]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame_incremental - fs/namei.c
fs: Update i_[ug]id_(read|write) to translate relative to s_user_ns
[mirror_ubuntu-focal-kernel.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <linux/hash.h>
38#include <linux/bitops.h>
39#include <asm/uaccess.h>
40
41#include "internal.h"
42#include "mount.h"
43
44/* [Feb-1997 T. Schoebel-Theuer]
45 * Fundamental changes in the pathname lookup mechanisms (namei)
46 * were necessary because of omirr. The reason is that omirr needs
47 * to know the _real_ pathname, not the user-supplied one, in case
48 * of symlinks (and also when transname replacements occur).
49 *
50 * The new code replaces the old recursive symlink resolution with
51 * an iterative one (in case of non-nested symlink chains). It does
52 * this with calls to <fs>_follow_link().
53 * As a side effect, dir_namei(), _namei() and follow_link() are now
54 * replaced with a single function lookup_dentry() that can handle all
55 * the special cases of the former code.
56 *
57 * With the new dcache, the pathname is stored at each inode, at least as
58 * long as the refcount of the inode is positive. As a side effect, the
59 * size of the dcache depends on the inode cache and thus is dynamic.
60 *
61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62 * resolution to correspond with current state of the code.
63 *
64 * Note that the symlink resolution is not *completely* iterative.
65 * There is still a significant amount of tail- and mid- recursion in
66 * the algorithm. Also, note that <fs>_readlink() is not used in
67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68 * may return different results than <fs>_follow_link(). Many virtual
69 * filesystems (including /proc) exhibit this behavior.
70 */
71
72/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74 * and the name already exists in form of a symlink, try to create the new
75 * name indicated by the symlink. The old code always complained that the
76 * name already exists, due to not following the symlink even if its target
77 * is nonexistent. The new semantics affects also mknod() and link() when
78 * the name is a symlink pointing to a non-existent name.
79 *
80 * I don't know which semantics is the right one, since I have no access
81 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83 * "old" one. Personally, I think the new semantics is much more logical.
84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85 * file does succeed in both HP-UX and SunOs, but not in Solaris
86 * and in the old Linux semantics.
87 */
88
89/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90 * semantics. See the comments in "open_namei" and "do_link" below.
91 *
92 * [10-Sep-98 Alan Modra] Another symlink change.
93 */
94
95/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96 * inside the path - always follow.
97 * in the last component in creation/removal/renaming - never follow.
98 * if LOOKUP_FOLLOW passed - follow.
99 * if the pathname has trailing slashes - follow.
100 * otherwise - don't follow.
101 * (applied in that order).
102 *
103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105 * During the 2.4 we need to fix the userland stuff depending on it -
106 * hopefully we will be able to get rid of that wart in 2.5. So far only
107 * XEmacs seems to be relying on it...
108 */
109/*
110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
112 * any extra contention...
113 */
114
115/* In order to reduce some races, while at the same time doing additional
116 * checking and hopefully speeding things up, we copy filenames to the
117 * kernel data space before using them..
118 *
119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120 * PATH_MAX includes the nul terminator --RR.
121 */
122
123#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
124
125struct filename *
126getname_flags(const char __user *filename, int flags, int *empty)
127{
128 struct filename *result;
129 char *kname;
130 int len;
131
132 result = audit_reusename(filename);
133 if (result)
134 return result;
135
136 result = __getname();
137 if (unlikely(!result))
138 return ERR_PTR(-ENOMEM);
139
140 /*
141 * First, try to embed the struct filename inside the names_cache
142 * allocation
143 */
144 kname = (char *)result->iname;
145 result->name = kname;
146
147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 if (unlikely(len < 0)) {
149 __putname(result);
150 return ERR_PTR(len);
151 }
152
153 /*
154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 * separate struct filename so we can dedicate the entire
156 * names_cache allocation for the pathname, and re-do the copy from
157 * userland.
158 */
159 if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 const size_t size = offsetof(struct filename, iname[1]);
161 kname = (char *)result;
162
163 /*
164 * size is chosen that way we to guarantee that
165 * result->iname[0] is within the same object and that
166 * kname can't be equal to result->iname, no matter what.
167 */
168 result = kzalloc(size, GFP_KERNEL);
169 if (unlikely(!result)) {
170 __putname(kname);
171 return ERR_PTR(-ENOMEM);
172 }
173 result->name = kname;
174 len = strncpy_from_user(kname, filename, PATH_MAX);
175 if (unlikely(len < 0)) {
176 __putname(kname);
177 kfree(result);
178 return ERR_PTR(len);
179 }
180 if (unlikely(len == PATH_MAX)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(-ENAMETOOLONG);
184 }
185 }
186
187 result->refcnt = 1;
188 /* The empty path is special. */
189 if (unlikely(!len)) {
190 if (empty)
191 *empty = 1;
192 if (!(flags & LOOKUP_EMPTY)) {
193 putname(result);
194 return ERR_PTR(-ENOENT);
195 }
196 }
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202}
203
204struct filename *
205getname(const char __user * filename)
206{
207 return getname_flags(filename, 0, NULL);
208}
209
210struct filename *
211getname_kernel(const char * filename)
212{
213 struct filename *result;
214 int len = strlen(filename) + 1;
215
216 result = __getname();
217 if (unlikely(!result))
218 return ERR_PTR(-ENOMEM);
219
220 if (len <= EMBEDDED_NAME_MAX) {
221 result->name = (char *)result->iname;
222 } else if (len <= PATH_MAX) {
223 struct filename *tmp;
224
225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 if (unlikely(!tmp)) {
227 __putname(result);
228 return ERR_PTR(-ENOMEM);
229 }
230 tmp->name = (char *)result;
231 result = tmp;
232 } else {
233 __putname(result);
234 return ERR_PTR(-ENAMETOOLONG);
235 }
236 memcpy((char *)result->name, filename, len);
237 result->uptr = NULL;
238 result->aname = NULL;
239 result->refcnt = 1;
240 audit_getname(result);
241
242 return result;
243}
244
245void putname(struct filename *name)
246{
247 BUG_ON(name->refcnt <= 0);
248
249 if (--name->refcnt > 0)
250 return;
251
252 if (name->name != name->iname) {
253 __putname(name->name);
254 kfree(name);
255 } else
256 __putname(name);
257}
258
259static int check_acl(struct inode *inode, int mask)
260{
261#ifdef CONFIG_FS_POSIX_ACL
262 struct posix_acl *acl;
263
264 if (mask & MAY_NOT_BLOCK) {
265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 if (!acl)
267 return -EAGAIN;
268 /* no ->get_acl() calls in RCU mode... */
269 if (is_uncached_acl(acl))
270 return -ECHILD;
271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 }
273
274 acl = get_acl(inode, ACL_TYPE_ACCESS);
275 if (IS_ERR(acl))
276 return PTR_ERR(acl);
277 if (acl) {
278 int error = posix_acl_permission(inode, acl, mask);
279 posix_acl_release(acl);
280 return error;
281 }
282#endif
283
284 return -EAGAIN;
285}
286
287/*
288 * This does the basic permission checking
289 */
290static int acl_permission_check(struct inode *inode, int mask)
291{
292 unsigned int mode = inode->i_mode;
293
294 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 mode >>= 6;
296 else {
297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 int error = check_acl(inode, mask);
299 if (error != -EAGAIN)
300 return error;
301 }
302
303 if (in_group_p(inode->i_gid))
304 mode >>= 3;
305 }
306
307 /*
308 * If the DACs are ok we don't need any capability check.
309 */
310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 return 0;
312 return -EACCES;
313}
314
315/**
316 * generic_permission - check for access rights on a Posix-like filesystem
317 * @inode: inode to check access rights for
318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 *
320 * Used to check for read/write/execute permissions on a file.
321 * We use "fsuid" for this, letting us set arbitrary permissions
322 * for filesystem access without changing the "normal" uids which
323 * are used for other things.
324 *
325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326 * request cannot be satisfied (eg. requires blocking or too much complexity).
327 * It would then be called again in ref-walk mode.
328 */
329int generic_permission(struct inode *inode, int mask)
330{
331 int ret;
332
333 /*
334 * Do the basic permission checks.
335 */
336 ret = acl_permission_check(inode, mask);
337 if (ret != -EACCES)
338 return ret;
339
340 if (S_ISDIR(inode->i_mode)) {
341 /* DACs are overridable for directories */
342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 return 0;
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 return -EACCES;
349 }
350 /*
351 * Read/write DACs are always overridable.
352 * Executable DACs are overridable when there is
353 * at least one exec bit set.
354 */
355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 return 0;
358
359 /*
360 * Searching includes executable on directories, else just read.
361 */
362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 if (mask == MAY_READ)
364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 return 0;
366
367 return -EACCES;
368}
369EXPORT_SYMBOL(generic_permission);
370
371/*
372 * We _really_ want to just do "generic_permission()" without
373 * even looking at the inode->i_op values. So we keep a cache
374 * flag in inode->i_opflags, that says "this has not special
375 * permission function, use the fast case".
376 */
377static inline int do_inode_permission(struct inode *inode, int mask)
378{
379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 if (likely(inode->i_op->permission))
381 return inode->i_op->permission(inode, mask);
382
383 /* This gets set once for the inode lifetime */
384 spin_lock(&inode->i_lock);
385 inode->i_opflags |= IOP_FASTPERM;
386 spin_unlock(&inode->i_lock);
387 }
388 return generic_permission(inode, mask);
389}
390
391/**
392 * __inode_permission - Check for access rights to a given inode
393 * @inode: Inode to check permission on
394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 *
396 * Check for read/write/execute permissions on an inode.
397 *
398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 *
400 * This does not check for a read-only file system. You probably want
401 * inode_permission().
402 */
403int __inode_permission(struct inode *inode, int mask)
404{
405 int retval;
406
407 if (unlikely(mask & MAY_WRITE)) {
408 /*
409 * Nobody gets write access to an immutable file.
410 */
411 if (IS_IMMUTABLE(inode))
412 return -EACCES;
413
414 /*
415 * Updating mtime will likely cause i_uid and i_gid to be
416 * written back improperly if their true value is unknown
417 * to the vfs.
418 */
419 if (HAS_UNMAPPED_ID(inode))
420 return -EACCES;
421 }
422
423 retval = do_inode_permission(inode, mask);
424 if (retval)
425 return retval;
426
427 retval = devcgroup_inode_permission(inode, mask);
428 if (retval)
429 return retval;
430
431 return security_inode_permission(inode, mask);
432}
433EXPORT_SYMBOL(__inode_permission);
434
435/**
436 * sb_permission - Check superblock-level permissions
437 * @sb: Superblock of inode to check permission on
438 * @inode: Inode to check permission on
439 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
440 *
441 * Separate out file-system wide checks from inode-specific permission checks.
442 */
443static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
444{
445 if (unlikely(mask & MAY_WRITE)) {
446 umode_t mode = inode->i_mode;
447
448 /* Nobody gets write access to a read-only fs. */
449 if ((sb->s_flags & MS_RDONLY) &&
450 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
451 return -EROFS;
452 }
453 return 0;
454}
455
456/**
457 * inode_permission - Check for access rights to a given inode
458 * @inode: Inode to check permission on
459 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
460 *
461 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
462 * this, letting us set arbitrary permissions for filesystem access without
463 * changing the "normal" UIDs which are used for other things.
464 *
465 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
466 */
467int inode_permission(struct inode *inode, int mask)
468{
469 int retval;
470
471 retval = sb_permission(inode->i_sb, inode, mask);
472 if (retval)
473 return retval;
474 return __inode_permission(inode, mask);
475}
476EXPORT_SYMBOL(inode_permission);
477
478/**
479 * path_get - get a reference to a path
480 * @path: path to get the reference to
481 *
482 * Given a path increment the reference count to the dentry and the vfsmount.
483 */
484void path_get(const struct path *path)
485{
486 mntget(path->mnt);
487 dget(path->dentry);
488}
489EXPORT_SYMBOL(path_get);
490
491/**
492 * path_put - put a reference to a path
493 * @path: path to put the reference to
494 *
495 * Given a path decrement the reference count to the dentry and the vfsmount.
496 */
497void path_put(const struct path *path)
498{
499 dput(path->dentry);
500 mntput(path->mnt);
501}
502EXPORT_SYMBOL(path_put);
503
504#define EMBEDDED_LEVELS 2
505struct nameidata {
506 struct path path;
507 struct qstr last;
508 struct path root;
509 struct inode *inode; /* path.dentry.d_inode */
510 unsigned int flags;
511 unsigned seq, m_seq;
512 int last_type;
513 unsigned depth;
514 int total_link_count;
515 struct saved {
516 struct path link;
517 struct delayed_call done;
518 const char *name;
519 unsigned seq;
520 } *stack, internal[EMBEDDED_LEVELS];
521 struct filename *name;
522 struct nameidata *saved;
523 struct inode *link_inode;
524 unsigned root_seq;
525 int dfd;
526};
527
528static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
529{
530 struct nameidata *old = current->nameidata;
531 p->stack = p->internal;
532 p->dfd = dfd;
533 p->name = name;
534 p->total_link_count = old ? old->total_link_count : 0;
535 p->saved = old;
536 current->nameidata = p;
537}
538
539static void restore_nameidata(void)
540{
541 struct nameidata *now = current->nameidata, *old = now->saved;
542
543 current->nameidata = old;
544 if (old)
545 old->total_link_count = now->total_link_count;
546 if (now->stack != now->internal)
547 kfree(now->stack);
548}
549
550static int __nd_alloc_stack(struct nameidata *nd)
551{
552 struct saved *p;
553
554 if (nd->flags & LOOKUP_RCU) {
555 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
556 GFP_ATOMIC);
557 if (unlikely(!p))
558 return -ECHILD;
559 } else {
560 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
561 GFP_KERNEL);
562 if (unlikely(!p))
563 return -ENOMEM;
564 }
565 memcpy(p, nd->internal, sizeof(nd->internal));
566 nd->stack = p;
567 return 0;
568}
569
570/**
571 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
572 * @path: nameidate to verify
573 *
574 * Rename can sometimes move a file or directory outside of a bind
575 * mount, path_connected allows those cases to be detected.
576 */
577static bool path_connected(const struct path *path)
578{
579 struct vfsmount *mnt = path->mnt;
580
581 /* Only bind mounts can have disconnected paths */
582 if (mnt->mnt_root == mnt->mnt_sb->s_root)
583 return true;
584
585 return is_subdir(path->dentry, mnt->mnt_root);
586}
587
588static inline int nd_alloc_stack(struct nameidata *nd)
589{
590 if (likely(nd->depth != EMBEDDED_LEVELS))
591 return 0;
592 if (likely(nd->stack != nd->internal))
593 return 0;
594 return __nd_alloc_stack(nd);
595}
596
597static void drop_links(struct nameidata *nd)
598{
599 int i = nd->depth;
600 while (i--) {
601 struct saved *last = nd->stack + i;
602 do_delayed_call(&last->done);
603 clear_delayed_call(&last->done);
604 }
605}
606
607static void terminate_walk(struct nameidata *nd)
608{
609 drop_links(nd);
610 if (!(nd->flags & LOOKUP_RCU)) {
611 int i;
612 path_put(&nd->path);
613 for (i = 0; i < nd->depth; i++)
614 path_put(&nd->stack[i].link);
615 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
616 path_put(&nd->root);
617 nd->root.mnt = NULL;
618 }
619 } else {
620 nd->flags &= ~LOOKUP_RCU;
621 if (!(nd->flags & LOOKUP_ROOT))
622 nd->root.mnt = NULL;
623 rcu_read_unlock();
624 }
625 nd->depth = 0;
626}
627
628/* path_put is needed afterwards regardless of success or failure */
629static bool legitimize_path(struct nameidata *nd,
630 struct path *path, unsigned seq)
631{
632 int res = __legitimize_mnt(path->mnt, nd->m_seq);
633 if (unlikely(res)) {
634 if (res > 0)
635 path->mnt = NULL;
636 path->dentry = NULL;
637 return false;
638 }
639 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
640 path->dentry = NULL;
641 return false;
642 }
643 return !read_seqcount_retry(&path->dentry->d_seq, seq);
644}
645
646static bool legitimize_links(struct nameidata *nd)
647{
648 int i;
649 for (i = 0; i < nd->depth; i++) {
650 struct saved *last = nd->stack + i;
651 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
652 drop_links(nd);
653 nd->depth = i + 1;
654 return false;
655 }
656 }
657 return true;
658}
659
660/*
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
669 */
670
671/**
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * @dentry: child of nd->path.dentry or NULL
675 * @seq: seq number to check dentry against
676 * Returns: 0 on success, -ECHILD on failure
677 *
678 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
679 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
680 * @nd or NULL. Must be called from rcu-walk context.
681 * Nothing should touch nameidata between unlazy_walk() failure and
682 * terminate_walk().
683 */
684static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
685{
686 struct dentry *parent = nd->path.dentry;
687
688 BUG_ON(!(nd->flags & LOOKUP_RCU));
689
690 nd->flags &= ~LOOKUP_RCU;
691 if (unlikely(!legitimize_links(nd)))
692 goto out2;
693 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
694 goto out2;
695 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
696 goto out1;
697
698 /*
699 * For a negative lookup, the lookup sequence point is the parents
700 * sequence point, and it only needs to revalidate the parent dentry.
701 *
702 * For a positive lookup, we need to move both the parent and the
703 * dentry from the RCU domain to be properly refcounted. And the
704 * sequence number in the dentry validates *both* dentry counters,
705 * since we checked the sequence number of the parent after we got
706 * the child sequence number. So we know the parent must still
707 * be valid if the child sequence number is still valid.
708 */
709 if (!dentry) {
710 if (read_seqcount_retry(&parent->d_seq, nd->seq))
711 goto out;
712 BUG_ON(nd->inode != parent->d_inode);
713 } else {
714 if (!lockref_get_not_dead(&dentry->d_lockref))
715 goto out;
716 if (read_seqcount_retry(&dentry->d_seq, seq))
717 goto drop_dentry;
718 }
719
720 /*
721 * Sequence counts matched. Now make sure that the root is
722 * still valid and get it if required.
723 */
724 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
725 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
726 rcu_read_unlock();
727 dput(dentry);
728 return -ECHILD;
729 }
730 }
731
732 rcu_read_unlock();
733 return 0;
734
735drop_dentry:
736 rcu_read_unlock();
737 dput(dentry);
738 goto drop_root_mnt;
739out2:
740 nd->path.mnt = NULL;
741out1:
742 nd->path.dentry = NULL;
743out:
744 rcu_read_unlock();
745drop_root_mnt:
746 if (!(nd->flags & LOOKUP_ROOT))
747 nd->root.mnt = NULL;
748 return -ECHILD;
749}
750
751static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
752{
753 if (unlikely(!legitimize_path(nd, link, seq))) {
754 drop_links(nd);
755 nd->depth = 0;
756 nd->flags &= ~LOOKUP_RCU;
757 nd->path.mnt = NULL;
758 nd->path.dentry = NULL;
759 if (!(nd->flags & LOOKUP_ROOT))
760 nd->root.mnt = NULL;
761 rcu_read_unlock();
762 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
763 return 0;
764 }
765 path_put(link);
766 return -ECHILD;
767}
768
769static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
770{
771 return dentry->d_op->d_revalidate(dentry, flags);
772}
773
774/**
775 * complete_walk - successful completion of path walk
776 * @nd: pointer nameidata
777 *
778 * If we had been in RCU mode, drop out of it and legitimize nd->path.
779 * Revalidate the final result, unless we'd already done that during
780 * the path walk or the filesystem doesn't ask for it. Return 0 on
781 * success, -error on failure. In case of failure caller does not
782 * need to drop nd->path.
783 */
784static int complete_walk(struct nameidata *nd)
785{
786 struct dentry *dentry = nd->path.dentry;
787 int status;
788
789 if (nd->flags & LOOKUP_RCU) {
790 if (!(nd->flags & LOOKUP_ROOT))
791 nd->root.mnt = NULL;
792 if (unlikely(unlazy_walk(nd, NULL, 0)))
793 return -ECHILD;
794 }
795
796 if (likely(!(nd->flags & LOOKUP_JUMPED)))
797 return 0;
798
799 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
800 return 0;
801
802 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
803 if (status > 0)
804 return 0;
805
806 if (!status)
807 status = -ESTALE;
808
809 return status;
810}
811
812static void set_root(struct nameidata *nd)
813{
814 struct fs_struct *fs = current->fs;
815
816 if (nd->flags & LOOKUP_RCU) {
817 unsigned seq;
818
819 do {
820 seq = read_seqcount_begin(&fs->seq);
821 nd->root = fs->root;
822 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
823 } while (read_seqcount_retry(&fs->seq, seq));
824 } else {
825 get_fs_root(fs, &nd->root);
826 }
827}
828
829static void path_put_conditional(struct path *path, struct nameidata *nd)
830{
831 dput(path->dentry);
832 if (path->mnt != nd->path.mnt)
833 mntput(path->mnt);
834}
835
836static inline void path_to_nameidata(const struct path *path,
837 struct nameidata *nd)
838{
839 if (!(nd->flags & LOOKUP_RCU)) {
840 dput(nd->path.dentry);
841 if (nd->path.mnt != path->mnt)
842 mntput(nd->path.mnt);
843 }
844 nd->path.mnt = path->mnt;
845 nd->path.dentry = path->dentry;
846}
847
848static int nd_jump_root(struct nameidata *nd)
849{
850 if (nd->flags & LOOKUP_RCU) {
851 struct dentry *d;
852 nd->path = nd->root;
853 d = nd->path.dentry;
854 nd->inode = d->d_inode;
855 nd->seq = nd->root_seq;
856 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
857 return -ECHILD;
858 } else {
859 path_put(&nd->path);
860 nd->path = nd->root;
861 path_get(&nd->path);
862 nd->inode = nd->path.dentry->d_inode;
863 }
864 nd->flags |= LOOKUP_JUMPED;
865 return 0;
866}
867
868/*
869 * Helper to directly jump to a known parsed path from ->get_link,
870 * caller must have taken a reference to path beforehand.
871 */
872void nd_jump_link(struct path *path)
873{
874 struct nameidata *nd = current->nameidata;
875 path_put(&nd->path);
876
877 nd->path = *path;
878 nd->inode = nd->path.dentry->d_inode;
879 nd->flags |= LOOKUP_JUMPED;
880}
881
882static inline void put_link(struct nameidata *nd)
883{
884 struct saved *last = nd->stack + --nd->depth;
885 do_delayed_call(&last->done);
886 if (!(nd->flags & LOOKUP_RCU))
887 path_put(&last->link);
888}
889
890int sysctl_protected_symlinks __read_mostly = 0;
891int sysctl_protected_hardlinks __read_mostly = 0;
892
893/**
894 * may_follow_link - Check symlink following for unsafe situations
895 * @nd: nameidata pathwalk data
896 *
897 * In the case of the sysctl_protected_symlinks sysctl being enabled,
898 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
899 * in a sticky world-writable directory. This is to protect privileged
900 * processes from failing races against path names that may change out
901 * from under them by way of other users creating malicious symlinks.
902 * It will permit symlinks to be followed only when outside a sticky
903 * world-writable directory, or when the uid of the symlink and follower
904 * match, or when the directory owner matches the symlink's owner.
905 *
906 * Returns 0 if following the symlink is allowed, -ve on error.
907 */
908static inline int may_follow_link(struct nameidata *nd)
909{
910 const struct inode *inode;
911 const struct inode *parent;
912 kuid_t puid;
913
914 if (!sysctl_protected_symlinks)
915 return 0;
916
917 /* Allowed if owner and follower match. */
918 inode = nd->link_inode;
919 if (uid_eq(current_cred()->fsuid, inode->i_uid))
920 return 0;
921
922 /* Allowed if parent directory not sticky and world-writable. */
923 parent = nd->inode;
924 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
925 return 0;
926
927 /* Allowed if parent directory and link owner match. */
928 puid = parent->i_uid;
929 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
930 return 0;
931
932 if (nd->flags & LOOKUP_RCU)
933 return -ECHILD;
934
935 audit_log_link_denied("follow_link", &nd->stack[0].link);
936 return -EACCES;
937}
938
939/**
940 * safe_hardlink_source - Check for safe hardlink conditions
941 * @inode: the source inode to hardlink from
942 *
943 * Return false if at least one of the following conditions:
944 * - inode is not a regular file
945 * - inode is setuid
946 * - inode is setgid and group-exec
947 * - access failure for read and write
948 *
949 * Otherwise returns true.
950 */
951static bool safe_hardlink_source(struct inode *inode)
952{
953 umode_t mode = inode->i_mode;
954
955 /* Special files should not get pinned to the filesystem. */
956 if (!S_ISREG(mode))
957 return false;
958
959 /* Setuid files should not get pinned to the filesystem. */
960 if (mode & S_ISUID)
961 return false;
962
963 /* Executable setgid files should not get pinned to the filesystem. */
964 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
965 return false;
966
967 /* Hardlinking to unreadable or unwritable sources is dangerous. */
968 if (inode_permission(inode, MAY_READ | MAY_WRITE))
969 return false;
970
971 return true;
972}
973
974/**
975 * may_linkat - Check permissions for creating a hardlink
976 * @link: the source to hardlink from
977 *
978 * Block hardlink when all of:
979 * - sysctl_protected_hardlinks enabled
980 * - fsuid does not match inode
981 * - hardlink source is unsafe (see safe_hardlink_source() above)
982 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
983 *
984 * Returns 0 if successful, -ve on error.
985 */
986static int may_linkat(struct path *link)
987{
988 struct inode *inode;
989
990 if (!sysctl_protected_hardlinks)
991 return 0;
992
993 inode = link->dentry->d_inode;
994
995 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
996 * otherwise, it must be a safe source.
997 */
998 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
999 return 0;
1000
1001 audit_log_link_denied("linkat", link);
1002 return -EPERM;
1003}
1004
1005static __always_inline
1006const char *get_link(struct nameidata *nd)
1007{
1008 struct saved *last = nd->stack + nd->depth - 1;
1009 struct dentry *dentry = last->link.dentry;
1010 struct inode *inode = nd->link_inode;
1011 int error;
1012 const char *res;
1013
1014 if (!(nd->flags & LOOKUP_RCU)) {
1015 touch_atime(&last->link);
1016 cond_resched();
1017 } else if (atime_needs_update(&last->link, inode)) {
1018 if (unlikely(unlazy_walk(nd, NULL, 0)))
1019 return ERR_PTR(-ECHILD);
1020 touch_atime(&last->link);
1021 }
1022
1023 error = security_inode_follow_link(dentry, inode,
1024 nd->flags & LOOKUP_RCU);
1025 if (unlikely(error))
1026 return ERR_PTR(error);
1027
1028 nd->last_type = LAST_BIND;
1029 res = inode->i_link;
1030 if (!res) {
1031 const char * (*get)(struct dentry *, struct inode *,
1032 struct delayed_call *);
1033 get = inode->i_op->get_link;
1034 if (nd->flags & LOOKUP_RCU) {
1035 res = get(NULL, inode, &last->done);
1036 if (res == ERR_PTR(-ECHILD)) {
1037 if (unlikely(unlazy_walk(nd, NULL, 0)))
1038 return ERR_PTR(-ECHILD);
1039 res = get(dentry, inode, &last->done);
1040 }
1041 } else {
1042 res = get(dentry, inode, &last->done);
1043 }
1044 if (IS_ERR_OR_NULL(res))
1045 return res;
1046 }
1047 if (*res == '/') {
1048 if (!nd->root.mnt)
1049 set_root(nd);
1050 if (unlikely(nd_jump_root(nd)))
1051 return ERR_PTR(-ECHILD);
1052 while (unlikely(*++res == '/'))
1053 ;
1054 }
1055 if (!*res)
1056 res = NULL;
1057 return res;
1058}
1059
1060/*
1061 * follow_up - Find the mountpoint of path's vfsmount
1062 *
1063 * Given a path, find the mountpoint of its source file system.
1064 * Replace @path with the path of the mountpoint in the parent mount.
1065 * Up is towards /.
1066 *
1067 * Return 1 if we went up a level and 0 if we were already at the
1068 * root.
1069 */
1070int follow_up(struct path *path)
1071{
1072 struct mount *mnt = real_mount(path->mnt);
1073 struct mount *parent;
1074 struct dentry *mountpoint;
1075
1076 read_seqlock_excl(&mount_lock);
1077 parent = mnt->mnt_parent;
1078 if (parent == mnt) {
1079 read_sequnlock_excl(&mount_lock);
1080 return 0;
1081 }
1082 mntget(&parent->mnt);
1083 mountpoint = dget(mnt->mnt_mountpoint);
1084 read_sequnlock_excl(&mount_lock);
1085 dput(path->dentry);
1086 path->dentry = mountpoint;
1087 mntput(path->mnt);
1088 path->mnt = &parent->mnt;
1089 return 1;
1090}
1091EXPORT_SYMBOL(follow_up);
1092
1093/*
1094 * Perform an automount
1095 * - return -EISDIR to tell follow_managed() to stop and return the path we
1096 * were called with.
1097 */
1098static int follow_automount(struct path *path, struct nameidata *nd,
1099 bool *need_mntput)
1100{
1101 struct vfsmount *mnt;
1102 int err;
1103
1104 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1105 return -EREMOTE;
1106
1107 /* We don't want to mount if someone's just doing a stat -
1108 * unless they're stat'ing a directory and appended a '/' to
1109 * the name.
1110 *
1111 * We do, however, want to mount if someone wants to open or
1112 * create a file of any type under the mountpoint, wants to
1113 * traverse through the mountpoint or wants to open the
1114 * mounted directory. Also, autofs may mark negative dentries
1115 * as being automount points. These will need the attentions
1116 * of the daemon to instantiate them before they can be used.
1117 */
1118 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1119 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1120 path->dentry->d_inode)
1121 return -EISDIR;
1122
1123 nd->total_link_count++;
1124 if (nd->total_link_count >= 40)
1125 return -ELOOP;
1126
1127 mnt = path->dentry->d_op->d_automount(path);
1128 if (IS_ERR(mnt)) {
1129 /*
1130 * The filesystem is allowed to return -EISDIR here to indicate
1131 * it doesn't want to automount. For instance, autofs would do
1132 * this so that its userspace daemon can mount on this dentry.
1133 *
1134 * However, we can only permit this if it's a terminal point in
1135 * the path being looked up; if it wasn't then the remainder of
1136 * the path is inaccessible and we should say so.
1137 */
1138 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1139 return -EREMOTE;
1140 return PTR_ERR(mnt);
1141 }
1142
1143 if (!mnt) /* mount collision */
1144 return 0;
1145
1146 if (!*need_mntput) {
1147 /* lock_mount() may release path->mnt on error */
1148 mntget(path->mnt);
1149 *need_mntput = true;
1150 }
1151 err = finish_automount(mnt, path);
1152
1153 switch (err) {
1154 case -EBUSY:
1155 /* Someone else made a mount here whilst we were busy */
1156 return 0;
1157 case 0:
1158 path_put(path);
1159 path->mnt = mnt;
1160 path->dentry = dget(mnt->mnt_root);
1161 return 0;
1162 default:
1163 return err;
1164 }
1165
1166}
1167
1168/*
1169 * Handle a dentry that is managed in some way.
1170 * - Flagged for transit management (autofs)
1171 * - Flagged as mountpoint
1172 * - Flagged as automount point
1173 *
1174 * This may only be called in refwalk mode.
1175 *
1176 * Serialization is taken care of in namespace.c
1177 */
1178static int follow_managed(struct path *path, struct nameidata *nd)
1179{
1180 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1181 unsigned managed;
1182 bool need_mntput = false;
1183 int ret = 0;
1184
1185 /* Given that we're not holding a lock here, we retain the value in a
1186 * local variable for each dentry as we look at it so that we don't see
1187 * the components of that value change under us */
1188 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1189 managed &= DCACHE_MANAGED_DENTRY,
1190 unlikely(managed != 0)) {
1191 /* Allow the filesystem to manage the transit without i_mutex
1192 * being held. */
1193 if (managed & DCACHE_MANAGE_TRANSIT) {
1194 BUG_ON(!path->dentry->d_op);
1195 BUG_ON(!path->dentry->d_op->d_manage);
1196 ret = path->dentry->d_op->d_manage(path->dentry, false);
1197 if (ret < 0)
1198 break;
1199 }
1200
1201 /* Transit to a mounted filesystem. */
1202 if (managed & DCACHE_MOUNTED) {
1203 struct vfsmount *mounted = lookup_mnt(path);
1204 if (mounted) {
1205 dput(path->dentry);
1206 if (need_mntput)
1207 mntput(path->mnt);
1208 path->mnt = mounted;
1209 path->dentry = dget(mounted->mnt_root);
1210 need_mntput = true;
1211 continue;
1212 }
1213
1214 /* Something is mounted on this dentry in another
1215 * namespace and/or whatever was mounted there in this
1216 * namespace got unmounted before lookup_mnt() could
1217 * get it */
1218 }
1219
1220 /* Handle an automount point */
1221 if (managed & DCACHE_NEED_AUTOMOUNT) {
1222 ret = follow_automount(path, nd, &need_mntput);
1223 if (ret < 0)
1224 break;
1225 continue;
1226 }
1227
1228 /* We didn't change the current path point */
1229 break;
1230 }
1231
1232 if (need_mntput && path->mnt == mnt)
1233 mntput(path->mnt);
1234 if (ret == -EISDIR || !ret)
1235 ret = 1;
1236 if (need_mntput)
1237 nd->flags |= LOOKUP_JUMPED;
1238 if (unlikely(ret < 0))
1239 path_put_conditional(path, nd);
1240 return ret;
1241}
1242
1243int follow_down_one(struct path *path)
1244{
1245 struct vfsmount *mounted;
1246
1247 mounted = lookup_mnt(path);
1248 if (mounted) {
1249 dput(path->dentry);
1250 mntput(path->mnt);
1251 path->mnt = mounted;
1252 path->dentry = dget(mounted->mnt_root);
1253 return 1;
1254 }
1255 return 0;
1256}
1257EXPORT_SYMBOL(follow_down_one);
1258
1259static inline int managed_dentry_rcu(struct dentry *dentry)
1260{
1261 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1262 dentry->d_op->d_manage(dentry, true) : 0;
1263}
1264
1265/*
1266 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1267 * we meet a managed dentry that would need blocking.
1268 */
1269static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1270 struct inode **inode, unsigned *seqp)
1271{
1272 for (;;) {
1273 struct mount *mounted;
1274 /*
1275 * Don't forget we might have a non-mountpoint managed dentry
1276 * that wants to block transit.
1277 */
1278 switch (managed_dentry_rcu(path->dentry)) {
1279 case -ECHILD:
1280 default:
1281 return false;
1282 case -EISDIR:
1283 return true;
1284 case 0:
1285 break;
1286 }
1287
1288 if (!d_mountpoint(path->dentry))
1289 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1290
1291 mounted = __lookup_mnt(path->mnt, path->dentry);
1292 if (!mounted)
1293 break;
1294 path->mnt = &mounted->mnt;
1295 path->dentry = mounted->mnt.mnt_root;
1296 nd->flags |= LOOKUP_JUMPED;
1297 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1298 /*
1299 * Update the inode too. We don't need to re-check the
1300 * dentry sequence number here after this d_inode read,
1301 * because a mount-point is always pinned.
1302 */
1303 *inode = path->dentry->d_inode;
1304 }
1305 return !read_seqretry(&mount_lock, nd->m_seq) &&
1306 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1307}
1308
1309static int follow_dotdot_rcu(struct nameidata *nd)
1310{
1311 struct inode *inode = nd->inode;
1312
1313 while (1) {
1314 if (path_equal(&nd->path, &nd->root))
1315 break;
1316 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1317 struct dentry *old = nd->path.dentry;
1318 struct dentry *parent = old->d_parent;
1319 unsigned seq;
1320
1321 inode = parent->d_inode;
1322 seq = read_seqcount_begin(&parent->d_seq);
1323 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1324 return -ECHILD;
1325 nd->path.dentry = parent;
1326 nd->seq = seq;
1327 if (unlikely(!path_connected(&nd->path)))
1328 return -ENOENT;
1329 break;
1330 } else {
1331 struct mount *mnt = real_mount(nd->path.mnt);
1332 struct mount *mparent = mnt->mnt_parent;
1333 struct dentry *mountpoint = mnt->mnt_mountpoint;
1334 struct inode *inode2 = mountpoint->d_inode;
1335 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1336 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1337 return -ECHILD;
1338 if (&mparent->mnt == nd->path.mnt)
1339 break;
1340 /* we know that mountpoint was pinned */
1341 nd->path.dentry = mountpoint;
1342 nd->path.mnt = &mparent->mnt;
1343 inode = inode2;
1344 nd->seq = seq;
1345 }
1346 }
1347 while (unlikely(d_mountpoint(nd->path.dentry))) {
1348 struct mount *mounted;
1349 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1350 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1351 return -ECHILD;
1352 if (!mounted)
1353 break;
1354 nd->path.mnt = &mounted->mnt;
1355 nd->path.dentry = mounted->mnt.mnt_root;
1356 inode = nd->path.dentry->d_inode;
1357 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1358 }
1359 nd->inode = inode;
1360 return 0;
1361}
1362
1363/*
1364 * Follow down to the covering mount currently visible to userspace. At each
1365 * point, the filesystem owning that dentry may be queried as to whether the
1366 * caller is permitted to proceed or not.
1367 */
1368int follow_down(struct path *path)
1369{
1370 unsigned managed;
1371 int ret;
1372
1373 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1374 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1375 /* Allow the filesystem to manage the transit without i_mutex
1376 * being held.
1377 *
1378 * We indicate to the filesystem if someone is trying to mount
1379 * something here. This gives autofs the chance to deny anyone
1380 * other than its daemon the right to mount on its
1381 * superstructure.
1382 *
1383 * The filesystem may sleep at this point.
1384 */
1385 if (managed & DCACHE_MANAGE_TRANSIT) {
1386 BUG_ON(!path->dentry->d_op);
1387 BUG_ON(!path->dentry->d_op->d_manage);
1388 ret = path->dentry->d_op->d_manage(
1389 path->dentry, false);
1390 if (ret < 0)
1391 return ret == -EISDIR ? 0 : ret;
1392 }
1393
1394 /* Transit to a mounted filesystem. */
1395 if (managed & DCACHE_MOUNTED) {
1396 struct vfsmount *mounted = lookup_mnt(path);
1397 if (!mounted)
1398 break;
1399 dput(path->dentry);
1400 mntput(path->mnt);
1401 path->mnt = mounted;
1402 path->dentry = dget(mounted->mnt_root);
1403 continue;
1404 }
1405
1406 /* Don't handle automount points here */
1407 break;
1408 }
1409 return 0;
1410}
1411EXPORT_SYMBOL(follow_down);
1412
1413/*
1414 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415 */
1416static void follow_mount(struct path *path)
1417{
1418 while (d_mountpoint(path->dentry)) {
1419 struct vfsmount *mounted = lookup_mnt(path);
1420 if (!mounted)
1421 break;
1422 dput(path->dentry);
1423 mntput(path->mnt);
1424 path->mnt = mounted;
1425 path->dentry = dget(mounted->mnt_root);
1426 }
1427}
1428
1429static int path_parent_directory(struct path *path)
1430{
1431 struct dentry *old = path->dentry;
1432 /* rare case of legitimate dget_parent()... */
1433 path->dentry = dget_parent(path->dentry);
1434 dput(old);
1435 if (unlikely(!path_connected(path)))
1436 return -ENOENT;
1437 return 0;
1438}
1439
1440static int follow_dotdot(struct nameidata *nd)
1441{
1442 while(1) {
1443 if (nd->path.dentry == nd->root.dentry &&
1444 nd->path.mnt == nd->root.mnt) {
1445 break;
1446 }
1447 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1448 int ret = path_parent_directory(&nd->path);
1449 if (ret)
1450 return ret;
1451 break;
1452 }
1453 if (!follow_up(&nd->path))
1454 break;
1455 }
1456 follow_mount(&nd->path);
1457 nd->inode = nd->path.dentry->d_inode;
1458 return 0;
1459}
1460
1461/*
1462 * This looks up the name in dcache, possibly revalidates the old dentry and
1463 * allocates a new one if not found or not valid. In the need_lookup argument
1464 * returns whether i_op->lookup is necessary.
1465 */
1466static struct dentry *lookup_dcache(const struct qstr *name,
1467 struct dentry *dir,
1468 unsigned int flags)
1469{
1470 struct dentry *dentry;
1471 int error;
1472
1473 dentry = d_lookup(dir, name);
1474 if (dentry) {
1475 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1476 error = d_revalidate(dentry, flags);
1477 if (unlikely(error <= 0)) {
1478 if (!error)
1479 d_invalidate(dentry);
1480 dput(dentry);
1481 return ERR_PTR(error);
1482 }
1483 }
1484 }
1485 return dentry;
1486}
1487
1488/*
1489 * Call i_op->lookup on the dentry. The dentry must be negative and
1490 * unhashed.
1491 *
1492 * dir->d_inode->i_mutex must be held
1493 */
1494static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1495 unsigned int flags)
1496{
1497 struct dentry *old;
1498
1499 /* Don't create child dentry for a dead directory. */
1500 if (unlikely(IS_DEADDIR(dir))) {
1501 dput(dentry);
1502 return ERR_PTR(-ENOENT);
1503 }
1504
1505 old = dir->i_op->lookup(dir, dentry, flags);
1506 if (unlikely(old)) {
1507 dput(dentry);
1508 dentry = old;
1509 }
1510 return dentry;
1511}
1512
1513static struct dentry *__lookup_hash(const struct qstr *name,
1514 struct dentry *base, unsigned int flags)
1515{
1516 struct dentry *dentry = lookup_dcache(name, base, flags);
1517
1518 if (dentry)
1519 return dentry;
1520
1521 dentry = d_alloc(base, name);
1522 if (unlikely(!dentry))
1523 return ERR_PTR(-ENOMEM);
1524
1525 return lookup_real(base->d_inode, dentry, flags);
1526}
1527
1528static int lookup_fast(struct nameidata *nd,
1529 struct path *path, struct inode **inode,
1530 unsigned *seqp)
1531{
1532 struct vfsmount *mnt = nd->path.mnt;
1533 struct dentry *dentry, *parent = nd->path.dentry;
1534 int status = 1;
1535 int err;
1536
1537 /*
1538 * Rename seqlock is not required here because in the off chance
1539 * of a false negative due to a concurrent rename, the caller is
1540 * going to fall back to non-racy lookup.
1541 */
1542 if (nd->flags & LOOKUP_RCU) {
1543 unsigned seq;
1544 bool negative;
1545 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1546 if (unlikely(!dentry)) {
1547 if (unlazy_walk(nd, NULL, 0))
1548 return -ECHILD;
1549 return 0;
1550 }
1551
1552 /*
1553 * This sequence count validates that the inode matches
1554 * the dentry name information from lookup.
1555 */
1556 *inode = d_backing_inode(dentry);
1557 negative = d_is_negative(dentry);
1558 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1559 return -ECHILD;
1560
1561 /*
1562 * This sequence count validates that the parent had no
1563 * changes while we did the lookup of the dentry above.
1564 *
1565 * The memory barrier in read_seqcount_begin of child is
1566 * enough, we can use __read_seqcount_retry here.
1567 */
1568 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1569 return -ECHILD;
1570
1571 *seqp = seq;
1572 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1573 status = d_revalidate(dentry, nd->flags);
1574 if (unlikely(status <= 0)) {
1575 if (unlazy_walk(nd, dentry, seq))
1576 return -ECHILD;
1577 if (status == -ECHILD)
1578 status = d_revalidate(dentry, nd->flags);
1579 } else {
1580 /*
1581 * Note: do negative dentry check after revalidation in
1582 * case that drops it.
1583 */
1584 if (unlikely(negative))
1585 return -ENOENT;
1586 path->mnt = mnt;
1587 path->dentry = dentry;
1588 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1589 return 1;
1590 if (unlazy_walk(nd, dentry, seq))
1591 return -ECHILD;
1592 }
1593 } else {
1594 dentry = __d_lookup(parent, &nd->last);
1595 if (unlikely(!dentry))
1596 return 0;
1597 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1598 status = d_revalidate(dentry, nd->flags);
1599 }
1600 if (unlikely(status <= 0)) {
1601 if (!status)
1602 d_invalidate(dentry);
1603 dput(dentry);
1604 return status;
1605 }
1606 if (unlikely(d_is_negative(dentry))) {
1607 dput(dentry);
1608 return -ENOENT;
1609 }
1610
1611 path->mnt = mnt;
1612 path->dentry = dentry;
1613 err = follow_managed(path, nd);
1614 if (likely(err > 0))
1615 *inode = d_backing_inode(path->dentry);
1616 return err;
1617}
1618
1619/* Fast lookup failed, do it the slow way */
1620static struct dentry *lookup_slow(const struct qstr *name,
1621 struct dentry *dir,
1622 unsigned int flags)
1623{
1624 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1625 struct inode *inode = dir->d_inode;
1626 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1627
1628 inode_lock_shared(inode);
1629 /* Don't go there if it's already dead */
1630 if (unlikely(IS_DEADDIR(inode)))
1631 goto out;
1632again:
1633 dentry = d_alloc_parallel(dir, name, &wq);
1634 if (IS_ERR(dentry))
1635 goto out;
1636 if (unlikely(!d_in_lookup(dentry))) {
1637 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1638 !(flags & LOOKUP_NO_REVAL)) {
1639 int error = d_revalidate(dentry, flags);
1640 if (unlikely(error <= 0)) {
1641 if (!error) {
1642 d_invalidate(dentry);
1643 dput(dentry);
1644 goto again;
1645 }
1646 dput(dentry);
1647 dentry = ERR_PTR(error);
1648 }
1649 }
1650 } else {
1651 old = inode->i_op->lookup(inode, dentry, flags);
1652 d_lookup_done(dentry);
1653 if (unlikely(old)) {
1654 dput(dentry);
1655 dentry = old;
1656 }
1657 }
1658out:
1659 inode_unlock_shared(inode);
1660 return dentry;
1661}
1662
1663static inline int may_lookup(struct nameidata *nd)
1664{
1665 if (nd->flags & LOOKUP_RCU) {
1666 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1667 if (err != -ECHILD)
1668 return err;
1669 if (unlazy_walk(nd, NULL, 0))
1670 return -ECHILD;
1671 }
1672 return inode_permission(nd->inode, MAY_EXEC);
1673}
1674
1675static inline int handle_dots(struct nameidata *nd, int type)
1676{
1677 if (type == LAST_DOTDOT) {
1678 if (!nd->root.mnt)
1679 set_root(nd);
1680 if (nd->flags & LOOKUP_RCU) {
1681 return follow_dotdot_rcu(nd);
1682 } else
1683 return follow_dotdot(nd);
1684 }
1685 return 0;
1686}
1687
1688static int pick_link(struct nameidata *nd, struct path *link,
1689 struct inode *inode, unsigned seq)
1690{
1691 int error;
1692 struct saved *last;
1693 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1694 path_to_nameidata(link, nd);
1695 return -ELOOP;
1696 }
1697 if (!(nd->flags & LOOKUP_RCU)) {
1698 if (link->mnt == nd->path.mnt)
1699 mntget(link->mnt);
1700 }
1701 error = nd_alloc_stack(nd);
1702 if (unlikely(error)) {
1703 if (error == -ECHILD) {
1704 if (unlikely(unlazy_link(nd, link, seq)))
1705 return -ECHILD;
1706 error = nd_alloc_stack(nd);
1707 }
1708 if (error) {
1709 path_put(link);
1710 return error;
1711 }
1712 }
1713
1714 last = nd->stack + nd->depth++;
1715 last->link = *link;
1716 clear_delayed_call(&last->done);
1717 nd->link_inode = inode;
1718 last->seq = seq;
1719 return 1;
1720}
1721
1722/*
1723 * Do we need to follow links? We _really_ want to be able
1724 * to do this check without having to look at inode->i_op,
1725 * so we keep a cache of "no, this doesn't need follow_link"
1726 * for the common case.
1727 */
1728static inline int should_follow_link(struct nameidata *nd, struct path *link,
1729 int follow,
1730 struct inode *inode, unsigned seq)
1731{
1732 if (likely(!d_is_symlink(link->dentry)))
1733 return 0;
1734 if (!follow)
1735 return 0;
1736 /* make sure that d_is_symlink above matches inode */
1737 if (nd->flags & LOOKUP_RCU) {
1738 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1739 return -ECHILD;
1740 }
1741 return pick_link(nd, link, inode, seq);
1742}
1743
1744enum {WALK_GET = 1, WALK_PUT = 2};
1745
1746static int walk_component(struct nameidata *nd, int flags)
1747{
1748 struct path path;
1749 struct inode *inode;
1750 unsigned seq;
1751 int err;
1752 /*
1753 * "." and ".." are special - ".." especially so because it has
1754 * to be able to know about the current root directory and
1755 * parent relationships.
1756 */
1757 if (unlikely(nd->last_type != LAST_NORM)) {
1758 err = handle_dots(nd, nd->last_type);
1759 if (flags & WALK_PUT)
1760 put_link(nd);
1761 return err;
1762 }
1763 err = lookup_fast(nd, &path, &inode, &seq);
1764 if (unlikely(err <= 0)) {
1765 if (err < 0)
1766 return err;
1767 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1768 nd->flags);
1769 if (IS_ERR(path.dentry))
1770 return PTR_ERR(path.dentry);
1771
1772 path.mnt = nd->path.mnt;
1773 err = follow_managed(&path, nd);
1774 if (unlikely(err < 0))
1775 return err;
1776
1777 if (unlikely(d_is_negative(path.dentry))) {
1778 path_to_nameidata(&path, nd);
1779 return -ENOENT;
1780 }
1781
1782 seq = 0; /* we are already out of RCU mode */
1783 inode = d_backing_inode(path.dentry);
1784 }
1785
1786 if (flags & WALK_PUT)
1787 put_link(nd);
1788 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1789 if (unlikely(err))
1790 return err;
1791 path_to_nameidata(&path, nd);
1792 nd->inode = inode;
1793 nd->seq = seq;
1794 return 0;
1795}
1796
1797/*
1798 * We can do the critical dentry name comparison and hashing
1799 * operations one word at a time, but we are limited to:
1800 *
1801 * - Architectures with fast unaligned word accesses. We could
1802 * do a "get_unaligned()" if this helps and is sufficiently
1803 * fast.
1804 *
1805 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1806 * do not trap on the (extremely unlikely) case of a page
1807 * crossing operation.
1808 *
1809 * - Furthermore, we need an efficient 64-bit compile for the
1810 * 64-bit case in order to generate the "number of bytes in
1811 * the final mask". Again, that could be replaced with a
1812 * efficient population count instruction or similar.
1813 */
1814#ifdef CONFIG_DCACHE_WORD_ACCESS
1815
1816#include <asm/word-at-a-time.h>
1817
1818#ifdef HASH_MIX
1819
1820/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1821
1822#elif defined(CONFIG_64BIT)
1823/*
1824 * Register pressure in the mixing function is an issue, particularly
1825 * on 32-bit x86, but almost any function requires one state value and
1826 * one temporary. Instead, use a function designed for two state values
1827 * and no temporaries.
1828 *
1829 * This function cannot create a collision in only two iterations, so
1830 * we have two iterations to achieve avalanche. In those two iterations,
1831 * we have six layers of mixing, which is enough to spread one bit's
1832 * influence out to 2^6 = 64 state bits.
1833 *
1834 * Rotate constants are scored by considering either 64 one-bit input
1835 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1836 * probability of that delta causing a change to each of the 128 output
1837 * bits, using a sample of random initial states.
1838 *
1839 * The Shannon entropy of the computed probabilities is then summed
1840 * to produce a score. Ideally, any input change has a 50% chance of
1841 * toggling any given output bit.
1842 *
1843 * Mixing scores (in bits) for (12,45):
1844 * Input delta: 1-bit 2-bit
1845 * 1 round: 713.3 42542.6
1846 * 2 rounds: 2753.7 140389.8
1847 * 3 rounds: 5954.1 233458.2
1848 * 4 rounds: 7862.6 256672.2
1849 * Perfect: 8192 258048
1850 * (64*128) (64*63/2 * 128)
1851 */
1852#define HASH_MIX(x, y, a) \
1853 ( x ^= (a), \
1854 y ^= x, x = rol64(x,12),\
1855 x += y, y = rol64(y,45),\
1856 y *= 9 )
1857
1858/*
1859 * Fold two longs into one 32-bit hash value. This must be fast, but
1860 * latency isn't quite as critical, as there is a fair bit of additional
1861 * work done before the hash value is used.
1862 */
1863static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1864{
1865 y ^= x * GOLDEN_RATIO_64;
1866 y *= GOLDEN_RATIO_64;
1867 return y >> 32;
1868}
1869
1870#else /* 32-bit case */
1871
1872/*
1873 * Mixing scores (in bits) for (7,20):
1874 * Input delta: 1-bit 2-bit
1875 * 1 round: 330.3 9201.6
1876 * 2 rounds: 1246.4 25475.4
1877 * 3 rounds: 1907.1 31295.1
1878 * 4 rounds: 2042.3 31718.6
1879 * Perfect: 2048 31744
1880 * (32*64) (32*31/2 * 64)
1881 */
1882#define HASH_MIX(x, y, a) \
1883 ( x ^= (a), \
1884 y ^= x, x = rol32(x, 7),\
1885 x += y, y = rol32(y,20),\
1886 y *= 9 )
1887
1888static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889{
1890 /* Use arch-optimized multiply if one exists */
1891 return __hash_32(y ^ __hash_32(x));
1892}
1893
1894#endif
1895
1896/*
1897 * Return the hash of a string of known length. This is carfully
1898 * designed to match hash_name(), which is the more critical function.
1899 * In particular, we must end by hashing a final word containing 0..7
1900 * payload bytes, to match the way that hash_name() iterates until it
1901 * finds the delimiter after the name.
1902 */
1903unsigned int full_name_hash(const char *name, unsigned int len)
1904{
1905 unsigned long a, x = 0, y = 0;
1906
1907 for (;;) {
1908 if (!len)
1909 goto done;
1910 a = load_unaligned_zeropad(name);
1911 if (len < sizeof(unsigned long))
1912 break;
1913 HASH_MIX(x, y, a);
1914 name += sizeof(unsigned long);
1915 len -= sizeof(unsigned long);
1916 }
1917 x ^= a & bytemask_from_count(len);
1918done:
1919 return fold_hash(x, y);
1920}
1921EXPORT_SYMBOL(full_name_hash);
1922
1923/* Return the "hash_len" (hash and length) of a null-terminated string */
1924u64 hashlen_string(const char *name)
1925{
1926 unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1927 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1928
1929 len = -sizeof(unsigned long);
1930 do {
1931 HASH_MIX(x, y, a);
1932 len += sizeof(unsigned long);
1933 a = load_unaligned_zeropad(name+len);
1934 } while (!has_zero(a, &adata, &constants));
1935
1936 adata = prep_zero_mask(a, adata, &constants);
1937 mask = create_zero_mask(adata);
1938 x ^= a & zero_bytemask(mask);
1939
1940 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1941}
1942EXPORT_SYMBOL(hashlen_string);
1943
1944/*
1945 * Calculate the length and hash of the path component, and
1946 * return the "hash_len" as the result.
1947 */
1948static inline u64 hash_name(const char *name)
1949{
1950 unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1951 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1952
1953 len = -sizeof(unsigned long);
1954 do {
1955 HASH_MIX(x, y, a);
1956 len += sizeof(unsigned long);
1957 a = load_unaligned_zeropad(name+len);
1958 b = a ^ REPEAT_BYTE('/');
1959 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1960
1961 adata = prep_zero_mask(a, adata, &constants);
1962 bdata = prep_zero_mask(b, bdata, &constants);
1963 mask = create_zero_mask(adata | bdata);
1964 x ^= a & zero_bytemask(mask);
1965
1966 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1967}
1968
1969#else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1970
1971/* Return the hash of a string of known length */
1972unsigned int full_name_hash(const char *name, unsigned int len)
1973{
1974 unsigned long hash = init_name_hash();
1975 while (len--)
1976 hash = partial_name_hash((unsigned char)*name++, hash);
1977 return end_name_hash(hash);
1978}
1979EXPORT_SYMBOL(full_name_hash);
1980
1981/* Return the "hash_len" (hash and length) of a null-terminated string */
1982u64 hashlen_string(const char *name)
1983{
1984 unsigned long hash = init_name_hash();
1985 unsigned long len = 0, c;
1986
1987 c = (unsigned char)*name;
1988 while (c) {
1989 len++;
1990 hash = partial_name_hash(c, hash);
1991 c = (unsigned char)name[len];
1992 }
1993 return hashlen_create(end_name_hash(hash), len);
1994}
1995EXPORT_SYMBOL(hashlen_string);
1996
1997/*
1998 * We know there's a real path component here of at least
1999 * one character.
2000 */
2001static inline u64 hash_name(const char *name)
2002{
2003 unsigned long hash = init_name_hash();
2004 unsigned long len = 0, c;
2005
2006 c = (unsigned char)*name;
2007 do {
2008 len++;
2009 hash = partial_name_hash(c, hash);
2010 c = (unsigned char)name[len];
2011 } while (c && c != '/');
2012 return hashlen_create(end_name_hash(hash), len);
2013}
2014
2015#endif
2016
2017/*
2018 * Name resolution.
2019 * This is the basic name resolution function, turning a pathname into
2020 * the final dentry. We expect 'base' to be positive and a directory.
2021 *
2022 * Returns 0 and nd will have valid dentry and mnt on success.
2023 * Returns error and drops reference to input namei data on failure.
2024 */
2025static int link_path_walk(const char *name, struct nameidata *nd)
2026{
2027 int err;
2028
2029 while (*name=='/')
2030 name++;
2031 if (!*name)
2032 return 0;
2033
2034 /* At this point we know we have a real path component. */
2035 for(;;) {
2036 u64 hash_len;
2037 int type;
2038
2039 err = may_lookup(nd);
2040 if (err)
2041 return err;
2042
2043 hash_len = hash_name(name);
2044
2045 type = LAST_NORM;
2046 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2047 case 2:
2048 if (name[1] == '.') {
2049 type = LAST_DOTDOT;
2050 nd->flags |= LOOKUP_JUMPED;
2051 }
2052 break;
2053 case 1:
2054 type = LAST_DOT;
2055 }
2056 if (likely(type == LAST_NORM)) {
2057 struct dentry *parent = nd->path.dentry;
2058 nd->flags &= ~LOOKUP_JUMPED;
2059 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2060 struct qstr this = { { .hash_len = hash_len }, .name = name };
2061 err = parent->d_op->d_hash(parent, &this);
2062 if (err < 0)
2063 return err;
2064 hash_len = this.hash_len;
2065 name = this.name;
2066 }
2067 }
2068
2069 nd->last.hash_len = hash_len;
2070 nd->last.name = name;
2071 nd->last_type = type;
2072
2073 name += hashlen_len(hash_len);
2074 if (!*name)
2075 goto OK;
2076 /*
2077 * If it wasn't NUL, we know it was '/'. Skip that
2078 * slash, and continue until no more slashes.
2079 */
2080 do {
2081 name++;
2082 } while (unlikely(*name == '/'));
2083 if (unlikely(!*name)) {
2084OK:
2085 /* pathname body, done */
2086 if (!nd->depth)
2087 return 0;
2088 name = nd->stack[nd->depth - 1].name;
2089 /* trailing symlink, done */
2090 if (!name)
2091 return 0;
2092 /* last component of nested symlink */
2093 err = walk_component(nd, WALK_GET | WALK_PUT);
2094 } else {
2095 err = walk_component(nd, WALK_GET);
2096 }
2097 if (err < 0)
2098 return err;
2099
2100 if (err) {
2101 const char *s = get_link(nd);
2102
2103 if (IS_ERR(s))
2104 return PTR_ERR(s);
2105 err = 0;
2106 if (unlikely(!s)) {
2107 /* jumped */
2108 put_link(nd);
2109 } else {
2110 nd->stack[nd->depth - 1].name = name;
2111 name = s;
2112 continue;
2113 }
2114 }
2115 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2116 if (nd->flags & LOOKUP_RCU) {
2117 if (unlazy_walk(nd, NULL, 0))
2118 return -ECHILD;
2119 }
2120 return -ENOTDIR;
2121 }
2122 }
2123}
2124
2125static const char *path_init(struct nameidata *nd, unsigned flags)
2126{
2127 int retval = 0;
2128 const char *s = nd->name->name;
2129
2130 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2131 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2132 nd->depth = 0;
2133 if (flags & LOOKUP_ROOT) {
2134 struct dentry *root = nd->root.dentry;
2135 struct inode *inode = root->d_inode;
2136 if (*s) {
2137 if (!d_can_lookup(root))
2138 return ERR_PTR(-ENOTDIR);
2139 retval = inode_permission(inode, MAY_EXEC);
2140 if (retval)
2141 return ERR_PTR(retval);
2142 }
2143 nd->path = nd->root;
2144 nd->inode = inode;
2145 if (flags & LOOKUP_RCU) {
2146 rcu_read_lock();
2147 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148 nd->root_seq = nd->seq;
2149 nd->m_seq = read_seqbegin(&mount_lock);
2150 } else {
2151 path_get(&nd->path);
2152 }
2153 return s;
2154 }
2155
2156 nd->root.mnt = NULL;
2157 nd->path.mnt = NULL;
2158 nd->path.dentry = NULL;
2159
2160 nd->m_seq = read_seqbegin(&mount_lock);
2161 if (*s == '/') {
2162 if (flags & LOOKUP_RCU)
2163 rcu_read_lock();
2164 set_root(nd);
2165 if (likely(!nd_jump_root(nd)))
2166 return s;
2167 nd->root.mnt = NULL;
2168 rcu_read_unlock();
2169 return ERR_PTR(-ECHILD);
2170 } else if (nd->dfd == AT_FDCWD) {
2171 if (flags & LOOKUP_RCU) {
2172 struct fs_struct *fs = current->fs;
2173 unsigned seq;
2174
2175 rcu_read_lock();
2176
2177 do {
2178 seq = read_seqcount_begin(&fs->seq);
2179 nd->path = fs->pwd;
2180 nd->inode = nd->path.dentry->d_inode;
2181 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182 } while (read_seqcount_retry(&fs->seq, seq));
2183 } else {
2184 get_fs_pwd(current->fs, &nd->path);
2185 nd->inode = nd->path.dentry->d_inode;
2186 }
2187 return s;
2188 } else {
2189 /* Caller must check execute permissions on the starting path component */
2190 struct fd f = fdget_raw(nd->dfd);
2191 struct dentry *dentry;
2192
2193 if (!f.file)
2194 return ERR_PTR(-EBADF);
2195
2196 dentry = f.file->f_path.dentry;
2197
2198 if (*s) {
2199 if (!d_can_lookup(dentry)) {
2200 fdput(f);
2201 return ERR_PTR(-ENOTDIR);
2202 }
2203 }
2204
2205 nd->path = f.file->f_path;
2206 if (flags & LOOKUP_RCU) {
2207 rcu_read_lock();
2208 nd->inode = nd->path.dentry->d_inode;
2209 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210 } else {
2211 path_get(&nd->path);
2212 nd->inode = nd->path.dentry->d_inode;
2213 }
2214 fdput(f);
2215 return s;
2216 }
2217}
2218
2219static const char *trailing_symlink(struct nameidata *nd)
2220{
2221 const char *s;
2222 int error = may_follow_link(nd);
2223 if (unlikely(error))
2224 return ERR_PTR(error);
2225 nd->flags |= LOOKUP_PARENT;
2226 nd->stack[0].name = NULL;
2227 s = get_link(nd);
2228 return s ? s : "";
2229}
2230
2231static inline int lookup_last(struct nameidata *nd)
2232{
2233 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235
2236 nd->flags &= ~LOOKUP_PARENT;
2237 return walk_component(nd,
2238 nd->flags & LOOKUP_FOLLOW
2239 ? nd->depth
2240 ? WALK_PUT | WALK_GET
2241 : WALK_GET
2242 : 0);
2243}
2244
2245/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2246static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2247{
2248 const char *s = path_init(nd, flags);
2249 int err;
2250
2251 if (IS_ERR(s))
2252 return PTR_ERR(s);
2253 while (!(err = link_path_walk(s, nd))
2254 && ((err = lookup_last(nd)) > 0)) {
2255 s = trailing_symlink(nd);
2256 if (IS_ERR(s)) {
2257 err = PTR_ERR(s);
2258 break;
2259 }
2260 }
2261 if (!err)
2262 err = complete_walk(nd);
2263
2264 if (!err && nd->flags & LOOKUP_DIRECTORY)
2265 if (!d_can_lookup(nd->path.dentry))
2266 err = -ENOTDIR;
2267 if (!err) {
2268 *path = nd->path;
2269 nd->path.mnt = NULL;
2270 nd->path.dentry = NULL;
2271 }
2272 terminate_walk(nd);
2273 return err;
2274}
2275
2276static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2277 struct path *path, struct path *root)
2278{
2279 int retval;
2280 struct nameidata nd;
2281 if (IS_ERR(name))
2282 return PTR_ERR(name);
2283 if (unlikely(root)) {
2284 nd.root = *root;
2285 flags |= LOOKUP_ROOT;
2286 }
2287 set_nameidata(&nd, dfd, name);
2288 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2289 if (unlikely(retval == -ECHILD))
2290 retval = path_lookupat(&nd, flags, path);
2291 if (unlikely(retval == -ESTALE))
2292 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2293
2294 if (likely(!retval))
2295 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2296 restore_nameidata();
2297 putname(name);
2298 return retval;
2299}
2300
2301/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2302static int path_parentat(struct nameidata *nd, unsigned flags,
2303 struct path *parent)
2304{
2305 const char *s = path_init(nd, flags);
2306 int err;
2307 if (IS_ERR(s))
2308 return PTR_ERR(s);
2309 err = link_path_walk(s, nd);
2310 if (!err)
2311 err = complete_walk(nd);
2312 if (!err) {
2313 *parent = nd->path;
2314 nd->path.mnt = NULL;
2315 nd->path.dentry = NULL;
2316 }
2317 terminate_walk(nd);
2318 return err;
2319}
2320
2321static struct filename *filename_parentat(int dfd, struct filename *name,
2322 unsigned int flags, struct path *parent,
2323 struct qstr *last, int *type)
2324{
2325 int retval;
2326 struct nameidata nd;
2327
2328 if (IS_ERR(name))
2329 return name;
2330 set_nameidata(&nd, dfd, name);
2331 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2332 if (unlikely(retval == -ECHILD))
2333 retval = path_parentat(&nd, flags, parent);
2334 if (unlikely(retval == -ESTALE))
2335 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2336 if (likely(!retval)) {
2337 *last = nd.last;
2338 *type = nd.last_type;
2339 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2340 } else {
2341 putname(name);
2342 name = ERR_PTR(retval);
2343 }
2344 restore_nameidata();
2345 return name;
2346}
2347
2348/* does lookup, returns the object with parent locked */
2349struct dentry *kern_path_locked(const char *name, struct path *path)
2350{
2351 struct filename *filename;
2352 struct dentry *d;
2353 struct qstr last;
2354 int type;
2355
2356 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2357 &last, &type);
2358 if (IS_ERR(filename))
2359 return ERR_CAST(filename);
2360 if (unlikely(type != LAST_NORM)) {
2361 path_put(path);
2362 putname(filename);
2363 return ERR_PTR(-EINVAL);
2364 }
2365 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2366 d = __lookup_hash(&last, path->dentry, 0);
2367 if (IS_ERR(d)) {
2368 inode_unlock(path->dentry->d_inode);
2369 path_put(path);
2370 }
2371 putname(filename);
2372 return d;
2373}
2374
2375int kern_path(const char *name, unsigned int flags, struct path *path)
2376{
2377 return filename_lookup(AT_FDCWD, getname_kernel(name),
2378 flags, path, NULL);
2379}
2380EXPORT_SYMBOL(kern_path);
2381
2382/**
2383 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2384 * @dentry: pointer to dentry of the base directory
2385 * @mnt: pointer to vfs mount of the base directory
2386 * @name: pointer to file name
2387 * @flags: lookup flags
2388 * @path: pointer to struct path to fill
2389 */
2390int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2391 const char *name, unsigned int flags,
2392 struct path *path)
2393{
2394 struct path root = {.mnt = mnt, .dentry = dentry};
2395 /* the first argument of filename_lookup() is ignored with root */
2396 return filename_lookup(AT_FDCWD, getname_kernel(name),
2397 flags , path, &root);
2398}
2399EXPORT_SYMBOL(vfs_path_lookup);
2400
2401/**
2402 * lookup_hash - lookup single pathname component on already hashed name
2403 * @name: name and hash to lookup
2404 * @base: base directory to lookup from
2405 *
2406 * The name must have been verified and hashed (see lookup_one_len()). Using
2407 * this after just full_name_hash() is unsafe.
2408 *
2409 * This function also doesn't check for search permission on base directory.
2410 *
2411 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2412 * doing.
2413 *
2414 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2415 */
2416struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2417{
2418 struct dentry *ret;
2419
2420 ret = lookup_dcache(name, base, 0);
2421 if (!ret)
2422 ret = lookup_slow(name, base, 0);
2423
2424 return ret;
2425}
2426EXPORT_SYMBOL(lookup_hash);
2427
2428/**
2429 * lookup_one_len - filesystem helper to lookup single pathname component
2430 * @name: pathname component to lookup
2431 * @base: base directory to lookup from
2432 * @len: maximum length @len should be interpreted to
2433 *
2434 * Note that this routine is purely a helper for filesystem usage and should
2435 * not be called by generic code.
2436 *
2437 * The caller must hold base->i_mutex.
2438 */
2439struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2440{
2441 struct qstr this;
2442 unsigned int c;
2443 int err;
2444
2445 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2446
2447 this.name = name;
2448 this.len = len;
2449 this.hash = full_name_hash(name, len);
2450 if (!len)
2451 return ERR_PTR(-EACCES);
2452
2453 if (unlikely(name[0] == '.')) {
2454 if (len < 2 || (len == 2 && name[1] == '.'))
2455 return ERR_PTR(-EACCES);
2456 }
2457
2458 while (len--) {
2459 c = *(const unsigned char *)name++;
2460 if (c == '/' || c == '\0')
2461 return ERR_PTR(-EACCES);
2462 }
2463 /*
2464 * See if the low-level filesystem might want
2465 * to use its own hash..
2466 */
2467 if (base->d_flags & DCACHE_OP_HASH) {
2468 int err = base->d_op->d_hash(base, &this);
2469 if (err < 0)
2470 return ERR_PTR(err);
2471 }
2472
2473 err = inode_permission(base->d_inode, MAY_EXEC);
2474 if (err)
2475 return ERR_PTR(err);
2476
2477 return __lookup_hash(&this, base, 0);
2478}
2479EXPORT_SYMBOL(lookup_one_len);
2480
2481/**
2482 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2483 * @name: pathname component to lookup
2484 * @base: base directory to lookup from
2485 * @len: maximum length @len should be interpreted to
2486 *
2487 * Note that this routine is purely a helper for filesystem usage and should
2488 * not be called by generic code.
2489 *
2490 * Unlike lookup_one_len, it should be called without the parent
2491 * i_mutex held, and will take the i_mutex itself if necessary.
2492 */
2493struct dentry *lookup_one_len_unlocked(const char *name,
2494 struct dentry *base, int len)
2495{
2496 struct qstr this;
2497 unsigned int c;
2498 int err;
2499
2500 this.name = name;
2501 this.len = len;
2502 this.hash = full_name_hash(name, len);
2503 if (!len)
2504 return ERR_PTR(-EACCES);
2505
2506 if (unlikely(name[0] == '.')) {
2507 if (len < 2 || (len == 2 && name[1] == '.'))
2508 return ERR_PTR(-EACCES);
2509 }
2510
2511 while (len--) {
2512 c = *(const unsigned char *)name++;
2513 if (c == '/' || c == '\0')
2514 return ERR_PTR(-EACCES);
2515 }
2516 /*
2517 * See if the low-level filesystem might want
2518 * to use its own hash..
2519 */
2520 if (base->d_flags & DCACHE_OP_HASH) {
2521 int err = base->d_op->d_hash(base, &this);
2522 if (err < 0)
2523 return ERR_PTR(err);
2524 }
2525
2526 err = inode_permission(base->d_inode, MAY_EXEC);
2527 if (err)
2528 return ERR_PTR(err);
2529
2530 return lookup_hash(&this, base);
2531}
2532EXPORT_SYMBOL(lookup_one_len_unlocked);
2533
2534#ifdef CONFIG_UNIX98_PTYS
2535int path_pts(struct path *path)
2536{
2537 /* Find something mounted on "pts" in the same directory as
2538 * the input path.
2539 */
2540 struct dentry *child, *parent;
2541 struct qstr this;
2542 int ret;
2543
2544 ret = path_parent_directory(path);
2545 if (ret)
2546 return ret;
2547
2548 parent = path->dentry;
2549 this.name = "pts";
2550 this.len = 3;
2551 child = d_hash_and_lookup(parent, &this);
2552 if (!child)
2553 return -ENOENT;
2554
2555 path->dentry = child;
2556 dput(parent);
2557 follow_mount(path);
2558 return 0;
2559}
2560#endif
2561
2562int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2563 struct path *path, int *empty)
2564{
2565 return filename_lookup(dfd, getname_flags(name, flags, empty),
2566 flags, path, NULL);
2567}
2568EXPORT_SYMBOL(user_path_at_empty);
2569
2570/*
2571 * NB: most callers don't do anything directly with the reference to the
2572 * to struct filename, but the nd->last pointer points into the name string
2573 * allocated by getname. So we must hold the reference to it until all
2574 * path-walking is complete.
2575 */
2576static inline struct filename *
2577user_path_parent(int dfd, const char __user *path,
2578 struct path *parent,
2579 struct qstr *last,
2580 int *type,
2581 unsigned int flags)
2582{
2583 /* only LOOKUP_REVAL is allowed in extra flags */
2584 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2585 parent, last, type);
2586}
2587
2588/**
2589 * mountpoint_last - look up last component for umount
2590 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2591 * @path: pointer to container for result
2592 *
2593 * This is a special lookup_last function just for umount. In this case, we
2594 * need to resolve the path without doing any revalidation.
2595 *
2596 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2597 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2598 * in almost all cases, this lookup will be served out of the dcache. The only
2599 * cases where it won't are if nd->last refers to a symlink or the path is
2600 * bogus and it doesn't exist.
2601 *
2602 * Returns:
2603 * -error: if there was an error during lookup. This includes -ENOENT if the
2604 * lookup found a negative dentry. The nd->path reference will also be
2605 * put in this case.
2606 *
2607 * 0: if we successfully resolved nd->path and found it to not to be a
2608 * symlink that needs to be followed. "path" will also be populated.
2609 * The nd->path reference will also be put.
2610 *
2611 * 1: if we successfully resolved nd->last and found it to be a symlink
2612 * that needs to be followed. "path" will be populated with the path
2613 * to the link, and nd->path will *not* be put.
2614 */
2615static int
2616mountpoint_last(struct nameidata *nd, struct path *path)
2617{
2618 int error = 0;
2619 struct dentry *dentry;
2620 struct dentry *dir = nd->path.dentry;
2621
2622 /* If we're in rcuwalk, drop out of it to handle last component */
2623 if (nd->flags & LOOKUP_RCU) {
2624 if (unlazy_walk(nd, NULL, 0))
2625 return -ECHILD;
2626 }
2627
2628 nd->flags &= ~LOOKUP_PARENT;
2629
2630 if (unlikely(nd->last_type != LAST_NORM)) {
2631 error = handle_dots(nd, nd->last_type);
2632 if (error)
2633 return error;
2634 dentry = dget(nd->path.dentry);
2635 } else {
2636 dentry = d_lookup(dir, &nd->last);
2637 if (!dentry) {
2638 /*
2639 * No cached dentry. Mounted dentries are pinned in the
2640 * cache, so that means that this dentry is probably
2641 * a symlink or the path doesn't actually point
2642 * to a mounted dentry.
2643 */
2644 dentry = lookup_slow(&nd->last, dir,
2645 nd->flags | LOOKUP_NO_REVAL);
2646 if (IS_ERR(dentry))
2647 return PTR_ERR(dentry);
2648 }
2649 }
2650 if (d_is_negative(dentry)) {
2651 dput(dentry);
2652 return -ENOENT;
2653 }
2654 if (nd->depth)
2655 put_link(nd);
2656 path->dentry = dentry;
2657 path->mnt = nd->path.mnt;
2658 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2659 d_backing_inode(dentry), 0);
2660 if (unlikely(error))
2661 return error;
2662 mntget(path->mnt);
2663 follow_mount(path);
2664 return 0;
2665}
2666
2667/**
2668 * path_mountpoint - look up a path to be umounted
2669 * @nd: lookup context
2670 * @flags: lookup flags
2671 * @path: pointer to container for result
2672 *
2673 * Look up the given name, but don't attempt to revalidate the last component.
2674 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2675 */
2676static int
2677path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2678{
2679 const char *s = path_init(nd, flags);
2680 int err;
2681 if (IS_ERR(s))
2682 return PTR_ERR(s);
2683 while (!(err = link_path_walk(s, nd)) &&
2684 (err = mountpoint_last(nd, path)) > 0) {
2685 s = trailing_symlink(nd);
2686 if (IS_ERR(s)) {
2687 err = PTR_ERR(s);
2688 break;
2689 }
2690 }
2691 terminate_walk(nd);
2692 return err;
2693}
2694
2695static int
2696filename_mountpoint(int dfd, struct filename *name, struct path *path,
2697 unsigned int flags)
2698{
2699 struct nameidata nd;
2700 int error;
2701 if (IS_ERR(name))
2702 return PTR_ERR(name);
2703 set_nameidata(&nd, dfd, name);
2704 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2705 if (unlikely(error == -ECHILD))
2706 error = path_mountpoint(&nd, flags, path);
2707 if (unlikely(error == -ESTALE))
2708 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2709 if (likely(!error))
2710 audit_inode(name, path->dentry, 0);
2711 restore_nameidata();
2712 putname(name);
2713 return error;
2714}
2715
2716/**
2717 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2718 * @dfd: directory file descriptor
2719 * @name: pathname from userland
2720 * @flags: lookup flags
2721 * @path: pointer to container to hold result
2722 *
2723 * A umount is a special case for path walking. We're not actually interested
2724 * in the inode in this situation, and ESTALE errors can be a problem. We
2725 * simply want track down the dentry and vfsmount attached at the mountpoint
2726 * and avoid revalidating the last component.
2727 *
2728 * Returns 0 and populates "path" on success.
2729 */
2730int
2731user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2732 struct path *path)
2733{
2734 return filename_mountpoint(dfd, getname(name), path, flags);
2735}
2736
2737int
2738kern_path_mountpoint(int dfd, const char *name, struct path *path,
2739 unsigned int flags)
2740{
2741 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2742}
2743EXPORT_SYMBOL(kern_path_mountpoint);
2744
2745int __check_sticky(struct inode *dir, struct inode *inode)
2746{
2747 kuid_t fsuid = current_fsuid();
2748
2749 if (uid_eq(inode->i_uid, fsuid))
2750 return 0;
2751 if (uid_eq(dir->i_uid, fsuid))
2752 return 0;
2753 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2754}
2755EXPORT_SYMBOL(__check_sticky);
2756
2757/*
2758 * Check whether we can remove a link victim from directory dir, check
2759 * whether the type of victim is right.
2760 * 1. We can't do it if dir is read-only (done in permission())
2761 * 2. We should have write and exec permissions on dir
2762 * 3. We can't remove anything from append-only dir
2763 * 4. We can't do anything with immutable dir (done in permission())
2764 * 5. If the sticky bit on dir is set we should either
2765 * a. be owner of dir, or
2766 * b. be owner of victim, or
2767 * c. have CAP_FOWNER capability
2768 * 6. If the victim is append-only or immutable we can't do antyhing with
2769 * links pointing to it.
2770 * 7. If the victim has an unknown uid or gid we can't change the inode.
2771 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2772 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2773 * 10. We can't remove a root or mountpoint.
2774 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2775 * nfs_async_unlink().
2776 */
2777static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2778{
2779 struct inode *inode = d_backing_inode(victim);
2780 int error;
2781
2782 if (d_is_negative(victim))
2783 return -ENOENT;
2784 BUG_ON(!inode);
2785
2786 BUG_ON(victim->d_parent->d_inode != dir);
2787 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2788
2789 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2790 if (error)
2791 return error;
2792 if (IS_APPEND(dir))
2793 return -EPERM;
2794
2795 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2796 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2797 return -EPERM;
2798 if (isdir) {
2799 if (!d_is_dir(victim))
2800 return -ENOTDIR;
2801 if (IS_ROOT(victim))
2802 return -EBUSY;
2803 } else if (d_is_dir(victim))
2804 return -EISDIR;
2805 if (IS_DEADDIR(dir))
2806 return -ENOENT;
2807 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2808 return -EBUSY;
2809 return 0;
2810}
2811
2812/* Check whether we can create an object with dentry child in directory
2813 * dir.
2814 * 1. We can't do it if child already exists (open has special treatment for
2815 * this case, but since we are inlined it's OK)
2816 * 2. We can't do it if dir is read-only (done in permission())
2817 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2818 * 4. We should have write and exec permissions on dir
2819 * 5. We can't do it if dir is immutable (done in permission())
2820 */
2821static inline int may_create(struct inode *dir, struct dentry *child)
2822{
2823 struct user_namespace *s_user_ns;
2824 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2825 if (child->d_inode)
2826 return -EEXIST;
2827 if (IS_DEADDIR(dir))
2828 return -ENOENT;
2829 s_user_ns = dir->i_sb->s_user_ns;
2830 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2831 !kgid_has_mapping(s_user_ns, current_fsgid()))
2832 return -EOVERFLOW;
2833 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2834}
2835
2836/*
2837 * p1 and p2 should be directories on the same fs.
2838 */
2839struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2840{
2841 struct dentry *p;
2842
2843 if (p1 == p2) {
2844 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2845 return NULL;
2846 }
2847
2848 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2849
2850 p = d_ancestor(p2, p1);
2851 if (p) {
2852 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2853 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2854 return p;
2855 }
2856
2857 p = d_ancestor(p1, p2);
2858 if (p) {
2859 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2860 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2861 return p;
2862 }
2863
2864 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2865 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2866 return NULL;
2867}
2868EXPORT_SYMBOL(lock_rename);
2869
2870void unlock_rename(struct dentry *p1, struct dentry *p2)
2871{
2872 inode_unlock(p1->d_inode);
2873 if (p1 != p2) {
2874 inode_unlock(p2->d_inode);
2875 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2876 }
2877}
2878EXPORT_SYMBOL(unlock_rename);
2879
2880int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2881 bool want_excl)
2882{
2883 int error = may_create(dir, dentry);
2884 if (error)
2885 return error;
2886
2887 if (!dir->i_op->create)
2888 return -EACCES; /* shouldn't it be ENOSYS? */
2889 mode &= S_IALLUGO;
2890 mode |= S_IFREG;
2891 error = security_inode_create(dir, dentry, mode);
2892 if (error)
2893 return error;
2894 error = dir->i_op->create(dir, dentry, mode, want_excl);
2895 if (!error)
2896 fsnotify_create(dir, dentry);
2897 return error;
2898}
2899EXPORT_SYMBOL(vfs_create);
2900
2901bool may_open_dev(const struct path *path)
2902{
2903 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2904 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2905}
2906
2907static int may_open(struct path *path, int acc_mode, int flag)
2908{
2909 struct dentry *dentry = path->dentry;
2910 struct inode *inode = dentry->d_inode;
2911 int error;
2912
2913 if (!inode)
2914 return -ENOENT;
2915
2916 switch (inode->i_mode & S_IFMT) {
2917 case S_IFLNK:
2918 return -ELOOP;
2919 case S_IFDIR:
2920 if (acc_mode & MAY_WRITE)
2921 return -EISDIR;
2922 break;
2923 case S_IFBLK:
2924 case S_IFCHR:
2925 if (!may_open_dev(path))
2926 return -EACCES;
2927 /*FALLTHRU*/
2928 case S_IFIFO:
2929 case S_IFSOCK:
2930 flag &= ~O_TRUNC;
2931 break;
2932 }
2933
2934 error = inode_permission(inode, MAY_OPEN | acc_mode);
2935 if (error)
2936 return error;
2937
2938 /*
2939 * An append-only file must be opened in append mode for writing.
2940 */
2941 if (IS_APPEND(inode)) {
2942 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2943 return -EPERM;
2944 if (flag & O_TRUNC)
2945 return -EPERM;
2946 }
2947
2948 /* O_NOATIME can only be set by the owner or superuser */
2949 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2950 return -EPERM;
2951
2952 return 0;
2953}
2954
2955static int handle_truncate(struct file *filp)
2956{
2957 struct path *path = &filp->f_path;
2958 struct inode *inode = path->dentry->d_inode;
2959 int error = get_write_access(inode);
2960 if (error)
2961 return error;
2962 /*
2963 * Refuse to truncate files with mandatory locks held on them.
2964 */
2965 error = locks_verify_locked(filp);
2966 if (!error)
2967 error = security_path_truncate(path);
2968 if (!error) {
2969 error = do_truncate(path->dentry, 0,
2970 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2971 filp);
2972 }
2973 put_write_access(inode);
2974 return error;
2975}
2976
2977static inline int open_to_namei_flags(int flag)
2978{
2979 if ((flag & O_ACCMODE) == 3)
2980 flag--;
2981 return flag;
2982}
2983
2984static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2985{
2986 int error = security_path_mknod(dir, dentry, mode, 0);
2987 if (error)
2988 return error;
2989
2990 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2991 if (error)
2992 return error;
2993
2994 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2995}
2996
2997/*
2998 * Attempt to atomically look up, create and open a file from a negative
2999 * dentry.
3000 *
3001 * Returns 0 if successful. The file will have been created and attached to
3002 * @file by the filesystem calling finish_open().
3003 *
3004 * Returns 1 if the file was looked up only or didn't need creating. The
3005 * caller will need to perform the open themselves. @path will have been
3006 * updated to point to the new dentry. This may be negative.
3007 *
3008 * Returns an error code otherwise.
3009 */
3010static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3011 struct path *path, struct file *file,
3012 const struct open_flags *op,
3013 int open_flag, umode_t mode,
3014 int *opened)
3015{
3016 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3017 struct inode *dir = nd->path.dentry->d_inode;
3018 int error;
3019
3020 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3021 open_flag &= ~O_TRUNC;
3022
3023 if (nd->flags & LOOKUP_DIRECTORY)
3024 open_flag |= O_DIRECTORY;
3025
3026 file->f_path.dentry = DENTRY_NOT_SET;
3027 file->f_path.mnt = nd->path.mnt;
3028 error = dir->i_op->atomic_open(dir, dentry, file,
3029 open_to_namei_flags(open_flag),
3030 mode, opened);
3031 d_lookup_done(dentry);
3032 if (!error) {
3033 /*
3034 * We didn't have the inode before the open, so check open
3035 * permission here.
3036 */
3037 int acc_mode = op->acc_mode;
3038 if (*opened & FILE_CREATED) {
3039 WARN_ON(!(open_flag & O_CREAT));
3040 fsnotify_create(dir, dentry);
3041 acc_mode = 0;
3042 }
3043 error = may_open(&file->f_path, acc_mode, open_flag);
3044 if (WARN_ON(error > 0))
3045 error = -EINVAL;
3046 } else if (error > 0) {
3047 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3048 error = -EIO;
3049 } else {
3050 if (file->f_path.dentry) {
3051 dput(dentry);
3052 dentry = file->f_path.dentry;
3053 }
3054 if (*opened & FILE_CREATED)
3055 fsnotify_create(dir, dentry);
3056 path->dentry = dentry;
3057 path->mnt = nd->path.mnt;
3058 return 1;
3059 }
3060 }
3061 dput(dentry);
3062 return error;
3063}
3064
3065/*
3066 * Look up and maybe create and open the last component.
3067 *
3068 * Must be called with i_mutex held on parent.
3069 *
3070 * Returns 0 if the file was successfully atomically created (if necessary) and
3071 * opened. In this case the file will be returned attached to @file.
3072 *
3073 * Returns 1 if the file was not completely opened at this time, though lookups
3074 * and creations will have been performed and the dentry returned in @path will
3075 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3076 * specified then a negative dentry may be returned.
3077 *
3078 * An error code is returned otherwise.
3079 *
3080 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3081 * cleared otherwise prior to returning.
3082 */
3083static int lookup_open(struct nameidata *nd, struct path *path,
3084 struct file *file,
3085 const struct open_flags *op,
3086 bool got_write, int *opened)
3087{
3088 struct dentry *dir = nd->path.dentry;
3089 struct inode *dir_inode = dir->d_inode;
3090 int open_flag = op->open_flag;
3091 struct dentry *dentry;
3092 int error, create_error = 0;
3093 umode_t mode = op->mode;
3094 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3095
3096 if (unlikely(IS_DEADDIR(dir_inode)))
3097 return -ENOENT;
3098
3099 *opened &= ~FILE_CREATED;
3100 dentry = d_lookup(dir, &nd->last);
3101 for (;;) {
3102 if (!dentry) {
3103 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3104 if (IS_ERR(dentry))
3105 return PTR_ERR(dentry);
3106 }
3107 if (d_in_lookup(dentry))
3108 break;
3109
3110 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3111 break;
3112
3113 error = d_revalidate(dentry, nd->flags);
3114 if (likely(error > 0))
3115 break;
3116 if (error)
3117 goto out_dput;
3118 d_invalidate(dentry);
3119 dput(dentry);
3120 dentry = NULL;
3121 }
3122 if (dentry->d_inode) {
3123 /* Cached positive dentry: will open in f_op->open */
3124 goto out_no_open;
3125 }
3126
3127 /*
3128 * Checking write permission is tricky, bacuse we don't know if we are
3129 * going to actually need it: O_CREAT opens should work as long as the
3130 * file exists. But checking existence breaks atomicity. The trick is
3131 * to check access and if not granted clear O_CREAT from the flags.
3132 *
3133 * Another problem is returing the "right" error value (e.g. for an
3134 * O_EXCL open we want to return EEXIST not EROFS).
3135 */
3136 if (open_flag & O_CREAT) {
3137 if (!IS_POSIXACL(dir->d_inode))
3138 mode &= ~current_umask();
3139 if (unlikely(!got_write)) {
3140 create_error = -EROFS;
3141 open_flag &= ~O_CREAT;
3142 if (open_flag & (O_EXCL | O_TRUNC))
3143 goto no_open;
3144 /* No side effects, safe to clear O_CREAT */
3145 } else {
3146 create_error = may_o_create(&nd->path, dentry, mode);
3147 if (create_error) {
3148 open_flag &= ~O_CREAT;
3149 if (open_flag & O_EXCL)
3150 goto no_open;
3151 }
3152 }
3153 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3154 unlikely(!got_write)) {
3155 /*
3156 * No O_CREATE -> atomicity not a requirement -> fall
3157 * back to lookup + open
3158 */
3159 goto no_open;
3160 }
3161
3162 if (dir_inode->i_op->atomic_open) {
3163 error = atomic_open(nd, dentry, path, file, op, open_flag,
3164 mode, opened);
3165 if (unlikely(error == -ENOENT) && create_error)
3166 error = create_error;
3167 return error;
3168 }
3169
3170no_open:
3171 if (d_in_lookup(dentry)) {
3172 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3173 nd->flags);
3174 d_lookup_done(dentry);
3175 if (unlikely(res)) {
3176 if (IS_ERR(res)) {
3177 error = PTR_ERR(res);
3178 goto out_dput;
3179 }
3180 dput(dentry);
3181 dentry = res;
3182 }
3183 }
3184
3185 /* Negative dentry, just create the file */
3186 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3187 *opened |= FILE_CREATED;
3188 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3189 if (!dir_inode->i_op->create) {
3190 error = -EACCES;
3191 goto out_dput;
3192 }
3193 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3194 open_flag & O_EXCL);
3195 if (error)
3196 goto out_dput;
3197 fsnotify_create(dir_inode, dentry);
3198 }
3199 if (unlikely(create_error) && !dentry->d_inode) {
3200 error = create_error;
3201 goto out_dput;
3202 }
3203out_no_open:
3204 path->dentry = dentry;
3205 path->mnt = nd->path.mnt;
3206 return 1;
3207
3208out_dput:
3209 dput(dentry);
3210 return error;
3211}
3212
3213/*
3214 * Handle the last step of open()
3215 */
3216static int do_last(struct nameidata *nd,
3217 struct file *file, const struct open_flags *op,
3218 int *opened)
3219{
3220 struct dentry *dir = nd->path.dentry;
3221 int open_flag = op->open_flag;
3222 bool will_truncate = (open_flag & O_TRUNC) != 0;
3223 bool got_write = false;
3224 int acc_mode = op->acc_mode;
3225 unsigned seq;
3226 struct inode *inode;
3227 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3228 struct path path;
3229 bool retried = false;
3230 int error;
3231
3232 nd->flags &= ~LOOKUP_PARENT;
3233 nd->flags |= op->intent;
3234
3235 if (nd->last_type != LAST_NORM) {
3236 error = handle_dots(nd, nd->last_type);
3237 if (unlikely(error))
3238 return error;
3239 goto finish_open;
3240 }
3241
3242 if (!(open_flag & O_CREAT)) {
3243 if (nd->last.name[nd->last.len])
3244 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3245 /* we _can_ be in RCU mode here */
3246 error = lookup_fast(nd, &path, &inode, &seq);
3247 if (likely(error > 0))
3248 goto finish_lookup;
3249
3250 if (error < 0)
3251 return error;
3252
3253 BUG_ON(nd->inode != dir->d_inode);
3254 BUG_ON(nd->flags & LOOKUP_RCU);
3255 } else {
3256 /* create side of things */
3257 /*
3258 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3259 * has been cleared when we got to the last component we are
3260 * about to look up
3261 */
3262 error = complete_walk(nd);
3263 if (error)
3264 return error;
3265
3266 audit_inode(nd->name, dir, LOOKUP_PARENT);
3267 /* trailing slashes? */
3268 if (unlikely(nd->last.name[nd->last.len]))
3269 return -EISDIR;
3270 }
3271
3272retry_lookup:
3273 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3274 error = mnt_want_write(nd->path.mnt);
3275 if (!error)
3276 got_write = true;
3277 /*
3278 * do _not_ fail yet - we might not need that or fail with
3279 * a different error; let lookup_open() decide; we'll be
3280 * dropping this one anyway.
3281 */
3282 }
3283 if (open_flag & O_CREAT)
3284 inode_lock(dir->d_inode);
3285 else
3286 inode_lock_shared(dir->d_inode);
3287 error = lookup_open(nd, &path, file, op, got_write, opened);
3288 if (open_flag & O_CREAT)
3289 inode_unlock(dir->d_inode);
3290 else
3291 inode_unlock_shared(dir->d_inode);
3292
3293 if (error <= 0) {
3294 if (error)
3295 goto out;
3296
3297 if ((*opened & FILE_CREATED) ||
3298 !S_ISREG(file_inode(file)->i_mode))
3299 will_truncate = false;
3300
3301 audit_inode(nd->name, file->f_path.dentry, 0);
3302 goto opened;
3303 }
3304
3305 if (*opened & FILE_CREATED) {
3306 /* Don't check for write permission, don't truncate */
3307 open_flag &= ~O_TRUNC;
3308 will_truncate = false;
3309 acc_mode = 0;
3310 path_to_nameidata(&path, nd);
3311 goto finish_open_created;
3312 }
3313
3314 /*
3315 * If atomic_open() acquired write access it is dropped now due to
3316 * possible mount and symlink following (this might be optimized away if
3317 * necessary...)
3318 */
3319 if (got_write) {
3320 mnt_drop_write(nd->path.mnt);
3321 got_write = false;
3322 }
3323
3324 if (unlikely(d_is_negative(path.dentry))) {
3325 path_to_nameidata(&path, nd);
3326 return -ENOENT;
3327 }
3328
3329 /*
3330 * create/update audit record if it already exists.
3331 */
3332 audit_inode(nd->name, path.dentry, 0);
3333
3334 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3335 path_to_nameidata(&path, nd);
3336 return -EEXIST;
3337 }
3338
3339 error = follow_managed(&path, nd);
3340 if (unlikely(error < 0))
3341 return error;
3342
3343 seq = 0; /* out of RCU mode, so the value doesn't matter */
3344 inode = d_backing_inode(path.dentry);
3345finish_lookup:
3346 if (nd->depth)
3347 put_link(nd);
3348 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3349 inode, seq);
3350 if (unlikely(error))
3351 return error;
3352
3353 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3354 path_to_nameidata(&path, nd);
3355 } else {
3356 save_parent.dentry = nd->path.dentry;
3357 save_parent.mnt = mntget(path.mnt);
3358 nd->path.dentry = path.dentry;
3359
3360 }
3361 nd->inode = inode;
3362 nd->seq = seq;
3363 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3364finish_open:
3365 error = complete_walk(nd);
3366 if (error) {
3367 path_put(&save_parent);
3368 return error;
3369 }
3370 audit_inode(nd->name, nd->path.dentry, 0);
3371 error = -EISDIR;
3372 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3373 goto out;
3374 error = -ENOTDIR;
3375 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3376 goto out;
3377 if (!d_is_reg(nd->path.dentry))
3378 will_truncate = false;
3379
3380 if (will_truncate) {
3381 error = mnt_want_write(nd->path.mnt);
3382 if (error)
3383 goto out;
3384 got_write = true;
3385 }
3386finish_open_created:
3387 error = may_open(&nd->path, acc_mode, open_flag);
3388 if (error)
3389 goto out;
3390 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3391 error = vfs_open(&nd->path, file, current_cred());
3392 if (!error) {
3393 *opened |= FILE_OPENED;
3394 } else {
3395 if (error == -EOPENSTALE)
3396 goto stale_open;
3397 goto out;
3398 }
3399opened:
3400 error = open_check_o_direct(file);
3401 if (!error)
3402 error = ima_file_check(file, op->acc_mode, *opened);
3403 if (!error && will_truncate)
3404 error = handle_truncate(file);
3405out:
3406 if (unlikely(error) && (*opened & FILE_OPENED))
3407 fput(file);
3408 if (unlikely(error > 0)) {
3409 WARN_ON(1);
3410 error = -EINVAL;
3411 }
3412 if (got_write)
3413 mnt_drop_write(nd->path.mnt);
3414 path_put(&save_parent);
3415 return error;
3416
3417stale_open:
3418 /* If no saved parent or already retried then can't retry */
3419 if (!save_parent.dentry || retried)
3420 goto out;
3421
3422 BUG_ON(save_parent.dentry != dir);
3423 path_put(&nd->path);
3424 nd->path = save_parent;
3425 nd->inode = dir->d_inode;
3426 save_parent.mnt = NULL;
3427 save_parent.dentry = NULL;
3428 if (got_write) {
3429 mnt_drop_write(nd->path.mnt);
3430 got_write = false;
3431 }
3432 retried = true;
3433 goto retry_lookup;
3434}
3435
3436static int do_tmpfile(struct nameidata *nd, unsigned flags,
3437 const struct open_flags *op,
3438 struct file *file, int *opened)
3439{
3440 static const struct qstr name = QSTR_INIT("/", 1);
3441 struct dentry *child;
3442 struct inode *dir;
3443 struct path path;
3444 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3445 if (unlikely(error))
3446 return error;
3447 error = mnt_want_write(path.mnt);
3448 if (unlikely(error))
3449 goto out;
3450 dir = path.dentry->d_inode;
3451 /* we want directory to be writable */
3452 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3453 if (error)
3454 goto out2;
3455 if (!dir->i_op->tmpfile) {
3456 error = -EOPNOTSUPP;
3457 goto out2;
3458 }
3459 child = d_alloc(path.dentry, &name);
3460 if (unlikely(!child)) {
3461 error = -ENOMEM;
3462 goto out2;
3463 }
3464 dput(path.dentry);
3465 path.dentry = child;
3466 error = dir->i_op->tmpfile(dir, child, op->mode);
3467 if (error)
3468 goto out2;
3469 audit_inode(nd->name, child, 0);
3470 /* Don't check for other permissions, the inode was just created */
3471 error = may_open(&path, 0, op->open_flag);
3472 if (error)
3473 goto out2;
3474 file->f_path.mnt = path.mnt;
3475 error = finish_open(file, child, NULL, opened);
3476 if (error)
3477 goto out2;
3478 error = open_check_o_direct(file);
3479 if (error) {
3480 fput(file);
3481 } else if (!(op->open_flag & O_EXCL)) {
3482 struct inode *inode = file_inode(file);
3483 spin_lock(&inode->i_lock);
3484 inode->i_state |= I_LINKABLE;
3485 spin_unlock(&inode->i_lock);
3486 }
3487out2:
3488 mnt_drop_write(path.mnt);
3489out:
3490 path_put(&path);
3491 return error;
3492}
3493
3494static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3495{
3496 struct path path;
3497 int error = path_lookupat(nd, flags, &path);
3498 if (!error) {
3499 audit_inode(nd->name, path.dentry, 0);
3500 error = vfs_open(&path, file, current_cred());
3501 path_put(&path);
3502 }
3503 return error;
3504}
3505
3506static struct file *path_openat(struct nameidata *nd,
3507 const struct open_flags *op, unsigned flags)
3508{
3509 const char *s;
3510 struct file *file;
3511 int opened = 0;
3512 int error;
3513
3514 file = get_empty_filp();
3515 if (IS_ERR(file))
3516 return file;
3517
3518 file->f_flags = op->open_flag;
3519
3520 if (unlikely(file->f_flags & __O_TMPFILE)) {
3521 error = do_tmpfile(nd, flags, op, file, &opened);
3522 goto out2;
3523 }
3524
3525 if (unlikely(file->f_flags & O_PATH)) {
3526 error = do_o_path(nd, flags, file);
3527 if (!error)
3528 opened |= FILE_OPENED;
3529 goto out2;
3530 }
3531
3532 s = path_init(nd, flags);
3533 if (IS_ERR(s)) {
3534 put_filp(file);
3535 return ERR_CAST(s);
3536 }
3537 while (!(error = link_path_walk(s, nd)) &&
3538 (error = do_last(nd, file, op, &opened)) > 0) {
3539 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3540 s = trailing_symlink(nd);
3541 if (IS_ERR(s)) {
3542 error = PTR_ERR(s);
3543 break;
3544 }
3545 }
3546 terminate_walk(nd);
3547out2:
3548 if (!(opened & FILE_OPENED)) {
3549 BUG_ON(!error);
3550 put_filp(file);
3551 }
3552 if (unlikely(error)) {
3553 if (error == -EOPENSTALE) {
3554 if (flags & LOOKUP_RCU)
3555 error = -ECHILD;
3556 else
3557 error = -ESTALE;
3558 }
3559 file = ERR_PTR(error);
3560 }
3561 return file;
3562}
3563
3564struct file *do_filp_open(int dfd, struct filename *pathname,
3565 const struct open_flags *op)
3566{
3567 struct nameidata nd;
3568 int flags = op->lookup_flags;
3569 struct file *filp;
3570
3571 set_nameidata(&nd, dfd, pathname);
3572 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3573 if (unlikely(filp == ERR_PTR(-ECHILD)))
3574 filp = path_openat(&nd, op, flags);
3575 if (unlikely(filp == ERR_PTR(-ESTALE)))
3576 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3577 restore_nameidata();
3578 return filp;
3579}
3580
3581struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3582 const char *name, const struct open_flags *op)
3583{
3584 struct nameidata nd;
3585 struct file *file;
3586 struct filename *filename;
3587 int flags = op->lookup_flags | LOOKUP_ROOT;
3588
3589 nd.root.mnt = mnt;
3590 nd.root.dentry = dentry;
3591
3592 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3593 return ERR_PTR(-ELOOP);
3594
3595 filename = getname_kernel(name);
3596 if (IS_ERR(filename))
3597 return ERR_CAST(filename);
3598
3599 set_nameidata(&nd, -1, filename);
3600 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3601 if (unlikely(file == ERR_PTR(-ECHILD)))
3602 file = path_openat(&nd, op, flags);
3603 if (unlikely(file == ERR_PTR(-ESTALE)))
3604 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3605 restore_nameidata();
3606 putname(filename);
3607 return file;
3608}
3609
3610static struct dentry *filename_create(int dfd, struct filename *name,
3611 struct path *path, unsigned int lookup_flags)
3612{
3613 struct dentry *dentry = ERR_PTR(-EEXIST);
3614 struct qstr last;
3615 int type;
3616 int err2;
3617 int error;
3618 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3619
3620 /*
3621 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3622 * other flags passed in are ignored!
3623 */
3624 lookup_flags &= LOOKUP_REVAL;
3625
3626 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3627 if (IS_ERR(name))
3628 return ERR_CAST(name);
3629
3630 /*
3631 * Yucky last component or no last component at all?
3632 * (foo/., foo/.., /////)
3633 */
3634 if (unlikely(type != LAST_NORM))
3635 goto out;
3636
3637 /* don't fail immediately if it's r/o, at least try to report other errors */
3638 err2 = mnt_want_write(path->mnt);
3639 /*
3640 * Do the final lookup.
3641 */
3642 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3643 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3644 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3645 if (IS_ERR(dentry))
3646 goto unlock;
3647
3648 error = -EEXIST;
3649 if (d_is_positive(dentry))
3650 goto fail;
3651
3652 /*
3653 * Special case - lookup gave negative, but... we had foo/bar/
3654 * From the vfs_mknod() POV we just have a negative dentry -
3655 * all is fine. Let's be bastards - you had / on the end, you've
3656 * been asking for (non-existent) directory. -ENOENT for you.
3657 */
3658 if (unlikely(!is_dir && last.name[last.len])) {
3659 error = -ENOENT;
3660 goto fail;
3661 }
3662 if (unlikely(err2)) {
3663 error = err2;
3664 goto fail;
3665 }
3666 putname(name);
3667 return dentry;
3668fail:
3669 dput(dentry);
3670 dentry = ERR_PTR(error);
3671unlock:
3672 inode_unlock(path->dentry->d_inode);
3673 if (!err2)
3674 mnt_drop_write(path->mnt);
3675out:
3676 path_put(path);
3677 putname(name);
3678 return dentry;
3679}
3680
3681struct dentry *kern_path_create(int dfd, const char *pathname,
3682 struct path *path, unsigned int lookup_flags)
3683{
3684 return filename_create(dfd, getname_kernel(pathname),
3685 path, lookup_flags);
3686}
3687EXPORT_SYMBOL(kern_path_create);
3688
3689void done_path_create(struct path *path, struct dentry *dentry)
3690{
3691 dput(dentry);
3692 inode_unlock(path->dentry->d_inode);
3693 mnt_drop_write(path->mnt);
3694 path_put(path);
3695}
3696EXPORT_SYMBOL(done_path_create);
3697
3698inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3699 struct path *path, unsigned int lookup_flags)
3700{
3701 return filename_create(dfd, getname(pathname), path, lookup_flags);
3702}
3703EXPORT_SYMBOL(user_path_create);
3704
3705int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3706{
3707 int error = may_create(dir, dentry);
3708
3709 if (error)
3710 return error;
3711
3712 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3713 return -EPERM;
3714
3715 if (!dir->i_op->mknod)
3716 return -EPERM;
3717
3718 error = devcgroup_inode_mknod(mode, dev);
3719 if (error)
3720 return error;
3721
3722 error = security_inode_mknod(dir, dentry, mode, dev);
3723 if (error)
3724 return error;
3725
3726 error = dir->i_op->mknod(dir, dentry, mode, dev);
3727 if (!error)
3728 fsnotify_create(dir, dentry);
3729 return error;
3730}
3731EXPORT_SYMBOL(vfs_mknod);
3732
3733static int may_mknod(umode_t mode)
3734{
3735 switch (mode & S_IFMT) {
3736 case S_IFREG:
3737 case S_IFCHR:
3738 case S_IFBLK:
3739 case S_IFIFO:
3740 case S_IFSOCK:
3741 case 0: /* zero mode translates to S_IFREG */
3742 return 0;
3743 case S_IFDIR:
3744 return -EPERM;
3745 default:
3746 return -EINVAL;
3747 }
3748}
3749
3750SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3751 unsigned, dev)
3752{
3753 struct dentry *dentry;
3754 struct path path;
3755 int error;
3756 unsigned int lookup_flags = 0;
3757
3758 error = may_mknod(mode);
3759 if (error)
3760 return error;
3761retry:
3762 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3763 if (IS_ERR(dentry))
3764 return PTR_ERR(dentry);
3765
3766 if (!IS_POSIXACL(path.dentry->d_inode))
3767 mode &= ~current_umask();
3768 error = security_path_mknod(&path, dentry, mode, dev);
3769 if (error)
3770 goto out;
3771 switch (mode & S_IFMT) {
3772 case 0: case S_IFREG:
3773 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3774 if (!error)
3775 ima_post_path_mknod(dentry);
3776 break;
3777 case S_IFCHR: case S_IFBLK:
3778 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3779 new_decode_dev(dev));
3780 break;
3781 case S_IFIFO: case S_IFSOCK:
3782 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3783 break;
3784 }
3785out:
3786 done_path_create(&path, dentry);
3787 if (retry_estale(error, lookup_flags)) {
3788 lookup_flags |= LOOKUP_REVAL;
3789 goto retry;
3790 }
3791 return error;
3792}
3793
3794SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3795{
3796 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3797}
3798
3799int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3800{
3801 int error = may_create(dir, dentry);
3802 unsigned max_links = dir->i_sb->s_max_links;
3803
3804 if (error)
3805 return error;
3806
3807 if (!dir->i_op->mkdir)
3808 return -EPERM;
3809
3810 mode &= (S_IRWXUGO|S_ISVTX);
3811 error = security_inode_mkdir(dir, dentry, mode);
3812 if (error)
3813 return error;
3814
3815 if (max_links && dir->i_nlink >= max_links)
3816 return -EMLINK;
3817
3818 error = dir->i_op->mkdir(dir, dentry, mode);
3819 if (!error)
3820 fsnotify_mkdir(dir, dentry);
3821 return error;
3822}
3823EXPORT_SYMBOL(vfs_mkdir);
3824
3825SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3826{
3827 struct dentry *dentry;
3828 struct path path;
3829 int error;
3830 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3831
3832retry:
3833 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3834 if (IS_ERR(dentry))
3835 return PTR_ERR(dentry);
3836
3837 if (!IS_POSIXACL(path.dentry->d_inode))
3838 mode &= ~current_umask();
3839 error = security_path_mkdir(&path, dentry, mode);
3840 if (!error)
3841 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3842 done_path_create(&path, dentry);
3843 if (retry_estale(error, lookup_flags)) {
3844 lookup_flags |= LOOKUP_REVAL;
3845 goto retry;
3846 }
3847 return error;
3848}
3849
3850SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3851{
3852 return sys_mkdirat(AT_FDCWD, pathname, mode);
3853}
3854
3855int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3856{
3857 int error = may_delete(dir, dentry, 1);
3858
3859 if (error)
3860 return error;
3861
3862 if (!dir->i_op->rmdir)
3863 return -EPERM;
3864
3865 dget(dentry);
3866 inode_lock(dentry->d_inode);
3867
3868 error = -EBUSY;
3869 if (is_local_mountpoint(dentry))
3870 goto out;
3871
3872 error = security_inode_rmdir(dir, dentry);
3873 if (error)
3874 goto out;
3875
3876 shrink_dcache_parent(dentry);
3877 error = dir->i_op->rmdir(dir, dentry);
3878 if (error)
3879 goto out;
3880
3881 dentry->d_inode->i_flags |= S_DEAD;
3882 dont_mount(dentry);
3883 detach_mounts(dentry);
3884
3885out:
3886 inode_unlock(dentry->d_inode);
3887 dput(dentry);
3888 if (!error)
3889 d_delete(dentry);
3890 return error;
3891}
3892EXPORT_SYMBOL(vfs_rmdir);
3893
3894static long do_rmdir(int dfd, const char __user *pathname)
3895{
3896 int error = 0;
3897 struct filename *name;
3898 struct dentry *dentry;
3899 struct path path;
3900 struct qstr last;
3901 int type;
3902 unsigned int lookup_flags = 0;
3903retry:
3904 name = user_path_parent(dfd, pathname,
3905 &path, &last, &type, lookup_flags);
3906 if (IS_ERR(name))
3907 return PTR_ERR(name);
3908
3909 switch (type) {
3910 case LAST_DOTDOT:
3911 error = -ENOTEMPTY;
3912 goto exit1;
3913 case LAST_DOT:
3914 error = -EINVAL;
3915 goto exit1;
3916 case LAST_ROOT:
3917 error = -EBUSY;
3918 goto exit1;
3919 }
3920
3921 error = mnt_want_write(path.mnt);
3922 if (error)
3923 goto exit1;
3924
3925 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3926 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3927 error = PTR_ERR(dentry);
3928 if (IS_ERR(dentry))
3929 goto exit2;
3930 if (!dentry->d_inode) {
3931 error = -ENOENT;
3932 goto exit3;
3933 }
3934 error = security_path_rmdir(&path, dentry);
3935 if (error)
3936 goto exit3;
3937 error = vfs_rmdir(path.dentry->d_inode, dentry);
3938exit3:
3939 dput(dentry);
3940exit2:
3941 inode_unlock(path.dentry->d_inode);
3942 mnt_drop_write(path.mnt);
3943exit1:
3944 path_put(&path);
3945 putname(name);
3946 if (retry_estale(error, lookup_flags)) {
3947 lookup_flags |= LOOKUP_REVAL;
3948 goto retry;
3949 }
3950 return error;
3951}
3952
3953SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3954{
3955 return do_rmdir(AT_FDCWD, pathname);
3956}
3957
3958/**
3959 * vfs_unlink - unlink a filesystem object
3960 * @dir: parent directory
3961 * @dentry: victim
3962 * @delegated_inode: returns victim inode, if the inode is delegated.
3963 *
3964 * The caller must hold dir->i_mutex.
3965 *
3966 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3967 * return a reference to the inode in delegated_inode. The caller
3968 * should then break the delegation on that inode and retry. Because
3969 * breaking a delegation may take a long time, the caller should drop
3970 * dir->i_mutex before doing so.
3971 *
3972 * Alternatively, a caller may pass NULL for delegated_inode. This may
3973 * be appropriate for callers that expect the underlying filesystem not
3974 * to be NFS exported.
3975 */
3976int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3977{
3978 struct inode *target = dentry->d_inode;
3979 int error = may_delete(dir, dentry, 0);
3980
3981 if (error)
3982 return error;
3983
3984 if (!dir->i_op->unlink)
3985 return -EPERM;
3986
3987 inode_lock(target);
3988 if (is_local_mountpoint(dentry))
3989 error = -EBUSY;
3990 else {
3991 error = security_inode_unlink(dir, dentry);
3992 if (!error) {
3993 error = try_break_deleg(target, delegated_inode);
3994 if (error)
3995 goto out;
3996 error = dir->i_op->unlink(dir, dentry);
3997 if (!error) {
3998 dont_mount(dentry);
3999 detach_mounts(dentry);
4000 }
4001 }
4002 }
4003out:
4004 inode_unlock(target);
4005
4006 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4007 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4008 fsnotify_link_count(target);
4009 d_delete(dentry);
4010 }
4011
4012 return error;
4013}
4014EXPORT_SYMBOL(vfs_unlink);
4015
4016/*
4017 * Make sure that the actual truncation of the file will occur outside its
4018 * directory's i_mutex. Truncate can take a long time if there is a lot of
4019 * writeout happening, and we don't want to prevent access to the directory
4020 * while waiting on the I/O.
4021 */
4022static long do_unlinkat(int dfd, const char __user *pathname)
4023{
4024 int error;
4025 struct filename *name;
4026 struct dentry *dentry;
4027 struct path path;
4028 struct qstr last;
4029 int type;
4030 struct inode *inode = NULL;
4031 struct inode *delegated_inode = NULL;
4032 unsigned int lookup_flags = 0;
4033retry:
4034 name = user_path_parent(dfd, pathname,
4035 &path, &last, &type, lookup_flags);
4036 if (IS_ERR(name))
4037 return PTR_ERR(name);
4038
4039 error = -EISDIR;
4040 if (type != LAST_NORM)
4041 goto exit1;
4042
4043 error = mnt_want_write(path.mnt);
4044 if (error)
4045 goto exit1;
4046retry_deleg:
4047 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4048 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4049 error = PTR_ERR(dentry);
4050 if (!IS_ERR(dentry)) {
4051 /* Why not before? Because we want correct error value */
4052 if (last.name[last.len])
4053 goto slashes;
4054 inode = dentry->d_inode;
4055 if (d_is_negative(dentry))
4056 goto slashes;
4057 ihold(inode);
4058 error = security_path_unlink(&path, dentry);
4059 if (error)
4060 goto exit2;
4061 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4062exit2:
4063 dput(dentry);
4064 }
4065 inode_unlock(path.dentry->d_inode);
4066 if (inode)
4067 iput(inode); /* truncate the inode here */
4068 inode = NULL;
4069 if (delegated_inode) {
4070 error = break_deleg_wait(&delegated_inode);
4071 if (!error)
4072 goto retry_deleg;
4073 }
4074 mnt_drop_write(path.mnt);
4075exit1:
4076 path_put(&path);
4077 putname(name);
4078 if (retry_estale(error, lookup_flags)) {
4079 lookup_flags |= LOOKUP_REVAL;
4080 inode = NULL;
4081 goto retry;
4082 }
4083 return error;
4084
4085slashes:
4086 if (d_is_negative(dentry))
4087 error = -ENOENT;
4088 else if (d_is_dir(dentry))
4089 error = -EISDIR;
4090 else
4091 error = -ENOTDIR;
4092 goto exit2;
4093}
4094
4095SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4096{
4097 if ((flag & ~AT_REMOVEDIR) != 0)
4098 return -EINVAL;
4099
4100 if (flag & AT_REMOVEDIR)
4101 return do_rmdir(dfd, pathname);
4102
4103 return do_unlinkat(dfd, pathname);
4104}
4105
4106SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4107{
4108 return do_unlinkat(AT_FDCWD, pathname);
4109}
4110
4111int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4112{
4113 int error = may_create(dir, dentry);
4114
4115 if (error)
4116 return error;
4117
4118 if (!dir->i_op->symlink)
4119 return -EPERM;
4120
4121 error = security_inode_symlink(dir, dentry, oldname);
4122 if (error)
4123 return error;
4124
4125 error = dir->i_op->symlink(dir, dentry, oldname);
4126 if (!error)
4127 fsnotify_create(dir, dentry);
4128 return error;
4129}
4130EXPORT_SYMBOL(vfs_symlink);
4131
4132SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4133 int, newdfd, const char __user *, newname)
4134{
4135 int error;
4136 struct filename *from;
4137 struct dentry *dentry;
4138 struct path path;
4139 unsigned int lookup_flags = 0;
4140
4141 from = getname(oldname);
4142 if (IS_ERR(from))
4143 return PTR_ERR(from);
4144retry:
4145 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4146 error = PTR_ERR(dentry);
4147 if (IS_ERR(dentry))
4148 goto out_putname;
4149
4150 error = security_path_symlink(&path, dentry, from->name);
4151 if (!error)
4152 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4153 done_path_create(&path, dentry);
4154 if (retry_estale(error, lookup_flags)) {
4155 lookup_flags |= LOOKUP_REVAL;
4156 goto retry;
4157 }
4158out_putname:
4159 putname(from);
4160 return error;
4161}
4162
4163SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4164{
4165 return sys_symlinkat(oldname, AT_FDCWD, newname);
4166}
4167
4168/**
4169 * vfs_link - create a new link
4170 * @old_dentry: object to be linked
4171 * @dir: new parent
4172 * @new_dentry: where to create the new link
4173 * @delegated_inode: returns inode needing a delegation break
4174 *
4175 * The caller must hold dir->i_mutex
4176 *
4177 * If vfs_link discovers a delegation on the to-be-linked file in need
4178 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4179 * inode in delegated_inode. The caller should then break the delegation
4180 * and retry. Because breaking a delegation may take a long time, the
4181 * caller should drop the i_mutex before doing so.
4182 *
4183 * Alternatively, a caller may pass NULL for delegated_inode. This may
4184 * be appropriate for callers that expect the underlying filesystem not
4185 * to be NFS exported.
4186 */
4187int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4188{
4189 struct inode *inode = old_dentry->d_inode;
4190 unsigned max_links = dir->i_sb->s_max_links;
4191 int error;
4192
4193 if (!inode)
4194 return -ENOENT;
4195
4196 error = may_create(dir, new_dentry);
4197 if (error)
4198 return error;
4199
4200 if (dir->i_sb != inode->i_sb)
4201 return -EXDEV;
4202
4203 /*
4204 * A link to an append-only or immutable file cannot be created.
4205 */
4206 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4207 return -EPERM;
4208 /*
4209 * Updating the link count will likely cause i_uid and i_gid to
4210 * be writen back improperly if their true value is unknown to
4211 * the vfs.
4212 */
4213 if (HAS_UNMAPPED_ID(inode))
4214 return -EPERM;
4215 if (!dir->i_op->link)
4216 return -EPERM;
4217 if (S_ISDIR(inode->i_mode))
4218 return -EPERM;
4219
4220 error = security_inode_link(old_dentry, dir, new_dentry);
4221 if (error)
4222 return error;
4223
4224 inode_lock(inode);
4225 /* Make sure we don't allow creating hardlink to an unlinked file */
4226 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4227 error = -ENOENT;
4228 else if (max_links && inode->i_nlink >= max_links)
4229 error = -EMLINK;
4230 else {
4231 error = try_break_deleg(inode, delegated_inode);
4232 if (!error)
4233 error = dir->i_op->link(old_dentry, dir, new_dentry);
4234 }
4235
4236 if (!error && (inode->i_state & I_LINKABLE)) {
4237 spin_lock(&inode->i_lock);
4238 inode->i_state &= ~I_LINKABLE;
4239 spin_unlock(&inode->i_lock);
4240 }
4241 inode_unlock(inode);
4242 if (!error)
4243 fsnotify_link(dir, inode, new_dentry);
4244 return error;
4245}
4246EXPORT_SYMBOL(vfs_link);
4247
4248/*
4249 * Hardlinks are often used in delicate situations. We avoid
4250 * security-related surprises by not following symlinks on the
4251 * newname. --KAB
4252 *
4253 * We don't follow them on the oldname either to be compatible
4254 * with linux 2.0, and to avoid hard-linking to directories
4255 * and other special files. --ADM
4256 */
4257SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4258 int, newdfd, const char __user *, newname, int, flags)
4259{
4260 struct dentry *new_dentry;
4261 struct path old_path, new_path;
4262 struct inode *delegated_inode = NULL;
4263 int how = 0;
4264 int error;
4265
4266 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4267 return -EINVAL;
4268 /*
4269 * To use null names we require CAP_DAC_READ_SEARCH
4270 * This ensures that not everyone will be able to create
4271 * handlink using the passed filedescriptor.
4272 */
4273 if (flags & AT_EMPTY_PATH) {
4274 if (!capable(CAP_DAC_READ_SEARCH))
4275 return -ENOENT;
4276 how = LOOKUP_EMPTY;
4277 }
4278
4279 if (flags & AT_SYMLINK_FOLLOW)
4280 how |= LOOKUP_FOLLOW;
4281retry:
4282 error = user_path_at(olddfd, oldname, how, &old_path);
4283 if (error)
4284 return error;
4285
4286 new_dentry = user_path_create(newdfd, newname, &new_path,
4287 (how & LOOKUP_REVAL));
4288 error = PTR_ERR(new_dentry);
4289 if (IS_ERR(new_dentry))
4290 goto out;
4291
4292 error = -EXDEV;
4293 if (old_path.mnt != new_path.mnt)
4294 goto out_dput;
4295 error = may_linkat(&old_path);
4296 if (unlikely(error))
4297 goto out_dput;
4298 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4299 if (error)
4300 goto out_dput;
4301 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4302out_dput:
4303 done_path_create(&new_path, new_dentry);
4304 if (delegated_inode) {
4305 error = break_deleg_wait(&delegated_inode);
4306 if (!error) {
4307 path_put(&old_path);
4308 goto retry;
4309 }
4310 }
4311 if (retry_estale(error, how)) {
4312 path_put(&old_path);
4313 how |= LOOKUP_REVAL;
4314 goto retry;
4315 }
4316out:
4317 path_put(&old_path);
4318
4319 return error;
4320}
4321
4322SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4323{
4324 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4325}
4326
4327/**
4328 * vfs_rename - rename a filesystem object
4329 * @old_dir: parent of source
4330 * @old_dentry: source
4331 * @new_dir: parent of destination
4332 * @new_dentry: destination
4333 * @delegated_inode: returns an inode needing a delegation break
4334 * @flags: rename flags
4335 *
4336 * The caller must hold multiple mutexes--see lock_rename()).
4337 *
4338 * If vfs_rename discovers a delegation in need of breaking at either
4339 * the source or destination, it will return -EWOULDBLOCK and return a
4340 * reference to the inode in delegated_inode. The caller should then
4341 * break the delegation and retry. Because breaking a delegation may
4342 * take a long time, the caller should drop all locks before doing
4343 * so.
4344 *
4345 * Alternatively, a caller may pass NULL for delegated_inode. This may
4346 * be appropriate for callers that expect the underlying filesystem not
4347 * to be NFS exported.
4348 *
4349 * The worst of all namespace operations - renaming directory. "Perverted"
4350 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4351 * Problems:
4352 * a) we can get into loop creation.
4353 * b) race potential - two innocent renames can create a loop together.
4354 * That's where 4.4 screws up. Current fix: serialization on
4355 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4356 * story.
4357 * c) we have to lock _four_ objects - parents and victim (if it exists),
4358 * and source (if it is not a directory).
4359 * And that - after we got ->i_mutex on parents (until then we don't know
4360 * whether the target exists). Solution: try to be smart with locking
4361 * order for inodes. We rely on the fact that tree topology may change
4362 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4363 * move will be locked. Thus we can rank directories by the tree
4364 * (ancestors first) and rank all non-directories after them.
4365 * That works since everybody except rename does "lock parent, lookup,
4366 * lock child" and rename is under ->s_vfs_rename_mutex.
4367 * HOWEVER, it relies on the assumption that any object with ->lookup()
4368 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4369 * we'd better make sure that there's no link(2) for them.
4370 * d) conversion from fhandle to dentry may come in the wrong moment - when
4371 * we are removing the target. Solution: we will have to grab ->i_mutex
4372 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4373 * ->i_mutex on parents, which works but leads to some truly excessive
4374 * locking].
4375 */
4376int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4377 struct inode *new_dir, struct dentry *new_dentry,
4378 struct inode **delegated_inode, unsigned int flags)
4379{
4380 int error;
4381 bool is_dir = d_is_dir(old_dentry);
4382 const unsigned char *old_name;
4383 struct inode *source = old_dentry->d_inode;
4384 struct inode *target = new_dentry->d_inode;
4385 bool new_is_dir = false;
4386 unsigned max_links = new_dir->i_sb->s_max_links;
4387
4388 /*
4389 * Check source == target.
4390 * On overlayfs need to look at underlying inodes.
4391 */
4392 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4393 return 0;
4394
4395 error = may_delete(old_dir, old_dentry, is_dir);
4396 if (error)
4397 return error;
4398
4399 if (!target) {
4400 error = may_create(new_dir, new_dentry);
4401 } else {
4402 new_is_dir = d_is_dir(new_dentry);
4403
4404 if (!(flags & RENAME_EXCHANGE))
4405 error = may_delete(new_dir, new_dentry, is_dir);
4406 else
4407 error = may_delete(new_dir, new_dentry, new_is_dir);
4408 }
4409 if (error)
4410 return error;
4411
4412 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4413 return -EPERM;
4414
4415 if (flags && !old_dir->i_op->rename2)
4416 return -EINVAL;
4417
4418 /*
4419 * If we are going to change the parent - check write permissions,
4420 * we'll need to flip '..'.
4421 */
4422 if (new_dir != old_dir) {
4423 if (is_dir) {
4424 error = inode_permission(source, MAY_WRITE);
4425 if (error)
4426 return error;
4427 }
4428 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4429 error = inode_permission(target, MAY_WRITE);
4430 if (error)
4431 return error;
4432 }
4433 }
4434
4435 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4436 flags);
4437 if (error)
4438 return error;
4439
4440 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4441 dget(new_dentry);
4442 if (!is_dir || (flags & RENAME_EXCHANGE))
4443 lock_two_nondirectories(source, target);
4444 else if (target)
4445 inode_lock(target);
4446
4447 error = -EBUSY;
4448 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4449 goto out;
4450
4451 if (max_links && new_dir != old_dir) {
4452 error = -EMLINK;
4453 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4454 goto out;
4455 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4456 old_dir->i_nlink >= max_links)
4457 goto out;
4458 }
4459 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4460 shrink_dcache_parent(new_dentry);
4461 if (!is_dir) {
4462 error = try_break_deleg(source, delegated_inode);
4463 if (error)
4464 goto out;
4465 }
4466 if (target && !new_is_dir) {
4467 error = try_break_deleg(target, delegated_inode);
4468 if (error)
4469 goto out;
4470 }
4471 if (!old_dir->i_op->rename2) {
4472 error = old_dir->i_op->rename(old_dir, old_dentry,
4473 new_dir, new_dentry);
4474 } else {
4475 WARN_ON(old_dir->i_op->rename != NULL);
4476 error = old_dir->i_op->rename2(old_dir, old_dentry,
4477 new_dir, new_dentry, flags);
4478 }
4479 if (error)
4480 goto out;
4481
4482 if (!(flags & RENAME_EXCHANGE) && target) {
4483 if (is_dir)
4484 target->i_flags |= S_DEAD;
4485 dont_mount(new_dentry);
4486 detach_mounts(new_dentry);
4487 }
4488 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4489 if (!(flags & RENAME_EXCHANGE))
4490 d_move(old_dentry, new_dentry);
4491 else
4492 d_exchange(old_dentry, new_dentry);
4493 }
4494out:
4495 if (!is_dir || (flags & RENAME_EXCHANGE))
4496 unlock_two_nondirectories(source, target);
4497 else if (target)
4498 inode_unlock(target);
4499 dput(new_dentry);
4500 if (!error) {
4501 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4502 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4503 if (flags & RENAME_EXCHANGE) {
4504 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4505 new_is_dir, NULL, new_dentry);
4506 }
4507 }
4508 fsnotify_oldname_free(old_name);
4509
4510 return error;
4511}
4512EXPORT_SYMBOL(vfs_rename);
4513
4514SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4515 int, newdfd, const char __user *, newname, unsigned int, flags)
4516{
4517 struct dentry *old_dentry, *new_dentry;
4518 struct dentry *trap;
4519 struct path old_path, new_path;
4520 struct qstr old_last, new_last;
4521 int old_type, new_type;
4522 struct inode *delegated_inode = NULL;
4523 struct filename *from;
4524 struct filename *to;
4525 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4526 bool should_retry = false;
4527 int error;
4528
4529 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4530 return -EINVAL;
4531
4532 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4533 (flags & RENAME_EXCHANGE))
4534 return -EINVAL;
4535
4536 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4537 return -EPERM;
4538
4539 if (flags & RENAME_EXCHANGE)
4540 target_flags = 0;
4541
4542retry:
4543 from = user_path_parent(olddfd, oldname,
4544 &old_path, &old_last, &old_type, lookup_flags);
4545 if (IS_ERR(from)) {
4546 error = PTR_ERR(from);
4547 goto exit;
4548 }
4549
4550 to = user_path_parent(newdfd, newname,
4551 &new_path, &new_last, &new_type, lookup_flags);
4552 if (IS_ERR(to)) {
4553 error = PTR_ERR(to);
4554 goto exit1;
4555 }
4556
4557 error = -EXDEV;
4558 if (old_path.mnt != new_path.mnt)
4559 goto exit2;
4560
4561 error = -EBUSY;
4562 if (old_type != LAST_NORM)
4563 goto exit2;
4564
4565 if (flags & RENAME_NOREPLACE)
4566 error = -EEXIST;
4567 if (new_type != LAST_NORM)
4568 goto exit2;
4569
4570 error = mnt_want_write(old_path.mnt);
4571 if (error)
4572 goto exit2;
4573
4574retry_deleg:
4575 trap = lock_rename(new_path.dentry, old_path.dentry);
4576
4577 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4578 error = PTR_ERR(old_dentry);
4579 if (IS_ERR(old_dentry))
4580 goto exit3;
4581 /* source must exist */
4582 error = -ENOENT;
4583 if (d_is_negative(old_dentry))
4584 goto exit4;
4585 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4586 error = PTR_ERR(new_dentry);
4587 if (IS_ERR(new_dentry))
4588 goto exit4;
4589 error = -EEXIST;
4590 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4591 goto exit5;
4592 if (flags & RENAME_EXCHANGE) {
4593 error = -ENOENT;
4594 if (d_is_negative(new_dentry))
4595 goto exit5;
4596
4597 if (!d_is_dir(new_dentry)) {
4598 error = -ENOTDIR;
4599 if (new_last.name[new_last.len])
4600 goto exit5;
4601 }
4602 }
4603 /* unless the source is a directory trailing slashes give -ENOTDIR */
4604 if (!d_is_dir(old_dentry)) {
4605 error = -ENOTDIR;
4606 if (old_last.name[old_last.len])
4607 goto exit5;
4608 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4609 goto exit5;
4610 }
4611 /* source should not be ancestor of target */
4612 error = -EINVAL;
4613 if (old_dentry == trap)
4614 goto exit5;
4615 /* target should not be an ancestor of source */
4616 if (!(flags & RENAME_EXCHANGE))
4617 error = -ENOTEMPTY;
4618 if (new_dentry == trap)
4619 goto exit5;
4620
4621 error = security_path_rename(&old_path, old_dentry,
4622 &new_path, new_dentry, flags);
4623 if (error)
4624 goto exit5;
4625 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4626 new_path.dentry->d_inode, new_dentry,
4627 &delegated_inode, flags);
4628exit5:
4629 dput(new_dentry);
4630exit4:
4631 dput(old_dentry);
4632exit3:
4633 unlock_rename(new_path.dentry, old_path.dentry);
4634 if (delegated_inode) {
4635 error = break_deleg_wait(&delegated_inode);
4636 if (!error)
4637 goto retry_deleg;
4638 }
4639 mnt_drop_write(old_path.mnt);
4640exit2:
4641 if (retry_estale(error, lookup_flags))
4642 should_retry = true;
4643 path_put(&new_path);
4644 putname(to);
4645exit1:
4646 path_put(&old_path);
4647 putname(from);
4648 if (should_retry) {
4649 should_retry = false;
4650 lookup_flags |= LOOKUP_REVAL;
4651 goto retry;
4652 }
4653exit:
4654 return error;
4655}
4656
4657SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4658 int, newdfd, const char __user *, newname)
4659{
4660 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4661}
4662
4663SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4664{
4665 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4666}
4667
4668int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4669{
4670 int error = may_create(dir, dentry);
4671 if (error)
4672 return error;
4673
4674 if (!dir->i_op->mknod)
4675 return -EPERM;
4676
4677 return dir->i_op->mknod(dir, dentry,
4678 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4679}
4680EXPORT_SYMBOL(vfs_whiteout);
4681
4682int readlink_copy(char __user *buffer, int buflen, const char *link)
4683{
4684 int len = PTR_ERR(link);
4685 if (IS_ERR(link))
4686 goto out;
4687
4688 len = strlen(link);
4689 if (len > (unsigned) buflen)
4690 len = buflen;
4691 if (copy_to_user(buffer, link, len))
4692 len = -EFAULT;
4693out:
4694 return len;
4695}
4696
4697/*
4698 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4699 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4700 * for any given inode is up to filesystem.
4701 */
4702int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4703{
4704 DEFINE_DELAYED_CALL(done);
4705 struct inode *inode = d_inode(dentry);
4706 const char *link = inode->i_link;
4707 int res;
4708
4709 if (!link) {
4710 link = inode->i_op->get_link(dentry, inode, &done);
4711 if (IS_ERR(link))
4712 return PTR_ERR(link);
4713 }
4714 res = readlink_copy(buffer, buflen, link);
4715 do_delayed_call(&done);
4716 return res;
4717}
4718EXPORT_SYMBOL(generic_readlink);
4719
4720/* get the link contents into pagecache */
4721const char *page_get_link(struct dentry *dentry, struct inode *inode,
4722 struct delayed_call *callback)
4723{
4724 char *kaddr;
4725 struct page *page;
4726 struct address_space *mapping = inode->i_mapping;
4727
4728 if (!dentry) {
4729 page = find_get_page(mapping, 0);
4730 if (!page)
4731 return ERR_PTR(-ECHILD);
4732 if (!PageUptodate(page)) {
4733 put_page(page);
4734 return ERR_PTR(-ECHILD);
4735 }
4736 } else {
4737 page = read_mapping_page(mapping, 0, NULL);
4738 if (IS_ERR(page))
4739 return (char*)page;
4740 }
4741 set_delayed_call(callback, page_put_link, page);
4742 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4743 kaddr = page_address(page);
4744 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4745 return kaddr;
4746}
4747
4748EXPORT_SYMBOL(page_get_link);
4749
4750void page_put_link(void *arg)
4751{
4752 put_page(arg);
4753}
4754EXPORT_SYMBOL(page_put_link);
4755
4756int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4757{
4758 DEFINE_DELAYED_CALL(done);
4759 int res = readlink_copy(buffer, buflen,
4760 page_get_link(dentry, d_inode(dentry),
4761 &done));
4762 do_delayed_call(&done);
4763 return res;
4764}
4765EXPORT_SYMBOL(page_readlink);
4766
4767/*
4768 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4769 */
4770int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4771{
4772 struct address_space *mapping = inode->i_mapping;
4773 struct page *page;
4774 void *fsdata;
4775 int err;
4776 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4777 if (nofs)
4778 flags |= AOP_FLAG_NOFS;
4779
4780retry:
4781 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4782 flags, &page, &fsdata);
4783 if (err)
4784 goto fail;
4785
4786 memcpy(page_address(page), symname, len-1);
4787
4788 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4789 page, fsdata);
4790 if (err < 0)
4791 goto fail;
4792 if (err < len-1)
4793 goto retry;
4794
4795 mark_inode_dirty(inode);
4796 return 0;
4797fail:
4798 return err;
4799}
4800EXPORT_SYMBOL(__page_symlink);
4801
4802int page_symlink(struct inode *inode, const char *symname, int len)
4803{
4804 return __page_symlink(inode, symname, len,
4805 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4806}
4807EXPORT_SYMBOL(page_symlink);
4808
4809const struct inode_operations page_symlink_inode_operations = {
4810 .readlink = generic_readlink,
4811 .get_link = page_get_link,
4812};
4813EXPORT_SYMBOL(page_symlink_inode_operations);