]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/namei.c
don't modify od->filp at all
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <asm/uaccess.h>
38
39#include "internal.h"
40#include "mount.h"
41
42/* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107/*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113/* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120static char *getname_flags(const char __user *filename, int flags, int *empty)
121{
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148error:
149 __putname(result);
150 return err;
151}
152
153char *getname(const char __user * filename)
154{
155 return getname_flags(filename, 0, NULL);
156}
157
158#ifdef CONFIG_AUDITSYSCALL
159void putname(const char *name)
160{
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165}
166EXPORT_SYMBOL(putname);
167#endif
168
169static int check_acl(struct inode *inode, int mask)
170{
171#ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210#endif
211
212 return -EAGAIN;
213}
214
215/*
216 * This does the basic permission checking
217 */
218static int acl_permission_check(struct inode *inode, int mask)
219{
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241}
242
243/**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257int generic_permission(struct inode *inode, int mask)
258{
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295}
296
297/*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303static inline int do_inode_permission(struct inode *inode, int mask)
304{
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315}
316
317/**
318 * inode_permission - check for access rights to a given inode
319 * @inode: inode to check permission on
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 *
322 * Used to check for read/write/execute permissions on an inode.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
326 *
327 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
328 */
329int inode_permission(struct inode *inode, int mask)
330{
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 umode_t mode = inode->i_mode;
335
336 /*
337 * Nobody gets write access to a read-only fs.
338 */
339 if (IS_RDONLY(inode) &&
340 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 return -EROFS;
342
343 /*
344 * Nobody gets write access to an immutable file.
345 */
346 if (IS_IMMUTABLE(inode))
347 return -EACCES;
348 }
349
350 retval = do_inode_permission(inode, mask);
351 if (retval)
352 return retval;
353
354 retval = devcgroup_inode_permission(inode, mask);
355 if (retval)
356 return retval;
357
358 return security_inode_permission(inode, mask);
359}
360
361/**
362 * path_get - get a reference to a path
363 * @path: path to get the reference to
364 *
365 * Given a path increment the reference count to the dentry and the vfsmount.
366 */
367void path_get(struct path *path)
368{
369 mntget(path->mnt);
370 dget(path->dentry);
371}
372EXPORT_SYMBOL(path_get);
373
374/**
375 * path_put - put a reference to a path
376 * @path: path to put the reference to
377 *
378 * Given a path decrement the reference count to the dentry and the vfsmount.
379 */
380void path_put(struct path *path)
381{
382 dput(path->dentry);
383 mntput(path->mnt);
384}
385EXPORT_SYMBOL(path_put);
386
387/*
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). In situations when we can't
390 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392 * mode. Refcounts are grabbed at the last known good point before rcu-walk
393 * got stuck, so ref-walk may continue from there. If this is not successful
394 * (eg. a seqcount has changed), then failure is returned and it's up to caller
395 * to restart the path walk from the beginning in ref-walk mode.
396 */
397
398/**
399 * unlazy_walk - try to switch to ref-walk mode.
400 * @nd: nameidata pathwalk data
401 * @dentry: child of nd->path.dentry or NULL
402 * Returns: 0 on success, -ECHILD on failure
403 *
404 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
406 * @nd or NULL. Must be called from rcu-walk context.
407 */
408static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
409{
410 struct fs_struct *fs = current->fs;
411 struct dentry *parent = nd->path.dentry;
412 int want_root = 0;
413
414 BUG_ON(!(nd->flags & LOOKUP_RCU));
415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 want_root = 1;
417 spin_lock(&fs->lock);
418 if (nd->root.mnt != fs->root.mnt ||
419 nd->root.dentry != fs->root.dentry)
420 goto err_root;
421 }
422 spin_lock(&parent->d_lock);
423 if (!dentry) {
424 if (!__d_rcu_to_refcount(parent, nd->seq))
425 goto err_parent;
426 BUG_ON(nd->inode != parent->d_inode);
427 } else {
428 if (dentry->d_parent != parent)
429 goto err_parent;
430 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 if (!__d_rcu_to_refcount(dentry, nd->seq))
432 goto err_child;
433 /*
434 * If the sequence check on the child dentry passed, then
435 * the child has not been removed from its parent. This
436 * means the parent dentry must be valid and able to take
437 * a reference at this point.
438 */
439 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 BUG_ON(!parent->d_count);
441 parent->d_count++;
442 spin_unlock(&dentry->d_lock);
443 }
444 spin_unlock(&parent->d_lock);
445 if (want_root) {
446 path_get(&nd->root);
447 spin_unlock(&fs->lock);
448 }
449 mntget(nd->path.mnt);
450
451 rcu_read_unlock();
452 br_read_unlock(&vfsmount_lock);
453 nd->flags &= ~LOOKUP_RCU;
454 return 0;
455
456err_child:
457 spin_unlock(&dentry->d_lock);
458err_parent:
459 spin_unlock(&parent->d_lock);
460err_root:
461 if (want_root)
462 spin_unlock(&fs->lock);
463 return -ECHILD;
464}
465
466static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
467{
468 return dentry->d_op->d_revalidate(dentry, nd);
469}
470
471/**
472 * complete_walk - successful completion of path walk
473 * @nd: pointer nameidata
474 *
475 * If we had been in RCU mode, drop out of it and legitimize nd->path.
476 * Revalidate the final result, unless we'd already done that during
477 * the path walk or the filesystem doesn't ask for it. Return 0 on
478 * success, -error on failure. In case of failure caller does not
479 * need to drop nd->path.
480 */
481static int complete_walk(struct nameidata *nd)
482{
483 struct dentry *dentry = nd->path.dentry;
484 int status;
485
486 if (nd->flags & LOOKUP_RCU) {
487 nd->flags &= ~LOOKUP_RCU;
488 if (!(nd->flags & LOOKUP_ROOT))
489 nd->root.mnt = NULL;
490 spin_lock(&dentry->d_lock);
491 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
492 spin_unlock(&dentry->d_lock);
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 return -ECHILD;
496 }
497 BUG_ON(nd->inode != dentry->d_inode);
498 spin_unlock(&dentry->d_lock);
499 mntget(nd->path.mnt);
500 rcu_read_unlock();
501 br_read_unlock(&vfsmount_lock);
502 }
503
504 if (likely(!(nd->flags & LOOKUP_JUMPED)))
505 return 0;
506
507 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
508 return 0;
509
510 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
511 return 0;
512
513 /* Note: we do not d_invalidate() */
514 status = d_revalidate(dentry, nd);
515 if (status > 0)
516 return 0;
517
518 if (!status)
519 status = -ESTALE;
520
521 path_put(&nd->path);
522 return status;
523}
524
525static __always_inline void set_root(struct nameidata *nd)
526{
527 if (!nd->root.mnt)
528 get_fs_root(current->fs, &nd->root);
529}
530
531static int link_path_walk(const char *, struct nameidata *);
532
533static __always_inline void set_root_rcu(struct nameidata *nd)
534{
535 if (!nd->root.mnt) {
536 struct fs_struct *fs = current->fs;
537 unsigned seq;
538
539 do {
540 seq = read_seqcount_begin(&fs->seq);
541 nd->root = fs->root;
542 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
543 } while (read_seqcount_retry(&fs->seq, seq));
544 }
545}
546
547static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
548{
549 int ret;
550
551 if (IS_ERR(link))
552 goto fail;
553
554 if (*link == '/') {
555 set_root(nd);
556 path_put(&nd->path);
557 nd->path = nd->root;
558 path_get(&nd->root);
559 nd->flags |= LOOKUP_JUMPED;
560 }
561 nd->inode = nd->path.dentry->d_inode;
562
563 ret = link_path_walk(link, nd);
564 return ret;
565fail:
566 path_put(&nd->path);
567 return PTR_ERR(link);
568}
569
570static void path_put_conditional(struct path *path, struct nameidata *nd)
571{
572 dput(path->dentry);
573 if (path->mnt != nd->path.mnt)
574 mntput(path->mnt);
575}
576
577static inline void path_to_nameidata(const struct path *path,
578 struct nameidata *nd)
579{
580 if (!(nd->flags & LOOKUP_RCU)) {
581 dput(nd->path.dentry);
582 if (nd->path.mnt != path->mnt)
583 mntput(nd->path.mnt);
584 }
585 nd->path.mnt = path->mnt;
586 nd->path.dentry = path->dentry;
587}
588
589static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
590{
591 struct inode *inode = link->dentry->d_inode;
592 if (inode->i_op->put_link)
593 inode->i_op->put_link(link->dentry, nd, cookie);
594 path_put(link);
595}
596
597static __always_inline int
598follow_link(struct path *link, struct nameidata *nd, void **p)
599{
600 struct dentry *dentry = link->dentry;
601 int error;
602 char *s;
603
604 BUG_ON(nd->flags & LOOKUP_RCU);
605
606 if (link->mnt == nd->path.mnt)
607 mntget(link->mnt);
608
609 error = -ELOOP;
610 if (unlikely(current->total_link_count >= 40))
611 goto out_put_nd_path;
612
613 cond_resched();
614 current->total_link_count++;
615
616 touch_atime(link);
617 nd_set_link(nd, NULL);
618
619 error = security_inode_follow_link(link->dentry, nd);
620 if (error)
621 goto out_put_nd_path;
622
623 nd->last_type = LAST_BIND;
624 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
625 error = PTR_ERR(*p);
626 if (IS_ERR(*p))
627 goto out_put_link;
628
629 error = 0;
630 s = nd_get_link(nd);
631 if (s) {
632 error = __vfs_follow_link(nd, s);
633 } else if (nd->last_type == LAST_BIND) {
634 nd->flags |= LOOKUP_JUMPED;
635 nd->inode = nd->path.dentry->d_inode;
636 if (nd->inode->i_op->follow_link) {
637 /* stepped on a _really_ weird one */
638 path_put(&nd->path);
639 error = -ELOOP;
640 }
641 }
642 if (unlikely(error))
643 put_link(nd, link, *p);
644
645 return error;
646
647out_put_nd_path:
648 path_put(&nd->path);
649out_put_link:
650 path_put(link);
651 return error;
652}
653
654static int follow_up_rcu(struct path *path)
655{
656 struct mount *mnt = real_mount(path->mnt);
657 struct mount *parent;
658 struct dentry *mountpoint;
659
660 parent = mnt->mnt_parent;
661 if (&parent->mnt == path->mnt)
662 return 0;
663 mountpoint = mnt->mnt_mountpoint;
664 path->dentry = mountpoint;
665 path->mnt = &parent->mnt;
666 return 1;
667}
668
669int follow_up(struct path *path)
670{
671 struct mount *mnt = real_mount(path->mnt);
672 struct mount *parent;
673 struct dentry *mountpoint;
674
675 br_read_lock(&vfsmount_lock);
676 parent = mnt->mnt_parent;
677 if (&parent->mnt == path->mnt) {
678 br_read_unlock(&vfsmount_lock);
679 return 0;
680 }
681 mntget(&parent->mnt);
682 mountpoint = dget(mnt->mnt_mountpoint);
683 br_read_unlock(&vfsmount_lock);
684 dput(path->dentry);
685 path->dentry = mountpoint;
686 mntput(path->mnt);
687 path->mnt = &parent->mnt;
688 return 1;
689}
690
691/*
692 * Perform an automount
693 * - return -EISDIR to tell follow_managed() to stop and return the path we
694 * were called with.
695 */
696static int follow_automount(struct path *path, unsigned flags,
697 bool *need_mntput)
698{
699 struct vfsmount *mnt;
700 int err;
701
702 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
703 return -EREMOTE;
704
705 /* We don't want to mount if someone's just doing a stat -
706 * unless they're stat'ing a directory and appended a '/' to
707 * the name.
708 *
709 * We do, however, want to mount if someone wants to open or
710 * create a file of any type under the mountpoint, wants to
711 * traverse through the mountpoint or wants to open the
712 * mounted directory. Also, autofs may mark negative dentries
713 * as being automount points. These will need the attentions
714 * of the daemon to instantiate them before they can be used.
715 */
716 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
717 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
718 path->dentry->d_inode)
719 return -EISDIR;
720
721 current->total_link_count++;
722 if (current->total_link_count >= 40)
723 return -ELOOP;
724
725 mnt = path->dentry->d_op->d_automount(path);
726 if (IS_ERR(mnt)) {
727 /*
728 * The filesystem is allowed to return -EISDIR here to indicate
729 * it doesn't want to automount. For instance, autofs would do
730 * this so that its userspace daemon can mount on this dentry.
731 *
732 * However, we can only permit this if it's a terminal point in
733 * the path being looked up; if it wasn't then the remainder of
734 * the path is inaccessible and we should say so.
735 */
736 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
737 return -EREMOTE;
738 return PTR_ERR(mnt);
739 }
740
741 if (!mnt) /* mount collision */
742 return 0;
743
744 if (!*need_mntput) {
745 /* lock_mount() may release path->mnt on error */
746 mntget(path->mnt);
747 *need_mntput = true;
748 }
749 err = finish_automount(mnt, path);
750
751 switch (err) {
752 case -EBUSY:
753 /* Someone else made a mount here whilst we were busy */
754 return 0;
755 case 0:
756 path_put(path);
757 path->mnt = mnt;
758 path->dentry = dget(mnt->mnt_root);
759 return 0;
760 default:
761 return err;
762 }
763
764}
765
766/*
767 * Handle a dentry that is managed in some way.
768 * - Flagged for transit management (autofs)
769 * - Flagged as mountpoint
770 * - Flagged as automount point
771 *
772 * This may only be called in refwalk mode.
773 *
774 * Serialization is taken care of in namespace.c
775 */
776static int follow_managed(struct path *path, unsigned flags)
777{
778 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
779 unsigned managed;
780 bool need_mntput = false;
781 int ret = 0;
782
783 /* Given that we're not holding a lock here, we retain the value in a
784 * local variable for each dentry as we look at it so that we don't see
785 * the components of that value change under us */
786 while (managed = ACCESS_ONCE(path->dentry->d_flags),
787 managed &= DCACHE_MANAGED_DENTRY,
788 unlikely(managed != 0)) {
789 /* Allow the filesystem to manage the transit without i_mutex
790 * being held. */
791 if (managed & DCACHE_MANAGE_TRANSIT) {
792 BUG_ON(!path->dentry->d_op);
793 BUG_ON(!path->dentry->d_op->d_manage);
794 ret = path->dentry->d_op->d_manage(path->dentry, false);
795 if (ret < 0)
796 break;
797 }
798
799 /* Transit to a mounted filesystem. */
800 if (managed & DCACHE_MOUNTED) {
801 struct vfsmount *mounted = lookup_mnt(path);
802 if (mounted) {
803 dput(path->dentry);
804 if (need_mntput)
805 mntput(path->mnt);
806 path->mnt = mounted;
807 path->dentry = dget(mounted->mnt_root);
808 need_mntput = true;
809 continue;
810 }
811
812 /* Something is mounted on this dentry in another
813 * namespace and/or whatever was mounted there in this
814 * namespace got unmounted before we managed to get the
815 * vfsmount_lock */
816 }
817
818 /* Handle an automount point */
819 if (managed & DCACHE_NEED_AUTOMOUNT) {
820 ret = follow_automount(path, flags, &need_mntput);
821 if (ret < 0)
822 break;
823 continue;
824 }
825
826 /* We didn't change the current path point */
827 break;
828 }
829
830 if (need_mntput && path->mnt == mnt)
831 mntput(path->mnt);
832 if (ret == -EISDIR)
833 ret = 0;
834 return ret < 0 ? ret : need_mntput;
835}
836
837int follow_down_one(struct path *path)
838{
839 struct vfsmount *mounted;
840
841 mounted = lookup_mnt(path);
842 if (mounted) {
843 dput(path->dentry);
844 mntput(path->mnt);
845 path->mnt = mounted;
846 path->dentry = dget(mounted->mnt_root);
847 return 1;
848 }
849 return 0;
850}
851
852static inline bool managed_dentry_might_block(struct dentry *dentry)
853{
854 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
855 dentry->d_op->d_manage(dentry, true) < 0);
856}
857
858/*
859 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
860 * we meet a managed dentry that would need blocking.
861 */
862static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
863 struct inode **inode)
864{
865 for (;;) {
866 struct mount *mounted;
867 /*
868 * Don't forget we might have a non-mountpoint managed dentry
869 * that wants to block transit.
870 */
871 if (unlikely(managed_dentry_might_block(path->dentry)))
872 return false;
873
874 if (!d_mountpoint(path->dentry))
875 break;
876
877 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
878 if (!mounted)
879 break;
880 path->mnt = &mounted->mnt;
881 path->dentry = mounted->mnt.mnt_root;
882 nd->flags |= LOOKUP_JUMPED;
883 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
884 /*
885 * Update the inode too. We don't need to re-check the
886 * dentry sequence number here after this d_inode read,
887 * because a mount-point is always pinned.
888 */
889 *inode = path->dentry->d_inode;
890 }
891 return true;
892}
893
894static void follow_mount_rcu(struct nameidata *nd)
895{
896 while (d_mountpoint(nd->path.dentry)) {
897 struct mount *mounted;
898 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
899 if (!mounted)
900 break;
901 nd->path.mnt = &mounted->mnt;
902 nd->path.dentry = mounted->mnt.mnt_root;
903 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
904 }
905}
906
907static int follow_dotdot_rcu(struct nameidata *nd)
908{
909 set_root_rcu(nd);
910
911 while (1) {
912 if (nd->path.dentry == nd->root.dentry &&
913 nd->path.mnt == nd->root.mnt) {
914 break;
915 }
916 if (nd->path.dentry != nd->path.mnt->mnt_root) {
917 struct dentry *old = nd->path.dentry;
918 struct dentry *parent = old->d_parent;
919 unsigned seq;
920
921 seq = read_seqcount_begin(&parent->d_seq);
922 if (read_seqcount_retry(&old->d_seq, nd->seq))
923 goto failed;
924 nd->path.dentry = parent;
925 nd->seq = seq;
926 break;
927 }
928 if (!follow_up_rcu(&nd->path))
929 break;
930 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
931 }
932 follow_mount_rcu(nd);
933 nd->inode = nd->path.dentry->d_inode;
934 return 0;
935
936failed:
937 nd->flags &= ~LOOKUP_RCU;
938 if (!(nd->flags & LOOKUP_ROOT))
939 nd->root.mnt = NULL;
940 rcu_read_unlock();
941 br_read_unlock(&vfsmount_lock);
942 return -ECHILD;
943}
944
945/*
946 * Follow down to the covering mount currently visible to userspace. At each
947 * point, the filesystem owning that dentry may be queried as to whether the
948 * caller is permitted to proceed or not.
949 */
950int follow_down(struct path *path)
951{
952 unsigned managed;
953 int ret;
954
955 while (managed = ACCESS_ONCE(path->dentry->d_flags),
956 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
957 /* Allow the filesystem to manage the transit without i_mutex
958 * being held.
959 *
960 * We indicate to the filesystem if someone is trying to mount
961 * something here. This gives autofs the chance to deny anyone
962 * other than its daemon the right to mount on its
963 * superstructure.
964 *
965 * The filesystem may sleep at this point.
966 */
967 if (managed & DCACHE_MANAGE_TRANSIT) {
968 BUG_ON(!path->dentry->d_op);
969 BUG_ON(!path->dentry->d_op->d_manage);
970 ret = path->dentry->d_op->d_manage(
971 path->dentry, false);
972 if (ret < 0)
973 return ret == -EISDIR ? 0 : ret;
974 }
975
976 /* Transit to a mounted filesystem. */
977 if (managed & DCACHE_MOUNTED) {
978 struct vfsmount *mounted = lookup_mnt(path);
979 if (!mounted)
980 break;
981 dput(path->dentry);
982 mntput(path->mnt);
983 path->mnt = mounted;
984 path->dentry = dget(mounted->mnt_root);
985 continue;
986 }
987
988 /* Don't handle automount points here */
989 break;
990 }
991 return 0;
992}
993
994/*
995 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
996 */
997static void follow_mount(struct path *path)
998{
999 while (d_mountpoint(path->dentry)) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1001 if (!mounted)
1002 break;
1003 dput(path->dentry);
1004 mntput(path->mnt);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1007 }
1008}
1009
1010static void follow_dotdot(struct nameidata *nd)
1011{
1012 set_root(nd);
1013
1014 while(1) {
1015 struct dentry *old = nd->path.dentry;
1016
1017 if (nd->path.dentry == nd->root.dentry &&
1018 nd->path.mnt == nd->root.mnt) {
1019 break;
1020 }
1021 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1022 /* rare case of legitimate dget_parent()... */
1023 nd->path.dentry = dget_parent(nd->path.dentry);
1024 dput(old);
1025 break;
1026 }
1027 if (!follow_up(&nd->path))
1028 break;
1029 }
1030 follow_mount(&nd->path);
1031 nd->inode = nd->path.dentry->d_inode;
1032}
1033
1034/*
1035 * This looks up the name in dcache, possibly revalidates the old dentry and
1036 * allocates a new one if not found or not valid. In the need_lookup argument
1037 * returns whether i_op->lookup is necessary.
1038 *
1039 * dir->d_inode->i_mutex must be held
1040 */
1041static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1042 struct nameidata *nd, bool *need_lookup)
1043{
1044 struct dentry *dentry;
1045 int error;
1046
1047 *need_lookup = false;
1048 dentry = d_lookup(dir, name);
1049 if (dentry) {
1050 if (d_need_lookup(dentry)) {
1051 *need_lookup = true;
1052 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1053 error = d_revalidate(dentry, nd);
1054 if (unlikely(error <= 0)) {
1055 if (error < 0) {
1056 dput(dentry);
1057 return ERR_PTR(error);
1058 } else if (!d_invalidate(dentry)) {
1059 dput(dentry);
1060 dentry = NULL;
1061 }
1062 }
1063 }
1064 }
1065
1066 if (!dentry) {
1067 dentry = d_alloc(dir, name);
1068 if (unlikely(!dentry))
1069 return ERR_PTR(-ENOMEM);
1070
1071 *need_lookup = true;
1072 }
1073 return dentry;
1074}
1075
1076/*
1077 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1078 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1079 *
1080 * dir->d_inode->i_mutex must be held
1081 */
1082static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1083 struct nameidata *nd)
1084{
1085 struct dentry *old;
1086
1087 /* Don't create child dentry for a dead directory. */
1088 if (unlikely(IS_DEADDIR(dir))) {
1089 dput(dentry);
1090 return ERR_PTR(-ENOENT);
1091 }
1092
1093 old = dir->i_op->lookup(dir, dentry, nd);
1094 if (unlikely(old)) {
1095 dput(dentry);
1096 dentry = old;
1097 }
1098 return dentry;
1099}
1100
1101static struct dentry *__lookup_hash(struct qstr *name,
1102 struct dentry *base, struct nameidata *nd)
1103{
1104 bool need_lookup;
1105 struct dentry *dentry;
1106
1107 dentry = lookup_dcache(name, base, nd, &need_lookup);
1108 if (!need_lookup)
1109 return dentry;
1110
1111 return lookup_real(base->d_inode, dentry, nd);
1112}
1113
1114/*
1115 * It's more convoluted than I'd like it to be, but... it's still fairly
1116 * small and for now I'd prefer to have fast path as straight as possible.
1117 * It _is_ time-critical.
1118 */
1119static int lookup_fast(struct nameidata *nd, struct qstr *name,
1120 struct path *path, struct inode **inode)
1121{
1122 struct vfsmount *mnt = nd->path.mnt;
1123 struct dentry *dentry, *parent = nd->path.dentry;
1124 int need_reval = 1;
1125 int status = 1;
1126 int err;
1127
1128 /*
1129 * Rename seqlock is not required here because in the off chance
1130 * of a false negative due to a concurrent rename, we're going to
1131 * do the non-racy lookup, below.
1132 */
1133 if (nd->flags & LOOKUP_RCU) {
1134 unsigned seq;
1135 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1136 if (!dentry)
1137 goto unlazy;
1138
1139 /*
1140 * This sequence count validates that the inode matches
1141 * the dentry name information from lookup.
1142 */
1143 *inode = dentry->d_inode;
1144 if (read_seqcount_retry(&dentry->d_seq, seq))
1145 return -ECHILD;
1146
1147 /*
1148 * This sequence count validates that the parent had no
1149 * changes while we did the lookup of the dentry above.
1150 *
1151 * The memory barrier in read_seqcount_begin of child is
1152 * enough, we can use __read_seqcount_retry here.
1153 */
1154 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1155 return -ECHILD;
1156 nd->seq = seq;
1157
1158 if (unlikely(d_need_lookup(dentry)))
1159 goto unlazy;
1160 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1161 status = d_revalidate(dentry, nd);
1162 if (unlikely(status <= 0)) {
1163 if (status != -ECHILD)
1164 need_reval = 0;
1165 goto unlazy;
1166 }
1167 }
1168 path->mnt = mnt;
1169 path->dentry = dentry;
1170 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1171 goto unlazy;
1172 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1173 goto unlazy;
1174 return 0;
1175unlazy:
1176 if (unlazy_walk(nd, dentry))
1177 return -ECHILD;
1178 } else {
1179 dentry = __d_lookup(parent, name);
1180 }
1181
1182 if (unlikely(!dentry))
1183 goto need_lookup;
1184
1185 if (unlikely(d_need_lookup(dentry))) {
1186 dput(dentry);
1187 goto need_lookup;
1188 }
1189
1190 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1191 status = d_revalidate(dentry, nd);
1192 if (unlikely(status <= 0)) {
1193 if (status < 0) {
1194 dput(dentry);
1195 return status;
1196 }
1197 if (!d_invalidate(dentry)) {
1198 dput(dentry);
1199 goto need_lookup;
1200 }
1201 }
1202
1203 path->mnt = mnt;
1204 path->dentry = dentry;
1205 err = follow_managed(path, nd->flags);
1206 if (unlikely(err < 0)) {
1207 path_put_conditional(path, nd);
1208 return err;
1209 }
1210 if (err)
1211 nd->flags |= LOOKUP_JUMPED;
1212 *inode = path->dentry->d_inode;
1213 return 0;
1214
1215need_lookup:
1216 return 1;
1217}
1218
1219/* Fast lookup failed, do it the slow way */
1220static int lookup_slow(struct nameidata *nd, struct qstr *name,
1221 struct path *path)
1222{
1223 struct dentry *dentry, *parent;
1224 int err;
1225
1226 parent = nd->path.dentry;
1227 BUG_ON(nd->inode != parent->d_inode);
1228
1229 mutex_lock(&parent->d_inode->i_mutex);
1230 dentry = __lookup_hash(name, parent, nd);
1231 mutex_unlock(&parent->d_inode->i_mutex);
1232 if (IS_ERR(dentry))
1233 return PTR_ERR(dentry);
1234 path->mnt = nd->path.mnt;
1235 path->dentry = dentry;
1236 err = follow_managed(path, nd->flags);
1237 if (unlikely(err < 0)) {
1238 path_put_conditional(path, nd);
1239 return err;
1240 }
1241 if (err)
1242 nd->flags |= LOOKUP_JUMPED;
1243 return 0;
1244}
1245
1246static inline int may_lookup(struct nameidata *nd)
1247{
1248 if (nd->flags & LOOKUP_RCU) {
1249 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1250 if (err != -ECHILD)
1251 return err;
1252 if (unlazy_walk(nd, NULL))
1253 return -ECHILD;
1254 }
1255 return inode_permission(nd->inode, MAY_EXEC);
1256}
1257
1258static inline int handle_dots(struct nameidata *nd, int type)
1259{
1260 if (type == LAST_DOTDOT) {
1261 if (nd->flags & LOOKUP_RCU) {
1262 if (follow_dotdot_rcu(nd))
1263 return -ECHILD;
1264 } else
1265 follow_dotdot(nd);
1266 }
1267 return 0;
1268}
1269
1270static void terminate_walk(struct nameidata *nd)
1271{
1272 if (!(nd->flags & LOOKUP_RCU)) {
1273 path_put(&nd->path);
1274 } else {
1275 nd->flags &= ~LOOKUP_RCU;
1276 if (!(nd->flags & LOOKUP_ROOT))
1277 nd->root.mnt = NULL;
1278 rcu_read_unlock();
1279 br_read_unlock(&vfsmount_lock);
1280 }
1281}
1282
1283/*
1284 * Do we need to follow links? We _really_ want to be able
1285 * to do this check without having to look at inode->i_op,
1286 * so we keep a cache of "no, this doesn't need follow_link"
1287 * for the common case.
1288 */
1289static inline int should_follow_link(struct inode *inode, int follow)
1290{
1291 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1292 if (likely(inode->i_op->follow_link))
1293 return follow;
1294
1295 /* This gets set once for the inode lifetime */
1296 spin_lock(&inode->i_lock);
1297 inode->i_opflags |= IOP_NOFOLLOW;
1298 spin_unlock(&inode->i_lock);
1299 }
1300 return 0;
1301}
1302
1303static inline int walk_component(struct nameidata *nd, struct path *path,
1304 struct qstr *name, int type, int follow)
1305{
1306 struct inode *inode;
1307 int err;
1308 /*
1309 * "." and ".." are special - ".." especially so because it has
1310 * to be able to know about the current root directory and
1311 * parent relationships.
1312 */
1313 if (unlikely(type != LAST_NORM))
1314 return handle_dots(nd, type);
1315 err = lookup_fast(nd, name, path, &inode);
1316 if (unlikely(err)) {
1317 if (err < 0)
1318 goto out_err;
1319
1320 err = lookup_slow(nd, name, path);
1321 if (err < 0)
1322 goto out_err;
1323
1324 inode = path->dentry->d_inode;
1325 }
1326 err = -ENOENT;
1327 if (!inode)
1328 goto out_path_put;
1329
1330 if (should_follow_link(inode, follow)) {
1331 if (nd->flags & LOOKUP_RCU) {
1332 if (unlikely(unlazy_walk(nd, path->dentry))) {
1333 err = -ECHILD;
1334 goto out_err;
1335 }
1336 }
1337 BUG_ON(inode != path->dentry->d_inode);
1338 return 1;
1339 }
1340 path_to_nameidata(path, nd);
1341 nd->inode = inode;
1342 return 0;
1343
1344out_path_put:
1345 path_to_nameidata(path, nd);
1346out_err:
1347 terminate_walk(nd);
1348 return err;
1349}
1350
1351/*
1352 * This limits recursive symlink follows to 8, while
1353 * limiting consecutive symlinks to 40.
1354 *
1355 * Without that kind of total limit, nasty chains of consecutive
1356 * symlinks can cause almost arbitrarily long lookups.
1357 */
1358static inline int nested_symlink(struct path *path, struct nameidata *nd)
1359{
1360 int res;
1361
1362 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1363 path_put_conditional(path, nd);
1364 path_put(&nd->path);
1365 return -ELOOP;
1366 }
1367 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1368
1369 nd->depth++;
1370 current->link_count++;
1371
1372 do {
1373 struct path link = *path;
1374 void *cookie;
1375
1376 res = follow_link(&link, nd, &cookie);
1377 if (res)
1378 break;
1379 res = walk_component(nd, path, &nd->last,
1380 nd->last_type, LOOKUP_FOLLOW);
1381 put_link(nd, &link, cookie);
1382 } while (res > 0);
1383
1384 current->link_count--;
1385 nd->depth--;
1386 return res;
1387}
1388
1389/*
1390 * We really don't want to look at inode->i_op->lookup
1391 * when we don't have to. So we keep a cache bit in
1392 * the inode ->i_opflags field that says "yes, we can
1393 * do lookup on this inode".
1394 */
1395static inline int can_lookup(struct inode *inode)
1396{
1397 if (likely(inode->i_opflags & IOP_LOOKUP))
1398 return 1;
1399 if (likely(!inode->i_op->lookup))
1400 return 0;
1401
1402 /* We do this once for the lifetime of the inode */
1403 spin_lock(&inode->i_lock);
1404 inode->i_opflags |= IOP_LOOKUP;
1405 spin_unlock(&inode->i_lock);
1406 return 1;
1407}
1408
1409/*
1410 * We can do the critical dentry name comparison and hashing
1411 * operations one word at a time, but we are limited to:
1412 *
1413 * - Architectures with fast unaligned word accesses. We could
1414 * do a "get_unaligned()" if this helps and is sufficiently
1415 * fast.
1416 *
1417 * - Little-endian machines (so that we can generate the mask
1418 * of low bytes efficiently). Again, we *could* do a byte
1419 * swapping load on big-endian architectures if that is not
1420 * expensive enough to make the optimization worthless.
1421 *
1422 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1423 * do not trap on the (extremely unlikely) case of a page
1424 * crossing operation.
1425 *
1426 * - Furthermore, we need an efficient 64-bit compile for the
1427 * 64-bit case in order to generate the "number of bytes in
1428 * the final mask". Again, that could be replaced with a
1429 * efficient population count instruction or similar.
1430 */
1431#ifdef CONFIG_DCACHE_WORD_ACCESS
1432
1433#include <asm/word-at-a-time.h>
1434
1435#ifdef CONFIG_64BIT
1436
1437static inline unsigned int fold_hash(unsigned long hash)
1438{
1439 hash += hash >> (8*sizeof(int));
1440 return hash;
1441}
1442
1443#else /* 32-bit case */
1444
1445#define fold_hash(x) (x)
1446
1447#endif
1448
1449unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1450{
1451 unsigned long a, mask;
1452 unsigned long hash = 0;
1453
1454 for (;;) {
1455 a = load_unaligned_zeropad(name);
1456 if (len < sizeof(unsigned long))
1457 break;
1458 hash += a;
1459 hash *= 9;
1460 name += sizeof(unsigned long);
1461 len -= sizeof(unsigned long);
1462 if (!len)
1463 goto done;
1464 }
1465 mask = ~(~0ul << len*8);
1466 hash += mask & a;
1467done:
1468 return fold_hash(hash);
1469}
1470EXPORT_SYMBOL(full_name_hash);
1471
1472/*
1473 * Calculate the length and hash of the path component, and
1474 * return the length of the component;
1475 */
1476static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1477{
1478 unsigned long a, b, adata, bdata, mask, hash, len;
1479 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1480
1481 hash = a = 0;
1482 len = -sizeof(unsigned long);
1483 do {
1484 hash = (hash + a) * 9;
1485 len += sizeof(unsigned long);
1486 a = load_unaligned_zeropad(name+len);
1487 b = a ^ REPEAT_BYTE('/');
1488 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1489
1490 adata = prep_zero_mask(a, adata, &constants);
1491 bdata = prep_zero_mask(b, bdata, &constants);
1492
1493 mask = create_zero_mask(adata | bdata);
1494
1495 hash += a & zero_bytemask(mask);
1496 *hashp = fold_hash(hash);
1497
1498 return len + find_zero(mask);
1499}
1500
1501#else
1502
1503unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1504{
1505 unsigned long hash = init_name_hash();
1506 while (len--)
1507 hash = partial_name_hash(*name++, hash);
1508 return end_name_hash(hash);
1509}
1510EXPORT_SYMBOL(full_name_hash);
1511
1512/*
1513 * We know there's a real path component here of at least
1514 * one character.
1515 */
1516static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1517{
1518 unsigned long hash = init_name_hash();
1519 unsigned long len = 0, c;
1520
1521 c = (unsigned char)*name;
1522 do {
1523 len++;
1524 hash = partial_name_hash(c, hash);
1525 c = (unsigned char)name[len];
1526 } while (c && c != '/');
1527 *hashp = end_name_hash(hash);
1528 return len;
1529}
1530
1531#endif
1532
1533/*
1534 * Name resolution.
1535 * This is the basic name resolution function, turning a pathname into
1536 * the final dentry. We expect 'base' to be positive and a directory.
1537 *
1538 * Returns 0 and nd will have valid dentry and mnt on success.
1539 * Returns error and drops reference to input namei data on failure.
1540 */
1541static int link_path_walk(const char *name, struct nameidata *nd)
1542{
1543 struct path next;
1544 int err;
1545
1546 while (*name=='/')
1547 name++;
1548 if (!*name)
1549 return 0;
1550
1551 /* At this point we know we have a real path component. */
1552 for(;;) {
1553 struct qstr this;
1554 long len;
1555 int type;
1556
1557 err = may_lookup(nd);
1558 if (err)
1559 break;
1560
1561 len = hash_name(name, &this.hash);
1562 this.name = name;
1563 this.len = len;
1564
1565 type = LAST_NORM;
1566 if (name[0] == '.') switch (len) {
1567 case 2:
1568 if (name[1] == '.') {
1569 type = LAST_DOTDOT;
1570 nd->flags |= LOOKUP_JUMPED;
1571 }
1572 break;
1573 case 1:
1574 type = LAST_DOT;
1575 }
1576 if (likely(type == LAST_NORM)) {
1577 struct dentry *parent = nd->path.dentry;
1578 nd->flags &= ~LOOKUP_JUMPED;
1579 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1580 err = parent->d_op->d_hash(parent, nd->inode,
1581 &this);
1582 if (err < 0)
1583 break;
1584 }
1585 }
1586
1587 if (!name[len])
1588 goto last_component;
1589 /*
1590 * If it wasn't NUL, we know it was '/'. Skip that
1591 * slash, and continue until no more slashes.
1592 */
1593 do {
1594 len++;
1595 } while (unlikely(name[len] == '/'));
1596 if (!name[len])
1597 goto last_component;
1598 name += len;
1599
1600 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1601 if (err < 0)
1602 return err;
1603
1604 if (err) {
1605 err = nested_symlink(&next, nd);
1606 if (err)
1607 return err;
1608 }
1609 if (can_lookup(nd->inode))
1610 continue;
1611 err = -ENOTDIR;
1612 break;
1613 /* here ends the main loop */
1614
1615last_component:
1616 nd->last = this;
1617 nd->last_type = type;
1618 return 0;
1619 }
1620 terminate_walk(nd);
1621 return err;
1622}
1623
1624static int path_init(int dfd, const char *name, unsigned int flags,
1625 struct nameidata *nd, struct file **fp)
1626{
1627 int retval = 0;
1628 int fput_needed;
1629 struct file *file;
1630
1631 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1632 nd->flags = flags | LOOKUP_JUMPED;
1633 nd->depth = 0;
1634 if (flags & LOOKUP_ROOT) {
1635 struct inode *inode = nd->root.dentry->d_inode;
1636 if (*name) {
1637 if (!inode->i_op->lookup)
1638 return -ENOTDIR;
1639 retval = inode_permission(inode, MAY_EXEC);
1640 if (retval)
1641 return retval;
1642 }
1643 nd->path = nd->root;
1644 nd->inode = inode;
1645 if (flags & LOOKUP_RCU) {
1646 br_read_lock(&vfsmount_lock);
1647 rcu_read_lock();
1648 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1649 } else {
1650 path_get(&nd->path);
1651 }
1652 return 0;
1653 }
1654
1655 nd->root.mnt = NULL;
1656
1657 if (*name=='/') {
1658 if (flags & LOOKUP_RCU) {
1659 br_read_lock(&vfsmount_lock);
1660 rcu_read_lock();
1661 set_root_rcu(nd);
1662 } else {
1663 set_root(nd);
1664 path_get(&nd->root);
1665 }
1666 nd->path = nd->root;
1667 } else if (dfd == AT_FDCWD) {
1668 if (flags & LOOKUP_RCU) {
1669 struct fs_struct *fs = current->fs;
1670 unsigned seq;
1671
1672 br_read_lock(&vfsmount_lock);
1673 rcu_read_lock();
1674
1675 do {
1676 seq = read_seqcount_begin(&fs->seq);
1677 nd->path = fs->pwd;
1678 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1679 } while (read_seqcount_retry(&fs->seq, seq));
1680 } else {
1681 get_fs_pwd(current->fs, &nd->path);
1682 }
1683 } else {
1684 struct dentry *dentry;
1685
1686 file = fget_raw_light(dfd, &fput_needed);
1687 retval = -EBADF;
1688 if (!file)
1689 goto out_fail;
1690
1691 dentry = file->f_path.dentry;
1692
1693 if (*name) {
1694 retval = -ENOTDIR;
1695 if (!S_ISDIR(dentry->d_inode->i_mode))
1696 goto fput_fail;
1697
1698 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1699 if (retval)
1700 goto fput_fail;
1701 }
1702
1703 nd->path = file->f_path;
1704 if (flags & LOOKUP_RCU) {
1705 if (fput_needed)
1706 *fp = file;
1707 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1708 br_read_lock(&vfsmount_lock);
1709 rcu_read_lock();
1710 } else {
1711 path_get(&file->f_path);
1712 fput_light(file, fput_needed);
1713 }
1714 }
1715
1716 nd->inode = nd->path.dentry->d_inode;
1717 return 0;
1718
1719fput_fail:
1720 fput_light(file, fput_needed);
1721out_fail:
1722 return retval;
1723}
1724
1725static inline int lookup_last(struct nameidata *nd, struct path *path)
1726{
1727 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1728 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1729
1730 nd->flags &= ~LOOKUP_PARENT;
1731 return walk_component(nd, path, &nd->last, nd->last_type,
1732 nd->flags & LOOKUP_FOLLOW);
1733}
1734
1735/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1736static int path_lookupat(int dfd, const char *name,
1737 unsigned int flags, struct nameidata *nd)
1738{
1739 struct file *base = NULL;
1740 struct path path;
1741 int err;
1742
1743 /*
1744 * Path walking is largely split up into 2 different synchronisation
1745 * schemes, rcu-walk and ref-walk (explained in
1746 * Documentation/filesystems/path-lookup.txt). These share much of the
1747 * path walk code, but some things particularly setup, cleanup, and
1748 * following mounts are sufficiently divergent that functions are
1749 * duplicated. Typically there is a function foo(), and its RCU
1750 * analogue, foo_rcu().
1751 *
1752 * -ECHILD is the error number of choice (just to avoid clashes) that
1753 * is returned if some aspect of an rcu-walk fails. Such an error must
1754 * be handled by restarting a traditional ref-walk (which will always
1755 * be able to complete).
1756 */
1757 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1758
1759 if (unlikely(err))
1760 return err;
1761
1762 current->total_link_count = 0;
1763 err = link_path_walk(name, nd);
1764
1765 if (!err && !(flags & LOOKUP_PARENT)) {
1766 err = lookup_last(nd, &path);
1767 while (err > 0) {
1768 void *cookie;
1769 struct path link = path;
1770 nd->flags |= LOOKUP_PARENT;
1771 err = follow_link(&link, nd, &cookie);
1772 if (err)
1773 break;
1774 err = lookup_last(nd, &path);
1775 put_link(nd, &link, cookie);
1776 }
1777 }
1778
1779 if (!err)
1780 err = complete_walk(nd);
1781
1782 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1783 if (!nd->inode->i_op->lookup) {
1784 path_put(&nd->path);
1785 err = -ENOTDIR;
1786 }
1787 }
1788
1789 if (base)
1790 fput(base);
1791
1792 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1793 path_put(&nd->root);
1794 nd->root.mnt = NULL;
1795 }
1796 return err;
1797}
1798
1799static int do_path_lookup(int dfd, const char *name,
1800 unsigned int flags, struct nameidata *nd)
1801{
1802 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1803 if (unlikely(retval == -ECHILD))
1804 retval = path_lookupat(dfd, name, flags, nd);
1805 if (unlikely(retval == -ESTALE))
1806 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1807
1808 if (likely(!retval)) {
1809 if (unlikely(!audit_dummy_context())) {
1810 if (nd->path.dentry && nd->inode)
1811 audit_inode(name, nd->path.dentry);
1812 }
1813 }
1814 return retval;
1815}
1816
1817int kern_path_parent(const char *name, struct nameidata *nd)
1818{
1819 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1820}
1821
1822int kern_path(const char *name, unsigned int flags, struct path *path)
1823{
1824 struct nameidata nd;
1825 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1826 if (!res)
1827 *path = nd.path;
1828 return res;
1829}
1830
1831/**
1832 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1833 * @dentry: pointer to dentry of the base directory
1834 * @mnt: pointer to vfs mount of the base directory
1835 * @name: pointer to file name
1836 * @flags: lookup flags
1837 * @path: pointer to struct path to fill
1838 */
1839int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1840 const char *name, unsigned int flags,
1841 struct path *path)
1842{
1843 struct nameidata nd;
1844 int err;
1845 nd.root.dentry = dentry;
1846 nd.root.mnt = mnt;
1847 BUG_ON(flags & LOOKUP_PARENT);
1848 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1849 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1850 if (!err)
1851 *path = nd.path;
1852 return err;
1853}
1854
1855/*
1856 * Restricted form of lookup. Doesn't follow links, single-component only,
1857 * needs parent already locked. Doesn't follow mounts.
1858 * SMP-safe.
1859 */
1860static struct dentry *lookup_hash(struct nameidata *nd)
1861{
1862 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1863}
1864
1865/**
1866 * lookup_one_len - filesystem helper to lookup single pathname component
1867 * @name: pathname component to lookup
1868 * @base: base directory to lookup from
1869 * @len: maximum length @len should be interpreted to
1870 *
1871 * Note that this routine is purely a helper for filesystem usage and should
1872 * not be called by generic code. Also note that by using this function the
1873 * nameidata argument is passed to the filesystem methods and a filesystem
1874 * using this helper needs to be prepared for that.
1875 */
1876struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1877{
1878 struct qstr this;
1879 unsigned int c;
1880 int err;
1881
1882 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1883
1884 this.name = name;
1885 this.len = len;
1886 this.hash = full_name_hash(name, len);
1887 if (!len)
1888 return ERR_PTR(-EACCES);
1889
1890 while (len--) {
1891 c = *(const unsigned char *)name++;
1892 if (c == '/' || c == '\0')
1893 return ERR_PTR(-EACCES);
1894 }
1895 /*
1896 * See if the low-level filesystem might want
1897 * to use its own hash..
1898 */
1899 if (base->d_flags & DCACHE_OP_HASH) {
1900 int err = base->d_op->d_hash(base, base->d_inode, &this);
1901 if (err < 0)
1902 return ERR_PTR(err);
1903 }
1904
1905 err = inode_permission(base->d_inode, MAY_EXEC);
1906 if (err)
1907 return ERR_PTR(err);
1908
1909 return __lookup_hash(&this, base, NULL);
1910}
1911
1912int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1913 struct path *path, int *empty)
1914{
1915 struct nameidata nd;
1916 char *tmp = getname_flags(name, flags, empty);
1917 int err = PTR_ERR(tmp);
1918 if (!IS_ERR(tmp)) {
1919
1920 BUG_ON(flags & LOOKUP_PARENT);
1921
1922 err = do_path_lookup(dfd, tmp, flags, &nd);
1923 putname(tmp);
1924 if (!err)
1925 *path = nd.path;
1926 }
1927 return err;
1928}
1929
1930int user_path_at(int dfd, const char __user *name, unsigned flags,
1931 struct path *path)
1932{
1933 return user_path_at_empty(dfd, name, flags, path, NULL);
1934}
1935
1936static int user_path_parent(int dfd, const char __user *path,
1937 struct nameidata *nd, char **name)
1938{
1939 char *s = getname(path);
1940 int error;
1941
1942 if (IS_ERR(s))
1943 return PTR_ERR(s);
1944
1945 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1946 if (error)
1947 putname(s);
1948 else
1949 *name = s;
1950
1951 return error;
1952}
1953
1954/*
1955 * It's inline, so penalty for filesystems that don't use sticky bit is
1956 * minimal.
1957 */
1958static inline int check_sticky(struct inode *dir, struct inode *inode)
1959{
1960 kuid_t fsuid = current_fsuid();
1961
1962 if (!(dir->i_mode & S_ISVTX))
1963 return 0;
1964 if (uid_eq(inode->i_uid, fsuid))
1965 return 0;
1966 if (uid_eq(dir->i_uid, fsuid))
1967 return 0;
1968 return !inode_capable(inode, CAP_FOWNER);
1969}
1970
1971/*
1972 * Check whether we can remove a link victim from directory dir, check
1973 * whether the type of victim is right.
1974 * 1. We can't do it if dir is read-only (done in permission())
1975 * 2. We should have write and exec permissions on dir
1976 * 3. We can't remove anything from append-only dir
1977 * 4. We can't do anything with immutable dir (done in permission())
1978 * 5. If the sticky bit on dir is set we should either
1979 * a. be owner of dir, or
1980 * b. be owner of victim, or
1981 * c. have CAP_FOWNER capability
1982 * 6. If the victim is append-only or immutable we can't do antyhing with
1983 * links pointing to it.
1984 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1985 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1986 * 9. We can't remove a root or mountpoint.
1987 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1988 * nfs_async_unlink().
1989 */
1990static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1991{
1992 int error;
1993
1994 if (!victim->d_inode)
1995 return -ENOENT;
1996
1997 BUG_ON(victim->d_parent->d_inode != dir);
1998 audit_inode_child(victim, dir);
1999
2000 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2001 if (error)
2002 return error;
2003 if (IS_APPEND(dir))
2004 return -EPERM;
2005 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2006 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2007 return -EPERM;
2008 if (isdir) {
2009 if (!S_ISDIR(victim->d_inode->i_mode))
2010 return -ENOTDIR;
2011 if (IS_ROOT(victim))
2012 return -EBUSY;
2013 } else if (S_ISDIR(victim->d_inode->i_mode))
2014 return -EISDIR;
2015 if (IS_DEADDIR(dir))
2016 return -ENOENT;
2017 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2018 return -EBUSY;
2019 return 0;
2020}
2021
2022/* Check whether we can create an object with dentry child in directory
2023 * dir.
2024 * 1. We can't do it if child already exists (open has special treatment for
2025 * this case, but since we are inlined it's OK)
2026 * 2. We can't do it if dir is read-only (done in permission())
2027 * 3. We should have write and exec permissions on dir
2028 * 4. We can't do it if dir is immutable (done in permission())
2029 */
2030static inline int may_create(struct inode *dir, struct dentry *child)
2031{
2032 if (child->d_inode)
2033 return -EEXIST;
2034 if (IS_DEADDIR(dir))
2035 return -ENOENT;
2036 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2037}
2038
2039/*
2040 * p1 and p2 should be directories on the same fs.
2041 */
2042struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2043{
2044 struct dentry *p;
2045
2046 if (p1 == p2) {
2047 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2048 return NULL;
2049 }
2050
2051 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2052
2053 p = d_ancestor(p2, p1);
2054 if (p) {
2055 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2056 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2057 return p;
2058 }
2059
2060 p = d_ancestor(p1, p2);
2061 if (p) {
2062 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2063 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2064 return p;
2065 }
2066
2067 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2068 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2069 return NULL;
2070}
2071
2072void unlock_rename(struct dentry *p1, struct dentry *p2)
2073{
2074 mutex_unlock(&p1->d_inode->i_mutex);
2075 if (p1 != p2) {
2076 mutex_unlock(&p2->d_inode->i_mutex);
2077 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2078 }
2079}
2080
2081int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2082 struct nameidata *nd)
2083{
2084 int error = may_create(dir, dentry);
2085
2086 if (error)
2087 return error;
2088
2089 if (!dir->i_op->create)
2090 return -EACCES; /* shouldn't it be ENOSYS? */
2091 mode &= S_IALLUGO;
2092 mode |= S_IFREG;
2093 error = security_inode_create(dir, dentry, mode);
2094 if (error)
2095 return error;
2096 error = dir->i_op->create(dir, dentry, mode, nd);
2097 if (!error)
2098 fsnotify_create(dir, dentry);
2099 return error;
2100}
2101
2102static int may_open(struct path *path, int acc_mode, int flag)
2103{
2104 struct dentry *dentry = path->dentry;
2105 struct inode *inode = dentry->d_inode;
2106 int error;
2107
2108 /* O_PATH? */
2109 if (!acc_mode)
2110 return 0;
2111
2112 if (!inode)
2113 return -ENOENT;
2114
2115 switch (inode->i_mode & S_IFMT) {
2116 case S_IFLNK:
2117 return -ELOOP;
2118 case S_IFDIR:
2119 if (acc_mode & MAY_WRITE)
2120 return -EISDIR;
2121 break;
2122 case S_IFBLK:
2123 case S_IFCHR:
2124 if (path->mnt->mnt_flags & MNT_NODEV)
2125 return -EACCES;
2126 /*FALLTHRU*/
2127 case S_IFIFO:
2128 case S_IFSOCK:
2129 flag &= ~O_TRUNC;
2130 break;
2131 }
2132
2133 error = inode_permission(inode, acc_mode);
2134 if (error)
2135 return error;
2136
2137 /*
2138 * An append-only file must be opened in append mode for writing.
2139 */
2140 if (IS_APPEND(inode)) {
2141 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2142 return -EPERM;
2143 if (flag & O_TRUNC)
2144 return -EPERM;
2145 }
2146
2147 /* O_NOATIME can only be set by the owner or superuser */
2148 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2149 return -EPERM;
2150
2151 return 0;
2152}
2153
2154static int handle_truncate(struct file *filp)
2155{
2156 struct path *path = &filp->f_path;
2157 struct inode *inode = path->dentry->d_inode;
2158 int error = get_write_access(inode);
2159 if (error)
2160 return error;
2161 /*
2162 * Refuse to truncate files with mandatory locks held on them.
2163 */
2164 error = locks_verify_locked(inode);
2165 if (!error)
2166 error = security_path_truncate(path);
2167 if (!error) {
2168 error = do_truncate(path->dentry, 0,
2169 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2170 filp);
2171 }
2172 put_write_access(inode);
2173 return error;
2174}
2175
2176static inline int open_to_namei_flags(int flag)
2177{
2178 if ((flag & O_ACCMODE) == 3)
2179 flag--;
2180 return flag;
2181}
2182
2183static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2184{
2185 int error = security_path_mknod(dir, dentry, mode, 0);
2186 if (error)
2187 return error;
2188
2189 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2190 if (error)
2191 return error;
2192
2193 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2194}
2195
2196static struct file *atomic_open(struct nameidata *nd, struct dentry *dentry,
2197 struct path *path, struct opendata *od,
2198 const struct open_flags *op,
2199 bool *want_write, bool need_lookup,
2200 int *opened)
2201{
2202 struct inode *dir = nd->path.dentry->d_inode;
2203 unsigned open_flag = open_to_namei_flags(op->open_flag);
2204 umode_t mode;
2205 int error;
2206 int acc_mode;
2207 struct file *filp;
2208 int create_error = 0;
2209 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2210
2211 BUG_ON(dentry->d_inode);
2212
2213 /* Don't create child dentry for a dead directory. */
2214 if (unlikely(IS_DEADDIR(dir))) {
2215 filp = ERR_PTR(-ENOENT);
2216 goto out;
2217 }
2218
2219 mode = op->mode & S_IALLUGO;
2220 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2221 mode &= ~current_umask();
2222
2223 if (open_flag & O_EXCL) {
2224 open_flag &= ~O_TRUNC;
2225 *opened |= FILE_CREATED;
2226 }
2227
2228 /*
2229 * Checking write permission is tricky, bacuse we don't know if we are
2230 * going to actually need it: O_CREAT opens should work as long as the
2231 * file exists. But checking existence breaks atomicity. The trick is
2232 * to check access and if not granted clear O_CREAT from the flags.
2233 *
2234 * Another problem is returing the "right" error value (e.g. for an
2235 * O_EXCL open we want to return EEXIST not EROFS).
2236 */
2237 if ((open_flag & (O_CREAT | O_TRUNC)) ||
2238 (open_flag & O_ACCMODE) != O_RDONLY) {
2239 error = mnt_want_write(nd->path.mnt);
2240 if (!error) {
2241 *want_write = true;
2242 } else if (!(open_flag & O_CREAT)) {
2243 /*
2244 * No O_CREATE -> atomicity not a requirement -> fall
2245 * back to lookup + open
2246 */
2247 goto no_open;
2248 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2249 /* Fall back and fail with the right error */
2250 create_error = error;
2251 goto no_open;
2252 } else {
2253 /* No side effects, safe to clear O_CREAT */
2254 create_error = error;
2255 open_flag &= ~O_CREAT;
2256 }
2257 }
2258
2259 if (open_flag & O_CREAT) {
2260 error = may_o_create(&nd->path, dentry, op->mode);
2261 if (error) {
2262 create_error = error;
2263 if (open_flag & O_EXCL)
2264 goto no_open;
2265 open_flag &= ~O_CREAT;
2266 }
2267 }
2268
2269 if (nd->flags & LOOKUP_DIRECTORY)
2270 open_flag |= O_DIRECTORY;
2271
2272 od->dentry = DENTRY_NOT_SET;
2273 od->mnt = nd->path.mnt;
2274 filp = dir->i_op->atomic_open(dir, dentry, od, open_flag, mode,
2275 opened);
2276 if (IS_ERR(filp)) {
2277 if (WARN_ON(od->dentry != DENTRY_NOT_SET))
2278 dput(od->dentry);
2279
2280 if (create_error && PTR_ERR(filp) == -ENOENT)
2281 filp = ERR_PTR(create_error);
2282 goto out;
2283 }
2284
2285 acc_mode = op->acc_mode;
2286 if (*opened & FILE_CREATED) {
2287 fsnotify_create(dir, dentry);
2288 acc_mode = MAY_OPEN;
2289 }
2290
2291 if (!filp) {
2292 if (WARN_ON(od->dentry == DENTRY_NOT_SET)) {
2293 filp = ERR_PTR(-EIO);
2294 goto out;
2295 }
2296 if (od->dentry) {
2297 dput(dentry);
2298 dentry = od->dentry;
2299 }
2300 goto looked_up;
2301 }
2302
2303 /*
2304 * We didn't have the inode before the open, so check open permission
2305 * here.
2306 */
2307 error = may_open(&filp->f_path, acc_mode, open_flag);
2308 if (error) {
2309 fput(filp);
2310 filp = ERR_PTR(error);
2311 }
2312
2313out:
2314 dput(dentry);
2315 return filp;
2316
2317no_open:
2318 if (need_lookup) {
2319 dentry = lookup_real(dir, dentry, nd);
2320 if (IS_ERR(dentry))
2321 return ERR_CAST(dentry);
2322
2323 if (create_error) {
2324 int open_flag = op->open_flag;
2325
2326 filp = ERR_PTR(create_error);
2327 if ((open_flag & O_EXCL)) {
2328 if (!dentry->d_inode)
2329 goto out;
2330 } else if (!dentry->d_inode) {
2331 goto out;
2332 } else if ((open_flag & O_TRUNC) &&
2333 S_ISREG(dentry->d_inode->i_mode)) {
2334 goto out;
2335 }
2336 /* will fail later, go on to get the right error */
2337 }
2338 }
2339looked_up:
2340 path->dentry = dentry;
2341 path->mnt = nd->path.mnt;
2342 return NULL;
2343}
2344
2345/*
2346 * Lookup, maybe create and open the last component
2347 *
2348 * Must be called with i_mutex held on parent.
2349 *
2350 * Returns open file or NULL on success, error otherwise. NULL means no open
2351 * was performed, only lookup.
2352 */
2353static struct file *lookup_open(struct nameidata *nd, struct path *path,
2354 struct opendata *od,
2355 const struct open_flags *op,
2356 bool *want_write, int *opened)
2357{
2358 struct dentry *dir = nd->path.dentry;
2359 struct inode *dir_inode = dir->d_inode;
2360 struct dentry *dentry;
2361 int error;
2362 bool need_lookup;
2363
2364 *opened &= ~FILE_CREATED;
2365 dentry = lookup_dcache(&nd->last, dir, nd, &need_lookup);
2366 if (IS_ERR(dentry))
2367 return ERR_CAST(dentry);
2368
2369 /* Cached positive dentry: will open in f_op->open */
2370 if (!need_lookup && dentry->d_inode)
2371 goto out_no_open;
2372
2373 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2374 return atomic_open(nd, dentry, path, od, op, want_write,
2375 need_lookup, opened);
2376 }
2377
2378 if (need_lookup) {
2379 BUG_ON(dentry->d_inode);
2380
2381 dentry = lookup_real(dir_inode, dentry, nd);
2382 if (IS_ERR(dentry))
2383 return ERR_CAST(dentry);
2384 }
2385
2386 /* Negative dentry, just create the file */
2387 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2388 umode_t mode = op->mode;
2389 if (!IS_POSIXACL(dir->d_inode))
2390 mode &= ~current_umask();
2391 /*
2392 * This write is needed to ensure that a
2393 * rw->ro transition does not occur between
2394 * the time when the file is created and when
2395 * a permanent write count is taken through
2396 * the 'struct file' in finish_open().
2397 */
2398 error = mnt_want_write(nd->path.mnt);
2399 if (error)
2400 goto out_dput;
2401 *want_write = true;
2402 *opened |= FILE_CREATED;
2403 error = security_path_mknod(&nd->path, dentry, mode, 0);
2404 if (error)
2405 goto out_dput;
2406 error = vfs_create(dir->d_inode, dentry, mode, nd);
2407 if (error)
2408 goto out_dput;
2409 }
2410out_no_open:
2411 path->dentry = dentry;
2412 path->mnt = nd->path.mnt;
2413 return NULL;
2414
2415out_dput:
2416 dput(dentry);
2417 return ERR_PTR(error);
2418}
2419
2420/*
2421 * Handle the last step of open()
2422 */
2423static struct file *do_last(struct nameidata *nd, struct path *path,
2424 struct opendata *od, const struct open_flags *op,
2425 int *opened, const char *pathname)
2426{
2427 struct dentry *dir = nd->path.dentry;
2428 int open_flag = op->open_flag;
2429 bool will_truncate = (open_flag & O_TRUNC) != 0;
2430 bool want_write = false;
2431 int acc_mode = op->acc_mode;
2432 struct file *filp;
2433 struct inode *inode;
2434 bool symlink_ok = false;
2435 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2436 bool retried = false;
2437 int error;
2438
2439 nd->flags &= ~LOOKUP_PARENT;
2440 nd->flags |= op->intent;
2441
2442 switch (nd->last_type) {
2443 case LAST_DOTDOT:
2444 case LAST_DOT:
2445 error = handle_dots(nd, nd->last_type);
2446 if (error)
2447 return ERR_PTR(error);
2448 /* fallthrough */
2449 case LAST_ROOT:
2450 error = complete_walk(nd);
2451 if (error)
2452 return ERR_PTR(error);
2453 audit_inode(pathname, nd->path.dentry);
2454 if (open_flag & O_CREAT) {
2455 error = -EISDIR;
2456 goto exit;
2457 }
2458 goto finish_open;
2459 case LAST_BIND:
2460 error = complete_walk(nd);
2461 if (error)
2462 return ERR_PTR(error);
2463 audit_inode(pathname, dir);
2464 goto finish_open;
2465 }
2466
2467 if (!(open_flag & O_CREAT)) {
2468 if (nd->last.name[nd->last.len])
2469 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2470 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2471 symlink_ok = true;
2472 /* we _can_ be in RCU mode here */
2473 error = lookup_fast(nd, &nd->last, path, &inode);
2474 if (likely(!error))
2475 goto finish_lookup;
2476
2477 if (error < 0)
2478 goto exit;
2479
2480 BUG_ON(nd->inode != dir->d_inode);
2481 } else {
2482 /* create side of things */
2483 /*
2484 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2485 * has been cleared when we got to the last component we are
2486 * about to look up
2487 */
2488 error = complete_walk(nd);
2489 if (error)
2490 return ERR_PTR(error);
2491
2492 audit_inode(pathname, dir);
2493 error = -EISDIR;
2494 /* trailing slashes? */
2495 if (nd->last.name[nd->last.len])
2496 goto exit;
2497 }
2498
2499retry_lookup:
2500 mutex_lock(&dir->d_inode->i_mutex);
2501 filp = lookup_open(nd, path, od, op, &want_write, opened);
2502 mutex_unlock(&dir->d_inode->i_mutex);
2503
2504 if (filp) {
2505 if (IS_ERR(filp))
2506 goto out;
2507
2508 if ((*opened & FILE_CREATED) ||
2509 !S_ISREG(filp->f_path.dentry->d_inode->i_mode))
2510 will_truncate = false;
2511
2512 audit_inode(pathname, filp->f_path.dentry);
2513 goto opened;
2514 }
2515
2516 if (*opened & FILE_CREATED) {
2517 /* Don't check for write permission, don't truncate */
2518 open_flag &= ~O_TRUNC;
2519 will_truncate = false;
2520 acc_mode = MAY_OPEN;
2521 path_to_nameidata(path, nd);
2522 goto finish_open_created;
2523 }
2524
2525 /*
2526 * It already exists.
2527 */
2528 audit_inode(pathname, path->dentry);
2529
2530 /*
2531 * If atomic_open() acquired write access it is dropped now due to
2532 * possible mount and symlink following (this might be optimized away if
2533 * necessary...)
2534 */
2535 if (want_write) {
2536 mnt_drop_write(nd->path.mnt);
2537 want_write = false;
2538 }
2539
2540 error = -EEXIST;
2541 if (open_flag & O_EXCL)
2542 goto exit_dput;
2543
2544 error = follow_managed(path, nd->flags);
2545 if (error < 0)
2546 goto exit_dput;
2547
2548 if (error)
2549 nd->flags |= LOOKUP_JUMPED;
2550
2551 BUG_ON(nd->flags & LOOKUP_RCU);
2552 inode = path->dentry->d_inode;
2553finish_lookup:
2554 /* we _can_ be in RCU mode here */
2555 error = -ENOENT;
2556 if (!inode) {
2557 path_to_nameidata(path, nd);
2558 goto exit;
2559 }
2560
2561 if (should_follow_link(inode, !symlink_ok)) {
2562 if (nd->flags & LOOKUP_RCU) {
2563 if (unlikely(unlazy_walk(nd, path->dentry))) {
2564 error = -ECHILD;
2565 goto exit;
2566 }
2567 }
2568 BUG_ON(inode != path->dentry->d_inode);
2569 return NULL;
2570 }
2571
2572 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2573 path_to_nameidata(path, nd);
2574 } else {
2575 save_parent.dentry = nd->path.dentry;
2576 save_parent.mnt = mntget(path->mnt);
2577 nd->path.dentry = path->dentry;
2578
2579 }
2580 nd->inode = inode;
2581 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2582 error = complete_walk(nd);
2583 if (error) {
2584 path_put(&save_parent);
2585 return ERR_PTR(error);
2586 }
2587 error = -EISDIR;
2588 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2589 goto exit;
2590 error = -ENOTDIR;
2591 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2592 goto exit;
2593 audit_inode(pathname, nd->path.dentry);
2594finish_open:
2595 if (!S_ISREG(nd->inode->i_mode))
2596 will_truncate = false;
2597
2598 if (will_truncate) {
2599 error = mnt_want_write(nd->path.mnt);
2600 if (error)
2601 goto exit;
2602 want_write = true;
2603 }
2604finish_open_created:
2605 error = may_open(&nd->path, acc_mode, open_flag);
2606 if (error)
2607 goto exit;
2608 od->mnt = nd->path.mnt;
2609 filp = finish_open(od, nd->path.dentry, NULL, opened);
2610 if (IS_ERR(filp)) {
2611 if (filp == ERR_PTR(-EOPENSTALE))
2612 goto stale_open;
2613 goto out;
2614 }
2615opened:
2616 error = open_check_o_direct(filp);
2617 if (error)
2618 goto exit_fput;
2619 error = ima_file_check(filp, op->acc_mode);
2620 if (error)
2621 goto exit_fput;
2622
2623 if (will_truncate) {
2624 error = handle_truncate(filp);
2625 if (error)
2626 goto exit_fput;
2627 }
2628out:
2629 if (want_write)
2630 mnt_drop_write(nd->path.mnt);
2631 path_put(&save_parent);
2632 terminate_walk(nd);
2633 return filp;
2634
2635exit_dput:
2636 path_put_conditional(path, nd);
2637exit:
2638 filp = ERR_PTR(error);
2639 goto out;
2640exit_fput:
2641 fput(filp);
2642 goto exit;
2643
2644stale_open:
2645 /* If no saved parent or already retried then can't retry */
2646 if (!save_parent.dentry || retried)
2647 goto out;
2648
2649 BUG_ON(save_parent.dentry != dir);
2650 path_put(&nd->path);
2651 nd->path = save_parent;
2652 nd->inode = dir->d_inode;
2653 save_parent.mnt = NULL;
2654 save_parent.dentry = NULL;
2655 if (want_write) {
2656 mnt_drop_write(nd->path.mnt);
2657 want_write = false;
2658 }
2659 retried = true;
2660 goto retry_lookup;
2661}
2662
2663static struct file *path_openat(int dfd, const char *pathname,
2664 struct nameidata *nd, const struct open_flags *op, int flags)
2665{
2666 struct file *base = NULL;
2667 struct opendata od;
2668 struct file *res;
2669 struct path path;
2670 int opened = 0;
2671 int error;
2672
2673 od.filp = get_empty_filp();
2674 if (!od.filp)
2675 return ERR_PTR(-ENFILE);
2676
2677 od.filp->f_flags = op->open_flag;
2678
2679 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2680 if (unlikely(error))
2681 goto out_filp;
2682
2683 current->total_link_count = 0;
2684 error = link_path_walk(pathname, nd);
2685 if (unlikely(error))
2686 goto out_filp;
2687
2688 res = do_last(nd, &path, &od, op, &opened, pathname);
2689 while (unlikely(!res)) { /* trailing symlink */
2690 struct path link = path;
2691 void *cookie;
2692 if (!(nd->flags & LOOKUP_FOLLOW)) {
2693 path_put_conditional(&path, nd);
2694 path_put(&nd->path);
2695 res = ERR_PTR(-ELOOP);
2696 break;
2697 }
2698 nd->flags |= LOOKUP_PARENT;
2699 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2700 error = follow_link(&link, nd, &cookie);
2701 if (unlikely(error))
2702 goto out_filp;
2703 res = do_last(nd, &path, &od, op, &opened, pathname);
2704 put_link(nd, &link, cookie);
2705 }
2706out:
2707 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2708 path_put(&nd->root);
2709 if (base)
2710 fput(base);
2711 if (!(opened & FILE_OPENED))
2712 put_filp(od.filp);
2713 if (res == ERR_PTR(-EOPENSTALE)) {
2714 if (flags & LOOKUP_RCU)
2715 res = ERR_PTR(-ECHILD);
2716 else
2717 res = ERR_PTR(-ESTALE);
2718 }
2719 return res;
2720
2721out_filp:
2722 res = ERR_PTR(error);
2723 goto out;
2724}
2725
2726struct file *do_filp_open(int dfd, const char *pathname,
2727 const struct open_flags *op, int flags)
2728{
2729 struct nameidata nd;
2730 struct file *filp;
2731
2732 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2733 if (unlikely(filp == ERR_PTR(-ECHILD)))
2734 filp = path_openat(dfd, pathname, &nd, op, flags);
2735 if (unlikely(filp == ERR_PTR(-ESTALE)))
2736 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2737 return filp;
2738}
2739
2740struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2741 const char *name, const struct open_flags *op, int flags)
2742{
2743 struct nameidata nd;
2744 struct file *file;
2745
2746 nd.root.mnt = mnt;
2747 nd.root.dentry = dentry;
2748
2749 flags |= LOOKUP_ROOT;
2750
2751 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2752 return ERR_PTR(-ELOOP);
2753
2754 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2755 if (unlikely(file == ERR_PTR(-ECHILD)))
2756 file = path_openat(-1, name, &nd, op, flags);
2757 if (unlikely(file == ERR_PTR(-ESTALE)))
2758 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2759 return file;
2760}
2761
2762struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2763{
2764 struct dentry *dentry = ERR_PTR(-EEXIST);
2765 struct nameidata nd;
2766 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2767 if (error)
2768 return ERR_PTR(error);
2769
2770 /*
2771 * Yucky last component or no last component at all?
2772 * (foo/., foo/.., /////)
2773 */
2774 if (nd.last_type != LAST_NORM)
2775 goto out;
2776 nd.flags &= ~LOOKUP_PARENT;
2777 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2778
2779 /*
2780 * Do the final lookup.
2781 */
2782 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2783 dentry = lookup_hash(&nd);
2784 if (IS_ERR(dentry))
2785 goto fail;
2786
2787 if (dentry->d_inode)
2788 goto eexist;
2789 /*
2790 * Special case - lookup gave negative, but... we had foo/bar/
2791 * From the vfs_mknod() POV we just have a negative dentry -
2792 * all is fine. Let's be bastards - you had / on the end, you've
2793 * been asking for (non-existent) directory. -ENOENT for you.
2794 */
2795 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2796 dput(dentry);
2797 dentry = ERR_PTR(-ENOENT);
2798 goto fail;
2799 }
2800 *path = nd.path;
2801 return dentry;
2802eexist:
2803 dput(dentry);
2804 dentry = ERR_PTR(-EEXIST);
2805fail:
2806 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2807out:
2808 path_put(&nd.path);
2809 return dentry;
2810}
2811EXPORT_SYMBOL(kern_path_create);
2812
2813struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2814{
2815 char *tmp = getname(pathname);
2816 struct dentry *res;
2817 if (IS_ERR(tmp))
2818 return ERR_CAST(tmp);
2819 res = kern_path_create(dfd, tmp, path, is_dir);
2820 putname(tmp);
2821 return res;
2822}
2823EXPORT_SYMBOL(user_path_create);
2824
2825int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2826{
2827 int error = may_create(dir, dentry);
2828
2829 if (error)
2830 return error;
2831
2832 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2833 return -EPERM;
2834
2835 if (!dir->i_op->mknod)
2836 return -EPERM;
2837
2838 error = devcgroup_inode_mknod(mode, dev);
2839 if (error)
2840 return error;
2841
2842 error = security_inode_mknod(dir, dentry, mode, dev);
2843 if (error)
2844 return error;
2845
2846 error = dir->i_op->mknod(dir, dentry, mode, dev);
2847 if (!error)
2848 fsnotify_create(dir, dentry);
2849 return error;
2850}
2851
2852static int may_mknod(umode_t mode)
2853{
2854 switch (mode & S_IFMT) {
2855 case S_IFREG:
2856 case S_IFCHR:
2857 case S_IFBLK:
2858 case S_IFIFO:
2859 case S_IFSOCK:
2860 case 0: /* zero mode translates to S_IFREG */
2861 return 0;
2862 case S_IFDIR:
2863 return -EPERM;
2864 default:
2865 return -EINVAL;
2866 }
2867}
2868
2869SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2870 unsigned, dev)
2871{
2872 struct dentry *dentry;
2873 struct path path;
2874 int error;
2875
2876 if (S_ISDIR(mode))
2877 return -EPERM;
2878
2879 dentry = user_path_create(dfd, filename, &path, 0);
2880 if (IS_ERR(dentry))
2881 return PTR_ERR(dentry);
2882
2883 if (!IS_POSIXACL(path.dentry->d_inode))
2884 mode &= ~current_umask();
2885 error = may_mknod(mode);
2886 if (error)
2887 goto out_dput;
2888 error = mnt_want_write(path.mnt);
2889 if (error)
2890 goto out_dput;
2891 error = security_path_mknod(&path, dentry, mode, dev);
2892 if (error)
2893 goto out_drop_write;
2894 switch (mode & S_IFMT) {
2895 case 0: case S_IFREG:
2896 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2897 break;
2898 case S_IFCHR: case S_IFBLK:
2899 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2900 new_decode_dev(dev));
2901 break;
2902 case S_IFIFO: case S_IFSOCK:
2903 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2904 break;
2905 }
2906out_drop_write:
2907 mnt_drop_write(path.mnt);
2908out_dput:
2909 dput(dentry);
2910 mutex_unlock(&path.dentry->d_inode->i_mutex);
2911 path_put(&path);
2912
2913 return error;
2914}
2915
2916SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2917{
2918 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2919}
2920
2921int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2922{
2923 int error = may_create(dir, dentry);
2924 unsigned max_links = dir->i_sb->s_max_links;
2925
2926 if (error)
2927 return error;
2928
2929 if (!dir->i_op->mkdir)
2930 return -EPERM;
2931
2932 mode &= (S_IRWXUGO|S_ISVTX);
2933 error = security_inode_mkdir(dir, dentry, mode);
2934 if (error)
2935 return error;
2936
2937 if (max_links && dir->i_nlink >= max_links)
2938 return -EMLINK;
2939
2940 error = dir->i_op->mkdir(dir, dentry, mode);
2941 if (!error)
2942 fsnotify_mkdir(dir, dentry);
2943 return error;
2944}
2945
2946SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2947{
2948 struct dentry *dentry;
2949 struct path path;
2950 int error;
2951
2952 dentry = user_path_create(dfd, pathname, &path, 1);
2953 if (IS_ERR(dentry))
2954 return PTR_ERR(dentry);
2955
2956 if (!IS_POSIXACL(path.dentry->d_inode))
2957 mode &= ~current_umask();
2958 error = mnt_want_write(path.mnt);
2959 if (error)
2960 goto out_dput;
2961 error = security_path_mkdir(&path, dentry, mode);
2962 if (error)
2963 goto out_drop_write;
2964 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2965out_drop_write:
2966 mnt_drop_write(path.mnt);
2967out_dput:
2968 dput(dentry);
2969 mutex_unlock(&path.dentry->d_inode->i_mutex);
2970 path_put(&path);
2971 return error;
2972}
2973
2974SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2975{
2976 return sys_mkdirat(AT_FDCWD, pathname, mode);
2977}
2978
2979/*
2980 * The dentry_unhash() helper will try to drop the dentry early: we
2981 * should have a usage count of 1 if we're the only user of this
2982 * dentry, and if that is true (possibly after pruning the dcache),
2983 * then we drop the dentry now.
2984 *
2985 * A low-level filesystem can, if it choses, legally
2986 * do a
2987 *
2988 * if (!d_unhashed(dentry))
2989 * return -EBUSY;
2990 *
2991 * if it cannot handle the case of removing a directory
2992 * that is still in use by something else..
2993 */
2994void dentry_unhash(struct dentry *dentry)
2995{
2996 shrink_dcache_parent(dentry);
2997 spin_lock(&dentry->d_lock);
2998 if (dentry->d_count == 1)
2999 __d_drop(dentry);
3000 spin_unlock(&dentry->d_lock);
3001}
3002
3003int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3004{
3005 int error = may_delete(dir, dentry, 1);
3006
3007 if (error)
3008 return error;
3009
3010 if (!dir->i_op->rmdir)
3011 return -EPERM;
3012
3013 dget(dentry);
3014 mutex_lock(&dentry->d_inode->i_mutex);
3015
3016 error = -EBUSY;
3017 if (d_mountpoint(dentry))
3018 goto out;
3019
3020 error = security_inode_rmdir(dir, dentry);
3021 if (error)
3022 goto out;
3023
3024 shrink_dcache_parent(dentry);
3025 error = dir->i_op->rmdir(dir, dentry);
3026 if (error)
3027 goto out;
3028
3029 dentry->d_inode->i_flags |= S_DEAD;
3030 dont_mount(dentry);
3031
3032out:
3033 mutex_unlock(&dentry->d_inode->i_mutex);
3034 dput(dentry);
3035 if (!error)
3036 d_delete(dentry);
3037 return error;
3038}
3039
3040static long do_rmdir(int dfd, const char __user *pathname)
3041{
3042 int error = 0;
3043 char * name;
3044 struct dentry *dentry;
3045 struct nameidata nd;
3046
3047 error = user_path_parent(dfd, pathname, &nd, &name);
3048 if (error)
3049 return error;
3050
3051 switch(nd.last_type) {
3052 case LAST_DOTDOT:
3053 error = -ENOTEMPTY;
3054 goto exit1;
3055 case LAST_DOT:
3056 error = -EINVAL;
3057 goto exit1;
3058 case LAST_ROOT:
3059 error = -EBUSY;
3060 goto exit1;
3061 }
3062
3063 nd.flags &= ~LOOKUP_PARENT;
3064
3065 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3066 dentry = lookup_hash(&nd);
3067 error = PTR_ERR(dentry);
3068 if (IS_ERR(dentry))
3069 goto exit2;
3070 if (!dentry->d_inode) {
3071 error = -ENOENT;
3072 goto exit3;
3073 }
3074 error = mnt_want_write(nd.path.mnt);
3075 if (error)
3076 goto exit3;
3077 error = security_path_rmdir(&nd.path, dentry);
3078 if (error)
3079 goto exit4;
3080 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3081exit4:
3082 mnt_drop_write(nd.path.mnt);
3083exit3:
3084 dput(dentry);
3085exit2:
3086 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3087exit1:
3088 path_put(&nd.path);
3089 putname(name);
3090 return error;
3091}
3092
3093SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3094{
3095 return do_rmdir(AT_FDCWD, pathname);
3096}
3097
3098int vfs_unlink(struct inode *dir, struct dentry *dentry)
3099{
3100 int error = may_delete(dir, dentry, 0);
3101
3102 if (error)
3103 return error;
3104
3105 if (!dir->i_op->unlink)
3106 return -EPERM;
3107
3108 mutex_lock(&dentry->d_inode->i_mutex);
3109 if (d_mountpoint(dentry))
3110 error = -EBUSY;
3111 else {
3112 error = security_inode_unlink(dir, dentry);
3113 if (!error) {
3114 error = dir->i_op->unlink(dir, dentry);
3115 if (!error)
3116 dont_mount(dentry);
3117 }
3118 }
3119 mutex_unlock(&dentry->d_inode->i_mutex);
3120
3121 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3122 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3123 fsnotify_link_count(dentry->d_inode);
3124 d_delete(dentry);
3125 }
3126
3127 return error;
3128}
3129
3130/*
3131 * Make sure that the actual truncation of the file will occur outside its
3132 * directory's i_mutex. Truncate can take a long time if there is a lot of
3133 * writeout happening, and we don't want to prevent access to the directory
3134 * while waiting on the I/O.
3135 */
3136static long do_unlinkat(int dfd, const char __user *pathname)
3137{
3138 int error;
3139 char *name;
3140 struct dentry *dentry;
3141 struct nameidata nd;
3142 struct inode *inode = NULL;
3143
3144 error = user_path_parent(dfd, pathname, &nd, &name);
3145 if (error)
3146 return error;
3147
3148 error = -EISDIR;
3149 if (nd.last_type != LAST_NORM)
3150 goto exit1;
3151
3152 nd.flags &= ~LOOKUP_PARENT;
3153
3154 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3155 dentry = lookup_hash(&nd);
3156 error = PTR_ERR(dentry);
3157 if (!IS_ERR(dentry)) {
3158 /* Why not before? Because we want correct error value */
3159 if (nd.last.name[nd.last.len])
3160 goto slashes;
3161 inode = dentry->d_inode;
3162 if (!inode)
3163 goto slashes;
3164 ihold(inode);
3165 error = mnt_want_write(nd.path.mnt);
3166 if (error)
3167 goto exit2;
3168 error = security_path_unlink(&nd.path, dentry);
3169 if (error)
3170 goto exit3;
3171 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3172exit3:
3173 mnt_drop_write(nd.path.mnt);
3174 exit2:
3175 dput(dentry);
3176 }
3177 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3178 if (inode)
3179 iput(inode); /* truncate the inode here */
3180exit1:
3181 path_put(&nd.path);
3182 putname(name);
3183 return error;
3184
3185slashes:
3186 error = !dentry->d_inode ? -ENOENT :
3187 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3188 goto exit2;
3189}
3190
3191SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3192{
3193 if ((flag & ~AT_REMOVEDIR) != 0)
3194 return -EINVAL;
3195
3196 if (flag & AT_REMOVEDIR)
3197 return do_rmdir(dfd, pathname);
3198
3199 return do_unlinkat(dfd, pathname);
3200}
3201
3202SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3203{
3204 return do_unlinkat(AT_FDCWD, pathname);
3205}
3206
3207int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3208{
3209 int error = may_create(dir, dentry);
3210
3211 if (error)
3212 return error;
3213
3214 if (!dir->i_op->symlink)
3215 return -EPERM;
3216
3217 error = security_inode_symlink(dir, dentry, oldname);
3218 if (error)
3219 return error;
3220
3221 error = dir->i_op->symlink(dir, dentry, oldname);
3222 if (!error)
3223 fsnotify_create(dir, dentry);
3224 return error;
3225}
3226
3227SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3228 int, newdfd, const char __user *, newname)
3229{
3230 int error;
3231 char *from;
3232 struct dentry *dentry;
3233 struct path path;
3234
3235 from = getname(oldname);
3236 if (IS_ERR(from))
3237 return PTR_ERR(from);
3238
3239 dentry = user_path_create(newdfd, newname, &path, 0);
3240 error = PTR_ERR(dentry);
3241 if (IS_ERR(dentry))
3242 goto out_putname;
3243
3244 error = mnt_want_write(path.mnt);
3245 if (error)
3246 goto out_dput;
3247 error = security_path_symlink(&path, dentry, from);
3248 if (error)
3249 goto out_drop_write;
3250 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3251out_drop_write:
3252 mnt_drop_write(path.mnt);
3253out_dput:
3254 dput(dentry);
3255 mutex_unlock(&path.dentry->d_inode->i_mutex);
3256 path_put(&path);
3257out_putname:
3258 putname(from);
3259 return error;
3260}
3261
3262SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3263{
3264 return sys_symlinkat(oldname, AT_FDCWD, newname);
3265}
3266
3267int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3268{
3269 struct inode *inode = old_dentry->d_inode;
3270 unsigned max_links = dir->i_sb->s_max_links;
3271 int error;
3272
3273 if (!inode)
3274 return -ENOENT;
3275
3276 error = may_create(dir, new_dentry);
3277 if (error)
3278 return error;
3279
3280 if (dir->i_sb != inode->i_sb)
3281 return -EXDEV;
3282
3283 /*
3284 * A link to an append-only or immutable file cannot be created.
3285 */
3286 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3287 return -EPERM;
3288 if (!dir->i_op->link)
3289 return -EPERM;
3290 if (S_ISDIR(inode->i_mode))
3291 return -EPERM;
3292
3293 error = security_inode_link(old_dentry, dir, new_dentry);
3294 if (error)
3295 return error;
3296
3297 mutex_lock(&inode->i_mutex);
3298 /* Make sure we don't allow creating hardlink to an unlinked file */
3299 if (inode->i_nlink == 0)
3300 error = -ENOENT;
3301 else if (max_links && inode->i_nlink >= max_links)
3302 error = -EMLINK;
3303 else
3304 error = dir->i_op->link(old_dentry, dir, new_dentry);
3305 mutex_unlock(&inode->i_mutex);
3306 if (!error)
3307 fsnotify_link(dir, inode, new_dentry);
3308 return error;
3309}
3310
3311/*
3312 * Hardlinks are often used in delicate situations. We avoid
3313 * security-related surprises by not following symlinks on the
3314 * newname. --KAB
3315 *
3316 * We don't follow them on the oldname either to be compatible
3317 * with linux 2.0, and to avoid hard-linking to directories
3318 * and other special files. --ADM
3319 */
3320SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3321 int, newdfd, const char __user *, newname, int, flags)
3322{
3323 struct dentry *new_dentry;
3324 struct path old_path, new_path;
3325 int how = 0;
3326 int error;
3327
3328 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3329 return -EINVAL;
3330 /*
3331 * To use null names we require CAP_DAC_READ_SEARCH
3332 * This ensures that not everyone will be able to create
3333 * handlink using the passed filedescriptor.
3334 */
3335 if (flags & AT_EMPTY_PATH) {
3336 if (!capable(CAP_DAC_READ_SEARCH))
3337 return -ENOENT;
3338 how = LOOKUP_EMPTY;
3339 }
3340
3341 if (flags & AT_SYMLINK_FOLLOW)
3342 how |= LOOKUP_FOLLOW;
3343
3344 error = user_path_at(olddfd, oldname, how, &old_path);
3345 if (error)
3346 return error;
3347
3348 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3349 error = PTR_ERR(new_dentry);
3350 if (IS_ERR(new_dentry))
3351 goto out;
3352
3353 error = -EXDEV;
3354 if (old_path.mnt != new_path.mnt)
3355 goto out_dput;
3356 error = mnt_want_write(new_path.mnt);
3357 if (error)
3358 goto out_dput;
3359 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3360 if (error)
3361 goto out_drop_write;
3362 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3363out_drop_write:
3364 mnt_drop_write(new_path.mnt);
3365out_dput:
3366 dput(new_dentry);
3367 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3368 path_put(&new_path);
3369out:
3370 path_put(&old_path);
3371
3372 return error;
3373}
3374
3375SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3376{
3377 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3378}
3379
3380/*
3381 * The worst of all namespace operations - renaming directory. "Perverted"
3382 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3383 * Problems:
3384 * a) we can get into loop creation. Check is done in is_subdir().
3385 * b) race potential - two innocent renames can create a loop together.
3386 * That's where 4.4 screws up. Current fix: serialization on
3387 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3388 * story.
3389 * c) we have to lock _three_ objects - parents and victim (if it exists).
3390 * And that - after we got ->i_mutex on parents (until then we don't know
3391 * whether the target exists). Solution: try to be smart with locking
3392 * order for inodes. We rely on the fact that tree topology may change
3393 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3394 * move will be locked. Thus we can rank directories by the tree
3395 * (ancestors first) and rank all non-directories after them.
3396 * That works since everybody except rename does "lock parent, lookup,
3397 * lock child" and rename is under ->s_vfs_rename_mutex.
3398 * HOWEVER, it relies on the assumption that any object with ->lookup()
3399 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3400 * we'd better make sure that there's no link(2) for them.
3401 * d) conversion from fhandle to dentry may come in the wrong moment - when
3402 * we are removing the target. Solution: we will have to grab ->i_mutex
3403 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3404 * ->i_mutex on parents, which works but leads to some truly excessive
3405 * locking].
3406 */
3407static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3408 struct inode *new_dir, struct dentry *new_dentry)
3409{
3410 int error = 0;
3411 struct inode *target = new_dentry->d_inode;
3412 unsigned max_links = new_dir->i_sb->s_max_links;
3413
3414 /*
3415 * If we are going to change the parent - check write permissions,
3416 * we'll need to flip '..'.
3417 */
3418 if (new_dir != old_dir) {
3419 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3420 if (error)
3421 return error;
3422 }
3423
3424 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3425 if (error)
3426 return error;
3427
3428 dget(new_dentry);
3429 if (target)
3430 mutex_lock(&target->i_mutex);
3431
3432 error = -EBUSY;
3433 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3434 goto out;
3435
3436 error = -EMLINK;
3437 if (max_links && !target && new_dir != old_dir &&
3438 new_dir->i_nlink >= max_links)
3439 goto out;
3440
3441 if (target)
3442 shrink_dcache_parent(new_dentry);
3443 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3444 if (error)
3445 goto out;
3446
3447 if (target) {
3448 target->i_flags |= S_DEAD;
3449 dont_mount(new_dentry);
3450 }
3451out:
3452 if (target)
3453 mutex_unlock(&target->i_mutex);
3454 dput(new_dentry);
3455 if (!error)
3456 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3457 d_move(old_dentry,new_dentry);
3458 return error;
3459}
3460
3461static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3462 struct inode *new_dir, struct dentry *new_dentry)
3463{
3464 struct inode *target = new_dentry->d_inode;
3465 int error;
3466
3467 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3468 if (error)
3469 return error;
3470
3471 dget(new_dentry);
3472 if (target)
3473 mutex_lock(&target->i_mutex);
3474
3475 error = -EBUSY;
3476 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3477 goto out;
3478
3479 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3480 if (error)
3481 goto out;
3482
3483 if (target)
3484 dont_mount(new_dentry);
3485 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3486 d_move(old_dentry, new_dentry);
3487out:
3488 if (target)
3489 mutex_unlock(&target->i_mutex);
3490 dput(new_dentry);
3491 return error;
3492}
3493
3494int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3495 struct inode *new_dir, struct dentry *new_dentry)
3496{
3497 int error;
3498 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3499 const unsigned char *old_name;
3500
3501 if (old_dentry->d_inode == new_dentry->d_inode)
3502 return 0;
3503
3504 error = may_delete(old_dir, old_dentry, is_dir);
3505 if (error)
3506 return error;
3507
3508 if (!new_dentry->d_inode)
3509 error = may_create(new_dir, new_dentry);
3510 else
3511 error = may_delete(new_dir, new_dentry, is_dir);
3512 if (error)
3513 return error;
3514
3515 if (!old_dir->i_op->rename)
3516 return -EPERM;
3517
3518 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3519
3520 if (is_dir)
3521 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3522 else
3523 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3524 if (!error)
3525 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3526 new_dentry->d_inode, old_dentry);
3527 fsnotify_oldname_free(old_name);
3528
3529 return error;
3530}
3531
3532SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3533 int, newdfd, const char __user *, newname)
3534{
3535 struct dentry *old_dir, *new_dir;
3536 struct dentry *old_dentry, *new_dentry;
3537 struct dentry *trap;
3538 struct nameidata oldnd, newnd;
3539 char *from;
3540 char *to;
3541 int error;
3542
3543 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3544 if (error)
3545 goto exit;
3546
3547 error = user_path_parent(newdfd, newname, &newnd, &to);
3548 if (error)
3549 goto exit1;
3550
3551 error = -EXDEV;
3552 if (oldnd.path.mnt != newnd.path.mnt)
3553 goto exit2;
3554
3555 old_dir = oldnd.path.dentry;
3556 error = -EBUSY;
3557 if (oldnd.last_type != LAST_NORM)
3558 goto exit2;
3559
3560 new_dir = newnd.path.dentry;
3561 if (newnd.last_type != LAST_NORM)
3562 goto exit2;
3563
3564 oldnd.flags &= ~LOOKUP_PARENT;
3565 newnd.flags &= ~LOOKUP_PARENT;
3566 newnd.flags |= LOOKUP_RENAME_TARGET;
3567
3568 trap = lock_rename(new_dir, old_dir);
3569
3570 old_dentry = lookup_hash(&oldnd);
3571 error = PTR_ERR(old_dentry);
3572 if (IS_ERR(old_dentry))
3573 goto exit3;
3574 /* source must exist */
3575 error = -ENOENT;
3576 if (!old_dentry->d_inode)
3577 goto exit4;
3578 /* unless the source is a directory trailing slashes give -ENOTDIR */
3579 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3580 error = -ENOTDIR;
3581 if (oldnd.last.name[oldnd.last.len])
3582 goto exit4;
3583 if (newnd.last.name[newnd.last.len])
3584 goto exit4;
3585 }
3586 /* source should not be ancestor of target */
3587 error = -EINVAL;
3588 if (old_dentry == trap)
3589 goto exit4;
3590 new_dentry = lookup_hash(&newnd);
3591 error = PTR_ERR(new_dentry);
3592 if (IS_ERR(new_dentry))
3593 goto exit4;
3594 /* target should not be an ancestor of source */
3595 error = -ENOTEMPTY;
3596 if (new_dentry == trap)
3597 goto exit5;
3598
3599 error = mnt_want_write(oldnd.path.mnt);
3600 if (error)
3601 goto exit5;
3602 error = security_path_rename(&oldnd.path, old_dentry,
3603 &newnd.path, new_dentry);
3604 if (error)
3605 goto exit6;
3606 error = vfs_rename(old_dir->d_inode, old_dentry,
3607 new_dir->d_inode, new_dentry);
3608exit6:
3609 mnt_drop_write(oldnd.path.mnt);
3610exit5:
3611 dput(new_dentry);
3612exit4:
3613 dput(old_dentry);
3614exit3:
3615 unlock_rename(new_dir, old_dir);
3616exit2:
3617 path_put(&newnd.path);
3618 putname(to);
3619exit1:
3620 path_put(&oldnd.path);
3621 putname(from);
3622exit:
3623 return error;
3624}
3625
3626SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3627{
3628 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3629}
3630
3631int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3632{
3633 int len;
3634
3635 len = PTR_ERR(link);
3636 if (IS_ERR(link))
3637 goto out;
3638
3639 len = strlen(link);
3640 if (len > (unsigned) buflen)
3641 len = buflen;
3642 if (copy_to_user(buffer, link, len))
3643 len = -EFAULT;
3644out:
3645 return len;
3646}
3647
3648/*
3649 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3650 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3651 * using) it for any given inode is up to filesystem.
3652 */
3653int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3654{
3655 struct nameidata nd;
3656 void *cookie;
3657 int res;
3658
3659 nd.depth = 0;
3660 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3661 if (IS_ERR(cookie))
3662 return PTR_ERR(cookie);
3663
3664 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3665 if (dentry->d_inode->i_op->put_link)
3666 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3667 return res;
3668}
3669
3670int vfs_follow_link(struct nameidata *nd, const char *link)
3671{
3672 return __vfs_follow_link(nd, link);
3673}
3674
3675/* get the link contents into pagecache */
3676static char *page_getlink(struct dentry * dentry, struct page **ppage)
3677{
3678 char *kaddr;
3679 struct page *page;
3680 struct address_space *mapping = dentry->d_inode->i_mapping;
3681 page = read_mapping_page(mapping, 0, NULL);
3682 if (IS_ERR(page))
3683 return (char*)page;
3684 *ppage = page;
3685 kaddr = kmap(page);
3686 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3687 return kaddr;
3688}
3689
3690int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3691{
3692 struct page *page = NULL;
3693 char *s = page_getlink(dentry, &page);
3694 int res = vfs_readlink(dentry,buffer,buflen,s);
3695 if (page) {
3696 kunmap(page);
3697 page_cache_release(page);
3698 }
3699 return res;
3700}
3701
3702void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3703{
3704 struct page *page = NULL;
3705 nd_set_link(nd, page_getlink(dentry, &page));
3706 return page;
3707}
3708
3709void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3710{
3711 struct page *page = cookie;
3712
3713 if (page) {
3714 kunmap(page);
3715 page_cache_release(page);
3716 }
3717}
3718
3719/*
3720 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3721 */
3722int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3723{
3724 struct address_space *mapping = inode->i_mapping;
3725 struct page *page;
3726 void *fsdata;
3727 int err;
3728 char *kaddr;
3729 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3730 if (nofs)
3731 flags |= AOP_FLAG_NOFS;
3732
3733retry:
3734 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3735 flags, &page, &fsdata);
3736 if (err)
3737 goto fail;
3738
3739 kaddr = kmap_atomic(page);
3740 memcpy(kaddr, symname, len-1);
3741 kunmap_atomic(kaddr);
3742
3743 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3744 page, fsdata);
3745 if (err < 0)
3746 goto fail;
3747 if (err < len-1)
3748 goto retry;
3749
3750 mark_inode_dirty(inode);
3751 return 0;
3752fail:
3753 return err;
3754}
3755
3756int page_symlink(struct inode *inode, const char *symname, int len)
3757{
3758 return __page_symlink(inode, symname, len,
3759 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3760}
3761
3762const struct inode_operations page_symlink_inode_operations = {
3763 .readlink = generic_readlink,
3764 .follow_link = page_follow_link_light,
3765 .put_link = page_put_link,
3766};
3767
3768EXPORT_SYMBOL(user_path_at);
3769EXPORT_SYMBOL(follow_down_one);
3770EXPORT_SYMBOL(follow_down);
3771EXPORT_SYMBOL(follow_up);
3772EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3773EXPORT_SYMBOL(getname);
3774EXPORT_SYMBOL(lock_rename);
3775EXPORT_SYMBOL(lookup_one_len);
3776EXPORT_SYMBOL(page_follow_link_light);
3777EXPORT_SYMBOL(page_put_link);
3778EXPORT_SYMBOL(page_readlink);
3779EXPORT_SYMBOL(__page_symlink);
3780EXPORT_SYMBOL(page_symlink);
3781EXPORT_SYMBOL(page_symlink_inode_operations);
3782EXPORT_SYMBOL(kern_path);
3783EXPORT_SYMBOL(vfs_path_lookup);
3784EXPORT_SYMBOL(inode_permission);
3785EXPORT_SYMBOL(unlock_rename);
3786EXPORT_SYMBOL(vfs_create);
3787EXPORT_SYMBOL(vfs_follow_link);
3788EXPORT_SYMBOL(vfs_link);
3789EXPORT_SYMBOL(vfs_mkdir);
3790EXPORT_SYMBOL(vfs_mknod);
3791EXPORT_SYMBOL(generic_permission);
3792EXPORT_SYMBOL(vfs_readlink);
3793EXPORT_SYMBOL(vfs_rename);
3794EXPORT_SYMBOL(vfs_rmdir);
3795EXPORT_SYMBOL(vfs_symlink);
3796EXPORT_SYMBOL(vfs_unlink);
3797EXPORT_SYMBOL(dentry_unhash);
3798EXPORT_SYMBOL(generic_readlink);