]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame_incremental - fs/namei.c
don't pass nameidata to ->follow_link()
[mirror_ubuntu-focal-kernel.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <linux/hash.h>
38#include <asm/uaccess.h>
39
40#include "internal.h"
41#include "mount.h"
42
43/* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108/*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114/* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124struct filename *
125getname_flags(const char __user *filename, int flags, int *empty)
126{
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201}
202
203struct filename *
204getname(const char __user * filename)
205{
206 return getname_flags(filename, 0, NULL);
207}
208
209struct filename *
210getname_kernel(const char * filename)
211{
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242}
243
244void putname(struct filename *name)
245{
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256}
257
258static int check_acl(struct inode *inode, int mask)
259{
260#ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281#endif
282
283 return -EAGAIN;
284}
285
286/*
287 * This does the basic permission checking
288 */
289static int acl_permission_check(struct inode *inode, int mask)
290{
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312}
313
314/**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328int generic_permission(struct inode *inode, int mask)
329{
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367}
368EXPORT_SYMBOL(generic_permission);
369
370/*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376static inline int do_inode_permission(struct inode *inode, int mask)
377{
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388}
389
390/**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402int __inode_permission(struct inode *inode, int mask)
403{
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423}
424EXPORT_SYMBOL(__inode_permission);
425
426/**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435{
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445}
446
447/**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458int inode_permission(struct inode *inode, int mask)
459{
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466}
467EXPORT_SYMBOL(inode_permission);
468
469/**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475void path_get(const struct path *path)
476{
477 mntget(path->mnt);
478 dget(path->dentry);
479}
480EXPORT_SYMBOL(path_get);
481
482/**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488void path_put(const struct path *path)
489{
490 dput(path->dentry);
491 mntput(path->mnt);
492}
493EXPORT_SYMBOL(path_put);
494
495#define EMBEDDED_LEVELS 2
496struct nameidata {
497 struct path path;
498 union {
499 struct qstr last;
500 struct path link;
501 };
502 struct path root;
503 struct inode *inode; /* path.dentry.d_inode */
504 unsigned int flags;
505 unsigned seq, m_seq;
506 int last_type;
507 unsigned depth;
508 int total_link_count;
509 struct file *base;
510 struct saved {
511 struct path link;
512 void *cookie;
513 const char *name;
514 } *stack, internal[EMBEDDED_LEVELS];
515};
516
517static struct nameidata *set_nameidata(struct nameidata *p)
518{
519 struct nameidata *old = current->nameidata;
520 p->stack = p->internal;
521 p->total_link_count = old ? old->total_link_count : 0;
522 current->nameidata = p;
523 return old;
524}
525
526static void restore_nameidata(struct nameidata *old)
527{
528 struct nameidata *now = current->nameidata;
529
530 current->nameidata = old;
531 if (old)
532 old->total_link_count = now->total_link_count;
533 if (now->stack != now->internal) {
534 kfree(now->stack);
535 now->stack = now->internal;
536 }
537}
538
539static int __nd_alloc_stack(struct nameidata *nd)
540{
541 struct saved *p = kmalloc(MAXSYMLINKS * sizeof(struct saved),
542 GFP_KERNEL);
543 if (unlikely(!p))
544 return -ENOMEM;
545 memcpy(p, nd->internal, sizeof(nd->internal));
546 nd->stack = p;
547 return 0;
548}
549
550static inline int nd_alloc_stack(struct nameidata *nd)
551{
552 if (likely(nd->depth != EMBEDDED_LEVELS))
553 return 0;
554 if (likely(nd->stack != nd->internal))
555 return 0;
556 return __nd_alloc_stack(nd);
557}
558
559/*
560 * Path walking has 2 modes, rcu-walk and ref-walk (see
561 * Documentation/filesystems/path-lookup.txt). In situations when we can't
562 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
563 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
564 * mode. Refcounts are grabbed at the last known good point before rcu-walk
565 * got stuck, so ref-walk may continue from there. If this is not successful
566 * (eg. a seqcount has changed), then failure is returned and it's up to caller
567 * to restart the path walk from the beginning in ref-walk mode.
568 */
569
570/**
571 * unlazy_walk - try to switch to ref-walk mode.
572 * @nd: nameidata pathwalk data
573 * @dentry: child of nd->path.dentry or NULL
574 * Returns: 0 on success, -ECHILD on failure
575 *
576 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
577 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
578 * @nd or NULL. Must be called from rcu-walk context.
579 */
580static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
581{
582 struct fs_struct *fs = current->fs;
583 struct dentry *parent = nd->path.dentry;
584
585 BUG_ON(!(nd->flags & LOOKUP_RCU));
586
587 /*
588 * After legitimizing the bastards, terminate_walk()
589 * will do the right thing for non-RCU mode, and all our
590 * subsequent exit cases should rcu_read_unlock()
591 * before returning. Do vfsmount first; if dentry
592 * can't be legitimized, just set nd->path.dentry to NULL
593 * and rely on dput(NULL) being a no-op.
594 */
595 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
596 return -ECHILD;
597 nd->flags &= ~LOOKUP_RCU;
598
599 if (!lockref_get_not_dead(&parent->d_lockref)) {
600 nd->path.dentry = NULL;
601 goto out;
602 }
603
604 /*
605 * For a negative lookup, the lookup sequence point is the parents
606 * sequence point, and it only needs to revalidate the parent dentry.
607 *
608 * For a positive lookup, we need to move both the parent and the
609 * dentry from the RCU domain to be properly refcounted. And the
610 * sequence number in the dentry validates *both* dentry counters,
611 * since we checked the sequence number of the parent after we got
612 * the child sequence number. So we know the parent must still
613 * be valid if the child sequence number is still valid.
614 */
615 if (!dentry) {
616 if (read_seqcount_retry(&parent->d_seq, nd->seq))
617 goto out;
618 BUG_ON(nd->inode != parent->d_inode);
619 } else {
620 if (!lockref_get_not_dead(&dentry->d_lockref))
621 goto out;
622 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
623 goto drop_dentry;
624 }
625
626 /*
627 * Sequence counts matched. Now make sure that the root is
628 * still valid and get it if required.
629 */
630 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
631 spin_lock(&fs->lock);
632 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
633 goto unlock_and_drop_dentry;
634 path_get(&nd->root);
635 spin_unlock(&fs->lock);
636 }
637
638 rcu_read_unlock();
639 return 0;
640
641unlock_and_drop_dentry:
642 spin_unlock(&fs->lock);
643drop_dentry:
644 rcu_read_unlock();
645 dput(dentry);
646 goto drop_root_mnt;
647out:
648 rcu_read_unlock();
649drop_root_mnt:
650 if (!(nd->flags & LOOKUP_ROOT))
651 nd->root.mnt = NULL;
652 return -ECHILD;
653}
654
655static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
656{
657 return dentry->d_op->d_revalidate(dentry, flags);
658}
659
660/**
661 * complete_walk - successful completion of path walk
662 * @nd: pointer nameidata
663 *
664 * If we had been in RCU mode, drop out of it and legitimize nd->path.
665 * Revalidate the final result, unless we'd already done that during
666 * the path walk or the filesystem doesn't ask for it. Return 0 on
667 * success, -error on failure. In case of failure caller does not
668 * need to drop nd->path.
669 */
670static int complete_walk(struct nameidata *nd)
671{
672 struct dentry *dentry = nd->path.dentry;
673 int status;
674
675 if (nd->flags & LOOKUP_RCU) {
676 nd->flags &= ~LOOKUP_RCU;
677 if (!(nd->flags & LOOKUP_ROOT))
678 nd->root.mnt = NULL;
679
680 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
681 rcu_read_unlock();
682 return -ECHILD;
683 }
684 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
685 rcu_read_unlock();
686 mntput(nd->path.mnt);
687 return -ECHILD;
688 }
689 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
690 rcu_read_unlock();
691 dput(dentry);
692 mntput(nd->path.mnt);
693 return -ECHILD;
694 }
695 rcu_read_unlock();
696 }
697
698 if (likely(!(nd->flags & LOOKUP_JUMPED)))
699 return 0;
700
701 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
702 return 0;
703
704 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
705 if (status > 0)
706 return 0;
707
708 if (!status)
709 status = -ESTALE;
710
711 path_put(&nd->path);
712 return status;
713}
714
715static __always_inline void set_root(struct nameidata *nd)
716{
717 get_fs_root(current->fs, &nd->root);
718}
719
720static __always_inline unsigned set_root_rcu(struct nameidata *nd)
721{
722 struct fs_struct *fs = current->fs;
723 unsigned seq, res;
724
725 do {
726 seq = read_seqcount_begin(&fs->seq);
727 nd->root = fs->root;
728 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
729 } while (read_seqcount_retry(&fs->seq, seq));
730 return res;
731}
732
733static void path_put_conditional(struct path *path, struct nameidata *nd)
734{
735 dput(path->dentry);
736 if (path->mnt != nd->path.mnt)
737 mntput(path->mnt);
738}
739
740static inline void path_to_nameidata(const struct path *path,
741 struct nameidata *nd)
742{
743 if (!(nd->flags & LOOKUP_RCU)) {
744 dput(nd->path.dentry);
745 if (nd->path.mnt != path->mnt)
746 mntput(nd->path.mnt);
747 }
748 nd->path.mnt = path->mnt;
749 nd->path.dentry = path->dentry;
750}
751
752/*
753 * Helper to directly jump to a known parsed path from ->follow_link,
754 * caller must have taken a reference to path beforehand.
755 */
756void nd_jump_link(struct path *path)
757{
758 struct nameidata *nd = current->nameidata;
759 path_put(&nd->path);
760
761 nd->path = *path;
762 nd->inode = nd->path.dentry->d_inode;
763 nd->flags |= LOOKUP_JUMPED;
764}
765
766static inline void put_link(struct nameidata *nd)
767{
768 struct saved *last = nd->stack + --nd->depth;
769 struct inode *inode = last->link.dentry->d_inode;
770 if (last->cookie && inode->i_op->put_link)
771 inode->i_op->put_link(last->link.dentry, last->cookie);
772 path_put(&last->link);
773}
774
775int sysctl_protected_symlinks __read_mostly = 0;
776int sysctl_protected_hardlinks __read_mostly = 0;
777
778/**
779 * may_follow_link - Check symlink following for unsafe situations
780 * @link: The path of the symlink
781 * @nd: nameidata pathwalk data
782 *
783 * In the case of the sysctl_protected_symlinks sysctl being enabled,
784 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
785 * in a sticky world-writable directory. This is to protect privileged
786 * processes from failing races against path names that may change out
787 * from under them by way of other users creating malicious symlinks.
788 * It will permit symlinks to be followed only when outside a sticky
789 * world-writable directory, or when the uid of the symlink and follower
790 * match, or when the directory owner matches the symlink's owner.
791 *
792 * Returns 0 if following the symlink is allowed, -ve on error.
793 */
794static inline int may_follow_link(struct path *link, struct nameidata *nd)
795{
796 const struct inode *inode;
797 const struct inode *parent;
798
799 if (!sysctl_protected_symlinks)
800 return 0;
801
802 /* Allowed if owner and follower match. */
803 inode = link->dentry->d_inode;
804 if (uid_eq(current_cred()->fsuid, inode->i_uid))
805 return 0;
806
807 /* Allowed if parent directory not sticky and world-writable. */
808 parent = nd->path.dentry->d_inode;
809 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
810 return 0;
811
812 /* Allowed if parent directory and link owner match. */
813 if (uid_eq(parent->i_uid, inode->i_uid))
814 return 0;
815
816 audit_log_link_denied("follow_link", link);
817 path_put_conditional(link, nd);
818 path_put(&nd->path);
819 return -EACCES;
820}
821
822/**
823 * safe_hardlink_source - Check for safe hardlink conditions
824 * @inode: the source inode to hardlink from
825 *
826 * Return false if at least one of the following conditions:
827 * - inode is not a regular file
828 * - inode is setuid
829 * - inode is setgid and group-exec
830 * - access failure for read and write
831 *
832 * Otherwise returns true.
833 */
834static bool safe_hardlink_source(struct inode *inode)
835{
836 umode_t mode = inode->i_mode;
837
838 /* Special files should not get pinned to the filesystem. */
839 if (!S_ISREG(mode))
840 return false;
841
842 /* Setuid files should not get pinned to the filesystem. */
843 if (mode & S_ISUID)
844 return false;
845
846 /* Executable setgid files should not get pinned to the filesystem. */
847 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
848 return false;
849
850 /* Hardlinking to unreadable or unwritable sources is dangerous. */
851 if (inode_permission(inode, MAY_READ | MAY_WRITE))
852 return false;
853
854 return true;
855}
856
857/**
858 * may_linkat - Check permissions for creating a hardlink
859 * @link: the source to hardlink from
860 *
861 * Block hardlink when all of:
862 * - sysctl_protected_hardlinks enabled
863 * - fsuid does not match inode
864 * - hardlink source is unsafe (see safe_hardlink_source() above)
865 * - not CAP_FOWNER
866 *
867 * Returns 0 if successful, -ve on error.
868 */
869static int may_linkat(struct path *link)
870{
871 const struct cred *cred;
872 struct inode *inode;
873
874 if (!sysctl_protected_hardlinks)
875 return 0;
876
877 cred = current_cred();
878 inode = link->dentry->d_inode;
879
880 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
881 * otherwise, it must be a safe source.
882 */
883 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
884 capable(CAP_FOWNER))
885 return 0;
886
887 audit_log_link_denied("linkat", link);
888 return -EPERM;
889}
890
891static __always_inline
892const char *get_link(struct nameidata *nd)
893{
894 struct saved *last = nd->stack + nd->depth;
895 struct dentry *dentry = nd->link.dentry;
896 struct inode *inode = dentry->d_inode;
897 int error;
898 const char *res;
899
900 BUG_ON(nd->flags & LOOKUP_RCU);
901
902 if (nd->link.mnt == nd->path.mnt)
903 mntget(nd->link.mnt);
904
905 last->link = nd->link;
906 last->cookie = NULL;
907
908 cond_resched();
909
910 touch_atime(&last->link);
911
912 error = security_inode_follow_link(dentry);
913 res = ERR_PTR(error);
914 if (error)
915 goto out;
916
917 nd->last_type = LAST_BIND;
918 res = inode->i_link;
919 if (!res) {
920 res = inode->i_op->follow_link(dentry, &last->cookie);
921 if (IS_ERR(res)) {
922out:
923 path_put(&last->link);
924 return res;
925 }
926 }
927 nd->depth++;
928 return res;
929}
930
931static int follow_up_rcu(struct path *path)
932{
933 struct mount *mnt = real_mount(path->mnt);
934 struct mount *parent;
935 struct dentry *mountpoint;
936
937 parent = mnt->mnt_parent;
938 if (&parent->mnt == path->mnt)
939 return 0;
940 mountpoint = mnt->mnt_mountpoint;
941 path->dentry = mountpoint;
942 path->mnt = &parent->mnt;
943 return 1;
944}
945
946/*
947 * follow_up - Find the mountpoint of path's vfsmount
948 *
949 * Given a path, find the mountpoint of its source file system.
950 * Replace @path with the path of the mountpoint in the parent mount.
951 * Up is towards /.
952 *
953 * Return 1 if we went up a level and 0 if we were already at the
954 * root.
955 */
956int follow_up(struct path *path)
957{
958 struct mount *mnt = real_mount(path->mnt);
959 struct mount *parent;
960 struct dentry *mountpoint;
961
962 read_seqlock_excl(&mount_lock);
963 parent = mnt->mnt_parent;
964 if (parent == mnt) {
965 read_sequnlock_excl(&mount_lock);
966 return 0;
967 }
968 mntget(&parent->mnt);
969 mountpoint = dget(mnt->mnt_mountpoint);
970 read_sequnlock_excl(&mount_lock);
971 dput(path->dentry);
972 path->dentry = mountpoint;
973 mntput(path->mnt);
974 path->mnt = &parent->mnt;
975 return 1;
976}
977EXPORT_SYMBOL(follow_up);
978
979/*
980 * Perform an automount
981 * - return -EISDIR to tell follow_managed() to stop and return the path we
982 * were called with.
983 */
984static int follow_automount(struct path *path, struct nameidata *nd,
985 bool *need_mntput)
986{
987 struct vfsmount *mnt;
988 int err;
989
990 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
991 return -EREMOTE;
992
993 /* We don't want to mount if someone's just doing a stat -
994 * unless they're stat'ing a directory and appended a '/' to
995 * the name.
996 *
997 * We do, however, want to mount if someone wants to open or
998 * create a file of any type under the mountpoint, wants to
999 * traverse through the mountpoint or wants to open the
1000 * mounted directory. Also, autofs may mark negative dentries
1001 * as being automount points. These will need the attentions
1002 * of the daemon to instantiate them before they can be used.
1003 */
1004 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1005 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1006 path->dentry->d_inode)
1007 return -EISDIR;
1008
1009 nd->total_link_count++;
1010 if (nd->total_link_count >= 40)
1011 return -ELOOP;
1012
1013 mnt = path->dentry->d_op->d_automount(path);
1014 if (IS_ERR(mnt)) {
1015 /*
1016 * The filesystem is allowed to return -EISDIR here to indicate
1017 * it doesn't want to automount. For instance, autofs would do
1018 * this so that its userspace daemon can mount on this dentry.
1019 *
1020 * However, we can only permit this if it's a terminal point in
1021 * the path being looked up; if it wasn't then the remainder of
1022 * the path is inaccessible and we should say so.
1023 */
1024 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1025 return -EREMOTE;
1026 return PTR_ERR(mnt);
1027 }
1028
1029 if (!mnt) /* mount collision */
1030 return 0;
1031
1032 if (!*need_mntput) {
1033 /* lock_mount() may release path->mnt on error */
1034 mntget(path->mnt);
1035 *need_mntput = true;
1036 }
1037 err = finish_automount(mnt, path);
1038
1039 switch (err) {
1040 case -EBUSY:
1041 /* Someone else made a mount here whilst we were busy */
1042 return 0;
1043 case 0:
1044 path_put(path);
1045 path->mnt = mnt;
1046 path->dentry = dget(mnt->mnt_root);
1047 return 0;
1048 default:
1049 return err;
1050 }
1051
1052}
1053
1054/*
1055 * Handle a dentry that is managed in some way.
1056 * - Flagged for transit management (autofs)
1057 * - Flagged as mountpoint
1058 * - Flagged as automount point
1059 *
1060 * This may only be called in refwalk mode.
1061 *
1062 * Serialization is taken care of in namespace.c
1063 */
1064static int follow_managed(struct path *path, struct nameidata *nd)
1065{
1066 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1067 unsigned managed;
1068 bool need_mntput = false;
1069 int ret = 0;
1070
1071 /* Given that we're not holding a lock here, we retain the value in a
1072 * local variable for each dentry as we look at it so that we don't see
1073 * the components of that value change under us */
1074 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1075 managed &= DCACHE_MANAGED_DENTRY,
1076 unlikely(managed != 0)) {
1077 /* Allow the filesystem to manage the transit without i_mutex
1078 * being held. */
1079 if (managed & DCACHE_MANAGE_TRANSIT) {
1080 BUG_ON(!path->dentry->d_op);
1081 BUG_ON(!path->dentry->d_op->d_manage);
1082 ret = path->dentry->d_op->d_manage(path->dentry, false);
1083 if (ret < 0)
1084 break;
1085 }
1086
1087 /* Transit to a mounted filesystem. */
1088 if (managed & DCACHE_MOUNTED) {
1089 struct vfsmount *mounted = lookup_mnt(path);
1090 if (mounted) {
1091 dput(path->dentry);
1092 if (need_mntput)
1093 mntput(path->mnt);
1094 path->mnt = mounted;
1095 path->dentry = dget(mounted->mnt_root);
1096 need_mntput = true;
1097 continue;
1098 }
1099
1100 /* Something is mounted on this dentry in another
1101 * namespace and/or whatever was mounted there in this
1102 * namespace got unmounted before lookup_mnt() could
1103 * get it */
1104 }
1105
1106 /* Handle an automount point */
1107 if (managed & DCACHE_NEED_AUTOMOUNT) {
1108 ret = follow_automount(path, nd, &need_mntput);
1109 if (ret < 0)
1110 break;
1111 continue;
1112 }
1113
1114 /* We didn't change the current path point */
1115 break;
1116 }
1117
1118 if (need_mntput && path->mnt == mnt)
1119 mntput(path->mnt);
1120 if (ret == -EISDIR)
1121 ret = 0;
1122 if (need_mntput)
1123 nd->flags |= LOOKUP_JUMPED;
1124 if (unlikely(ret < 0))
1125 path_put_conditional(path, nd);
1126 return ret;
1127}
1128
1129int follow_down_one(struct path *path)
1130{
1131 struct vfsmount *mounted;
1132
1133 mounted = lookup_mnt(path);
1134 if (mounted) {
1135 dput(path->dentry);
1136 mntput(path->mnt);
1137 path->mnt = mounted;
1138 path->dentry = dget(mounted->mnt_root);
1139 return 1;
1140 }
1141 return 0;
1142}
1143EXPORT_SYMBOL(follow_down_one);
1144
1145static inline int managed_dentry_rcu(struct dentry *dentry)
1146{
1147 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1148 dentry->d_op->d_manage(dentry, true) : 0;
1149}
1150
1151/*
1152 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1153 * we meet a managed dentry that would need blocking.
1154 */
1155static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1156 struct inode **inode)
1157{
1158 for (;;) {
1159 struct mount *mounted;
1160 /*
1161 * Don't forget we might have a non-mountpoint managed dentry
1162 * that wants to block transit.
1163 */
1164 switch (managed_dentry_rcu(path->dentry)) {
1165 case -ECHILD:
1166 default:
1167 return false;
1168 case -EISDIR:
1169 return true;
1170 case 0:
1171 break;
1172 }
1173
1174 if (!d_mountpoint(path->dentry))
1175 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1176
1177 mounted = __lookup_mnt(path->mnt, path->dentry);
1178 if (!mounted)
1179 break;
1180 path->mnt = &mounted->mnt;
1181 path->dentry = mounted->mnt.mnt_root;
1182 nd->flags |= LOOKUP_JUMPED;
1183 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1184 /*
1185 * Update the inode too. We don't need to re-check the
1186 * dentry sequence number here after this d_inode read,
1187 * because a mount-point is always pinned.
1188 */
1189 *inode = path->dentry->d_inode;
1190 }
1191 return !read_seqretry(&mount_lock, nd->m_seq) &&
1192 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1193}
1194
1195static int follow_dotdot_rcu(struct nameidata *nd)
1196{
1197 struct inode *inode = nd->inode;
1198 if (!nd->root.mnt)
1199 set_root_rcu(nd);
1200
1201 while (1) {
1202 if (nd->path.dentry == nd->root.dentry &&
1203 nd->path.mnt == nd->root.mnt) {
1204 break;
1205 }
1206 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1207 struct dentry *old = nd->path.dentry;
1208 struct dentry *parent = old->d_parent;
1209 unsigned seq;
1210
1211 inode = parent->d_inode;
1212 seq = read_seqcount_begin(&parent->d_seq);
1213 if (read_seqcount_retry(&old->d_seq, nd->seq))
1214 goto failed;
1215 nd->path.dentry = parent;
1216 nd->seq = seq;
1217 break;
1218 }
1219 if (!follow_up_rcu(&nd->path))
1220 break;
1221 inode = nd->path.dentry->d_inode;
1222 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1223 }
1224 while (d_mountpoint(nd->path.dentry)) {
1225 struct mount *mounted;
1226 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1227 if (!mounted)
1228 break;
1229 nd->path.mnt = &mounted->mnt;
1230 nd->path.dentry = mounted->mnt.mnt_root;
1231 inode = nd->path.dentry->d_inode;
1232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1233 if (read_seqretry(&mount_lock, nd->m_seq))
1234 goto failed;
1235 }
1236 nd->inode = inode;
1237 return 0;
1238
1239failed:
1240 return -ECHILD;
1241}
1242
1243/*
1244 * Follow down to the covering mount currently visible to userspace. At each
1245 * point, the filesystem owning that dentry may be queried as to whether the
1246 * caller is permitted to proceed or not.
1247 */
1248int follow_down(struct path *path)
1249{
1250 unsigned managed;
1251 int ret;
1252
1253 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1254 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1255 /* Allow the filesystem to manage the transit without i_mutex
1256 * being held.
1257 *
1258 * We indicate to the filesystem if someone is trying to mount
1259 * something here. This gives autofs the chance to deny anyone
1260 * other than its daemon the right to mount on its
1261 * superstructure.
1262 *
1263 * The filesystem may sleep at this point.
1264 */
1265 if (managed & DCACHE_MANAGE_TRANSIT) {
1266 BUG_ON(!path->dentry->d_op);
1267 BUG_ON(!path->dentry->d_op->d_manage);
1268 ret = path->dentry->d_op->d_manage(
1269 path->dentry, false);
1270 if (ret < 0)
1271 return ret == -EISDIR ? 0 : ret;
1272 }
1273
1274 /* Transit to a mounted filesystem. */
1275 if (managed & DCACHE_MOUNTED) {
1276 struct vfsmount *mounted = lookup_mnt(path);
1277 if (!mounted)
1278 break;
1279 dput(path->dentry);
1280 mntput(path->mnt);
1281 path->mnt = mounted;
1282 path->dentry = dget(mounted->mnt_root);
1283 continue;
1284 }
1285
1286 /* Don't handle automount points here */
1287 break;
1288 }
1289 return 0;
1290}
1291EXPORT_SYMBOL(follow_down);
1292
1293/*
1294 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1295 */
1296static void follow_mount(struct path *path)
1297{
1298 while (d_mountpoint(path->dentry)) {
1299 struct vfsmount *mounted = lookup_mnt(path);
1300 if (!mounted)
1301 break;
1302 dput(path->dentry);
1303 mntput(path->mnt);
1304 path->mnt = mounted;
1305 path->dentry = dget(mounted->mnt_root);
1306 }
1307}
1308
1309static void follow_dotdot(struct nameidata *nd)
1310{
1311 if (!nd->root.mnt)
1312 set_root(nd);
1313
1314 while(1) {
1315 struct dentry *old = nd->path.dentry;
1316
1317 if (nd->path.dentry == nd->root.dentry &&
1318 nd->path.mnt == nd->root.mnt) {
1319 break;
1320 }
1321 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1322 /* rare case of legitimate dget_parent()... */
1323 nd->path.dentry = dget_parent(nd->path.dentry);
1324 dput(old);
1325 break;
1326 }
1327 if (!follow_up(&nd->path))
1328 break;
1329 }
1330 follow_mount(&nd->path);
1331 nd->inode = nd->path.dentry->d_inode;
1332}
1333
1334/*
1335 * This looks up the name in dcache, possibly revalidates the old dentry and
1336 * allocates a new one if not found or not valid. In the need_lookup argument
1337 * returns whether i_op->lookup is necessary.
1338 *
1339 * dir->d_inode->i_mutex must be held
1340 */
1341static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1342 unsigned int flags, bool *need_lookup)
1343{
1344 struct dentry *dentry;
1345 int error;
1346
1347 *need_lookup = false;
1348 dentry = d_lookup(dir, name);
1349 if (dentry) {
1350 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1351 error = d_revalidate(dentry, flags);
1352 if (unlikely(error <= 0)) {
1353 if (error < 0) {
1354 dput(dentry);
1355 return ERR_PTR(error);
1356 } else {
1357 d_invalidate(dentry);
1358 dput(dentry);
1359 dentry = NULL;
1360 }
1361 }
1362 }
1363 }
1364
1365 if (!dentry) {
1366 dentry = d_alloc(dir, name);
1367 if (unlikely(!dentry))
1368 return ERR_PTR(-ENOMEM);
1369
1370 *need_lookup = true;
1371 }
1372 return dentry;
1373}
1374
1375/*
1376 * Call i_op->lookup on the dentry. The dentry must be negative and
1377 * unhashed.
1378 *
1379 * dir->d_inode->i_mutex must be held
1380 */
1381static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1382 unsigned int flags)
1383{
1384 struct dentry *old;
1385
1386 /* Don't create child dentry for a dead directory. */
1387 if (unlikely(IS_DEADDIR(dir))) {
1388 dput(dentry);
1389 return ERR_PTR(-ENOENT);
1390 }
1391
1392 old = dir->i_op->lookup(dir, dentry, flags);
1393 if (unlikely(old)) {
1394 dput(dentry);
1395 dentry = old;
1396 }
1397 return dentry;
1398}
1399
1400static struct dentry *__lookup_hash(struct qstr *name,
1401 struct dentry *base, unsigned int flags)
1402{
1403 bool need_lookup;
1404 struct dentry *dentry;
1405
1406 dentry = lookup_dcache(name, base, flags, &need_lookup);
1407 if (!need_lookup)
1408 return dentry;
1409
1410 return lookup_real(base->d_inode, dentry, flags);
1411}
1412
1413/*
1414 * It's more convoluted than I'd like it to be, but... it's still fairly
1415 * small and for now I'd prefer to have fast path as straight as possible.
1416 * It _is_ time-critical.
1417 */
1418static int lookup_fast(struct nameidata *nd,
1419 struct path *path, struct inode **inode)
1420{
1421 struct vfsmount *mnt = nd->path.mnt;
1422 struct dentry *dentry, *parent = nd->path.dentry;
1423 int need_reval = 1;
1424 int status = 1;
1425 int err;
1426
1427 /*
1428 * Rename seqlock is not required here because in the off chance
1429 * of a false negative due to a concurrent rename, we're going to
1430 * do the non-racy lookup, below.
1431 */
1432 if (nd->flags & LOOKUP_RCU) {
1433 unsigned seq;
1434 bool negative;
1435 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1436 if (!dentry)
1437 goto unlazy;
1438
1439 /*
1440 * This sequence count validates that the inode matches
1441 * the dentry name information from lookup.
1442 */
1443 *inode = dentry->d_inode;
1444 negative = d_is_negative(dentry);
1445 if (read_seqcount_retry(&dentry->d_seq, seq))
1446 return -ECHILD;
1447 if (negative)
1448 return -ENOENT;
1449
1450 /*
1451 * This sequence count validates that the parent had no
1452 * changes while we did the lookup of the dentry above.
1453 *
1454 * The memory barrier in read_seqcount_begin of child is
1455 * enough, we can use __read_seqcount_retry here.
1456 */
1457 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1458 return -ECHILD;
1459 nd->seq = seq;
1460
1461 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1462 status = d_revalidate(dentry, nd->flags);
1463 if (unlikely(status <= 0)) {
1464 if (status != -ECHILD)
1465 need_reval = 0;
1466 goto unlazy;
1467 }
1468 }
1469 path->mnt = mnt;
1470 path->dentry = dentry;
1471 if (likely(__follow_mount_rcu(nd, path, inode)))
1472 return 0;
1473unlazy:
1474 if (unlazy_walk(nd, dentry))
1475 return -ECHILD;
1476 } else {
1477 dentry = __d_lookup(parent, &nd->last);
1478 }
1479
1480 if (unlikely(!dentry))
1481 goto need_lookup;
1482
1483 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1484 status = d_revalidate(dentry, nd->flags);
1485 if (unlikely(status <= 0)) {
1486 if (status < 0) {
1487 dput(dentry);
1488 return status;
1489 }
1490 d_invalidate(dentry);
1491 dput(dentry);
1492 goto need_lookup;
1493 }
1494
1495 if (unlikely(d_is_negative(dentry))) {
1496 dput(dentry);
1497 return -ENOENT;
1498 }
1499 path->mnt = mnt;
1500 path->dentry = dentry;
1501 err = follow_managed(path, nd);
1502 if (likely(!err))
1503 *inode = path->dentry->d_inode;
1504 return err;
1505
1506need_lookup:
1507 return 1;
1508}
1509
1510/* Fast lookup failed, do it the slow way */
1511static int lookup_slow(struct nameidata *nd, struct path *path)
1512{
1513 struct dentry *dentry, *parent;
1514
1515 parent = nd->path.dentry;
1516 BUG_ON(nd->inode != parent->d_inode);
1517
1518 mutex_lock(&parent->d_inode->i_mutex);
1519 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1520 mutex_unlock(&parent->d_inode->i_mutex);
1521 if (IS_ERR(dentry))
1522 return PTR_ERR(dentry);
1523 path->mnt = nd->path.mnt;
1524 path->dentry = dentry;
1525 return follow_managed(path, nd);
1526}
1527
1528static inline int may_lookup(struct nameidata *nd)
1529{
1530 if (nd->flags & LOOKUP_RCU) {
1531 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1532 if (err != -ECHILD)
1533 return err;
1534 if (unlazy_walk(nd, NULL))
1535 return -ECHILD;
1536 }
1537 return inode_permission(nd->inode, MAY_EXEC);
1538}
1539
1540static inline int handle_dots(struct nameidata *nd, int type)
1541{
1542 if (type == LAST_DOTDOT) {
1543 if (nd->flags & LOOKUP_RCU) {
1544 return follow_dotdot_rcu(nd);
1545 } else
1546 follow_dotdot(nd);
1547 }
1548 return 0;
1549}
1550
1551static void terminate_walk(struct nameidata *nd)
1552{
1553 if (!(nd->flags & LOOKUP_RCU)) {
1554 path_put(&nd->path);
1555 } else {
1556 nd->flags &= ~LOOKUP_RCU;
1557 if (!(nd->flags & LOOKUP_ROOT))
1558 nd->root.mnt = NULL;
1559 rcu_read_unlock();
1560 }
1561 while (unlikely(nd->depth))
1562 put_link(nd);
1563}
1564
1565static int pick_link(struct nameidata *nd, struct path *link)
1566{
1567 int error;
1568 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1569 path_to_nameidata(link, nd);
1570 return -ELOOP;
1571 }
1572 if (nd->flags & LOOKUP_RCU) {
1573 if (unlikely(nd->path.mnt != link->mnt ||
1574 unlazy_walk(nd, link->dentry))) {
1575 return -ECHILD;
1576 }
1577 }
1578 error = nd_alloc_stack(nd);
1579 if (unlikely(error)) {
1580 path_to_nameidata(link, nd);
1581 return error;
1582 }
1583
1584 nd->link = *link;
1585 return 1;
1586}
1587
1588/*
1589 * Do we need to follow links? We _really_ want to be able
1590 * to do this check without having to look at inode->i_op,
1591 * so we keep a cache of "no, this doesn't need follow_link"
1592 * for the common case.
1593 */
1594static inline int should_follow_link(struct nameidata *nd, struct path *link, int follow)
1595{
1596 if (likely(!d_is_symlink(link->dentry)))
1597 return 0;
1598 if (!follow)
1599 return 0;
1600 return pick_link(nd, link);
1601}
1602
1603enum {WALK_GET = 1, WALK_PUT = 2};
1604
1605static int walk_component(struct nameidata *nd, int flags)
1606{
1607 struct path path;
1608 struct inode *inode;
1609 int err;
1610 /*
1611 * "." and ".." are special - ".." especially so because it has
1612 * to be able to know about the current root directory and
1613 * parent relationships.
1614 */
1615 if (unlikely(nd->last_type != LAST_NORM)) {
1616 err = handle_dots(nd, nd->last_type);
1617 if (flags & WALK_PUT)
1618 put_link(nd);
1619 return err;
1620 }
1621 err = lookup_fast(nd, &path, &inode);
1622 if (unlikely(err)) {
1623 if (err < 0)
1624 return err;
1625
1626 err = lookup_slow(nd, &path);
1627 if (err < 0)
1628 return err;
1629
1630 inode = path.dentry->d_inode;
1631 err = -ENOENT;
1632 if (d_is_negative(path.dentry))
1633 goto out_path_put;
1634 }
1635
1636 if (flags & WALK_PUT)
1637 put_link(nd);
1638 err = should_follow_link(nd, &path, flags & WALK_GET);
1639 if (unlikely(err))
1640 return err;
1641 path_to_nameidata(&path, nd);
1642 nd->inode = inode;
1643 return 0;
1644
1645out_path_put:
1646 path_to_nameidata(&path, nd);
1647 return err;
1648}
1649
1650/*
1651 * We can do the critical dentry name comparison and hashing
1652 * operations one word at a time, but we are limited to:
1653 *
1654 * - Architectures with fast unaligned word accesses. We could
1655 * do a "get_unaligned()" if this helps and is sufficiently
1656 * fast.
1657 *
1658 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1659 * do not trap on the (extremely unlikely) case of a page
1660 * crossing operation.
1661 *
1662 * - Furthermore, we need an efficient 64-bit compile for the
1663 * 64-bit case in order to generate the "number of bytes in
1664 * the final mask". Again, that could be replaced with a
1665 * efficient population count instruction or similar.
1666 */
1667#ifdef CONFIG_DCACHE_WORD_ACCESS
1668
1669#include <asm/word-at-a-time.h>
1670
1671#ifdef CONFIG_64BIT
1672
1673static inline unsigned int fold_hash(unsigned long hash)
1674{
1675 return hash_64(hash, 32);
1676}
1677
1678#else /* 32-bit case */
1679
1680#define fold_hash(x) (x)
1681
1682#endif
1683
1684unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1685{
1686 unsigned long a, mask;
1687 unsigned long hash = 0;
1688
1689 for (;;) {
1690 a = load_unaligned_zeropad(name);
1691 if (len < sizeof(unsigned long))
1692 break;
1693 hash += a;
1694 hash *= 9;
1695 name += sizeof(unsigned long);
1696 len -= sizeof(unsigned long);
1697 if (!len)
1698 goto done;
1699 }
1700 mask = bytemask_from_count(len);
1701 hash += mask & a;
1702done:
1703 return fold_hash(hash);
1704}
1705EXPORT_SYMBOL(full_name_hash);
1706
1707/*
1708 * Calculate the length and hash of the path component, and
1709 * return the "hash_len" as the result.
1710 */
1711static inline u64 hash_name(const char *name)
1712{
1713 unsigned long a, b, adata, bdata, mask, hash, len;
1714 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1715
1716 hash = a = 0;
1717 len = -sizeof(unsigned long);
1718 do {
1719 hash = (hash + a) * 9;
1720 len += sizeof(unsigned long);
1721 a = load_unaligned_zeropad(name+len);
1722 b = a ^ REPEAT_BYTE('/');
1723 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1724
1725 adata = prep_zero_mask(a, adata, &constants);
1726 bdata = prep_zero_mask(b, bdata, &constants);
1727
1728 mask = create_zero_mask(adata | bdata);
1729
1730 hash += a & zero_bytemask(mask);
1731 len += find_zero(mask);
1732 return hashlen_create(fold_hash(hash), len);
1733}
1734
1735#else
1736
1737unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1738{
1739 unsigned long hash = init_name_hash();
1740 while (len--)
1741 hash = partial_name_hash(*name++, hash);
1742 return end_name_hash(hash);
1743}
1744EXPORT_SYMBOL(full_name_hash);
1745
1746/*
1747 * We know there's a real path component here of at least
1748 * one character.
1749 */
1750static inline u64 hash_name(const char *name)
1751{
1752 unsigned long hash = init_name_hash();
1753 unsigned long len = 0, c;
1754
1755 c = (unsigned char)*name;
1756 do {
1757 len++;
1758 hash = partial_name_hash(c, hash);
1759 c = (unsigned char)name[len];
1760 } while (c && c != '/');
1761 return hashlen_create(end_name_hash(hash), len);
1762}
1763
1764#endif
1765
1766/*
1767 * Name resolution.
1768 * This is the basic name resolution function, turning a pathname into
1769 * the final dentry. We expect 'base' to be positive and a directory.
1770 *
1771 * Returns 0 and nd will have valid dentry and mnt on success.
1772 * Returns error and drops reference to input namei data on failure.
1773 */
1774static int link_path_walk(const char *name, struct nameidata *nd)
1775{
1776 int err;
1777
1778 while (*name=='/')
1779 name++;
1780 if (!*name)
1781 return 0;
1782
1783 /* At this point we know we have a real path component. */
1784 for(;;) {
1785 u64 hash_len;
1786 int type;
1787
1788 err = may_lookup(nd);
1789 if (err)
1790 break;
1791
1792 hash_len = hash_name(name);
1793
1794 type = LAST_NORM;
1795 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1796 case 2:
1797 if (name[1] == '.') {
1798 type = LAST_DOTDOT;
1799 nd->flags |= LOOKUP_JUMPED;
1800 }
1801 break;
1802 case 1:
1803 type = LAST_DOT;
1804 }
1805 if (likely(type == LAST_NORM)) {
1806 struct dentry *parent = nd->path.dentry;
1807 nd->flags &= ~LOOKUP_JUMPED;
1808 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1809 struct qstr this = { { .hash_len = hash_len }, .name = name };
1810 err = parent->d_op->d_hash(parent, &this);
1811 if (err < 0)
1812 break;
1813 hash_len = this.hash_len;
1814 name = this.name;
1815 }
1816 }
1817
1818 nd->last.hash_len = hash_len;
1819 nd->last.name = name;
1820 nd->last_type = type;
1821
1822 name += hashlen_len(hash_len);
1823 if (!*name)
1824 goto OK;
1825 /*
1826 * If it wasn't NUL, we know it was '/'. Skip that
1827 * slash, and continue until no more slashes.
1828 */
1829 do {
1830 name++;
1831 } while (unlikely(*name == '/'));
1832 if (unlikely(!*name)) {
1833OK:
1834 /* called from path_init(), done */
1835 if (!nd->depth)
1836 return 0;
1837 name = nd->stack[nd->depth - 1].name;
1838 /* called from trailing_symlink(), done */
1839 if (!name)
1840 return 0;
1841 /* last component of nested symlink */
1842 err = walk_component(nd, WALK_GET | WALK_PUT);
1843 } else {
1844 err = walk_component(nd, WALK_GET);
1845 }
1846 if (err < 0)
1847 break;
1848
1849 if (err) {
1850 const char *s = get_link(nd);
1851
1852 if (unlikely(IS_ERR(s))) {
1853 err = PTR_ERR(s);
1854 break;
1855 }
1856 err = 0;
1857 if (unlikely(!s)) {
1858 /* jumped */
1859 put_link(nd);
1860 } else {
1861 if (*s == '/') {
1862 if (!nd->root.mnt)
1863 set_root(nd);
1864 path_put(&nd->path);
1865 nd->path = nd->root;
1866 path_get(&nd->root);
1867 nd->flags |= LOOKUP_JUMPED;
1868 while (unlikely(*++s == '/'))
1869 ;
1870 }
1871 nd->inode = nd->path.dentry->d_inode;
1872 nd->stack[nd->depth - 1].name = name;
1873 if (!*s)
1874 goto OK;
1875 name = s;
1876 continue;
1877 }
1878 }
1879 if (!d_can_lookup(nd->path.dentry)) {
1880 err = -ENOTDIR;
1881 break;
1882 }
1883 }
1884 terminate_walk(nd);
1885 return err;
1886}
1887
1888static int path_init(int dfd, const struct filename *name, unsigned int flags,
1889 struct nameidata *nd)
1890{
1891 int retval = 0;
1892 const char *s = name->name;
1893
1894 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1895 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1896 nd->depth = 0;
1897 nd->base = NULL;
1898 if (flags & LOOKUP_ROOT) {
1899 struct dentry *root = nd->root.dentry;
1900 struct inode *inode = root->d_inode;
1901 if (*s) {
1902 if (!d_can_lookup(root))
1903 return -ENOTDIR;
1904 retval = inode_permission(inode, MAY_EXEC);
1905 if (retval)
1906 return retval;
1907 }
1908 nd->path = nd->root;
1909 nd->inode = inode;
1910 if (flags & LOOKUP_RCU) {
1911 rcu_read_lock();
1912 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1913 nd->m_seq = read_seqbegin(&mount_lock);
1914 } else {
1915 path_get(&nd->path);
1916 }
1917 goto done;
1918 }
1919
1920 nd->root.mnt = NULL;
1921
1922 nd->m_seq = read_seqbegin(&mount_lock);
1923 if (*s == '/') {
1924 if (flags & LOOKUP_RCU) {
1925 rcu_read_lock();
1926 nd->seq = set_root_rcu(nd);
1927 } else {
1928 set_root(nd);
1929 path_get(&nd->root);
1930 }
1931 nd->path = nd->root;
1932 } else if (dfd == AT_FDCWD) {
1933 if (flags & LOOKUP_RCU) {
1934 struct fs_struct *fs = current->fs;
1935 unsigned seq;
1936
1937 rcu_read_lock();
1938
1939 do {
1940 seq = read_seqcount_begin(&fs->seq);
1941 nd->path = fs->pwd;
1942 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1943 } while (read_seqcount_retry(&fs->seq, seq));
1944 } else {
1945 get_fs_pwd(current->fs, &nd->path);
1946 }
1947 } else {
1948 /* Caller must check execute permissions on the starting path component */
1949 struct fd f = fdget_raw(dfd);
1950 struct dentry *dentry;
1951
1952 if (!f.file)
1953 return -EBADF;
1954
1955 dentry = f.file->f_path.dentry;
1956
1957 if (*s) {
1958 if (!d_can_lookup(dentry)) {
1959 fdput(f);
1960 return -ENOTDIR;
1961 }
1962 }
1963
1964 nd->path = f.file->f_path;
1965 if (flags & LOOKUP_RCU) {
1966 if (f.flags & FDPUT_FPUT)
1967 nd->base = f.file;
1968 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1969 rcu_read_lock();
1970 } else {
1971 path_get(&nd->path);
1972 fdput(f);
1973 }
1974 }
1975
1976 nd->inode = nd->path.dentry->d_inode;
1977 if (!(flags & LOOKUP_RCU))
1978 goto done;
1979 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1980 goto done;
1981 if (!(nd->flags & LOOKUP_ROOT))
1982 nd->root.mnt = NULL;
1983 rcu_read_unlock();
1984 return -ECHILD;
1985done:
1986 nd->total_link_count = 0;
1987 return link_path_walk(s, nd);
1988}
1989
1990static void path_cleanup(struct nameidata *nd)
1991{
1992 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1993 path_put(&nd->root);
1994 nd->root.mnt = NULL;
1995 }
1996 if (unlikely(nd->base))
1997 fput(nd->base);
1998}
1999
2000static int trailing_symlink(struct nameidata *nd)
2001{
2002 const char *s;
2003 int error = may_follow_link(&nd->link, nd);
2004 if (unlikely(error))
2005 return error;
2006 nd->flags |= LOOKUP_PARENT;
2007 s = get_link(nd);
2008 if (unlikely(IS_ERR(s))) {
2009 terminate_walk(nd);
2010 return PTR_ERR(s);
2011 }
2012 if (unlikely(!s))
2013 return 0;
2014 if (*s == '/') {
2015 if (!nd->root.mnt)
2016 set_root(nd);
2017 path_put(&nd->path);
2018 nd->path = nd->root;
2019 path_get(&nd->root);
2020 nd->flags |= LOOKUP_JUMPED;
2021 }
2022 nd->inode = nd->path.dentry->d_inode;
2023 nd->stack[0].name = NULL;
2024 return link_path_walk(s, nd);
2025}
2026
2027static inline int lookup_last(struct nameidata *nd)
2028{
2029 int err;
2030 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2031 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2032
2033 nd->flags &= ~LOOKUP_PARENT;
2034 err = walk_component(nd,
2035 nd->flags & LOOKUP_FOLLOW
2036 ? nd->depth
2037 ? WALK_PUT | WALK_GET
2038 : WALK_GET
2039 : 0);
2040 if (err < 0)
2041 terminate_walk(nd);
2042 return err;
2043}
2044
2045/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2046static int path_lookupat(int dfd, const struct filename *name,
2047 unsigned int flags, struct nameidata *nd)
2048{
2049 int err;
2050
2051 /*
2052 * Path walking is largely split up into 2 different synchronisation
2053 * schemes, rcu-walk and ref-walk (explained in
2054 * Documentation/filesystems/path-lookup.txt). These share much of the
2055 * path walk code, but some things particularly setup, cleanup, and
2056 * following mounts are sufficiently divergent that functions are
2057 * duplicated. Typically there is a function foo(), and its RCU
2058 * analogue, foo_rcu().
2059 *
2060 * -ECHILD is the error number of choice (just to avoid clashes) that
2061 * is returned if some aspect of an rcu-walk fails. Such an error must
2062 * be handled by restarting a traditional ref-walk (which will always
2063 * be able to complete).
2064 */
2065 err = path_init(dfd, name, flags, nd);
2066 if (!err && !(flags & LOOKUP_PARENT)) {
2067 while ((err = lookup_last(nd)) > 0) {
2068 err = trailing_symlink(nd);
2069 if (err)
2070 break;
2071 }
2072 }
2073
2074 if (!err)
2075 err = complete_walk(nd);
2076
2077 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2078 if (!d_can_lookup(nd->path.dentry)) {
2079 path_put(&nd->path);
2080 err = -ENOTDIR;
2081 }
2082 }
2083
2084 path_cleanup(nd);
2085 return err;
2086}
2087
2088static int filename_lookup(int dfd, struct filename *name,
2089 unsigned int flags, struct nameidata *nd)
2090{
2091 int retval;
2092 struct nameidata *saved_nd = set_nameidata(nd);
2093
2094 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2095 if (unlikely(retval == -ECHILD))
2096 retval = path_lookupat(dfd, name, flags, nd);
2097 if (unlikely(retval == -ESTALE))
2098 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2099
2100 if (likely(!retval))
2101 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2102 restore_nameidata(saved_nd);
2103 return retval;
2104}
2105
2106/* does lookup, returns the object with parent locked */
2107struct dentry *kern_path_locked(const char *name, struct path *path)
2108{
2109 struct filename *filename = getname_kernel(name);
2110 struct nameidata nd;
2111 struct dentry *d;
2112 int err;
2113
2114 if (IS_ERR(filename))
2115 return ERR_CAST(filename);
2116
2117 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2118 if (err) {
2119 d = ERR_PTR(err);
2120 goto out;
2121 }
2122 if (nd.last_type != LAST_NORM) {
2123 path_put(&nd.path);
2124 d = ERR_PTR(-EINVAL);
2125 goto out;
2126 }
2127 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2128 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2129 if (IS_ERR(d)) {
2130 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2131 path_put(&nd.path);
2132 goto out;
2133 }
2134 *path = nd.path;
2135out:
2136 putname(filename);
2137 return d;
2138}
2139
2140int kern_path(const char *name, unsigned int flags, struct path *path)
2141{
2142 struct nameidata nd;
2143 struct filename *filename = getname_kernel(name);
2144 int res = PTR_ERR(filename);
2145
2146 if (!IS_ERR(filename)) {
2147 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2148 putname(filename);
2149 if (!res)
2150 *path = nd.path;
2151 }
2152 return res;
2153}
2154EXPORT_SYMBOL(kern_path);
2155
2156/**
2157 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2158 * @dentry: pointer to dentry of the base directory
2159 * @mnt: pointer to vfs mount of the base directory
2160 * @name: pointer to file name
2161 * @flags: lookup flags
2162 * @path: pointer to struct path to fill
2163 */
2164int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2165 const char *name, unsigned int flags,
2166 struct path *path)
2167{
2168 struct filename *filename = getname_kernel(name);
2169 int err = PTR_ERR(filename);
2170
2171 BUG_ON(flags & LOOKUP_PARENT);
2172
2173 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2174 if (!IS_ERR(filename)) {
2175 struct nameidata nd;
2176 nd.root.dentry = dentry;
2177 nd.root.mnt = mnt;
2178 err = filename_lookup(AT_FDCWD, filename,
2179 flags | LOOKUP_ROOT, &nd);
2180 if (!err)
2181 *path = nd.path;
2182 putname(filename);
2183 }
2184 return err;
2185}
2186EXPORT_SYMBOL(vfs_path_lookup);
2187
2188/**
2189 * lookup_one_len - filesystem helper to lookup single pathname component
2190 * @name: pathname component to lookup
2191 * @base: base directory to lookup from
2192 * @len: maximum length @len should be interpreted to
2193 *
2194 * Note that this routine is purely a helper for filesystem usage and should
2195 * not be called by generic code.
2196 */
2197struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2198{
2199 struct qstr this;
2200 unsigned int c;
2201 int err;
2202
2203 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2204
2205 this.name = name;
2206 this.len = len;
2207 this.hash = full_name_hash(name, len);
2208 if (!len)
2209 return ERR_PTR(-EACCES);
2210
2211 if (unlikely(name[0] == '.')) {
2212 if (len < 2 || (len == 2 && name[1] == '.'))
2213 return ERR_PTR(-EACCES);
2214 }
2215
2216 while (len--) {
2217 c = *(const unsigned char *)name++;
2218 if (c == '/' || c == '\0')
2219 return ERR_PTR(-EACCES);
2220 }
2221 /*
2222 * See if the low-level filesystem might want
2223 * to use its own hash..
2224 */
2225 if (base->d_flags & DCACHE_OP_HASH) {
2226 int err = base->d_op->d_hash(base, &this);
2227 if (err < 0)
2228 return ERR_PTR(err);
2229 }
2230
2231 err = inode_permission(base->d_inode, MAY_EXEC);
2232 if (err)
2233 return ERR_PTR(err);
2234
2235 return __lookup_hash(&this, base, 0);
2236}
2237EXPORT_SYMBOL(lookup_one_len);
2238
2239int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2240 struct path *path, int *empty)
2241{
2242 struct nameidata nd;
2243 struct filename *tmp = getname_flags(name, flags, empty);
2244 int err = PTR_ERR(tmp);
2245 if (!IS_ERR(tmp)) {
2246
2247 BUG_ON(flags & LOOKUP_PARENT);
2248
2249 err = filename_lookup(dfd, tmp, flags, &nd);
2250 putname(tmp);
2251 if (!err)
2252 *path = nd.path;
2253 }
2254 return err;
2255}
2256
2257int user_path_at(int dfd, const char __user *name, unsigned flags,
2258 struct path *path)
2259{
2260 return user_path_at_empty(dfd, name, flags, path, NULL);
2261}
2262EXPORT_SYMBOL(user_path_at);
2263
2264/*
2265 * NB: most callers don't do anything directly with the reference to the
2266 * to struct filename, but the nd->last pointer points into the name string
2267 * allocated by getname. So we must hold the reference to it until all
2268 * path-walking is complete.
2269 */
2270static struct filename *
2271user_path_parent(int dfd, const char __user *path,
2272 struct path *parent,
2273 struct qstr *last,
2274 int *type,
2275 unsigned int flags)
2276{
2277 struct nameidata nd;
2278 struct filename *s = getname(path);
2279 int error;
2280
2281 /* only LOOKUP_REVAL is allowed in extra flags */
2282 flags &= LOOKUP_REVAL;
2283
2284 if (IS_ERR(s))
2285 return s;
2286
2287 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2288 if (error) {
2289 putname(s);
2290 return ERR_PTR(error);
2291 }
2292 *parent = nd.path;
2293 *last = nd.last;
2294 *type = nd.last_type;
2295
2296 return s;
2297}
2298
2299/**
2300 * mountpoint_last - look up last component for umount
2301 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2302 * @path: pointer to container for result
2303 *
2304 * This is a special lookup_last function just for umount. In this case, we
2305 * need to resolve the path without doing any revalidation.
2306 *
2307 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2308 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2309 * in almost all cases, this lookup will be served out of the dcache. The only
2310 * cases where it won't are if nd->last refers to a symlink or the path is
2311 * bogus and it doesn't exist.
2312 *
2313 * Returns:
2314 * -error: if there was an error during lookup. This includes -ENOENT if the
2315 * lookup found a negative dentry. The nd->path reference will also be
2316 * put in this case.
2317 *
2318 * 0: if we successfully resolved nd->path and found it to not to be a
2319 * symlink that needs to be followed. "path" will also be populated.
2320 * The nd->path reference will also be put.
2321 *
2322 * 1: if we successfully resolved nd->last and found it to be a symlink
2323 * that needs to be followed. "path" will be populated with the path
2324 * to the link, and nd->path will *not* be put.
2325 */
2326static int
2327mountpoint_last(struct nameidata *nd, struct path *path)
2328{
2329 int error = 0;
2330 struct dentry *dentry;
2331 struct dentry *dir = nd->path.dentry;
2332
2333 /* If we're in rcuwalk, drop out of it to handle last component */
2334 if (nd->flags & LOOKUP_RCU) {
2335 if (unlazy_walk(nd, NULL)) {
2336 error = -ECHILD;
2337 goto out;
2338 }
2339 }
2340
2341 nd->flags &= ~LOOKUP_PARENT;
2342
2343 if (unlikely(nd->last_type != LAST_NORM)) {
2344 error = handle_dots(nd, nd->last_type);
2345 if (error)
2346 goto out;
2347 dentry = dget(nd->path.dentry);
2348 goto done;
2349 }
2350
2351 mutex_lock(&dir->d_inode->i_mutex);
2352 dentry = d_lookup(dir, &nd->last);
2353 if (!dentry) {
2354 /*
2355 * No cached dentry. Mounted dentries are pinned in the cache,
2356 * so that means that this dentry is probably a symlink or the
2357 * path doesn't actually point to a mounted dentry.
2358 */
2359 dentry = d_alloc(dir, &nd->last);
2360 if (!dentry) {
2361 error = -ENOMEM;
2362 mutex_unlock(&dir->d_inode->i_mutex);
2363 goto out;
2364 }
2365 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2366 error = PTR_ERR(dentry);
2367 if (IS_ERR(dentry)) {
2368 mutex_unlock(&dir->d_inode->i_mutex);
2369 goto out;
2370 }
2371 }
2372 mutex_unlock(&dir->d_inode->i_mutex);
2373
2374done:
2375 if (d_is_negative(dentry)) {
2376 error = -ENOENT;
2377 dput(dentry);
2378 goto out;
2379 }
2380 if (nd->depth)
2381 put_link(nd);
2382 path->dentry = dentry;
2383 path->mnt = nd->path.mnt;
2384 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW);
2385 if (unlikely(error)) {
2386 if (error < 0)
2387 goto out;
2388 return error;
2389 }
2390 mntget(path->mnt);
2391 follow_mount(path);
2392 error = 0;
2393out:
2394 terminate_walk(nd);
2395 return error;
2396}
2397
2398/**
2399 * path_mountpoint - look up a path to be umounted
2400 * @dfd: directory file descriptor to start walk from
2401 * @name: full pathname to walk
2402 * @path: pointer to container for result
2403 * @flags: lookup flags
2404 *
2405 * Look up the given name, but don't attempt to revalidate the last component.
2406 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2407 */
2408static int
2409path_mountpoint(int dfd, const struct filename *name, struct path *path,
2410 struct nameidata *nd, unsigned int flags)
2411{
2412 int err = path_init(dfd, name, flags, nd);
2413 if (unlikely(err))
2414 goto out;
2415
2416 while ((err = mountpoint_last(nd, path)) > 0) {
2417 err = trailing_symlink(nd);
2418 if (err)
2419 break;
2420 }
2421out:
2422 path_cleanup(nd);
2423 return err;
2424}
2425
2426static int
2427filename_mountpoint(int dfd, struct filename *name, struct path *path,
2428 unsigned int flags)
2429{
2430 struct nameidata nd, *saved;
2431 int error;
2432 if (IS_ERR(name))
2433 return PTR_ERR(name);
2434 saved = set_nameidata(&nd);
2435 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2436 if (unlikely(error == -ECHILD))
2437 error = path_mountpoint(dfd, name, path, &nd, flags);
2438 if (unlikely(error == -ESTALE))
2439 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2440 if (likely(!error))
2441 audit_inode(name, path->dentry, 0);
2442 restore_nameidata(saved);
2443 putname(name);
2444 return error;
2445}
2446
2447/**
2448 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2449 * @dfd: directory file descriptor
2450 * @name: pathname from userland
2451 * @flags: lookup flags
2452 * @path: pointer to container to hold result
2453 *
2454 * A umount is a special case for path walking. We're not actually interested
2455 * in the inode in this situation, and ESTALE errors can be a problem. We
2456 * simply want track down the dentry and vfsmount attached at the mountpoint
2457 * and avoid revalidating the last component.
2458 *
2459 * Returns 0 and populates "path" on success.
2460 */
2461int
2462user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2463 struct path *path)
2464{
2465 return filename_mountpoint(dfd, getname(name), path, flags);
2466}
2467
2468int
2469kern_path_mountpoint(int dfd, const char *name, struct path *path,
2470 unsigned int flags)
2471{
2472 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2473}
2474EXPORT_SYMBOL(kern_path_mountpoint);
2475
2476int __check_sticky(struct inode *dir, struct inode *inode)
2477{
2478 kuid_t fsuid = current_fsuid();
2479
2480 if (uid_eq(inode->i_uid, fsuid))
2481 return 0;
2482 if (uid_eq(dir->i_uid, fsuid))
2483 return 0;
2484 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2485}
2486EXPORT_SYMBOL(__check_sticky);
2487
2488/*
2489 * Check whether we can remove a link victim from directory dir, check
2490 * whether the type of victim is right.
2491 * 1. We can't do it if dir is read-only (done in permission())
2492 * 2. We should have write and exec permissions on dir
2493 * 3. We can't remove anything from append-only dir
2494 * 4. We can't do anything with immutable dir (done in permission())
2495 * 5. If the sticky bit on dir is set we should either
2496 * a. be owner of dir, or
2497 * b. be owner of victim, or
2498 * c. have CAP_FOWNER capability
2499 * 6. If the victim is append-only or immutable we can't do antyhing with
2500 * links pointing to it.
2501 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2502 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2503 * 9. We can't remove a root or mountpoint.
2504 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2505 * nfs_async_unlink().
2506 */
2507static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2508{
2509 struct inode *inode = victim->d_inode;
2510 int error;
2511
2512 if (d_is_negative(victim))
2513 return -ENOENT;
2514 BUG_ON(!inode);
2515
2516 BUG_ON(victim->d_parent->d_inode != dir);
2517 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2518
2519 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2520 if (error)
2521 return error;
2522 if (IS_APPEND(dir))
2523 return -EPERM;
2524
2525 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2526 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2527 return -EPERM;
2528 if (isdir) {
2529 if (!d_is_dir(victim))
2530 return -ENOTDIR;
2531 if (IS_ROOT(victim))
2532 return -EBUSY;
2533 } else if (d_is_dir(victim))
2534 return -EISDIR;
2535 if (IS_DEADDIR(dir))
2536 return -ENOENT;
2537 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2538 return -EBUSY;
2539 return 0;
2540}
2541
2542/* Check whether we can create an object with dentry child in directory
2543 * dir.
2544 * 1. We can't do it if child already exists (open has special treatment for
2545 * this case, but since we are inlined it's OK)
2546 * 2. We can't do it if dir is read-only (done in permission())
2547 * 3. We should have write and exec permissions on dir
2548 * 4. We can't do it if dir is immutable (done in permission())
2549 */
2550static inline int may_create(struct inode *dir, struct dentry *child)
2551{
2552 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2553 if (child->d_inode)
2554 return -EEXIST;
2555 if (IS_DEADDIR(dir))
2556 return -ENOENT;
2557 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2558}
2559
2560/*
2561 * p1 and p2 should be directories on the same fs.
2562 */
2563struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2564{
2565 struct dentry *p;
2566
2567 if (p1 == p2) {
2568 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2569 return NULL;
2570 }
2571
2572 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2573
2574 p = d_ancestor(p2, p1);
2575 if (p) {
2576 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2577 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2578 return p;
2579 }
2580
2581 p = d_ancestor(p1, p2);
2582 if (p) {
2583 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2584 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2585 return p;
2586 }
2587
2588 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2589 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2590 return NULL;
2591}
2592EXPORT_SYMBOL(lock_rename);
2593
2594void unlock_rename(struct dentry *p1, struct dentry *p2)
2595{
2596 mutex_unlock(&p1->d_inode->i_mutex);
2597 if (p1 != p2) {
2598 mutex_unlock(&p2->d_inode->i_mutex);
2599 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2600 }
2601}
2602EXPORT_SYMBOL(unlock_rename);
2603
2604int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2605 bool want_excl)
2606{
2607 int error = may_create(dir, dentry);
2608 if (error)
2609 return error;
2610
2611 if (!dir->i_op->create)
2612 return -EACCES; /* shouldn't it be ENOSYS? */
2613 mode &= S_IALLUGO;
2614 mode |= S_IFREG;
2615 error = security_inode_create(dir, dentry, mode);
2616 if (error)
2617 return error;
2618 error = dir->i_op->create(dir, dentry, mode, want_excl);
2619 if (!error)
2620 fsnotify_create(dir, dentry);
2621 return error;
2622}
2623EXPORT_SYMBOL(vfs_create);
2624
2625static int may_open(struct path *path, int acc_mode, int flag)
2626{
2627 struct dentry *dentry = path->dentry;
2628 struct inode *inode = dentry->d_inode;
2629 int error;
2630
2631 /* O_PATH? */
2632 if (!acc_mode)
2633 return 0;
2634
2635 if (!inode)
2636 return -ENOENT;
2637
2638 switch (inode->i_mode & S_IFMT) {
2639 case S_IFLNK:
2640 return -ELOOP;
2641 case S_IFDIR:
2642 if (acc_mode & MAY_WRITE)
2643 return -EISDIR;
2644 break;
2645 case S_IFBLK:
2646 case S_IFCHR:
2647 if (path->mnt->mnt_flags & MNT_NODEV)
2648 return -EACCES;
2649 /*FALLTHRU*/
2650 case S_IFIFO:
2651 case S_IFSOCK:
2652 flag &= ~O_TRUNC;
2653 break;
2654 }
2655
2656 error = inode_permission(inode, acc_mode);
2657 if (error)
2658 return error;
2659
2660 /*
2661 * An append-only file must be opened in append mode for writing.
2662 */
2663 if (IS_APPEND(inode)) {
2664 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2665 return -EPERM;
2666 if (flag & O_TRUNC)
2667 return -EPERM;
2668 }
2669
2670 /* O_NOATIME can only be set by the owner or superuser */
2671 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2672 return -EPERM;
2673
2674 return 0;
2675}
2676
2677static int handle_truncate(struct file *filp)
2678{
2679 struct path *path = &filp->f_path;
2680 struct inode *inode = path->dentry->d_inode;
2681 int error = get_write_access(inode);
2682 if (error)
2683 return error;
2684 /*
2685 * Refuse to truncate files with mandatory locks held on them.
2686 */
2687 error = locks_verify_locked(filp);
2688 if (!error)
2689 error = security_path_truncate(path);
2690 if (!error) {
2691 error = do_truncate(path->dentry, 0,
2692 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2693 filp);
2694 }
2695 put_write_access(inode);
2696 return error;
2697}
2698
2699static inline int open_to_namei_flags(int flag)
2700{
2701 if ((flag & O_ACCMODE) == 3)
2702 flag--;
2703 return flag;
2704}
2705
2706static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2707{
2708 int error = security_path_mknod(dir, dentry, mode, 0);
2709 if (error)
2710 return error;
2711
2712 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2713 if (error)
2714 return error;
2715
2716 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2717}
2718
2719/*
2720 * Attempt to atomically look up, create and open a file from a negative
2721 * dentry.
2722 *
2723 * Returns 0 if successful. The file will have been created and attached to
2724 * @file by the filesystem calling finish_open().
2725 *
2726 * Returns 1 if the file was looked up only or didn't need creating. The
2727 * caller will need to perform the open themselves. @path will have been
2728 * updated to point to the new dentry. This may be negative.
2729 *
2730 * Returns an error code otherwise.
2731 */
2732static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2733 struct path *path, struct file *file,
2734 const struct open_flags *op,
2735 bool got_write, bool need_lookup,
2736 int *opened)
2737{
2738 struct inode *dir = nd->path.dentry->d_inode;
2739 unsigned open_flag = open_to_namei_flags(op->open_flag);
2740 umode_t mode;
2741 int error;
2742 int acc_mode;
2743 int create_error = 0;
2744 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2745 bool excl;
2746
2747 BUG_ON(dentry->d_inode);
2748
2749 /* Don't create child dentry for a dead directory. */
2750 if (unlikely(IS_DEADDIR(dir))) {
2751 error = -ENOENT;
2752 goto out;
2753 }
2754
2755 mode = op->mode;
2756 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2757 mode &= ~current_umask();
2758
2759 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2760 if (excl)
2761 open_flag &= ~O_TRUNC;
2762
2763 /*
2764 * Checking write permission is tricky, bacuse we don't know if we are
2765 * going to actually need it: O_CREAT opens should work as long as the
2766 * file exists. But checking existence breaks atomicity. The trick is
2767 * to check access and if not granted clear O_CREAT from the flags.
2768 *
2769 * Another problem is returing the "right" error value (e.g. for an
2770 * O_EXCL open we want to return EEXIST not EROFS).
2771 */
2772 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2773 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2774 if (!(open_flag & O_CREAT)) {
2775 /*
2776 * No O_CREATE -> atomicity not a requirement -> fall
2777 * back to lookup + open
2778 */
2779 goto no_open;
2780 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2781 /* Fall back and fail with the right error */
2782 create_error = -EROFS;
2783 goto no_open;
2784 } else {
2785 /* No side effects, safe to clear O_CREAT */
2786 create_error = -EROFS;
2787 open_flag &= ~O_CREAT;
2788 }
2789 }
2790
2791 if (open_flag & O_CREAT) {
2792 error = may_o_create(&nd->path, dentry, mode);
2793 if (error) {
2794 create_error = error;
2795 if (open_flag & O_EXCL)
2796 goto no_open;
2797 open_flag &= ~O_CREAT;
2798 }
2799 }
2800
2801 if (nd->flags & LOOKUP_DIRECTORY)
2802 open_flag |= O_DIRECTORY;
2803
2804 file->f_path.dentry = DENTRY_NOT_SET;
2805 file->f_path.mnt = nd->path.mnt;
2806 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2807 opened);
2808 if (error < 0) {
2809 if (create_error && error == -ENOENT)
2810 error = create_error;
2811 goto out;
2812 }
2813
2814 if (error) { /* returned 1, that is */
2815 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2816 error = -EIO;
2817 goto out;
2818 }
2819 if (file->f_path.dentry) {
2820 dput(dentry);
2821 dentry = file->f_path.dentry;
2822 }
2823 if (*opened & FILE_CREATED)
2824 fsnotify_create(dir, dentry);
2825 if (!dentry->d_inode) {
2826 WARN_ON(*opened & FILE_CREATED);
2827 if (create_error) {
2828 error = create_error;
2829 goto out;
2830 }
2831 } else {
2832 if (excl && !(*opened & FILE_CREATED)) {
2833 error = -EEXIST;
2834 goto out;
2835 }
2836 }
2837 goto looked_up;
2838 }
2839
2840 /*
2841 * We didn't have the inode before the open, so check open permission
2842 * here.
2843 */
2844 acc_mode = op->acc_mode;
2845 if (*opened & FILE_CREATED) {
2846 WARN_ON(!(open_flag & O_CREAT));
2847 fsnotify_create(dir, dentry);
2848 acc_mode = MAY_OPEN;
2849 }
2850 error = may_open(&file->f_path, acc_mode, open_flag);
2851 if (error)
2852 fput(file);
2853
2854out:
2855 dput(dentry);
2856 return error;
2857
2858no_open:
2859 if (need_lookup) {
2860 dentry = lookup_real(dir, dentry, nd->flags);
2861 if (IS_ERR(dentry))
2862 return PTR_ERR(dentry);
2863
2864 if (create_error) {
2865 int open_flag = op->open_flag;
2866
2867 error = create_error;
2868 if ((open_flag & O_EXCL)) {
2869 if (!dentry->d_inode)
2870 goto out;
2871 } else if (!dentry->d_inode) {
2872 goto out;
2873 } else if ((open_flag & O_TRUNC) &&
2874 d_is_reg(dentry)) {
2875 goto out;
2876 }
2877 /* will fail later, go on to get the right error */
2878 }
2879 }
2880looked_up:
2881 path->dentry = dentry;
2882 path->mnt = nd->path.mnt;
2883 return 1;
2884}
2885
2886/*
2887 * Look up and maybe create and open the last component.
2888 *
2889 * Must be called with i_mutex held on parent.
2890 *
2891 * Returns 0 if the file was successfully atomically created (if necessary) and
2892 * opened. In this case the file will be returned attached to @file.
2893 *
2894 * Returns 1 if the file was not completely opened at this time, though lookups
2895 * and creations will have been performed and the dentry returned in @path will
2896 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2897 * specified then a negative dentry may be returned.
2898 *
2899 * An error code is returned otherwise.
2900 *
2901 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2902 * cleared otherwise prior to returning.
2903 */
2904static int lookup_open(struct nameidata *nd, struct path *path,
2905 struct file *file,
2906 const struct open_flags *op,
2907 bool got_write, int *opened)
2908{
2909 struct dentry *dir = nd->path.dentry;
2910 struct inode *dir_inode = dir->d_inode;
2911 struct dentry *dentry;
2912 int error;
2913 bool need_lookup;
2914
2915 *opened &= ~FILE_CREATED;
2916 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2917 if (IS_ERR(dentry))
2918 return PTR_ERR(dentry);
2919
2920 /* Cached positive dentry: will open in f_op->open */
2921 if (!need_lookup && dentry->d_inode)
2922 goto out_no_open;
2923
2924 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2925 return atomic_open(nd, dentry, path, file, op, got_write,
2926 need_lookup, opened);
2927 }
2928
2929 if (need_lookup) {
2930 BUG_ON(dentry->d_inode);
2931
2932 dentry = lookup_real(dir_inode, dentry, nd->flags);
2933 if (IS_ERR(dentry))
2934 return PTR_ERR(dentry);
2935 }
2936
2937 /* Negative dentry, just create the file */
2938 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2939 umode_t mode = op->mode;
2940 if (!IS_POSIXACL(dir->d_inode))
2941 mode &= ~current_umask();
2942 /*
2943 * This write is needed to ensure that a
2944 * rw->ro transition does not occur between
2945 * the time when the file is created and when
2946 * a permanent write count is taken through
2947 * the 'struct file' in finish_open().
2948 */
2949 if (!got_write) {
2950 error = -EROFS;
2951 goto out_dput;
2952 }
2953 *opened |= FILE_CREATED;
2954 error = security_path_mknod(&nd->path, dentry, mode, 0);
2955 if (error)
2956 goto out_dput;
2957 error = vfs_create(dir->d_inode, dentry, mode,
2958 nd->flags & LOOKUP_EXCL);
2959 if (error)
2960 goto out_dput;
2961 }
2962out_no_open:
2963 path->dentry = dentry;
2964 path->mnt = nd->path.mnt;
2965 return 1;
2966
2967out_dput:
2968 dput(dentry);
2969 return error;
2970}
2971
2972/*
2973 * Handle the last step of open()
2974 */
2975static int do_last(struct nameidata *nd,
2976 struct file *file, const struct open_flags *op,
2977 int *opened, struct filename *name)
2978{
2979 struct dentry *dir = nd->path.dentry;
2980 int open_flag = op->open_flag;
2981 bool will_truncate = (open_flag & O_TRUNC) != 0;
2982 bool got_write = false;
2983 int acc_mode = op->acc_mode;
2984 struct inode *inode;
2985 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2986 struct path path;
2987 bool retried = false;
2988 int error;
2989
2990 nd->flags &= ~LOOKUP_PARENT;
2991 nd->flags |= op->intent;
2992
2993 if (nd->last_type != LAST_NORM) {
2994 error = handle_dots(nd, nd->last_type);
2995 if (unlikely(error)) {
2996 terminate_walk(nd);
2997 return error;
2998 }
2999 goto finish_open;
3000 }
3001
3002 if (!(open_flag & O_CREAT)) {
3003 if (nd->last.name[nd->last.len])
3004 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3005 /* we _can_ be in RCU mode here */
3006 error = lookup_fast(nd, &path, &inode);
3007 if (likely(!error))
3008 goto finish_lookup;
3009
3010 if (error < 0)
3011 goto out;
3012
3013 BUG_ON(nd->inode != dir->d_inode);
3014 } else {
3015 /* create side of things */
3016 /*
3017 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3018 * has been cleared when we got to the last component we are
3019 * about to look up
3020 */
3021 error = complete_walk(nd);
3022 if (error) {
3023 if (nd->depth)
3024 put_link(nd);
3025 return error;
3026 }
3027
3028 audit_inode(name, dir, LOOKUP_PARENT);
3029 error = -EISDIR;
3030 /* trailing slashes? */
3031 if (nd->last.name[nd->last.len])
3032 goto out;
3033 }
3034
3035retry_lookup:
3036 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3037 error = mnt_want_write(nd->path.mnt);
3038 if (!error)
3039 got_write = true;
3040 /*
3041 * do _not_ fail yet - we might not need that or fail with
3042 * a different error; let lookup_open() decide; we'll be
3043 * dropping this one anyway.
3044 */
3045 }
3046 mutex_lock(&dir->d_inode->i_mutex);
3047 error = lookup_open(nd, &path, file, op, got_write, opened);
3048 mutex_unlock(&dir->d_inode->i_mutex);
3049
3050 if (error <= 0) {
3051 if (error)
3052 goto out;
3053
3054 if ((*opened & FILE_CREATED) ||
3055 !S_ISREG(file_inode(file)->i_mode))
3056 will_truncate = false;
3057
3058 audit_inode(name, file->f_path.dentry, 0);
3059 goto opened;
3060 }
3061
3062 if (*opened & FILE_CREATED) {
3063 /* Don't check for write permission, don't truncate */
3064 open_flag &= ~O_TRUNC;
3065 will_truncate = false;
3066 acc_mode = MAY_OPEN;
3067 path_to_nameidata(&path, nd);
3068 goto finish_open_created;
3069 }
3070
3071 /*
3072 * create/update audit record if it already exists.
3073 */
3074 if (d_is_positive(path.dentry))
3075 audit_inode(name, path.dentry, 0);
3076
3077 /*
3078 * If atomic_open() acquired write access it is dropped now due to
3079 * possible mount and symlink following (this might be optimized away if
3080 * necessary...)
3081 */
3082 if (got_write) {
3083 mnt_drop_write(nd->path.mnt);
3084 got_write = false;
3085 }
3086
3087 error = -EEXIST;
3088 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3089 goto exit_dput;
3090
3091 error = follow_managed(&path, nd);
3092 if (error < 0)
3093 goto out;
3094
3095 BUG_ON(nd->flags & LOOKUP_RCU);
3096 inode = path.dentry->d_inode;
3097 error = -ENOENT;
3098 if (d_is_negative(path.dentry)) {
3099 path_to_nameidata(&path, nd);
3100 goto out;
3101 }
3102finish_lookup:
3103 if (nd->depth)
3104 put_link(nd);
3105 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW);
3106 if (unlikely(error)) {
3107 if (error < 0)
3108 goto out;
3109 return error;
3110 }
3111
3112 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3113 path_to_nameidata(&path, nd);
3114 error = -ELOOP;
3115 goto out;
3116 }
3117
3118 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3119 path_to_nameidata(&path, nd);
3120 } else {
3121 save_parent.dentry = nd->path.dentry;
3122 save_parent.mnt = mntget(path.mnt);
3123 nd->path.dentry = path.dentry;
3124
3125 }
3126 nd->inode = inode;
3127 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3128finish_open:
3129 error = complete_walk(nd);
3130 if (error) {
3131 if (nd->depth)
3132 put_link(nd);
3133 path_put(&save_parent);
3134 return error;
3135 }
3136 audit_inode(name, nd->path.dentry, 0);
3137 error = -EISDIR;
3138 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3139 goto out;
3140 error = -ENOTDIR;
3141 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3142 goto out;
3143 if (!d_is_reg(nd->path.dentry))
3144 will_truncate = false;
3145
3146 if (will_truncate) {
3147 error = mnt_want_write(nd->path.mnt);
3148 if (error)
3149 goto out;
3150 got_write = true;
3151 }
3152finish_open_created:
3153 error = may_open(&nd->path, acc_mode, open_flag);
3154 if (error)
3155 goto out;
3156
3157 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3158 error = vfs_open(&nd->path, file, current_cred());
3159 if (!error) {
3160 *opened |= FILE_OPENED;
3161 } else {
3162 if (error == -EOPENSTALE)
3163 goto stale_open;
3164 goto out;
3165 }
3166opened:
3167 error = open_check_o_direct(file);
3168 if (error)
3169 goto exit_fput;
3170 error = ima_file_check(file, op->acc_mode, *opened);
3171 if (error)
3172 goto exit_fput;
3173
3174 if (will_truncate) {
3175 error = handle_truncate(file);
3176 if (error)
3177 goto exit_fput;
3178 }
3179out:
3180 if (got_write)
3181 mnt_drop_write(nd->path.mnt);
3182 path_put(&save_parent);
3183 terminate_walk(nd);
3184 return error;
3185
3186exit_dput:
3187 path_put_conditional(&path, nd);
3188 goto out;
3189exit_fput:
3190 fput(file);
3191 goto out;
3192
3193stale_open:
3194 /* If no saved parent or already retried then can't retry */
3195 if (!save_parent.dentry || retried)
3196 goto out;
3197
3198 BUG_ON(save_parent.dentry != dir);
3199 path_put(&nd->path);
3200 nd->path = save_parent;
3201 nd->inode = dir->d_inode;
3202 save_parent.mnt = NULL;
3203 save_parent.dentry = NULL;
3204 if (got_write) {
3205 mnt_drop_write(nd->path.mnt);
3206 got_write = false;
3207 }
3208 retried = true;
3209 goto retry_lookup;
3210}
3211
3212static int do_tmpfile(int dfd, struct filename *pathname,
3213 struct nameidata *nd, int flags,
3214 const struct open_flags *op,
3215 struct file *file, int *opened)
3216{
3217 static const struct qstr name = QSTR_INIT("/", 1);
3218 struct dentry *dentry, *child;
3219 struct inode *dir;
3220 int error = path_lookupat(dfd, pathname,
3221 flags | LOOKUP_DIRECTORY, nd);
3222 if (unlikely(error))
3223 return error;
3224 error = mnt_want_write(nd->path.mnt);
3225 if (unlikely(error))
3226 goto out;
3227 /* we want directory to be writable */
3228 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3229 if (error)
3230 goto out2;
3231 dentry = nd->path.dentry;
3232 dir = dentry->d_inode;
3233 if (!dir->i_op->tmpfile) {
3234 error = -EOPNOTSUPP;
3235 goto out2;
3236 }
3237 child = d_alloc(dentry, &name);
3238 if (unlikely(!child)) {
3239 error = -ENOMEM;
3240 goto out2;
3241 }
3242 nd->flags &= ~LOOKUP_DIRECTORY;
3243 nd->flags |= op->intent;
3244 dput(nd->path.dentry);
3245 nd->path.dentry = child;
3246 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3247 if (error)
3248 goto out2;
3249 audit_inode(pathname, nd->path.dentry, 0);
3250 /* Don't check for other permissions, the inode was just created */
3251 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3252 if (error)
3253 goto out2;
3254 file->f_path.mnt = nd->path.mnt;
3255 error = finish_open(file, nd->path.dentry, NULL, opened);
3256 if (error)
3257 goto out2;
3258 error = open_check_o_direct(file);
3259 if (error) {
3260 fput(file);
3261 } else if (!(op->open_flag & O_EXCL)) {
3262 struct inode *inode = file_inode(file);
3263 spin_lock(&inode->i_lock);
3264 inode->i_state |= I_LINKABLE;
3265 spin_unlock(&inode->i_lock);
3266 }
3267out2:
3268 mnt_drop_write(nd->path.mnt);
3269out:
3270 path_put(&nd->path);
3271 return error;
3272}
3273
3274static struct file *path_openat(int dfd, struct filename *pathname,
3275 struct nameidata *nd, const struct open_flags *op, int flags)
3276{
3277 struct file *file;
3278 int opened = 0;
3279 int error;
3280
3281 file = get_empty_filp();
3282 if (IS_ERR(file))
3283 return file;
3284
3285 file->f_flags = op->open_flag;
3286
3287 if (unlikely(file->f_flags & __O_TMPFILE)) {
3288 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3289 goto out2;
3290 }
3291
3292 error = path_init(dfd, pathname, flags, nd);
3293 if (unlikely(error))
3294 goto out;
3295
3296 while ((error = do_last(nd, file, op, &opened, pathname)) > 0) {
3297 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3298 error = trailing_symlink(nd);
3299 if (unlikely(error))
3300 break;
3301 }
3302out:
3303 path_cleanup(nd);
3304out2:
3305 if (!(opened & FILE_OPENED)) {
3306 BUG_ON(!error);
3307 put_filp(file);
3308 }
3309 if (unlikely(error)) {
3310 if (error == -EOPENSTALE) {
3311 if (flags & LOOKUP_RCU)
3312 error = -ECHILD;
3313 else
3314 error = -ESTALE;
3315 }
3316 file = ERR_PTR(error);
3317 }
3318 return file;
3319}
3320
3321struct file *do_filp_open(int dfd, struct filename *pathname,
3322 const struct open_flags *op)
3323{
3324 struct nameidata nd, *saved_nd = set_nameidata(&nd);
3325 int flags = op->lookup_flags;
3326 struct file *filp;
3327
3328 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3329 if (unlikely(filp == ERR_PTR(-ECHILD)))
3330 filp = path_openat(dfd, pathname, &nd, op, flags);
3331 if (unlikely(filp == ERR_PTR(-ESTALE)))
3332 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3333 restore_nameidata(saved_nd);
3334 return filp;
3335}
3336
3337struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3338 const char *name, const struct open_flags *op)
3339{
3340 struct nameidata nd, *saved_nd;
3341 struct file *file;
3342 struct filename *filename;
3343 int flags = op->lookup_flags | LOOKUP_ROOT;
3344
3345 nd.root.mnt = mnt;
3346 nd.root.dentry = dentry;
3347
3348 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3349 return ERR_PTR(-ELOOP);
3350
3351 filename = getname_kernel(name);
3352 if (unlikely(IS_ERR(filename)))
3353 return ERR_CAST(filename);
3354
3355 saved_nd = set_nameidata(&nd);
3356 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3357 if (unlikely(file == ERR_PTR(-ECHILD)))
3358 file = path_openat(-1, filename, &nd, op, flags);
3359 if (unlikely(file == ERR_PTR(-ESTALE)))
3360 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3361 restore_nameidata(saved_nd);
3362 putname(filename);
3363 return file;
3364}
3365
3366static struct dentry *filename_create(int dfd, struct filename *name,
3367 struct path *path, unsigned int lookup_flags)
3368{
3369 struct dentry *dentry = ERR_PTR(-EEXIST);
3370 struct nameidata nd;
3371 int err2;
3372 int error;
3373 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3374
3375 /*
3376 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3377 * other flags passed in are ignored!
3378 */
3379 lookup_flags &= LOOKUP_REVAL;
3380
3381 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3382 if (error)
3383 return ERR_PTR(error);
3384
3385 /*
3386 * Yucky last component or no last component at all?
3387 * (foo/., foo/.., /////)
3388 */
3389 if (nd.last_type != LAST_NORM)
3390 goto out;
3391 nd.flags &= ~LOOKUP_PARENT;
3392 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3393
3394 /* don't fail immediately if it's r/o, at least try to report other errors */
3395 err2 = mnt_want_write(nd.path.mnt);
3396 /*
3397 * Do the final lookup.
3398 */
3399 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3400 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3401 if (IS_ERR(dentry))
3402 goto unlock;
3403
3404 error = -EEXIST;
3405 if (d_is_positive(dentry))
3406 goto fail;
3407
3408 /*
3409 * Special case - lookup gave negative, but... we had foo/bar/
3410 * From the vfs_mknod() POV we just have a negative dentry -
3411 * all is fine. Let's be bastards - you had / on the end, you've
3412 * been asking for (non-existent) directory. -ENOENT for you.
3413 */
3414 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3415 error = -ENOENT;
3416 goto fail;
3417 }
3418 if (unlikely(err2)) {
3419 error = err2;
3420 goto fail;
3421 }
3422 *path = nd.path;
3423 return dentry;
3424fail:
3425 dput(dentry);
3426 dentry = ERR_PTR(error);
3427unlock:
3428 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3429 if (!err2)
3430 mnt_drop_write(nd.path.mnt);
3431out:
3432 path_put(&nd.path);
3433 return dentry;
3434}
3435
3436struct dentry *kern_path_create(int dfd, const char *pathname,
3437 struct path *path, unsigned int lookup_flags)
3438{
3439 struct filename *filename = getname_kernel(pathname);
3440 struct dentry *res;
3441
3442 if (IS_ERR(filename))
3443 return ERR_CAST(filename);
3444 res = filename_create(dfd, filename, path, lookup_flags);
3445 putname(filename);
3446 return res;
3447}
3448EXPORT_SYMBOL(kern_path_create);
3449
3450void done_path_create(struct path *path, struct dentry *dentry)
3451{
3452 dput(dentry);
3453 mutex_unlock(&path->dentry->d_inode->i_mutex);
3454 mnt_drop_write(path->mnt);
3455 path_put(path);
3456}
3457EXPORT_SYMBOL(done_path_create);
3458
3459struct dentry *user_path_create(int dfd, const char __user *pathname,
3460 struct path *path, unsigned int lookup_flags)
3461{
3462 struct filename *tmp = getname(pathname);
3463 struct dentry *res;
3464 if (IS_ERR(tmp))
3465 return ERR_CAST(tmp);
3466 res = filename_create(dfd, tmp, path, lookup_flags);
3467 putname(tmp);
3468 return res;
3469}
3470EXPORT_SYMBOL(user_path_create);
3471
3472int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3473{
3474 int error = may_create(dir, dentry);
3475
3476 if (error)
3477 return error;
3478
3479 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3480 return -EPERM;
3481
3482 if (!dir->i_op->mknod)
3483 return -EPERM;
3484
3485 error = devcgroup_inode_mknod(mode, dev);
3486 if (error)
3487 return error;
3488
3489 error = security_inode_mknod(dir, dentry, mode, dev);
3490 if (error)
3491 return error;
3492
3493 error = dir->i_op->mknod(dir, dentry, mode, dev);
3494 if (!error)
3495 fsnotify_create(dir, dentry);
3496 return error;
3497}
3498EXPORT_SYMBOL(vfs_mknod);
3499
3500static int may_mknod(umode_t mode)
3501{
3502 switch (mode & S_IFMT) {
3503 case S_IFREG:
3504 case S_IFCHR:
3505 case S_IFBLK:
3506 case S_IFIFO:
3507 case S_IFSOCK:
3508 case 0: /* zero mode translates to S_IFREG */
3509 return 0;
3510 case S_IFDIR:
3511 return -EPERM;
3512 default:
3513 return -EINVAL;
3514 }
3515}
3516
3517SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3518 unsigned, dev)
3519{
3520 struct dentry *dentry;
3521 struct path path;
3522 int error;
3523 unsigned int lookup_flags = 0;
3524
3525 error = may_mknod(mode);
3526 if (error)
3527 return error;
3528retry:
3529 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3530 if (IS_ERR(dentry))
3531 return PTR_ERR(dentry);
3532
3533 if (!IS_POSIXACL(path.dentry->d_inode))
3534 mode &= ~current_umask();
3535 error = security_path_mknod(&path, dentry, mode, dev);
3536 if (error)
3537 goto out;
3538 switch (mode & S_IFMT) {
3539 case 0: case S_IFREG:
3540 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3541 break;
3542 case S_IFCHR: case S_IFBLK:
3543 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3544 new_decode_dev(dev));
3545 break;
3546 case S_IFIFO: case S_IFSOCK:
3547 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3548 break;
3549 }
3550out:
3551 done_path_create(&path, dentry);
3552 if (retry_estale(error, lookup_flags)) {
3553 lookup_flags |= LOOKUP_REVAL;
3554 goto retry;
3555 }
3556 return error;
3557}
3558
3559SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3560{
3561 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3562}
3563
3564int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3565{
3566 int error = may_create(dir, dentry);
3567 unsigned max_links = dir->i_sb->s_max_links;
3568
3569 if (error)
3570 return error;
3571
3572 if (!dir->i_op->mkdir)
3573 return -EPERM;
3574
3575 mode &= (S_IRWXUGO|S_ISVTX);
3576 error = security_inode_mkdir(dir, dentry, mode);
3577 if (error)
3578 return error;
3579
3580 if (max_links && dir->i_nlink >= max_links)
3581 return -EMLINK;
3582
3583 error = dir->i_op->mkdir(dir, dentry, mode);
3584 if (!error)
3585 fsnotify_mkdir(dir, dentry);
3586 return error;
3587}
3588EXPORT_SYMBOL(vfs_mkdir);
3589
3590SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3591{
3592 struct dentry *dentry;
3593 struct path path;
3594 int error;
3595 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3596
3597retry:
3598 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3599 if (IS_ERR(dentry))
3600 return PTR_ERR(dentry);
3601
3602 if (!IS_POSIXACL(path.dentry->d_inode))
3603 mode &= ~current_umask();
3604 error = security_path_mkdir(&path, dentry, mode);
3605 if (!error)
3606 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3607 done_path_create(&path, dentry);
3608 if (retry_estale(error, lookup_flags)) {
3609 lookup_flags |= LOOKUP_REVAL;
3610 goto retry;
3611 }
3612 return error;
3613}
3614
3615SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3616{
3617 return sys_mkdirat(AT_FDCWD, pathname, mode);
3618}
3619
3620/*
3621 * The dentry_unhash() helper will try to drop the dentry early: we
3622 * should have a usage count of 1 if we're the only user of this
3623 * dentry, and if that is true (possibly after pruning the dcache),
3624 * then we drop the dentry now.
3625 *
3626 * A low-level filesystem can, if it choses, legally
3627 * do a
3628 *
3629 * if (!d_unhashed(dentry))
3630 * return -EBUSY;
3631 *
3632 * if it cannot handle the case of removing a directory
3633 * that is still in use by something else..
3634 */
3635void dentry_unhash(struct dentry *dentry)
3636{
3637 shrink_dcache_parent(dentry);
3638 spin_lock(&dentry->d_lock);
3639 if (dentry->d_lockref.count == 1)
3640 __d_drop(dentry);
3641 spin_unlock(&dentry->d_lock);
3642}
3643EXPORT_SYMBOL(dentry_unhash);
3644
3645int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3646{
3647 int error = may_delete(dir, dentry, 1);
3648
3649 if (error)
3650 return error;
3651
3652 if (!dir->i_op->rmdir)
3653 return -EPERM;
3654
3655 dget(dentry);
3656 mutex_lock(&dentry->d_inode->i_mutex);
3657
3658 error = -EBUSY;
3659 if (is_local_mountpoint(dentry))
3660 goto out;
3661
3662 error = security_inode_rmdir(dir, dentry);
3663 if (error)
3664 goto out;
3665
3666 shrink_dcache_parent(dentry);
3667 error = dir->i_op->rmdir(dir, dentry);
3668 if (error)
3669 goto out;
3670
3671 dentry->d_inode->i_flags |= S_DEAD;
3672 dont_mount(dentry);
3673 detach_mounts(dentry);
3674
3675out:
3676 mutex_unlock(&dentry->d_inode->i_mutex);
3677 dput(dentry);
3678 if (!error)
3679 d_delete(dentry);
3680 return error;
3681}
3682EXPORT_SYMBOL(vfs_rmdir);
3683
3684static long do_rmdir(int dfd, const char __user *pathname)
3685{
3686 int error = 0;
3687 struct filename *name;
3688 struct dentry *dentry;
3689 struct path path;
3690 struct qstr last;
3691 int type;
3692 unsigned int lookup_flags = 0;
3693retry:
3694 name = user_path_parent(dfd, pathname,
3695 &path, &last, &type, lookup_flags);
3696 if (IS_ERR(name))
3697 return PTR_ERR(name);
3698
3699 switch (type) {
3700 case LAST_DOTDOT:
3701 error = -ENOTEMPTY;
3702 goto exit1;
3703 case LAST_DOT:
3704 error = -EINVAL;
3705 goto exit1;
3706 case LAST_ROOT:
3707 error = -EBUSY;
3708 goto exit1;
3709 }
3710
3711 error = mnt_want_write(path.mnt);
3712 if (error)
3713 goto exit1;
3714
3715 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3716 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3717 error = PTR_ERR(dentry);
3718 if (IS_ERR(dentry))
3719 goto exit2;
3720 if (!dentry->d_inode) {
3721 error = -ENOENT;
3722 goto exit3;
3723 }
3724 error = security_path_rmdir(&path, dentry);
3725 if (error)
3726 goto exit3;
3727 error = vfs_rmdir(path.dentry->d_inode, dentry);
3728exit3:
3729 dput(dentry);
3730exit2:
3731 mutex_unlock(&path.dentry->d_inode->i_mutex);
3732 mnt_drop_write(path.mnt);
3733exit1:
3734 path_put(&path);
3735 putname(name);
3736 if (retry_estale(error, lookup_flags)) {
3737 lookup_flags |= LOOKUP_REVAL;
3738 goto retry;
3739 }
3740 return error;
3741}
3742
3743SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3744{
3745 return do_rmdir(AT_FDCWD, pathname);
3746}
3747
3748/**
3749 * vfs_unlink - unlink a filesystem object
3750 * @dir: parent directory
3751 * @dentry: victim
3752 * @delegated_inode: returns victim inode, if the inode is delegated.
3753 *
3754 * The caller must hold dir->i_mutex.
3755 *
3756 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3757 * return a reference to the inode in delegated_inode. The caller
3758 * should then break the delegation on that inode and retry. Because
3759 * breaking a delegation may take a long time, the caller should drop
3760 * dir->i_mutex before doing so.
3761 *
3762 * Alternatively, a caller may pass NULL for delegated_inode. This may
3763 * be appropriate for callers that expect the underlying filesystem not
3764 * to be NFS exported.
3765 */
3766int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3767{
3768 struct inode *target = dentry->d_inode;
3769 int error = may_delete(dir, dentry, 0);
3770
3771 if (error)
3772 return error;
3773
3774 if (!dir->i_op->unlink)
3775 return -EPERM;
3776
3777 mutex_lock(&target->i_mutex);
3778 if (is_local_mountpoint(dentry))
3779 error = -EBUSY;
3780 else {
3781 error = security_inode_unlink(dir, dentry);
3782 if (!error) {
3783 error = try_break_deleg(target, delegated_inode);
3784 if (error)
3785 goto out;
3786 error = dir->i_op->unlink(dir, dentry);
3787 if (!error) {
3788 dont_mount(dentry);
3789 detach_mounts(dentry);
3790 }
3791 }
3792 }
3793out:
3794 mutex_unlock(&target->i_mutex);
3795
3796 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3797 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3798 fsnotify_link_count(target);
3799 d_delete(dentry);
3800 }
3801
3802 return error;
3803}
3804EXPORT_SYMBOL(vfs_unlink);
3805
3806/*
3807 * Make sure that the actual truncation of the file will occur outside its
3808 * directory's i_mutex. Truncate can take a long time if there is a lot of
3809 * writeout happening, and we don't want to prevent access to the directory
3810 * while waiting on the I/O.
3811 */
3812static long do_unlinkat(int dfd, const char __user *pathname)
3813{
3814 int error;
3815 struct filename *name;
3816 struct dentry *dentry;
3817 struct path path;
3818 struct qstr last;
3819 int type;
3820 struct inode *inode = NULL;
3821 struct inode *delegated_inode = NULL;
3822 unsigned int lookup_flags = 0;
3823retry:
3824 name = user_path_parent(dfd, pathname,
3825 &path, &last, &type, lookup_flags);
3826 if (IS_ERR(name))
3827 return PTR_ERR(name);
3828
3829 error = -EISDIR;
3830 if (type != LAST_NORM)
3831 goto exit1;
3832
3833 error = mnt_want_write(path.mnt);
3834 if (error)
3835 goto exit1;
3836retry_deleg:
3837 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3838 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3839 error = PTR_ERR(dentry);
3840 if (!IS_ERR(dentry)) {
3841 /* Why not before? Because we want correct error value */
3842 if (last.name[last.len])
3843 goto slashes;
3844 inode = dentry->d_inode;
3845 if (d_is_negative(dentry))
3846 goto slashes;
3847 ihold(inode);
3848 error = security_path_unlink(&path, dentry);
3849 if (error)
3850 goto exit2;
3851 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3852exit2:
3853 dput(dentry);
3854 }
3855 mutex_unlock(&path.dentry->d_inode->i_mutex);
3856 if (inode)
3857 iput(inode); /* truncate the inode here */
3858 inode = NULL;
3859 if (delegated_inode) {
3860 error = break_deleg_wait(&delegated_inode);
3861 if (!error)
3862 goto retry_deleg;
3863 }
3864 mnt_drop_write(path.mnt);
3865exit1:
3866 path_put(&path);
3867 putname(name);
3868 if (retry_estale(error, lookup_flags)) {
3869 lookup_flags |= LOOKUP_REVAL;
3870 inode = NULL;
3871 goto retry;
3872 }
3873 return error;
3874
3875slashes:
3876 if (d_is_negative(dentry))
3877 error = -ENOENT;
3878 else if (d_is_dir(dentry))
3879 error = -EISDIR;
3880 else
3881 error = -ENOTDIR;
3882 goto exit2;
3883}
3884
3885SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3886{
3887 if ((flag & ~AT_REMOVEDIR) != 0)
3888 return -EINVAL;
3889
3890 if (flag & AT_REMOVEDIR)
3891 return do_rmdir(dfd, pathname);
3892
3893 return do_unlinkat(dfd, pathname);
3894}
3895
3896SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3897{
3898 return do_unlinkat(AT_FDCWD, pathname);
3899}
3900
3901int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3902{
3903 int error = may_create(dir, dentry);
3904
3905 if (error)
3906 return error;
3907
3908 if (!dir->i_op->symlink)
3909 return -EPERM;
3910
3911 error = security_inode_symlink(dir, dentry, oldname);
3912 if (error)
3913 return error;
3914
3915 error = dir->i_op->symlink(dir, dentry, oldname);
3916 if (!error)
3917 fsnotify_create(dir, dentry);
3918 return error;
3919}
3920EXPORT_SYMBOL(vfs_symlink);
3921
3922SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3923 int, newdfd, const char __user *, newname)
3924{
3925 int error;
3926 struct filename *from;
3927 struct dentry *dentry;
3928 struct path path;
3929 unsigned int lookup_flags = 0;
3930
3931 from = getname(oldname);
3932 if (IS_ERR(from))
3933 return PTR_ERR(from);
3934retry:
3935 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3936 error = PTR_ERR(dentry);
3937 if (IS_ERR(dentry))
3938 goto out_putname;
3939
3940 error = security_path_symlink(&path, dentry, from->name);
3941 if (!error)
3942 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3943 done_path_create(&path, dentry);
3944 if (retry_estale(error, lookup_flags)) {
3945 lookup_flags |= LOOKUP_REVAL;
3946 goto retry;
3947 }
3948out_putname:
3949 putname(from);
3950 return error;
3951}
3952
3953SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3954{
3955 return sys_symlinkat(oldname, AT_FDCWD, newname);
3956}
3957
3958/**
3959 * vfs_link - create a new link
3960 * @old_dentry: object to be linked
3961 * @dir: new parent
3962 * @new_dentry: where to create the new link
3963 * @delegated_inode: returns inode needing a delegation break
3964 *
3965 * The caller must hold dir->i_mutex
3966 *
3967 * If vfs_link discovers a delegation on the to-be-linked file in need
3968 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3969 * inode in delegated_inode. The caller should then break the delegation
3970 * and retry. Because breaking a delegation may take a long time, the
3971 * caller should drop the i_mutex before doing so.
3972 *
3973 * Alternatively, a caller may pass NULL for delegated_inode. This may
3974 * be appropriate for callers that expect the underlying filesystem not
3975 * to be NFS exported.
3976 */
3977int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3978{
3979 struct inode *inode = old_dentry->d_inode;
3980 unsigned max_links = dir->i_sb->s_max_links;
3981 int error;
3982
3983 if (!inode)
3984 return -ENOENT;
3985
3986 error = may_create(dir, new_dentry);
3987 if (error)
3988 return error;
3989
3990 if (dir->i_sb != inode->i_sb)
3991 return -EXDEV;
3992
3993 /*
3994 * A link to an append-only or immutable file cannot be created.
3995 */
3996 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3997 return -EPERM;
3998 if (!dir->i_op->link)
3999 return -EPERM;
4000 if (S_ISDIR(inode->i_mode))
4001 return -EPERM;
4002
4003 error = security_inode_link(old_dentry, dir, new_dentry);
4004 if (error)
4005 return error;
4006
4007 mutex_lock(&inode->i_mutex);
4008 /* Make sure we don't allow creating hardlink to an unlinked file */
4009 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4010 error = -ENOENT;
4011 else if (max_links && inode->i_nlink >= max_links)
4012 error = -EMLINK;
4013 else {
4014 error = try_break_deleg(inode, delegated_inode);
4015 if (!error)
4016 error = dir->i_op->link(old_dentry, dir, new_dentry);
4017 }
4018
4019 if (!error && (inode->i_state & I_LINKABLE)) {
4020 spin_lock(&inode->i_lock);
4021 inode->i_state &= ~I_LINKABLE;
4022 spin_unlock(&inode->i_lock);
4023 }
4024 mutex_unlock(&inode->i_mutex);
4025 if (!error)
4026 fsnotify_link(dir, inode, new_dentry);
4027 return error;
4028}
4029EXPORT_SYMBOL(vfs_link);
4030
4031/*
4032 * Hardlinks are often used in delicate situations. We avoid
4033 * security-related surprises by not following symlinks on the
4034 * newname. --KAB
4035 *
4036 * We don't follow them on the oldname either to be compatible
4037 * with linux 2.0, and to avoid hard-linking to directories
4038 * and other special files. --ADM
4039 */
4040SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4041 int, newdfd, const char __user *, newname, int, flags)
4042{
4043 struct dentry *new_dentry;
4044 struct path old_path, new_path;
4045 struct inode *delegated_inode = NULL;
4046 int how = 0;
4047 int error;
4048
4049 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4050 return -EINVAL;
4051 /*
4052 * To use null names we require CAP_DAC_READ_SEARCH
4053 * This ensures that not everyone will be able to create
4054 * handlink using the passed filedescriptor.
4055 */
4056 if (flags & AT_EMPTY_PATH) {
4057 if (!capable(CAP_DAC_READ_SEARCH))
4058 return -ENOENT;
4059 how = LOOKUP_EMPTY;
4060 }
4061
4062 if (flags & AT_SYMLINK_FOLLOW)
4063 how |= LOOKUP_FOLLOW;
4064retry:
4065 error = user_path_at(olddfd, oldname, how, &old_path);
4066 if (error)
4067 return error;
4068
4069 new_dentry = user_path_create(newdfd, newname, &new_path,
4070 (how & LOOKUP_REVAL));
4071 error = PTR_ERR(new_dentry);
4072 if (IS_ERR(new_dentry))
4073 goto out;
4074
4075 error = -EXDEV;
4076 if (old_path.mnt != new_path.mnt)
4077 goto out_dput;
4078 error = may_linkat(&old_path);
4079 if (unlikely(error))
4080 goto out_dput;
4081 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4082 if (error)
4083 goto out_dput;
4084 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4085out_dput:
4086 done_path_create(&new_path, new_dentry);
4087 if (delegated_inode) {
4088 error = break_deleg_wait(&delegated_inode);
4089 if (!error) {
4090 path_put(&old_path);
4091 goto retry;
4092 }
4093 }
4094 if (retry_estale(error, how)) {
4095 path_put(&old_path);
4096 how |= LOOKUP_REVAL;
4097 goto retry;
4098 }
4099out:
4100 path_put(&old_path);
4101
4102 return error;
4103}
4104
4105SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4106{
4107 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4108}
4109
4110/**
4111 * vfs_rename - rename a filesystem object
4112 * @old_dir: parent of source
4113 * @old_dentry: source
4114 * @new_dir: parent of destination
4115 * @new_dentry: destination
4116 * @delegated_inode: returns an inode needing a delegation break
4117 * @flags: rename flags
4118 *
4119 * The caller must hold multiple mutexes--see lock_rename()).
4120 *
4121 * If vfs_rename discovers a delegation in need of breaking at either
4122 * the source or destination, it will return -EWOULDBLOCK and return a
4123 * reference to the inode in delegated_inode. The caller should then
4124 * break the delegation and retry. Because breaking a delegation may
4125 * take a long time, the caller should drop all locks before doing
4126 * so.
4127 *
4128 * Alternatively, a caller may pass NULL for delegated_inode. This may
4129 * be appropriate for callers that expect the underlying filesystem not
4130 * to be NFS exported.
4131 *
4132 * The worst of all namespace operations - renaming directory. "Perverted"
4133 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4134 * Problems:
4135 * a) we can get into loop creation.
4136 * b) race potential - two innocent renames can create a loop together.
4137 * That's where 4.4 screws up. Current fix: serialization on
4138 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4139 * story.
4140 * c) we have to lock _four_ objects - parents and victim (if it exists),
4141 * and source (if it is not a directory).
4142 * And that - after we got ->i_mutex on parents (until then we don't know
4143 * whether the target exists). Solution: try to be smart with locking
4144 * order for inodes. We rely on the fact that tree topology may change
4145 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4146 * move will be locked. Thus we can rank directories by the tree
4147 * (ancestors first) and rank all non-directories after them.
4148 * That works since everybody except rename does "lock parent, lookup,
4149 * lock child" and rename is under ->s_vfs_rename_mutex.
4150 * HOWEVER, it relies on the assumption that any object with ->lookup()
4151 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4152 * we'd better make sure that there's no link(2) for them.
4153 * d) conversion from fhandle to dentry may come in the wrong moment - when
4154 * we are removing the target. Solution: we will have to grab ->i_mutex
4155 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4156 * ->i_mutex on parents, which works but leads to some truly excessive
4157 * locking].
4158 */
4159int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4160 struct inode *new_dir, struct dentry *new_dentry,
4161 struct inode **delegated_inode, unsigned int flags)
4162{
4163 int error;
4164 bool is_dir = d_is_dir(old_dentry);
4165 const unsigned char *old_name;
4166 struct inode *source = old_dentry->d_inode;
4167 struct inode *target = new_dentry->d_inode;
4168 bool new_is_dir = false;
4169 unsigned max_links = new_dir->i_sb->s_max_links;
4170
4171 if (source == target)
4172 return 0;
4173
4174 error = may_delete(old_dir, old_dentry, is_dir);
4175 if (error)
4176 return error;
4177
4178 if (!target) {
4179 error = may_create(new_dir, new_dentry);
4180 } else {
4181 new_is_dir = d_is_dir(new_dentry);
4182
4183 if (!(flags & RENAME_EXCHANGE))
4184 error = may_delete(new_dir, new_dentry, is_dir);
4185 else
4186 error = may_delete(new_dir, new_dentry, new_is_dir);
4187 }
4188 if (error)
4189 return error;
4190
4191 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4192 return -EPERM;
4193
4194 if (flags && !old_dir->i_op->rename2)
4195 return -EINVAL;
4196
4197 /*
4198 * If we are going to change the parent - check write permissions,
4199 * we'll need to flip '..'.
4200 */
4201 if (new_dir != old_dir) {
4202 if (is_dir) {
4203 error = inode_permission(source, MAY_WRITE);
4204 if (error)
4205 return error;
4206 }
4207 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4208 error = inode_permission(target, MAY_WRITE);
4209 if (error)
4210 return error;
4211 }
4212 }
4213
4214 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4215 flags);
4216 if (error)
4217 return error;
4218
4219 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4220 dget(new_dentry);
4221 if (!is_dir || (flags & RENAME_EXCHANGE))
4222 lock_two_nondirectories(source, target);
4223 else if (target)
4224 mutex_lock(&target->i_mutex);
4225
4226 error = -EBUSY;
4227 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4228 goto out;
4229
4230 if (max_links && new_dir != old_dir) {
4231 error = -EMLINK;
4232 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4233 goto out;
4234 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4235 old_dir->i_nlink >= max_links)
4236 goto out;
4237 }
4238 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4239 shrink_dcache_parent(new_dentry);
4240 if (!is_dir) {
4241 error = try_break_deleg(source, delegated_inode);
4242 if (error)
4243 goto out;
4244 }
4245 if (target && !new_is_dir) {
4246 error = try_break_deleg(target, delegated_inode);
4247 if (error)
4248 goto out;
4249 }
4250 if (!old_dir->i_op->rename2) {
4251 error = old_dir->i_op->rename(old_dir, old_dentry,
4252 new_dir, new_dentry);
4253 } else {
4254 WARN_ON(old_dir->i_op->rename != NULL);
4255 error = old_dir->i_op->rename2(old_dir, old_dentry,
4256 new_dir, new_dentry, flags);
4257 }
4258 if (error)
4259 goto out;
4260
4261 if (!(flags & RENAME_EXCHANGE) && target) {
4262 if (is_dir)
4263 target->i_flags |= S_DEAD;
4264 dont_mount(new_dentry);
4265 detach_mounts(new_dentry);
4266 }
4267 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4268 if (!(flags & RENAME_EXCHANGE))
4269 d_move(old_dentry, new_dentry);
4270 else
4271 d_exchange(old_dentry, new_dentry);
4272 }
4273out:
4274 if (!is_dir || (flags & RENAME_EXCHANGE))
4275 unlock_two_nondirectories(source, target);
4276 else if (target)
4277 mutex_unlock(&target->i_mutex);
4278 dput(new_dentry);
4279 if (!error) {
4280 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4281 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4282 if (flags & RENAME_EXCHANGE) {
4283 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4284 new_is_dir, NULL, new_dentry);
4285 }
4286 }
4287 fsnotify_oldname_free(old_name);
4288
4289 return error;
4290}
4291EXPORT_SYMBOL(vfs_rename);
4292
4293SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4294 int, newdfd, const char __user *, newname, unsigned int, flags)
4295{
4296 struct dentry *old_dentry, *new_dentry;
4297 struct dentry *trap;
4298 struct path old_path, new_path;
4299 struct qstr old_last, new_last;
4300 int old_type, new_type;
4301 struct inode *delegated_inode = NULL;
4302 struct filename *from;
4303 struct filename *to;
4304 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4305 bool should_retry = false;
4306 int error;
4307
4308 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4309 return -EINVAL;
4310
4311 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4312 (flags & RENAME_EXCHANGE))
4313 return -EINVAL;
4314
4315 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4316 return -EPERM;
4317
4318 if (flags & RENAME_EXCHANGE)
4319 target_flags = 0;
4320
4321retry:
4322 from = user_path_parent(olddfd, oldname,
4323 &old_path, &old_last, &old_type, lookup_flags);
4324 if (IS_ERR(from)) {
4325 error = PTR_ERR(from);
4326 goto exit;
4327 }
4328
4329 to = user_path_parent(newdfd, newname,
4330 &new_path, &new_last, &new_type, lookup_flags);
4331 if (IS_ERR(to)) {
4332 error = PTR_ERR(to);
4333 goto exit1;
4334 }
4335
4336 error = -EXDEV;
4337 if (old_path.mnt != new_path.mnt)
4338 goto exit2;
4339
4340 error = -EBUSY;
4341 if (old_type != LAST_NORM)
4342 goto exit2;
4343
4344 if (flags & RENAME_NOREPLACE)
4345 error = -EEXIST;
4346 if (new_type != LAST_NORM)
4347 goto exit2;
4348
4349 error = mnt_want_write(old_path.mnt);
4350 if (error)
4351 goto exit2;
4352
4353retry_deleg:
4354 trap = lock_rename(new_path.dentry, old_path.dentry);
4355
4356 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4357 error = PTR_ERR(old_dentry);
4358 if (IS_ERR(old_dentry))
4359 goto exit3;
4360 /* source must exist */
4361 error = -ENOENT;
4362 if (d_is_negative(old_dentry))
4363 goto exit4;
4364 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4365 error = PTR_ERR(new_dentry);
4366 if (IS_ERR(new_dentry))
4367 goto exit4;
4368 error = -EEXIST;
4369 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4370 goto exit5;
4371 if (flags & RENAME_EXCHANGE) {
4372 error = -ENOENT;
4373 if (d_is_negative(new_dentry))
4374 goto exit5;
4375
4376 if (!d_is_dir(new_dentry)) {
4377 error = -ENOTDIR;
4378 if (new_last.name[new_last.len])
4379 goto exit5;
4380 }
4381 }
4382 /* unless the source is a directory trailing slashes give -ENOTDIR */
4383 if (!d_is_dir(old_dentry)) {
4384 error = -ENOTDIR;
4385 if (old_last.name[old_last.len])
4386 goto exit5;
4387 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4388 goto exit5;
4389 }
4390 /* source should not be ancestor of target */
4391 error = -EINVAL;
4392 if (old_dentry == trap)
4393 goto exit5;
4394 /* target should not be an ancestor of source */
4395 if (!(flags & RENAME_EXCHANGE))
4396 error = -ENOTEMPTY;
4397 if (new_dentry == trap)
4398 goto exit5;
4399
4400 error = security_path_rename(&old_path, old_dentry,
4401 &new_path, new_dentry, flags);
4402 if (error)
4403 goto exit5;
4404 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4405 new_path.dentry->d_inode, new_dentry,
4406 &delegated_inode, flags);
4407exit5:
4408 dput(new_dentry);
4409exit4:
4410 dput(old_dentry);
4411exit3:
4412 unlock_rename(new_path.dentry, old_path.dentry);
4413 if (delegated_inode) {
4414 error = break_deleg_wait(&delegated_inode);
4415 if (!error)
4416 goto retry_deleg;
4417 }
4418 mnt_drop_write(old_path.mnt);
4419exit2:
4420 if (retry_estale(error, lookup_flags))
4421 should_retry = true;
4422 path_put(&new_path);
4423 putname(to);
4424exit1:
4425 path_put(&old_path);
4426 putname(from);
4427 if (should_retry) {
4428 should_retry = false;
4429 lookup_flags |= LOOKUP_REVAL;
4430 goto retry;
4431 }
4432exit:
4433 return error;
4434}
4435
4436SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4437 int, newdfd, const char __user *, newname)
4438{
4439 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4440}
4441
4442SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4443{
4444 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4445}
4446
4447int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4448{
4449 int error = may_create(dir, dentry);
4450 if (error)
4451 return error;
4452
4453 if (!dir->i_op->mknod)
4454 return -EPERM;
4455
4456 return dir->i_op->mknod(dir, dentry,
4457 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4458}
4459EXPORT_SYMBOL(vfs_whiteout);
4460
4461int readlink_copy(char __user *buffer, int buflen, const char *link)
4462{
4463 int len = PTR_ERR(link);
4464 if (IS_ERR(link))
4465 goto out;
4466
4467 len = strlen(link);
4468 if (len > (unsigned) buflen)
4469 len = buflen;
4470 if (copy_to_user(buffer, link, len))
4471 len = -EFAULT;
4472out:
4473 return len;
4474}
4475EXPORT_SYMBOL(readlink_copy);
4476
4477/*
4478 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4479 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4480 * using) it for any given inode is up to filesystem.
4481 */
4482int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4483{
4484 void *cookie;
4485 const char *link = dentry->d_inode->i_link;
4486 int res;
4487
4488 if (!link) {
4489 link = dentry->d_inode->i_op->follow_link(dentry, &cookie);
4490 if (IS_ERR(link))
4491 return PTR_ERR(link);
4492 }
4493 res = readlink_copy(buffer, buflen, link);
4494 if (dentry->d_inode->i_op->put_link)
4495 dentry->d_inode->i_op->put_link(dentry, cookie);
4496 return res;
4497}
4498EXPORT_SYMBOL(generic_readlink);
4499
4500/* get the link contents into pagecache */
4501static char *page_getlink(struct dentry * dentry, struct page **ppage)
4502{
4503 char *kaddr;
4504 struct page *page;
4505 struct address_space *mapping = dentry->d_inode->i_mapping;
4506 page = read_mapping_page(mapping, 0, NULL);
4507 if (IS_ERR(page))
4508 return (char*)page;
4509 *ppage = page;
4510 kaddr = kmap(page);
4511 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4512 return kaddr;
4513}
4514
4515int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4516{
4517 struct page *page = NULL;
4518 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4519 if (page) {
4520 kunmap(page);
4521 page_cache_release(page);
4522 }
4523 return res;
4524}
4525EXPORT_SYMBOL(page_readlink);
4526
4527const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4528{
4529 struct page *page = NULL;
4530 char *res = page_getlink(dentry, &page);
4531 if (!IS_ERR(res))
4532 *cookie = page;
4533 return res;
4534}
4535EXPORT_SYMBOL(page_follow_link_light);
4536
4537void page_put_link(struct dentry *dentry, void *cookie)
4538{
4539 struct page *page = cookie;
4540 kunmap(page);
4541 page_cache_release(page);
4542}
4543EXPORT_SYMBOL(page_put_link);
4544
4545/*
4546 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4547 */
4548int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4549{
4550 struct address_space *mapping = inode->i_mapping;
4551 struct page *page;
4552 void *fsdata;
4553 int err;
4554 char *kaddr;
4555 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4556 if (nofs)
4557 flags |= AOP_FLAG_NOFS;
4558
4559retry:
4560 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4561 flags, &page, &fsdata);
4562 if (err)
4563 goto fail;
4564
4565 kaddr = kmap_atomic(page);
4566 memcpy(kaddr, symname, len-1);
4567 kunmap_atomic(kaddr);
4568
4569 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4570 page, fsdata);
4571 if (err < 0)
4572 goto fail;
4573 if (err < len-1)
4574 goto retry;
4575
4576 mark_inode_dirty(inode);
4577 return 0;
4578fail:
4579 return err;
4580}
4581EXPORT_SYMBOL(__page_symlink);
4582
4583int page_symlink(struct inode *inode, const char *symname, int len)
4584{
4585 return __page_symlink(inode, symname, len,
4586 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4587}
4588EXPORT_SYMBOL(page_symlink);
4589
4590const struct inode_operations page_symlink_inode_operations = {
4591 .readlink = generic_readlink,
4592 .follow_link = page_follow_link_light,
4593 .put_link = page_put_link,
4594};
4595EXPORT_SYMBOL(page_symlink_inode_operations);