]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/namei.c
namei: explicitly pass seq number to unlazy_walk() when dentry != NULL
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <linux/hash.h>
38#include <asm/uaccess.h>
39
40#include "internal.h"
41#include "mount.h"
42
43/* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108/*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114/* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124struct filename *
125getname_flags(const char __user *filename, int flags, int *empty)
126{
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201}
202
203struct filename *
204getname(const char __user * filename)
205{
206 return getname_flags(filename, 0, NULL);
207}
208
209struct filename *
210getname_kernel(const char * filename)
211{
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242}
243
244void putname(struct filename *name)
245{
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256}
257
258static int check_acl(struct inode *inode, int mask)
259{
260#ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281#endif
282
283 return -EAGAIN;
284}
285
286/*
287 * This does the basic permission checking
288 */
289static int acl_permission_check(struct inode *inode, int mask)
290{
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312}
313
314/**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328int generic_permission(struct inode *inode, int mask)
329{
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367}
368EXPORT_SYMBOL(generic_permission);
369
370/*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376static inline int do_inode_permission(struct inode *inode, int mask)
377{
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388}
389
390/**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402int __inode_permission(struct inode *inode, int mask)
403{
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423}
424EXPORT_SYMBOL(__inode_permission);
425
426/**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435{
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445}
446
447/**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458int inode_permission(struct inode *inode, int mask)
459{
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466}
467EXPORT_SYMBOL(inode_permission);
468
469/**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475void path_get(const struct path *path)
476{
477 mntget(path->mnt);
478 dget(path->dentry);
479}
480EXPORT_SYMBOL(path_get);
481
482/**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488void path_put(const struct path *path)
489{
490 dput(path->dentry);
491 mntput(path->mnt);
492}
493EXPORT_SYMBOL(path_put);
494
495#define EMBEDDED_LEVELS 2
496struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 } *stack, internal[EMBEDDED_LEVELS];
511};
512
513static struct nameidata *set_nameidata(struct nameidata *p)
514{
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->total_link_count = old ? old->total_link_count : 0;
518 current->nameidata = p;
519 return old;
520}
521
522static void restore_nameidata(struct nameidata *old)
523{
524 struct nameidata *now = current->nameidata;
525
526 current->nameidata = old;
527 if (old)
528 old->total_link_count = now->total_link_count;
529 if (now->stack != now->internal) {
530 kfree(now->stack);
531 now->stack = now->internal;
532 }
533}
534
535static int __nd_alloc_stack(struct nameidata *nd)
536{
537 struct saved *p = kmalloc(MAXSYMLINKS * sizeof(struct saved),
538 GFP_KERNEL);
539 if (unlikely(!p))
540 return -ENOMEM;
541 memcpy(p, nd->internal, sizeof(nd->internal));
542 nd->stack = p;
543 return 0;
544}
545
546static inline int nd_alloc_stack(struct nameidata *nd)
547{
548 if (likely(nd->depth != EMBEDDED_LEVELS))
549 return 0;
550 if (likely(nd->stack != nd->internal))
551 return 0;
552 return __nd_alloc_stack(nd);
553}
554
555/*
556 * Path walking has 2 modes, rcu-walk and ref-walk (see
557 * Documentation/filesystems/path-lookup.txt). In situations when we can't
558 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
559 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
560 * mode. Refcounts are grabbed at the last known good point before rcu-walk
561 * got stuck, so ref-walk may continue from there. If this is not successful
562 * (eg. a seqcount has changed), then failure is returned and it's up to caller
563 * to restart the path walk from the beginning in ref-walk mode.
564 */
565
566/**
567 * unlazy_walk - try to switch to ref-walk mode.
568 * @nd: nameidata pathwalk data
569 * @dentry: child of nd->path.dentry or NULL
570 * @seq: seq number to check dentry against
571 * Returns: 0 on success, -ECHILD on failure
572 *
573 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
574 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
575 * @nd or NULL. Must be called from rcu-walk context.
576 */
577static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
578{
579 struct fs_struct *fs = current->fs;
580 struct dentry *parent = nd->path.dentry;
581
582 BUG_ON(!(nd->flags & LOOKUP_RCU));
583
584 /*
585 * After legitimizing the bastards, terminate_walk()
586 * will do the right thing for non-RCU mode, and all our
587 * subsequent exit cases should rcu_read_unlock()
588 * before returning. Do vfsmount first; if dentry
589 * can't be legitimized, just set nd->path.dentry to NULL
590 * and rely on dput(NULL) being a no-op.
591 */
592 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
593 return -ECHILD;
594 nd->flags &= ~LOOKUP_RCU;
595
596 if (!lockref_get_not_dead(&parent->d_lockref)) {
597 nd->path.dentry = NULL;
598 goto out;
599 }
600
601 /*
602 * For a negative lookup, the lookup sequence point is the parents
603 * sequence point, and it only needs to revalidate the parent dentry.
604 *
605 * For a positive lookup, we need to move both the parent and the
606 * dentry from the RCU domain to be properly refcounted. And the
607 * sequence number in the dentry validates *both* dentry counters,
608 * since we checked the sequence number of the parent after we got
609 * the child sequence number. So we know the parent must still
610 * be valid if the child sequence number is still valid.
611 */
612 if (!dentry) {
613 if (read_seqcount_retry(&parent->d_seq, nd->seq))
614 goto out;
615 BUG_ON(nd->inode != parent->d_inode);
616 } else {
617 if (!lockref_get_not_dead(&dentry->d_lockref))
618 goto out;
619 if (read_seqcount_retry(&dentry->d_seq, seq))
620 goto drop_dentry;
621 }
622
623 /*
624 * Sequence counts matched. Now make sure that the root is
625 * still valid and get it if required.
626 */
627 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
628 spin_lock(&fs->lock);
629 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
630 goto unlock_and_drop_dentry;
631 path_get(&nd->root);
632 spin_unlock(&fs->lock);
633 }
634
635 rcu_read_unlock();
636 return 0;
637
638unlock_and_drop_dentry:
639 spin_unlock(&fs->lock);
640drop_dentry:
641 rcu_read_unlock();
642 dput(dentry);
643 goto drop_root_mnt;
644out:
645 rcu_read_unlock();
646drop_root_mnt:
647 if (!(nd->flags & LOOKUP_ROOT))
648 nd->root.mnt = NULL;
649 return -ECHILD;
650}
651
652static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
653{
654 return dentry->d_op->d_revalidate(dentry, flags);
655}
656
657/**
658 * complete_walk - successful completion of path walk
659 * @nd: pointer nameidata
660 *
661 * If we had been in RCU mode, drop out of it and legitimize nd->path.
662 * Revalidate the final result, unless we'd already done that during
663 * the path walk or the filesystem doesn't ask for it. Return 0 on
664 * success, -error on failure. In case of failure caller does not
665 * need to drop nd->path.
666 */
667static int complete_walk(struct nameidata *nd)
668{
669 struct dentry *dentry = nd->path.dentry;
670 int status;
671
672 if (nd->flags & LOOKUP_RCU) {
673 if (!(nd->flags & LOOKUP_ROOT))
674 nd->root.mnt = NULL;
675 if (unlikely(unlazy_walk(nd, NULL, 0)))
676 return -ECHILD;
677 }
678
679 if (likely(!(nd->flags & LOOKUP_JUMPED)))
680 return 0;
681
682 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
683 return 0;
684
685 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
686 if (status > 0)
687 return 0;
688
689 if (!status)
690 status = -ESTALE;
691
692 return status;
693}
694
695static __always_inline void set_root(struct nameidata *nd)
696{
697 get_fs_root(current->fs, &nd->root);
698}
699
700static __always_inline unsigned set_root_rcu(struct nameidata *nd)
701{
702 struct fs_struct *fs = current->fs;
703 unsigned seq, res;
704
705 do {
706 seq = read_seqcount_begin(&fs->seq);
707 nd->root = fs->root;
708 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
709 } while (read_seqcount_retry(&fs->seq, seq));
710 return res;
711}
712
713static void path_put_conditional(struct path *path, struct nameidata *nd)
714{
715 dput(path->dentry);
716 if (path->mnt != nd->path.mnt)
717 mntput(path->mnt);
718}
719
720static inline void path_to_nameidata(const struct path *path,
721 struct nameidata *nd)
722{
723 if (!(nd->flags & LOOKUP_RCU)) {
724 dput(nd->path.dentry);
725 if (nd->path.mnt != path->mnt)
726 mntput(nd->path.mnt);
727 }
728 nd->path.mnt = path->mnt;
729 nd->path.dentry = path->dentry;
730}
731
732/*
733 * Helper to directly jump to a known parsed path from ->follow_link,
734 * caller must have taken a reference to path beforehand.
735 */
736void nd_jump_link(struct path *path)
737{
738 struct nameidata *nd = current->nameidata;
739 path_put(&nd->path);
740
741 nd->path = *path;
742 nd->inode = nd->path.dentry->d_inode;
743 nd->flags |= LOOKUP_JUMPED;
744}
745
746static inline void put_link(struct nameidata *nd)
747{
748 struct saved *last = nd->stack + --nd->depth;
749 struct inode *inode = last->link.dentry->d_inode;
750 if (last->cookie && inode->i_op->put_link)
751 inode->i_op->put_link(last->link.dentry, last->cookie);
752 path_put(&last->link);
753}
754
755int sysctl_protected_symlinks __read_mostly = 0;
756int sysctl_protected_hardlinks __read_mostly = 0;
757
758/**
759 * may_follow_link - Check symlink following for unsafe situations
760 * @nd: nameidata pathwalk data
761 *
762 * In the case of the sysctl_protected_symlinks sysctl being enabled,
763 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
764 * in a sticky world-writable directory. This is to protect privileged
765 * processes from failing races against path names that may change out
766 * from under them by way of other users creating malicious symlinks.
767 * It will permit symlinks to be followed only when outside a sticky
768 * world-writable directory, or when the uid of the symlink and follower
769 * match, or when the directory owner matches the symlink's owner.
770 *
771 * Returns 0 if following the symlink is allowed, -ve on error.
772 */
773static inline int may_follow_link(struct nameidata *nd)
774{
775 const struct inode *inode;
776 const struct inode *parent;
777
778 if (!sysctl_protected_symlinks)
779 return 0;
780
781 /* Allowed if owner and follower match. */
782 inode = nd->stack[0].link.dentry->d_inode;
783 if (uid_eq(current_cred()->fsuid, inode->i_uid))
784 return 0;
785
786 /* Allowed if parent directory not sticky and world-writable. */
787 parent = nd->path.dentry->d_inode;
788 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
789 return 0;
790
791 /* Allowed if parent directory and link owner match. */
792 if (uid_eq(parent->i_uid, inode->i_uid))
793 return 0;
794
795 audit_log_link_denied("follow_link", &nd->stack[0].link);
796 return -EACCES;
797}
798
799/**
800 * safe_hardlink_source - Check for safe hardlink conditions
801 * @inode: the source inode to hardlink from
802 *
803 * Return false if at least one of the following conditions:
804 * - inode is not a regular file
805 * - inode is setuid
806 * - inode is setgid and group-exec
807 * - access failure for read and write
808 *
809 * Otherwise returns true.
810 */
811static bool safe_hardlink_source(struct inode *inode)
812{
813 umode_t mode = inode->i_mode;
814
815 /* Special files should not get pinned to the filesystem. */
816 if (!S_ISREG(mode))
817 return false;
818
819 /* Setuid files should not get pinned to the filesystem. */
820 if (mode & S_ISUID)
821 return false;
822
823 /* Executable setgid files should not get pinned to the filesystem. */
824 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
825 return false;
826
827 /* Hardlinking to unreadable or unwritable sources is dangerous. */
828 if (inode_permission(inode, MAY_READ | MAY_WRITE))
829 return false;
830
831 return true;
832}
833
834/**
835 * may_linkat - Check permissions for creating a hardlink
836 * @link: the source to hardlink from
837 *
838 * Block hardlink when all of:
839 * - sysctl_protected_hardlinks enabled
840 * - fsuid does not match inode
841 * - hardlink source is unsafe (see safe_hardlink_source() above)
842 * - not CAP_FOWNER
843 *
844 * Returns 0 if successful, -ve on error.
845 */
846static int may_linkat(struct path *link)
847{
848 const struct cred *cred;
849 struct inode *inode;
850
851 if (!sysctl_protected_hardlinks)
852 return 0;
853
854 cred = current_cred();
855 inode = link->dentry->d_inode;
856
857 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
858 * otherwise, it must be a safe source.
859 */
860 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
861 capable(CAP_FOWNER))
862 return 0;
863
864 audit_log_link_denied("linkat", link);
865 return -EPERM;
866}
867
868static __always_inline
869const char *get_link(struct nameidata *nd)
870{
871 struct saved *last = nd->stack + nd->depth - 1;
872 struct dentry *dentry = last->link.dentry;
873 struct inode *inode = dentry->d_inode;
874 int error;
875 const char *res;
876
877 BUG_ON(nd->flags & LOOKUP_RCU);
878
879 cond_resched();
880
881 touch_atime(&last->link);
882
883 error = security_inode_follow_link(dentry);
884 if (error)
885 return ERR_PTR(error);
886
887 nd->last_type = LAST_BIND;
888 res = inode->i_link;
889 if (!res) {
890 res = inode->i_op->follow_link(dentry, &last->cookie);
891 if (IS_ERR_OR_NULL(res)) {
892 last->cookie = NULL;
893 return res;
894 }
895 }
896 if (*res == '/') {
897 if (!nd->root.mnt)
898 set_root(nd);
899 path_put(&nd->path);
900 nd->path = nd->root;
901 path_get(&nd->root);
902 nd->inode = nd->path.dentry->d_inode;
903 nd->flags |= LOOKUP_JUMPED;
904 while (unlikely(*++res == '/'))
905 ;
906 }
907 if (!*res)
908 res = NULL;
909 return res;
910}
911
912static int follow_up_rcu(struct path *path)
913{
914 struct mount *mnt = real_mount(path->mnt);
915 struct mount *parent;
916 struct dentry *mountpoint;
917
918 parent = mnt->mnt_parent;
919 if (&parent->mnt == path->mnt)
920 return 0;
921 mountpoint = mnt->mnt_mountpoint;
922 path->dentry = mountpoint;
923 path->mnt = &parent->mnt;
924 return 1;
925}
926
927/*
928 * follow_up - Find the mountpoint of path's vfsmount
929 *
930 * Given a path, find the mountpoint of its source file system.
931 * Replace @path with the path of the mountpoint in the parent mount.
932 * Up is towards /.
933 *
934 * Return 1 if we went up a level and 0 if we were already at the
935 * root.
936 */
937int follow_up(struct path *path)
938{
939 struct mount *mnt = real_mount(path->mnt);
940 struct mount *parent;
941 struct dentry *mountpoint;
942
943 read_seqlock_excl(&mount_lock);
944 parent = mnt->mnt_parent;
945 if (parent == mnt) {
946 read_sequnlock_excl(&mount_lock);
947 return 0;
948 }
949 mntget(&parent->mnt);
950 mountpoint = dget(mnt->mnt_mountpoint);
951 read_sequnlock_excl(&mount_lock);
952 dput(path->dentry);
953 path->dentry = mountpoint;
954 mntput(path->mnt);
955 path->mnt = &parent->mnt;
956 return 1;
957}
958EXPORT_SYMBOL(follow_up);
959
960/*
961 * Perform an automount
962 * - return -EISDIR to tell follow_managed() to stop and return the path we
963 * were called with.
964 */
965static int follow_automount(struct path *path, struct nameidata *nd,
966 bool *need_mntput)
967{
968 struct vfsmount *mnt;
969 int err;
970
971 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
972 return -EREMOTE;
973
974 /* We don't want to mount if someone's just doing a stat -
975 * unless they're stat'ing a directory and appended a '/' to
976 * the name.
977 *
978 * We do, however, want to mount if someone wants to open or
979 * create a file of any type under the mountpoint, wants to
980 * traverse through the mountpoint or wants to open the
981 * mounted directory. Also, autofs may mark negative dentries
982 * as being automount points. These will need the attentions
983 * of the daemon to instantiate them before they can be used.
984 */
985 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
986 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
987 path->dentry->d_inode)
988 return -EISDIR;
989
990 nd->total_link_count++;
991 if (nd->total_link_count >= 40)
992 return -ELOOP;
993
994 mnt = path->dentry->d_op->d_automount(path);
995 if (IS_ERR(mnt)) {
996 /*
997 * The filesystem is allowed to return -EISDIR here to indicate
998 * it doesn't want to automount. For instance, autofs would do
999 * this so that its userspace daemon can mount on this dentry.
1000 *
1001 * However, we can only permit this if it's a terminal point in
1002 * the path being looked up; if it wasn't then the remainder of
1003 * the path is inaccessible and we should say so.
1004 */
1005 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1006 return -EREMOTE;
1007 return PTR_ERR(mnt);
1008 }
1009
1010 if (!mnt) /* mount collision */
1011 return 0;
1012
1013 if (!*need_mntput) {
1014 /* lock_mount() may release path->mnt on error */
1015 mntget(path->mnt);
1016 *need_mntput = true;
1017 }
1018 err = finish_automount(mnt, path);
1019
1020 switch (err) {
1021 case -EBUSY:
1022 /* Someone else made a mount here whilst we were busy */
1023 return 0;
1024 case 0:
1025 path_put(path);
1026 path->mnt = mnt;
1027 path->dentry = dget(mnt->mnt_root);
1028 return 0;
1029 default:
1030 return err;
1031 }
1032
1033}
1034
1035/*
1036 * Handle a dentry that is managed in some way.
1037 * - Flagged for transit management (autofs)
1038 * - Flagged as mountpoint
1039 * - Flagged as automount point
1040 *
1041 * This may only be called in refwalk mode.
1042 *
1043 * Serialization is taken care of in namespace.c
1044 */
1045static int follow_managed(struct path *path, struct nameidata *nd)
1046{
1047 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1048 unsigned managed;
1049 bool need_mntput = false;
1050 int ret = 0;
1051
1052 /* Given that we're not holding a lock here, we retain the value in a
1053 * local variable for each dentry as we look at it so that we don't see
1054 * the components of that value change under us */
1055 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1056 managed &= DCACHE_MANAGED_DENTRY,
1057 unlikely(managed != 0)) {
1058 /* Allow the filesystem to manage the transit without i_mutex
1059 * being held. */
1060 if (managed & DCACHE_MANAGE_TRANSIT) {
1061 BUG_ON(!path->dentry->d_op);
1062 BUG_ON(!path->dentry->d_op->d_manage);
1063 ret = path->dentry->d_op->d_manage(path->dentry, false);
1064 if (ret < 0)
1065 break;
1066 }
1067
1068 /* Transit to a mounted filesystem. */
1069 if (managed & DCACHE_MOUNTED) {
1070 struct vfsmount *mounted = lookup_mnt(path);
1071 if (mounted) {
1072 dput(path->dentry);
1073 if (need_mntput)
1074 mntput(path->mnt);
1075 path->mnt = mounted;
1076 path->dentry = dget(mounted->mnt_root);
1077 need_mntput = true;
1078 continue;
1079 }
1080
1081 /* Something is mounted on this dentry in another
1082 * namespace and/or whatever was mounted there in this
1083 * namespace got unmounted before lookup_mnt() could
1084 * get it */
1085 }
1086
1087 /* Handle an automount point */
1088 if (managed & DCACHE_NEED_AUTOMOUNT) {
1089 ret = follow_automount(path, nd, &need_mntput);
1090 if (ret < 0)
1091 break;
1092 continue;
1093 }
1094
1095 /* We didn't change the current path point */
1096 break;
1097 }
1098
1099 if (need_mntput && path->mnt == mnt)
1100 mntput(path->mnt);
1101 if (ret == -EISDIR)
1102 ret = 0;
1103 if (need_mntput)
1104 nd->flags |= LOOKUP_JUMPED;
1105 if (unlikely(ret < 0))
1106 path_put_conditional(path, nd);
1107 return ret;
1108}
1109
1110int follow_down_one(struct path *path)
1111{
1112 struct vfsmount *mounted;
1113
1114 mounted = lookup_mnt(path);
1115 if (mounted) {
1116 dput(path->dentry);
1117 mntput(path->mnt);
1118 path->mnt = mounted;
1119 path->dentry = dget(mounted->mnt_root);
1120 return 1;
1121 }
1122 return 0;
1123}
1124EXPORT_SYMBOL(follow_down_one);
1125
1126static inline int managed_dentry_rcu(struct dentry *dentry)
1127{
1128 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1129 dentry->d_op->d_manage(dentry, true) : 0;
1130}
1131
1132/*
1133 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1134 * we meet a managed dentry that would need blocking.
1135 */
1136static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1137 struct inode **inode)
1138{
1139 for (;;) {
1140 struct mount *mounted;
1141 /*
1142 * Don't forget we might have a non-mountpoint managed dentry
1143 * that wants to block transit.
1144 */
1145 switch (managed_dentry_rcu(path->dentry)) {
1146 case -ECHILD:
1147 default:
1148 return false;
1149 case -EISDIR:
1150 return true;
1151 case 0:
1152 break;
1153 }
1154
1155 if (!d_mountpoint(path->dentry))
1156 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1157
1158 mounted = __lookup_mnt(path->mnt, path->dentry);
1159 if (!mounted)
1160 break;
1161 path->mnt = &mounted->mnt;
1162 path->dentry = mounted->mnt.mnt_root;
1163 nd->flags |= LOOKUP_JUMPED;
1164 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1165 /*
1166 * Update the inode too. We don't need to re-check the
1167 * dentry sequence number here after this d_inode read,
1168 * because a mount-point is always pinned.
1169 */
1170 *inode = path->dentry->d_inode;
1171 }
1172 return !read_seqretry(&mount_lock, nd->m_seq) &&
1173 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1174}
1175
1176static int follow_dotdot_rcu(struct nameidata *nd)
1177{
1178 struct inode *inode = nd->inode;
1179 if (!nd->root.mnt)
1180 set_root_rcu(nd);
1181
1182 while (1) {
1183 if (nd->path.dentry == nd->root.dentry &&
1184 nd->path.mnt == nd->root.mnt) {
1185 break;
1186 }
1187 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1188 struct dentry *old = nd->path.dentry;
1189 struct dentry *parent = old->d_parent;
1190 unsigned seq;
1191
1192 inode = parent->d_inode;
1193 seq = read_seqcount_begin(&parent->d_seq);
1194 if (read_seqcount_retry(&old->d_seq, nd->seq))
1195 goto failed;
1196 nd->path.dentry = parent;
1197 nd->seq = seq;
1198 break;
1199 }
1200 if (!follow_up_rcu(&nd->path))
1201 break;
1202 inode = nd->path.dentry->d_inode;
1203 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1204 }
1205 while (d_mountpoint(nd->path.dentry)) {
1206 struct mount *mounted;
1207 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1208 if (!mounted)
1209 break;
1210 nd->path.mnt = &mounted->mnt;
1211 nd->path.dentry = mounted->mnt.mnt_root;
1212 inode = nd->path.dentry->d_inode;
1213 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1214 if (read_seqretry(&mount_lock, nd->m_seq))
1215 goto failed;
1216 }
1217 nd->inode = inode;
1218 return 0;
1219
1220failed:
1221 return -ECHILD;
1222}
1223
1224/*
1225 * Follow down to the covering mount currently visible to userspace. At each
1226 * point, the filesystem owning that dentry may be queried as to whether the
1227 * caller is permitted to proceed or not.
1228 */
1229int follow_down(struct path *path)
1230{
1231 unsigned managed;
1232 int ret;
1233
1234 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1235 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1236 /* Allow the filesystem to manage the transit without i_mutex
1237 * being held.
1238 *
1239 * We indicate to the filesystem if someone is trying to mount
1240 * something here. This gives autofs the chance to deny anyone
1241 * other than its daemon the right to mount on its
1242 * superstructure.
1243 *
1244 * The filesystem may sleep at this point.
1245 */
1246 if (managed & DCACHE_MANAGE_TRANSIT) {
1247 BUG_ON(!path->dentry->d_op);
1248 BUG_ON(!path->dentry->d_op->d_manage);
1249 ret = path->dentry->d_op->d_manage(
1250 path->dentry, false);
1251 if (ret < 0)
1252 return ret == -EISDIR ? 0 : ret;
1253 }
1254
1255 /* Transit to a mounted filesystem. */
1256 if (managed & DCACHE_MOUNTED) {
1257 struct vfsmount *mounted = lookup_mnt(path);
1258 if (!mounted)
1259 break;
1260 dput(path->dentry);
1261 mntput(path->mnt);
1262 path->mnt = mounted;
1263 path->dentry = dget(mounted->mnt_root);
1264 continue;
1265 }
1266
1267 /* Don't handle automount points here */
1268 break;
1269 }
1270 return 0;
1271}
1272EXPORT_SYMBOL(follow_down);
1273
1274/*
1275 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1276 */
1277static void follow_mount(struct path *path)
1278{
1279 while (d_mountpoint(path->dentry)) {
1280 struct vfsmount *mounted = lookup_mnt(path);
1281 if (!mounted)
1282 break;
1283 dput(path->dentry);
1284 mntput(path->mnt);
1285 path->mnt = mounted;
1286 path->dentry = dget(mounted->mnt_root);
1287 }
1288}
1289
1290static void follow_dotdot(struct nameidata *nd)
1291{
1292 if (!nd->root.mnt)
1293 set_root(nd);
1294
1295 while(1) {
1296 struct dentry *old = nd->path.dentry;
1297
1298 if (nd->path.dentry == nd->root.dentry &&
1299 nd->path.mnt == nd->root.mnt) {
1300 break;
1301 }
1302 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1303 /* rare case of legitimate dget_parent()... */
1304 nd->path.dentry = dget_parent(nd->path.dentry);
1305 dput(old);
1306 break;
1307 }
1308 if (!follow_up(&nd->path))
1309 break;
1310 }
1311 follow_mount(&nd->path);
1312 nd->inode = nd->path.dentry->d_inode;
1313}
1314
1315/*
1316 * This looks up the name in dcache, possibly revalidates the old dentry and
1317 * allocates a new one if not found or not valid. In the need_lookup argument
1318 * returns whether i_op->lookup is necessary.
1319 *
1320 * dir->d_inode->i_mutex must be held
1321 */
1322static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1323 unsigned int flags, bool *need_lookup)
1324{
1325 struct dentry *dentry;
1326 int error;
1327
1328 *need_lookup = false;
1329 dentry = d_lookup(dir, name);
1330 if (dentry) {
1331 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1332 error = d_revalidate(dentry, flags);
1333 if (unlikely(error <= 0)) {
1334 if (error < 0) {
1335 dput(dentry);
1336 return ERR_PTR(error);
1337 } else {
1338 d_invalidate(dentry);
1339 dput(dentry);
1340 dentry = NULL;
1341 }
1342 }
1343 }
1344 }
1345
1346 if (!dentry) {
1347 dentry = d_alloc(dir, name);
1348 if (unlikely(!dentry))
1349 return ERR_PTR(-ENOMEM);
1350
1351 *need_lookup = true;
1352 }
1353 return dentry;
1354}
1355
1356/*
1357 * Call i_op->lookup on the dentry. The dentry must be negative and
1358 * unhashed.
1359 *
1360 * dir->d_inode->i_mutex must be held
1361 */
1362static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1363 unsigned int flags)
1364{
1365 struct dentry *old;
1366
1367 /* Don't create child dentry for a dead directory. */
1368 if (unlikely(IS_DEADDIR(dir))) {
1369 dput(dentry);
1370 return ERR_PTR(-ENOENT);
1371 }
1372
1373 old = dir->i_op->lookup(dir, dentry, flags);
1374 if (unlikely(old)) {
1375 dput(dentry);
1376 dentry = old;
1377 }
1378 return dentry;
1379}
1380
1381static struct dentry *__lookup_hash(struct qstr *name,
1382 struct dentry *base, unsigned int flags)
1383{
1384 bool need_lookup;
1385 struct dentry *dentry;
1386
1387 dentry = lookup_dcache(name, base, flags, &need_lookup);
1388 if (!need_lookup)
1389 return dentry;
1390
1391 return lookup_real(base->d_inode, dentry, flags);
1392}
1393
1394/*
1395 * It's more convoluted than I'd like it to be, but... it's still fairly
1396 * small and for now I'd prefer to have fast path as straight as possible.
1397 * It _is_ time-critical.
1398 */
1399static int lookup_fast(struct nameidata *nd,
1400 struct path *path, struct inode **inode)
1401{
1402 struct vfsmount *mnt = nd->path.mnt;
1403 struct dentry *dentry, *parent = nd->path.dentry;
1404 int need_reval = 1;
1405 int status = 1;
1406 int err;
1407
1408 /*
1409 * Rename seqlock is not required here because in the off chance
1410 * of a false negative due to a concurrent rename, we're going to
1411 * do the non-racy lookup, below.
1412 */
1413 if (nd->flags & LOOKUP_RCU) {
1414 unsigned seq;
1415 bool negative;
1416 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1417 if (!dentry)
1418 goto unlazy;
1419
1420 /*
1421 * This sequence count validates that the inode matches
1422 * the dentry name information from lookup.
1423 */
1424 *inode = dentry->d_inode;
1425 negative = d_is_negative(dentry);
1426 if (read_seqcount_retry(&dentry->d_seq, seq))
1427 return -ECHILD;
1428 if (negative)
1429 return -ENOENT;
1430
1431 /*
1432 * This sequence count validates that the parent had no
1433 * changes while we did the lookup of the dentry above.
1434 *
1435 * The memory barrier in read_seqcount_begin of child is
1436 * enough, we can use __read_seqcount_retry here.
1437 */
1438 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1439 return -ECHILD;
1440 nd->seq = seq;
1441
1442 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1443 status = d_revalidate(dentry, nd->flags);
1444 if (unlikely(status <= 0)) {
1445 if (status != -ECHILD)
1446 need_reval = 0;
1447 goto unlazy;
1448 }
1449 }
1450 path->mnt = mnt;
1451 path->dentry = dentry;
1452 if (likely(__follow_mount_rcu(nd, path, inode)))
1453 return 0;
1454unlazy:
1455 if (unlazy_walk(nd, dentry, nd->seq))
1456 return -ECHILD;
1457 } else {
1458 dentry = __d_lookup(parent, &nd->last);
1459 }
1460
1461 if (unlikely(!dentry))
1462 goto need_lookup;
1463
1464 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1465 status = d_revalidate(dentry, nd->flags);
1466 if (unlikely(status <= 0)) {
1467 if (status < 0) {
1468 dput(dentry);
1469 return status;
1470 }
1471 d_invalidate(dentry);
1472 dput(dentry);
1473 goto need_lookup;
1474 }
1475
1476 if (unlikely(d_is_negative(dentry))) {
1477 dput(dentry);
1478 return -ENOENT;
1479 }
1480 path->mnt = mnt;
1481 path->dentry = dentry;
1482 err = follow_managed(path, nd);
1483 if (likely(!err))
1484 *inode = path->dentry->d_inode;
1485 return err;
1486
1487need_lookup:
1488 return 1;
1489}
1490
1491/* Fast lookup failed, do it the slow way */
1492static int lookup_slow(struct nameidata *nd, struct path *path)
1493{
1494 struct dentry *dentry, *parent;
1495
1496 parent = nd->path.dentry;
1497 BUG_ON(nd->inode != parent->d_inode);
1498
1499 mutex_lock(&parent->d_inode->i_mutex);
1500 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1501 mutex_unlock(&parent->d_inode->i_mutex);
1502 if (IS_ERR(dentry))
1503 return PTR_ERR(dentry);
1504 path->mnt = nd->path.mnt;
1505 path->dentry = dentry;
1506 return follow_managed(path, nd);
1507}
1508
1509static inline int may_lookup(struct nameidata *nd)
1510{
1511 if (nd->flags & LOOKUP_RCU) {
1512 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1513 if (err != -ECHILD)
1514 return err;
1515 if (unlazy_walk(nd, NULL, 0))
1516 return -ECHILD;
1517 }
1518 return inode_permission(nd->inode, MAY_EXEC);
1519}
1520
1521static inline int handle_dots(struct nameidata *nd, int type)
1522{
1523 if (type == LAST_DOTDOT) {
1524 if (nd->flags & LOOKUP_RCU) {
1525 return follow_dotdot_rcu(nd);
1526 } else
1527 follow_dotdot(nd);
1528 }
1529 return 0;
1530}
1531
1532static void terminate_walk(struct nameidata *nd)
1533{
1534 if (!(nd->flags & LOOKUP_RCU)) {
1535 path_put(&nd->path);
1536 } else {
1537 nd->flags &= ~LOOKUP_RCU;
1538 if (!(nd->flags & LOOKUP_ROOT))
1539 nd->root.mnt = NULL;
1540 rcu_read_unlock();
1541 }
1542 while (unlikely(nd->depth))
1543 put_link(nd);
1544}
1545
1546static int pick_link(struct nameidata *nd, struct path *link)
1547{
1548 int error;
1549 struct saved *last;
1550 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1551 path_to_nameidata(link, nd);
1552 return -ELOOP;
1553 }
1554 if (nd->flags & LOOKUP_RCU) {
1555 if (unlikely(nd->path.mnt != link->mnt ||
1556 unlazy_walk(nd, link->dentry, nd->seq))) {
1557 return -ECHILD;
1558 }
1559 }
1560 if (link->mnt == nd->path.mnt)
1561 mntget(link->mnt);
1562 error = nd_alloc_stack(nd);
1563 if (unlikely(error)) {
1564 path_put(link);
1565 return error;
1566 }
1567
1568 last = nd->stack + nd->depth++;
1569 last->link = *link;
1570 last->cookie = NULL;
1571 return 1;
1572}
1573
1574/*
1575 * Do we need to follow links? We _really_ want to be able
1576 * to do this check without having to look at inode->i_op,
1577 * so we keep a cache of "no, this doesn't need follow_link"
1578 * for the common case.
1579 */
1580static inline int should_follow_link(struct nameidata *nd, struct path *link, int follow)
1581{
1582 if (likely(!d_is_symlink(link->dentry)))
1583 return 0;
1584 if (!follow)
1585 return 0;
1586 return pick_link(nd, link);
1587}
1588
1589enum {WALK_GET = 1, WALK_PUT = 2};
1590
1591static int walk_component(struct nameidata *nd, int flags)
1592{
1593 struct path path;
1594 struct inode *inode;
1595 int err;
1596 /*
1597 * "." and ".." are special - ".." especially so because it has
1598 * to be able to know about the current root directory and
1599 * parent relationships.
1600 */
1601 if (unlikely(nd->last_type != LAST_NORM)) {
1602 err = handle_dots(nd, nd->last_type);
1603 if (flags & WALK_PUT)
1604 put_link(nd);
1605 return err;
1606 }
1607 err = lookup_fast(nd, &path, &inode);
1608 if (unlikely(err)) {
1609 if (err < 0)
1610 return err;
1611
1612 err = lookup_slow(nd, &path);
1613 if (err < 0)
1614 return err;
1615
1616 inode = path.dentry->d_inode;
1617 err = -ENOENT;
1618 if (d_is_negative(path.dentry))
1619 goto out_path_put;
1620 }
1621
1622 if (flags & WALK_PUT)
1623 put_link(nd);
1624 err = should_follow_link(nd, &path, flags & WALK_GET);
1625 if (unlikely(err))
1626 return err;
1627 path_to_nameidata(&path, nd);
1628 nd->inode = inode;
1629 return 0;
1630
1631out_path_put:
1632 path_to_nameidata(&path, nd);
1633 return err;
1634}
1635
1636/*
1637 * We can do the critical dentry name comparison and hashing
1638 * operations one word at a time, but we are limited to:
1639 *
1640 * - Architectures with fast unaligned word accesses. We could
1641 * do a "get_unaligned()" if this helps and is sufficiently
1642 * fast.
1643 *
1644 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1645 * do not trap on the (extremely unlikely) case of a page
1646 * crossing operation.
1647 *
1648 * - Furthermore, we need an efficient 64-bit compile for the
1649 * 64-bit case in order to generate the "number of bytes in
1650 * the final mask". Again, that could be replaced with a
1651 * efficient population count instruction or similar.
1652 */
1653#ifdef CONFIG_DCACHE_WORD_ACCESS
1654
1655#include <asm/word-at-a-time.h>
1656
1657#ifdef CONFIG_64BIT
1658
1659static inline unsigned int fold_hash(unsigned long hash)
1660{
1661 return hash_64(hash, 32);
1662}
1663
1664#else /* 32-bit case */
1665
1666#define fold_hash(x) (x)
1667
1668#endif
1669
1670unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1671{
1672 unsigned long a, mask;
1673 unsigned long hash = 0;
1674
1675 for (;;) {
1676 a = load_unaligned_zeropad(name);
1677 if (len < sizeof(unsigned long))
1678 break;
1679 hash += a;
1680 hash *= 9;
1681 name += sizeof(unsigned long);
1682 len -= sizeof(unsigned long);
1683 if (!len)
1684 goto done;
1685 }
1686 mask = bytemask_from_count(len);
1687 hash += mask & a;
1688done:
1689 return fold_hash(hash);
1690}
1691EXPORT_SYMBOL(full_name_hash);
1692
1693/*
1694 * Calculate the length and hash of the path component, and
1695 * return the "hash_len" as the result.
1696 */
1697static inline u64 hash_name(const char *name)
1698{
1699 unsigned long a, b, adata, bdata, mask, hash, len;
1700 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1701
1702 hash = a = 0;
1703 len = -sizeof(unsigned long);
1704 do {
1705 hash = (hash + a) * 9;
1706 len += sizeof(unsigned long);
1707 a = load_unaligned_zeropad(name+len);
1708 b = a ^ REPEAT_BYTE('/');
1709 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1710
1711 adata = prep_zero_mask(a, adata, &constants);
1712 bdata = prep_zero_mask(b, bdata, &constants);
1713
1714 mask = create_zero_mask(adata | bdata);
1715
1716 hash += a & zero_bytemask(mask);
1717 len += find_zero(mask);
1718 return hashlen_create(fold_hash(hash), len);
1719}
1720
1721#else
1722
1723unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1724{
1725 unsigned long hash = init_name_hash();
1726 while (len--)
1727 hash = partial_name_hash(*name++, hash);
1728 return end_name_hash(hash);
1729}
1730EXPORT_SYMBOL(full_name_hash);
1731
1732/*
1733 * We know there's a real path component here of at least
1734 * one character.
1735 */
1736static inline u64 hash_name(const char *name)
1737{
1738 unsigned long hash = init_name_hash();
1739 unsigned long len = 0, c;
1740
1741 c = (unsigned char)*name;
1742 do {
1743 len++;
1744 hash = partial_name_hash(c, hash);
1745 c = (unsigned char)name[len];
1746 } while (c && c != '/');
1747 return hashlen_create(end_name_hash(hash), len);
1748}
1749
1750#endif
1751
1752/*
1753 * Name resolution.
1754 * This is the basic name resolution function, turning a pathname into
1755 * the final dentry. We expect 'base' to be positive and a directory.
1756 *
1757 * Returns 0 and nd will have valid dentry and mnt on success.
1758 * Returns error and drops reference to input namei data on failure.
1759 */
1760static int link_path_walk(const char *name, struct nameidata *nd)
1761{
1762 int err;
1763
1764 while (*name=='/')
1765 name++;
1766 if (!*name)
1767 return 0;
1768
1769 /* At this point we know we have a real path component. */
1770 for(;;) {
1771 u64 hash_len;
1772 int type;
1773
1774 err = may_lookup(nd);
1775 if (err)
1776 return err;
1777
1778 hash_len = hash_name(name);
1779
1780 type = LAST_NORM;
1781 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1782 case 2:
1783 if (name[1] == '.') {
1784 type = LAST_DOTDOT;
1785 nd->flags |= LOOKUP_JUMPED;
1786 }
1787 break;
1788 case 1:
1789 type = LAST_DOT;
1790 }
1791 if (likely(type == LAST_NORM)) {
1792 struct dentry *parent = nd->path.dentry;
1793 nd->flags &= ~LOOKUP_JUMPED;
1794 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1795 struct qstr this = { { .hash_len = hash_len }, .name = name };
1796 err = parent->d_op->d_hash(parent, &this);
1797 if (err < 0)
1798 return err;
1799 hash_len = this.hash_len;
1800 name = this.name;
1801 }
1802 }
1803
1804 nd->last.hash_len = hash_len;
1805 nd->last.name = name;
1806 nd->last_type = type;
1807
1808 name += hashlen_len(hash_len);
1809 if (!*name)
1810 goto OK;
1811 /*
1812 * If it wasn't NUL, we know it was '/'. Skip that
1813 * slash, and continue until no more slashes.
1814 */
1815 do {
1816 name++;
1817 } while (unlikely(*name == '/'));
1818 if (unlikely(!*name)) {
1819OK:
1820 /* pathname body, done */
1821 if (!nd->depth)
1822 return 0;
1823 name = nd->stack[nd->depth - 1].name;
1824 /* trailing symlink, done */
1825 if (!name)
1826 return 0;
1827 /* last component of nested symlink */
1828 err = walk_component(nd, WALK_GET | WALK_PUT);
1829 } else {
1830 err = walk_component(nd, WALK_GET);
1831 }
1832 if (err < 0)
1833 return err;
1834
1835 if (err) {
1836 const char *s = get_link(nd);
1837
1838 if (unlikely(IS_ERR(s)))
1839 return PTR_ERR(s);
1840 err = 0;
1841 if (unlikely(!s)) {
1842 /* jumped */
1843 put_link(nd);
1844 } else {
1845 nd->stack[nd->depth - 1].name = name;
1846 name = s;
1847 continue;
1848 }
1849 }
1850 if (unlikely(!d_can_lookup(nd->path.dentry)))
1851 return -ENOTDIR;
1852 }
1853}
1854
1855static const char *path_init(int dfd, const struct filename *name,
1856 unsigned int flags, struct nameidata *nd)
1857{
1858 int retval = 0;
1859 const char *s = name->name;
1860
1861 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1862 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1863 nd->depth = 0;
1864 nd->total_link_count = 0;
1865 if (flags & LOOKUP_ROOT) {
1866 struct dentry *root = nd->root.dentry;
1867 struct inode *inode = root->d_inode;
1868 if (*s) {
1869 if (!d_can_lookup(root))
1870 return ERR_PTR(-ENOTDIR);
1871 retval = inode_permission(inode, MAY_EXEC);
1872 if (retval)
1873 return ERR_PTR(retval);
1874 }
1875 nd->path = nd->root;
1876 nd->inode = inode;
1877 if (flags & LOOKUP_RCU) {
1878 rcu_read_lock();
1879 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1880 nd->m_seq = read_seqbegin(&mount_lock);
1881 } else {
1882 path_get(&nd->path);
1883 }
1884 return s;
1885 }
1886
1887 nd->root.mnt = NULL;
1888
1889 nd->m_seq = read_seqbegin(&mount_lock);
1890 if (*s == '/') {
1891 if (flags & LOOKUP_RCU) {
1892 rcu_read_lock();
1893 nd->seq = set_root_rcu(nd);
1894 } else {
1895 set_root(nd);
1896 path_get(&nd->root);
1897 }
1898 nd->path = nd->root;
1899 } else if (dfd == AT_FDCWD) {
1900 if (flags & LOOKUP_RCU) {
1901 struct fs_struct *fs = current->fs;
1902 unsigned seq;
1903
1904 rcu_read_lock();
1905
1906 do {
1907 seq = read_seqcount_begin(&fs->seq);
1908 nd->path = fs->pwd;
1909 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1910 } while (read_seqcount_retry(&fs->seq, seq));
1911 } else {
1912 get_fs_pwd(current->fs, &nd->path);
1913 }
1914 } else {
1915 /* Caller must check execute permissions on the starting path component */
1916 struct fd f = fdget_raw(dfd);
1917 struct dentry *dentry;
1918
1919 if (!f.file)
1920 return ERR_PTR(-EBADF);
1921
1922 dentry = f.file->f_path.dentry;
1923
1924 if (*s) {
1925 if (!d_can_lookup(dentry)) {
1926 fdput(f);
1927 return ERR_PTR(-ENOTDIR);
1928 }
1929 }
1930
1931 nd->path = f.file->f_path;
1932 if (flags & LOOKUP_RCU) {
1933 rcu_read_lock();
1934 nd->inode = nd->path.dentry->d_inode;
1935 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1936 } else {
1937 path_get(&nd->path);
1938 nd->inode = nd->path.dentry->d_inode;
1939 }
1940 fdput(f);
1941 return s;
1942 }
1943
1944 nd->inode = nd->path.dentry->d_inode;
1945 if (!(flags & LOOKUP_RCU))
1946 return s;
1947 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1948 return s;
1949 if (!(nd->flags & LOOKUP_ROOT))
1950 nd->root.mnt = NULL;
1951 rcu_read_unlock();
1952 return ERR_PTR(-ECHILD);
1953}
1954
1955static void path_cleanup(struct nameidata *nd)
1956{
1957 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1958 path_put(&nd->root);
1959 nd->root.mnt = NULL;
1960 }
1961}
1962
1963static const char *trailing_symlink(struct nameidata *nd)
1964{
1965 const char *s;
1966 int error = may_follow_link(nd);
1967 if (unlikely(error))
1968 return ERR_PTR(error);
1969 nd->flags |= LOOKUP_PARENT;
1970 nd->stack[0].name = NULL;
1971 s = get_link(nd);
1972 return s ? s : "";
1973}
1974
1975static inline int lookup_last(struct nameidata *nd)
1976{
1977 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1978 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1979
1980 nd->flags &= ~LOOKUP_PARENT;
1981 return walk_component(nd,
1982 nd->flags & LOOKUP_FOLLOW
1983 ? nd->depth
1984 ? WALK_PUT | WALK_GET
1985 : WALK_GET
1986 : 0);
1987}
1988
1989/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1990static int path_lookupat(int dfd, const struct filename *name,
1991 unsigned int flags, struct nameidata *nd)
1992{
1993 const char *s = path_init(dfd, name, flags, nd);
1994 int err;
1995
1996 if (IS_ERR(s))
1997 return PTR_ERR(s);
1998 while (!(err = link_path_walk(s, nd))
1999 && ((err = lookup_last(nd)) > 0)) {
2000 s = trailing_symlink(nd);
2001 if (IS_ERR(s)) {
2002 err = PTR_ERR(s);
2003 break;
2004 }
2005 }
2006 if (!err)
2007 err = complete_walk(nd);
2008
2009 if (!err && nd->flags & LOOKUP_DIRECTORY)
2010 if (!d_can_lookup(nd->path.dentry))
2011 err = -ENOTDIR;
2012 if (err)
2013 terminate_walk(nd);
2014
2015 path_cleanup(nd);
2016 return err;
2017}
2018
2019static int filename_lookup(int dfd, struct filename *name,
2020 unsigned int flags, struct nameidata *nd)
2021{
2022 int retval;
2023 struct nameidata *saved_nd = set_nameidata(nd);
2024
2025 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2026 if (unlikely(retval == -ECHILD))
2027 retval = path_lookupat(dfd, name, flags, nd);
2028 if (unlikely(retval == -ESTALE))
2029 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2030
2031 if (likely(!retval))
2032 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2033 restore_nameidata(saved_nd);
2034 return retval;
2035}
2036
2037/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2038static int path_parentat(int dfd, const struct filename *name,
2039 unsigned int flags, struct nameidata *nd)
2040{
2041 const char *s = path_init(dfd, name, flags, nd);
2042 int err;
2043 if (IS_ERR(s))
2044 return PTR_ERR(s);
2045 err = link_path_walk(s, nd);
2046 if (!err)
2047 err = complete_walk(nd);
2048 if (err)
2049 terminate_walk(nd);
2050 path_cleanup(nd);
2051 return err;
2052}
2053
2054static int filename_parentat(int dfd, struct filename *name,
2055 unsigned int flags, struct nameidata *nd)
2056{
2057 int retval;
2058 struct nameidata *saved_nd = set_nameidata(nd);
2059
2060 retval = path_parentat(dfd, name, flags | LOOKUP_RCU, nd);
2061 if (unlikely(retval == -ECHILD))
2062 retval = path_parentat(dfd, name, flags, nd);
2063 if (unlikely(retval == -ESTALE))
2064 retval = path_parentat(dfd, name, flags | LOOKUP_REVAL, nd);
2065
2066 if (likely(!retval))
2067 audit_inode(name, nd->path.dentry, LOOKUP_PARENT);
2068 restore_nameidata(saved_nd);
2069 return retval;
2070}
2071
2072/* does lookup, returns the object with parent locked */
2073struct dentry *kern_path_locked(const char *name, struct path *path)
2074{
2075 struct filename *filename = getname_kernel(name);
2076 struct nameidata nd;
2077 struct dentry *d;
2078 int err;
2079
2080 if (IS_ERR(filename))
2081 return ERR_CAST(filename);
2082
2083 err = filename_parentat(AT_FDCWD, filename, 0, &nd);
2084 if (err) {
2085 d = ERR_PTR(err);
2086 goto out;
2087 }
2088 if (nd.last_type != LAST_NORM) {
2089 path_put(&nd.path);
2090 d = ERR_PTR(-EINVAL);
2091 goto out;
2092 }
2093 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2094 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2095 if (IS_ERR(d)) {
2096 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2097 path_put(&nd.path);
2098 goto out;
2099 }
2100 *path = nd.path;
2101out:
2102 putname(filename);
2103 return d;
2104}
2105
2106int kern_path(const char *name, unsigned int flags, struct path *path)
2107{
2108 struct nameidata nd;
2109 struct filename *filename = getname_kernel(name);
2110 int res = PTR_ERR(filename);
2111
2112 if (!IS_ERR(filename)) {
2113 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2114 putname(filename);
2115 if (!res)
2116 *path = nd.path;
2117 }
2118 return res;
2119}
2120EXPORT_SYMBOL(kern_path);
2121
2122/**
2123 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2124 * @dentry: pointer to dentry of the base directory
2125 * @mnt: pointer to vfs mount of the base directory
2126 * @name: pointer to file name
2127 * @flags: lookup flags
2128 * @path: pointer to struct path to fill
2129 */
2130int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2131 const char *name, unsigned int flags,
2132 struct path *path)
2133{
2134 struct filename *filename = getname_kernel(name);
2135 int err = PTR_ERR(filename);
2136
2137 BUG_ON(flags & LOOKUP_PARENT);
2138
2139 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2140 if (!IS_ERR(filename)) {
2141 struct nameidata nd;
2142 nd.root.dentry = dentry;
2143 nd.root.mnt = mnt;
2144 err = filename_lookup(AT_FDCWD, filename,
2145 flags | LOOKUP_ROOT, &nd);
2146 if (!err)
2147 *path = nd.path;
2148 putname(filename);
2149 }
2150 return err;
2151}
2152EXPORT_SYMBOL(vfs_path_lookup);
2153
2154/**
2155 * lookup_one_len - filesystem helper to lookup single pathname component
2156 * @name: pathname component to lookup
2157 * @base: base directory to lookup from
2158 * @len: maximum length @len should be interpreted to
2159 *
2160 * Note that this routine is purely a helper for filesystem usage and should
2161 * not be called by generic code.
2162 */
2163struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2164{
2165 struct qstr this;
2166 unsigned int c;
2167 int err;
2168
2169 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2170
2171 this.name = name;
2172 this.len = len;
2173 this.hash = full_name_hash(name, len);
2174 if (!len)
2175 return ERR_PTR(-EACCES);
2176
2177 if (unlikely(name[0] == '.')) {
2178 if (len < 2 || (len == 2 && name[1] == '.'))
2179 return ERR_PTR(-EACCES);
2180 }
2181
2182 while (len--) {
2183 c = *(const unsigned char *)name++;
2184 if (c == '/' || c == '\0')
2185 return ERR_PTR(-EACCES);
2186 }
2187 /*
2188 * See if the low-level filesystem might want
2189 * to use its own hash..
2190 */
2191 if (base->d_flags & DCACHE_OP_HASH) {
2192 int err = base->d_op->d_hash(base, &this);
2193 if (err < 0)
2194 return ERR_PTR(err);
2195 }
2196
2197 err = inode_permission(base->d_inode, MAY_EXEC);
2198 if (err)
2199 return ERR_PTR(err);
2200
2201 return __lookup_hash(&this, base, 0);
2202}
2203EXPORT_SYMBOL(lookup_one_len);
2204
2205int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2206 struct path *path, int *empty)
2207{
2208 struct nameidata nd;
2209 struct filename *tmp = getname_flags(name, flags, empty);
2210 int err = PTR_ERR(tmp);
2211 if (!IS_ERR(tmp)) {
2212
2213 BUG_ON(flags & LOOKUP_PARENT);
2214
2215 err = filename_lookup(dfd, tmp, flags, &nd);
2216 putname(tmp);
2217 if (!err)
2218 *path = nd.path;
2219 }
2220 return err;
2221}
2222
2223int user_path_at(int dfd, const char __user *name, unsigned flags,
2224 struct path *path)
2225{
2226 return user_path_at_empty(dfd, name, flags, path, NULL);
2227}
2228EXPORT_SYMBOL(user_path_at);
2229
2230/*
2231 * NB: most callers don't do anything directly with the reference to the
2232 * to struct filename, but the nd->last pointer points into the name string
2233 * allocated by getname. So we must hold the reference to it until all
2234 * path-walking is complete.
2235 */
2236static struct filename *
2237user_path_parent(int dfd, const char __user *path,
2238 struct path *parent,
2239 struct qstr *last,
2240 int *type,
2241 unsigned int flags)
2242{
2243 struct nameidata nd;
2244 struct filename *s = getname(path);
2245 int error;
2246
2247 /* only LOOKUP_REVAL is allowed in extra flags */
2248 flags &= LOOKUP_REVAL;
2249
2250 if (IS_ERR(s))
2251 return s;
2252
2253 error = filename_parentat(dfd, s, flags, &nd);
2254 if (error) {
2255 putname(s);
2256 return ERR_PTR(error);
2257 }
2258 *parent = nd.path;
2259 *last = nd.last;
2260 *type = nd.last_type;
2261
2262 return s;
2263}
2264
2265/**
2266 * mountpoint_last - look up last component for umount
2267 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2268 * @path: pointer to container for result
2269 *
2270 * This is a special lookup_last function just for umount. In this case, we
2271 * need to resolve the path without doing any revalidation.
2272 *
2273 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2274 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2275 * in almost all cases, this lookup will be served out of the dcache. The only
2276 * cases where it won't are if nd->last refers to a symlink or the path is
2277 * bogus and it doesn't exist.
2278 *
2279 * Returns:
2280 * -error: if there was an error during lookup. This includes -ENOENT if the
2281 * lookup found a negative dentry. The nd->path reference will also be
2282 * put in this case.
2283 *
2284 * 0: if we successfully resolved nd->path and found it to not to be a
2285 * symlink that needs to be followed. "path" will also be populated.
2286 * The nd->path reference will also be put.
2287 *
2288 * 1: if we successfully resolved nd->last and found it to be a symlink
2289 * that needs to be followed. "path" will be populated with the path
2290 * to the link, and nd->path will *not* be put.
2291 */
2292static int
2293mountpoint_last(struct nameidata *nd, struct path *path)
2294{
2295 int error = 0;
2296 struct dentry *dentry;
2297 struct dentry *dir = nd->path.dentry;
2298
2299 /* If we're in rcuwalk, drop out of it to handle last component */
2300 if (nd->flags & LOOKUP_RCU) {
2301 if (unlazy_walk(nd, NULL, 0))
2302 return -ECHILD;
2303 }
2304
2305 nd->flags &= ~LOOKUP_PARENT;
2306
2307 if (unlikely(nd->last_type != LAST_NORM)) {
2308 error = handle_dots(nd, nd->last_type);
2309 if (error)
2310 return error;
2311 dentry = dget(nd->path.dentry);
2312 goto done;
2313 }
2314
2315 mutex_lock(&dir->d_inode->i_mutex);
2316 dentry = d_lookup(dir, &nd->last);
2317 if (!dentry) {
2318 /*
2319 * No cached dentry. Mounted dentries are pinned in the cache,
2320 * so that means that this dentry is probably a symlink or the
2321 * path doesn't actually point to a mounted dentry.
2322 */
2323 dentry = d_alloc(dir, &nd->last);
2324 if (!dentry) {
2325 mutex_unlock(&dir->d_inode->i_mutex);
2326 return -ENOMEM;
2327 }
2328 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2329 if (IS_ERR(dentry)) {
2330 mutex_unlock(&dir->d_inode->i_mutex);
2331 return PTR_ERR(dentry);
2332 }
2333 }
2334 mutex_unlock(&dir->d_inode->i_mutex);
2335
2336done:
2337 if (d_is_negative(dentry)) {
2338 dput(dentry);
2339 return -ENOENT;
2340 }
2341 if (nd->depth)
2342 put_link(nd);
2343 path->dentry = dentry;
2344 path->mnt = nd->path.mnt;
2345 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW);
2346 if (unlikely(error))
2347 return error;
2348 mntget(path->mnt);
2349 follow_mount(path);
2350 return 0;
2351}
2352
2353/**
2354 * path_mountpoint - look up a path to be umounted
2355 * @dfd: directory file descriptor to start walk from
2356 * @name: full pathname to walk
2357 * @path: pointer to container for result
2358 * @flags: lookup flags
2359 *
2360 * Look up the given name, but don't attempt to revalidate the last component.
2361 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2362 */
2363static int
2364path_mountpoint(int dfd, const struct filename *name, struct path *path,
2365 struct nameidata *nd, unsigned int flags)
2366{
2367 const char *s = path_init(dfd, name, flags, nd);
2368 int err;
2369 if (IS_ERR(s))
2370 return PTR_ERR(s);
2371 while (!(err = link_path_walk(s, nd)) &&
2372 (err = mountpoint_last(nd, path)) > 0) {
2373 s = trailing_symlink(nd);
2374 if (IS_ERR(s)) {
2375 err = PTR_ERR(s);
2376 break;
2377 }
2378 }
2379 terminate_walk(nd);
2380 path_cleanup(nd);
2381 return err;
2382}
2383
2384static int
2385filename_mountpoint(int dfd, struct filename *name, struct path *path,
2386 unsigned int flags)
2387{
2388 struct nameidata nd, *saved;
2389 int error;
2390 if (IS_ERR(name))
2391 return PTR_ERR(name);
2392 saved = set_nameidata(&nd);
2393 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2394 if (unlikely(error == -ECHILD))
2395 error = path_mountpoint(dfd, name, path, &nd, flags);
2396 if (unlikely(error == -ESTALE))
2397 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2398 if (likely(!error))
2399 audit_inode(name, path->dentry, 0);
2400 restore_nameidata(saved);
2401 putname(name);
2402 return error;
2403}
2404
2405/**
2406 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2407 * @dfd: directory file descriptor
2408 * @name: pathname from userland
2409 * @flags: lookup flags
2410 * @path: pointer to container to hold result
2411 *
2412 * A umount is a special case for path walking. We're not actually interested
2413 * in the inode in this situation, and ESTALE errors can be a problem. We
2414 * simply want track down the dentry and vfsmount attached at the mountpoint
2415 * and avoid revalidating the last component.
2416 *
2417 * Returns 0 and populates "path" on success.
2418 */
2419int
2420user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2421 struct path *path)
2422{
2423 return filename_mountpoint(dfd, getname(name), path, flags);
2424}
2425
2426int
2427kern_path_mountpoint(int dfd, const char *name, struct path *path,
2428 unsigned int flags)
2429{
2430 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2431}
2432EXPORT_SYMBOL(kern_path_mountpoint);
2433
2434int __check_sticky(struct inode *dir, struct inode *inode)
2435{
2436 kuid_t fsuid = current_fsuid();
2437
2438 if (uid_eq(inode->i_uid, fsuid))
2439 return 0;
2440 if (uid_eq(dir->i_uid, fsuid))
2441 return 0;
2442 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2443}
2444EXPORT_SYMBOL(__check_sticky);
2445
2446/*
2447 * Check whether we can remove a link victim from directory dir, check
2448 * whether the type of victim is right.
2449 * 1. We can't do it if dir is read-only (done in permission())
2450 * 2. We should have write and exec permissions on dir
2451 * 3. We can't remove anything from append-only dir
2452 * 4. We can't do anything with immutable dir (done in permission())
2453 * 5. If the sticky bit on dir is set we should either
2454 * a. be owner of dir, or
2455 * b. be owner of victim, or
2456 * c. have CAP_FOWNER capability
2457 * 6. If the victim is append-only or immutable we can't do antyhing with
2458 * links pointing to it.
2459 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2460 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2461 * 9. We can't remove a root or mountpoint.
2462 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2463 * nfs_async_unlink().
2464 */
2465static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2466{
2467 struct inode *inode = victim->d_inode;
2468 int error;
2469
2470 if (d_is_negative(victim))
2471 return -ENOENT;
2472 BUG_ON(!inode);
2473
2474 BUG_ON(victim->d_parent->d_inode != dir);
2475 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2476
2477 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2478 if (error)
2479 return error;
2480 if (IS_APPEND(dir))
2481 return -EPERM;
2482
2483 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2484 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2485 return -EPERM;
2486 if (isdir) {
2487 if (!d_is_dir(victim))
2488 return -ENOTDIR;
2489 if (IS_ROOT(victim))
2490 return -EBUSY;
2491 } else if (d_is_dir(victim))
2492 return -EISDIR;
2493 if (IS_DEADDIR(dir))
2494 return -ENOENT;
2495 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2496 return -EBUSY;
2497 return 0;
2498}
2499
2500/* Check whether we can create an object with dentry child in directory
2501 * dir.
2502 * 1. We can't do it if child already exists (open has special treatment for
2503 * this case, but since we are inlined it's OK)
2504 * 2. We can't do it if dir is read-only (done in permission())
2505 * 3. We should have write and exec permissions on dir
2506 * 4. We can't do it if dir is immutable (done in permission())
2507 */
2508static inline int may_create(struct inode *dir, struct dentry *child)
2509{
2510 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2511 if (child->d_inode)
2512 return -EEXIST;
2513 if (IS_DEADDIR(dir))
2514 return -ENOENT;
2515 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2516}
2517
2518/*
2519 * p1 and p2 should be directories on the same fs.
2520 */
2521struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2522{
2523 struct dentry *p;
2524
2525 if (p1 == p2) {
2526 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2527 return NULL;
2528 }
2529
2530 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2531
2532 p = d_ancestor(p2, p1);
2533 if (p) {
2534 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2535 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2536 return p;
2537 }
2538
2539 p = d_ancestor(p1, p2);
2540 if (p) {
2541 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2542 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2543 return p;
2544 }
2545
2546 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2547 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2548 return NULL;
2549}
2550EXPORT_SYMBOL(lock_rename);
2551
2552void unlock_rename(struct dentry *p1, struct dentry *p2)
2553{
2554 mutex_unlock(&p1->d_inode->i_mutex);
2555 if (p1 != p2) {
2556 mutex_unlock(&p2->d_inode->i_mutex);
2557 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2558 }
2559}
2560EXPORT_SYMBOL(unlock_rename);
2561
2562int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2563 bool want_excl)
2564{
2565 int error = may_create(dir, dentry);
2566 if (error)
2567 return error;
2568
2569 if (!dir->i_op->create)
2570 return -EACCES; /* shouldn't it be ENOSYS? */
2571 mode &= S_IALLUGO;
2572 mode |= S_IFREG;
2573 error = security_inode_create(dir, dentry, mode);
2574 if (error)
2575 return error;
2576 error = dir->i_op->create(dir, dentry, mode, want_excl);
2577 if (!error)
2578 fsnotify_create(dir, dentry);
2579 return error;
2580}
2581EXPORT_SYMBOL(vfs_create);
2582
2583static int may_open(struct path *path, int acc_mode, int flag)
2584{
2585 struct dentry *dentry = path->dentry;
2586 struct inode *inode = dentry->d_inode;
2587 int error;
2588
2589 /* O_PATH? */
2590 if (!acc_mode)
2591 return 0;
2592
2593 if (!inode)
2594 return -ENOENT;
2595
2596 switch (inode->i_mode & S_IFMT) {
2597 case S_IFLNK:
2598 return -ELOOP;
2599 case S_IFDIR:
2600 if (acc_mode & MAY_WRITE)
2601 return -EISDIR;
2602 break;
2603 case S_IFBLK:
2604 case S_IFCHR:
2605 if (path->mnt->mnt_flags & MNT_NODEV)
2606 return -EACCES;
2607 /*FALLTHRU*/
2608 case S_IFIFO:
2609 case S_IFSOCK:
2610 flag &= ~O_TRUNC;
2611 break;
2612 }
2613
2614 error = inode_permission(inode, acc_mode);
2615 if (error)
2616 return error;
2617
2618 /*
2619 * An append-only file must be opened in append mode for writing.
2620 */
2621 if (IS_APPEND(inode)) {
2622 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2623 return -EPERM;
2624 if (flag & O_TRUNC)
2625 return -EPERM;
2626 }
2627
2628 /* O_NOATIME can only be set by the owner or superuser */
2629 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2630 return -EPERM;
2631
2632 return 0;
2633}
2634
2635static int handle_truncate(struct file *filp)
2636{
2637 struct path *path = &filp->f_path;
2638 struct inode *inode = path->dentry->d_inode;
2639 int error = get_write_access(inode);
2640 if (error)
2641 return error;
2642 /*
2643 * Refuse to truncate files with mandatory locks held on them.
2644 */
2645 error = locks_verify_locked(filp);
2646 if (!error)
2647 error = security_path_truncate(path);
2648 if (!error) {
2649 error = do_truncate(path->dentry, 0,
2650 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2651 filp);
2652 }
2653 put_write_access(inode);
2654 return error;
2655}
2656
2657static inline int open_to_namei_flags(int flag)
2658{
2659 if ((flag & O_ACCMODE) == 3)
2660 flag--;
2661 return flag;
2662}
2663
2664static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2665{
2666 int error = security_path_mknod(dir, dentry, mode, 0);
2667 if (error)
2668 return error;
2669
2670 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2671 if (error)
2672 return error;
2673
2674 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2675}
2676
2677/*
2678 * Attempt to atomically look up, create and open a file from a negative
2679 * dentry.
2680 *
2681 * Returns 0 if successful. The file will have been created and attached to
2682 * @file by the filesystem calling finish_open().
2683 *
2684 * Returns 1 if the file was looked up only or didn't need creating. The
2685 * caller will need to perform the open themselves. @path will have been
2686 * updated to point to the new dentry. This may be negative.
2687 *
2688 * Returns an error code otherwise.
2689 */
2690static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2691 struct path *path, struct file *file,
2692 const struct open_flags *op,
2693 bool got_write, bool need_lookup,
2694 int *opened)
2695{
2696 struct inode *dir = nd->path.dentry->d_inode;
2697 unsigned open_flag = open_to_namei_flags(op->open_flag);
2698 umode_t mode;
2699 int error;
2700 int acc_mode;
2701 int create_error = 0;
2702 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2703 bool excl;
2704
2705 BUG_ON(dentry->d_inode);
2706
2707 /* Don't create child dentry for a dead directory. */
2708 if (unlikely(IS_DEADDIR(dir))) {
2709 error = -ENOENT;
2710 goto out;
2711 }
2712
2713 mode = op->mode;
2714 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2715 mode &= ~current_umask();
2716
2717 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2718 if (excl)
2719 open_flag &= ~O_TRUNC;
2720
2721 /*
2722 * Checking write permission is tricky, bacuse we don't know if we are
2723 * going to actually need it: O_CREAT opens should work as long as the
2724 * file exists. But checking existence breaks atomicity. The trick is
2725 * to check access and if not granted clear O_CREAT from the flags.
2726 *
2727 * Another problem is returing the "right" error value (e.g. for an
2728 * O_EXCL open we want to return EEXIST not EROFS).
2729 */
2730 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2731 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2732 if (!(open_flag & O_CREAT)) {
2733 /*
2734 * No O_CREATE -> atomicity not a requirement -> fall
2735 * back to lookup + open
2736 */
2737 goto no_open;
2738 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2739 /* Fall back and fail with the right error */
2740 create_error = -EROFS;
2741 goto no_open;
2742 } else {
2743 /* No side effects, safe to clear O_CREAT */
2744 create_error = -EROFS;
2745 open_flag &= ~O_CREAT;
2746 }
2747 }
2748
2749 if (open_flag & O_CREAT) {
2750 error = may_o_create(&nd->path, dentry, mode);
2751 if (error) {
2752 create_error = error;
2753 if (open_flag & O_EXCL)
2754 goto no_open;
2755 open_flag &= ~O_CREAT;
2756 }
2757 }
2758
2759 if (nd->flags & LOOKUP_DIRECTORY)
2760 open_flag |= O_DIRECTORY;
2761
2762 file->f_path.dentry = DENTRY_NOT_SET;
2763 file->f_path.mnt = nd->path.mnt;
2764 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2765 opened);
2766 if (error < 0) {
2767 if (create_error && error == -ENOENT)
2768 error = create_error;
2769 goto out;
2770 }
2771
2772 if (error) { /* returned 1, that is */
2773 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2774 error = -EIO;
2775 goto out;
2776 }
2777 if (file->f_path.dentry) {
2778 dput(dentry);
2779 dentry = file->f_path.dentry;
2780 }
2781 if (*opened & FILE_CREATED)
2782 fsnotify_create(dir, dentry);
2783 if (!dentry->d_inode) {
2784 WARN_ON(*opened & FILE_CREATED);
2785 if (create_error) {
2786 error = create_error;
2787 goto out;
2788 }
2789 } else {
2790 if (excl && !(*opened & FILE_CREATED)) {
2791 error = -EEXIST;
2792 goto out;
2793 }
2794 }
2795 goto looked_up;
2796 }
2797
2798 /*
2799 * We didn't have the inode before the open, so check open permission
2800 * here.
2801 */
2802 acc_mode = op->acc_mode;
2803 if (*opened & FILE_CREATED) {
2804 WARN_ON(!(open_flag & O_CREAT));
2805 fsnotify_create(dir, dentry);
2806 acc_mode = MAY_OPEN;
2807 }
2808 error = may_open(&file->f_path, acc_mode, open_flag);
2809 if (error)
2810 fput(file);
2811
2812out:
2813 dput(dentry);
2814 return error;
2815
2816no_open:
2817 if (need_lookup) {
2818 dentry = lookup_real(dir, dentry, nd->flags);
2819 if (IS_ERR(dentry))
2820 return PTR_ERR(dentry);
2821
2822 if (create_error) {
2823 int open_flag = op->open_flag;
2824
2825 error = create_error;
2826 if ((open_flag & O_EXCL)) {
2827 if (!dentry->d_inode)
2828 goto out;
2829 } else if (!dentry->d_inode) {
2830 goto out;
2831 } else if ((open_flag & O_TRUNC) &&
2832 d_is_reg(dentry)) {
2833 goto out;
2834 }
2835 /* will fail later, go on to get the right error */
2836 }
2837 }
2838looked_up:
2839 path->dentry = dentry;
2840 path->mnt = nd->path.mnt;
2841 return 1;
2842}
2843
2844/*
2845 * Look up and maybe create and open the last component.
2846 *
2847 * Must be called with i_mutex held on parent.
2848 *
2849 * Returns 0 if the file was successfully atomically created (if necessary) and
2850 * opened. In this case the file will be returned attached to @file.
2851 *
2852 * Returns 1 if the file was not completely opened at this time, though lookups
2853 * and creations will have been performed and the dentry returned in @path will
2854 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2855 * specified then a negative dentry may be returned.
2856 *
2857 * An error code is returned otherwise.
2858 *
2859 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2860 * cleared otherwise prior to returning.
2861 */
2862static int lookup_open(struct nameidata *nd, struct path *path,
2863 struct file *file,
2864 const struct open_flags *op,
2865 bool got_write, int *opened)
2866{
2867 struct dentry *dir = nd->path.dentry;
2868 struct inode *dir_inode = dir->d_inode;
2869 struct dentry *dentry;
2870 int error;
2871 bool need_lookup;
2872
2873 *opened &= ~FILE_CREATED;
2874 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2875 if (IS_ERR(dentry))
2876 return PTR_ERR(dentry);
2877
2878 /* Cached positive dentry: will open in f_op->open */
2879 if (!need_lookup && dentry->d_inode)
2880 goto out_no_open;
2881
2882 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2883 return atomic_open(nd, dentry, path, file, op, got_write,
2884 need_lookup, opened);
2885 }
2886
2887 if (need_lookup) {
2888 BUG_ON(dentry->d_inode);
2889
2890 dentry = lookup_real(dir_inode, dentry, nd->flags);
2891 if (IS_ERR(dentry))
2892 return PTR_ERR(dentry);
2893 }
2894
2895 /* Negative dentry, just create the file */
2896 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2897 umode_t mode = op->mode;
2898 if (!IS_POSIXACL(dir->d_inode))
2899 mode &= ~current_umask();
2900 /*
2901 * This write is needed to ensure that a
2902 * rw->ro transition does not occur between
2903 * the time when the file is created and when
2904 * a permanent write count is taken through
2905 * the 'struct file' in finish_open().
2906 */
2907 if (!got_write) {
2908 error = -EROFS;
2909 goto out_dput;
2910 }
2911 *opened |= FILE_CREATED;
2912 error = security_path_mknod(&nd->path, dentry, mode, 0);
2913 if (error)
2914 goto out_dput;
2915 error = vfs_create(dir->d_inode, dentry, mode,
2916 nd->flags & LOOKUP_EXCL);
2917 if (error)
2918 goto out_dput;
2919 }
2920out_no_open:
2921 path->dentry = dentry;
2922 path->mnt = nd->path.mnt;
2923 return 1;
2924
2925out_dput:
2926 dput(dentry);
2927 return error;
2928}
2929
2930/*
2931 * Handle the last step of open()
2932 */
2933static int do_last(struct nameidata *nd,
2934 struct file *file, const struct open_flags *op,
2935 int *opened, struct filename *name)
2936{
2937 struct dentry *dir = nd->path.dentry;
2938 int open_flag = op->open_flag;
2939 bool will_truncate = (open_flag & O_TRUNC) != 0;
2940 bool got_write = false;
2941 int acc_mode = op->acc_mode;
2942 struct inode *inode;
2943 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2944 struct path path;
2945 bool retried = false;
2946 int error;
2947
2948 nd->flags &= ~LOOKUP_PARENT;
2949 nd->flags |= op->intent;
2950
2951 if (nd->last_type != LAST_NORM) {
2952 error = handle_dots(nd, nd->last_type);
2953 if (unlikely(error))
2954 return error;
2955 goto finish_open;
2956 }
2957
2958 if (!(open_flag & O_CREAT)) {
2959 if (nd->last.name[nd->last.len])
2960 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2961 /* we _can_ be in RCU mode here */
2962 error = lookup_fast(nd, &path, &inode);
2963 if (likely(!error))
2964 goto finish_lookup;
2965
2966 if (error < 0)
2967 return error;
2968
2969 BUG_ON(nd->inode != dir->d_inode);
2970 } else {
2971 /* create side of things */
2972 /*
2973 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2974 * has been cleared when we got to the last component we are
2975 * about to look up
2976 */
2977 error = complete_walk(nd);
2978 if (error)
2979 return error;
2980
2981 audit_inode(name, dir, LOOKUP_PARENT);
2982 /* trailing slashes? */
2983 if (unlikely(nd->last.name[nd->last.len]))
2984 return -EISDIR;
2985 }
2986
2987retry_lookup:
2988 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2989 error = mnt_want_write(nd->path.mnt);
2990 if (!error)
2991 got_write = true;
2992 /*
2993 * do _not_ fail yet - we might not need that or fail with
2994 * a different error; let lookup_open() decide; we'll be
2995 * dropping this one anyway.
2996 */
2997 }
2998 mutex_lock(&dir->d_inode->i_mutex);
2999 error = lookup_open(nd, &path, file, op, got_write, opened);
3000 mutex_unlock(&dir->d_inode->i_mutex);
3001
3002 if (error <= 0) {
3003 if (error)
3004 goto out;
3005
3006 if ((*opened & FILE_CREATED) ||
3007 !S_ISREG(file_inode(file)->i_mode))
3008 will_truncate = false;
3009
3010 audit_inode(name, file->f_path.dentry, 0);
3011 goto opened;
3012 }
3013
3014 if (*opened & FILE_CREATED) {
3015 /* Don't check for write permission, don't truncate */
3016 open_flag &= ~O_TRUNC;
3017 will_truncate = false;
3018 acc_mode = MAY_OPEN;
3019 path_to_nameidata(&path, nd);
3020 goto finish_open_created;
3021 }
3022
3023 /*
3024 * create/update audit record if it already exists.
3025 */
3026 if (d_is_positive(path.dentry))
3027 audit_inode(name, path.dentry, 0);
3028
3029 /*
3030 * If atomic_open() acquired write access it is dropped now due to
3031 * possible mount and symlink following (this might be optimized away if
3032 * necessary...)
3033 */
3034 if (got_write) {
3035 mnt_drop_write(nd->path.mnt);
3036 got_write = false;
3037 }
3038
3039 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3040 path_to_nameidata(&path, nd);
3041 return -EEXIST;
3042 }
3043
3044 error = follow_managed(&path, nd);
3045 if (unlikely(error < 0))
3046 return error;
3047
3048 BUG_ON(nd->flags & LOOKUP_RCU);
3049 inode = path.dentry->d_inode;
3050 if (unlikely(d_is_negative(path.dentry))) {
3051 path_to_nameidata(&path, nd);
3052 return -ENOENT;
3053 }
3054finish_lookup:
3055 if (nd->depth)
3056 put_link(nd);
3057 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW);
3058 if (unlikely(error))
3059 return error;
3060
3061 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3062 path_to_nameidata(&path, nd);
3063 return -ELOOP;
3064 }
3065
3066 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3067 path_to_nameidata(&path, nd);
3068 } else {
3069 save_parent.dentry = nd->path.dentry;
3070 save_parent.mnt = mntget(path.mnt);
3071 nd->path.dentry = path.dentry;
3072
3073 }
3074 nd->inode = inode;
3075 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3076finish_open:
3077 error = complete_walk(nd);
3078 if (error) {
3079 path_put(&save_parent);
3080 return error;
3081 }
3082 audit_inode(name, nd->path.dentry, 0);
3083 error = -EISDIR;
3084 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3085 goto out;
3086 error = -ENOTDIR;
3087 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3088 goto out;
3089 if (!d_is_reg(nd->path.dentry))
3090 will_truncate = false;
3091
3092 if (will_truncate) {
3093 error = mnt_want_write(nd->path.mnt);
3094 if (error)
3095 goto out;
3096 got_write = true;
3097 }
3098finish_open_created:
3099 error = may_open(&nd->path, acc_mode, open_flag);
3100 if (error)
3101 goto out;
3102
3103 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3104 error = vfs_open(&nd->path, file, current_cred());
3105 if (!error) {
3106 *opened |= FILE_OPENED;
3107 } else {
3108 if (error == -EOPENSTALE)
3109 goto stale_open;
3110 goto out;
3111 }
3112opened:
3113 error = open_check_o_direct(file);
3114 if (error)
3115 goto exit_fput;
3116 error = ima_file_check(file, op->acc_mode, *opened);
3117 if (error)
3118 goto exit_fput;
3119
3120 if (will_truncate) {
3121 error = handle_truncate(file);
3122 if (error)
3123 goto exit_fput;
3124 }
3125out:
3126 if (got_write)
3127 mnt_drop_write(nd->path.mnt);
3128 path_put(&save_parent);
3129 return error;
3130
3131exit_fput:
3132 fput(file);
3133 goto out;
3134
3135stale_open:
3136 /* If no saved parent or already retried then can't retry */
3137 if (!save_parent.dentry || retried)
3138 goto out;
3139
3140 BUG_ON(save_parent.dentry != dir);
3141 path_put(&nd->path);
3142 nd->path = save_parent;
3143 nd->inode = dir->d_inode;
3144 save_parent.mnt = NULL;
3145 save_parent.dentry = NULL;
3146 if (got_write) {
3147 mnt_drop_write(nd->path.mnt);
3148 got_write = false;
3149 }
3150 retried = true;
3151 goto retry_lookup;
3152}
3153
3154static int do_tmpfile(int dfd, struct filename *pathname,
3155 struct nameidata *nd, int flags,
3156 const struct open_flags *op,
3157 struct file *file, int *opened)
3158{
3159 static const struct qstr name = QSTR_INIT("/", 1);
3160 struct dentry *dentry, *child;
3161 struct inode *dir;
3162 int error = path_lookupat(dfd, pathname,
3163 flags | LOOKUP_DIRECTORY, nd);
3164 if (unlikely(error))
3165 return error;
3166 error = mnt_want_write(nd->path.mnt);
3167 if (unlikely(error))
3168 goto out;
3169 /* we want directory to be writable */
3170 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3171 if (error)
3172 goto out2;
3173 dentry = nd->path.dentry;
3174 dir = dentry->d_inode;
3175 if (!dir->i_op->tmpfile) {
3176 error = -EOPNOTSUPP;
3177 goto out2;
3178 }
3179 child = d_alloc(dentry, &name);
3180 if (unlikely(!child)) {
3181 error = -ENOMEM;
3182 goto out2;
3183 }
3184 nd->flags &= ~LOOKUP_DIRECTORY;
3185 nd->flags |= op->intent;
3186 dput(nd->path.dentry);
3187 nd->path.dentry = child;
3188 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3189 if (error)
3190 goto out2;
3191 audit_inode(pathname, nd->path.dentry, 0);
3192 /* Don't check for other permissions, the inode was just created */
3193 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3194 if (error)
3195 goto out2;
3196 file->f_path.mnt = nd->path.mnt;
3197 error = finish_open(file, nd->path.dentry, NULL, opened);
3198 if (error)
3199 goto out2;
3200 error = open_check_o_direct(file);
3201 if (error) {
3202 fput(file);
3203 } else if (!(op->open_flag & O_EXCL)) {
3204 struct inode *inode = file_inode(file);
3205 spin_lock(&inode->i_lock);
3206 inode->i_state |= I_LINKABLE;
3207 spin_unlock(&inode->i_lock);
3208 }
3209out2:
3210 mnt_drop_write(nd->path.mnt);
3211out:
3212 path_put(&nd->path);
3213 return error;
3214}
3215
3216static struct file *path_openat(int dfd, struct filename *pathname,
3217 struct nameidata *nd, const struct open_flags *op, int flags)
3218{
3219 const char *s;
3220 struct file *file;
3221 int opened = 0;
3222 int error;
3223
3224 file = get_empty_filp();
3225 if (IS_ERR(file))
3226 return file;
3227
3228 file->f_flags = op->open_flag;
3229
3230 if (unlikely(file->f_flags & __O_TMPFILE)) {
3231 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3232 goto out2;
3233 }
3234
3235 s = path_init(dfd, pathname, flags, nd);
3236 if (IS_ERR(s)) {
3237 put_filp(file);
3238 return ERR_CAST(s);
3239 }
3240 while (!(error = link_path_walk(s, nd)) &&
3241 (error = do_last(nd, file, op, &opened, pathname)) > 0) {
3242 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3243 s = trailing_symlink(nd);
3244 if (IS_ERR(s)) {
3245 error = PTR_ERR(s);
3246 break;
3247 }
3248 }
3249 terminate_walk(nd);
3250 path_cleanup(nd);
3251out2:
3252 if (!(opened & FILE_OPENED)) {
3253 BUG_ON(!error);
3254 put_filp(file);
3255 }
3256 if (unlikely(error)) {
3257 if (error == -EOPENSTALE) {
3258 if (flags & LOOKUP_RCU)
3259 error = -ECHILD;
3260 else
3261 error = -ESTALE;
3262 }
3263 file = ERR_PTR(error);
3264 }
3265 return file;
3266}
3267
3268struct file *do_filp_open(int dfd, struct filename *pathname,
3269 const struct open_flags *op)
3270{
3271 struct nameidata nd, *saved_nd = set_nameidata(&nd);
3272 int flags = op->lookup_flags;
3273 struct file *filp;
3274
3275 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3276 if (unlikely(filp == ERR_PTR(-ECHILD)))
3277 filp = path_openat(dfd, pathname, &nd, op, flags);
3278 if (unlikely(filp == ERR_PTR(-ESTALE)))
3279 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3280 restore_nameidata(saved_nd);
3281 return filp;
3282}
3283
3284struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3285 const char *name, const struct open_flags *op)
3286{
3287 struct nameidata nd, *saved_nd;
3288 struct file *file;
3289 struct filename *filename;
3290 int flags = op->lookup_flags | LOOKUP_ROOT;
3291
3292 nd.root.mnt = mnt;
3293 nd.root.dentry = dentry;
3294
3295 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3296 return ERR_PTR(-ELOOP);
3297
3298 filename = getname_kernel(name);
3299 if (unlikely(IS_ERR(filename)))
3300 return ERR_CAST(filename);
3301
3302 saved_nd = set_nameidata(&nd);
3303 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3304 if (unlikely(file == ERR_PTR(-ECHILD)))
3305 file = path_openat(-1, filename, &nd, op, flags);
3306 if (unlikely(file == ERR_PTR(-ESTALE)))
3307 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3308 restore_nameidata(saved_nd);
3309 putname(filename);
3310 return file;
3311}
3312
3313static struct dentry *filename_create(int dfd, struct filename *name,
3314 struct path *path, unsigned int lookup_flags)
3315{
3316 struct dentry *dentry = ERR_PTR(-EEXIST);
3317 struct nameidata nd;
3318 int err2;
3319 int error;
3320 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3321
3322 /*
3323 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3324 * other flags passed in are ignored!
3325 */
3326 lookup_flags &= LOOKUP_REVAL;
3327
3328 error = filename_parentat(dfd, name, lookup_flags, &nd);
3329 if (error)
3330 return ERR_PTR(error);
3331
3332 /*
3333 * Yucky last component or no last component at all?
3334 * (foo/., foo/.., /////)
3335 */
3336 if (nd.last_type != LAST_NORM)
3337 goto out;
3338 nd.flags &= ~LOOKUP_PARENT;
3339 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3340
3341 /* don't fail immediately if it's r/o, at least try to report other errors */
3342 err2 = mnt_want_write(nd.path.mnt);
3343 /*
3344 * Do the final lookup.
3345 */
3346 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3347 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3348 if (IS_ERR(dentry))
3349 goto unlock;
3350
3351 error = -EEXIST;
3352 if (d_is_positive(dentry))
3353 goto fail;
3354
3355 /*
3356 * Special case - lookup gave negative, but... we had foo/bar/
3357 * From the vfs_mknod() POV we just have a negative dentry -
3358 * all is fine. Let's be bastards - you had / on the end, you've
3359 * been asking for (non-existent) directory. -ENOENT for you.
3360 */
3361 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3362 error = -ENOENT;
3363 goto fail;
3364 }
3365 if (unlikely(err2)) {
3366 error = err2;
3367 goto fail;
3368 }
3369 *path = nd.path;
3370 return dentry;
3371fail:
3372 dput(dentry);
3373 dentry = ERR_PTR(error);
3374unlock:
3375 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3376 if (!err2)
3377 mnt_drop_write(nd.path.mnt);
3378out:
3379 path_put(&nd.path);
3380 return dentry;
3381}
3382
3383struct dentry *kern_path_create(int dfd, const char *pathname,
3384 struct path *path, unsigned int lookup_flags)
3385{
3386 struct filename *filename = getname_kernel(pathname);
3387 struct dentry *res;
3388
3389 if (IS_ERR(filename))
3390 return ERR_CAST(filename);
3391 res = filename_create(dfd, filename, path, lookup_flags);
3392 putname(filename);
3393 return res;
3394}
3395EXPORT_SYMBOL(kern_path_create);
3396
3397void done_path_create(struct path *path, struct dentry *dentry)
3398{
3399 dput(dentry);
3400 mutex_unlock(&path->dentry->d_inode->i_mutex);
3401 mnt_drop_write(path->mnt);
3402 path_put(path);
3403}
3404EXPORT_SYMBOL(done_path_create);
3405
3406struct dentry *user_path_create(int dfd, const char __user *pathname,
3407 struct path *path, unsigned int lookup_flags)
3408{
3409 struct filename *tmp = getname(pathname);
3410 struct dentry *res;
3411 if (IS_ERR(tmp))
3412 return ERR_CAST(tmp);
3413 res = filename_create(dfd, tmp, path, lookup_flags);
3414 putname(tmp);
3415 return res;
3416}
3417EXPORT_SYMBOL(user_path_create);
3418
3419int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3420{
3421 int error = may_create(dir, dentry);
3422
3423 if (error)
3424 return error;
3425
3426 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3427 return -EPERM;
3428
3429 if (!dir->i_op->mknod)
3430 return -EPERM;
3431
3432 error = devcgroup_inode_mknod(mode, dev);
3433 if (error)
3434 return error;
3435
3436 error = security_inode_mknod(dir, dentry, mode, dev);
3437 if (error)
3438 return error;
3439
3440 error = dir->i_op->mknod(dir, dentry, mode, dev);
3441 if (!error)
3442 fsnotify_create(dir, dentry);
3443 return error;
3444}
3445EXPORT_SYMBOL(vfs_mknod);
3446
3447static int may_mknod(umode_t mode)
3448{
3449 switch (mode & S_IFMT) {
3450 case S_IFREG:
3451 case S_IFCHR:
3452 case S_IFBLK:
3453 case S_IFIFO:
3454 case S_IFSOCK:
3455 case 0: /* zero mode translates to S_IFREG */
3456 return 0;
3457 case S_IFDIR:
3458 return -EPERM;
3459 default:
3460 return -EINVAL;
3461 }
3462}
3463
3464SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3465 unsigned, dev)
3466{
3467 struct dentry *dentry;
3468 struct path path;
3469 int error;
3470 unsigned int lookup_flags = 0;
3471
3472 error = may_mknod(mode);
3473 if (error)
3474 return error;
3475retry:
3476 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3477 if (IS_ERR(dentry))
3478 return PTR_ERR(dentry);
3479
3480 if (!IS_POSIXACL(path.dentry->d_inode))
3481 mode &= ~current_umask();
3482 error = security_path_mknod(&path, dentry, mode, dev);
3483 if (error)
3484 goto out;
3485 switch (mode & S_IFMT) {
3486 case 0: case S_IFREG:
3487 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3488 break;
3489 case S_IFCHR: case S_IFBLK:
3490 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3491 new_decode_dev(dev));
3492 break;
3493 case S_IFIFO: case S_IFSOCK:
3494 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3495 break;
3496 }
3497out:
3498 done_path_create(&path, dentry);
3499 if (retry_estale(error, lookup_flags)) {
3500 lookup_flags |= LOOKUP_REVAL;
3501 goto retry;
3502 }
3503 return error;
3504}
3505
3506SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3507{
3508 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3509}
3510
3511int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3512{
3513 int error = may_create(dir, dentry);
3514 unsigned max_links = dir->i_sb->s_max_links;
3515
3516 if (error)
3517 return error;
3518
3519 if (!dir->i_op->mkdir)
3520 return -EPERM;
3521
3522 mode &= (S_IRWXUGO|S_ISVTX);
3523 error = security_inode_mkdir(dir, dentry, mode);
3524 if (error)
3525 return error;
3526
3527 if (max_links && dir->i_nlink >= max_links)
3528 return -EMLINK;
3529
3530 error = dir->i_op->mkdir(dir, dentry, mode);
3531 if (!error)
3532 fsnotify_mkdir(dir, dentry);
3533 return error;
3534}
3535EXPORT_SYMBOL(vfs_mkdir);
3536
3537SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3538{
3539 struct dentry *dentry;
3540 struct path path;
3541 int error;
3542 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3543
3544retry:
3545 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3546 if (IS_ERR(dentry))
3547 return PTR_ERR(dentry);
3548
3549 if (!IS_POSIXACL(path.dentry->d_inode))
3550 mode &= ~current_umask();
3551 error = security_path_mkdir(&path, dentry, mode);
3552 if (!error)
3553 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3554 done_path_create(&path, dentry);
3555 if (retry_estale(error, lookup_flags)) {
3556 lookup_flags |= LOOKUP_REVAL;
3557 goto retry;
3558 }
3559 return error;
3560}
3561
3562SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3563{
3564 return sys_mkdirat(AT_FDCWD, pathname, mode);
3565}
3566
3567/*
3568 * The dentry_unhash() helper will try to drop the dentry early: we
3569 * should have a usage count of 1 if we're the only user of this
3570 * dentry, and if that is true (possibly after pruning the dcache),
3571 * then we drop the dentry now.
3572 *
3573 * A low-level filesystem can, if it choses, legally
3574 * do a
3575 *
3576 * if (!d_unhashed(dentry))
3577 * return -EBUSY;
3578 *
3579 * if it cannot handle the case of removing a directory
3580 * that is still in use by something else..
3581 */
3582void dentry_unhash(struct dentry *dentry)
3583{
3584 shrink_dcache_parent(dentry);
3585 spin_lock(&dentry->d_lock);
3586 if (dentry->d_lockref.count == 1)
3587 __d_drop(dentry);
3588 spin_unlock(&dentry->d_lock);
3589}
3590EXPORT_SYMBOL(dentry_unhash);
3591
3592int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3593{
3594 int error = may_delete(dir, dentry, 1);
3595
3596 if (error)
3597 return error;
3598
3599 if (!dir->i_op->rmdir)
3600 return -EPERM;
3601
3602 dget(dentry);
3603 mutex_lock(&dentry->d_inode->i_mutex);
3604
3605 error = -EBUSY;
3606 if (is_local_mountpoint(dentry))
3607 goto out;
3608
3609 error = security_inode_rmdir(dir, dentry);
3610 if (error)
3611 goto out;
3612
3613 shrink_dcache_parent(dentry);
3614 error = dir->i_op->rmdir(dir, dentry);
3615 if (error)
3616 goto out;
3617
3618 dentry->d_inode->i_flags |= S_DEAD;
3619 dont_mount(dentry);
3620 detach_mounts(dentry);
3621
3622out:
3623 mutex_unlock(&dentry->d_inode->i_mutex);
3624 dput(dentry);
3625 if (!error)
3626 d_delete(dentry);
3627 return error;
3628}
3629EXPORT_SYMBOL(vfs_rmdir);
3630
3631static long do_rmdir(int dfd, const char __user *pathname)
3632{
3633 int error = 0;
3634 struct filename *name;
3635 struct dentry *dentry;
3636 struct path path;
3637 struct qstr last;
3638 int type;
3639 unsigned int lookup_flags = 0;
3640retry:
3641 name = user_path_parent(dfd, pathname,
3642 &path, &last, &type, lookup_flags);
3643 if (IS_ERR(name))
3644 return PTR_ERR(name);
3645
3646 switch (type) {
3647 case LAST_DOTDOT:
3648 error = -ENOTEMPTY;
3649 goto exit1;
3650 case LAST_DOT:
3651 error = -EINVAL;
3652 goto exit1;
3653 case LAST_ROOT:
3654 error = -EBUSY;
3655 goto exit1;
3656 }
3657
3658 error = mnt_want_write(path.mnt);
3659 if (error)
3660 goto exit1;
3661
3662 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3663 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3664 error = PTR_ERR(dentry);
3665 if (IS_ERR(dentry))
3666 goto exit2;
3667 if (!dentry->d_inode) {
3668 error = -ENOENT;
3669 goto exit3;
3670 }
3671 error = security_path_rmdir(&path, dentry);
3672 if (error)
3673 goto exit3;
3674 error = vfs_rmdir(path.dentry->d_inode, dentry);
3675exit3:
3676 dput(dentry);
3677exit2:
3678 mutex_unlock(&path.dentry->d_inode->i_mutex);
3679 mnt_drop_write(path.mnt);
3680exit1:
3681 path_put(&path);
3682 putname(name);
3683 if (retry_estale(error, lookup_flags)) {
3684 lookup_flags |= LOOKUP_REVAL;
3685 goto retry;
3686 }
3687 return error;
3688}
3689
3690SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3691{
3692 return do_rmdir(AT_FDCWD, pathname);
3693}
3694
3695/**
3696 * vfs_unlink - unlink a filesystem object
3697 * @dir: parent directory
3698 * @dentry: victim
3699 * @delegated_inode: returns victim inode, if the inode is delegated.
3700 *
3701 * The caller must hold dir->i_mutex.
3702 *
3703 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3704 * return a reference to the inode in delegated_inode. The caller
3705 * should then break the delegation on that inode and retry. Because
3706 * breaking a delegation may take a long time, the caller should drop
3707 * dir->i_mutex before doing so.
3708 *
3709 * Alternatively, a caller may pass NULL for delegated_inode. This may
3710 * be appropriate for callers that expect the underlying filesystem not
3711 * to be NFS exported.
3712 */
3713int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3714{
3715 struct inode *target = dentry->d_inode;
3716 int error = may_delete(dir, dentry, 0);
3717
3718 if (error)
3719 return error;
3720
3721 if (!dir->i_op->unlink)
3722 return -EPERM;
3723
3724 mutex_lock(&target->i_mutex);
3725 if (is_local_mountpoint(dentry))
3726 error = -EBUSY;
3727 else {
3728 error = security_inode_unlink(dir, dentry);
3729 if (!error) {
3730 error = try_break_deleg(target, delegated_inode);
3731 if (error)
3732 goto out;
3733 error = dir->i_op->unlink(dir, dentry);
3734 if (!error) {
3735 dont_mount(dentry);
3736 detach_mounts(dentry);
3737 }
3738 }
3739 }
3740out:
3741 mutex_unlock(&target->i_mutex);
3742
3743 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3744 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3745 fsnotify_link_count(target);
3746 d_delete(dentry);
3747 }
3748
3749 return error;
3750}
3751EXPORT_SYMBOL(vfs_unlink);
3752
3753/*
3754 * Make sure that the actual truncation of the file will occur outside its
3755 * directory's i_mutex. Truncate can take a long time if there is a lot of
3756 * writeout happening, and we don't want to prevent access to the directory
3757 * while waiting on the I/O.
3758 */
3759static long do_unlinkat(int dfd, const char __user *pathname)
3760{
3761 int error;
3762 struct filename *name;
3763 struct dentry *dentry;
3764 struct path path;
3765 struct qstr last;
3766 int type;
3767 struct inode *inode = NULL;
3768 struct inode *delegated_inode = NULL;
3769 unsigned int lookup_flags = 0;
3770retry:
3771 name = user_path_parent(dfd, pathname,
3772 &path, &last, &type, lookup_flags);
3773 if (IS_ERR(name))
3774 return PTR_ERR(name);
3775
3776 error = -EISDIR;
3777 if (type != LAST_NORM)
3778 goto exit1;
3779
3780 error = mnt_want_write(path.mnt);
3781 if (error)
3782 goto exit1;
3783retry_deleg:
3784 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3785 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3786 error = PTR_ERR(dentry);
3787 if (!IS_ERR(dentry)) {
3788 /* Why not before? Because we want correct error value */
3789 if (last.name[last.len])
3790 goto slashes;
3791 inode = dentry->d_inode;
3792 if (d_is_negative(dentry))
3793 goto slashes;
3794 ihold(inode);
3795 error = security_path_unlink(&path, dentry);
3796 if (error)
3797 goto exit2;
3798 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3799exit2:
3800 dput(dentry);
3801 }
3802 mutex_unlock(&path.dentry->d_inode->i_mutex);
3803 if (inode)
3804 iput(inode); /* truncate the inode here */
3805 inode = NULL;
3806 if (delegated_inode) {
3807 error = break_deleg_wait(&delegated_inode);
3808 if (!error)
3809 goto retry_deleg;
3810 }
3811 mnt_drop_write(path.mnt);
3812exit1:
3813 path_put(&path);
3814 putname(name);
3815 if (retry_estale(error, lookup_flags)) {
3816 lookup_flags |= LOOKUP_REVAL;
3817 inode = NULL;
3818 goto retry;
3819 }
3820 return error;
3821
3822slashes:
3823 if (d_is_negative(dentry))
3824 error = -ENOENT;
3825 else if (d_is_dir(dentry))
3826 error = -EISDIR;
3827 else
3828 error = -ENOTDIR;
3829 goto exit2;
3830}
3831
3832SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3833{
3834 if ((flag & ~AT_REMOVEDIR) != 0)
3835 return -EINVAL;
3836
3837 if (flag & AT_REMOVEDIR)
3838 return do_rmdir(dfd, pathname);
3839
3840 return do_unlinkat(dfd, pathname);
3841}
3842
3843SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3844{
3845 return do_unlinkat(AT_FDCWD, pathname);
3846}
3847
3848int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3849{
3850 int error = may_create(dir, dentry);
3851
3852 if (error)
3853 return error;
3854
3855 if (!dir->i_op->symlink)
3856 return -EPERM;
3857
3858 error = security_inode_symlink(dir, dentry, oldname);
3859 if (error)
3860 return error;
3861
3862 error = dir->i_op->symlink(dir, dentry, oldname);
3863 if (!error)
3864 fsnotify_create(dir, dentry);
3865 return error;
3866}
3867EXPORT_SYMBOL(vfs_symlink);
3868
3869SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3870 int, newdfd, const char __user *, newname)
3871{
3872 int error;
3873 struct filename *from;
3874 struct dentry *dentry;
3875 struct path path;
3876 unsigned int lookup_flags = 0;
3877
3878 from = getname(oldname);
3879 if (IS_ERR(from))
3880 return PTR_ERR(from);
3881retry:
3882 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3883 error = PTR_ERR(dentry);
3884 if (IS_ERR(dentry))
3885 goto out_putname;
3886
3887 error = security_path_symlink(&path, dentry, from->name);
3888 if (!error)
3889 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3890 done_path_create(&path, dentry);
3891 if (retry_estale(error, lookup_flags)) {
3892 lookup_flags |= LOOKUP_REVAL;
3893 goto retry;
3894 }
3895out_putname:
3896 putname(from);
3897 return error;
3898}
3899
3900SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3901{
3902 return sys_symlinkat(oldname, AT_FDCWD, newname);
3903}
3904
3905/**
3906 * vfs_link - create a new link
3907 * @old_dentry: object to be linked
3908 * @dir: new parent
3909 * @new_dentry: where to create the new link
3910 * @delegated_inode: returns inode needing a delegation break
3911 *
3912 * The caller must hold dir->i_mutex
3913 *
3914 * If vfs_link discovers a delegation on the to-be-linked file in need
3915 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3916 * inode in delegated_inode. The caller should then break the delegation
3917 * and retry. Because breaking a delegation may take a long time, the
3918 * caller should drop the i_mutex before doing so.
3919 *
3920 * Alternatively, a caller may pass NULL for delegated_inode. This may
3921 * be appropriate for callers that expect the underlying filesystem not
3922 * to be NFS exported.
3923 */
3924int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3925{
3926 struct inode *inode = old_dentry->d_inode;
3927 unsigned max_links = dir->i_sb->s_max_links;
3928 int error;
3929
3930 if (!inode)
3931 return -ENOENT;
3932
3933 error = may_create(dir, new_dentry);
3934 if (error)
3935 return error;
3936
3937 if (dir->i_sb != inode->i_sb)
3938 return -EXDEV;
3939
3940 /*
3941 * A link to an append-only or immutable file cannot be created.
3942 */
3943 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3944 return -EPERM;
3945 if (!dir->i_op->link)
3946 return -EPERM;
3947 if (S_ISDIR(inode->i_mode))
3948 return -EPERM;
3949
3950 error = security_inode_link(old_dentry, dir, new_dentry);
3951 if (error)
3952 return error;
3953
3954 mutex_lock(&inode->i_mutex);
3955 /* Make sure we don't allow creating hardlink to an unlinked file */
3956 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3957 error = -ENOENT;
3958 else if (max_links && inode->i_nlink >= max_links)
3959 error = -EMLINK;
3960 else {
3961 error = try_break_deleg(inode, delegated_inode);
3962 if (!error)
3963 error = dir->i_op->link(old_dentry, dir, new_dentry);
3964 }
3965
3966 if (!error && (inode->i_state & I_LINKABLE)) {
3967 spin_lock(&inode->i_lock);
3968 inode->i_state &= ~I_LINKABLE;
3969 spin_unlock(&inode->i_lock);
3970 }
3971 mutex_unlock(&inode->i_mutex);
3972 if (!error)
3973 fsnotify_link(dir, inode, new_dentry);
3974 return error;
3975}
3976EXPORT_SYMBOL(vfs_link);
3977
3978/*
3979 * Hardlinks are often used in delicate situations. We avoid
3980 * security-related surprises by not following symlinks on the
3981 * newname. --KAB
3982 *
3983 * We don't follow them on the oldname either to be compatible
3984 * with linux 2.0, and to avoid hard-linking to directories
3985 * and other special files. --ADM
3986 */
3987SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3988 int, newdfd, const char __user *, newname, int, flags)
3989{
3990 struct dentry *new_dentry;
3991 struct path old_path, new_path;
3992 struct inode *delegated_inode = NULL;
3993 int how = 0;
3994 int error;
3995
3996 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3997 return -EINVAL;
3998 /*
3999 * To use null names we require CAP_DAC_READ_SEARCH
4000 * This ensures that not everyone will be able to create
4001 * handlink using the passed filedescriptor.
4002 */
4003 if (flags & AT_EMPTY_PATH) {
4004 if (!capable(CAP_DAC_READ_SEARCH))
4005 return -ENOENT;
4006 how = LOOKUP_EMPTY;
4007 }
4008
4009 if (flags & AT_SYMLINK_FOLLOW)
4010 how |= LOOKUP_FOLLOW;
4011retry:
4012 error = user_path_at(olddfd, oldname, how, &old_path);
4013 if (error)
4014 return error;
4015
4016 new_dentry = user_path_create(newdfd, newname, &new_path,
4017 (how & LOOKUP_REVAL));
4018 error = PTR_ERR(new_dentry);
4019 if (IS_ERR(new_dentry))
4020 goto out;
4021
4022 error = -EXDEV;
4023 if (old_path.mnt != new_path.mnt)
4024 goto out_dput;
4025 error = may_linkat(&old_path);
4026 if (unlikely(error))
4027 goto out_dput;
4028 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4029 if (error)
4030 goto out_dput;
4031 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4032out_dput:
4033 done_path_create(&new_path, new_dentry);
4034 if (delegated_inode) {
4035 error = break_deleg_wait(&delegated_inode);
4036 if (!error) {
4037 path_put(&old_path);
4038 goto retry;
4039 }
4040 }
4041 if (retry_estale(error, how)) {
4042 path_put(&old_path);
4043 how |= LOOKUP_REVAL;
4044 goto retry;
4045 }
4046out:
4047 path_put(&old_path);
4048
4049 return error;
4050}
4051
4052SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4053{
4054 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4055}
4056
4057/**
4058 * vfs_rename - rename a filesystem object
4059 * @old_dir: parent of source
4060 * @old_dentry: source
4061 * @new_dir: parent of destination
4062 * @new_dentry: destination
4063 * @delegated_inode: returns an inode needing a delegation break
4064 * @flags: rename flags
4065 *
4066 * The caller must hold multiple mutexes--see lock_rename()).
4067 *
4068 * If vfs_rename discovers a delegation in need of breaking at either
4069 * the source or destination, it will return -EWOULDBLOCK and return a
4070 * reference to the inode in delegated_inode. The caller should then
4071 * break the delegation and retry. Because breaking a delegation may
4072 * take a long time, the caller should drop all locks before doing
4073 * so.
4074 *
4075 * Alternatively, a caller may pass NULL for delegated_inode. This may
4076 * be appropriate for callers that expect the underlying filesystem not
4077 * to be NFS exported.
4078 *
4079 * The worst of all namespace operations - renaming directory. "Perverted"
4080 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4081 * Problems:
4082 * a) we can get into loop creation.
4083 * b) race potential - two innocent renames can create a loop together.
4084 * That's where 4.4 screws up. Current fix: serialization on
4085 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4086 * story.
4087 * c) we have to lock _four_ objects - parents and victim (if it exists),
4088 * and source (if it is not a directory).
4089 * And that - after we got ->i_mutex on parents (until then we don't know
4090 * whether the target exists). Solution: try to be smart with locking
4091 * order for inodes. We rely on the fact that tree topology may change
4092 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4093 * move will be locked. Thus we can rank directories by the tree
4094 * (ancestors first) and rank all non-directories after them.
4095 * That works since everybody except rename does "lock parent, lookup,
4096 * lock child" and rename is under ->s_vfs_rename_mutex.
4097 * HOWEVER, it relies on the assumption that any object with ->lookup()
4098 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4099 * we'd better make sure that there's no link(2) for them.
4100 * d) conversion from fhandle to dentry may come in the wrong moment - when
4101 * we are removing the target. Solution: we will have to grab ->i_mutex
4102 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4103 * ->i_mutex on parents, which works but leads to some truly excessive
4104 * locking].
4105 */
4106int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4107 struct inode *new_dir, struct dentry *new_dentry,
4108 struct inode **delegated_inode, unsigned int flags)
4109{
4110 int error;
4111 bool is_dir = d_is_dir(old_dentry);
4112 const unsigned char *old_name;
4113 struct inode *source = old_dentry->d_inode;
4114 struct inode *target = new_dentry->d_inode;
4115 bool new_is_dir = false;
4116 unsigned max_links = new_dir->i_sb->s_max_links;
4117
4118 if (source == target)
4119 return 0;
4120
4121 error = may_delete(old_dir, old_dentry, is_dir);
4122 if (error)
4123 return error;
4124
4125 if (!target) {
4126 error = may_create(new_dir, new_dentry);
4127 } else {
4128 new_is_dir = d_is_dir(new_dentry);
4129
4130 if (!(flags & RENAME_EXCHANGE))
4131 error = may_delete(new_dir, new_dentry, is_dir);
4132 else
4133 error = may_delete(new_dir, new_dentry, new_is_dir);
4134 }
4135 if (error)
4136 return error;
4137
4138 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4139 return -EPERM;
4140
4141 if (flags && !old_dir->i_op->rename2)
4142 return -EINVAL;
4143
4144 /*
4145 * If we are going to change the parent - check write permissions,
4146 * we'll need to flip '..'.
4147 */
4148 if (new_dir != old_dir) {
4149 if (is_dir) {
4150 error = inode_permission(source, MAY_WRITE);
4151 if (error)
4152 return error;
4153 }
4154 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4155 error = inode_permission(target, MAY_WRITE);
4156 if (error)
4157 return error;
4158 }
4159 }
4160
4161 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4162 flags);
4163 if (error)
4164 return error;
4165
4166 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4167 dget(new_dentry);
4168 if (!is_dir || (flags & RENAME_EXCHANGE))
4169 lock_two_nondirectories(source, target);
4170 else if (target)
4171 mutex_lock(&target->i_mutex);
4172
4173 error = -EBUSY;
4174 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4175 goto out;
4176
4177 if (max_links && new_dir != old_dir) {
4178 error = -EMLINK;
4179 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4180 goto out;
4181 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4182 old_dir->i_nlink >= max_links)
4183 goto out;
4184 }
4185 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4186 shrink_dcache_parent(new_dentry);
4187 if (!is_dir) {
4188 error = try_break_deleg(source, delegated_inode);
4189 if (error)
4190 goto out;
4191 }
4192 if (target && !new_is_dir) {
4193 error = try_break_deleg(target, delegated_inode);
4194 if (error)
4195 goto out;
4196 }
4197 if (!old_dir->i_op->rename2) {
4198 error = old_dir->i_op->rename(old_dir, old_dentry,
4199 new_dir, new_dentry);
4200 } else {
4201 WARN_ON(old_dir->i_op->rename != NULL);
4202 error = old_dir->i_op->rename2(old_dir, old_dentry,
4203 new_dir, new_dentry, flags);
4204 }
4205 if (error)
4206 goto out;
4207
4208 if (!(flags & RENAME_EXCHANGE) && target) {
4209 if (is_dir)
4210 target->i_flags |= S_DEAD;
4211 dont_mount(new_dentry);
4212 detach_mounts(new_dentry);
4213 }
4214 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4215 if (!(flags & RENAME_EXCHANGE))
4216 d_move(old_dentry, new_dentry);
4217 else
4218 d_exchange(old_dentry, new_dentry);
4219 }
4220out:
4221 if (!is_dir || (flags & RENAME_EXCHANGE))
4222 unlock_two_nondirectories(source, target);
4223 else if (target)
4224 mutex_unlock(&target->i_mutex);
4225 dput(new_dentry);
4226 if (!error) {
4227 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4228 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4229 if (flags & RENAME_EXCHANGE) {
4230 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4231 new_is_dir, NULL, new_dentry);
4232 }
4233 }
4234 fsnotify_oldname_free(old_name);
4235
4236 return error;
4237}
4238EXPORT_SYMBOL(vfs_rename);
4239
4240SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4241 int, newdfd, const char __user *, newname, unsigned int, flags)
4242{
4243 struct dentry *old_dentry, *new_dentry;
4244 struct dentry *trap;
4245 struct path old_path, new_path;
4246 struct qstr old_last, new_last;
4247 int old_type, new_type;
4248 struct inode *delegated_inode = NULL;
4249 struct filename *from;
4250 struct filename *to;
4251 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4252 bool should_retry = false;
4253 int error;
4254
4255 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4256 return -EINVAL;
4257
4258 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4259 (flags & RENAME_EXCHANGE))
4260 return -EINVAL;
4261
4262 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4263 return -EPERM;
4264
4265 if (flags & RENAME_EXCHANGE)
4266 target_flags = 0;
4267
4268retry:
4269 from = user_path_parent(olddfd, oldname,
4270 &old_path, &old_last, &old_type, lookup_flags);
4271 if (IS_ERR(from)) {
4272 error = PTR_ERR(from);
4273 goto exit;
4274 }
4275
4276 to = user_path_parent(newdfd, newname,
4277 &new_path, &new_last, &new_type, lookup_flags);
4278 if (IS_ERR(to)) {
4279 error = PTR_ERR(to);
4280 goto exit1;
4281 }
4282
4283 error = -EXDEV;
4284 if (old_path.mnt != new_path.mnt)
4285 goto exit2;
4286
4287 error = -EBUSY;
4288 if (old_type != LAST_NORM)
4289 goto exit2;
4290
4291 if (flags & RENAME_NOREPLACE)
4292 error = -EEXIST;
4293 if (new_type != LAST_NORM)
4294 goto exit2;
4295
4296 error = mnt_want_write(old_path.mnt);
4297 if (error)
4298 goto exit2;
4299
4300retry_deleg:
4301 trap = lock_rename(new_path.dentry, old_path.dentry);
4302
4303 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4304 error = PTR_ERR(old_dentry);
4305 if (IS_ERR(old_dentry))
4306 goto exit3;
4307 /* source must exist */
4308 error = -ENOENT;
4309 if (d_is_negative(old_dentry))
4310 goto exit4;
4311 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4312 error = PTR_ERR(new_dentry);
4313 if (IS_ERR(new_dentry))
4314 goto exit4;
4315 error = -EEXIST;
4316 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4317 goto exit5;
4318 if (flags & RENAME_EXCHANGE) {
4319 error = -ENOENT;
4320 if (d_is_negative(new_dentry))
4321 goto exit5;
4322
4323 if (!d_is_dir(new_dentry)) {
4324 error = -ENOTDIR;
4325 if (new_last.name[new_last.len])
4326 goto exit5;
4327 }
4328 }
4329 /* unless the source is a directory trailing slashes give -ENOTDIR */
4330 if (!d_is_dir(old_dentry)) {
4331 error = -ENOTDIR;
4332 if (old_last.name[old_last.len])
4333 goto exit5;
4334 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4335 goto exit5;
4336 }
4337 /* source should not be ancestor of target */
4338 error = -EINVAL;
4339 if (old_dentry == trap)
4340 goto exit5;
4341 /* target should not be an ancestor of source */
4342 if (!(flags & RENAME_EXCHANGE))
4343 error = -ENOTEMPTY;
4344 if (new_dentry == trap)
4345 goto exit5;
4346
4347 error = security_path_rename(&old_path, old_dentry,
4348 &new_path, new_dentry, flags);
4349 if (error)
4350 goto exit5;
4351 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4352 new_path.dentry->d_inode, new_dentry,
4353 &delegated_inode, flags);
4354exit5:
4355 dput(new_dentry);
4356exit4:
4357 dput(old_dentry);
4358exit3:
4359 unlock_rename(new_path.dentry, old_path.dentry);
4360 if (delegated_inode) {
4361 error = break_deleg_wait(&delegated_inode);
4362 if (!error)
4363 goto retry_deleg;
4364 }
4365 mnt_drop_write(old_path.mnt);
4366exit2:
4367 if (retry_estale(error, lookup_flags))
4368 should_retry = true;
4369 path_put(&new_path);
4370 putname(to);
4371exit1:
4372 path_put(&old_path);
4373 putname(from);
4374 if (should_retry) {
4375 should_retry = false;
4376 lookup_flags |= LOOKUP_REVAL;
4377 goto retry;
4378 }
4379exit:
4380 return error;
4381}
4382
4383SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4384 int, newdfd, const char __user *, newname)
4385{
4386 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4387}
4388
4389SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4390{
4391 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4392}
4393
4394int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4395{
4396 int error = may_create(dir, dentry);
4397 if (error)
4398 return error;
4399
4400 if (!dir->i_op->mknod)
4401 return -EPERM;
4402
4403 return dir->i_op->mknod(dir, dentry,
4404 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4405}
4406EXPORT_SYMBOL(vfs_whiteout);
4407
4408int readlink_copy(char __user *buffer, int buflen, const char *link)
4409{
4410 int len = PTR_ERR(link);
4411 if (IS_ERR(link))
4412 goto out;
4413
4414 len = strlen(link);
4415 if (len > (unsigned) buflen)
4416 len = buflen;
4417 if (copy_to_user(buffer, link, len))
4418 len = -EFAULT;
4419out:
4420 return len;
4421}
4422EXPORT_SYMBOL(readlink_copy);
4423
4424/*
4425 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4426 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4427 * using) it for any given inode is up to filesystem.
4428 */
4429int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4430{
4431 void *cookie;
4432 const char *link = dentry->d_inode->i_link;
4433 int res;
4434
4435 if (!link) {
4436 link = dentry->d_inode->i_op->follow_link(dentry, &cookie);
4437 if (IS_ERR(link))
4438 return PTR_ERR(link);
4439 }
4440 res = readlink_copy(buffer, buflen, link);
4441 if (dentry->d_inode->i_op->put_link)
4442 dentry->d_inode->i_op->put_link(dentry, cookie);
4443 return res;
4444}
4445EXPORT_SYMBOL(generic_readlink);
4446
4447/* get the link contents into pagecache */
4448static char *page_getlink(struct dentry * dentry, struct page **ppage)
4449{
4450 char *kaddr;
4451 struct page *page;
4452 struct address_space *mapping = dentry->d_inode->i_mapping;
4453 page = read_mapping_page(mapping, 0, NULL);
4454 if (IS_ERR(page))
4455 return (char*)page;
4456 *ppage = page;
4457 kaddr = kmap(page);
4458 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4459 return kaddr;
4460}
4461
4462int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4463{
4464 struct page *page = NULL;
4465 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4466 if (page) {
4467 kunmap(page);
4468 page_cache_release(page);
4469 }
4470 return res;
4471}
4472EXPORT_SYMBOL(page_readlink);
4473
4474const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4475{
4476 struct page *page = NULL;
4477 char *res = page_getlink(dentry, &page);
4478 if (!IS_ERR(res))
4479 *cookie = page;
4480 return res;
4481}
4482EXPORT_SYMBOL(page_follow_link_light);
4483
4484void page_put_link(struct dentry *dentry, void *cookie)
4485{
4486 struct page *page = cookie;
4487 kunmap(page);
4488 page_cache_release(page);
4489}
4490EXPORT_SYMBOL(page_put_link);
4491
4492/*
4493 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4494 */
4495int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4496{
4497 struct address_space *mapping = inode->i_mapping;
4498 struct page *page;
4499 void *fsdata;
4500 int err;
4501 char *kaddr;
4502 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4503 if (nofs)
4504 flags |= AOP_FLAG_NOFS;
4505
4506retry:
4507 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4508 flags, &page, &fsdata);
4509 if (err)
4510 goto fail;
4511
4512 kaddr = kmap_atomic(page);
4513 memcpy(kaddr, symname, len-1);
4514 kunmap_atomic(kaddr);
4515
4516 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4517 page, fsdata);
4518 if (err < 0)
4519 goto fail;
4520 if (err < len-1)
4521 goto retry;
4522
4523 mark_inode_dirty(inode);
4524 return 0;
4525fail:
4526 return err;
4527}
4528EXPORT_SYMBOL(__page_symlink);
4529
4530int page_symlink(struct inode *inode, const char *symname, int len)
4531{
4532 return __page_symlink(inode, symname, len,
4533 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4534}
4535EXPORT_SYMBOL(page_symlink);
4536
4537const struct inode_operations page_symlink_inode_operations = {
4538 .readlink = generic_readlink,
4539 .follow_link = page_follow_link_light,
4540 .put_link = page_put_link,
4541};
4542EXPORT_SYMBOL(page_symlink_inode_operations);