]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - fs/namei.c
fix nommu breakage in shmem.c
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <asm/uaccess.h>
38
39#include "internal.h"
40#include "mount.h"
41
42/* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107/*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113/* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120void final_putname(struct filename *name)
121{
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128}
129
130#define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132static struct filename *
133getname_flags(const char __user *filename, int flags, int *empty)
134{
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202error:
203 final_putname(result);
204 return err;
205}
206
207struct filename *
208getname(const char __user * filename)
209{
210 return getname_flags(filename, 0, NULL);
211}
212EXPORT_SYMBOL(getname);
213
214#ifdef CONFIG_AUDITSYSCALL
215void putname(struct filename *name)
216{
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220}
221#endif
222
223static int check_acl(struct inode *inode, int mask)
224{
225#ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264#endif
265
266 return -EAGAIN;
267}
268
269/*
270 * This does the basic permission checking
271 */
272static int acl_permission_check(struct inode *inode, int mask)
273{
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295}
296
297/**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311int generic_permission(struct inode *inode, int mask)
312{
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349}
350
351/*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357static inline int do_inode_permission(struct inode *inode, int mask)
358{
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369}
370
371/**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383int __inode_permission(struct inode *inode, int mask)
384{
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404}
405
406/**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415{
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425}
426
427/**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438int inode_permission(struct inode *inode, int mask)
439{
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446}
447
448/**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454void path_get(struct path *path)
455{
456 mntget(path->mnt);
457 dget(path->dentry);
458}
459EXPORT_SYMBOL(path_get);
460
461/**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467void path_put(struct path *path)
468{
469 dput(path->dentry);
470 mntput(path->mnt);
471}
472EXPORT_SYMBOL(path_put);
473
474/*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485static inline void lock_rcu_walk(void)
486{
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489}
490
491static inline void unlock_rcu_walk(void)
492{
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495}
496
497/**
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
502 *
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
506 */
507static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508{
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
511 int want_root = 0;
512
513 BUG_ON(!(nd->flags & LOOKUP_RCU));
514 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 want_root = 1;
516 spin_lock(&fs->lock);
517 if (nd->root.mnt != fs->root.mnt ||
518 nd->root.dentry != fs->root.dentry)
519 goto err_root;
520 }
521 spin_lock(&parent->d_lock);
522 if (!dentry) {
523 if (!__d_rcu_to_refcount(parent, nd->seq))
524 goto err_parent;
525 BUG_ON(nd->inode != parent->d_inode);
526 } else {
527 if (dentry->d_parent != parent)
528 goto err_parent;
529 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 if (!__d_rcu_to_refcount(dentry, nd->seq))
531 goto err_child;
532 /*
533 * If the sequence check on the child dentry passed, then
534 * the child has not been removed from its parent. This
535 * means the parent dentry must be valid and able to take
536 * a reference at this point.
537 */
538 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 BUG_ON(!parent->d_count);
540 parent->d_count++;
541 spin_unlock(&dentry->d_lock);
542 }
543 spin_unlock(&parent->d_lock);
544 if (want_root) {
545 path_get(&nd->root);
546 spin_unlock(&fs->lock);
547 }
548 mntget(nd->path.mnt);
549
550 unlock_rcu_walk();
551 nd->flags &= ~LOOKUP_RCU;
552 return 0;
553
554err_child:
555 spin_unlock(&dentry->d_lock);
556err_parent:
557 spin_unlock(&parent->d_lock);
558err_root:
559 if (want_root)
560 spin_unlock(&fs->lock);
561 return -ECHILD;
562}
563
564static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565{
566 return dentry->d_op->d_revalidate(dentry, flags);
567}
568
569/**
570 * complete_walk - successful completion of path walk
571 * @nd: pointer nameidata
572 *
573 * If we had been in RCU mode, drop out of it and legitimize nd->path.
574 * Revalidate the final result, unless we'd already done that during
575 * the path walk or the filesystem doesn't ask for it. Return 0 on
576 * success, -error on failure. In case of failure caller does not
577 * need to drop nd->path.
578 */
579static int complete_walk(struct nameidata *nd)
580{
581 struct dentry *dentry = nd->path.dentry;
582 int status;
583
584 if (nd->flags & LOOKUP_RCU) {
585 nd->flags &= ~LOOKUP_RCU;
586 if (!(nd->flags & LOOKUP_ROOT))
587 nd->root.mnt = NULL;
588 spin_lock(&dentry->d_lock);
589 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 spin_unlock(&dentry->d_lock);
591 unlock_rcu_walk();
592 return -ECHILD;
593 }
594 BUG_ON(nd->inode != dentry->d_inode);
595 spin_unlock(&dentry->d_lock);
596 mntget(nd->path.mnt);
597 unlock_rcu_walk();
598 }
599
600 if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 return 0;
602
603 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
604 return 0;
605
606 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
607 if (status > 0)
608 return 0;
609
610 if (!status)
611 status = -ESTALE;
612
613 path_put(&nd->path);
614 return status;
615}
616
617static __always_inline void set_root(struct nameidata *nd)
618{
619 if (!nd->root.mnt)
620 get_fs_root(current->fs, &nd->root);
621}
622
623static int link_path_walk(const char *, struct nameidata *);
624
625static __always_inline void set_root_rcu(struct nameidata *nd)
626{
627 if (!nd->root.mnt) {
628 struct fs_struct *fs = current->fs;
629 unsigned seq;
630
631 do {
632 seq = read_seqcount_begin(&fs->seq);
633 nd->root = fs->root;
634 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
635 } while (read_seqcount_retry(&fs->seq, seq));
636 }
637}
638
639static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
640{
641 int ret;
642
643 if (IS_ERR(link))
644 goto fail;
645
646 if (*link == '/') {
647 set_root(nd);
648 path_put(&nd->path);
649 nd->path = nd->root;
650 path_get(&nd->root);
651 nd->flags |= LOOKUP_JUMPED;
652 }
653 nd->inode = nd->path.dentry->d_inode;
654
655 ret = link_path_walk(link, nd);
656 return ret;
657fail:
658 path_put(&nd->path);
659 return PTR_ERR(link);
660}
661
662static void path_put_conditional(struct path *path, struct nameidata *nd)
663{
664 dput(path->dentry);
665 if (path->mnt != nd->path.mnt)
666 mntput(path->mnt);
667}
668
669static inline void path_to_nameidata(const struct path *path,
670 struct nameidata *nd)
671{
672 if (!(nd->flags & LOOKUP_RCU)) {
673 dput(nd->path.dentry);
674 if (nd->path.mnt != path->mnt)
675 mntput(nd->path.mnt);
676 }
677 nd->path.mnt = path->mnt;
678 nd->path.dentry = path->dentry;
679}
680
681/*
682 * Helper to directly jump to a known parsed path from ->follow_link,
683 * caller must have taken a reference to path beforehand.
684 */
685void nd_jump_link(struct nameidata *nd, struct path *path)
686{
687 path_put(&nd->path);
688
689 nd->path = *path;
690 nd->inode = nd->path.dentry->d_inode;
691 nd->flags |= LOOKUP_JUMPED;
692
693 BUG_ON(nd->inode->i_op->follow_link);
694}
695
696static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
697{
698 struct inode *inode = link->dentry->d_inode;
699 if (inode->i_op->put_link)
700 inode->i_op->put_link(link->dentry, nd, cookie);
701 path_put(link);
702}
703
704int sysctl_protected_symlinks __read_mostly = 0;
705int sysctl_protected_hardlinks __read_mostly = 0;
706
707/**
708 * may_follow_link - Check symlink following for unsafe situations
709 * @link: The path of the symlink
710 * @nd: nameidata pathwalk data
711 *
712 * In the case of the sysctl_protected_symlinks sysctl being enabled,
713 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
714 * in a sticky world-writable directory. This is to protect privileged
715 * processes from failing races against path names that may change out
716 * from under them by way of other users creating malicious symlinks.
717 * It will permit symlinks to be followed only when outside a sticky
718 * world-writable directory, or when the uid of the symlink and follower
719 * match, or when the directory owner matches the symlink's owner.
720 *
721 * Returns 0 if following the symlink is allowed, -ve on error.
722 */
723static inline int may_follow_link(struct path *link, struct nameidata *nd)
724{
725 const struct inode *inode;
726 const struct inode *parent;
727
728 if (!sysctl_protected_symlinks)
729 return 0;
730
731 /* Allowed if owner and follower match. */
732 inode = link->dentry->d_inode;
733 if (uid_eq(current_cred()->fsuid, inode->i_uid))
734 return 0;
735
736 /* Allowed if parent directory not sticky and world-writable. */
737 parent = nd->path.dentry->d_inode;
738 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
739 return 0;
740
741 /* Allowed if parent directory and link owner match. */
742 if (uid_eq(parent->i_uid, inode->i_uid))
743 return 0;
744
745 audit_log_link_denied("follow_link", link);
746 path_put_conditional(link, nd);
747 path_put(&nd->path);
748 return -EACCES;
749}
750
751/**
752 * safe_hardlink_source - Check for safe hardlink conditions
753 * @inode: the source inode to hardlink from
754 *
755 * Return false if at least one of the following conditions:
756 * - inode is not a regular file
757 * - inode is setuid
758 * - inode is setgid and group-exec
759 * - access failure for read and write
760 *
761 * Otherwise returns true.
762 */
763static bool safe_hardlink_source(struct inode *inode)
764{
765 umode_t mode = inode->i_mode;
766
767 /* Special files should not get pinned to the filesystem. */
768 if (!S_ISREG(mode))
769 return false;
770
771 /* Setuid files should not get pinned to the filesystem. */
772 if (mode & S_ISUID)
773 return false;
774
775 /* Executable setgid files should not get pinned to the filesystem. */
776 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
777 return false;
778
779 /* Hardlinking to unreadable or unwritable sources is dangerous. */
780 if (inode_permission(inode, MAY_READ | MAY_WRITE))
781 return false;
782
783 return true;
784}
785
786/**
787 * may_linkat - Check permissions for creating a hardlink
788 * @link: the source to hardlink from
789 *
790 * Block hardlink when all of:
791 * - sysctl_protected_hardlinks enabled
792 * - fsuid does not match inode
793 * - hardlink source is unsafe (see safe_hardlink_source() above)
794 * - not CAP_FOWNER
795 *
796 * Returns 0 if successful, -ve on error.
797 */
798static int may_linkat(struct path *link)
799{
800 const struct cred *cred;
801 struct inode *inode;
802
803 if (!sysctl_protected_hardlinks)
804 return 0;
805
806 cred = current_cred();
807 inode = link->dentry->d_inode;
808
809 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
810 * otherwise, it must be a safe source.
811 */
812 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
813 capable(CAP_FOWNER))
814 return 0;
815
816 audit_log_link_denied("linkat", link);
817 return -EPERM;
818}
819
820static __always_inline int
821follow_link(struct path *link, struct nameidata *nd, void **p)
822{
823 struct dentry *dentry = link->dentry;
824 int error;
825 char *s;
826
827 BUG_ON(nd->flags & LOOKUP_RCU);
828
829 if (link->mnt == nd->path.mnt)
830 mntget(link->mnt);
831
832 error = -ELOOP;
833 if (unlikely(current->total_link_count >= 40))
834 goto out_put_nd_path;
835
836 cond_resched();
837 current->total_link_count++;
838
839 touch_atime(link);
840 nd_set_link(nd, NULL);
841
842 error = security_inode_follow_link(link->dentry, nd);
843 if (error)
844 goto out_put_nd_path;
845
846 nd->last_type = LAST_BIND;
847 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
848 error = PTR_ERR(*p);
849 if (IS_ERR(*p))
850 goto out_put_nd_path;
851
852 error = 0;
853 s = nd_get_link(nd);
854 if (s) {
855 error = __vfs_follow_link(nd, s);
856 if (unlikely(error))
857 put_link(nd, link, *p);
858 }
859
860 return error;
861
862out_put_nd_path:
863 *p = NULL;
864 path_put(&nd->path);
865 path_put(link);
866 return error;
867}
868
869static int follow_up_rcu(struct path *path)
870{
871 struct mount *mnt = real_mount(path->mnt);
872 struct mount *parent;
873 struct dentry *mountpoint;
874
875 parent = mnt->mnt_parent;
876 if (&parent->mnt == path->mnt)
877 return 0;
878 mountpoint = mnt->mnt_mountpoint;
879 path->dentry = mountpoint;
880 path->mnt = &parent->mnt;
881 return 1;
882}
883
884/*
885 * follow_up - Find the mountpoint of path's vfsmount
886 *
887 * Given a path, find the mountpoint of its source file system.
888 * Replace @path with the path of the mountpoint in the parent mount.
889 * Up is towards /.
890 *
891 * Return 1 if we went up a level and 0 if we were already at the
892 * root.
893 */
894int follow_up(struct path *path)
895{
896 struct mount *mnt = real_mount(path->mnt);
897 struct mount *parent;
898 struct dentry *mountpoint;
899
900 br_read_lock(&vfsmount_lock);
901 parent = mnt->mnt_parent;
902 if (parent == mnt) {
903 br_read_unlock(&vfsmount_lock);
904 return 0;
905 }
906 mntget(&parent->mnt);
907 mountpoint = dget(mnt->mnt_mountpoint);
908 br_read_unlock(&vfsmount_lock);
909 dput(path->dentry);
910 path->dentry = mountpoint;
911 mntput(path->mnt);
912 path->mnt = &parent->mnt;
913 return 1;
914}
915
916/*
917 * Perform an automount
918 * - return -EISDIR to tell follow_managed() to stop and return the path we
919 * were called with.
920 */
921static int follow_automount(struct path *path, unsigned flags,
922 bool *need_mntput)
923{
924 struct vfsmount *mnt;
925 int err;
926
927 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
928 return -EREMOTE;
929
930 /* We don't want to mount if someone's just doing a stat -
931 * unless they're stat'ing a directory and appended a '/' to
932 * the name.
933 *
934 * We do, however, want to mount if someone wants to open or
935 * create a file of any type under the mountpoint, wants to
936 * traverse through the mountpoint or wants to open the
937 * mounted directory. Also, autofs may mark negative dentries
938 * as being automount points. These will need the attentions
939 * of the daemon to instantiate them before they can be used.
940 */
941 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
942 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
943 path->dentry->d_inode)
944 return -EISDIR;
945
946 current->total_link_count++;
947 if (current->total_link_count >= 40)
948 return -ELOOP;
949
950 mnt = path->dentry->d_op->d_automount(path);
951 if (IS_ERR(mnt)) {
952 /*
953 * The filesystem is allowed to return -EISDIR here to indicate
954 * it doesn't want to automount. For instance, autofs would do
955 * this so that its userspace daemon can mount on this dentry.
956 *
957 * However, we can only permit this if it's a terminal point in
958 * the path being looked up; if it wasn't then the remainder of
959 * the path is inaccessible and we should say so.
960 */
961 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
962 return -EREMOTE;
963 return PTR_ERR(mnt);
964 }
965
966 if (!mnt) /* mount collision */
967 return 0;
968
969 if (!*need_mntput) {
970 /* lock_mount() may release path->mnt on error */
971 mntget(path->mnt);
972 *need_mntput = true;
973 }
974 err = finish_automount(mnt, path);
975
976 switch (err) {
977 case -EBUSY:
978 /* Someone else made a mount here whilst we were busy */
979 return 0;
980 case 0:
981 path_put(path);
982 path->mnt = mnt;
983 path->dentry = dget(mnt->mnt_root);
984 return 0;
985 default:
986 return err;
987 }
988
989}
990
991/*
992 * Handle a dentry that is managed in some way.
993 * - Flagged for transit management (autofs)
994 * - Flagged as mountpoint
995 * - Flagged as automount point
996 *
997 * This may only be called in refwalk mode.
998 *
999 * Serialization is taken care of in namespace.c
1000 */
1001static int follow_managed(struct path *path, unsigned flags)
1002{
1003 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1004 unsigned managed;
1005 bool need_mntput = false;
1006 int ret = 0;
1007
1008 /* Given that we're not holding a lock here, we retain the value in a
1009 * local variable for each dentry as we look at it so that we don't see
1010 * the components of that value change under us */
1011 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 managed &= DCACHE_MANAGED_DENTRY,
1013 unlikely(managed != 0)) {
1014 /* Allow the filesystem to manage the transit without i_mutex
1015 * being held. */
1016 if (managed & DCACHE_MANAGE_TRANSIT) {
1017 BUG_ON(!path->dentry->d_op);
1018 BUG_ON(!path->dentry->d_op->d_manage);
1019 ret = path->dentry->d_op->d_manage(path->dentry, false);
1020 if (ret < 0)
1021 break;
1022 }
1023
1024 /* Transit to a mounted filesystem. */
1025 if (managed & DCACHE_MOUNTED) {
1026 struct vfsmount *mounted = lookup_mnt(path);
1027 if (mounted) {
1028 dput(path->dentry);
1029 if (need_mntput)
1030 mntput(path->mnt);
1031 path->mnt = mounted;
1032 path->dentry = dget(mounted->mnt_root);
1033 need_mntput = true;
1034 continue;
1035 }
1036
1037 /* Something is mounted on this dentry in another
1038 * namespace and/or whatever was mounted there in this
1039 * namespace got unmounted before we managed to get the
1040 * vfsmount_lock */
1041 }
1042
1043 /* Handle an automount point */
1044 if (managed & DCACHE_NEED_AUTOMOUNT) {
1045 ret = follow_automount(path, flags, &need_mntput);
1046 if (ret < 0)
1047 break;
1048 continue;
1049 }
1050
1051 /* We didn't change the current path point */
1052 break;
1053 }
1054
1055 if (need_mntput && path->mnt == mnt)
1056 mntput(path->mnt);
1057 if (ret == -EISDIR)
1058 ret = 0;
1059 return ret < 0 ? ret : need_mntput;
1060}
1061
1062int follow_down_one(struct path *path)
1063{
1064 struct vfsmount *mounted;
1065
1066 mounted = lookup_mnt(path);
1067 if (mounted) {
1068 dput(path->dentry);
1069 mntput(path->mnt);
1070 path->mnt = mounted;
1071 path->dentry = dget(mounted->mnt_root);
1072 return 1;
1073 }
1074 return 0;
1075}
1076
1077static inline bool managed_dentry_might_block(struct dentry *dentry)
1078{
1079 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1080 dentry->d_op->d_manage(dentry, true) < 0);
1081}
1082
1083/*
1084 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1085 * we meet a managed dentry that would need blocking.
1086 */
1087static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1088 struct inode **inode)
1089{
1090 for (;;) {
1091 struct mount *mounted;
1092 /*
1093 * Don't forget we might have a non-mountpoint managed dentry
1094 * that wants to block transit.
1095 */
1096 if (unlikely(managed_dentry_might_block(path->dentry)))
1097 return false;
1098
1099 if (!d_mountpoint(path->dentry))
1100 break;
1101
1102 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1103 if (!mounted)
1104 break;
1105 path->mnt = &mounted->mnt;
1106 path->dentry = mounted->mnt.mnt_root;
1107 nd->flags |= LOOKUP_JUMPED;
1108 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1109 /*
1110 * Update the inode too. We don't need to re-check the
1111 * dentry sequence number here after this d_inode read,
1112 * because a mount-point is always pinned.
1113 */
1114 *inode = path->dentry->d_inode;
1115 }
1116 return true;
1117}
1118
1119static void follow_mount_rcu(struct nameidata *nd)
1120{
1121 while (d_mountpoint(nd->path.dentry)) {
1122 struct mount *mounted;
1123 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1124 if (!mounted)
1125 break;
1126 nd->path.mnt = &mounted->mnt;
1127 nd->path.dentry = mounted->mnt.mnt_root;
1128 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1129 }
1130}
1131
1132static int follow_dotdot_rcu(struct nameidata *nd)
1133{
1134 set_root_rcu(nd);
1135
1136 while (1) {
1137 if (nd->path.dentry == nd->root.dentry &&
1138 nd->path.mnt == nd->root.mnt) {
1139 break;
1140 }
1141 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1142 struct dentry *old = nd->path.dentry;
1143 struct dentry *parent = old->d_parent;
1144 unsigned seq;
1145
1146 seq = read_seqcount_begin(&parent->d_seq);
1147 if (read_seqcount_retry(&old->d_seq, nd->seq))
1148 goto failed;
1149 nd->path.dentry = parent;
1150 nd->seq = seq;
1151 break;
1152 }
1153 if (!follow_up_rcu(&nd->path))
1154 break;
1155 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1156 }
1157 follow_mount_rcu(nd);
1158 nd->inode = nd->path.dentry->d_inode;
1159 return 0;
1160
1161failed:
1162 nd->flags &= ~LOOKUP_RCU;
1163 if (!(nd->flags & LOOKUP_ROOT))
1164 nd->root.mnt = NULL;
1165 unlock_rcu_walk();
1166 return -ECHILD;
1167}
1168
1169/*
1170 * Follow down to the covering mount currently visible to userspace. At each
1171 * point, the filesystem owning that dentry may be queried as to whether the
1172 * caller is permitted to proceed or not.
1173 */
1174int follow_down(struct path *path)
1175{
1176 unsigned managed;
1177 int ret;
1178
1179 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1180 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1181 /* Allow the filesystem to manage the transit without i_mutex
1182 * being held.
1183 *
1184 * We indicate to the filesystem if someone is trying to mount
1185 * something here. This gives autofs the chance to deny anyone
1186 * other than its daemon the right to mount on its
1187 * superstructure.
1188 *
1189 * The filesystem may sleep at this point.
1190 */
1191 if (managed & DCACHE_MANAGE_TRANSIT) {
1192 BUG_ON(!path->dentry->d_op);
1193 BUG_ON(!path->dentry->d_op->d_manage);
1194 ret = path->dentry->d_op->d_manage(
1195 path->dentry, false);
1196 if (ret < 0)
1197 return ret == -EISDIR ? 0 : ret;
1198 }
1199
1200 /* Transit to a mounted filesystem. */
1201 if (managed & DCACHE_MOUNTED) {
1202 struct vfsmount *mounted = lookup_mnt(path);
1203 if (!mounted)
1204 break;
1205 dput(path->dentry);
1206 mntput(path->mnt);
1207 path->mnt = mounted;
1208 path->dentry = dget(mounted->mnt_root);
1209 continue;
1210 }
1211
1212 /* Don't handle automount points here */
1213 break;
1214 }
1215 return 0;
1216}
1217
1218/*
1219 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1220 */
1221static void follow_mount(struct path *path)
1222{
1223 while (d_mountpoint(path->dentry)) {
1224 struct vfsmount *mounted = lookup_mnt(path);
1225 if (!mounted)
1226 break;
1227 dput(path->dentry);
1228 mntput(path->mnt);
1229 path->mnt = mounted;
1230 path->dentry = dget(mounted->mnt_root);
1231 }
1232}
1233
1234static void follow_dotdot(struct nameidata *nd)
1235{
1236 set_root(nd);
1237
1238 while(1) {
1239 struct dentry *old = nd->path.dentry;
1240
1241 if (nd->path.dentry == nd->root.dentry &&
1242 nd->path.mnt == nd->root.mnt) {
1243 break;
1244 }
1245 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1246 /* rare case of legitimate dget_parent()... */
1247 nd->path.dentry = dget_parent(nd->path.dentry);
1248 dput(old);
1249 break;
1250 }
1251 if (!follow_up(&nd->path))
1252 break;
1253 }
1254 follow_mount(&nd->path);
1255 nd->inode = nd->path.dentry->d_inode;
1256}
1257
1258/*
1259 * This looks up the name in dcache, possibly revalidates the old dentry and
1260 * allocates a new one if not found or not valid. In the need_lookup argument
1261 * returns whether i_op->lookup is necessary.
1262 *
1263 * dir->d_inode->i_mutex must be held
1264 */
1265static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1266 unsigned int flags, bool *need_lookup)
1267{
1268 struct dentry *dentry;
1269 int error;
1270
1271 *need_lookup = false;
1272 dentry = d_lookup(dir, name);
1273 if (dentry) {
1274 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1275 error = d_revalidate(dentry, flags);
1276 if (unlikely(error <= 0)) {
1277 if (error < 0) {
1278 dput(dentry);
1279 return ERR_PTR(error);
1280 } else if (!d_invalidate(dentry)) {
1281 dput(dentry);
1282 dentry = NULL;
1283 }
1284 }
1285 }
1286 }
1287
1288 if (!dentry) {
1289 dentry = d_alloc(dir, name);
1290 if (unlikely(!dentry))
1291 return ERR_PTR(-ENOMEM);
1292
1293 *need_lookup = true;
1294 }
1295 return dentry;
1296}
1297
1298/*
1299 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1300 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1301 *
1302 * dir->d_inode->i_mutex must be held
1303 */
1304static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1305 unsigned int flags)
1306{
1307 struct dentry *old;
1308
1309 /* Don't create child dentry for a dead directory. */
1310 if (unlikely(IS_DEADDIR(dir))) {
1311 dput(dentry);
1312 return ERR_PTR(-ENOENT);
1313 }
1314
1315 old = dir->i_op->lookup(dir, dentry, flags);
1316 if (unlikely(old)) {
1317 dput(dentry);
1318 dentry = old;
1319 }
1320 return dentry;
1321}
1322
1323static struct dentry *__lookup_hash(struct qstr *name,
1324 struct dentry *base, unsigned int flags)
1325{
1326 bool need_lookup;
1327 struct dentry *dentry;
1328
1329 dentry = lookup_dcache(name, base, flags, &need_lookup);
1330 if (!need_lookup)
1331 return dentry;
1332
1333 return lookup_real(base->d_inode, dentry, flags);
1334}
1335
1336/*
1337 * It's more convoluted than I'd like it to be, but... it's still fairly
1338 * small and for now I'd prefer to have fast path as straight as possible.
1339 * It _is_ time-critical.
1340 */
1341static int lookup_fast(struct nameidata *nd,
1342 struct path *path, struct inode **inode)
1343{
1344 struct vfsmount *mnt = nd->path.mnt;
1345 struct dentry *dentry, *parent = nd->path.dentry;
1346 int need_reval = 1;
1347 int status = 1;
1348 int err;
1349
1350 /*
1351 * Rename seqlock is not required here because in the off chance
1352 * of a false negative due to a concurrent rename, we're going to
1353 * do the non-racy lookup, below.
1354 */
1355 if (nd->flags & LOOKUP_RCU) {
1356 unsigned seq;
1357 dentry = __d_lookup_rcu(parent, &nd->last, &seq, nd->inode);
1358 if (!dentry)
1359 goto unlazy;
1360
1361 /*
1362 * This sequence count validates that the inode matches
1363 * the dentry name information from lookup.
1364 */
1365 *inode = dentry->d_inode;
1366 if (read_seqcount_retry(&dentry->d_seq, seq))
1367 return -ECHILD;
1368
1369 /*
1370 * This sequence count validates that the parent had no
1371 * changes while we did the lookup of the dentry above.
1372 *
1373 * The memory barrier in read_seqcount_begin of child is
1374 * enough, we can use __read_seqcount_retry here.
1375 */
1376 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1377 return -ECHILD;
1378 nd->seq = seq;
1379
1380 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1381 status = d_revalidate(dentry, nd->flags);
1382 if (unlikely(status <= 0)) {
1383 if (status != -ECHILD)
1384 need_reval = 0;
1385 goto unlazy;
1386 }
1387 }
1388 path->mnt = mnt;
1389 path->dentry = dentry;
1390 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1391 goto unlazy;
1392 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1393 goto unlazy;
1394 return 0;
1395unlazy:
1396 if (unlazy_walk(nd, dentry))
1397 return -ECHILD;
1398 } else {
1399 dentry = __d_lookup(parent, &nd->last);
1400 }
1401
1402 if (unlikely(!dentry))
1403 goto need_lookup;
1404
1405 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1406 status = d_revalidate(dentry, nd->flags);
1407 if (unlikely(status <= 0)) {
1408 if (status < 0) {
1409 dput(dentry);
1410 return status;
1411 }
1412 if (!d_invalidate(dentry)) {
1413 dput(dentry);
1414 goto need_lookup;
1415 }
1416 }
1417
1418 path->mnt = mnt;
1419 path->dentry = dentry;
1420 err = follow_managed(path, nd->flags);
1421 if (unlikely(err < 0)) {
1422 path_put_conditional(path, nd);
1423 return err;
1424 }
1425 if (err)
1426 nd->flags |= LOOKUP_JUMPED;
1427 *inode = path->dentry->d_inode;
1428 return 0;
1429
1430need_lookup:
1431 return 1;
1432}
1433
1434/* Fast lookup failed, do it the slow way */
1435static int lookup_slow(struct nameidata *nd, struct path *path)
1436{
1437 struct dentry *dentry, *parent;
1438 int err;
1439
1440 parent = nd->path.dentry;
1441 BUG_ON(nd->inode != parent->d_inode);
1442
1443 mutex_lock(&parent->d_inode->i_mutex);
1444 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1445 mutex_unlock(&parent->d_inode->i_mutex);
1446 if (IS_ERR(dentry))
1447 return PTR_ERR(dentry);
1448 path->mnt = nd->path.mnt;
1449 path->dentry = dentry;
1450 err = follow_managed(path, nd->flags);
1451 if (unlikely(err < 0)) {
1452 path_put_conditional(path, nd);
1453 return err;
1454 }
1455 if (err)
1456 nd->flags |= LOOKUP_JUMPED;
1457 return 0;
1458}
1459
1460static inline int may_lookup(struct nameidata *nd)
1461{
1462 if (nd->flags & LOOKUP_RCU) {
1463 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1464 if (err != -ECHILD)
1465 return err;
1466 if (unlazy_walk(nd, NULL))
1467 return -ECHILD;
1468 }
1469 return inode_permission(nd->inode, MAY_EXEC);
1470}
1471
1472static inline int handle_dots(struct nameidata *nd, int type)
1473{
1474 if (type == LAST_DOTDOT) {
1475 if (nd->flags & LOOKUP_RCU) {
1476 if (follow_dotdot_rcu(nd))
1477 return -ECHILD;
1478 } else
1479 follow_dotdot(nd);
1480 }
1481 return 0;
1482}
1483
1484static void terminate_walk(struct nameidata *nd)
1485{
1486 if (!(nd->flags & LOOKUP_RCU)) {
1487 path_put(&nd->path);
1488 } else {
1489 nd->flags &= ~LOOKUP_RCU;
1490 if (!(nd->flags & LOOKUP_ROOT))
1491 nd->root.mnt = NULL;
1492 unlock_rcu_walk();
1493 }
1494}
1495
1496/*
1497 * Do we need to follow links? We _really_ want to be able
1498 * to do this check without having to look at inode->i_op,
1499 * so we keep a cache of "no, this doesn't need follow_link"
1500 * for the common case.
1501 */
1502static inline int should_follow_link(struct inode *inode, int follow)
1503{
1504 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1505 if (likely(inode->i_op->follow_link))
1506 return follow;
1507
1508 /* This gets set once for the inode lifetime */
1509 spin_lock(&inode->i_lock);
1510 inode->i_opflags |= IOP_NOFOLLOW;
1511 spin_unlock(&inode->i_lock);
1512 }
1513 return 0;
1514}
1515
1516static inline int walk_component(struct nameidata *nd, struct path *path,
1517 int follow)
1518{
1519 struct inode *inode;
1520 int err;
1521 /*
1522 * "." and ".." are special - ".." especially so because it has
1523 * to be able to know about the current root directory and
1524 * parent relationships.
1525 */
1526 if (unlikely(nd->last_type != LAST_NORM))
1527 return handle_dots(nd, nd->last_type);
1528 err = lookup_fast(nd, path, &inode);
1529 if (unlikely(err)) {
1530 if (err < 0)
1531 goto out_err;
1532
1533 err = lookup_slow(nd, path);
1534 if (err < 0)
1535 goto out_err;
1536
1537 inode = path->dentry->d_inode;
1538 }
1539 err = -ENOENT;
1540 if (!inode)
1541 goto out_path_put;
1542
1543 if (should_follow_link(inode, follow)) {
1544 if (nd->flags & LOOKUP_RCU) {
1545 if (unlikely(unlazy_walk(nd, path->dentry))) {
1546 err = -ECHILD;
1547 goto out_err;
1548 }
1549 }
1550 BUG_ON(inode != path->dentry->d_inode);
1551 return 1;
1552 }
1553 path_to_nameidata(path, nd);
1554 nd->inode = inode;
1555 return 0;
1556
1557out_path_put:
1558 path_to_nameidata(path, nd);
1559out_err:
1560 terminate_walk(nd);
1561 return err;
1562}
1563
1564/*
1565 * This limits recursive symlink follows to 8, while
1566 * limiting consecutive symlinks to 40.
1567 *
1568 * Without that kind of total limit, nasty chains of consecutive
1569 * symlinks can cause almost arbitrarily long lookups.
1570 */
1571static inline int nested_symlink(struct path *path, struct nameidata *nd)
1572{
1573 int res;
1574
1575 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1576 path_put_conditional(path, nd);
1577 path_put(&nd->path);
1578 return -ELOOP;
1579 }
1580 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1581
1582 nd->depth++;
1583 current->link_count++;
1584
1585 do {
1586 struct path link = *path;
1587 void *cookie;
1588
1589 res = follow_link(&link, nd, &cookie);
1590 if (res)
1591 break;
1592 res = walk_component(nd, path, LOOKUP_FOLLOW);
1593 put_link(nd, &link, cookie);
1594 } while (res > 0);
1595
1596 current->link_count--;
1597 nd->depth--;
1598 return res;
1599}
1600
1601/*
1602 * We really don't want to look at inode->i_op->lookup
1603 * when we don't have to. So we keep a cache bit in
1604 * the inode ->i_opflags field that says "yes, we can
1605 * do lookup on this inode".
1606 */
1607static inline int can_lookup(struct inode *inode)
1608{
1609 if (likely(inode->i_opflags & IOP_LOOKUP))
1610 return 1;
1611 if (likely(!inode->i_op->lookup))
1612 return 0;
1613
1614 /* We do this once for the lifetime of the inode */
1615 spin_lock(&inode->i_lock);
1616 inode->i_opflags |= IOP_LOOKUP;
1617 spin_unlock(&inode->i_lock);
1618 return 1;
1619}
1620
1621/*
1622 * We can do the critical dentry name comparison and hashing
1623 * operations one word at a time, but we are limited to:
1624 *
1625 * - Architectures with fast unaligned word accesses. We could
1626 * do a "get_unaligned()" if this helps and is sufficiently
1627 * fast.
1628 *
1629 * - Little-endian machines (so that we can generate the mask
1630 * of low bytes efficiently). Again, we *could* do a byte
1631 * swapping load on big-endian architectures if that is not
1632 * expensive enough to make the optimization worthless.
1633 *
1634 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1635 * do not trap on the (extremely unlikely) case of a page
1636 * crossing operation.
1637 *
1638 * - Furthermore, we need an efficient 64-bit compile for the
1639 * 64-bit case in order to generate the "number of bytes in
1640 * the final mask". Again, that could be replaced with a
1641 * efficient population count instruction or similar.
1642 */
1643#ifdef CONFIG_DCACHE_WORD_ACCESS
1644
1645#include <asm/word-at-a-time.h>
1646
1647#ifdef CONFIG_64BIT
1648
1649static inline unsigned int fold_hash(unsigned long hash)
1650{
1651 hash += hash >> (8*sizeof(int));
1652 return hash;
1653}
1654
1655#else /* 32-bit case */
1656
1657#define fold_hash(x) (x)
1658
1659#endif
1660
1661unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1662{
1663 unsigned long a, mask;
1664 unsigned long hash = 0;
1665
1666 for (;;) {
1667 a = load_unaligned_zeropad(name);
1668 if (len < sizeof(unsigned long))
1669 break;
1670 hash += a;
1671 hash *= 9;
1672 name += sizeof(unsigned long);
1673 len -= sizeof(unsigned long);
1674 if (!len)
1675 goto done;
1676 }
1677 mask = ~(~0ul << len*8);
1678 hash += mask & a;
1679done:
1680 return fold_hash(hash);
1681}
1682EXPORT_SYMBOL(full_name_hash);
1683
1684/*
1685 * Calculate the length and hash of the path component, and
1686 * return the length of the component;
1687 */
1688static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1689{
1690 unsigned long a, b, adata, bdata, mask, hash, len;
1691 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1692
1693 hash = a = 0;
1694 len = -sizeof(unsigned long);
1695 do {
1696 hash = (hash + a) * 9;
1697 len += sizeof(unsigned long);
1698 a = load_unaligned_zeropad(name+len);
1699 b = a ^ REPEAT_BYTE('/');
1700 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1701
1702 adata = prep_zero_mask(a, adata, &constants);
1703 bdata = prep_zero_mask(b, bdata, &constants);
1704
1705 mask = create_zero_mask(adata | bdata);
1706
1707 hash += a & zero_bytemask(mask);
1708 *hashp = fold_hash(hash);
1709
1710 return len + find_zero(mask);
1711}
1712
1713#else
1714
1715unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1716{
1717 unsigned long hash = init_name_hash();
1718 while (len--)
1719 hash = partial_name_hash(*name++, hash);
1720 return end_name_hash(hash);
1721}
1722EXPORT_SYMBOL(full_name_hash);
1723
1724/*
1725 * We know there's a real path component here of at least
1726 * one character.
1727 */
1728static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1729{
1730 unsigned long hash = init_name_hash();
1731 unsigned long len = 0, c;
1732
1733 c = (unsigned char)*name;
1734 do {
1735 len++;
1736 hash = partial_name_hash(c, hash);
1737 c = (unsigned char)name[len];
1738 } while (c && c != '/');
1739 *hashp = end_name_hash(hash);
1740 return len;
1741}
1742
1743#endif
1744
1745/*
1746 * Name resolution.
1747 * This is the basic name resolution function, turning a pathname into
1748 * the final dentry. We expect 'base' to be positive and a directory.
1749 *
1750 * Returns 0 and nd will have valid dentry and mnt on success.
1751 * Returns error and drops reference to input namei data on failure.
1752 */
1753static int link_path_walk(const char *name, struct nameidata *nd)
1754{
1755 struct path next;
1756 int err;
1757
1758 while (*name=='/')
1759 name++;
1760 if (!*name)
1761 return 0;
1762
1763 /* At this point we know we have a real path component. */
1764 for(;;) {
1765 struct qstr this;
1766 long len;
1767 int type;
1768
1769 err = may_lookup(nd);
1770 if (err)
1771 break;
1772
1773 len = hash_name(name, &this.hash);
1774 this.name = name;
1775 this.len = len;
1776
1777 type = LAST_NORM;
1778 if (name[0] == '.') switch (len) {
1779 case 2:
1780 if (name[1] == '.') {
1781 type = LAST_DOTDOT;
1782 nd->flags |= LOOKUP_JUMPED;
1783 }
1784 break;
1785 case 1:
1786 type = LAST_DOT;
1787 }
1788 if (likely(type == LAST_NORM)) {
1789 struct dentry *parent = nd->path.dentry;
1790 nd->flags &= ~LOOKUP_JUMPED;
1791 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1792 err = parent->d_op->d_hash(parent, nd->inode,
1793 &this);
1794 if (err < 0)
1795 break;
1796 }
1797 }
1798
1799 nd->last = this;
1800 nd->last_type = type;
1801
1802 if (!name[len])
1803 return 0;
1804 /*
1805 * If it wasn't NUL, we know it was '/'. Skip that
1806 * slash, and continue until no more slashes.
1807 */
1808 do {
1809 len++;
1810 } while (unlikely(name[len] == '/'));
1811 if (!name[len])
1812 return 0;
1813
1814 name += len;
1815
1816 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1817 if (err < 0)
1818 return err;
1819
1820 if (err) {
1821 err = nested_symlink(&next, nd);
1822 if (err)
1823 return err;
1824 }
1825 if (!can_lookup(nd->inode)) {
1826 err = -ENOTDIR;
1827 break;
1828 }
1829 }
1830 terminate_walk(nd);
1831 return err;
1832}
1833
1834static int path_init(int dfd, const char *name, unsigned int flags,
1835 struct nameidata *nd, struct file **fp)
1836{
1837 int retval = 0;
1838
1839 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1840 nd->flags = flags | LOOKUP_JUMPED;
1841 nd->depth = 0;
1842 if (flags & LOOKUP_ROOT) {
1843 struct inode *inode = nd->root.dentry->d_inode;
1844 if (*name) {
1845 if (!can_lookup(inode))
1846 return -ENOTDIR;
1847 retval = inode_permission(inode, MAY_EXEC);
1848 if (retval)
1849 return retval;
1850 }
1851 nd->path = nd->root;
1852 nd->inode = inode;
1853 if (flags & LOOKUP_RCU) {
1854 lock_rcu_walk();
1855 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1856 } else {
1857 path_get(&nd->path);
1858 }
1859 return 0;
1860 }
1861
1862 nd->root.mnt = NULL;
1863
1864 if (*name=='/') {
1865 if (flags & LOOKUP_RCU) {
1866 lock_rcu_walk();
1867 set_root_rcu(nd);
1868 } else {
1869 set_root(nd);
1870 path_get(&nd->root);
1871 }
1872 nd->path = nd->root;
1873 } else if (dfd == AT_FDCWD) {
1874 if (flags & LOOKUP_RCU) {
1875 struct fs_struct *fs = current->fs;
1876 unsigned seq;
1877
1878 lock_rcu_walk();
1879
1880 do {
1881 seq = read_seqcount_begin(&fs->seq);
1882 nd->path = fs->pwd;
1883 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1884 } while (read_seqcount_retry(&fs->seq, seq));
1885 } else {
1886 get_fs_pwd(current->fs, &nd->path);
1887 }
1888 } else {
1889 /* Caller must check execute permissions on the starting path component */
1890 struct fd f = fdget_raw(dfd);
1891 struct dentry *dentry;
1892
1893 if (!f.file)
1894 return -EBADF;
1895
1896 dentry = f.file->f_path.dentry;
1897
1898 if (*name) {
1899 if (!can_lookup(dentry->d_inode)) {
1900 fdput(f);
1901 return -ENOTDIR;
1902 }
1903 }
1904
1905 nd->path = f.file->f_path;
1906 if (flags & LOOKUP_RCU) {
1907 if (f.need_put)
1908 *fp = f.file;
1909 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1910 lock_rcu_walk();
1911 } else {
1912 path_get(&nd->path);
1913 fdput(f);
1914 }
1915 }
1916
1917 nd->inode = nd->path.dentry->d_inode;
1918 return 0;
1919}
1920
1921static inline int lookup_last(struct nameidata *nd, struct path *path)
1922{
1923 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1924 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1925
1926 nd->flags &= ~LOOKUP_PARENT;
1927 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1928}
1929
1930/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1931static int path_lookupat(int dfd, const char *name,
1932 unsigned int flags, struct nameidata *nd)
1933{
1934 struct file *base = NULL;
1935 struct path path;
1936 int err;
1937
1938 /*
1939 * Path walking is largely split up into 2 different synchronisation
1940 * schemes, rcu-walk and ref-walk (explained in
1941 * Documentation/filesystems/path-lookup.txt). These share much of the
1942 * path walk code, but some things particularly setup, cleanup, and
1943 * following mounts are sufficiently divergent that functions are
1944 * duplicated. Typically there is a function foo(), and its RCU
1945 * analogue, foo_rcu().
1946 *
1947 * -ECHILD is the error number of choice (just to avoid clashes) that
1948 * is returned if some aspect of an rcu-walk fails. Such an error must
1949 * be handled by restarting a traditional ref-walk (which will always
1950 * be able to complete).
1951 */
1952 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1953
1954 if (unlikely(err))
1955 return err;
1956
1957 current->total_link_count = 0;
1958 err = link_path_walk(name, nd);
1959
1960 if (!err && !(flags & LOOKUP_PARENT)) {
1961 err = lookup_last(nd, &path);
1962 while (err > 0) {
1963 void *cookie;
1964 struct path link = path;
1965 err = may_follow_link(&link, nd);
1966 if (unlikely(err))
1967 break;
1968 nd->flags |= LOOKUP_PARENT;
1969 err = follow_link(&link, nd, &cookie);
1970 if (err)
1971 break;
1972 err = lookup_last(nd, &path);
1973 put_link(nd, &link, cookie);
1974 }
1975 }
1976
1977 if (!err)
1978 err = complete_walk(nd);
1979
1980 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1981 if (!nd->inode->i_op->lookup) {
1982 path_put(&nd->path);
1983 err = -ENOTDIR;
1984 }
1985 }
1986
1987 if (base)
1988 fput(base);
1989
1990 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1991 path_put(&nd->root);
1992 nd->root.mnt = NULL;
1993 }
1994 return err;
1995}
1996
1997static int filename_lookup(int dfd, struct filename *name,
1998 unsigned int flags, struct nameidata *nd)
1999{
2000 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2001 if (unlikely(retval == -ECHILD))
2002 retval = path_lookupat(dfd, name->name, flags, nd);
2003 if (unlikely(retval == -ESTALE))
2004 retval = path_lookupat(dfd, name->name,
2005 flags | LOOKUP_REVAL, nd);
2006
2007 if (likely(!retval))
2008 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2009 return retval;
2010}
2011
2012static int do_path_lookup(int dfd, const char *name,
2013 unsigned int flags, struct nameidata *nd)
2014{
2015 struct filename filename = { .name = name };
2016
2017 return filename_lookup(dfd, &filename, flags, nd);
2018}
2019
2020/* does lookup, returns the object with parent locked */
2021struct dentry *kern_path_locked(const char *name, struct path *path)
2022{
2023 struct nameidata nd;
2024 struct dentry *d;
2025 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2026 if (err)
2027 return ERR_PTR(err);
2028 if (nd.last_type != LAST_NORM) {
2029 path_put(&nd.path);
2030 return ERR_PTR(-EINVAL);
2031 }
2032 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2033 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2034 if (IS_ERR(d)) {
2035 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2036 path_put(&nd.path);
2037 return d;
2038 }
2039 *path = nd.path;
2040 return d;
2041}
2042
2043int kern_path(const char *name, unsigned int flags, struct path *path)
2044{
2045 struct nameidata nd;
2046 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2047 if (!res)
2048 *path = nd.path;
2049 return res;
2050}
2051
2052/**
2053 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2054 * @dentry: pointer to dentry of the base directory
2055 * @mnt: pointer to vfs mount of the base directory
2056 * @name: pointer to file name
2057 * @flags: lookup flags
2058 * @path: pointer to struct path to fill
2059 */
2060int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2061 const char *name, unsigned int flags,
2062 struct path *path)
2063{
2064 struct nameidata nd;
2065 int err;
2066 nd.root.dentry = dentry;
2067 nd.root.mnt = mnt;
2068 BUG_ON(flags & LOOKUP_PARENT);
2069 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2070 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2071 if (!err)
2072 *path = nd.path;
2073 return err;
2074}
2075
2076/*
2077 * Restricted form of lookup. Doesn't follow links, single-component only,
2078 * needs parent already locked. Doesn't follow mounts.
2079 * SMP-safe.
2080 */
2081static struct dentry *lookup_hash(struct nameidata *nd)
2082{
2083 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2084}
2085
2086/**
2087 * lookup_one_len - filesystem helper to lookup single pathname component
2088 * @name: pathname component to lookup
2089 * @base: base directory to lookup from
2090 * @len: maximum length @len should be interpreted to
2091 *
2092 * Note that this routine is purely a helper for filesystem usage and should
2093 * not be called by generic code. Also note that by using this function the
2094 * nameidata argument is passed to the filesystem methods and a filesystem
2095 * using this helper needs to be prepared for that.
2096 */
2097struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2098{
2099 struct qstr this;
2100 unsigned int c;
2101 int err;
2102
2103 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2104
2105 this.name = name;
2106 this.len = len;
2107 this.hash = full_name_hash(name, len);
2108 if (!len)
2109 return ERR_PTR(-EACCES);
2110
2111 if (unlikely(name[0] == '.')) {
2112 if (len < 2 || (len == 2 && name[1] == '.'))
2113 return ERR_PTR(-EACCES);
2114 }
2115
2116 while (len--) {
2117 c = *(const unsigned char *)name++;
2118 if (c == '/' || c == '\0')
2119 return ERR_PTR(-EACCES);
2120 }
2121 /*
2122 * See if the low-level filesystem might want
2123 * to use its own hash..
2124 */
2125 if (base->d_flags & DCACHE_OP_HASH) {
2126 int err = base->d_op->d_hash(base, base->d_inode, &this);
2127 if (err < 0)
2128 return ERR_PTR(err);
2129 }
2130
2131 err = inode_permission(base->d_inode, MAY_EXEC);
2132 if (err)
2133 return ERR_PTR(err);
2134
2135 return __lookup_hash(&this, base, 0);
2136}
2137
2138int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2139 struct path *path, int *empty)
2140{
2141 struct nameidata nd;
2142 struct filename *tmp = getname_flags(name, flags, empty);
2143 int err = PTR_ERR(tmp);
2144 if (!IS_ERR(tmp)) {
2145
2146 BUG_ON(flags & LOOKUP_PARENT);
2147
2148 err = filename_lookup(dfd, tmp, flags, &nd);
2149 putname(tmp);
2150 if (!err)
2151 *path = nd.path;
2152 }
2153 return err;
2154}
2155
2156int user_path_at(int dfd, const char __user *name, unsigned flags,
2157 struct path *path)
2158{
2159 return user_path_at_empty(dfd, name, flags, path, NULL);
2160}
2161
2162/*
2163 * NB: most callers don't do anything directly with the reference to the
2164 * to struct filename, but the nd->last pointer points into the name string
2165 * allocated by getname. So we must hold the reference to it until all
2166 * path-walking is complete.
2167 */
2168static struct filename *
2169user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2170 unsigned int flags)
2171{
2172 struct filename *s = getname(path);
2173 int error;
2174
2175 /* only LOOKUP_REVAL is allowed in extra flags */
2176 flags &= LOOKUP_REVAL;
2177
2178 if (IS_ERR(s))
2179 return s;
2180
2181 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2182 if (error) {
2183 putname(s);
2184 return ERR_PTR(error);
2185 }
2186
2187 return s;
2188}
2189
2190/*
2191 * It's inline, so penalty for filesystems that don't use sticky bit is
2192 * minimal.
2193 */
2194static inline int check_sticky(struct inode *dir, struct inode *inode)
2195{
2196 kuid_t fsuid = current_fsuid();
2197
2198 if (!(dir->i_mode & S_ISVTX))
2199 return 0;
2200 if (uid_eq(inode->i_uid, fsuid))
2201 return 0;
2202 if (uid_eq(dir->i_uid, fsuid))
2203 return 0;
2204 return !inode_capable(inode, CAP_FOWNER);
2205}
2206
2207/*
2208 * Check whether we can remove a link victim from directory dir, check
2209 * whether the type of victim is right.
2210 * 1. We can't do it if dir is read-only (done in permission())
2211 * 2. We should have write and exec permissions on dir
2212 * 3. We can't remove anything from append-only dir
2213 * 4. We can't do anything with immutable dir (done in permission())
2214 * 5. If the sticky bit on dir is set we should either
2215 * a. be owner of dir, or
2216 * b. be owner of victim, or
2217 * c. have CAP_FOWNER capability
2218 * 6. If the victim is append-only or immutable we can't do antyhing with
2219 * links pointing to it.
2220 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2221 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2222 * 9. We can't remove a root or mountpoint.
2223 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2224 * nfs_async_unlink().
2225 */
2226static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2227{
2228 int error;
2229
2230 if (!victim->d_inode)
2231 return -ENOENT;
2232
2233 BUG_ON(victim->d_parent->d_inode != dir);
2234 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2235
2236 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2237 if (error)
2238 return error;
2239 if (IS_APPEND(dir))
2240 return -EPERM;
2241 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2242 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2243 return -EPERM;
2244 if (isdir) {
2245 if (!S_ISDIR(victim->d_inode->i_mode))
2246 return -ENOTDIR;
2247 if (IS_ROOT(victim))
2248 return -EBUSY;
2249 } else if (S_ISDIR(victim->d_inode->i_mode))
2250 return -EISDIR;
2251 if (IS_DEADDIR(dir))
2252 return -ENOENT;
2253 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2254 return -EBUSY;
2255 return 0;
2256}
2257
2258/* Check whether we can create an object with dentry child in directory
2259 * dir.
2260 * 1. We can't do it if child already exists (open has special treatment for
2261 * this case, but since we are inlined it's OK)
2262 * 2. We can't do it if dir is read-only (done in permission())
2263 * 3. We should have write and exec permissions on dir
2264 * 4. We can't do it if dir is immutable (done in permission())
2265 */
2266static inline int may_create(struct inode *dir, struct dentry *child)
2267{
2268 if (child->d_inode)
2269 return -EEXIST;
2270 if (IS_DEADDIR(dir))
2271 return -ENOENT;
2272 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2273}
2274
2275/*
2276 * p1 and p2 should be directories on the same fs.
2277 */
2278struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2279{
2280 struct dentry *p;
2281
2282 if (p1 == p2) {
2283 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2284 return NULL;
2285 }
2286
2287 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2288
2289 p = d_ancestor(p2, p1);
2290 if (p) {
2291 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2292 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2293 return p;
2294 }
2295
2296 p = d_ancestor(p1, p2);
2297 if (p) {
2298 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2299 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2300 return p;
2301 }
2302
2303 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2304 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2305 return NULL;
2306}
2307
2308void unlock_rename(struct dentry *p1, struct dentry *p2)
2309{
2310 mutex_unlock(&p1->d_inode->i_mutex);
2311 if (p1 != p2) {
2312 mutex_unlock(&p2->d_inode->i_mutex);
2313 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2314 }
2315}
2316
2317int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2318 bool want_excl)
2319{
2320 int error = may_create(dir, dentry);
2321 if (error)
2322 return error;
2323
2324 if (!dir->i_op->create)
2325 return -EACCES; /* shouldn't it be ENOSYS? */
2326 mode &= S_IALLUGO;
2327 mode |= S_IFREG;
2328 error = security_inode_create(dir, dentry, mode);
2329 if (error)
2330 return error;
2331 error = dir->i_op->create(dir, dentry, mode, want_excl);
2332 if (!error)
2333 fsnotify_create(dir, dentry);
2334 return error;
2335}
2336
2337static int may_open(struct path *path, int acc_mode, int flag)
2338{
2339 struct dentry *dentry = path->dentry;
2340 struct inode *inode = dentry->d_inode;
2341 int error;
2342
2343 /* O_PATH? */
2344 if (!acc_mode)
2345 return 0;
2346
2347 if (!inode)
2348 return -ENOENT;
2349
2350 switch (inode->i_mode & S_IFMT) {
2351 case S_IFLNK:
2352 return -ELOOP;
2353 case S_IFDIR:
2354 if (acc_mode & MAY_WRITE)
2355 return -EISDIR;
2356 break;
2357 case S_IFBLK:
2358 case S_IFCHR:
2359 if (path->mnt->mnt_flags & MNT_NODEV)
2360 return -EACCES;
2361 /*FALLTHRU*/
2362 case S_IFIFO:
2363 case S_IFSOCK:
2364 flag &= ~O_TRUNC;
2365 break;
2366 }
2367
2368 error = inode_permission(inode, acc_mode);
2369 if (error)
2370 return error;
2371
2372 /*
2373 * An append-only file must be opened in append mode for writing.
2374 */
2375 if (IS_APPEND(inode)) {
2376 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2377 return -EPERM;
2378 if (flag & O_TRUNC)
2379 return -EPERM;
2380 }
2381
2382 /* O_NOATIME can only be set by the owner or superuser */
2383 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2384 return -EPERM;
2385
2386 return 0;
2387}
2388
2389static int handle_truncate(struct file *filp)
2390{
2391 struct path *path = &filp->f_path;
2392 struct inode *inode = path->dentry->d_inode;
2393 int error = get_write_access(inode);
2394 if (error)
2395 return error;
2396 /*
2397 * Refuse to truncate files with mandatory locks held on them.
2398 */
2399 error = locks_verify_locked(inode);
2400 if (!error)
2401 error = security_path_truncate(path);
2402 if (!error) {
2403 error = do_truncate(path->dentry, 0,
2404 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2405 filp);
2406 }
2407 put_write_access(inode);
2408 return error;
2409}
2410
2411static inline int open_to_namei_flags(int flag)
2412{
2413 if ((flag & O_ACCMODE) == 3)
2414 flag--;
2415 return flag;
2416}
2417
2418static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2419{
2420 int error = security_path_mknod(dir, dentry, mode, 0);
2421 if (error)
2422 return error;
2423
2424 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2425 if (error)
2426 return error;
2427
2428 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2429}
2430
2431/*
2432 * Attempt to atomically look up, create and open a file from a negative
2433 * dentry.
2434 *
2435 * Returns 0 if successful. The file will have been created and attached to
2436 * @file by the filesystem calling finish_open().
2437 *
2438 * Returns 1 if the file was looked up only or didn't need creating. The
2439 * caller will need to perform the open themselves. @path will have been
2440 * updated to point to the new dentry. This may be negative.
2441 *
2442 * Returns an error code otherwise.
2443 */
2444static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2445 struct path *path, struct file *file,
2446 const struct open_flags *op,
2447 bool got_write, bool need_lookup,
2448 int *opened)
2449{
2450 struct inode *dir = nd->path.dentry->d_inode;
2451 unsigned open_flag = open_to_namei_flags(op->open_flag);
2452 umode_t mode;
2453 int error;
2454 int acc_mode;
2455 int create_error = 0;
2456 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2457
2458 BUG_ON(dentry->d_inode);
2459
2460 /* Don't create child dentry for a dead directory. */
2461 if (unlikely(IS_DEADDIR(dir))) {
2462 error = -ENOENT;
2463 goto out;
2464 }
2465
2466 mode = op->mode;
2467 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2468 mode &= ~current_umask();
2469
2470 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2471 open_flag &= ~O_TRUNC;
2472 *opened |= FILE_CREATED;
2473 }
2474
2475 /*
2476 * Checking write permission is tricky, bacuse we don't know if we are
2477 * going to actually need it: O_CREAT opens should work as long as the
2478 * file exists. But checking existence breaks atomicity. The trick is
2479 * to check access and if not granted clear O_CREAT from the flags.
2480 *
2481 * Another problem is returing the "right" error value (e.g. for an
2482 * O_EXCL open we want to return EEXIST not EROFS).
2483 */
2484 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2485 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2486 if (!(open_flag & O_CREAT)) {
2487 /*
2488 * No O_CREATE -> atomicity not a requirement -> fall
2489 * back to lookup + open
2490 */
2491 goto no_open;
2492 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2493 /* Fall back and fail with the right error */
2494 create_error = -EROFS;
2495 goto no_open;
2496 } else {
2497 /* No side effects, safe to clear O_CREAT */
2498 create_error = -EROFS;
2499 open_flag &= ~O_CREAT;
2500 }
2501 }
2502
2503 if (open_flag & O_CREAT) {
2504 error = may_o_create(&nd->path, dentry, mode);
2505 if (error) {
2506 create_error = error;
2507 if (open_flag & O_EXCL)
2508 goto no_open;
2509 open_flag &= ~O_CREAT;
2510 }
2511 }
2512
2513 if (nd->flags & LOOKUP_DIRECTORY)
2514 open_flag |= O_DIRECTORY;
2515
2516 file->f_path.dentry = DENTRY_NOT_SET;
2517 file->f_path.mnt = nd->path.mnt;
2518 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2519 opened);
2520 if (error < 0) {
2521 if (create_error && error == -ENOENT)
2522 error = create_error;
2523 goto out;
2524 }
2525
2526 acc_mode = op->acc_mode;
2527 if (*opened & FILE_CREATED) {
2528 fsnotify_create(dir, dentry);
2529 acc_mode = MAY_OPEN;
2530 }
2531
2532 if (error) { /* returned 1, that is */
2533 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2534 error = -EIO;
2535 goto out;
2536 }
2537 if (file->f_path.dentry) {
2538 dput(dentry);
2539 dentry = file->f_path.dentry;
2540 }
2541 if (create_error && dentry->d_inode == NULL) {
2542 error = create_error;
2543 goto out;
2544 }
2545 goto looked_up;
2546 }
2547
2548 /*
2549 * We didn't have the inode before the open, so check open permission
2550 * here.
2551 */
2552 error = may_open(&file->f_path, acc_mode, open_flag);
2553 if (error)
2554 fput(file);
2555
2556out:
2557 dput(dentry);
2558 return error;
2559
2560no_open:
2561 if (need_lookup) {
2562 dentry = lookup_real(dir, dentry, nd->flags);
2563 if (IS_ERR(dentry))
2564 return PTR_ERR(dentry);
2565
2566 if (create_error) {
2567 int open_flag = op->open_flag;
2568
2569 error = create_error;
2570 if ((open_flag & O_EXCL)) {
2571 if (!dentry->d_inode)
2572 goto out;
2573 } else if (!dentry->d_inode) {
2574 goto out;
2575 } else if ((open_flag & O_TRUNC) &&
2576 S_ISREG(dentry->d_inode->i_mode)) {
2577 goto out;
2578 }
2579 /* will fail later, go on to get the right error */
2580 }
2581 }
2582looked_up:
2583 path->dentry = dentry;
2584 path->mnt = nd->path.mnt;
2585 return 1;
2586}
2587
2588/*
2589 * Look up and maybe create and open the last component.
2590 *
2591 * Must be called with i_mutex held on parent.
2592 *
2593 * Returns 0 if the file was successfully atomically created (if necessary) and
2594 * opened. In this case the file will be returned attached to @file.
2595 *
2596 * Returns 1 if the file was not completely opened at this time, though lookups
2597 * and creations will have been performed and the dentry returned in @path will
2598 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2599 * specified then a negative dentry may be returned.
2600 *
2601 * An error code is returned otherwise.
2602 *
2603 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2604 * cleared otherwise prior to returning.
2605 */
2606static int lookup_open(struct nameidata *nd, struct path *path,
2607 struct file *file,
2608 const struct open_flags *op,
2609 bool got_write, int *opened)
2610{
2611 struct dentry *dir = nd->path.dentry;
2612 struct inode *dir_inode = dir->d_inode;
2613 struct dentry *dentry;
2614 int error;
2615 bool need_lookup;
2616
2617 *opened &= ~FILE_CREATED;
2618 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2619 if (IS_ERR(dentry))
2620 return PTR_ERR(dentry);
2621
2622 /* Cached positive dentry: will open in f_op->open */
2623 if (!need_lookup && dentry->d_inode)
2624 goto out_no_open;
2625
2626 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2627 return atomic_open(nd, dentry, path, file, op, got_write,
2628 need_lookup, opened);
2629 }
2630
2631 if (need_lookup) {
2632 BUG_ON(dentry->d_inode);
2633
2634 dentry = lookup_real(dir_inode, dentry, nd->flags);
2635 if (IS_ERR(dentry))
2636 return PTR_ERR(dentry);
2637 }
2638
2639 /* Negative dentry, just create the file */
2640 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2641 umode_t mode = op->mode;
2642 if (!IS_POSIXACL(dir->d_inode))
2643 mode &= ~current_umask();
2644 /*
2645 * This write is needed to ensure that a
2646 * rw->ro transition does not occur between
2647 * the time when the file is created and when
2648 * a permanent write count is taken through
2649 * the 'struct file' in finish_open().
2650 */
2651 if (!got_write) {
2652 error = -EROFS;
2653 goto out_dput;
2654 }
2655 *opened |= FILE_CREATED;
2656 error = security_path_mknod(&nd->path, dentry, mode, 0);
2657 if (error)
2658 goto out_dput;
2659 error = vfs_create(dir->d_inode, dentry, mode,
2660 nd->flags & LOOKUP_EXCL);
2661 if (error)
2662 goto out_dput;
2663 }
2664out_no_open:
2665 path->dentry = dentry;
2666 path->mnt = nd->path.mnt;
2667 return 1;
2668
2669out_dput:
2670 dput(dentry);
2671 return error;
2672}
2673
2674/*
2675 * Handle the last step of open()
2676 */
2677static int do_last(struct nameidata *nd, struct path *path,
2678 struct file *file, const struct open_flags *op,
2679 int *opened, struct filename *name)
2680{
2681 struct dentry *dir = nd->path.dentry;
2682 int open_flag = op->open_flag;
2683 bool will_truncate = (open_flag & O_TRUNC) != 0;
2684 bool got_write = false;
2685 int acc_mode = op->acc_mode;
2686 struct inode *inode;
2687 bool symlink_ok = false;
2688 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2689 bool retried = false;
2690 int error;
2691
2692 nd->flags &= ~LOOKUP_PARENT;
2693 nd->flags |= op->intent;
2694
2695 switch (nd->last_type) {
2696 case LAST_DOTDOT:
2697 case LAST_DOT:
2698 error = handle_dots(nd, nd->last_type);
2699 if (error)
2700 return error;
2701 /* fallthrough */
2702 case LAST_ROOT:
2703 error = complete_walk(nd);
2704 if (error)
2705 return error;
2706 audit_inode(name, nd->path.dentry, 0);
2707 if (open_flag & O_CREAT) {
2708 error = -EISDIR;
2709 goto out;
2710 }
2711 goto finish_open;
2712 case LAST_BIND:
2713 error = complete_walk(nd);
2714 if (error)
2715 return error;
2716 audit_inode(name, dir, 0);
2717 goto finish_open;
2718 }
2719
2720 if (!(open_flag & O_CREAT)) {
2721 if (nd->last.name[nd->last.len])
2722 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2723 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2724 symlink_ok = true;
2725 /* we _can_ be in RCU mode here */
2726 error = lookup_fast(nd, path, &inode);
2727 if (likely(!error))
2728 goto finish_lookup;
2729
2730 if (error < 0)
2731 goto out;
2732
2733 BUG_ON(nd->inode != dir->d_inode);
2734 } else {
2735 /* create side of things */
2736 /*
2737 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2738 * has been cleared when we got to the last component we are
2739 * about to look up
2740 */
2741 error = complete_walk(nd);
2742 if (error)
2743 return error;
2744
2745 audit_inode(name, dir, 0);
2746 error = -EISDIR;
2747 /* trailing slashes? */
2748 if (nd->last.name[nd->last.len])
2749 goto out;
2750 }
2751
2752retry_lookup:
2753 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2754 error = mnt_want_write(nd->path.mnt);
2755 if (!error)
2756 got_write = true;
2757 /*
2758 * do _not_ fail yet - we might not need that or fail with
2759 * a different error; let lookup_open() decide; we'll be
2760 * dropping this one anyway.
2761 */
2762 }
2763 mutex_lock(&dir->d_inode->i_mutex);
2764 error = lookup_open(nd, path, file, op, got_write, opened);
2765 mutex_unlock(&dir->d_inode->i_mutex);
2766
2767 if (error <= 0) {
2768 if (error)
2769 goto out;
2770
2771 if ((*opened & FILE_CREATED) ||
2772 !S_ISREG(file_inode(file)->i_mode))
2773 will_truncate = false;
2774
2775 audit_inode(name, file->f_path.dentry, 0);
2776 goto opened;
2777 }
2778
2779 if (*opened & FILE_CREATED) {
2780 /* Don't check for write permission, don't truncate */
2781 open_flag &= ~O_TRUNC;
2782 will_truncate = false;
2783 acc_mode = MAY_OPEN;
2784 path_to_nameidata(path, nd);
2785 goto finish_open_created;
2786 }
2787
2788 /*
2789 * create/update audit record if it already exists.
2790 */
2791 if (path->dentry->d_inode)
2792 audit_inode(name, path->dentry, 0);
2793
2794 /*
2795 * If atomic_open() acquired write access it is dropped now due to
2796 * possible mount and symlink following (this might be optimized away if
2797 * necessary...)
2798 */
2799 if (got_write) {
2800 mnt_drop_write(nd->path.mnt);
2801 got_write = false;
2802 }
2803
2804 error = -EEXIST;
2805 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2806 goto exit_dput;
2807
2808 error = follow_managed(path, nd->flags);
2809 if (error < 0)
2810 goto exit_dput;
2811
2812 if (error)
2813 nd->flags |= LOOKUP_JUMPED;
2814
2815 BUG_ON(nd->flags & LOOKUP_RCU);
2816 inode = path->dentry->d_inode;
2817finish_lookup:
2818 /* we _can_ be in RCU mode here */
2819 error = -ENOENT;
2820 if (!inode) {
2821 path_to_nameidata(path, nd);
2822 goto out;
2823 }
2824
2825 if (should_follow_link(inode, !symlink_ok)) {
2826 if (nd->flags & LOOKUP_RCU) {
2827 if (unlikely(unlazy_walk(nd, path->dentry))) {
2828 error = -ECHILD;
2829 goto out;
2830 }
2831 }
2832 BUG_ON(inode != path->dentry->d_inode);
2833 return 1;
2834 }
2835
2836 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2837 path_to_nameidata(path, nd);
2838 } else {
2839 save_parent.dentry = nd->path.dentry;
2840 save_parent.mnt = mntget(path->mnt);
2841 nd->path.dentry = path->dentry;
2842
2843 }
2844 nd->inode = inode;
2845 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2846 error = complete_walk(nd);
2847 if (error) {
2848 path_put(&save_parent);
2849 return error;
2850 }
2851 error = -EISDIR;
2852 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2853 goto out;
2854 error = -ENOTDIR;
2855 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2856 goto out;
2857 audit_inode(name, nd->path.dentry, 0);
2858finish_open:
2859 if (!S_ISREG(nd->inode->i_mode))
2860 will_truncate = false;
2861
2862 if (will_truncate) {
2863 error = mnt_want_write(nd->path.mnt);
2864 if (error)
2865 goto out;
2866 got_write = true;
2867 }
2868finish_open_created:
2869 error = may_open(&nd->path, acc_mode, open_flag);
2870 if (error)
2871 goto out;
2872 file->f_path.mnt = nd->path.mnt;
2873 error = finish_open(file, nd->path.dentry, NULL, opened);
2874 if (error) {
2875 if (error == -EOPENSTALE)
2876 goto stale_open;
2877 goto out;
2878 }
2879opened:
2880 error = open_check_o_direct(file);
2881 if (error)
2882 goto exit_fput;
2883 error = ima_file_check(file, op->acc_mode);
2884 if (error)
2885 goto exit_fput;
2886
2887 if (will_truncate) {
2888 error = handle_truncate(file);
2889 if (error)
2890 goto exit_fput;
2891 }
2892out:
2893 if (got_write)
2894 mnt_drop_write(nd->path.mnt);
2895 path_put(&save_parent);
2896 terminate_walk(nd);
2897 return error;
2898
2899exit_dput:
2900 path_put_conditional(path, nd);
2901 goto out;
2902exit_fput:
2903 fput(file);
2904 goto out;
2905
2906stale_open:
2907 /* If no saved parent or already retried then can't retry */
2908 if (!save_parent.dentry || retried)
2909 goto out;
2910
2911 BUG_ON(save_parent.dentry != dir);
2912 path_put(&nd->path);
2913 nd->path = save_parent;
2914 nd->inode = dir->d_inode;
2915 save_parent.mnt = NULL;
2916 save_parent.dentry = NULL;
2917 if (got_write) {
2918 mnt_drop_write(nd->path.mnt);
2919 got_write = false;
2920 }
2921 retried = true;
2922 goto retry_lookup;
2923}
2924
2925static struct file *path_openat(int dfd, struct filename *pathname,
2926 struct nameidata *nd, const struct open_flags *op, int flags)
2927{
2928 struct file *base = NULL;
2929 struct file *file;
2930 struct path path;
2931 int opened = 0;
2932 int error;
2933
2934 file = get_empty_filp();
2935 if (IS_ERR(file))
2936 return file;
2937
2938 file->f_flags = op->open_flag;
2939
2940 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2941 if (unlikely(error))
2942 goto out;
2943
2944 current->total_link_count = 0;
2945 error = link_path_walk(pathname->name, nd);
2946 if (unlikely(error))
2947 goto out;
2948
2949 error = do_last(nd, &path, file, op, &opened, pathname);
2950 while (unlikely(error > 0)) { /* trailing symlink */
2951 struct path link = path;
2952 void *cookie;
2953 if (!(nd->flags & LOOKUP_FOLLOW)) {
2954 path_put_conditional(&path, nd);
2955 path_put(&nd->path);
2956 error = -ELOOP;
2957 break;
2958 }
2959 error = may_follow_link(&link, nd);
2960 if (unlikely(error))
2961 break;
2962 nd->flags |= LOOKUP_PARENT;
2963 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2964 error = follow_link(&link, nd, &cookie);
2965 if (unlikely(error))
2966 break;
2967 error = do_last(nd, &path, file, op, &opened, pathname);
2968 put_link(nd, &link, cookie);
2969 }
2970out:
2971 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2972 path_put(&nd->root);
2973 if (base)
2974 fput(base);
2975 if (!(opened & FILE_OPENED)) {
2976 BUG_ON(!error);
2977 put_filp(file);
2978 }
2979 if (unlikely(error)) {
2980 if (error == -EOPENSTALE) {
2981 if (flags & LOOKUP_RCU)
2982 error = -ECHILD;
2983 else
2984 error = -ESTALE;
2985 }
2986 file = ERR_PTR(error);
2987 }
2988 return file;
2989}
2990
2991struct file *do_filp_open(int dfd, struct filename *pathname,
2992 const struct open_flags *op, int flags)
2993{
2994 struct nameidata nd;
2995 struct file *filp;
2996
2997 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2998 if (unlikely(filp == ERR_PTR(-ECHILD)))
2999 filp = path_openat(dfd, pathname, &nd, op, flags);
3000 if (unlikely(filp == ERR_PTR(-ESTALE)))
3001 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3002 return filp;
3003}
3004
3005struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3006 const char *name, const struct open_flags *op, int flags)
3007{
3008 struct nameidata nd;
3009 struct file *file;
3010 struct filename filename = { .name = name };
3011
3012 nd.root.mnt = mnt;
3013 nd.root.dentry = dentry;
3014
3015 flags |= LOOKUP_ROOT;
3016
3017 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3018 return ERR_PTR(-ELOOP);
3019
3020 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3021 if (unlikely(file == ERR_PTR(-ECHILD)))
3022 file = path_openat(-1, &filename, &nd, op, flags);
3023 if (unlikely(file == ERR_PTR(-ESTALE)))
3024 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3025 return file;
3026}
3027
3028struct dentry *kern_path_create(int dfd, const char *pathname,
3029 struct path *path, unsigned int lookup_flags)
3030{
3031 struct dentry *dentry = ERR_PTR(-EEXIST);
3032 struct nameidata nd;
3033 int err2;
3034 int error;
3035 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3036
3037 /*
3038 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3039 * other flags passed in are ignored!
3040 */
3041 lookup_flags &= LOOKUP_REVAL;
3042
3043 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3044 if (error)
3045 return ERR_PTR(error);
3046
3047 /*
3048 * Yucky last component or no last component at all?
3049 * (foo/., foo/.., /////)
3050 */
3051 if (nd.last_type != LAST_NORM)
3052 goto out;
3053 nd.flags &= ~LOOKUP_PARENT;
3054 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3055
3056 /* don't fail immediately if it's r/o, at least try to report other errors */
3057 err2 = mnt_want_write(nd.path.mnt);
3058 /*
3059 * Do the final lookup.
3060 */
3061 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3062 dentry = lookup_hash(&nd);
3063 if (IS_ERR(dentry))
3064 goto unlock;
3065
3066 error = -EEXIST;
3067 if (dentry->d_inode)
3068 goto fail;
3069 /*
3070 * Special case - lookup gave negative, but... we had foo/bar/
3071 * From the vfs_mknod() POV we just have a negative dentry -
3072 * all is fine. Let's be bastards - you had / on the end, you've
3073 * been asking for (non-existent) directory. -ENOENT for you.
3074 */
3075 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3076 error = -ENOENT;
3077 goto fail;
3078 }
3079 if (unlikely(err2)) {
3080 error = err2;
3081 goto fail;
3082 }
3083 *path = nd.path;
3084 return dentry;
3085fail:
3086 dput(dentry);
3087 dentry = ERR_PTR(error);
3088unlock:
3089 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3090 if (!err2)
3091 mnt_drop_write(nd.path.mnt);
3092out:
3093 path_put(&nd.path);
3094 return dentry;
3095}
3096EXPORT_SYMBOL(kern_path_create);
3097
3098void done_path_create(struct path *path, struct dentry *dentry)
3099{
3100 dput(dentry);
3101 mutex_unlock(&path->dentry->d_inode->i_mutex);
3102 mnt_drop_write(path->mnt);
3103 path_put(path);
3104}
3105EXPORT_SYMBOL(done_path_create);
3106
3107struct dentry *user_path_create(int dfd, const char __user *pathname,
3108 struct path *path, unsigned int lookup_flags)
3109{
3110 struct filename *tmp = getname(pathname);
3111 struct dentry *res;
3112 if (IS_ERR(tmp))
3113 return ERR_CAST(tmp);
3114 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3115 putname(tmp);
3116 return res;
3117}
3118EXPORT_SYMBOL(user_path_create);
3119
3120int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3121{
3122 int error = may_create(dir, dentry);
3123
3124 if (error)
3125 return error;
3126
3127 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3128 return -EPERM;
3129
3130 if (!dir->i_op->mknod)
3131 return -EPERM;
3132
3133 error = devcgroup_inode_mknod(mode, dev);
3134 if (error)
3135 return error;
3136
3137 error = security_inode_mknod(dir, dentry, mode, dev);
3138 if (error)
3139 return error;
3140
3141 error = dir->i_op->mknod(dir, dentry, mode, dev);
3142 if (!error)
3143 fsnotify_create(dir, dentry);
3144 return error;
3145}
3146
3147static int may_mknod(umode_t mode)
3148{
3149 switch (mode & S_IFMT) {
3150 case S_IFREG:
3151 case S_IFCHR:
3152 case S_IFBLK:
3153 case S_IFIFO:
3154 case S_IFSOCK:
3155 case 0: /* zero mode translates to S_IFREG */
3156 return 0;
3157 case S_IFDIR:
3158 return -EPERM;
3159 default:
3160 return -EINVAL;
3161 }
3162}
3163
3164SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3165 unsigned, dev)
3166{
3167 struct dentry *dentry;
3168 struct path path;
3169 int error;
3170 unsigned int lookup_flags = 0;
3171
3172 error = may_mknod(mode);
3173 if (error)
3174 return error;
3175retry:
3176 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3177 if (IS_ERR(dentry))
3178 return PTR_ERR(dentry);
3179
3180 if (!IS_POSIXACL(path.dentry->d_inode))
3181 mode &= ~current_umask();
3182 error = security_path_mknod(&path, dentry, mode, dev);
3183 if (error)
3184 goto out;
3185 switch (mode & S_IFMT) {
3186 case 0: case S_IFREG:
3187 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3188 break;
3189 case S_IFCHR: case S_IFBLK:
3190 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3191 new_decode_dev(dev));
3192 break;
3193 case S_IFIFO: case S_IFSOCK:
3194 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3195 break;
3196 }
3197out:
3198 done_path_create(&path, dentry);
3199 if (retry_estale(error, lookup_flags)) {
3200 lookup_flags |= LOOKUP_REVAL;
3201 goto retry;
3202 }
3203 return error;
3204}
3205
3206SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3207{
3208 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3209}
3210
3211int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3212{
3213 int error = may_create(dir, dentry);
3214 unsigned max_links = dir->i_sb->s_max_links;
3215
3216 if (error)
3217 return error;
3218
3219 if (!dir->i_op->mkdir)
3220 return -EPERM;
3221
3222 mode &= (S_IRWXUGO|S_ISVTX);
3223 error = security_inode_mkdir(dir, dentry, mode);
3224 if (error)
3225 return error;
3226
3227 if (max_links && dir->i_nlink >= max_links)
3228 return -EMLINK;
3229
3230 error = dir->i_op->mkdir(dir, dentry, mode);
3231 if (!error)
3232 fsnotify_mkdir(dir, dentry);
3233 return error;
3234}
3235
3236SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3237{
3238 struct dentry *dentry;
3239 struct path path;
3240 int error;
3241 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3242
3243retry:
3244 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3245 if (IS_ERR(dentry))
3246 return PTR_ERR(dentry);
3247
3248 if (!IS_POSIXACL(path.dentry->d_inode))
3249 mode &= ~current_umask();
3250 error = security_path_mkdir(&path, dentry, mode);
3251 if (!error)
3252 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3253 done_path_create(&path, dentry);
3254 if (retry_estale(error, lookup_flags)) {
3255 lookup_flags |= LOOKUP_REVAL;
3256 goto retry;
3257 }
3258 return error;
3259}
3260
3261SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3262{
3263 return sys_mkdirat(AT_FDCWD, pathname, mode);
3264}
3265
3266/*
3267 * The dentry_unhash() helper will try to drop the dentry early: we
3268 * should have a usage count of 1 if we're the only user of this
3269 * dentry, and if that is true (possibly after pruning the dcache),
3270 * then we drop the dentry now.
3271 *
3272 * A low-level filesystem can, if it choses, legally
3273 * do a
3274 *
3275 * if (!d_unhashed(dentry))
3276 * return -EBUSY;
3277 *
3278 * if it cannot handle the case of removing a directory
3279 * that is still in use by something else..
3280 */
3281void dentry_unhash(struct dentry *dentry)
3282{
3283 shrink_dcache_parent(dentry);
3284 spin_lock(&dentry->d_lock);
3285 if (dentry->d_count == 1)
3286 __d_drop(dentry);
3287 spin_unlock(&dentry->d_lock);
3288}
3289
3290int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3291{
3292 int error = may_delete(dir, dentry, 1);
3293
3294 if (error)
3295 return error;
3296
3297 if (!dir->i_op->rmdir)
3298 return -EPERM;
3299
3300 dget(dentry);
3301 mutex_lock(&dentry->d_inode->i_mutex);
3302
3303 error = -EBUSY;
3304 if (d_mountpoint(dentry))
3305 goto out;
3306
3307 error = security_inode_rmdir(dir, dentry);
3308 if (error)
3309 goto out;
3310
3311 shrink_dcache_parent(dentry);
3312 error = dir->i_op->rmdir(dir, dentry);
3313 if (error)
3314 goto out;
3315
3316 dentry->d_inode->i_flags |= S_DEAD;
3317 dont_mount(dentry);
3318
3319out:
3320 mutex_unlock(&dentry->d_inode->i_mutex);
3321 dput(dentry);
3322 if (!error)
3323 d_delete(dentry);
3324 return error;
3325}
3326
3327static long do_rmdir(int dfd, const char __user *pathname)
3328{
3329 int error = 0;
3330 struct filename *name;
3331 struct dentry *dentry;
3332 struct nameidata nd;
3333 unsigned int lookup_flags = 0;
3334retry:
3335 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3336 if (IS_ERR(name))
3337 return PTR_ERR(name);
3338
3339 switch(nd.last_type) {
3340 case LAST_DOTDOT:
3341 error = -ENOTEMPTY;
3342 goto exit1;
3343 case LAST_DOT:
3344 error = -EINVAL;
3345 goto exit1;
3346 case LAST_ROOT:
3347 error = -EBUSY;
3348 goto exit1;
3349 }
3350
3351 nd.flags &= ~LOOKUP_PARENT;
3352 error = mnt_want_write(nd.path.mnt);
3353 if (error)
3354 goto exit1;
3355
3356 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3357 dentry = lookup_hash(&nd);
3358 error = PTR_ERR(dentry);
3359 if (IS_ERR(dentry))
3360 goto exit2;
3361 if (!dentry->d_inode) {
3362 error = -ENOENT;
3363 goto exit3;
3364 }
3365 error = security_path_rmdir(&nd.path, dentry);
3366 if (error)
3367 goto exit3;
3368 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3369exit3:
3370 dput(dentry);
3371exit2:
3372 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3373 mnt_drop_write(nd.path.mnt);
3374exit1:
3375 path_put(&nd.path);
3376 putname(name);
3377 if (retry_estale(error, lookup_flags)) {
3378 lookup_flags |= LOOKUP_REVAL;
3379 goto retry;
3380 }
3381 return error;
3382}
3383
3384SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3385{
3386 return do_rmdir(AT_FDCWD, pathname);
3387}
3388
3389int vfs_unlink(struct inode *dir, struct dentry *dentry)
3390{
3391 int error = may_delete(dir, dentry, 0);
3392
3393 if (error)
3394 return error;
3395
3396 if (!dir->i_op->unlink)
3397 return -EPERM;
3398
3399 mutex_lock(&dentry->d_inode->i_mutex);
3400 if (d_mountpoint(dentry))
3401 error = -EBUSY;
3402 else {
3403 error = security_inode_unlink(dir, dentry);
3404 if (!error) {
3405 error = dir->i_op->unlink(dir, dentry);
3406 if (!error)
3407 dont_mount(dentry);
3408 }
3409 }
3410 mutex_unlock(&dentry->d_inode->i_mutex);
3411
3412 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3413 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3414 fsnotify_link_count(dentry->d_inode);
3415 d_delete(dentry);
3416 }
3417
3418 return error;
3419}
3420
3421/*
3422 * Make sure that the actual truncation of the file will occur outside its
3423 * directory's i_mutex. Truncate can take a long time if there is a lot of
3424 * writeout happening, and we don't want to prevent access to the directory
3425 * while waiting on the I/O.
3426 */
3427static long do_unlinkat(int dfd, const char __user *pathname)
3428{
3429 int error;
3430 struct filename *name;
3431 struct dentry *dentry;
3432 struct nameidata nd;
3433 struct inode *inode = NULL;
3434 unsigned int lookup_flags = 0;
3435retry:
3436 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3437 if (IS_ERR(name))
3438 return PTR_ERR(name);
3439
3440 error = -EISDIR;
3441 if (nd.last_type != LAST_NORM)
3442 goto exit1;
3443
3444 nd.flags &= ~LOOKUP_PARENT;
3445 error = mnt_want_write(nd.path.mnt);
3446 if (error)
3447 goto exit1;
3448
3449 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3450 dentry = lookup_hash(&nd);
3451 error = PTR_ERR(dentry);
3452 if (!IS_ERR(dentry)) {
3453 /* Why not before? Because we want correct error value */
3454 if (nd.last.name[nd.last.len])
3455 goto slashes;
3456 inode = dentry->d_inode;
3457 if (!inode)
3458 goto slashes;
3459 ihold(inode);
3460 error = security_path_unlink(&nd.path, dentry);
3461 if (error)
3462 goto exit2;
3463 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3464exit2:
3465 dput(dentry);
3466 }
3467 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3468 if (inode)
3469 iput(inode); /* truncate the inode here */
3470 mnt_drop_write(nd.path.mnt);
3471exit1:
3472 path_put(&nd.path);
3473 putname(name);
3474 if (retry_estale(error, lookup_flags)) {
3475 lookup_flags |= LOOKUP_REVAL;
3476 inode = NULL;
3477 goto retry;
3478 }
3479 return error;
3480
3481slashes:
3482 error = !dentry->d_inode ? -ENOENT :
3483 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3484 goto exit2;
3485}
3486
3487SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3488{
3489 if ((flag & ~AT_REMOVEDIR) != 0)
3490 return -EINVAL;
3491
3492 if (flag & AT_REMOVEDIR)
3493 return do_rmdir(dfd, pathname);
3494
3495 return do_unlinkat(dfd, pathname);
3496}
3497
3498SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3499{
3500 return do_unlinkat(AT_FDCWD, pathname);
3501}
3502
3503int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3504{
3505 int error = may_create(dir, dentry);
3506
3507 if (error)
3508 return error;
3509
3510 if (!dir->i_op->symlink)
3511 return -EPERM;
3512
3513 error = security_inode_symlink(dir, dentry, oldname);
3514 if (error)
3515 return error;
3516
3517 error = dir->i_op->symlink(dir, dentry, oldname);
3518 if (!error)
3519 fsnotify_create(dir, dentry);
3520 return error;
3521}
3522
3523SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3524 int, newdfd, const char __user *, newname)
3525{
3526 int error;
3527 struct filename *from;
3528 struct dentry *dentry;
3529 struct path path;
3530 unsigned int lookup_flags = 0;
3531
3532 from = getname(oldname);
3533 if (IS_ERR(from))
3534 return PTR_ERR(from);
3535retry:
3536 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3537 error = PTR_ERR(dentry);
3538 if (IS_ERR(dentry))
3539 goto out_putname;
3540
3541 error = security_path_symlink(&path, dentry, from->name);
3542 if (!error)
3543 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3544 done_path_create(&path, dentry);
3545 if (retry_estale(error, lookup_flags)) {
3546 lookup_flags |= LOOKUP_REVAL;
3547 goto retry;
3548 }
3549out_putname:
3550 putname(from);
3551 return error;
3552}
3553
3554SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3555{
3556 return sys_symlinkat(oldname, AT_FDCWD, newname);
3557}
3558
3559int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3560{
3561 struct inode *inode = old_dentry->d_inode;
3562 unsigned max_links = dir->i_sb->s_max_links;
3563 int error;
3564
3565 if (!inode)
3566 return -ENOENT;
3567
3568 error = may_create(dir, new_dentry);
3569 if (error)
3570 return error;
3571
3572 if (dir->i_sb != inode->i_sb)
3573 return -EXDEV;
3574
3575 /*
3576 * A link to an append-only or immutable file cannot be created.
3577 */
3578 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3579 return -EPERM;
3580 if (!dir->i_op->link)
3581 return -EPERM;
3582 if (S_ISDIR(inode->i_mode))
3583 return -EPERM;
3584
3585 error = security_inode_link(old_dentry, dir, new_dentry);
3586 if (error)
3587 return error;
3588
3589 mutex_lock(&inode->i_mutex);
3590 /* Make sure we don't allow creating hardlink to an unlinked file */
3591 if (inode->i_nlink == 0)
3592 error = -ENOENT;
3593 else if (max_links && inode->i_nlink >= max_links)
3594 error = -EMLINK;
3595 else
3596 error = dir->i_op->link(old_dentry, dir, new_dentry);
3597 mutex_unlock(&inode->i_mutex);
3598 if (!error)
3599 fsnotify_link(dir, inode, new_dentry);
3600 return error;
3601}
3602
3603/*
3604 * Hardlinks are often used in delicate situations. We avoid
3605 * security-related surprises by not following symlinks on the
3606 * newname. --KAB
3607 *
3608 * We don't follow them on the oldname either to be compatible
3609 * with linux 2.0, and to avoid hard-linking to directories
3610 * and other special files. --ADM
3611 */
3612SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3613 int, newdfd, const char __user *, newname, int, flags)
3614{
3615 struct dentry *new_dentry;
3616 struct path old_path, new_path;
3617 int how = 0;
3618 int error;
3619
3620 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3621 return -EINVAL;
3622 /*
3623 * To use null names we require CAP_DAC_READ_SEARCH
3624 * This ensures that not everyone will be able to create
3625 * handlink using the passed filedescriptor.
3626 */
3627 if (flags & AT_EMPTY_PATH) {
3628 if (!capable(CAP_DAC_READ_SEARCH))
3629 return -ENOENT;
3630 how = LOOKUP_EMPTY;
3631 }
3632
3633 if (flags & AT_SYMLINK_FOLLOW)
3634 how |= LOOKUP_FOLLOW;
3635retry:
3636 error = user_path_at(olddfd, oldname, how, &old_path);
3637 if (error)
3638 return error;
3639
3640 new_dentry = user_path_create(newdfd, newname, &new_path,
3641 (how & LOOKUP_REVAL));
3642 error = PTR_ERR(new_dentry);
3643 if (IS_ERR(new_dentry))
3644 goto out;
3645
3646 error = -EXDEV;
3647 if (old_path.mnt != new_path.mnt)
3648 goto out_dput;
3649 error = may_linkat(&old_path);
3650 if (unlikely(error))
3651 goto out_dput;
3652 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3653 if (error)
3654 goto out_dput;
3655 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3656out_dput:
3657 done_path_create(&new_path, new_dentry);
3658 if (retry_estale(error, how)) {
3659 how |= LOOKUP_REVAL;
3660 goto retry;
3661 }
3662out:
3663 path_put(&old_path);
3664
3665 return error;
3666}
3667
3668SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3669{
3670 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3671}
3672
3673/*
3674 * The worst of all namespace operations - renaming directory. "Perverted"
3675 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3676 * Problems:
3677 * a) we can get into loop creation. Check is done in is_subdir().
3678 * b) race potential - two innocent renames can create a loop together.
3679 * That's where 4.4 screws up. Current fix: serialization on
3680 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3681 * story.
3682 * c) we have to lock _three_ objects - parents and victim (if it exists).
3683 * And that - after we got ->i_mutex on parents (until then we don't know
3684 * whether the target exists). Solution: try to be smart with locking
3685 * order for inodes. We rely on the fact that tree topology may change
3686 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3687 * move will be locked. Thus we can rank directories by the tree
3688 * (ancestors first) and rank all non-directories after them.
3689 * That works since everybody except rename does "lock parent, lookup,
3690 * lock child" and rename is under ->s_vfs_rename_mutex.
3691 * HOWEVER, it relies on the assumption that any object with ->lookup()
3692 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3693 * we'd better make sure that there's no link(2) for them.
3694 * d) conversion from fhandle to dentry may come in the wrong moment - when
3695 * we are removing the target. Solution: we will have to grab ->i_mutex
3696 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3697 * ->i_mutex on parents, which works but leads to some truly excessive
3698 * locking].
3699 */
3700static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3701 struct inode *new_dir, struct dentry *new_dentry)
3702{
3703 int error = 0;
3704 struct inode *target = new_dentry->d_inode;
3705 unsigned max_links = new_dir->i_sb->s_max_links;
3706
3707 /*
3708 * If we are going to change the parent - check write permissions,
3709 * we'll need to flip '..'.
3710 */
3711 if (new_dir != old_dir) {
3712 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3713 if (error)
3714 return error;
3715 }
3716
3717 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3718 if (error)
3719 return error;
3720
3721 dget(new_dentry);
3722 if (target)
3723 mutex_lock(&target->i_mutex);
3724
3725 error = -EBUSY;
3726 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3727 goto out;
3728
3729 error = -EMLINK;
3730 if (max_links && !target && new_dir != old_dir &&
3731 new_dir->i_nlink >= max_links)
3732 goto out;
3733
3734 if (target)
3735 shrink_dcache_parent(new_dentry);
3736 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3737 if (error)
3738 goto out;
3739
3740 if (target) {
3741 target->i_flags |= S_DEAD;
3742 dont_mount(new_dentry);
3743 }
3744out:
3745 if (target)
3746 mutex_unlock(&target->i_mutex);
3747 dput(new_dentry);
3748 if (!error)
3749 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3750 d_move(old_dentry,new_dentry);
3751 return error;
3752}
3753
3754static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3755 struct inode *new_dir, struct dentry *new_dentry)
3756{
3757 struct inode *target = new_dentry->d_inode;
3758 int error;
3759
3760 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3761 if (error)
3762 return error;
3763
3764 dget(new_dentry);
3765 if (target)
3766 mutex_lock(&target->i_mutex);
3767
3768 error = -EBUSY;
3769 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3770 goto out;
3771
3772 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3773 if (error)
3774 goto out;
3775
3776 if (target)
3777 dont_mount(new_dentry);
3778 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3779 d_move(old_dentry, new_dentry);
3780out:
3781 if (target)
3782 mutex_unlock(&target->i_mutex);
3783 dput(new_dentry);
3784 return error;
3785}
3786
3787int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3788 struct inode *new_dir, struct dentry *new_dentry)
3789{
3790 int error;
3791 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3792 const unsigned char *old_name;
3793
3794 if (old_dentry->d_inode == new_dentry->d_inode)
3795 return 0;
3796
3797 error = may_delete(old_dir, old_dentry, is_dir);
3798 if (error)
3799 return error;
3800
3801 if (!new_dentry->d_inode)
3802 error = may_create(new_dir, new_dentry);
3803 else
3804 error = may_delete(new_dir, new_dentry, is_dir);
3805 if (error)
3806 return error;
3807
3808 if (!old_dir->i_op->rename)
3809 return -EPERM;
3810
3811 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3812
3813 if (is_dir)
3814 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3815 else
3816 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3817 if (!error)
3818 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3819 new_dentry->d_inode, old_dentry);
3820 fsnotify_oldname_free(old_name);
3821
3822 return error;
3823}
3824
3825SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3826 int, newdfd, const char __user *, newname)
3827{
3828 struct dentry *old_dir, *new_dir;
3829 struct dentry *old_dentry, *new_dentry;
3830 struct dentry *trap;
3831 struct nameidata oldnd, newnd;
3832 struct filename *from;
3833 struct filename *to;
3834 unsigned int lookup_flags = 0;
3835 bool should_retry = false;
3836 int error;
3837retry:
3838 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3839 if (IS_ERR(from)) {
3840 error = PTR_ERR(from);
3841 goto exit;
3842 }
3843
3844 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3845 if (IS_ERR(to)) {
3846 error = PTR_ERR(to);
3847 goto exit1;
3848 }
3849
3850 error = -EXDEV;
3851 if (oldnd.path.mnt != newnd.path.mnt)
3852 goto exit2;
3853
3854 old_dir = oldnd.path.dentry;
3855 error = -EBUSY;
3856 if (oldnd.last_type != LAST_NORM)
3857 goto exit2;
3858
3859 new_dir = newnd.path.dentry;
3860 if (newnd.last_type != LAST_NORM)
3861 goto exit2;
3862
3863 error = mnt_want_write(oldnd.path.mnt);
3864 if (error)
3865 goto exit2;
3866
3867 oldnd.flags &= ~LOOKUP_PARENT;
3868 newnd.flags &= ~LOOKUP_PARENT;
3869 newnd.flags |= LOOKUP_RENAME_TARGET;
3870
3871 trap = lock_rename(new_dir, old_dir);
3872
3873 old_dentry = lookup_hash(&oldnd);
3874 error = PTR_ERR(old_dentry);
3875 if (IS_ERR(old_dentry))
3876 goto exit3;
3877 /* source must exist */
3878 error = -ENOENT;
3879 if (!old_dentry->d_inode)
3880 goto exit4;
3881 /* unless the source is a directory trailing slashes give -ENOTDIR */
3882 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3883 error = -ENOTDIR;
3884 if (oldnd.last.name[oldnd.last.len])
3885 goto exit4;
3886 if (newnd.last.name[newnd.last.len])
3887 goto exit4;
3888 }
3889 /* source should not be ancestor of target */
3890 error = -EINVAL;
3891 if (old_dentry == trap)
3892 goto exit4;
3893 new_dentry = lookup_hash(&newnd);
3894 error = PTR_ERR(new_dentry);
3895 if (IS_ERR(new_dentry))
3896 goto exit4;
3897 /* target should not be an ancestor of source */
3898 error = -ENOTEMPTY;
3899 if (new_dentry == trap)
3900 goto exit5;
3901
3902 error = security_path_rename(&oldnd.path, old_dentry,
3903 &newnd.path, new_dentry);
3904 if (error)
3905 goto exit5;
3906 error = vfs_rename(old_dir->d_inode, old_dentry,
3907 new_dir->d_inode, new_dentry);
3908exit5:
3909 dput(new_dentry);
3910exit4:
3911 dput(old_dentry);
3912exit3:
3913 unlock_rename(new_dir, old_dir);
3914 mnt_drop_write(oldnd.path.mnt);
3915exit2:
3916 if (retry_estale(error, lookup_flags))
3917 should_retry = true;
3918 path_put(&newnd.path);
3919 putname(to);
3920exit1:
3921 path_put(&oldnd.path);
3922 putname(from);
3923 if (should_retry) {
3924 should_retry = false;
3925 lookup_flags |= LOOKUP_REVAL;
3926 goto retry;
3927 }
3928exit:
3929 return error;
3930}
3931
3932SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3933{
3934 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3935}
3936
3937int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3938{
3939 int len;
3940
3941 len = PTR_ERR(link);
3942 if (IS_ERR(link))
3943 goto out;
3944
3945 len = strlen(link);
3946 if (len > (unsigned) buflen)
3947 len = buflen;
3948 if (copy_to_user(buffer, link, len))
3949 len = -EFAULT;
3950out:
3951 return len;
3952}
3953
3954/*
3955 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3956 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3957 * using) it for any given inode is up to filesystem.
3958 */
3959int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3960{
3961 struct nameidata nd;
3962 void *cookie;
3963 int res;
3964
3965 nd.depth = 0;
3966 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3967 if (IS_ERR(cookie))
3968 return PTR_ERR(cookie);
3969
3970 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3971 if (dentry->d_inode->i_op->put_link)
3972 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3973 return res;
3974}
3975
3976int vfs_follow_link(struct nameidata *nd, const char *link)
3977{
3978 return __vfs_follow_link(nd, link);
3979}
3980
3981/* get the link contents into pagecache */
3982static char *page_getlink(struct dentry * dentry, struct page **ppage)
3983{
3984 char *kaddr;
3985 struct page *page;
3986 struct address_space *mapping = dentry->d_inode->i_mapping;
3987 page = read_mapping_page(mapping, 0, NULL);
3988 if (IS_ERR(page))
3989 return (char*)page;
3990 *ppage = page;
3991 kaddr = kmap(page);
3992 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3993 return kaddr;
3994}
3995
3996int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3997{
3998 struct page *page = NULL;
3999 char *s = page_getlink(dentry, &page);
4000 int res = vfs_readlink(dentry,buffer,buflen,s);
4001 if (page) {
4002 kunmap(page);
4003 page_cache_release(page);
4004 }
4005 return res;
4006}
4007
4008void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4009{
4010 struct page *page = NULL;
4011 nd_set_link(nd, page_getlink(dentry, &page));
4012 return page;
4013}
4014
4015void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4016{
4017 struct page *page = cookie;
4018
4019 if (page) {
4020 kunmap(page);
4021 page_cache_release(page);
4022 }
4023}
4024
4025/*
4026 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4027 */
4028int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4029{
4030 struct address_space *mapping = inode->i_mapping;
4031 struct page *page;
4032 void *fsdata;
4033 int err;
4034 char *kaddr;
4035 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4036 if (nofs)
4037 flags |= AOP_FLAG_NOFS;
4038
4039retry:
4040 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4041 flags, &page, &fsdata);
4042 if (err)
4043 goto fail;
4044
4045 kaddr = kmap_atomic(page);
4046 memcpy(kaddr, symname, len-1);
4047 kunmap_atomic(kaddr);
4048
4049 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4050 page, fsdata);
4051 if (err < 0)
4052 goto fail;
4053 if (err < len-1)
4054 goto retry;
4055
4056 mark_inode_dirty(inode);
4057 return 0;
4058fail:
4059 return err;
4060}
4061
4062int page_symlink(struct inode *inode, const char *symname, int len)
4063{
4064 return __page_symlink(inode, symname, len,
4065 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4066}
4067
4068const struct inode_operations page_symlink_inode_operations = {
4069 .readlink = generic_readlink,
4070 .follow_link = page_follow_link_light,
4071 .put_link = page_put_link,
4072};
4073
4074EXPORT_SYMBOL(user_path_at);
4075EXPORT_SYMBOL(follow_down_one);
4076EXPORT_SYMBOL(follow_down);
4077EXPORT_SYMBOL(follow_up);
4078EXPORT_SYMBOL(get_write_access); /* nfsd */
4079EXPORT_SYMBOL(lock_rename);
4080EXPORT_SYMBOL(lookup_one_len);
4081EXPORT_SYMBOL(page_follow_link_light);
4082EXPORT_SYMBOL(page_put_link);
4083EXPORT_SYMBOL(page_readlink);
4084EXPORT_SYMBOL(__page_symlink);
4085EXPORT_SYMBOL(page_symlink);
4086EXPORT_SYMBOL(page_symlink_inode_operations);
4087EXPORT_SYMBOL(kern_path);
4088EXPORT_SYMBOL(vfs_path_lookup);
4089EXPORT_SYMBOL(inode_permission);
4090EXPORT_SYMBOL(unlock_rename);
4091EXPORT_SYMBOL(vfs_create);
4092EXPORT_SYMBOL(vfs_follow_link);
4093EXPORT_SYMBOL(vfs_link);
4094EXPORT_SYMBOL(vfs_mkdir);
4095EXPORT_SYMBOL(vfs_mknod);
4096EXPORT_SYMBOL(generic_permission);
4097EXPORT_SYMBOL(vfs_readlink);
4098EXPORT_SYMBOL(vfs_rename);
4099EXPORT_SYMBOL(vfs_rmdir);
4100EXPORT_SYMBOL(vfs_symlink);
4101EXPORT_SYMBOL(vfs_unlink);
4102EXPORT_SYMBOL(dentry_unhash);
4103EXPORT_SYMBOL(generic_readlink);