320 } else {
1321 struct mount *mnt = real_mount(nd->path.mnt);
1322 struct mount *mparent = mnt->mnt_parent;
1323 struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 struct inode *inode2 = mountpoint->d_inode;
1325 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 return -ECHILD;
1328 if (&mparent->mnt == nd->path.mnt)
1329 break;
1330 /* we know that mountpoint was pinned */
1331 nd->path.dentry = mountpoint;
1332 nd->path.mnt = &mparent->mnt;
1333 inode = inode2;
1334 nd->seq = seq;
1335 }
1336 }
1337 while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 struct mount *mounted;
1339 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 return -ECHILD;
1342 if (!mounted)
1343 break;
1344 nd->path.mnt = &mounted->mnt;
1345 nd->path.dentry = mounted->mnt.mnt_root;
1346 inode = nd->path.dentry->d_inode;
1347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 }
1349 nd->inode = inode;
1350 return 0;
1351}
1352
1353/*
1354 * Follow down to the covering mount currently visible to userspace. At each
1355 * point, the filesystem owning that dentry may be queried as to whether the
1356 * caller is permitted to proceed or not.
1357 */
1358int follow_down(struct path *path)
1359{
1360 unsigned managed;
1361 int ret;
1362
1363 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 /* Allow the filesystem to manage the transit without i_mutex
1366 * being held.
1367 *
1368 * We indicate to the filesystem if someone is trying to mount
1369 * something here. This gives autofs the chance to deny anyone
1370 * other than its daemon the right to mount on its
1371 * superstructure.
1372 *
1373 * The filesystem may sleep at this point.
1374 */
1375 if (managed & DCACHE_MANAGE_TRANSIT) {
1376 BUG_ON(!path->dentry->d_op);
1377 BUG_ON(!path->dentry->d_op->d_manage);
1378 ret = path->dentry->d_op->d_manage(
1379 path->dentry, false);
1380 if (ret < 0)
1381 return ret == -EISDIR ? 0 : ret;
1382 }
1383
1384 /* Transit to a mounted filesystem. */
1385 if (managed & DCACHE_MOUNTED) {
1386 struct vfsmount *mounted = lookup_mnt(path);
1387 if (!mounted)
1388 break;
1389 dput(path->dentry);
1390 mntput(path->mnt);
1391 path->mnt = mounted;
1392 path->dentry = dget(mounted->mnt_root);
1393 continue;
1394 }
1395
1396 /* Don't handle automount points here */
1397 break;
1398 }
1399 return 0;
1400}
1401EXPORT_SYMBOL(follow_down);
1402
1403/*
1404 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405 */
1406static void follow_mount(struct path *path)
1407{
1408 while (d_mountpoint(path->dentry)) {
1409 struct vfsmount *mounted = lookup_mnt(path);
1410 if (!mounted)
1411 break;
1412 dput(path->dentry);
1413 mntput(path->mnt);
1414 path->mnt = mounted;
1415 path->dentry = dget(mounted->mnt_root);
1416 }
1417}
1418
1419static int follow_dotdot(struct nameidata *nd)
1420{
1421 while(1) {
1422 struct dentry *old = nd->path.dentry;
1423
1424 if (nd->path.dentry == nd->root.dentry &&
1425 nd->path.mnt == nd->root.mnt) {
1426 break;
1427 }
1428 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1429 /* rare case of legitimate dget_parent()... */
1430 nd->path.dentry = dget_parent(nd->path.dentry);
1431 dput(old);
1432 if (unlikely(!path_connected(&nd->path)))
1433 return -ENOENT;
1434 break;
1435 }
1436 if (!follow_up(&nd->path))
1437 break;
1438 }
1439 follow_mount(&nd->path);
1440 nd->inode = nd->path.dentry->d_inode;
1441 return 0;
1442}
1443
1444/*
1445 * This looks up the name in dcache, possibly revalidates the old dentry and
1446 * allocates a new one if not found or not valid. In the need_lookup argument
1447 * returns whether i_op->lookup is necessary.
1448 */
1449static struct dentry *lookup_dcache(const struct qstr *name,
1450 struct dentry *dir,
1451 unsigned int flags)
1452{
1453 struct dentry *dentry;
1454 int error;
1455
1456 dentry = d_lookup(dir, name);
1457 if (dentry) {
1458 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1459 error = d_revalidate(dentry, flags);
1460 if (unlikely(error <= 0)) {
1461 if (!error)
1462 d_invalidate(dentry);
1463 dput(dentry);
1464 return ERR_PTR(error);
1465 }
1466 }
1467 }
1468 return dentry;
1469}
1470
1471/*
1472 * Call i_op->lookup on the dentry. The dentry must be negative and
1473 * unhashed.
1474 *
1475 * dir->d_inode->i_mutex must be held
1476 */
1477static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1478 unsigned int flags)
1479{
1480 struct dentry *old;
1481
1482 /* Don't create child dentry for a dead directory. */
1483 if (unlikely(IS_DEADDIR(dir))) {
1484 dput(dentry);
1485 return ERR_PTR(-ENOENT);
1486 }
1487
1488 old = dir->i_op->lookup(dir, dentry, flags);
1489 if (unlikely(old)) {
1490 dput(dentry);
1491 dentry = old;
1492 }
1493 return dentry;
1494}
1495
1496static struct dentry *__lookup_hash(const struct qstr *name,
1497 struct dentry *base, unsigned int flags)
1498{
1499 struct dentry *dentry = lookup_dcache(name, base, flags);
1500
1501 if (dentry)
1502 return dentry;
1503
1504 dentry = d_alloc(base, name);
1505 if (unlikely(!dentry))
1506 return ERR_PTR(-ENOMEM);
1507
1508 return lookup_real(base->d_inode, dentry, flags);
1509}
1510
1511static int lookup_fast(struct nameidata *nd,
1512 struct path *path, struct inode **inode,
1513 unsigned *seqp)
1514{
1515 struct vfsmount *mnt = nd->path.mnt;
1516 struct dentry *dentry, *parent = nd->path.dentry;
1517 int status = 1;
1518 int err;
1519
1520 /*
1521 * Rename seqlock is not required here because in the off chance
1522 * of a false negative due to a concurrent rename, the caller is
1523 * going to fall back to non-racy lookup.
1524 */
1525 if (nd->flags & LOOKUP_RCU) {
1526 unsigned seq;
1527 bool negative;
1528 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1529 if (unlikely(!dentry)) {
1530 if (unlazy_walk(nd, NULL, 0))
1531 return -ECHILD;
1532 return 0;
1533 }
1534
1535 /*
1536 * This sequence count validates that the inode matches
1537 * the dentry name information from lookup.
1538 */
1539 *inode = d_backing_inode(dentry);
1540 negative = d_is_negative(dentry);
1541 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1542 return -ECHILD;
1543
1544 /*
1545 * This sequence count validates that the parent had no
1546 * changes while we did the lookup of the dentry above.
1547 *
1548 * The memory barrier in read_seqcount_begin of child is
1549 * enough, we can use __read_seqcount_retry here.
1550 */
1551 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1552 return -ECHILD;
1553
1554 *seqp = seq;
1555 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1556 status = d_revalidate(dentry, nd->flags);
1557 if (unlikely(status <= 0)) {
1558 if (unlazy_walk(nd, dentry, seq))
1559 return -ECHILD;
1560 if (status == -ECHILD)
1561 status = d_revalidate(dentry, nd->flags);
1562 } else {
1563 /*
1564 * Note: do negative dentry check after revalidation in
1565 * case that drops it.
1566 */
1567 if (unlikely(negative))
1568 return -ENOENT;
1569 path->mnt = mnt;
1570 path->dentry = dentry;
1571 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1572 return 1;
1573 if (unlazy_walk(nd, dentry, seq))
1574 return -ECHILD;
1575 }
1576 } else {
1577 dentry = __d_lookup(parent, &nd->last);
1578 if (unlikely(!dentry))
1579 return 0;
1580 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1581 status = d_revalidate(dentry, nd->flags);
1582 }
1583 if (unlikely(status <= 0)) {
1584 if (!status)
1585 d_invalidate(dentry);
1586 dput(dentry);
1587 return status;
1588 }
1589 if (unlikely(d_is_negative(dentry))) {
1590 dput(dentry);
1591 return -ENOENT;
1592 }
1593
1594 path->mnt = mnt;
1595 path->dentry = dentry;
1596 err = follow_managed(path, nd);
1597 if (likely(err > 0))
1598 *inode = d_backing_inode(path->dentry);
1599 return err;
1600}
1601
1602/* Fast lookup failed, do it the slow way */
1603static struct dentry *lookup_slow(const struct qstr *name,
1604 struct dentry *dir,
1605 unsigned int flags)
1606{
1607 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1608 struct inode *inode = dir->d_inode;
1609 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1610
1611 inode_lock_shared(inode);
1612 /* Don't go there if it's already dead */
1613 if (unlikely(IS_DEADDIR(inode)))
1614 goto out;
1615again:
1616 dentry = d_alloc_parallel(dir, name, &wq);
1617 if (IS_ERR(dentry))
1618 goto out;
1619 if (unlikely(!d_in_lookup(dentry))) {
1620 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1621 !(flags & LOOKUP_NO_REVAL)) {
1622 int error = d_revalidate(dentry, flags);
1623 if (unlikely(error <= 0)) {
1624 if (!error) {
1625 d_invalidate(dentry);
1626 dput(dentry);
1627 goto again;
1628 }
1629 dput(dentry);
1630 dentry = ERR_PTR(error);
1631 }
1632 }
1633 } else {
1634 old = inode->i_op->lookup(inode, dentry, flags);
1635 d_lookup_done(dentry);
1636 if (unlikely(old)) {
1637 dput(dentry);
1638 dentry = old;
1639 }
1640 }
1641out:
1642 inode_unlock_shared(inode);
1643 return dentry;
1644}
1645
1646static inline int may_lookup(struct nameidata *nd)
1647{
1648 if (nd->flags & LOOKUP_RCU) {
1649 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1650 if (err != -ECHILD)
1651 return err;
1652 if (unlazy_walk(nd, NULL, 0))
1653 return -ECHILD;
1654 }
1655 return inode_permission(nd->inode, MAY_EXEC);
1656}
1657
1658static inline int handle_dots(struct nameidata *nd, int type)
1659{
1660 if (type == LAST_DOTDOT) {
1661 if (!nd->root.mnt)
1662 set_root(nd);
1663 if (nd->flags & LOOKUP_RCU) {
1664 return follow_dotdot_rcu(nd);
1665 } else
1666 return follow_dotdot(nd);
1667 }
1668 return 0;
1669}
1670
1671static int pick_link(struct nameidata *nd, struct path *link,
1672 struct inode *inode, unsigned seq)
1673{
1674 int error;
1675 struct saved *last;
1676 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1677 path_to_nameidata(link, nd);
1678 return -ELOOP;
1679 }
1680 if (!(nd->flags & LOOKUP_RCU)) {
1681 if (link->mnt == nd->path.mnt)
1682 mntget(link->mnt);
1683 }
1684 error = nd_alloc_stack(nd);
1685 if (unlikely(error)) {
1686 if (error == -ECHILD) {
1687 if (unlikely(unlazy_link(nd, link, seq)))
1688 return -ECHILD;
1689 error = nd_alloc_stack(nd);
1690 }
1691 if (error) {
1692 path_put(link);
1693 return error;
1694 }
1695 }
1696
1697 last = nd->stack + nd->depth++;
1698 last->link = *link;
1699 clear_delayed_call(&last->done);
1700 nd->link_inode = inode;
1701 last->seq = seq;
1702 return 1;
1703}
1704
1705/*
1706 * Do we need to follow links? We _really_ want to be able
1707 * to do this check without having to look at inode->i_op,
1708 * so we keep a cache of "no, this doesn't need follow_link"
1709 * for the common case.
1710 */
1711static inline int should_follow_link(struct nameidata *nd, struct path *link,
1712 int follow,
1713 struct inode *inode, unsigned seq)
1714{
1715 if (likely(!d_is_symlink(link->dentry)))
1716 return 0;
1717 if (!follow)
1718 return 0;
1719 /* make sure that d_is_symlink above matches inode */
1720 if (nd->flags & LOOKUP_RCU) {
1721 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1722 return -ECHILD;
1723 }
1724 return pick_link(nd, link, inode, seq);
1725}
1726
1727enum {WALK_GET = 1, WALK_PUT = 2};
1728
1729static int walk_component(struct nameidata *nd, int flags)
1730{
1731 struct path path;
1732 struct inode *inode;
1733 unsigned seq;
1734 int err;
1735 /*
1736 * "." and ".." are special - ".." especially so because it has
1737 * to be able to know about the current root directory and
1738 * parent relationships.
1739 */
1740 if (unlikely(nd->last_type != LAST_NORM)) {
1741 err = handle_dots(nd, nd->last_type);
1742 if (flags & WALK_PUT)
1743 put_link(nd);
1744 return err;
1745 }
1746 err = lookup_fast(nd, &path, &inode, &seq);
1747 if (unlikely(err <= 0)) {
1748 if (err < 0)
1749 return err;
1750 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1751 nd->flags);
1752 if (IS_ERR(path.dentry))
1753 return PTR_ERR(path.dentry);
1754
1755 path.mnt = nd->path.mnt;
1756 err = follow_managed(&path, nd);
1757 if (unlikely(err < 0))
1758 return err;
1759
1760 if (unlikely(d_is_negative(path.dentry))) {
1761 path_to_nameidata(&path, nd);
1762 return -ENOENT;
1763 }
1764
1765 seq = 0; /* we are already out of RCU mode */
1766 inode = d_backing_inode(path.dentry);
1767 }
1768
1769 if (flags & WALK_PUT)
1770 put_link(nd);
1771 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1772 if (unlikely(err))
1773 return err;
1774 path_to_nameidata(&path, nd);
1775 nd->inode = inode;
1776 nd->seq = seq;
1777 return 0;
1778}
1779
1780/*
1781 * We can do the critical dentry name comparison and hashing
1782 * operations one word at a time, but we are limited to:
1783 *
1784 * - Architectures with fast unaligned word accesses. We could
1785 * do a "get_unaligned()" if this helps and is sufficiently
1786 * fast.
1787 *
1788 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1789 * do not trap on the (extremely unlikely) case of a page
1790 * crossing operation.
1791 *
1792 * - Furthermore, we need an efficient 64-bit compile for the
1793 * 64-bit case in order to generate the "number of bytes in
1794 * the final mask". Again, that could be replaced with a
1795 * efficient population count instruction or similar.
1796 */
1797#ifdef CONFIG_DCACHE_WORD_ACCESS
1798
1799#include <asm/word-at-a-time.h>
1800
1801#ifdef HASH_MIX
1802
1803/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1804
1805#elif defined(CONFIG_64BIT)
1806/*
1807 * Register pressure in the mixing function is an issue, particularly
1808 * on 32-bit x86, but almost any function requires one state value and
1809 * one temporary. Instead, use a function designed for two state values
1810 * and no temporaries.
1811 *
1812 * This function cannot create a collision in only two iterations, so
1813 * we have two iterations to achieve avalanche. In those two iterations,
1814 * we have six layers of mixing, which is enough to spread one bit's
1815 * influence out to 2^6 = 64 state bits.
1816 *
1817 * Rotate constants are scored by considering either 64 one-bit input
1818 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1819 * probability of that delta causing a change to each of the 128 output
1820 * bits, using a sample of random initial states.
1821 *
1822 * The Shannon entropy of the computed probabilities is then summed
1823 * to produce a score. Ideally, any input change has a 50% chance of
1824 * toggling any given output bit.
1825 *
1826 * Mixing scores (in bits) for (12,45):
1827 * Input delta: 1-bit 2-bit
1828 * 1 round: 713.3 42542.6
1829 * 2 rounds: 2753.7 140389.8
1830 * 3 rounds: 5954.1 233458.2
1831 * 4 rounds: 7862.6 256672.2
1832 * Perfect: 8192 258048
1833 * (64*128) (64*63/2 * 128)
1834 */
1835#define HASH_MIX(x, y, a) \
1836 ( x ^= (a), \
1837 y ^= x, x = rol64(x,12),\
1838 x += y, y = rol64(y,45),\
1839 y *= 9 )
1840
1841/*
1842 * Fold two longs into one 32-bit hash value. This must be fast, but
1843 * latency isn't quite as critical, as there is a fair bit of additional
1844 * work done before the hash value is used.
1845 */
1846static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1847{
1848 y ^= x * GOLDEN_RATIO_64;
1849 y *= GOLDEN_RATIO_64;
1850 return y >> 32;
1851}
1852
1853#else /* 32-bit case */
1854
1855/*
1856 * Mixing scores (in bits) for (7,20):
1857 * Input delta: 1-bit 2-bit
1858 * 1 round: 330.3 9201.6
1859 * 2 rounds: 1246.4 25475.4
1860 * 3 rounds: 1907.1 31295.1
1861 * 4 rounds: 2042.3 31718.6
1862 * Perfect: 2048 31744
1863 * (32*64) (32*31/2 * 64)
1864 */
1865#define HASH_MIX(x, y, a) \
1866 ( x ^= (a), \
1867 y ^= x, x = rol32(x, 7),\
1868 x += y, y = rol32(y,20),\
1869 y *= 9 )
1870
1871static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1872{
1873 /* Use arch-optimized multiply if one exists */
1874 return __hash_32(y ^ __hash_32(x));
1875}
1876
1877#endif
1878
1879/*
1880 * Return the hash of a string of known length. This is carfully
1881 * designed to match hash_name(), which is the more critical function.
1882 * In particular, we must end by hashing a final word containing 0..7
1883 * payload bytes, to match the way that hash_name() iterates until it
1884 * finds the delimiter after the name.
1885 */
1886unsigned int full_name_hash(const char *name, unsigned int len)
1887{
1888 unsigned long a, x = 0, y = 0;
1889
1890 for (;;) {
1891 if (!len)
1892 goto done;
1893 a = load_unaligned_zeropad(name);
1894 if (len < sizeof(unsigned long))
1895 break;
1896 HASH_MIX(x, y, a);
1897 name += sizeof(unsigned long);
1898 len -= sizeof(unsigned long);
1899 }
1900 x ^= a & bytemask_from_count(len);
1901done:
1902 return fold_hash(x, y);
1903}
1904EXPORT_SYMBOL(full_name_hash);
1905
1906/* Return the "hash_len" (hash and length) of a null-terminated string */
1907u64 hashlen_string(const char *name)
1908{
1909 unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1910 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1911
1912 len = -sizeof(unsigned long);
1913 do {
1914 HASH_MIX(x, y, a);
1915 len += sizeof(unsigned long);
1916 a = load_unaligned_zeropad(name+len);
1917 } while (!has_zero(a, &adata, &constants));
1918
1919 adata = prep_zero_mask(a, adata, &constants);
1920 mask = create_zero_mask(adata);
1921 x ^= a & zero_bytemask(mask);
1922
1923 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1924}
1925EXPORT_SYMBOL(hashlen_string);
1926
1927/*
1928 * Calculate the length and hash of the path component, and
1929 * return the "hash_len" as the result.
1930 */
1931static inline u64 hash_name(const char *name)
1932{
1933 unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1934 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1935
1936 len = -sizeof(unsigned long);
1937 do {
1938 HASH_MIX(x, y, a);
1939 len += sizeof(unsigned long);
1940 a = load_unaligned_zeropad(name+len);
1941 b = a ^ REPEAT_BYTE('/');
1942 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1943
1944 adata = prep_zero_mask(a, adata, &constants);
1945 bdata = prep_zero_mask(b, bdata, &constants);
1946 mask = create_zero_mask(adata | bdata);
1947 x ^= a & zero_bytemask(mask);
1948
1949 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1950}
1951
1952#else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1953
1954/* Return the hash of a string of known length */
1955unsigned int full_name_hash(const char *name, unsigned int len)
1956{
1957 unsigned long hash = init_name_hash();
1958 while (len--)
1959 hash = partial_name_hash((unsigned char)*name++, hash);
1960 return end_name_hash(hash);
1961}
1962EXPORT_SYMBOL(full_name_hash);
1963
1964/* Return the "hash_len" (hash and length) of a null-terminated string */
1965u64 hash_string(const char *name)
1966{
1967 unsigned long hash = init_name_hash();
1968 unsigned long len = 0, c;
1969
1970 c = (unsigned char)*name;
1971 do {
1972 len++;
1973 hash = partial_name_hash(c, hash);
1974 c = (unsigned char)name[len];
1975 } while (c);
1976 return hashlen_create(end_name_hash(hash), len);
1977}
1978EXPORT_SYMBOL(hash_string);
1979
1980/*
1981 * We know there's a real path component here of at least
1982 * one character.
1983 */
1984static inline u64 hash_name(const char *name)
1985{
1986 unsigned long hash = init_name_hash();
1987 unsigned long len = 0, c;
1988
1989 c = (unsigned char)*name;
1990 do {
1991 len++;
1992 hash = partial_name_hash(c, hash);
1993 c = (unsigned char)name[len];
1994 } while (c && c != '/');
1995 return hashlen_create(end_name_hash(hash), len);
1996}
1997
1998#endif
1999
2000/*
2001 * Name resolution.
2002 * This is the basic name resolution function, turning a pathname into
2003 * the final dentry. We expect 'base' to be positive and a directory.
2004 *
2005 * Returns 0 and nd will have valid dentry and mnt on success.
2006 * Returns error and drops reference to input namei data on failure.
2007 */
2008static int link_path_walk(const char *name, struct nameidata *nd)
2009{
2010 int err;
2011
2012 while (*name=='/')
2013 name++;
2014 if (!*name)
2015 return 0;
2016
2017 /* At this point we know we have a real path component. */
2018 for(;;) {
2019 u64 hash_len;
2020 int type;
2021
2022 err = may_lookup(nd);
2023 if (err)
2024 return err;
2025
2026 hash_len = hash_name(name);
2027
2028 type = LAST_NORM;
2029 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2030 case 2:
2031 if (name[1] == '.') {
2032 type = LAST_DOTDOT;
2033 nd->flags |= LOOKUP_JUMPED;
2034 }
2035 break;
2036 case 1:
2037 type = LAST_DOT;
2038 }
2039 if (likely(type == LAST_NORM)) {
2040 struct dentry *parent = nd->path.dentry;
2041 nd->flags &= ~LOOKUP_JUMPED;
2042 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2043 struct qstr this = { { .hash_len = hash_len }, .name = name };
2044 err = parent->d_op->d_hash(parent, &this);
2045 if (err < 0)
2046 return err;
2047 hash_len = this.hash_len;
2048 name = this.name;
2049 }
2050 }
2051
2052 nd->last.hash_len = hash_len;
2053 nd->last.name = name;
2054 nd->last_type = type;
2055
2056 name += hashlen_len(hash_len);
2057 if (!*name)
2058 goto OK;
2059 /*
2060 * If it wasn't NUL, we know it was '/'. Skip that
2061 * slash, and continue until no more slashes.
2062 */
2063 do {
2064 name++;
2065 } while (unlikely(*name == '/'));
2066 if (unlikely(!*name)) {
2067OK:
2068 /* pathname body, done */
2069 if (!nd->depth)
2070 return 0;
2071 name = nd->stack[nd->depth - 1].name;
2072 /* trailing symlink, done */
2073 if (!name)
2074 return 0;
2075 /* last component of nested symlink */
2076 err = walk_component(nd, WALK_GET | WALK_PUT);
2077 } else {
2078 err = walk_component(nd, WALK_GET);
2079 }
2080 if (err < 0)
2081 return err;
2082
2083 if (err) {
2084 const char *s = get_link(nd);
2085
2086 if (IS_ERR(s))
2087 return PTR_ERR(s);
2088 err = 0;
2089 if (unlikely(!s)) {
2090 /* jumped */
2091 put_link(nd);
2092 } else {
2093 nd->stack[nd->depth - 1].name = name;
2094 name = s;
2095 continue;
2096 }
2097 }
2098 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2099 if (nd->flags & LOOKUP_RCU) {
2100 if (unlazy_walk(nd, NULL, 0))
2101 return -ECHILD;
2102 }
2103 return -ENOTDIR;
2104 }
2105 }
2106}
2107
2108static const char *path_init(struct nameidata *nd, unsigned flags)
2109{
2110 int retval = 0;
2111 const char *s = nd->name->name;
2112
2113 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2114 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2115 nd->depth = 0;
2116 if (flags & LOOKUP_ROOT) {
2117 struct dentry *root = nd->root.dentry;
2118 struct inode *inode = root->d_inode;
2119 if (*s) {
2120 if (!d_can_lookup(root))
2121 return ERR_PTR(-ENOTDIR);
2122 retval = inode_permission(inode, MAY_EXEC);
2123 if (retval)
2124 return ERR_PTR(retval);
2125 }
2126 nd->path = nd->root;
2127 nd->inode = inode;
2128 if (flags & LOOKUP_RCU) {
2129 rcu_read_lock();
2130 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2131 nd->root_seq = nd->seq;
2132 nd->m_seq = read_seqbegin(&mount_lock);
2133 } else {
2134 path_get(&nd->path);
2135 }
2136 return s;
2137 }
2138
2139 nd->root.mnt = NULL;
2140 nd->path.mnt = NULL;
2141 nd->path.dentry = NULL;
2142
2143 nd->m_seq = read_seqbegin(&mount_lock);
2144 if (*s == '/') {
2145 if (flags & LOOKUP_RCU)
2146 rcu_read_lock();
2147 set_root(nd);
2148 if (likely(!nd_jump_root(nd)))
2149 return s;
2150 nd->root.mnt = NULL;
2151 rcu_read_unlock();
2152 return ERR_PTR(-ECHILD);
2153 } else if (nd->dfd == AT_FDCWD) {
2154 if (flags & LOOKUP_RCU) {
2155 struct fs_struct *fs = current->fs;
2156 unsigned seq;
2157
2158 rcu_read_lock();
2159
2160 do {
2161 seq = read_seqcount_begin(&fs->seq);
2162 nd->path = fs->pwd;
2163 nd->inode = nd->path.dentry->d_inode;
2164 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2165 } while (read_seqcount_retry(&fs->seq, seq));
2166 } else {
2167 get_fs_pwd(current->fs, &nd->path);
2168 nd->inode = nd->path.dentry->d_inode;
2169 }
2170 return s;
2171 } else {
2172 /* Caller must check execute permissions on the starting path component */
2173 struct fd f = fdget_raw(nd->dfd);
2174 struct dentry *dentry;
2175
2176 if (!f.file)
2177 return ERR_PTR(-EBADF);
2178
2179 dentry = f.file->f_path.dentry;
2180
2181 if (*s) {
2182 if (!d_can_lookup(dentry)) {
2183 fdput(f);
2184 return ERR_PTR(-ENOTDIR);
2185 }
2186 }
2187
2188 nd->path = f.file->f_path;
2189 if (flags & LOOKUP_RCU) {
2190 rcu_read_lock();
2191 nd->inode = nd->path.dentry->d_inode;
2192 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2193 } else {
2194 path_get(&nd->path);
2195 nd->inode = nd->path.dentry->d_inode;
2196 }
2197 fdput(f);
2198 return s;
2199 }
2200}
2201
2202static const char *trailing_symlink(struct nameidata *nd)
2203{
2204 const char *s;
2205 int error = may_follow_link(nd);
2206 if (unlikely(error))
2207 return ERR_PTR(error);
2208 nd->flags |= LOOKUP_PARENT;
2209 nd->stack[0].name = NULL;
2210 s = get_link(nd);
2211 return s ? s : "";
2212}
2213
2214static inline int lookup_last(struct nameidata *nd)
2215{
2216 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2217 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2218
2219 nd->flags &= ~LOOKUP_PARENT;
2220 return walk_component(nd,
2221 nd->flags & LOOKUP_FOLLOW
2222 ? nd->depth
2223 ? WALK_PUT | WALK_GET
2224 : WALK_GET
2225 : 0);
2226}
2227
2228/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2229static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2230{
2231 const char *s = path_init(nd, flags);
2232 int err;
2233
2234 if (IS_ERR(s))
2235 return PTR_ERR(s);
2236 while (!(err = link_path_walk(s, nd))
2237 && ((err = lookup_last(nd)) > 0)) {
2238 s = trailing_symlink(nd);
2239 if (IS_ERR(s)) {
2240 err = PTR_ERR(s);
2241 break;
2242 }
2243 }
2244 if (!err)
2245 err = complete_walk(nd);
2246
2247 if (!err && nd->flags & LOOKUP_DIRECTORY)
2248 if (!d_can_lookup(nd->path.dentry))
2249 err = -ENOTDIR;
2250 if (!err) {
2251 *path = nd->path;
2252 nd->path.mnt = NULL;
2253 nd->path.dentry = NULL;
2254 }
2255 terminate_walk(nd);
2256 return err;
2257}
2258
2259static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2260 struct path *path, struct path *root)
2261{
2262 int retval;
2263 struct nameidata nd;
2264 if (IS_ERR(name))
2265 return PTR_ERR(name);
2266 if (unlikely(root)) {
2267 nd.root = *root;
2268 flags |= LOOKUP_ROOT;
2269 }
2270 set_nameidata(&nd, dfd, name);
2271 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2272 if (unlikely(retval == -ECHILD))
2273 retval = path_lookupat(&nd, flags, path);
2274 if (unlikely(retval == -ESTALE))
2275 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2276
2277 if (likely(!retval))
2278 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2279 restore_nameidata();
2280 putname(name);
2281 return retval;
2282}
2283
2284/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2285static int path_parentat(struct nameidata *nd, unsigned flags,
2286 struct path *parent)
2287{
2288 const char *s = path_init(nd, flags);
2289 int err;
2290 if (IS_ERR(s))
2291 return PTR_ERR(s);
2292 err = link_path_walk(s, nd);
2293 if (!err)
2294 err = complete_walk(nd);
2295 if (!err) {
2296 *parent = nd->path;
2297 nd->path.mnt = NULL;
2298 nd->path.dentry = NULL;
2299 }
2300 terminate_walk(nd);
2301 return err;
2302}
2303
2304static struct filename *filename_parentat(int dfd, struct filename *name,
2305 unsigned int flags, struct path *parent,
2306 struct qstr *last, int *type)
2307{
2308 int retval;
2309 struct nameidata nd;
2310
2311 if (IS_ERR(name))
2312 return name;
2313 set_nameidata(&nd, dfd, name);
2314 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2315 if (unlikely(retval == -ECHILD))
2316 retval = path_parentat(&nd, flags, parent);
2317 if (unlikely(retval == -ESTALE))
2318 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2319 if (likely(!retval)) {
2320 *last = nd.last;
2321 *type = nd.last_type;
2322 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2323 } else {
2324 putname(name);
2325 name = ERR_PTR(retval);
2326 }
2327 restore_nameidata();
2328 return name;
2329}
2330
2331/* does lookup, returns the object with parent locked */
2332struct dentry *kern_path_locked(const char *name, struct path *path)
2333{
2334 struct filename *filename;
2335 struct dentry *d;
2336 struct qstr last;
2337 int type;
2338
2339 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2340 &last, &type);
2341 if (IS_ERR(filename))
2342 return ERR_CAST(filename);
2343 if (unlikely(type != LAST_NORM)) {
2344 path_put(path);
2345 putname(filename);
2346 return ERR_PTR(-EINVAL);
2347 }
2348 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2349 d = __lookup_hash(&last, path->dentry, 0);
2350 if (IS_ERR(d)) {
2351 inode_unlock(path->dentry->d_inode);
2352 path_put(path);
2353 }
2354 putname(filename);
2355 return d;
2356}
2357
2358int kern_path(const char *name, unsigned int flags, struct path *path)
2359{
2360 return filename_lookup(AT_FDCWD, getname_kernel(name),
2361 flags, path, NULL);
2362}
2363EXPORT_SYMBOL(kern_path);
2364
2365/**
2366 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2367 * @dentry: pointer to dentry of the base directory
2368 * @mnt: pointer to vfs mount of the base directory
2369 * @name: pointer to file name
2370 * @flags: lookup flags
2371 * @path: pointer to struct path to fill
2372 */
2373int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2374 const char *name, unsigned int flags,
2375 struct path *path)
2376{
2377 struct path root = {.mnt = mnt, .dentry = dentry};
2378 /* the first argument of filename_lookup() is ignored with root */
2379 return filename_lookup(AT_FDCWD, getname_kernel(name),
2380 flags , path, &root);
2381}
2382EXPORT_SYMBOL(vfs_path_lookup);
2383
2384/**
2385 * lookup_hash - lookup single pathname component on already hashed name
2386 * @name: name and hash to lookup
2387 * @base: base directory to lookup from
2388 *
2389 * The name must have been verified and hashed (see lookup_one_len()). Using
2390 * this after just full_name_hash() is unsafe.
2391 *
2392 * This function also doesn't check for search permission on base directory.
2393 *
2394 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2395 * doing.
2396 *
2397 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2398 */
2399struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2400{
2401 struct dentry *ret;
2402
2403 ret = lookup_dcache(name, base, 0);
2404 if (!ret)
2405 ret = lookup_slow(name, base, 0);
2406
2407 return ret;
2408}
2409EXPORT_SYMBOL(lookup_hash);
2410
2411/**
2412 * lookup_one_len - filesystem helper to lookup single pathname component
2413 * @name: pathname component to lookup
2414 * @base: base directory to lookup from
2415 * @len: maximum length @len should be interpreted to
2416 *
2417 * Note that this routine is purely a helper for filesystem usage and should
2418 * not be called by generic code.
2419 *
2420 * The caller must hold base->i_mutex.
2421 */
2422struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2423{
2424 struct qstr this;
2425 unsigned int c;
2426 int err;
2427
2428 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2429
2430 this.name = name;
2431 this.len = len;
2432 this.hash = full_name_hash(name, len);
2433 if (!len)
2434 return ERR_PTR(-EACCES);
2435
2436 if (unlikely(name[0] == '.')) {
2437 if (len < 2 || (len == 2 && name[1] == '.'))
2438 return ERR_PTR(-EACCES);
2439 }
2440
2441 while (len--) {
2442 c = *(const unsigned char *)name++;
2443 if (c == '/' || c == '\0')
2444 return ERR_PTR(-EACCES);
2445 }
2446 /*
2447 * See if the low-level filesystem might want
2448 * to use its own hash..
2449 */
2450 if (base->d_flags & DCACHE_OP_HASH) {
2451 int err = base->d_op->d_hash(base, &this);
2452 if (err < 0)
2453 return ERR_PTR(err);
2454 }
2455
2456 err = inode_permission(base->d_inode, MAY_EXEC);
2457 if (err)
2458 return ERR_PTR(err);
2459
2460 return __lookup_hash(&this, base, 0);
2461}
2462EXPORT_SYMBOL(lookup_one_len);
2463
2464/**
2465 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2466 * @name: pathname component to lookup
2467 * @base: base directory to lookup from
2468 * @len: maximum length @len should be interpreted to
2469 *
2470 * Note that this routine is purely a helper for filesystem usage and should
2471 * not be called by generic code.
2472 *
2473 * Unlike lookup_one_len, it should be called without the parent
2474 * i_mutex held, and will take the i_mutex itself if necessary.
2475 */
2476struct dentry *lookup_one_len_unlocked(const char *name,
2477 struct dentry *base, int len)
2478{
2479 struct qstr this;
2480 unsigned int c;
2481 int err;
2482
2483 this.name = name;
2484 this.len = len;
2485 this.hash = full_name_hash(name, len);
2486 if (!len)
2487 return ERR_PTR(-EACCES);
2488
2489 if (unlikely(name[0] == '.')) {
2490 if (len < 2 || (len == 2 && name[1] == '.'))
2491 return ERR_PTR(-EACCES);
2492 }
2493
2494 while (len--) {
2495 c = *(const unsigned char *)name++;
2496 if (c == '/' || c == '\0')
2497 return ERR_PTR(-EACCES);
2498 }
2499 /*
2500 * See if the low-level filesystem might want
2501 * to use its own hash..
2502 */
2503 if (base->d_flags & DCACHE_OP_HASH) {
2504 int err = base->d_op->d_hash(base, &this);
2505 if (err < 0)
2506 return ERR_PTR(err);
2507 }
2508
2509 err = inode_permission(base->d_inode, MAY_EXEC);
2510 if (err)
2511 return ERR_PTR(err);
2512
2513 return lookup_hash(&this, base);
2514}
2515EXPORT_SYMBOL(lookup_one_len_unlocked);
2516
2517int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2518 struct path *path, int *empty)
2519{
2520 return filename_lookup(dfd, getname_flags(name, flags, empty),
2521 flags, path, NULL);
2522}
2523EXPORT_SYMBOL(user_path_at_empty);
2524
2525/*
2526 * NB: most callers don't do anything directly with the reference to the
2527 * to struct filename, but the nd->last pointer points into the name string
2528 * allocated by getname. So we must hold the reference to it until all
2529 * path-walking is complete.
2530 */
2531static inline struct filename *
2532user_path_parent(int dfd, const char __user *path,
2533 struct path *parent,
2534 struct qstr *last,
2535 int *type,
2536 unsigned int flags)
2537{
2538 /* only LOOKUP_REVAL is allowed in extra flags */
2539 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2540 parent, last, type);
2541}
2542
2543/**
2544 * mountpoint_last - look up last component for umount
2545 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2546 * @path: pointer to container for result
2547 *
2548 * This is a special lookup_last function just for umount. In this case, we
2549 * need to resolve the path without doing any revalidation.
2550 *
2551 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2552 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2553 * in almost all cases, this lookup will be served out of the dcache. The only
2554 * cases where it won't are if nd->last refers to a symlink or the path is
2555 * bogus and it doesn't exist.
2556 *
2557 * Returns:
2558 * -error: if there was an error during lookup. This includes -ENOENT if the
2559 * lookup found a negative dentry. The nd->path reference will also be
2560 * put in this case.
2561 *
2562 * 0: if we successfully resolved nd->path and found it to not to be a
2563 * symlink that needs to be followed. "path" will also be populated.
2564 * The nd->path reference will also be put.
2565 *
2566 * 1: if we successfully resolved nd->last and found it to be a symlink
2567 * that needs to be followed. "path" will be populated with the path
2568 * to the link, and nd->path will *not* be put.
2569 */
2570static int
2571mountpoint_last(struct nameidata *nd, struct path *path)
2572{
2573 int error = 0;
2574 struct dentry *dentry;
2575 struct dentry *dir = nd->path.dentry;
2576
2577 /* If we're in rcuwalk, drop out of it to handle last component */
2578 if (nd->flags & LOOKUP_RCU) {
2579 if (unlazy_walk(nd, NULL, 0))
2580 return -ECHILD;
2581 }
2582
2583 nd->flags &= ~LOOKUP_PARENT;
2584
2585 if (unlikely(nd->last_type != LAST_NORM)) {
2586 error = handle_dots(nd, nd->last_type);
2587 if (error)
2588 return error;
2589 dentry = dget(nd->path.dentry);
2590 } else {
2591 dentry = d_lookup(dir, &nd->last);
2592 if (!dentry) {
2593 /*
2594 * No cached dentry. Mounted dentries are pinned in the
2595 * cache, so that means that this dentry is probably
2596 * a symlink or the path doesn't actually point
2597 * to a mounted dentry.
2598 */
2599 dentry = lookup_slow(&nd->last, dir,
2600 nd->flags | LOOKUP_NO_REVAL);
2601 if (IS_ERR(dentry))
2602 return PTR_ERR(dentry);
2603 }
2604 }
2605 if (d_is_negative(dentry)) {
2606 dput(dentry);
2607 return -ENOENT;
2608 }
2609 if (nd->depth)
2610 put_link(nd);
2611 path->dentry = dentry;
2612 path->mnt = nd->path.mnt;
2613 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2614 d_backing_inode(dentry), 0);
2615 if (unlikely(error))
2616 return error;
2617 mntget(path->mnt);
2618 follow_mount(path);
2619 return 0;
2620}
2621
2622/**
2623 * path_mountpoint - look up a path to be umounted
2624 * @nd: lookup context
2625 * @flags: lookup flags
2626 * @path: pointer to container for result
2627 *
2628 * Look up the given name, but don't attempt to revalidate the last component.
2629 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2630 */
2631static int
2632path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2633{
2634 const char *s = path_init(nd, flags);
2635 int err;
2636 if (IS_ERR(s))
2637 return PTR_ERR(s);
2638 while (!(err = link_path_walk(s, nd)) &&
2639 (err = mountpoint_last(nd, path)) > 0) {
2640 s = trailing_symlink(nd);
2641 if (IS_ERR(s)) {
2642 err = PTR_ERR(s);
2643 break;
2644 }
2645 }
2646 terminate_walk(nd);
2647 return err;
2648}
2649
2650static int
2651filename_mountpoint(int dfd, struct filename *name, struct path *path,
2652 unsigned int flags)
2653{
2654 struct nameidata nd;
2655 int error;
2656 if (IS_ERR(name))
2657 return PTR_ERR(name);
2658 set_nameidata(&nd, dfd, name);
2659 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2660 if (unlikely(error == -ECHILD))
2661 error = path_mountpoint(&nd, flags, path);
2662 if (unlikely(error == -ESTALE))
2663 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2664 if (likely(!error))
2665 audit_inode(name, path->dentry, 0);
2666 restore_nameidata();
2667 putname(name);
2668 return error;
2669}
2670
2671/**
2672 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2673 * @dfd: directory file descriptor
2674 * @name: pathname from userland
2675 * @flags: lookup flags
2676 * @path: pointer to container to hold result
2677 *
2678 * A umount is a special case for path walking. We're not actually interested
2679 * in the inode in this situation, and ESTALE errors can be a problem. We
2680 * simply want track down the dentry and vfsmount attached at the mountpoint
2681 * and avoid revalidating the last component.
2682 *
2683 * Returns 0 and populates "path" on success.
2684 */
2685int
2686user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2687 struct path *path)
2688{
2689 return filename_mountpoint(dfd, getname(name), path, flags);
2690}
2691
2692int
2693kern_path_mountpoint(int dfd, const char *name, struct path *path,
2694 unsigned int flags)
2695{
2696 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2697}
2698EXPORT_SYMBOL(kern_path_mountpoint);
2699
2700int __check_sticky(struct inode *dir, struct inode *inode)
2701{
2702 kuid_t fsuid = current_fsuid();
2703
2704 if (uid_eq(inode->i_uid, fsuid))
2705 return 0;
2706 if (uid_eq(dir->i_uid, fsuid))
2707 return 0;
2708 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2709}
2710EXPORT_SYMBOL(__check_sticky);
2711
2712/*
2713 * Check whether we can remove a link victim from directory dir, check
2714 * whether the type of victim is right.
2715 * 1. We can't do it if dir is read-only (done in permission())
2716 * 2. We should have write and exec permissions on dir
2717 * 3. We can't remove anything from append-only dir
2718 * 4. We can't do anything with immutable dir (done in permission())
2719 * 5. If the sticky bit on dir is set we should either
2720 * a. be owner of dir, or
2721 * b. be owner of victim, or
2722 * c. have CAP_FOWNER capability
2723 * 6. If the victim is append-only or immutable we can't do antyhing with
2724 * links pointing to it.
2725 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2726 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2727 * 9. We can't remove a root or mountpoint.
2728 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2729 * nfs_async_unlink().
2730 */
2731static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2732{
2733 struct inode *inode = d_backing_inode(victim);
2734 int error;
2735
2736 if (d_is_negative(victim))
2737 return -ENOENT;
2738 BUG_ON(!inode);
2739
2740 BUG_ON(victim->d_parent->d_inode != dir);
2741 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2742
2743 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2744 if (error)
2745 return error;
2746 if (IS_APPEND(dir))
2747 return -EPERM;
2748
2749 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2750 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2751 return -EPERM;
2752 if (isdir) {
2753 if (!d_is_dir(victim))
2754 return -ENOTDIR;
2755 if (IS_ROOT(victim))
2756 return -EBUSY;
2757 } else if (d_is_dir(victim))
2758 return -EISDIR;
2759 if (IS_DEADDIR(dir))
2760 return -ENOENT;
2761 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2762 return -EBUSY;
2763 return 0;
2764}
2765
2766/* Check whether we can create an object with dentry child in directory
2767 * dir.
2768 * 1. We can't do it if child already exists (open has special treatment for
2769 * this case, but since we are inlined it's OK)
2770 * 2. We can't do it if dir is read-only (done in permission())
2771 * 3. We should have write and exec permissions on dir
2772 * 4. We can't do it if dir is immutable (done in permission())
2773 */
2774static inline int may_create(struct inode *dir, struct dentry *child)
2775{
2776 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2777 if (child->d_inode)
2778 return -EEXIST;
2779 if (IS_DEADDIR(dir))
2780 return -ENOENT;
2781 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2782}
2783
2784/*
2785 * p1 and p2 should be directories on the same fs.
2786 */
2787struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2788{
2789 struct dentry *p;
2790
2791 if (p1 == p2) {
2792 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2793 return NULL;
2794 }
2795
2796 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2797
2798 p = d_ancestor(p2, p1);
2799 if (p) {
2800 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2801 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2802 return p;
2803 }
2804
2805 p = d_ancestor(p1, p2);
2806 if (p) {
2807 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2808 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2809 return p;
2810 }
2811
2812 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2813 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2814 return NULL;
2815}
2816EXPORT_SYMBOL(lock_rename);
2817
2818void unlock_rename(struct dentry *p1, struct dentry *p2)
2819{
2820 inode_unlock(p1->d_inode);
2821 if (p1 != p2) {
2822 inode_unlock(p2->d_inode);
2823 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2824 }
2825}
2826EXPORT_SYMBOL(unlock_rename);
2827
2828int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2829 bool want_excl)
2830{
2831 int error = may_create(dir, dentry);
2832 if (error)
2833 return error;
2834
2835 if (!dir->i_op->create)
2836 return -EACCES; /* shouldn't it be ENOSYS? */
2837 mode &= S_IALLUGO;
2838 mode |= S_IFREG;
2839 error = security_inode_create(dir, dentry, mode);
2840 if (error)
2841 return error;
2842 error = dir->i_op->create(dir, dentry, mode, want_excl);
2843 if (!error)
2844 fsnotify_create(dir, dentry);
2845 return error;
2846}
2847EXPORT_SYMBOL(vfs_create);
2848
2849static int may_open(struct path *path, int acc_mode, int flag)
2850{
2851 struct dentry *dentry = path->dentry;
2852 struct inode *inode = dentry->d_inode;
2853 int error;
2854
2855 if (!inode)
2856 return -ENOENT;
2857
2858 switch (inode->i_mode & S_IFMT) {
2859 case S_IFLNK:
2860 return -ELOOP;
2861 case S_IFDIR:
2862 if (acc_mode & MAY_WRITE)
2863 return -EISDIR;
2864 break;
2865 case S_IFBLK:
2866 case S_IFCHR:
2867 if (path->mnt->mnt_flags & MNT_NODEV)
2868 return -EACCES;
2869 /*FALLTHRU*/
2870 case S_IFIFO:
2871 case S_IFSOCK:
2872 flag &= ~O_TRUNC;
2873 break;
2874 }
2875
2876 error = inode_permission(inode, MAY_OPEN | acc_mode);
2877 if (error)
2878 return error;
2879
2880 /*
2881 * An append-only file must be opened in append mode for writing.
2882 */
2883 if (IS_APPEND(inode)) {
2884 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2885 return -EPERM;
2886 if (flag & O_TRUNC)
2887 return -EPERM;
2888 }
2889
2890 /* O_NOATIME can only be set by the owner or superuser */
2891 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2892 return -EPERM;
2893
2894 return 0;
2895}
2896
2897static int handle_truncate(struct file *filp)
2898{
2899 struct path *path = &filp->f_path;
2900 struct inode *inode = path->dentry->d_inode;
2901 int error = get_write_access(inode);
2902 if (error)
2903 return error;
2904 /*
2905 * Refuse to truncate files with mandatory locks held on them.
2906 */
2907 error = locks_verify_locked(filp);
2908 if (!error)
2909 error = security_path_truncate(path);
2910 if (!error) {
2911 error = do_truncate(path->dentry, 0,
2912 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2913 filp);
2914 }
2915 put_write_access(inode);
2916 return error;
2917}
2918
2919static inline int open_to_namei_flags(int flag)
2920{
2921 if ((flag & O_ACCMODE) == 3)
2922 flag--;
2923 return flag;
2924}
2925
2926static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2927{
2928 int error = security_path_mknod(dir, dentry, mode, 0);
2929 if (error)
2930 return error;
2931
2932 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2933 if (error)
2934 return error;
2935
2936 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2937}
2938
2939/*
2940 * Attempt to atomically look up, create and open a file from a negative
2941 * dentry.
2942 *
2943 * Returns 0 if successful. The file will have been created and attached to
2944 * @file by the filesystem calling finish_open().
2945 *
2946 * Returns 1 if the file was looked up only or didn't need creating. The
2947 * caller will need to perform the open themselves. @path will have been
2948 * updated to point to the new dentry. This may be negative.
2949 *
2950 * Returns an error code otherwise.
2951 */
2952static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2953 struct path *path, struct file *file,
2954 const struct open_flags *op,
2955 int open_flag, umode_t mode,
2956 int *opened)
2957{
2958 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2959 struct inode *dir = nd->path.dentry->d_inode;
2960 int error;
2961
2962 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2963 open_flag &= ~O_TRUNC;
2964
2965 if (nd->flags & LOOKUP_DIRECTORY)
2966 open_flag |= O_DIRECTORY;
2967
2968 file->f_path.dentry = DENTRY_NOT_SET;
2969 file->f_path.mnt = nd->path.mnt;
2970 error = dir->i_op->atomic_open(dir, dentry, file,
2971 open_to_namei_flags(open_flag),
2972 mode, opened);
2973 d_lookup_done(dentry);
2974 if (!error) {
2975 /*
2976 * We didn't have the inode before the open, so check open
2977 * permission here.
2978 */
2979 int acc_mode = op->acc_mode;
2980 if (*opened & FILE_CREATED) {
2981 WARN_ON(!(open_flag & O_CREAT));
2982 fsnotify_create(dir, dentry);
2983 acc_mode = 0;
2984 }
2985 error = may_open(&file->f_path, acc_mode, open_flag);
2986 if (WARN_ON(error > 0))
2987 error = -EINVAL;
2988 } else if (error > 0) {
2989 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2990 error = -EIO;
2991 } else {
2992 if (file->f_path.dentry) {
2993 dput(dentry);
2994 dentry = file->f_path.dentry;
2995 }
2996 if (*opened & FILE_CREATED)
2997 fsnotify_create(dir, dentry);
2998 path->dentry = dentry;
2999 path->mnt = nd->path.mnt;
3000 return 1;
3001 }
3002 }
3003 dput(dentry);
3004 return error;
3005}
3006
3007/*
3008 * Look up and maybe create and open the last component.
3009 *
3010 * Must be called with i_mutex held on parent.
3011 *
3012 * Returns 0 if the file was successfully atomically created (if necessary) and
3013 * opened. In this case the file will be returned attached to @file.
3014 *
3015 * Returns 1 if the file was not completely opened at this time, though lookups
3016 * and creations will have been performed and the dentry returned in @path will
3017 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3018 * specified then a negative dentry may be returned.
3019 *
3020 * An error code is returned otherwise.
3021 *
3022 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3023 * cleared otherwise prior to returning.
3024 */
3025static int lookup_open(struct nameidata *nd, struct path *path,
3026 struct file *file,
3027 const struct open_flags *op,
3028 bool got_write, int *opened)
3029{
3030 struct dentry *dir = nd->path.dentry;
3031 struct inode *dir_inode = dir->d_inode;
3032 int open_flag = op->open_flag;
3033 struct dentry *dentry;
3034 int error, create_error = 0;
3035 umode_t mode = op->mode;
3036 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3037
3038 if (unlikely(IS_DEADDIR(dir_inode)))
3039 return -ENOENT;
3040
3041 *opened &= ~FILE_CREATED;
3042 dentry = d_lookup(dir, &nd->last);
3043 for (;;) {
3044 if (!dentry) {
3045 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3046 if (IS_ERR(dentry))
3047 return PTR_ERR(dentry);
3048 }
3049 if (d_in_lookup(dentry))
3050 break;
3051
3052 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3053 break;
3054
3055 error = d_revalidate(dentry, nd->flags);
3056 if (likely(error > 0))
3057 break;
3058 if (error)
3059 goto out_dput;
3060 d_invalidate(dentry);
3061 dput(dentry);
3062 dentry = NULL;
3063 }
3064 if (dentry->d_inode) {
3065 /* Cached positive dentry: will open in f_op->open */
3066 goto out_no_open;
3067 }
3068
3069 /*
3070 * Checking write permission is tricky, bacuse we don't know if we are
3071 * going to actually need it: O_CREAT opens should work as long as the
3072 * file exists. But checking existence breaks atomicity. The trick is
3073 * to check access and if not granted clear O_CREAT from the flags.
3074 *
3075 * Another problem is returing the "right" error value (e.g. for an
3076 * O_EXCL open we want to return EEXIST not EROFS).
3077 */
3078 if (open_flag & O_CREAT) {
3079 if (!IS_POSIXACL(dir->d_inode))
3080 mode &= ~current_umask();
3081 if (unlikely(!got_write)) {
3082 create_error = -EROFS;
3083 open_flag &= ~O_CREAT;
3084 if (open_flag & (O_EXCL | O_TRUNC))
3085 goto no_open;
3086 /* No side effects, safe to clear O_CREAT */
3087 } else {
3088 create_error = may_o_create(&nd->path, dentry, mode);
3089 if (create_error) {
3090 open_flag &= ~O_CREAT;
3091 if (open_flag & O_EXCL)
3092 goto no_open;
3093 }
3094 }
3095 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3096 unlikely(!got_write)) {
3097 /*
3098 * No O_CREATE -> atomicity not a requirement -> fall
3099 * back to lookup + open
3100 */
3101 goto no_open;
3102 }
3103
3104 if (dir_inode->i_op->atomic_open) {
3105 error = atomic_open(nd, dentry, path, file, op, open_flag,
3106 mode, opened);
3107 if (unlikely(error == -ENOENT) && create_error)
3108 error = create_error;
3109 return error;
3110 }
3111
3112no_open:
3113 if (d_in_lookup(dentry)) {
3114 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3115 nd->flags);
3116 d_lookup_done(dentry);
3117 if (unlikely(res)) {
3118 if (IS_ERR(res)) {
3119 error = PTR_ERR(res);
3120 goto out_dput;
3121 }
3122 dput(dentry);
3123 dentry = res;
3124 }
3125 }
3126
3127 /* Negative dentry, just create the file */
3128 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3129 *opened |= FILE_CREATED;
3130 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3131 if (!dir_inode->i_op->create) {
3132 error = -EACCES;
3133 goto out_dput;
3134 }
3135 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3136 open_flag & O_EXCL);
3137 if (error)
3138 goto out_dput;
3139 fsnotify_create(dir_inode, dentry);
3140 }
3141 if (unlikely(create_error) && !dentry->d_inode) {
3142 error = create_error;
3143 goto out_dput;
3144 }
3145out_no_open:
3146 path->dentry = dentry;
3147 path->mnt = nd->path.mnt;
3148 return 1;
3149
3150out_dput:
3151 dput(dentry);
3152 return error;
3153}
3154
3155/*
3156 * Handle the last step of open()
3157 */
3158static int do_last(struct nameidata *nd,
3159 struct file *file, const struct open_flags *op,
3160 int *opened)
3161{
3162 struct dentry *dir = nd->path.dentry;
3163 int open_flag = op->open_flag;
3164 bool will_truncate = (open_flag & O_TRUNC) != 0;
3165 bool got_write = false;
3166 int acc_mode = op->acc_mode;
3167 unsigned seq;
3168 struct inode *inode;
3169 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3170 struct path path;
3171 bool retried = false;
3172 int error;
3173
3174 nd->flags &= ~LOOKUP_PARENT;
3175 nd->flags |= op->intent;
3176
3177 if (nd->last_type != LAST_NORM) {
3178 error = handle_dots(nd, nd->last_type);
3179 if (unlikely(error))
3180 return error;
3181 goto finish_open;
3182 }
3183
3184 if (!(open_flag & O_CREAT)) {
3185 if (nd->last.name[nd->last.len])
3186 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3187 /* we _can_ be in RCU mode here */
3188 error = lookup_fast(nd, &path, &inode, &seq);
3189 if (likely(error > 0))
3190 goto finish_lookup;
3191
3192 if (error < 0)
3193 return error;
3194
3195 BUG_ON(nd->inode != dir->d_inode);
3196 BUG_ON(nd->flags & LOOKUP_RCU);
3197 } else {
3198 /* create side of things */
3199 /*
3200 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3201 * has been cleared when we got to the last component we are
3202 * about to look up
3203 */
3204 error = complete_walk(nd);
3205 if (error)
3206 return error;
3207
3208 audit_inode(nd->name, dir, LOOKUP_PARENT);
3209 /* trailing slashes? */
3210 if (unlikely(nd->last.name[nd->last.len]))
3211 return -EISDIR;
3212 }
3213
3214retry_lookup:
3215 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3216 error = mnt_want_write(nd->path.mnt);
3217 if (!error)
3218 got_write = true;
3219 /*
3220 * do _not_ fail yet - we might not need that or fail with
3221 * a different error; let lookup_open() decide; we'll be
3222 * dropping this one anyway.
3223 */
3224 }
3225 if (open_flag & O_CREAT)
3226 inode_lock(dir->d_inode);
3227 else
3228 inode_lock_shared(dir->d_inode);
3229 error = lookup_open(nd, &path, file, op, got_write, opened);
3230 if (open_flag & O_CREAT)
3231 inode_unlock(dir->d_inode);
3232 else
3233 inode_unlock_shared(dir->d_inode);
3234
3235 if (error <= 0) {
3236 if (error)
3237 goto out;
3238
3239 if ((*opened & FILE_CREATED) ||
3240 !S_ISREG(file_inode(file)->i_mode))
3241 will_truncate = false;
3242
3243 audit_inode(nd->name, file->f_path.dentry, 0);
3244 goto opened;
3245 }
3246
3247 if (*opened & FILE_CREATED) {
3248 /* Don't check for write permission, don't truncate */
3249 open_flag &= ~O_TRUNC;
3250 will_truncate = false;
3251 acc_mode = 0;
3252 path_to_nameidata(&path, nd);
3253 goto finish_open_created;
3254 }
3255
3256 /*
3257 * If atomic_open() acquired write access it is dropped now due to
3258 * possible mount and symlink following (this might be optimized away if
3259 * necessary...)
3260 */
3261 if (got_write) {
3262 mnt_drop_write(nd->path.mnt);
3263 got_write = false;
3264 }
3265
3266 if (unlikely(d_is_negative(path.dentry))) {
3267 path_to_nameidata(&path, nd);
3268 return -ENOENT;
3269 }
3270
3271 /*
3272 * create/update audit record if it already exists.
3273 */
3274 audit_inode(nd->name, path.dentry, 0);
3275
3276 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3277 path_to_nameidata(&path, nd);
3278 return -EEXIST;
3279 }
3280
3281 error = follow_managed(&path, nd);
3282 if (unlikely(error < 0))
3283 return error;
3284
3285 seq = 0; /* out of RCU mode, so the value doesn't matter */
3286 inode = d_backing_inode(path.dentry);
3287finish_lookup:
3288 if (nd->depth)
3289 put_link(nd);
3290 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3291 inode, seq);
3292 if (unlikely(error))
3293 return error;
3294
3295 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3296 path_to_nameidata(&path, nd);
3297 } else {
3298 save_parent.dentry = nd->path.dentry;
3299 save_parent.mnt = mntget(path.mnt);
3300 nd->path.dentry = path.dentry;
3301
3302 }
3303 nd->inode = inode;
3304 nd->seq = seq;
3305 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3306finish_open:
3307 error = complete_walk(nd);
3308 if (error) {
3309 path_put(&save_parent);
3310 return error;
3311 }
3312 audit_inode(nd->name, nd->path.dentry, 0);
3313 error = -EISDIR;
3314 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3315 goto out;
3316 error = -ENOTDIR;
3317 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3318 goto out;
3319 if (!d_is_reg(nd->path.dentry))
3320 will_truncate = false;
3321
3322 if (will_truncate) {
3323 error = mnt_want_write(nd->path.mnt);
3324 if (error)
3325 goto out;
3326 got_write = true;
3327 }
3328finish_open_created:
3329 error = may_open(&nd->path, acc_mode, open_flag);
3330 if (error)
3331 goto out;
3332 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3333 error = vfs_open(&nd->path, file, current_cred());
3334 if (!error) {
3335 *opened |= FILE_OPENED;
3336 } else {
3337 if (error == -EOPENSTALE)
3338 goto stale_open;
3339 goto out;
3340 }
3341opened:
3342 error = open_check_o_direct(file);
3343 if (!error)
3344 error = ima_file_check(file, op->acc_mode, *opened);
3345 if (!error && will_truncate)
3346 error = handle_truncate(file);
3347out:
3348 if (unlikely(error) && (*opened & FILE_OPENED))
3349 fput(file);
3350 if (unlikely(error > 0)) {
3351 WARN_ON(1);
3352 error = -EINVAL;
3353 }
3354 if (got_write)
3355 mnt_drop_write(nd->path.mnt);
3356 path_put(&save_parent);
3357 return error;
3358
3359stale_open:
3360 /* If no saved parent or already retried then can't retry */
3361 if (!save_parent.dentry || retried)
3362 goto out;
3363
3364 BUG_ON(save_parent.dentry != dir);
3365 path_put(&nd->path);
3366 nd->path = save_parent;
3367 nd->inode = dir->d_inode;
3368 save_parent.mnt = NULL;
3369 save_parent.dentry = NULL;
3370 if (got_write) {
3371 mnt_drop_write(nd->path.mnt);
3372 got_write = false;
3373 }
3374 retried = true;
3375 goto retry_lookup;
3376}
3377
3378static int do_tmpfile(struct nameidata *nd, unsigned flags,
3379 const struct open_flags *op,
3380 struct file *file, int *opened)
3381{
3382 static const struct qstr name = QSTR_INIT("/", 1);
3383 struct dentry *child;
3384 struct inode *dir;
3385 struct path path;
3386 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3387 if (unlikely(error))
3388 return error;
3389 error = mnt_want_write(path.mnt);
3390 if (unlikely(error))
3391 goto out;
3392 dir = path.dentry->d_inode;
3393 /* we want directory to be writable */
3394 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3395 if (error)
3396 goto out2;
3397 if (!dir->i_op->tmpfile) {
3398 error = -EOPNOTSUPP;
3399 goto out2;
3400 }
3401 child = d_alloc(path.dentry, &name);
3402 if (unlikely(!child)) {
3403 error = -ENOMEM;
3404 goto out2;
3405 }
3406 dput(path.dentry);
3407 path.dentry = child;
3408 error = dir->i_op->tmpfile(dir, child, op->mode);
3409 if (error)
3410 goto out2;
3411 audit_inode(nd->name, child, 0);
3412 /* Don't check for other permissions, the inode was just created */
3413 error = may_open(&path, 0, op->open_flag);
3414 if (error)
3415 goto out2;
3416 file->f_path.mnt = path.mnt;
3417 error = finish_open(file, child, NULL, opened);
3418 if (error)
3419 goto out2;
3420 error = open_check_o_direct(file);
3421 if (error) {
3422 fput(file);
3423 } else if (!(op->open_flag & O_EXCL)) {
3424 struct inode *inode = file_inode(file);
3425 spin_lock(&inode->i_lock);
3426 inode->i_state |= I_LINKABLE;
3427 spin_unlock(&inode->i_lock);
3428 }
3429out2:
3430 mnt_drop_write(path.mnt);
3431out:
3432 path_put(&path);
3433 return error;
3434}
3435
3436static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3437{
3438 struct path path;
3439 int error = path_lookupat(nd, flags, &path);
3440 if (!error) {
3441 audit_inode(nd->name, path.dentry, 0);
3442 error = vfs_open(&path, file, current_cred());
3443 path_put(&path);
3444 }
3445 return error;
3446}
3447
3448static struct file *path_openat(struct nameidata *nd,
3449 const struct open_flags *op, unsigned flags)
3450{
3451 const char *s;
3452 struct file *file;
3453 int opened = 0;
3454 int error;
3455
3456 file = get_empty_filp();
3457 if (IS_ERR(file))
3458 return file;
3459
3460 file->f_flags = op->open_flag;
3461
3462 if (unlikely(file->f_flags & __O_TMPFILE)) {
3463 error = do_tmpfile(nd, flags, op, file, &opened);
3464 goto out2;
3465 }
3466
3467 if (unlikely(file->f_flags & O_PATH)) {
3468 error = do_o_path(nd, flags, file);
3469 if (!error)
3470 opened |= FILE_OPENED;
3471 goto out2;
3472 }
3473
3474 s = path_init(nd, flags);
3475 if (IS_ERR(s)) {
3476 put_filp(file);
3477 return ERR_CAST(s);
3478 }
3479 while (!(error = link_path_walk(s, nd)) &&
3480 (error = do_last(nd, file, op, &opened)) > 0) {
3481 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3482 s = trailing_symlink(nd);
3483 if (IS_ERR(s)) {
3484 error = PTR_ERR(s);
3485 break;
3486 }
3487 }
3488 terminate_walk(nd);
3489out2:
3490 if (!(opened & FILE_OPENED)) {
3491 BUG_ON(!error);
3492 put_filp(file);
3493 }
3494 if (unlikely(error)) {
3495 if (error == -EOPENSTALE) {
3496 if (flags & LOOKUP_RCU)
3497 error = -ECHILD;
3498 else
3499 error = -ESTALE;
3500 }
3501 file = ERR_PTR(error);
3502 }
3503 return file;
3504}
3505
3506struct file *do_filp_open(int dfd, struct filename *pathname,
3507 const struct open_flags *op)
3508{
3509 struct nameidata nd;
3510 int flags = op->lookup_flags;
3511 struct file *filp;
3512
3513 set_nameidata(&nd, dfd, pathname);
3514 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3515 if (unlikely(filp == ERR_PTR(-ECHILD)))
3516 filp = path_openat(&nd, op, flags);
3517 if (unlikely(filp == ERR_PTR(-ESTALE)))
3518 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3519 restore_nameidata();
3520 return filp;
3521}
3522
3523struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3524 const char *name, const struct open_flags *op)
3525{
3526 struct nameidata nd;
3527 struct file *file;
3528 struct filename *filename;
3529 int flags = op->lookup_flags | LOOKUP_ROOT;
3530
3531 nd.root.mnt = mnt;
3532 nd.root.dentry = dentry;
3533
3534 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3535 return ERR_PTR(-ELOOP);
3536
3537 filename = getname_kernel(name);
3538 if (IS_ERR(filename))
3539 return ERR_CAST(filename);
3540
3541 set_nameidata(&nd, -1, filename);
3542 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3543 if (unlikely(file == ERR_PTR(-ECHILD)))
3544 file = path_openat(&nd, op, flags);
3545 if (unlikely(file == ERR_PTR(-ESTALE)))
3546 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3547 restore_nameidata();
3548 putname(filename);
3549 return file;
3550}
3551
3552static struct dentry *filename_create(int dfd, struct filename *name,
3553 struct path *path, unsigned int lookup_flags)
3554{
3555 struct dentry *dentry = ERR_PTR(-EEXIST);
3556 struct qstr last;
3557 int type;
3558 int err2;
3559 int error;
3560 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3561
3562 /*
3563 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3564 * other flags passed in are ignored!
3565 */
3566 lookup_flags &= LOOKUP_REVAL;
3567
3568 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3569 if (IS_ERR(name))
3570 return ERR_CAST(name);
3571
3572 /*
3573 * Yucky last component or no last component at all?
3574 * (foo/., foo/.., /////)
3575 */
3576 if (unlikely(type != LAST_NORM))
3577 goto out;
3578
3579 /* don't fail immediately if it's r/o, at least try to report other errors */
3580 err2 = mnt_want_write(path->mnt);
3581 /*
3582 * Do the final lookup.
3583 */
3584 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3585 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3586 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3587 if (IS_ERR(dentry))
3588 goto unlock;
3589
3590 error = -EEXIST;
3591 if (d_is_positive(dentry))
3592 goto fail;
3593
3594 /*
3595 * Special case - lookup gave negative, but... we had foo/bar/
3596 * From the vfs_mknod() POV we just have a negative dentry -
3597 * all is fine. Let's be bastards - you had / on the end, you've
3598 * been asking for (non-existent) directory. -ENOENT for you.
3599 */
3600 if (unlikely(!is_dir && last.name[last.len])) {
3601 error = -ENOENT;
3602 goto fail;
3603 }
3604 if (unlikely(err2)) {
3605 error = err2;
3606 goto fail;
3607 }
3608 putname(name);
3609 return dentry;
3610fail:
3611 dput(dentry);
3612 dentry = ERR_PTR(error);
3613unlock:
3614 inode_unlock(path->dentry->d_inode);
3615 if (!err2)
3616 mnt_drop_write(path->mnt);
3617out:
3618 path_put(path);
3619 putname(name);
3620 return dentry;
3621}
3622
3623struct dentry *kern_path_create(int dfd, const char *pathname,
3624 struct path *path, unsigned int lookup_flags)
3625{
3626 return filename_create(dfd, getname_kernel(pathname),
3627 path, lookup_flags);
3628}
3629EXPORT_SYMBOL(kern_path_create);
3630
3631void done_path_create(struct path *path, struct dentry *dentry)
3632{
3633 dput(dentry);
3634 inode_unlock(path->dentry->d_inode);
3635 mnt_drop_write(path->mnt);
3636 path_put(path);
3637}
3638EXPORT_SYMBOL(done_path_create);
3639
3640inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3641 struct path *path, unsigned int lookup_flags)
3642{
3643 return filename_create(dfd, getname(pathname), path, lookup_flags);
3644}
3645EXPORT_SYMBOL(user_path_create);
3646
3647int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3648{
3649 int error = may_create(dir, dentry);
3650
3651 if (error)
3652 return error;
3653
3654 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3655 return -EPERM;
3656
3657 if (!dir->i_op->mknod)
3658 return -EPERM;
3659
3660 error = devcgroup_inode_mknod(mode, dev);
3661 if (error)
3662 return error;
3663
3664 error = security_inode_mknod(dir, dentry, mode, dev);
3665 if (error)
3666 return error;
3667
3668 error = dir->i_op->mknod(dir, dentry, mode, dev);
3669 if (!error)
3670 fsnotify_create(dir, dentry);
3671 return error;
3672}
3673EXPORT_SYMBOL(vfs_mknod);
3674
3675static int may_mknod(umode_t mode)
3676{
3677 switch (mode & S_IFMT) {
3678 case S_IFREG:
3679 case S_IFCHR:
3680 case S_IFBLK:
3681 case S_IFIFO:
3682 case S_IFSOCK:
3683 case 0: /* zero mode translates to S_IFREG */
3684 return 0;
3685 case S_IFDIR:
3686 return -EPERM;
3687 default:
3688 return -EINVAL;
3689 }
3690}
3691
3692SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3693 unsigned, dev)
3694{
3695 struct dentry *dentry;
3696 struct path path;
3697 int error;
3698 unsigned int lookup_flags = 0;
3699
3700 error = may_mknod(mode);
3701 if (error)
3702 return error;
3703retry:
3704 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3705 if (IS_ERR(dentry))
3706 return PTR_ERR(dentry);
3707
3708 if (!IS_POSIXACL(path.dentry->d_inode))
3709 mode &= ~current_umask();
3710 error = security_path_mknod(&path, dentry, mode, dev);
3711 if (error)
3712 goto out;
3713 switch (mode & S_IFMT) {
3714 case 0: case S_IFREG:
3715 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3716 if (!error)
3717 ima_post_path_mknod(dentry);
3718 break;
3719 case S_IFCHR: case S_IFBLK:
3720 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3721 new_decode_dev(dev));
3722 break;
3723 case S_IFIFO: case S_IFSOCK:
3724 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3725 break;
3726 }
3727out:
3728 done_path_create(&path, dentry);
3729 if (retry_estale(error, lookup_flags)) {
3730 lookup_flags |= LOOKUP_REVAL;
3731 goto retry;
3732 }
3733 return error;
3734}
3735
3736SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3737{
3738 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3739}
3740
3741int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3742{
3743 int error = may_create(dir, dentry);
3744 unsigned max_links = dir->i_sb->s_max_links;
3745
3746 if (error)
3747 return error;
3748
3749 if (!dir->i_op->mkdir)
3750 return -EPERM;
3751
3752 mode &= (S_IRWXUGO|S_ISVTX);
3753 error = security_inode_mkdir(dir, dentry, mode);
3754 if (error)
3755 return error;
3756
3757 if (max_links && dir->i_nlink >= max_links)
3758 return -EMLINK;
3759
3760 error = dir->i_op->mkdir(dir, dentry, mode);
3761 if (!error)
3762 fsnotify_mkdir(dir, dentry);
3763 return error;
3764}
3765EXPORT_SYMBOL(vfs_mkdir);
3766
3767SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3768{
3769 struct dentry *dentry;
3770 struct path path;
3771 int error;
3772 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3773
3774retry:
3775 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3776 if (IS_ERR(dentry))
3777 return PTR_ERR(dentry);
3778
3779 if (!IS_POSIXACL(path.dentry->d_inode))
3780 mode &= ~current_umask();
3781 error = security_path_mkdir(&path, dentry, mode);
3782 if (!error)
3783 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3784 done_path_create(&path, dentry);
3785 if (retry_estale(error, lookup_flags)) {
3786 lookup_flags |= LOOKUP_REVAL;
3787 goto retry;
3788 }
3789 return error;
3790}
3791
3792SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3793{
3794 return sys_mkdirat(AT_FDCWD, pathname, mode);
3795}
3796
3797int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3798{
3799 int error = may_delete(dir, dentry, 1);
3800
3801 if (error)
3802 return error;
3803
3804 if (!dir->i_op->rmdir)
3805 return -EPERM;
3806
3807 dget(dentry);
3808 inode_lock(dentry->d_inode);
3809
3810 error = -EBUSY;
3811 if (is_local_mountpoint(dentry))
3812 goto out;
3813
3814 error = security_inode_rmdir(dir, dentry);
3815 if (error)
3816 goto out;
3817
3818 shrink_dcache_parent(dentry);
3819 error = dir->i_op->rmdir(dir, dentry);
3820 if (error)
3821 goto out;
3822
3823 dentry->d_inode->i_flags |= S_DEAD;
3824 dont_mount(dentry);
3825 detach_mounts(dentry);
3826
3827out:
3828 inode_unlock(dentry->d_inode);
3829 dput(dentry);
3830 if (!error)
3831 d_delete(dentry);
3832 return error;
3833}
3834EXPORT_SYMBOL(vfs_rmdir);
3835
3836static long do_rmdir(int dfd, const char __user *pathname)
3837{
3838 int error = 0;
3839 struct filename *name;
3840 struct dentry *dentry;
3841 struct path path;
3842 struct qstr last;
3843 int type;
3844 unsigned int lookup_flags = 0;
3845retry:
3846 name = user_path_parent(dfd, pathname,
3847 &path, &last, &type, lookup_flags);
3848 if (IS_ERR(name))
3849 return PTR_ERR(name);
3850
3851 switch (type) {
3852 case LAST_DOTDOT:
3853 error = -ENOTEMPTY;
3854 goto exit1;
3855 case LAST_DOT:
3856 error = -EINVAL;
3857 goto exit1;
3858 case LAST_ROOT:
3859 error = -EBUSY;
3860 goto exit1;
3861 }
3862
3863 error = mnt_want_write(path.mnt);
3864 if (error)
3865 goto exit1;
3866
3867 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3868 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3869 error = PTR_ERR(dentry);
3870 if (IS_ERR(dentry))
3871 goto exit2;
3872 if (!dentry->d_inode) {
3873 error = -ENOENT;
3874 goto exit3;
3875 }
3876 error = security_path_rmdir(&path, dentry);
3877 if (error)
3878 goto exit3;
3879 error = vfs_rmdir(path.dentry->d_inode, dentry);
3880exit3:
3881 dput(dentry);
3882exit2:
3883 inode_unlock(path.dentry->d_inode);
3884 mnt_drop_write(path.mnt);
3885exit1:
3886 path_put(&path);
3887 putname(name);
3888 if (retry_estale(error, lookup_flags)) {
3889 lookup_flags |= LOOKUP_REVAL;
3890 goto retry;
3891 }
3892 return error;
3893}
3894
3895SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3896{
3897 return do_rmdir(AT_FDCWD, pathname);
3898}
3899
3900/**
3901 * vfs_unlink - unlink a filesystem object
3902 * @dir: parent directory
3903 * @dentry: victim
3904 * @delegated_inode: returns victim inode, if the inode is delegated.
3905 *
3906 * The caller must hold dir->i_mutex.
3907 *
3908 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3909 * return a reference to the inode in delegated_inode. The caller
3910 * should then break the delegation on that inode and retry. Because
3911 * breaking a delegation may take a long time, the caller should drop
3912 * dir->i_mutex before doing so.
3913 *
3914 * Alternatively, a caller may pass NULL for delegated_inode. This may
3915 * be appropriate for callers that expect the underlying filesystem not
3916 * to be NFS exported.
3917 */
3918int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3919{
3920 struct inode *target = dentry->d_inode;
3921 int error = may_delete(dir, dentry, 0);
3922
3923 if (error)
3924 return error;
3925
3926 if (!dir->i_op->unlink)
3927 return -EPERM;
3928
3929 inode_lock(target);
3930 if (is_local_mountpoint(dentry))
3931 error = -EBUSY;
3932 else {
3933 error = security_inode_unlink(dir, dentry);
3934 if (!error) {
3935 error = try_break_deleg(target, delegated_inode);
3936 if (error)
3937 goto out;
3938 error = dir->i_op->unlink(dir, dentry);
3939 if (!error) {
3940 dont_mount(dentry);
3941 detach_mounts(dentry);
3942 }
3943 }
3944 }
3945out:
3946 inode_unlock(target);
3947
3948 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3949 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3950 fsnotify_link_count(target);
3951 d_delete(dentry);
3952 }
3953
3954 return error;
3955}
3956EXPORT_SYMBOL(vfs_unlink);
3957
3958/*
3959 * Make sure that the actual truncation of the file will occur outside its
3960 * directory's i_mutex. Truncate can take a long time if there is a lot of
3961 * writeout happening, and we don't want to prevent access to the directory
3962 * while waiting on the I/O.
3963 */
3964static long do_unlinkat(int dfd, const char __user *pathname)
3965{
3966 int error;
3967 struct filename *name;
3968 struct dentry *dentry;
3969 struct path path;
3970 struct qstr last;
3971 int type;
3972 struct inode *inode = NULL;
3973 struct inode *delegated_inode = NULL;
3974 unsigned int lookup_flags = 0;
3975retry:
3976 name = user_path_parent(dfd, pathname,
3977 &path, &last, &type, lookup_flags);
3978 if (IS_ERR(name))
3979 return PTR_ERR(name);
3980
3981 error = -EISDIR;
3982 if (type != LAST_NORM)
3983 goto exit1;
3984
3985 error = mnt_want_write(path.mnt);
3986 if (error)
3987 goto exit1;
3988retry_deleg:
3989 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3990 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3991 error = PTR_ERR(dentry);
3992 if (!IS_ERR(dentry)) {
3993 /* Why not before? Because we want correct error value */
3994 if (last.name[last.len])
3995 goto slashes;
3996 inode = dentry->d_inode;
3997 if (d_is_negative(dentry))
3998 goto slashes;
3999 ihold(inode);
4000 error = security_path_unlink(&path, dentry);
4001 if (error)
4002 goto exit2;
4003 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4004exit2:
4005 dput(dentry);
4006 }
4007 inode_unlock(path.dentry->d_inode);
4008 if (inode)
4009 iput(inode); /* truncate the inode here */
4010 inode = NULL;
4011 if (delegated_inode) {
4012 error = break_deleg_wait(&delegated_inode);
4013 if (!error)
4014 goto retry_deleg;
4015 }
4016 mnt_drop_write(path.mnt);
4017exit1:
4018 path_put(&path);
4019 putname(name);
4020 if (retry_estale(error, lookup_flags)) {
4021 lookup_flags |= LOOKUP_REVAL;
4022 inode = NULL;
4023 goto retry;
4024 }
4025 return error;
4026
4027slashes:
4028 if (d_is_negative(dentry))
4029 error = -ENOENT;
4030 else if (d_is_dir(dentry))
4031 error = -EISDIR;
4032 else
4033 error = -ENOTDIR;
4034 goto exit2;
4035}
4036
4037SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4038{
4039 if ((flag & ~AT_REMOVEDIR) != 0)
4040 return -EINVAL;
4041
4042 if (flag & AT_REMOVEDIR)
4043 return do_rmdir(dfd, pathname);
4044
4045 return do_unlinkat(dfd, pathname);
4046}
4047
4048SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4049{
4050 return do_unlinkat(AT_FDCWD, pathname);
4051}
4052
4053int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4054{
4055 int error = may_create(dir, dentry);
4056
4057 if (error)
4058 return error;
4059
4060 if (!dir->i_op->symlink)
4061 return -EPERM;
4062
4063 error = security_inode_symlink(dir, dentry, oldname);
4064 if (error)
4065 return error;
4066
4067 error = dir->i_op->symlink(dir, dentry, oldname);
4068 if (!error)
4069 fsnotify_create(dir, dentry);
4070 return error;
4071}
4072EXPORT_SYMBOL(vfs_symlink);
4073
4074SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4075 int, newdfd, const char __user *, newname)
4076{
4077 int error;
4078 struct filename *from;
4079 struct dentry *dentry;
4080 struct path path;
4081 unsigned int lookup_flags = 0;
4082
4083 from = getname(oldname);
4084 if (IS_ERR(from))
4085 return PTR_ERR(from);
4086retry:
4087 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4088 error = PTR_ERR(dentry);
4089 if (IS_ERR(dentry))
4090 goto out_putname;
4091
4092 error = security_path_symlink(&path, dentry, from->name);
4093 if (!error)
4094 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4095 done_path_create(&path, dentry);
4096 if (retry_estale(error, lookup_flags)) {
4097 lookup_flags |= LOOKUP_REVAL;
4098 goto retry;
4099 }
4100out_putname:
4101 putname(from);
4102 return error;
4103}
4104
4105SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4106{
4107 return sys_symlinkat(oldname, AT_FDCWD, newname);
4108}
4109
4110/**
4111 * vfs_link - create a new link
4112 * @old_dentry: object to be linked
4113 * @dir: new parent
4114 * @new_dentry: where to create the new link
4115 * @delegated_inode: returns inode needing a delegation break
4116 *
4117 * The caller must hold dir->i_mutex
4118 *
4119 * If vfs_link discovers a delegation on the to-be-linked file in need
4120 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4121 * inode in delegated_inode. The caller should then break the delegation
4122 * and retry. Because breaking a delegation may take a long time, the
4123 * caller should drop the i_mutex before doing so.
4124 *
4125 * Alternatively, a caller may pass NULL for delegated_inode. This may
4126 * be appropriate for callers that expect the underlying filesystem not
4127 * to be NFS exported.
4128 */
4129int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4130{
4131 struct inode *inode = old_dentry->d_inode;
4132 unsigned max_links = dir->i_sb->s_max_links;
4133 int error;
4134
4135 if (!inode)
4136 return -ENOENT;
4137
4138 error = may_create(dir, new_dentry);
4139 if (error)
4140 return error;
4141
4142 if (dir->i_sb != inode->i_sb)
4143 return -EXDEV;
4144
4145 /*
4146 * A link to an append-only or immutable file cannot be created.
4147 */
4148 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4149 return -EPERM;
4150 if (!dir->i_op->link)
4151 return -EPERM;
4152 if (S_ISDIR(inode->i_mode))
4153 return -EPERM;
4154
4155 error = security_inode_link(old_dentry, dir, new_dentry);
4156 if (error)
4157 return error;
4158
4159 inode_lock(inode);
4160 /* Make sure we don't allow creating hardlink to an unlinked file */
4161 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4162 error = -ENOENT;
4163 else if (max_links && inode->i_nlink >= max_links)
4164 error = -EMLINK;
4165 else {
4166 error = try_break_deleg(inode, delegated_inode);
4167 if (!error)
4168 error = dir->i_op->link(old_dentry, dir, new_dentry);
4169 }
4170
4171 if (!error && (inode->i_state & I_LINKABLE)) {
4172 spin_lock(&inode->i_lock);
4173 inode->i_state &= ~I_LINKABLE;
4174 spin_unlock(&inode->i_lock);
4175 }
4176 inode_unlock(inode);
4177 if (!error)
4178 fsnotify_link(dir, inode, new_dentry);
4179 return error;
4180}
4181EXPORT_SYMBOL(vfs_link);
4182
4183/*
4184 * Hardlinks are often used in delicate situations. We avoid
4185 * security-related surprises by not following symlinks on the
4186 * newname. --KAB
4187 *
4188 * We don't follow them on the oldname either to be compatible
4189 * with linux 2.0, and to avoid hard-linking to directories
4190 * and other special files. --ADM
4191 */
4192SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4193 int, newdfd, const char __user *, newname, int, flags)
4194{
4195 struct dentry *new_dentry;
4196 struct path old_path, new_path;
4197 struct inode *delegated_inode = NULL;
4198 int how = 0;
4199 int error;
4200
4201 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4202 return -EINVAL;
4203 /*
4204 * To use null names we require CAP_DAC_READ_SEARCH
4205 * This ensures that not everyone will be able to create
4206 * handlink using the passed filedescriptor.
4207 */
4208 if (flags & AT_EMPTY_PATH) {
4209 if (!capable(CAP_DAC_READ_SEARCH))
4210 return -ENOENT;
4211 how = LOOKUP_EMPTY;
4212 }
4213
4214 if (flags & AT_SYMLINK_FOLLOW)
4215 how |= LOOKUP_FOLLOW;
4216retry:
4217 error = user_path_at(olddfd, oldname, how, &old_path);
4218 if (error)
4219 return error;
4220
4221 new_dentry = user_path_create(newdfd, newname, &new_path,
4222 (how & LOOKUP_REVAL));
4223 error = PTR_ERR(new_dentry);
4224 if (IS_ERR(new_dentry))
4225 goto out;
4226
4227 error = -EXDEV;
4228 if (old_path.mnt != new_path.mnt)
4229 goto out_dput;
4230 error = may_linkat(&old_path);
4231 if (unlikely(error))
4232 goto out_dput;
4233 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4234 if (error)
4235 goto out_dput;
4236 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4237out_dput:
4238 done_path_create(&new_path, new_dentry);
4239 if (delegated_inode) {
4240 error = break_deleg_wait(&delegated_inode);
4241 if (!error) {
4242 path_put(&old_path);
4243 goto retry;
4244 }
4245 }
4246 if (retry_estale(error, how)) {
4247 path_put(&old_path);
4248 how |= LOOKUP_REVAL;
4249 goto retry;
4250 }
4251out:
4252 path_put(&old_path);
4253
4254 return error;
4255}
4256
4257SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4258{
4259 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4260}
4261
4262/**
4263 * vfs_rename - rename a filesystem object
4264 * @old_dir: parent of source
4265 * @old_dentry: source
4266 * @new_dir: parent of destination
4267 * @new_dentry: destination
4268 * @delegated_inode: returns an inode needing a delegation break
4269 * @flags: rename flags
4270 *
4271 * The caller must hold multiple mutexes--see lock_rename()).
4272 *
4273 * If vfs_rename discovers a delegation in need of breaking at either
4274 * the source or destination, it will return -EWOULDBLOCK and return a
4275 * reference to the inode in delegated_inode. The caller should then
4276 * break the delegation and retry. Because breaking a delegation may
4277 * take a long time, the caller should drop all locks before doing
4278 * so.
4279 *
4280 * Alternatively, a caller may pass NULL for delegated_inode. This may
4281 * be appropriate for callers that expect the underlying filesystem not
4282 * to be NFS exported.
4283 *
4284 * The worst of all namespace operations - renaming directory. "Perverted"
4285 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4286 * Problems:
4287 * a) we can get into loop creation.
4288 * b) race potential - two innocent renames can create a loop together.
4289 * That's where 4.4 screws up. Current fix: serialization on
4290 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4291 * story.
4292 * c) we have to lock _four_ objects - parents and victim (if it exists),
4293 * and source (if it is not a directory).
4294 * And that - after we got ->i_mutex on parents (until then we don't know
4295 * whether the target exists). Solution: try to be smart with locking
4296 * order for inodes. We rely on the fact that tree topology may change
4297 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4298 * move will be locked. Thus we can rank directories by the tree
4299 * (ancestors first) and rank all non-directories after them.
4300 * That works since everybody except rename does "lock parent, lookup,
4301 * lock child" and rename is under ->s_vfs_rename_mutex.
4302 * HOWEVER, it relies on the assumption that any object with ->lookup()
4303 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4304 * we'd better make sure that there's no link(2) for them.
4305 * d) conversion from fhandle to dentry may come in the wrong moment - when
4306 * we are removing the target. Solution: we will have to grab ->i_mutex
4307 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4308 * ->i_mutex on parents, which works but leads to some truly excessive
4309 * locking].
4310 */
4311int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4312 struct inode *new_dir, struct dentry *new_dentry,
4313 struct inode **delegated_inode, unsigned int flags)
4314{
4315 int error;
4316 bool is_dir = d_is_dir(old_dentry);
4317 const unsigned char *old_name;
4318 struct inode *source = old_dentry->d_inode;
4319 struct inode *target = new_dentry->d_inode;
4320 bool new_is_dir = false;
4321 unsigned max_links = new_dir->i_sb->s_max_links;
4322
4323 /*
4324 * Check source == target.
4325 * On overlayfs need to look at underlying inodes.
4326 */
4327 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4328 return 0;
4329
4330 error = may_delete(old_dir, old_dentry, is_dir);
4331 if (error)
4332 return error;
4333
4334 if (!target) {
4335 error = may_create(new_dir, new_dentry);
4336 } else {
4337 new_is_dir = d_is_dir(new_dentry);
4338
4339 if (!(flags & RENAME_EXCHANGE))
4340 error = may_delete(new_dir, new_dentry, is_dir);
4341 else
4342 error = may_delete(new_dir, new_dentry, new_is_dir);
4343 }
4344 if (error)
4345 return error;
4346
4347 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4348 return -EPERM;
4349
4350 if (flags && !old_dir->i_op->rename2)
4351 return -EINVAL;
4352
4353 /*
4354 * If we are going to change the parent - check write permissions,
4355 * we'll need to flip '..'.
4356 */
4357 if (new_dir != old_dir) {
4358 if (is_dir) {
4359 error = inode_permission(source, MAY_WRITE);
4360 if (error)
4361 return error;
4362 }
4363 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4364 error = inode_permission(target, MAY_WRITE);
4365 if (error)
4366 return error;
4367 }
4368 }
4369
4370 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4371 flags);
4372 if (error)
4373 return error;
4374
4375 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4376 dget(new_dentry);
4377 if (!is_dir || (flags & RENAME_EXCHANGE))
4378 lock_two_nondirectories(source, target);
4379 else if (target)
4380 inode_lock(target);
4381
4382 error = -EBUSY;
4383 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4384 goto out;
4385
4386 if (max_links && new_dir != old_dir) {
4387 error = -EMLINK;
4388 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4389 goto out;
4390 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4391 old_dir->i_nlink >= max_links)
4392 goto out;
4393 }
4394 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4395 shrink_dcache_parent(new_dentry);
4396 if (!is_dir) {
4397 error = try_break_deleg(source, delegated_inode);
4398 if (error)
4399 goto out;
4400 }
4401 if (target && !new_is_dir) {
4402 error = try_break_deleg(target, delegated_inode);
4403 if (error)
4404 goto out;
4405 }
4406 if (!old_dir->i_op->rename2) {
4407 error = old_dir->i_op->rename(old_dir, old_dentry,
4408 new_dir, new_dentry);
4409 } else {
4410 WARN_ON(old_dir->i_op->rename != NULL);
4411 error = old_dir->i_op->rename2(old_dir, old_dentry,
4412 new_dir, new_dentry, flags);
4413 }
4414 if (error)
4415 goto out;
4416
4417 if (!(flags & RENAME_EXCHANGE) && target) {
4418 if (is_dir)
4419 target->i_flags |= S_DEAD;
4420 dont_mount(new_dentry);
4421 detach_mounts(new_dentry);
4422 }
4423 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4424 if (!(flags & RENAME_EXCHANGE))
4425 d_move(old_dentry, new_dentry);
4426 else
4427 d_exchange(old_dentry, new_dentry);
4428 }
4429out:
4430 if (!is_dir || (flags & RENAME_EXCHANGE))
4431 unlock_two_nondirectories(source, target);
4432 else if (target)
4433 inode_unlock(target);
4434 dput(new_dentry);
4435 if (!error) {
4436 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4437 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4438 if (flags & RENAME_EXCHANGE) {
4439 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4440 new_is_dir, NULL, new_dentry);
4441 }
4442 }
4443 fsnotify_oldname_free(old_name);
4444
4445 return error;
4446}
4447EXPORT_SYMBOL(vfs_rename);
4448
4449SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4450 int, newdfd, const char __user *, newname, unsigned int, flags)
4451{
4452 struct dentry *old_dentry, *new_dentry;
4453 struct dentry *trap;
4454 struct path old_path, new_path;
4455 struct qstr old_last, new_last;
4456 int old_type, new_type;
4457 struct inode *delegated_inode = NULL;
4458 struct filename *from;
4459 struct filename *to;
4460 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4461 bool should_retry = false;
4462 int error;
4463
4464 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4465 return -EINVAL;
4466
4467 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4468 (flags & RENAME_EXCHANGE))
4469 return -EINVAL;
4470
4471 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4472 return -EPERM;
4473
4474 if (flags & RENAME_EXCHANGE)
4475 target_flags = 0;
4476
4477retry:
4478 from = user_path_parent(olddfd, oldname,
4479 &old_path, &old_last, &old_type, lookup_flags);
4480 if (IS_ERR(from)) {
4481 error = PTR_ERR(from);
4482 goto exit;
4483 }
4484
4485 to = user_path_parent(newdfd, newname,
4486 &new_path, &new_last, &new_type, lookup_flags);
4487 if (IS_ERR(to)) {
4488 error = PTR_ERR(to);
4489 goto exit1;
4490 }
4491
4492 error = -EXDEV;
4493 if (old_path.mnt != new_path.mnt)
4494 goto exit2;
4495
4496 error = -EBUSY;
4497 if (old_type != LAST_NORM)
4498 goto exit2;
4499
4500 if (flags & RENAME_NOREPLACE)
4501 error = -EEXIST;
4502 if (new_type != LAST_NORM)
4503 goto exit2;
4504
4505 error = mnt_want_write(old_path.mnt);
4506 if (error)
4507 goto exit2;
4508
4509retry_deleg:
4510 trap = lock_rename(new_path.dentry, old_path.dentry);
4511
4512 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4513 error = PTR_ERR(old_dentry);
4514 if (IS_ERR(old_dentry))
4515 goto exit3;
4516 /* source must exist */
4517 error = -ENOENT;
4518 if (d_is_negative(old_dentry))
4519 goto exit4;
4520 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4521 error = PTR_ERR(new_dentry);
4522 if (IS_ERR(new_dentry))
4523 goto exit4;
4524 error = -EEXIST;
4525 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4526 goto exit5;
4527 if (flags & RENAME_EXCHANGE) {
4528 error = -ENOENT;
4529 if (d_is_negative(new_dentry))
4530 goto exit5;
4531
4532 if (!d_is_dir(new_dentry)) {
4533 error = -ENOTDIR;
4534 if (new_last.name[new_last.len])
4535 goto exit5;
4536 }
4537 }
4538 /* unless the source is a directory trailing slashes give -ENOTDIR */
4539 if (!d_is_dir(old_dentry)) {
4540 error = -ENOTDIR;
4541 if (old_last.name[old_last.len])
4542 goto exit5;
4543 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4544 goto exit5;
4545 }
4546 /* source should not be ancestor of target */
4547 error = -EINVAL;
4548 if (old_dentry == trap)
4549 goto exit5;
4550 /* target should not be an ancestor of source */
4551 if (!(flags & RENAME_EXCHANGE))
4552 error = -ENOTEMPTY;
4553 if (new_dentry == trap)
4554 goto exit5;
4555
4556 error = security_path_rename(&old_path, old_dentry,
4557 &new_path, new_dentry, flags);
4558 if (error)
4559 goto exit5;
4560 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4561 new_path.dentry->d_inode, new_dentry,
4562 &delegated_inode, flags);
4563exit5:
4564 dput(new_dentry);
4565exit4:
4566 dput(old_dentry);
4567exit3:
4568 unlock_rename(new_path.dentry, old_path.dentry);
4569 if (delegated_inode) {
4570 error = break_deleg_wait(&delegated_inode);
4571 if (!error)
4572 goto retry_deleg;
4573 }
4574 mnt_drop_write(old_path.mnt);
4575exit2:
4576 if (retry_estale(error, lookup_flags))
4577 should_retry = true;
4578 path_put(&new_path);
4579 putname(to);
4580exit1:
4581 path_put(&old_path);
4582 putname(from);
4583 if (should_retry) {
4584 should_retry = false;
4585 lookup_flags |= LOOKUP_REVAL;
4586 goto retry;
4587 }
4588exit:
4589 return error;
4590}
4591
4592SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4593 int, newdfd, const char __user *, newname)
4594{
4595 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4596}
4597
4598SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4599{
4600 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4601}
4602
4603int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4604{
4605 int error = may_create(dir, dentry);
4606 if (error)
4607 return error;
4608
4609 if (!dir->i_op->mknod)
4610 return -EPERM;
4611
4612 return dir->i_op->mknod(dir, dentry,
4613 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4614}
4615EXPORT_SYMBOL(vfs_whiteout);
4616
4617int readlink_copy(char __user *buffer, int buflen, const char *link)
4618{
4619 int len = PTR_ERR(link);
4620 if (IS_ERR(link))
4621 goto out;
4622
4623 len = strlen(link);
4624 if (len > (unsigned) buflen)
4625 len = buflen;
4626 if (copy_to_user(buffer, link, len))
4627 len = -EFAULT;
4628out:
4629 return len;
4630}
4631
4632/*
4633 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4634 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4635 * for any given inode is up to filesystem.
4636 */
4637int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4638{
4639 DEFINE_DELAYED_CALL(done);
4640 struct inode *inode = d_inode(dentry);
4641 const char *link = inode->i_link;
4642 int res;
4643
4644 if (!link) {
4645 link = inode->i_op->get_link(dentry, inode, &done);
4646 if (IS_ERR(link))
4647 return PTR_ERR(link);
4648 }
4649 res = readlink_copy(buffer, buflen, link);
4650 do_delayed_call(&done);
4651 return res;
4652}
4653EXPORT_SYMBOL(generic_readlink);
4654
4655/* get the link contents into pagecache */
4656const char *page_get_link(struct dentry *dentry, struct inode *inode,
4657 struct delayed_call *callback)
4658{
4659 char *kaddr;
4660 struct page *page;
4661 struct address_space *mapping = inode->i_mapping;
4662
4663 if (!dentry) {
4664 page = find_get_page(mapping, 0);
4665 if (!page)
4666 return ERR_PTR(-ECHILD);
4667 if (!PageUptodate(page)) {
4668 put_page(page);
4669 return ERR_PTR(-ECHILD);
4670 }
4671 } else {
4672 page = read_mapping_page(mapping, 0, NULL);
4673 if (IS_ERR(page))
4674 return (char*)page;
4675 }
4676 set_delayed_call(callback, page_put_link, page);
4677 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4678 kaddr = page_address(page);
4679 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4680 return kaddr;
4681}
4682
4683EXPORT_SYMBOL(page_get_link);
4684
4685void page_put_link(void *arg)
4686{
4687 put_page(arg);
4688}
4689EXPORT_SYMBOL(page_put_link);
4690
4691int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4692{
4693 DEFINE_DELAYED_CALL(done);
4694 int res = readlink_copy(buffer, buflen,
4695 page_get_link(dentry, d_inode(dentry),
4696 &done));
4697 do_delayed_call(&done);
4698 return res;
4699}
4700EXPORT_SYMBOL(page_readlink);
4701
4702/*
4703 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4704 */
4705int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4706{
4707 struct address_space *mapping = inode->i_mapping;
4708 struct page *page;
4709 void *fsdata;
4710 int err;
4711 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4712 if (nofs)
4713 flags |= AOP_FLAG_NOFS;
4714
4715retry:
4716 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4717 flags, &page, &fsdata);
4718 if (err)
4719 goto fail;
4720
4721 memcpy(page_address(page), symname, len-1);
4722
4723 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4724 page, fsdata);
4725 if (err < 0)
4726 goto fail;
4727 if (err < len-1)
4728 goto retry;
4729
4730 mark_inode_dirty(inode);
4731 return 0;
4732fail:
4733 return err;
4734}
4735EXPORT_SYMBOL(__page_symlink);
4736
4737int page_symlink(struct inode *inode, const char *symname, int len)
4738{
4739 return __page_symlink(inode, symname, len,
4740 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4741}
4742EXPORT_SYMBOL(page_symlink);
4743
4744const struct inode_operations page_symlink_inode_operations = {
4745 .readlink = generic_readlink,
4746 .get_link = page_get_link,
4747};
4748EXPORT_SYMBOL(page_symlink_inode_operations);