]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/namei.c
Get rid of symlink body copying
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/namei.h>
22#include <linux/quotaops.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <asm/uaccess.h>
37
38#include "internal.h"
39
40/* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105/*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111/* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118static int do_getname(const char __user *filename, char *page)
119{
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138}
139
140char * getname(const char __user * filename)
141{
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157}
158
159#ifdef CONFIG_AUDITSYSCALL
160void putname(const char *name)
161{
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166}
167EXPORT_SYMBOL(putname);
168#endif
169
170/*
171 * This does basic POSIX ACL permission checking
172 */
173static int acl_permission_check(struct inode *inode, int mask,
174 int (*check_acl)(struct inode *inode, int mask))
175{
176 umode_t mode = inode->i_mode;
177
178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179
180 if (current_fsuid() == inode->i_uid)
181 mode >>= 6;
182 else {
183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
184 int error = check_acl(inode, mask);
185 if (error != -EAGAIN)
186 return error;
187 }
188
189 if (in_group_p(inode->i_gid))
190 mode >>= 3;
191 }
192
193 /*
194 * If the DACs are ok we don't need any capability check.
195 */
196 if ((mask & ~mode) == 0)
197 return 0;
198 return -EACCES;
199}
200
201/**
202 * generic_permission - check for access rights on a Posix-like filesystem
203 * @inode: inode to check access rights for
204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
205 * @check_acl: optional callback to check for Posix ACLs
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things..
211 */
212int generic_permission(struct inode *inode, int mask,
213 int (*check_acl)(struct inode *inode, int mask))
214{
215 int ret;
216
217 /*
218 * Do the basic POSIX ACL permission checks.
219 */
220 ret = acl_permission_check(inode, mask, check_acl);
221 if (ret != -EACCES)
222 return ret;
223
224 /*
225 * Read/write DACs are always overridable.
226 * Executable DACs are overridable if at least one exec bit is set.
227 */
228 if (!(mask & MAY_EXEC) || execute_ok(inode))
229 if (capable(CAP_DAC_OVERRIDE))
230 return 0;
231
232 /*
233 * Searching includes executable on directories, else just read.
234 */
235 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
236 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
237 if (capable(CAP_DAC_READ_SEARCH))
238 return 0;
239
240 return -EACCES;
241}
242
243/**
244 * inode_permission - check for access rights to a given inode
245 * @inode: inode to check permission on
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
247 *
248 * Used to check for read/write/execute permissions on an inode.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 */
253int inode_permission(struct inode *inode, int mask)
254{
255 int retval;
256
257 if (mask & MAY_WRITE) {
258 umode_t mode = inode->i_mode;
259
260 /*
261 * Nobody gets write access to a read-only fs.
262 */
263 if (IS_RDONLY(inode) &&
264 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
265 return -EROFS;
266
267 /*
268 * Nobody gets write access to an immutable file.
269 */
270 if (IS_IMMUTABLE(inode))
271 return -EACCES;
272 }
273
274 if (inode->i_op->permission)
275 retval = inode->i_op->permission(inode, mask);
276 else
277 retval = generic_permission(inode, mask, inode->i_op->check_acl);
278
279 if (retval)
280 return retval;
281
282 retval = devcgroup_inode_permission(inode, mask);
283 if (retval)
284 return retval;
285
286 return security_inode_permission(inode,
287 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
288}
289
290/**
291 * file_permission - check for additional access rights to a given file
292 * @file: file to check access rights for
293 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
294 *
295 * Used to check for read/write/execute permissions on an already opened
296 * file.
297 *
298 * Note:
299 * Do not use this function in new code. All access checks should
300 * be done using inode_permission().
301 */
302int file_permission(struct file *file, int mask)
303{
304 return inode_permission(file->f_path.dentry->d_inode, mask);
305}
306
307/*
308 * get_write_access() gets write permission for a file.
309 * put_write_access() releases this write permission.
310 * This is used for regular files.
311 * We cannot support write (and maybe mmap read-write shared) accesses and
312 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
313 * can have the following values:
314 * 0: no writers, no VM_DENYWRITE mappings
315 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
316 * > 0: (i_writecount) users are writing to the file.
317 *
318 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
319 * except for the cases where we don't hold i_writecount yet. Then we need to
320 * use {get,deny}_write_access() - these functions check the sign and refuse
321 * to do the change if sign is wrong. Exclusion between them is provided by
322 * the inode->i_lock spinlock.
323 */
324
325int get_write_access(struct inode * inode)
326{
327 spin_lock(&inode->i_lock);
328 if (atomic_read(&inode->i_writecount) < 0) {
329 spin_unlock(&inode->i_lock);
330 return -ETXTBSY;
331 }
332 atomic_inc(&inode->i_writecount);
333 spin_unlock(&inode->i_lock);
334
335 return 0;
336}
337
338int deny_write_access(struct file * file)
339{
340 struct inode *inode = file->f_path.dentry->d_inode;
341
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) > 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_dec(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351}
352
353/**
354 * path_get - get a reference to a path
355 * @path: path to get the reference to
356 *
357 * Given a path increment the reference count to the dentry and the vfsmount.
358 */
359void path_get(struct path *path)
360{
361 mntget(path->mnt);
362 dget(path->dentry);
363}
364EXPORT_SYMBOL(path_get);
365
366/**
367 * path_put - put a reference to a path
368 * @path: path to put the reference to
369 *
370 * Given a path decrement the reference count to the dentry and the vfsmount.
371 */
372void path_put(struct path *path)
373{
374 dput(path->dentry);
375 mntput(path->mnt);
376}
377EXPORT_SYMBOL(path_put);
378
379/**
380 * release_open_intent - free up open intent resources
381 * @nd: pointer to nameidata
382 */
383void release_open_intent(struct nameidata *nd)
384{
385 if (nd->intent.open.file->f_path.dentry == NULL)
386 put_filp(nd->intent.open.file);
387 else
388 fput(nd->intent.open.file);
389}
390
391static inline struct dentry *
392do_revalidate(struct dentry *dentry, struct nameidata *nd)
393{
394 int status = dentry->d_op->d_revalidate(dentry, nd);
395 if (unlikely(status <= 0)) {
396 /*
397 * The dentry failed validation.
398 * If d_revalidate returned 0 attempt to invalidate
399 * the dentry otherwise d_revalidate is asking us
400 * to return a fail status.
401 */
402 if (!status) {
403 if (!d_invalidate(dentry)) {
404 dput(dentry);
405 dentry = NULL;
406 }
407 } else {
408 dput(dentry);
409 dentry = ERR_PTR(status);
410 }
411 }
412 return dentry;
413}
414
415/*
416 * force_reval_path - force revalidation of a dentry
417 *
418 * In some situations the path walking code will trust dentries without
419 * revalidating them. This causes problems for filesystems that depend on
420 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
421 * (which indicates that it's possible for the dentry to go stale), force
422 * a d_revalidate call before proceeding.
423 *
424 * Returns 0 if the revalidation was successful. If the revalidation fails,
425 * either return the error returned by d_revalidate or -ESTALE if the
426 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
427 * invalidate the dentry. It's up to the caller to handle putting references
428 * to the path if necessary.
429 */
430static int
431force_reval_path(struct path *path, struct nameidata *nd)
432{
433 int status;
434 struct dentry *dentry = path->dentry;
435
436 /*
437 * only check on filesystems where it's possible for the dentry to
438 * become stale. It's assumed that if this flag is set then the
439 * d_revalidate op will also be defined.
440 */
441 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
442 return 0;
443
444 status = dentry->d_op->d_revalidate(dentry, nd);
445 if (status > 0)
446 return 0;
447
448 if (!status) {
449 d_invalidate(dentry);
450 status = -ESTALE;
451 }
452 return status;
453}
454
455/*
456 * Short-cut version of permission(), for calling on directories
457 * during pathname resolution. Combines parts of permission()
458 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
459 *
460 * If appropriate, check DAC only. If not appropriate, or
461 * short-cut DAC fails, then call ->permission() to do more
462 * complete permission check.
463 */
464static int exec_permission(struct inode *inode)
465{
466 int ret;
467
468 if (inode->i_op->permission) {
469 ret = inode->i_op->permission(inode, MAY_EXEC);
470 if (!ret)
471 goto ok;
472 return ret;
473 }
474 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
475 if (!ret)
476 goto ok;
477
478 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
479 goto ok;
480
481 return ret;
482ok:
483 return security_inode_permission(inode, MAY_EXEC);
484}
485
486static __always_inline void set_root(struct nameidata *nd)
487{
488 if (!nd->root.mnt) {
489 struct fs_struct *fs = current->fs;
490 read_lock(&fs->lock);
491 nd->root = fs->root;
492 path_get(&nd->root);
493 read_unlock(&fs->lock);
494 }
495}
496
497static int link_path_walk(const char *, struct nameidata *);
498
499static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
500{
501 if (IS_ERR(link))
502 goto fail;
503
504 if (*link == '/') {
505 set_root(nd);
506 path_put(&nd->path);
507 nd->path = nd->root;
508 path_get(&nd->root);
509 }
510
511 return link_path_walk(link, nd);
512fail:
513 path_put(&nd->path);
514 return PTR_ERR(link);
515}
516
517static void path_put_conditional(struct path *path, struct nameidata *nd)
518{
519 dput(path->dentry);
520 if (path->mnt != nd->path.mnt)
521 mntput(path->mnt);
522}
523
524static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
525{
526 dput(nd->path.dentry);
527 if (nd->path.mnt != path->mnt)
528 mntput(nd->path.mnt);
529 nd->path.mnt = path->mnt;
530 nd->path.dentry = path->dentry;
531}
532
533static __always_inline int
534__do_follow_link(struct path *path, struct nameidata *nd, void **p)
535{
536 int error;
537 struct dentry *dentry = path->dentry;
538
539 touch_atime(path->mnt, dentry);
540 nd_set_link(nd, NULL);
541
542 if (path->mnt != nd->path.mnt) {
543 path_to_nameidata(path, nd);
544 dget(dentry);
545 }
546 mntget(path->mnt);
547 nd->last_type = LAST_BIND;
548 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
549 error = PTR_ERR(*p);
550 if (!IS_ERR(*p)) {
551 char *s = nd_get_link(nd);
552 error = 0;
553 if (s)
554 error = __vfs_follow_link(nd, s);
555 else if (nd->last_type == LAST_BIND) {
556 error = force_reval_path(&nd->path, nd);
557 if (error)
558 path_put(&nd->path);
559 }
560 }
561 return error;
562}
563
564/*
565 * This limits recursive symlink follows to 8, while
566 * limiting consecutive symlinks to 40.
567 *
568 * Without that kind of total limit, nasty chains of consecutive
569 * symlinks can cause almost arbitrarily long lookups.
570 */
571static inline int do_follow_link(struct path *path, struct nameidata *nd)
572{
573 void *cookie;
574 int err = -ELOOP;
575 if (current->link_count >= MAX_NESTED_LINKS)
576 goto loop;
577 if (current->total_link_count >= 40)
578 goto loop;
579 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
580 cond_resched();
581 err = security_inode_follow_link(path->dentry, nd);
582 if (err)
583 goto loop;
584 current->link_count++;
585 current->total_link_count++;
586 nd->depth++;
587 err = __do_follow_link(path, nd, &cookie);
588 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
589 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
590 path_put(path);
591 current->link_count--;
592 nd->depth--;
593 return err;
594loop:
595 path_put_conditional(path, nd);
596 path_put(&nd->path);
597 return err;
598}
599
600int follow_up(struct path *path)
601{
602 struct vfsmount *parent;
603 struct dentry *mountpoint;
604 spin_lock(&vfsmount_lock);
605 parent = path->mnt->mnt_parent;
606 if (parent == path->mnt) {
607 spin_unlock(&vfsmount_lock);
608 return 0;
609 }
610 mntget(parent);
611 mountpoint = dget(path->mnt->mnt_mountpoint);
612 spin_unlock(&vfsmount_lock);
613 dput(path->dentry);
614 path->dentry = mountpoint;
615 mntput(path->mnt);
616 path->mnt = parent;
617 return 1;
618}
619
620/* no need for dcache_lock, as serialization is taken care in
621 * namespace.c
622 */
623static int __follow_mount(struct path *path)
624{
625 int res = 0;
626 while (d_mountpoint(path->dentry)) {
627 struct vfsmount *mounted = lookup_mnt(path);
628 if (!mounted)
629 break;
630 dput(path->dentry);
631 if (res)
632 mntput(path->mnt);
633 path->mnt = mounted;
634 path->dentry = dget(mounted->mnt_root);
635 res = 1;
636 }
637 return res;
638}
639
640static void follow_mount(struct path *path)
641{
642 while (d_mountpoint(path->dentry)) {
643 struct vfsmount *mounted = lookup_mnt(path);
644 if (!mounted)
645 break;
646 dput(path->dentry);
647 mntput(path->mnt);
648 path->mnt = mounted;
649 path->dentry = dget(mounted->mnt_root);
650 }
651}
652
653/* no need for dcache_lock, as serialization is taken care in
654 * namespace.c
655 */
656int follow_down(struct path *path)
657{
658 struct vfsmount *mounted;
659
660 mounted = lookup_mnt(path);
661 if (mounted) {
662 dput(path->dentry);
663 mntput(path->mnt);
664 path->mnt = mounted;
665 path->dentry = dget(mounted->mnt_root);
666 return 1;
667 }
668 return 0;
669}
670
671static __always_inline void follow_dotdot(struct nameidata *nd)
672{
673 set_root(nd);
674
675 while(1) {
676 struct dentry *old = nd->path.dentry;
677
678 if (nd->path.dentry == nd->root.dentry &&
679 nd->path.mnt == nd->root.mnt) {
680 break;
681 }
682 if (nd->path.dentry != nd->path.mnt->mnt_root) {
683 /* rare case of legitimate dget_parent()... */
684 nd->path.dentry = dget_parent(nd->path.dentry);
685 dput(old);
686 break;
687 }
688 if (!follow_up(&nd->path))
689 break;
690 }
691 follow_mount(&nd->path);
692}
693
694/*
695 * It's more convoluted than I'd like it to be, but... it's still fairly
696 * small and for now I'd prefer to have fast path as straight as possible.
697 * It _is_ time-critical.
698 */
699static int do_lookup(struct nameidata *nd, struct qstr *name,
700 struct path *path)
701{
702 struct vfsmount *mnt = nd->path.mnt;
703 struct dentry *dentry, *parent;
704 struct inode *dir;
705 /*
706 * See if the low-level filesystem might want
707 * to use its own hash..
708 */
709 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
710 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
711 if (err < 0)
712 return err;
713 }
714
715 dentry = __d_lookup(nd->path.dentry, name);
716 if (!dentry)
717 goto need_lookup;
718 if (dentry->d_op && dentry->d_op->d_revalidate)
719 goto need_revalidate;
720done:
721 path->mnt = mnt;
722 path->dentry = dentry;
723 __follow_mount(path);
724 return 0;
725
726need_lookup:
727 parent = nd->path.dentry;
728 dir = parent->d_inode;
729
730 mutex_lock(&dir->i_mutex);
731 /*
732 * First re-do the cached lookup just in case it was created
733 * while we waited for the directory semaphore..
734 *
735 * FIXME! This could use version numbering or similar to
736 * avoid unnecessary cache lookups.
737 *
738 * The "dcache_lock" is purely to protect the RCU list walker
739 * from concurrent renames at this point (we mustn't get false
740 * negatives from the RCU list walk here, unlike the optimistic
741 * fast walk).
742 *
743 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
744 */
745 dentry = d_lookup(parent, name);
746 if (!dentry) {
747 struct dentry *new;
748
749 /* Don't create child dentry for a dead directory. */
750 dentry = ERR_PTR(-ENOENT);
751 if (IS_DEADDIR(dir))
752 goto out_unlock;
753
754 new = d_alloc(parent, name);
755 dentry = ERR_PTR(-ENOMEM);
756 if (new) {
757 dentry = dir->i_op->lookup(dir, new, nd);
758 if (dentry)
759 dput(new);
760 else
761 dentry = new;
762 }
763out_unlock:
764 mutex_unlock(&dir->i_mutex);
765 if (IS_ERR(dentry))
766 goto fail;
767 goto done;
768 }
769
770 /*
771 * Uhhuh! Nasty case: the cache was re-populated while
772 * we waited on the semaphore. Need to revalidate.
773 */
774 mutex_unlock(&dir->i_mutex);
775 if (dentry->d_op && dentry->d_op->d_revalidate) {
776 dentry = do_revalidate(dentry, nd);
777 if (!dentry)
778 dentry = ERR_PTR(-ENOENT);
779 }
780 if (IS_ERR(dentry))
781 goto fail;
782 goto done;
783
784need_revalidate:
785 dentry = do_revalidate(dentry, nd);
786 if (!dentry)
787 goto need_lookup;
788 if (IS_ERR(dentry))
789 goto fail;
790 goto done;
791
792fail:
793 return PTR_ERR(dentry);
794}
795
796/*
797 * This is a temporary kludge to deal with "automount" symlinks; proper
798 * solution is to trigger them on follow_mount(), so that do_lookup()
799 * would DTRT. To be killed before 2.6.34-final.
800 */
801static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
802{
803 return inode && unlikely(inode->i_op->follow_link) &&
804 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
805}
806
807/*
808 * Name resolution.
809 * This is the basic name resolution function, turning a pathname into
810 * the final dentry. We expect 'base' to be positive and a directory.
811 *
812 * Returns 0 and nd will have valid dentry and mnt on success.
813 * Returns error and drops reference to input namei data on failure.
814 */
815static int link_path_walk(const char *name, struct nameidata *nd)
816{
817 struct path next;
818 struct inode *inode;
819 int err;
820 unsigned int lookup_flags = nd->flags;
821
822 while (*name=='/')
823 name++;
824 if (!*name)
825 goto return_reval;
826
827 inode = nd->path.dentry->d_inode;
828 if (nd->depth)
829 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
830
831 /* At this point we know we have a real path component. */
832 for(;;) {
833 unsigned long hash;
834 struct qstr this;
835 unsigned int c;
836
837 nd->flags |= LOOKUP_CONTINUE;
838 err = exec_permission(inode);
839 if (err)
840 break;
841
842 this.name = name;
843 c = *(const unsigned char *)name;
844
845 hash = init_name_hash();
846 do {
847 name++;
848 hash = partial_name_hash(c, hash);
849 c = *(const unsigned char *)name;
850 } while (c && (c != '/'));
851 this.len = name - (const char *) this.name;
852 this.hash = end_name_hash(hash);
853
854 /* remove trailing slashes? */
855 if (!c)
856 goto last_component;
857 while (*++name == '/');
858 if (!*name)
859 goto last_with_slashes;
860
861 /*
862 * "." and ".." are special - ".." especially so because it has
863 * to be able to know about the current root directory and
864 * parent relationships.
865 */
866 if (this.name[0] == '.') switch (this.len) {
867 default:
868 break;
869 case 2:
870 if (this.name[1] != '.')
871 break;
872 follow_dotdot(nd);
873 inode = nd->path.dentry->d_inode;
874 /* fallthrough */
875 case 1:
876 continue;
877 }
878 /* This does the actual lookups.. */
879 err = do_lookup(nd, &this, &next);
880 if (err)
881 break;
882
883 err = -ENOENT;
884 inode = next.dentry->d_inode;
885 if (!inode)
886 goto out_dput;
887
888 if (inode->i_op->follow_link) {
889 err = do_follow_link(&next, nd);
890 if (err)
891 goto return_err;
892 err = -ENOENT;
893 inode = nd->path.dentry->d_inode;
894 if (!inode)
895 break;
896 } else
897 path_to_nameidata(&next, nd);
898 err = -ENOTDIR;
899 if (!inode->i_op->lookup)
900 break;
901 continue;
902 /* here ends the main loop */
903
904last_with_slashes:
905 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
906last_component:
907 /* Clear LOOKUP_CONTINUE iff it was previously unset */
908 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
909 if (lookup_flags & LOOKUP_PARENT)
910 goto lookup_parent;
911 if (this.name[0] == '.') switch (this.len) {
912 default:
913 break;
914 case 2:
915 if (this.name[1] != '.')
916 break;
917 follow_dotdot(nd);
918 inode = nd->path.dentry->d_inode;
919 /* fallthrough */
920 case 1:
921 goto return_reval;
922 }
923 err = do_lookup(nd, &this, &next);
924 if (err)
925 break;
926 inode = next.dentry->d_inode;
927 if (follow_on_final(inode, lookup_flags)) {
928 err = do_follow_link(&next, nd);
929 if (err)
930 goto return_err;
931 inode = nd->path.dentry->d_inode;
932 } else
933 path_to_nameidata(&next, nd);
934 err = -ENOENT;
935 if (!inode)
936 break;
937 if (lookup_flags & LOOKUP_DIRECTORY) {
938 err = -ENOTDIR;
939 if (!inode->i_op->lookup)
940 break;
941 }
942 goto return_base;
943lookup_parent:
944 nd->last = this;
945 nd->last_type = LAST_NORM;
946 if (this.name[0] != '.')
947 goto return_base;
948 if (this.len == 1)
949 nd->last_type = LAST_DOT;
950 else if (this.len == 2 && this.name[1] == '.')
951 nd->last_type = LAST_DOTDOT;
952 else
953 goto return_base;
954return_reval:
955 /*
956 * We bypassed the ordinary revalidation routines.
957 * We may need to check the cached dentry for staleness.
958 */
959 if (nd->path.dentry && nd->path.dentry->d_sb &&
960 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
961 err = -ESTALE;
962 /* Note: we do not d_invalidate() */
963 if (!nd->path.dentry->d_op->d_revalidate(
964 nd->path.dentry, nd))
965 break;
966 }
967return_base:
968 return 0;
969out_dput:
970 path_put_conditional(&next, nd);
971 break;
972 }
973 path_put(&nd->path);
974return_err:
975 return err;
976}
977
978static int path_walk(const char *name, struct nameidata *nd)
979{
980 struct path save = nd->path;
981 int result;
982
983 current->total_link_count = 0;
984
985 /* make sure the stuff we saved doesn't go away */
986 path_get(&save);
987
988 result = link_path_walk(name, nd);
989 if (result == -ESTALE) {
990 /* nd->path had been dropped */
991 current->total_link_count = 0;
992 nd->path = save;
993 path_get(&nd->path);
994 nd->flags |= LOOKUP_REVAL;
995 result = link_path_walk(name, nd);
996 }
997
998 path_put(&save);
999
1000 return result;
1001}
1002
1003static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1004{
1005 int retval = 0;
1006 int fput_needed;
1007 struct file *file;
1008
1009 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1010 nd->flags = flags;
1011 nd->depth = 0;
1012 nd->root.mnt = NULL;
1013
1014 if (*name=='/') {
1015 set_root(nd);
1016 nd->path = nd->root;
1017 path_get(&nd->root);
1018 } else if (dfd == AT_FDCWD) {
1019 struct fs_struct *fs = current->fs;
1020 read_lock(&fs->lock);
1021 nd->path = fs->pwd;
1022 path_get(&fs->pwd);
1023 read_unlock(&fs->lock);
1024 } else {
1025 struct dentry *dentry;
1026
1027 file = fget_light(dfd, &fput_needed);
1028 retval = -EBADF;
1029 if (!file)
1030 goto out_fail;
1031
1032 dentry = file->f_path.dentry;
1033
1034 retval = -ENOTDIR;
1035 if (!S_ISDIR(dentry->d_inode->i_mode))
1036 goto fput_fail;
1037
1038 retval = file_permission(file, MAY_EXEC);
1039 if (retval)
1040 goto fput_fail;
1041
1042 nd->path = file->f_path;
1043 path_get(&file->f_path);
1044
1045 fput_light(file, fput_needed);
1046 }
1047 return 0;
1048
1049fput_fail:
1050 fput_light(file, fput_needed);
1051out_fail:
1052 return retval;
1053}
1054
1055/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1056static int do_path_lookup(int dfd, const char *name,
1057 unsigned int flags, struct nameidata *nd)
1058{
1059 int retval = path_init(dfd, name, flags, nd);
1060 if (!retval)
1061 retval = path_walk(name, nd);
1062 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1063 nd->path.dentry->d_inode))
1064 audit_inode(name, nd->path.dentry);
1065 if (nd->root.mnt) {
1066 path_put(&nd->root);
1067 nd->root.mnt = NULL;
1068 }
1069 return retval;
1070}
1071
1072int path_lookup(const char *name, unsigned int flags,
1073 struct nameidata *nd)
1074{
1075 return do_path_lookup(AT_FDCWD, name, flags, nd);
1076}
1077
1078int kern_path(const char *name, unsigned int flags, struct path *path)
1079{
1080 struct nameidata nd;
1081 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1082 if (!res)
1083 *path = nd.path;
1084 return res;
1085}
1086
1087/**
1088 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1089 * @dentry: pointer to dentry of the base directory
1090 * @mnt: pointer to vfs mount of the base directory
1091 * @name: pointer to file name
1092 * @flags: lookup flags
1093 * @nd: pointer to nameidata
1094 */
1095int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1096 const char *name, unsigned int flags,
1097 struct nameidata *nd)
1098{
1099 int retval;
1100
1101 /* same as do_path_lookup */
1102 nd->last_type = LAST_ROOT;
1103 nd->flags = flags;
1104 nd->depth = 0;
1105
1106 nd->path.dentry = dentry;
1107 nd->path.mnt = mnt;
1108 path_get(&nd->path);
1109 nd->root = nd->path;
1110 path_get(&nd->root);
1111
1112 retval = path_walk(name, nd);
1113 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1114 nd->path.dentry->d_inode))
1115 audit_inode(name, nd->path.dentry);
1116
1117 path_put(&nd->root);
1118 nd->root.mnt = NULL;
1119
1120 return retval;
1121}
1122
1123static struct dentry *__lookup_hash(struct qstr *name,
1124 struct dentry *base, struct nameidata *nd)
1125{
1126 struct dentry *dentry;
1127 struct inode *inode;
1128 int err;
1129
1130 inode = base->d_inode;
1131
1132 /*
1133 * See if the low-level filesystem might want
1134 * to use its own hash..
1135 */
1136 if (base->d_op && base->d_op->d_hash) {
1137 err = base->d_op->d_hash(base, name);
1138 dentry = ERR_PTR(err);
1139 if (err < 0)
1140 goto out;
1141 }
1142
1143 dentry = __d_lookup(base, name);
1144
1145 /* lockess __d_lookup may fail due to concurrent d_move()
1146 * in some unrelated directory, so try with d_lookup
1147 */
1148 if (!dentry)
1149 dentry = d_lookup(base, name);
1150
1151 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1152 dentry = do_revalidate(dentry, nd);
1153
1154 if (!dentry) {
1155 struct dentry *new;
1156
1157 /* Don't create child dentry for a dead directory. */
1158 dentry = ERR_PTR(-ENOENT);
1159 if (IS_DEADDIR(inode))
1160 goto out;
1161
1162 new = d_alloc(base, name);
1163 dentry = ERR_PTR(-ENOMEM);
1164 if (!new)
1165 goto out;
1166 dentry = inode->i_op->lookup(inode, new, nd);
1167 if (!dentry)
1168 dentry = new;
1169 else
1170 dput(new);
1171 }
1172out:
1173 return dentry;
1174}
1175
1176/*
1177 * Restricted form of lookup. Doesn't follow links, single-component only,
1178 * needs parent already locked. Doesn't follow mounts.
1179 * SMP-safe.
1180 */
1181static struct dentry *lookup_hash(struct nameidata *nd)
1182{
1183 int err;
1184
1185 err = exec_permission(nd->path.dentry->d_inode);
1186 if (err)
1187 return ERR_PTR(err);
1188 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1189}
1190
1191static int __lookup_one_len(const char *name, struct qstr *this,
1192 struct dentry *base, int len)
1193{
1194 unsigned long hash;
1195 unsigned int c;
1196
1197 this->name = name;
1198 this->len = len;
1199 if (!len)
1200 return -EACCES;
1201
1202 hash = init_name_hash();
1203 while (len--) {
1204 c = *(const unsigned char *)name++;
1205 if (c == '/' || c == '\0')
1206 return -EACCES;
1207 hash = partial_name_hash(c, hash);
1208 }
1209 this->hash = end_name_hash(hash);
1210 return 0;
1211}
1212
1213/**
1214 * lookup_one_len - filesystem helper to lookup single pathname component
1215 * @name: pathname component to lookup
1216 * @base: base directory to lookup from
1217 * @len: maximum length @len should be interpreted to
1218 *
1219 * Note that this routine is purely a helper for filesystem usage and should
1220 * not be called by generic code. Also note that by using this function the
1221 * nameidata argument is passed to the filesystem methods and a filesystem
1222 * using this helper needs to be prepared for that.
1223 */
1224struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1225{
1226 int err;
1227 struct qstr this;
1228
1229 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1230
1231 err = __lookup_one_len(name, &this, base, len);
1232 if (err)
1233 return ERR_PTR(err);
1234
1235 err = exec_permission(base->d_inode);
1236 if (err)
1237 return ERR_PTR(err);
1238 return __lookup_hash(&this, base, NULL);
1239}
1240
1241int user_path_at(int dfd, const char __user *name, unsigned flags,
1242 struct path *path)
1243{
1244 struct nameidata nd;
1245 char *tmp = getname(name);
1246 int err = PTR_ERR(tmp);
1247 if (!IS_ERR(tmp)) {
1248
1249 BUG_ON(flags & LOOKUP_PARENT);
1250
1251 err = do_path_lookup(dfd, tmp, flags, &nd);
1252 putname(tmp);
1253 if (!err)
1254 *path = nd.path;
1255 }
1256 return err;
1257}
1258
1259static int user_path_parent(int dfd, const char __user *path,
1260 struct nameidata *nd, char **name)
1261{
1262 char *s = getname(path);
1263 int error;
1264
1265 if (IS_ERR(s))
1266 return PTR_ERR(s);
1267
1268 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1269 if (error)
1270 putname(s);
1271 else
1272 *name = s;
1273
1274 return error;
1275}
1276
1277/*
1278 * It's inline, so penalty for filesystems that don't use sticky bit is
1279 * minimal.
1280 */
1281static inline int check_sticky(struct inode *dir, struct inode *inode)
1282{
1283 uid_t fsuid = current_fsuid();
1284
1285 if (!(dir->i_mode & S_ISVTX))
1286 return 0;
1287 if (inode->i_uid == fsuid)
1288 return 0;
1289 if (dir->i_uid == fsuid)
1290 return 0;
1291 return !capable(CAP_FOWNER);
1292}
1293
1294/*
1295 * Check whether we can remove a link victim from directory dir, check
1296 * whether the type of victim is right.
1297 * 1. We can't do it if dir is read-only (done in permission())
1298 * 2. We should have write and exec permissions on dir
1299 * 3. We can't remove anything from append-only dir
1300 * 4. We can't do anything with immutable dir (done in permission())
1301 * 5. If the sticky bit on dir is set we should either
1302 * a. be owner of dir, or
1303 * b. be owner of victim, or
1304 * c. have CAP_FOWNER capability
1305 * 6. If the victim is append-only or immutable we can't do antyhing with
1306 * links pointing to it.
1307 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1308 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1309 * 9. We can't remove a root or mountpoint.
1310 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1311 * nfs_async_unlink().
1312 */
1313static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1314{
1315 int error;
1316
1317 if (!victim->d_inode)
1318 return -ENOENT;
1319
1320 BUG_ON(victim->d_parent->d_inode != dir);
1321 audit_inode_child(victim, dir);
1322
1323 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1324 if (error)
1325 return error;
1326 if (IS_APPEND(dir))
1327 return -EPERM;
1328 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1329 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1330 return -EPERM;
1331 if (isdir) {
1332 if (!S_ISDIR(victim->d_inode->i_mode))
1333 return -ENOTDIR;
1334 if (IS_ROOT(victim))
1335 return -EBUSY;
1336 } else if (S_ISDIR(victim->d_inode->i_mode))
1337 return -EISDIR;
1338 if (IS_DEADDIR(dir))
1339 return -ENOENT;
1340 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1341 return -EBUSY;
1342 return 0;
1343}
1344
1345/* Check whether we can create an object with dentry child in directory
1346 * dir.
1347 * 1. We can't do it if child already exists (open has special treatment for
1348 * this case, but since we are inlined it's OK)
1349 * 2. We can't do it if dir is read-only (done in permission())
1350 * 3. We should have write and exec permissions on dir
1351 * 4. We can't do it if dir is immutable (done in permission())
1352 */
1353static inline int may_create(struct inode *dir, struct dentry *child)
1354{
1355 if (child->d_inode)
1356 return -EEXIST;
1357 if (IS_DEADDIR(dir))
1358 return -ENOENT;
1359 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1360}
1361
1362/*
1363 * O_DIRECTORY translates into forcing a directory lookup.
1364 */
1365static inline int lookup_flags(unsigned int f)
1366{
1367 unsigned long retval = LOOKUP_FOLLOW;
1368
1369 if (f & O_NOFOLLOW)
1370 retval &= ~LOOKUP_FOLLOW;
1371
1372 if (f & O_DIRECTORY)
1373 retval |= LOOKUP_DIRECTORY;
1374
1375 return retval;
1376}
1377
1378/*
1379 * p1 and p2 should be directories on the same fs.
1380 */
1381struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1382{
1383 struct dentry *p;
1384
1385 if (p1 == p2) {
1386 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1387 return NULL;
1388 }
1389
1390 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1391
1392 p = d_ancestor(p2, p1);
1393 if (p) {
1394 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1395 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1396 return p;
1397 }
1398
1399 p = d_ancestor(p1, p2);
1400 if (p) {
1401 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1402 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1403 return p;
1404 }
1405
1406 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1407 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1408 return NULL;
1409}
1410
1411void unlock_rename(struct dentry *p1, struct dentry *p2)
1412{
1413 mutex_unlock(&p1->d_inode->i_mutex);
1414 if (p1 != p2) {
1415 mutex_unlock(&p2->d_inode->i_mutex);
1416 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1417 }
1418}
1419
1420int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1421 struct nameidata *nd)
1422{
1423 int error = may_create(dir, dentry);
1424
1425 if (error)
1426 return error;
1427
1428 if (!dir->i_op->create)
1429 return -EACCES; /* shouldn't it be ENOSYS? */
1430 mode &= S_IALLUGO;
1431 mode |= S_IFREG;
1432 error = security_inode_create(dir, dentry, mode);
1433 if (error)
1434 return error;
1435 vfs_dq_init(dir);
1436 error = dir->i_op->create(dir, dentry, mode, nd);
1437 if (!error)
1438 fsnotify_create(dir, dentry);
1439 return error;
1440}
1441
1442int may_open(struct path *path, int acc_mode, int flag)
1443{
1444 struct dentry *dentry = path->dentry;
1445 struct inode *inode = dentry->d_inode;
1446 int error;
1447
1448 if (!inode)
1449 return -ENOENT;
1450
1451 switch (inode->i_mode & S_IFMT) {
1452 case S_IFLNK:
1453 return -ELOOP;
1454 case S_IFDIR:
1455 if (acc_mode & MAY_WRITE)
1456 return -EISDIR;
1457 break;
1458 case S_IFBLK:
1459 case S_IFCHR:
1460 if (path->mnt->mnt_flags & MNT_NODEV)
1461 return -EACCES;
1462 /*FALLTHRU*/
1463 case S_IFIFO:
1464 case S_IFSOCK:
1465 flag &= ~O_TRUNC;
1466 break;
1467 }
1468
1469 error = inode_permission(inode, acc_mode);
1470 if (error)
1471 return error;
1472
1473 /*
1474 * An append-only file must be opened in append mode for writing.
1475 */
1476 if (IS_APPEND(inode)) {
1477 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1478 return -EPERM;
1479 if (flag & O_TRUNC)
1480 return -EPERM;
1481 }
1482
1483 /* O_NOATIME can only be set by the owner or superuser */
1484 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1485 return -EPERM;
1486
1487 /*
1488 * Ensure there are no outstanding leases on the file.
1489 */
1490 return break_lease(inode, flag);
1491}
1492
1493static int handle_truncate(struct path *path)
1494{
1495 struct inode *inode = path->dentry->d_inode;
1496 int error = get_write_access(inode);
1497 if (error)
1498 return error;
1499 /*
1500 * Refuse to truncate files with mandatory locks held on them.
1501 */
1502 error = locks_verify_locked(inode);
1503 if (!error)
1504 error = security_path_truncate(path, 0,
1505 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1506 if (!error) {
1507 error = do_truncate(path->dentry, 0,
1508 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1509 NULL);
1510 }
1511 put_write_access(inode);
1512 return error;
1513}
1514
1515/*
1516 * Be careful about ever adding any more callers of this
1517 * function. Its flags must be in the namei format, not
1518 * what get passed to sys_open().
1519 */
1520static int __open_namei_create(struct nameidata *nd, struct path *path,
1521 int open_flag, int mode)
1522{
1523 int error;
1524 struct dentry *dir = nd->path.dentry;
1525
1526 if (!IS_POSIXACL(dir->d_inode))
1527 mode &= ~current_umask();
1528 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1529 if (error)
1530 goto out_unlock;
1531 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1532out_unlock:
1533 mutex_unlock(&dir->d_inode->i_mutex);
1534 dput(nd->path.dentry);
1535 nd->path.dentry = path->dentry;
1536 if (error)
1537 return error;
1538 /* Don't check for write permission, don't truncate */
1539 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1540}
1541
1542/*
1543 * Note that while the flag value (low two bits) for sys_open means:
1544 * 00 - read-only
1545 * 01 - write-only
1546 * 10 - read-write
1547 * 11 - special
1548 * it is changed into
1549 * 00 - no permissions needed
1550 * 01 - read-permission
1551 * 10 - write-permission
1552 * 11 - read-write
1553 * for the internal routines (ie open_namei()/follow_link() etc)
1554 * This is more logical, and also allows the 00 "no perm needed"
1555 * to be used for symlinks (where the permissions are checked
1556 * later).
1557 *
1558*/
1559static inline int open_to_namei_flags(int flag)
1560{
1561 if ((flag+1) & O_ACCMODE)
1562 flag++;
1563 return flag;
1564}
1565
1566static int open_will_truncate(int flag, struct inode *inode)
1567{
1568 /*
1569 * We'll never write to the fs underlying
1570 * a device file.
1571 */
1572 if (special_file(inode->i_mode))
1573 return 0;
1574 return (flag & O_TRUNC);
1575}
1576
1577static struct file *finish_open(struct nameidata *nd,
1578 int open_flag, int acc_mode)
1579{
1580 struct file *filp;
1581 int will_truncate;
1582 int error;
1583
1584 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1585 if (will_truncate) {
1586 error = mnt_want_write(nd->path.mnt);
1587 if (error)
1588 goto exit;
1589 }
1590 error = may_open(&nd->path, acc_mode, open_flag);
1591 if (error) {
1592 if (will_truncate)
1593 mnt_drop_write(nd->path.mnt);
1594 goto exit;
1595 }
1596 filp = nameidata_to_filp(nd);
1597 if (!IS_ERR(filp)) {
1598 error = ima_file_check(filp, acc_mode);
1599 if (error) {
1600 fput(filp);
1601 filp = ERR_PTR(error);
1602 }
1603 }
1604 if (!IS_ERR(filp)) {
1605 if (acc_mode & MAY_WRITE)
1606 vfs_dq_init(nd->path.dentry->d_inode);
1607
1608 if (will_truncate) {
1609 error = handle_truncate(&nd->path);
1610 if (error) {
1611 fput(filp);
1612 filp = ERR_PTR(error);
1613 }
1614 }
1615 }
1616 /*
1617 * It is now safe to drop the mnt write
1618 * because the filp has had a write taken
1619 * on its behalf.
1620 */
1621 if (will_truncate)
1622 mnt_drop_write(nd->path.mnt);
1623 return filp;
1624
1625exit:
1626 if (!IS_ERR(nd->intent.open.file))
1627 release_open_intent(nd);
1628 path_put(&nd->path);
1629 return ERR_PTR(error);
1630}
1631
1632static struct file *do_last(struct nameidata *nd, struct path *path,
1633 int open_flag, int acc_mode,
1634 int mode, const char *pathname)
1635{
1636 struct dentry *dir = nd->path.dentry;
1637 struct file *filp;
1638 int error;
1639
1640 if (nd->last_type == LAST_BIND)
1641 goto ok;
1642
1643 error = -EISDIR;
1644 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1645 goto exit;
1646
1647 mutex_lock(&dir->d_inode->i_mutex);
1648
1649 path->dentry = lookup_hash(nd);
1650 path->mnt = nd->path.mnt;
1651
1652 error = PTR_ERR(path->dentry);
1653 if (IS_ERR(path->dentry)) {
1654 mutex_unlock(&dir->d_inode->i_mutex);
1655 goto exit;
1656 }
1657
1658 if (IS_ERR(nd->intent.open.file)) {
1659 error = PTR_ERR(nd->intent.open.file);
1660 goto exit_mutex_unlock;
1661 }
1662
1663 /* Negative dentry, just create the file */
1664 if (!path->dentry->d_inode) {
1665 /*
1666 * This write is needed to ensure that a
1667 * ro->rw transition does not occur between
1668 * the time when the file is created and when
1669 * a permanent write count is taken through
1670 * the 'struct file' in nameidata_to_filp().
1671 */
1672 error = mnt_want_write(nd->path.mnt);
1673 if (error)
1674 goto exit_mutex_unlock;
1675 error = __open_namei_create(nd, path, open_flag, mode);
1676 if (error) {
1677 mnt_drop_write(nd->path.mnt);
1678 goto exit;
1679 }
1680 filp = nameidata_to_filp(nd);
1681 mnt_drop_write(nd->path.mnt);
1682 if (!IS_ERR(filp)) {
1683 error = ima_file_check(filp, acc_mode);
1684 if (error) {
1685 fput(filp);
1686 filp = ERR_PTR(error);
1687 }
1688 }
1689 return filp;
1690 }
1691
1692 /*
1693 * It already exists.
1694 */
1695 mutex_unlock(&dir->d_inode->i_mutex);
1696 audit_inode(pathname, path->dentry);
1697
1698 error = -EEXIST;
1699 if (open_flag & O_EXCL)
1700 goto exit_dput;
1701
1702 if (__follow_mount(path)) {
1703 error = -ELOOP;
1704 if (open_flag & O_NOFOLLOW)
1705 goto exit_dput;
1706 }
1707
1708 error = -ENOENT;
1709 if (!path->dentry->d_inode)
1710 goto exit_dput;
1711
1712 if (path->dentry->d_inode->i_op->follow_link)
1713 return NULL;
1714
1715 path_to_nameidata(path, nd);
1716 error = -EISDIR;
1717 if (S_ISDIR(path->dentry->d_inode->i_mode))
1718 goto exit;
1719ok:
1720 filp = finish_open(nd, open_flag, acc_mode);
1721 return filp;
1722
1723exit_mutex_unlock:
1724 mutex_unlock(&dir->d_inode->i_mutex);
1725exit_dput:
1726 path_put_conditional(path, nd);
1727exit:
1728 if (!IS_ERR(nd->intent.open.file))
1729 release_open_intent(nd);
1730 path_put(&nd->path);
1731 return ERR_PTR(error);
1732}
1733
1734/*
1735 * Note that the low bits of the passed in "open_flag"
1736 * are not the same as in the local variable "flag". See
1737 * open_to_namei_flags() for more details.
1738 */
1739struct file *do_filp_open(int dfd, const char *pathname,
1740 int open_flag, int mode, int acc_mode)
1741{
1742 struct file *filp;
1743 struct nameidata nd;
1744 int error;
1745 struct path path;
1746 int count = 0;
1747 int flag = open_to_namei_flags(open_flag);
1748 int force_reval = 0;
1749
1750 /*
1751 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1752 * check for O_DSYNC if the need any syncing at all we enforce it's
1753 * always set instead of having to deal with possibly weird behaviour
1754 * for malicious applications setting only __O_SYNC.
1755 */
1756 if (open_flag & __O_SYNC)
1757 open_flag |= O_DSYNC;
1758
1759 if (!acc_mode)
1760 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1761
1762 /* O_TRUNC implies we need access checks for write permissions */
1763 if (open_flag & O_TRUNC)
1764 acc_mode |= MAY_WRITE;
1765
1766 /* Allow the LSM permission hook to distinguish append
1767 access from general write access. */
1768 if (open_flag & O_APPEND)
1769 acc_mode |= MAY_APPEND;
1770
1771 /*
1772 * The simplest case - just a plain lookup.
1773 */
1774 if (!(open_flag & O_CREAT)) {
1775 filp = get_empty_filp();
1776
1777 if (filp == NULL)
1778 return ERR_PTR(-ENFILE);
1779 nd.intent.open.file = filp;
1780 filp->f_flags = open_flag;
1781 nd.intent.open.flags = flag;
1782 nd.intent.open.create_mode = 0;
1783 error = do_path_lookup(dfd, pathname,
1784 lookup_flags(open_flag)|LOOKUP_OPEN, &nd);
1785 if (IS_ERR(nd.intent.open.file)) {
1786 if (error == 0) {
1787 error = PTR_ERR(nd.intent.open.file);
1788 path_put(&nd.path);
1789 }
1790 } else if (error)
1791 release_open_intent(&nd);
1792 if (error)
1793 return ERR_PTR(error);
1794 return finish_open(&nd, open_flag, acc_mode);
1795 }
1796
1797 /*
1798 * Create - we need to know the parent.
1799 */
1800reval:
1801 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1802 if (error)
1803 return ERR_PTR(error);
1804 if (force_reval)
1805 nd.flags |= LOOKUP_REVAL;
1806
1807 current->total_link_count = 0;
1808 error = link_path_walk(pathname, &nd);
1809 if (error) {
1810 filp = ERR_PTR(error);
1811 goto out;
1812 }
1813 if (unlikely(!audit_dummy_context()))
1814 audit_inode(pathname, nd.path.dentry);
1815
1816 /*
1817 * We have the parent and last component.
1818 */
1819
1820 error = -ENFILE;
1821 filp = get_empty_filp();
1822 if (filp == NULL)
1823 goto exit_parent;
1824 nd.intent.open.file = filp;
1825 filp->f_flags = open_flag;
1826 nd.intent.open.flags = flag;
1827 nd.intent.open.create_mode = mode;
1828 nd.flags &= ~LOOKUP_PARENT;
1829 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1830 if (open_flag & O_EXCL)
1831 nd.flags |= LOOKUP_EXCL;
1832 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1833 while (unlikely(!filp)) { /* trailing symlink */
1834 struct path holder;
1835 struct inode *inode;
1836 void *cookie;
1837 error = -ELOOP;
1838 if ((open_flag & O_NOFOLLOW) || count++ == 32)
1839 goto exit_dput;
1840 /*
1841 * This is subtle. Instead of calling do_follow_link() we do
1842 * the thing by hands. The reason is that this way we have zero
1843 * link_count and path_walk() (called from ->follow_link)
1844 * honoring LOOKUP_PARENT. After that we have the parent and
1845 * last component, i.e. we are in the same situation as after
1846 * the first path_walk(). Well, almost - if the last component
1847 * is normal we get its copy stored in nd->last.name and we will
1848 * have to putname() it when we are done. Procfs-like symlinks
1849 * just set LAST_BIND.
1850 */
1851 nd.flags |= LOOKUP_PARENT;
1852 error = security_inode_follow_link(path.dentry, &nd);
1853 if (error)
1854 goto exit_dput;
1855 error = __do_follow_link(&path, &nd, &cookie);
1856 if (unlikely(error)) {
1857 /* nd.path had been dropped */
1858 inode = path.dentry->d_inode;
1859 if (!IS_ERR(cookie) && inode->i_op->put_link)
1860 inode->i_op->put_link(path.dentry, &nd, cookie);
1861 path_put(&path);
1862 release_open_intent(&nd);
1863 filp = ERR_PTR(error);
1864 goto out;
1865 }
1866 holder = path;
1867 nd.flags &= ~LOOKUP_PARENT;
1868 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1869 inode = holder.dentry->d_inode;
1870 if (inode->i_op->put_link)
1871 inode->i_op->put_link(holder.dentry, &nd, cookie);
1872 path_put(&holder);
1873 }
1874out:
1875 if (nd.root.mnt)
1876 path_put(&nd.root);
1877 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1878 force_reval = 1;
1879 goto reval;
1880 }
1881 return filp;
1882
1883exit_dput:
1884 path_put_conditional(&path, &nd);
1885 if (!IS_ERR(nd.intent.open.file))
1886 release_open_intent(&nd);
1887exit_parent:
1888 path_put(&nd.path);
1889 filp = ERR_PTR(error);
1890 goto out;
1891}
1892
1893/**
1894 * filp_open - open file and return file pointer
1895 *
1896 * @filename: path to open
1897 * @flags: open flags as per the open(2) second argument
1898 * @mode: mode for the new file if O_CREAT is set, else ignored
1899 *
1900 * This is the helper to open a file from kernelspace if you really
1901 * have to. But in generally you should not do this, so please move
1902 * along, nothing to see here..
1903 */
1904struct file *filp_open(const char *filename, int flags, int mode)
1905{
1906 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1907}
1908EXPORT_SYMBOL(filp_open);
1909
1910/**
1911 * lookup_create - lookup a dentry, creating it if it doesn't exist
1912 * @nd: nameidata info
1913 * @is_dir: directory flag
1914 *
1915 * Simple function to lookup and return a dentry and create it
1916 * if it doesn't exist. Is SMP-safe.
1917 *
1918 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1919 */
1920struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1921{
1922 struct dentry *dentry = ERR_PTR(-EEXIST);
1923
1924 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1925 /*
1926 * Yucky last component or no last component at all?
1927 * (foo/., foo/.., /////)
1928 */
1929 if (nd->last_type != LAST_NORM)
1930 goto fail;
1931 nd->flags &= ~LOOKUP_PARENT;
1932 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1933 nd->intent.open.flags = O_EXCL;
1934
1935 /*
1936 * Do the final lookup.
1937 */
1938 dentry = lookup_hash(nd);
1939 if (IS_ERR(dentry))
1940 goto fail;
1941
1942 if (dentry->d_inode)
1943 goto eexist;
1944 /*
1945 * Special case - lookup gave negative, but... we had foo/bar/
1946 * From the vfs_mknod() POV we just have a negative dentry -
1947 * all is fine. Let's be bastards - you had / on the end, you've
1948 * been asking for (non-existent) directory. -ENOENT for you.
1949 */
1950 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1951 dput(dentry);
1952 dentry = ERR_PTR(-ENOENT);
1953 }
1954 return dentry;
1955eexist:
1956 dput(dentry);
1957 dentry = ERR_PTR(-EEXIST);
1958fail:
1959 return dentry;
1960}
1961EXPORT_SYMBOL_GPL(lookup_create);
1962
1963int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1964{
1965 int error = may_create(dir, dentry);
1966
1967 if (error)
1968 return error;
1969
1970 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1971 return -EPERM;
1972
1973 if (!dir->i_op->mknod)
1974 return -EPERM;
1975
1976 error = devcgroup_inode_mknod(mode, dev);
1977 if (error)
1978 return error;
1979
1980 error = security_inode_mknod(dir, dentry, mode, dev);
1981 if (error)
1982 return error;
1983
1984 vfs_dq_init(dir);
1985 error = dir->i_op->mknod(dir, dentry, mode, dev);
1986 if (!error)
1987 fsnotify_create(dir, dentry);
1988 return error;
1989}
1990
1991static int may_mknod(mode_t mode)
1992{
1993 switch (mode & S_IFMT) {
1994 case S_IFREG:
1995 case S_IFCHR:
1996 case S_IFBLK:
1997 case S_IFIFO:
1998 case S_IFSOCK:
1999 case 0: /* zero mode translates to S_IFREG */
2000 return 0;
2001 case S_IFDIR:
2002 return -EPERM;
2003 default:
2004 return -EINVAL;
2005 }
2006}
2007
2008SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2009 unsigned, dev)
2010{
2011 int error;
2012 char *tmp;
2013 struct dentry *dentry;
2014 struct nameidata nd;
2015
2016 if (S_ISDIR(mode))
2017 return -EPERM;
2018
2019 error = user_path_parent(dfd, filename, &nd, &tmp);
2020 if (error)
2021 return error;
2022
2023 dentry = lookup_create(&nd, 0);
2024 if (IS_ERR(dentry)) {
2025 error = PTR_ERR(dentry);
2026 goto out_unlock;
2027 }
2028 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2029 mode &= ~current_umask();
2030 error = may_mknod(mode);
2031 if (error)
2032 goto out_dput;
2033 error = mnt_want_write(nd.path.mnt);
2034 if (error)
2035 goto out_dput;
2036 error = security_path_mknod(&nd.path, dentry, mode, dev);
2037 if (error)
2038 goto out_drop_write;
2039 switch (mode & S_IFMT) {
2040 case 0: case S_IFREG:
2041 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2042 break;
2043 case S_IFCHR: case S_IFBLK:
2044 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2045 new_decode_dev(dev));
2046 break;
2047 case S_IFIFO: case S_IFSOCK:
2048 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2049 break;
2050 }
2051out_drop_write:
2052 mnt_drop_write(nd.path.mnt);
2053out_dput:
2054 dput(dentry);
2055out_unlock:
2056 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2057 path_put(&nd.path);
2058 putname(tmp);
2059
2060 return error;
2061}
2062
2063SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2064{
2065 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2066}
2067
2068int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2069{
2070 int error = may_create(dir, dentry);
2071
2072 if (error)
2073 return error;
2074
2075 if (!dir->i_op->mkdir)
2076 return -EPERM;
2077
2078 mode &= (S_IRWXUGO|S_ISVTX);
2079 error = security_inode_mkdir(dir, dentry, mode);
2080 if (error)
2081 return error;
2082
2083 vfs_dq_init(dir);
2084 error = dir->i_op->mkdir(dir, dentry, mode);
2085 if (!error)
2086 fsnotify_mkdir(dir, dentry);
2087 return error;
2088}
2089
2090SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2091{
2092 int error = 0;
2093 char * tmp;
2094 struct dentry *dentry;
2095 struct nameidata nd;
2096
2097 error = user_path_parent(dfd, pathname, &nd, &tmp);
2098 if (error)
2099 goto out_err;
2100
2101 dentry = lookup_create(&nd, 1);
2102 error = PTR_ERR(dentry);
2103 if (IS_ERR(dentry))
2104 goto out_unlock;
2105
2106 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2107 mode &= ~current_umask();
2108 error = mnt_want_write(nd.path.mnt);
2109 if (error)
2110 goto out_dput;
2111 error = security_path_mkdir(&nd.path, dentry, mode);
2112 if (error)
2113 goto out_drop_write;
2114 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2115out_drop_write:
2116 mnt_drop_write(nd.path.mnt);
2117out_dput:
2118 dput(dentry);
2119out_unlock:
2120 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2121 path_put(&nd.path);
2122 putname(tmp);
2123out_err:
2124 return error;
2125}
2126
2127SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2128{
2129 return sys_mkdirat(AT_FDCWD, pathname, mode);
2130}
2131
2132/*
2133 * We try to drop the dentry early: we should have
2134 * a usage count of 2 if we're the only user of this
2135 * dentry, and if that is true (possibly after pruning
2136 * the dcache), then we drop the dentry now.
2137 *
2138 * A low-level filesystem can, if it choses, legally
2139 * do a
2140 *
2141 * if (!d_unhashed(dentry))
2142 * return -EBUSY;
2143 *
2144 * if it cannot handle the case of removing a directory
2145 * that is still in use by something else..
2146 */
2147void dentry_unhash(struct dentry *dentry)
2148{
2149 dget(dentry);
2150 shrink_dcache_parent(dentry);
2151 spin_lock(&dcache_lock);
2152 spin_lock(&dentry->d_lock);
2153 if (atomic_read(&dentry->d_count) == 2)
2154 __d_drop(dentry);
2155 spin_unlock(&dentry->d_lock);
2156 spin_unlock(&dcache_lock);
2157}
2158
2159int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2160{
2161 int error = may_delete(dir, dentry, 1);
2162
2163 if (error)
2164 return error;
2165
2166 if (!dir->i_op->rmdir)
2167 return -EPERM;
2168
2169 vfs_dq_init(dir);
2170
2171 mutex_lock(&dentry->d_inode->i_mutex);
2172 dentry_unhash(dentry);
2173 if (d_mountpoint(dentry))
2174 error = -EBUSY;
2175 else {
2176 error = security_inode_rmdir(dir, dentry);
2177 if (!error) {
2178 error = dir->i_op->rmdir(dir, dentry);
2179 if (!error)
2180 dentry->d_inode->i_flags |= S_DEAD;
2181 }
2182 }
2183 mutex_unlock(&dentry->d_inode->i_mutex);
2184 if (!error) {
2185 d_delete(dentry);
2186 }
2187 dput(dentry);
2188
2189 return error;
2190}
2191
2192static long do_rmdir(int dfd, const char __user *pathname)
2193{
2194 int error = 0;
2195 char * name;
2196 struct dentry *dentry;
2197 struct nameidata nd;
2198
2199 error = user_path_parent(dfd, pathname, &nd, &name);
2200 if (error)
2201 return error;
2202
2203 switch(nd.last_type) {
2204 case LAST_DOTDOT:
2205 error = -ENOTEMPTY;
2206 goto exit1;
2207 case LAST_DOT:
2208 error = -EINVAL;
2209 goto exit1;
2210 case LAST_ROOT:
2211 error = -EBUSY;
2212 goto exit1;
2213 }
2214
2215 nd.flags &= ~LOOKUP_PARENT;
2216
2217 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2218 dentry = lookup_hash(&nd);
2219 error = PTR_ERR(dentry);
2220 if (IS_ERR(dentry))
2221 goto exit2;
2222 error = mnt_want_write(nd.path.mnt);
2223 if (error)
2224 goto exit3;
2225 error = security_path_rmdir(&nd.path, dentry);
2226 if (error)
2227 goto exit4;
2228 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2229exit4:
2230 mnt_drop_write(nd.path.mnt);
2231exit3:
2232 dput(dentry);
2233exit2:
2234 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2235exit1:
2236 path_put(&nd.path);
2237 putname(name);
2238 return error;
2239}
2240
2241SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2242{
2243 return do_rmdir(AT_FDCWD, pathname);
2244}
2245
2246int vfs_unlink(struct inode *dir, struct dentry *dentry)
2247{
2248 int error = may_delete(dir, dentry, 0);
2249
2250 if (error)
2251 return error;
2252
2253 if (!dir->i_op->unlink)
2254 return -EPERM;
2255
2256 vfs_dq_init(dir);
2257
2258 mutex_lock(&dentry->d_inode->i_mutex);
2259 if (d_mountpoint(dentry))
2260 error = -EBUSY;
2261 else {
2262 error = security_inode_unlink(dir, dentry);
2263 if (!error) {
2264 error = dir->i_op->unlink(dir, dentry);
2265 if (!error)
2266 dentry->d_inode->i_flags |= S_DEAD;
2267 }
2268 }
2269 mutex_unlock(&dentry->d_inode->i_mutex);
2270
2271 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2272 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2273 fsnotify_link_count(dentry->d_inode);
2274 d_delete(dentry);
2275 }
2276
2277 return error;
2278}
2279
2280/*
2281 * Make sure that the actual truncation of the file will occur outside its
2282 * directory's i_mutex. Truncate can take a long time if there is a lot of
2283 * writeout happening, and we don't want to prevent access to the directory
2284 * while waiting on the I/O.
2285 */
2286static long do_unlinkat(int dfd, const char __user *pathname)
2287{
2288 int error;
2289 char *name;
2290 struct dentry *dentry;
2291 struct nameidata nd;
2292 struct inode *inode = NULL;
2293
2294 error = user_path_parent(dfd, pathname, &nd, &name);
2295 if (error)
2296 return error;
2297
2298 error = -EISDIR;
2299 if (nd.last_type != LAST_NORM)
2300 goto exit1;
2301
2302 nd.flags &= ~LOOKUP_PARENT;
2303
2304 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2305 dentry = lookup_hash(&nd);
2306 error = PTR_ERR(dentry);
2307 if (!IS_ERR(dentry)) {
2308 /* Why not before? Because we want correct error value */
2309 if (nd.last.name[nd.last.len])
2310 goto slashes;
2311 inode = dentry->d_inode;
2312 if (inode)
2313 atomic_inc(&inode->i_count);
2314 error = mnt_want_write(nd.path.mnt);
2315 if (error)
2316 goto exit2;
2317 error = security_path_unlink(&nd.path, dentry);
2318 if (error)
2319 goto exit3;
2320 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2321exit3:
2322 mnt_drop_write(nd.path.mnt);
2323 exit2:
2324 dput(dentry);
2325 }
2326 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2327 if (inode)
2328 iput(inode); /* truncate the inode here */
2329exit1:
2330 path_put(&nd.path);
2331 putname(name);
2332 return error;
2333
2334slashes:
2335 error = !dentry->d_inode ? -ENOENT :
2336 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2337 goto exit2;
2338}
2339
2340SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2341{
2342 if ((flag & ~AT_REMOVEDIR) != 0)
2343 return -EINVAL;
2344
2345 if (flag & AT_REMOVEDIR)
2346 return do_rmdir(dfd, pathname);
2347
2348 return do_unlinkat(dfd, pathname);
2349}
2350
2351SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2352{
2353 return do_unlinkat(AT_FDCWD, pathname);
2354}
2355
2356int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2357{
2358 int error = may_create(dir, dentry);
2359
2360 if (error)
2361 return error;
2362
2363 if (!dir->i_op->symlink)
2364 return -EPERM;
2365
2366 error = security_inode_symlink(dir, dentry, oldname);
2367 if (error)
2368 return error;
2369
2370 vfs_dq_init(dir);
2371 error = dir->i_op->symlink(dir, dentry, oldname);
2372 if (!error)
2373 fsnotify_create(dir, dentry);
2374 return error;
2375}
2376
2377SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2378 int, newdfd, const char __user *, newname)
2379{
2380 int error;
2381 char *from;
2382 char *to;
2383 struct dentry *dentry;
2384 struct nameidata nd;
2385
2386 from = getname(oldname);
2387 if (IS_ERR(from))
2388 return PTR_ERR(from);
2389
2390 error = user_path_parent(newdfd, newname, &nd, &to);
2391 if (error)
2392 goto out_putname;
2393
2394 dentry = lookup_create(&nd, 0);
2395 error = PTR_ERR(dentry);
2396 if (IS_ERR(dentry))
2397 goto out_unlock;
2398
2399 error = mnt_want_write(nd.path.mnt);
2400 if (error)
2401 goto out_dput;
2402 error = security_path_symlink(&nd.path, dentry, from);
2403 if (error)
2404 goto out_drop_write;
2405 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2406out_drop_write:
2407 mnt_drop_write(nd.path.mnt);
2408out_dput:
2409 dput(dentry);
2410out_unlock:
2411 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2412 path_put(&nd.path);
2413 putname(to);
2414out_putname:
2415 putname(from);
2416 return error;
2417}
2418
2419SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2420{
2421 return sys_symlinkat(oldname, AT_FDCWD, newname);
2422}
2423
2424int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2425{
2426 struct inode *inode = old_dentry->d_inode;
2427 int error;
2428
2429 if (!inode)
2430 return -ENOENT;
2431
2432 error = may_create(dir, new_dentry);
2433 if (error)
2434 return error;
2435
2436 if (dir->i_sb != inode->i_sb)
2437 return -EXDEV;
2438
2439 /*
2440 * A link to an append-only or immutable file cannot be created.
2441 */
2442 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2443 return -EPERM;
2444 if (!dir->i_op->link)
2445 return -EPERM;
2446 if (S_ISDIR(inode->i_mode))
2447 return -EPERM;
2448
2449 error = security_inode_link(old_dentry, dir, new_dentry);
2450 if (error)
2451 return error;
2452
2453 mutex_lock(&inode->i_mutex);
2454 vfs_dq_init(dir);
2455 error = dir->i_op->link(old_dentry, dir, new_dentry);
2456 mutex_unlock(&inode->i_mutex);
2457 if (!error)
2458 fsnotify_link(dir, inode, new_dentry);
2459 return error;
2460}
2461
2462/*
2463 * Hardlinks are often used in delicate situations. We avoid
2464 * security-related surprises by not following symlinks on the
2465 * newname. --KAB
2466 *
2467 * We don't follow them on the oldname either to be compatible
2468 * with linux 2.0, and to avoid hard-linking to directories
2469 * and other special files. --ADM
2470 */
2471SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2472 int, newdfd, const char __user *, newname, int, flags)
2473{
2474 struct dentry *new_dentry;
2475 struct nameidata nd;
2476 struct path old_path;
2477 int error;
2478 char *to;
2479
2480 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2481 return -EINVAL;
2482
2483 error = user_path_at(olddfd, oldname,
2484 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2485 &old_path);
2486 if (error)
2487 return error;
2488
2489 error = user_path_parent(newdfd, newname, &nd, &to);
2490 if (error)
2491 goto out;
2492 error = -EXDEV;
2493 if (old_path.mnt != nd.path.mnt)
2494 goto out_release;
2495 new_dentry = lookup_create(&nd, 0);
2496 error = PTR_ERR(new_dentry);
2497 if (IS_ERR(new_dentry))
2498 goto out_unlock;
2499 error = mnt_want_write(nd.path.mnt);
2500 if (error)
2501 goto out_dput;
2502 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2503 if (error)
2504 goto out_drop_write;
2505 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2506out_drop_write:
2507 mnt_drop_write(nd.path.mnt);
2508out_dput:
2509 dput(new_dentry);
2510out_unlock:
2511 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2512out_release:
2513 path_put(&nd.path);
2514 putname(to);
2515out:
2516 path_put(&old_path);
2517
2518 return error;
2519}
2520
2521SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2522{
2523 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2524}
2525
2526/*
2527 * The worst of all namespace operations - renaming directory. "Perverted"
2528 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2529 * Problems:
2530 * a) we can get into loop creation. Check is done in is_subdir().
2531 * b) race potential - two innocent renames can create a loop together.
2532 * That's where 4.4 screws up. Current fix: serialization on
2533 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2534 * story.
2535 * c) we have to lock _three_ objects - parents and victim (if it exists).
2536 * And that - after we got ->i_mutex on parents (until then we don't know
2537 * whether the target exists). Solution: try to be smart with locking
2538 * order for inodes. We rely on the fact that tree topology may change
2539 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2540 * move will be locked. Thus we can rank directories by the tree
2541 * (ancestors first) and rank all non-directories after them.
2542 * That works since everybody except rename does "lock parent, lookup,
2543 * lock child" and rename is under ->s_vfs_rename_mutex.
2544 * HOWEVER, it relies on the assumption that any object with ->lookup()
2545 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2546 * we'd better make sure that there's no link(2) for them.
2547 * d) some filesystems don't support opened-but-unlinked directories,
2548 * either because of layout or because they are not ready to deal with
2549 * all cases correctly. The latter will be fixed (taking this sort of
2550 * stuff into VFS), but the former is not going away. Solution: the same
2551 * trick as in rmdir().
2552 * e) conversion from fhandle to dentry may come in the wrong moment - when
2553 * we are removing the target. Solution: we will have to grab ->i_mutex
2554 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2555 * ->i_mutex on parents, which works but leads to some truely excessive
2556 * locking].
2557 */
2558static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2559 struct inode *new_dir, struct dentry *new_dentry)
2560{
2561 int error = 0;
2562 struct inode *target;
2563
2564 /*
2565 * If we are going to change the parent - check write permissions,
2566 * we'll need to flip '..'.
2567 */
2568 if (new_dir != old_dir) {
2569 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2570 if (error)
2571 return error;
2572 }
2573
2574 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2575 if (error)
2576 return error;
2577
2578 target = new_dentry->d_inode;
2579 if (target) {
2580 mutex_lock(&target->i_mutex);
2581 dentry_unhash(new_dentry);
2582 }
2583 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2584 error = -EBUSY;
2585 else
2586 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2587 if (target) {
2588 if (!error)
2589 target->i_flags |= S_DEAD;
2590 mutex_unlock(&target->i_mutex);
2591 if (d_unhashed(new_dentry))
2592 d_rehash(new_dentry);
2593 dput(new_dentry);
2594 }
2595 if (!error)
2596 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2597 d_move(old_dentry,new_dentry);
2598 return error;
2599}
2600
2601static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2602 struct inode *new_dir, struct dentry *new_dentry)
2603{
2604 struct inode *target;
2605 int error;
2606
2607 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2608 if (error)
2609 return error;
2610
2611 dget(new_dentry);
2612 target = new_dentry->d_inode;
2613 if (target)
2614 mutex_lock(&target->i_mutex);
2615 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2616 error = -EBUSY;
2617 else
2618 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2619 if (!error) {
2620 if (target)
2621 target->i_flags |= S_DEAD;
2622 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2623 d_move(old_dentry, new_dentry);
2624 }
2625 if (target)
2626 mutex_unlock(&target->i_mutex);
2627 dput(new_dentry);
2628 return error;
2629}
2630
2631int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2632 struct inode *new_dir, struct dentry *new_dentry)
2633{
2634 int error;
2635 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2636 const char *old_name;
2637
2638 if (old_dentry->d_inode == new_dentry->d_inode)
2639 return 0;
2640
2641 error = may_delete(old_dir, old_dentry, is_dir);
2642 if (error)
2643 return error;
2644
2645 if (!new_dentry->d_inode)
2646 error = may_create(new_dir, new_dentry);
2647 else
2648 error = may_delete(new_dir, new_dentry, is_dir);
2649 if (error)
2650 return error;
2651
2652 if (!old_dir->i_op->rename)
2653 return -EPERM;
2654
2655 vfs_dq_init(old_dir);
2656 vfs_dq_init(new_dir);
2657
2658 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2659
2660 if (is_dir)
2661 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2662 else
2663 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2664 if (!error)
2665 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2666 new_dentry->d_inode, old_dentry);
2667 fsnotify_oldname_free(old_name);
2668
2669 return error;
2670}
2671
2672SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2673 int, newdfd, const char __user *, newname)
2674{
2675 struct dentry *old_dir, *new_dir;
2676 struct dentry *old_dentry, *new_dentry;
2677 struct dentry *trap;
2678 struct nameidata oldnd, newnd;
2679 char *from;
2680 char *to;
2681 int error;
2682
2683 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2684 if (error)
2685 goto exit;
2686
2687 error = user_path_parent(newdfd, newname, &newnd, &to);
2688 if (error)
2689 goto exit1;
2690
2691 error = -EXDEV;
2692 if (oldnd.path.mnt != newnd.path.mnt)
2693 goto exit2;
2694
2695 old_dir = oldnd.path.dentry;
2696 error = -EBUSY;
2697 if (oldnd.last_type != LAST_NORM)
2698 goto exit2;
2699
2700 new_dir = newnd.path.dentry;
2701 if (newnd.last_type != LAST_NORM)
2702 goto exit2;
2703
2704 oldnd.flags &= ~LOOKUP_PARENT;
2705 newnd.flags &= ~LOOKUP_PARENT;
2706 newnd.flags |= LOOKUP_RENAME_TARGET;
2707
2708 trap = lock_rename(new_dir, old_dir);
2709
2710 old_dentry = lookup_hash(&oldnd);
2711 error = PTR_ERR(old_dentry);
2712 if (IS_ERR(old_dentry))
2713 goto exit3;
2714 /* source must exist */
2715 error = -ENOENT;
2716 if (!old_dentry->d_inode)
2717 goto exit4;
2718 /* unless the source is a directory trailing slashes give -ENOTDIR */
2719 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2720 error = -ENOTDIR;
2721 if (oldnd.last.name[oldnd.last.len])
2722 goto exit4;
2723 if (newnd.last.name[newnd.last.len])
2724 goto exit4;
2725 }
2726 /* source should not be ancestor of target */
2727 error = -EINVAL;
2728 if (old_dentry == trap)
2729 goto exit4;
2730 new_dentry = lookup_hash(&newnd);
2731 error = PTR_ERR(new_dentry);
2732 if (IS_ERR(new_dentry))
2733 goto exit4;
2734 /* target should not be an ancestor of source */
2735 error = -ENOTEMPTY;
2736 if (new_dentry == trap)
2737 goto exit5;
2738
2739 error = mnt_want_write(oldnd.path.mnt);
2740 if (error)
2741 goto exit5;
2742 error = security_path_rename(&oldnd.path, old_dentry,
2743 &newnd.path, new_dentry);
2744 if (error)
2745 goto exit6;
2746 error = vfs_rename(old_dir->d_inode, old_dentry,
2747 new_dir->d_inode, new_dentry);
2748exit6:
2749 mnt_drop_write(oldnd.path.mnt);
2750exit5:
2751 dput(new_dentry);
2752exit4:
2753 dput(old_dentry);
2754exit3:
2755 unlock_rename(new_dir, old_dir);
2756exit2:
2757 path_put(&newnd.path);
2758 putname(to);
2759exit1:
2760 path_put(&oldnd.path);
2761 putname(from);
2762exit:
2763 return error;
2764}
2765
2766SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2767{
2768 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2769}
2770
2771int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2772{
2773 int len;
2774
2775 len = PTR_ERR(link);
2776 if (IS_ERR(link))
2777 goto out;
2778
2779 len = strlen(link);
2780 if (len > (unsigned) buflen)
2781 len = buflen;
2782 if (copy_to_user(buffer, link, len))
2783 len = -EFAULT;
2784out:
2785 return len;
2786}
2787
2788/*
2789 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2790 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2791 * using) it for any given inode is up to filesystem.
2792 */
2793int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2794{
2795 struct nameidata nd;
2796 void *cookie;
2797 int res;
2798
2799 nd.depth = 0;
2800 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2801 if (IS_ERR(cookie))
2802 return PTR_ERR(cookie);
2803
2804 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2805 if (dentry->d_inode->i_op->put_link)
2806 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2807 return res;
2808}
2809
2810int vfs_follow_link(struct nameidata *nd, const char *link)
2811{
2812 return __vfs_follow_link(nd, link);
2813}
2814
2815/* get the link contents into pagecache */
2816static char *page_getlink(struct dentry * dentry, struct page **ppage)
2817{
2818 char *kaddr;
2819 struct page *page;
2820 struct address_space *mapping = dentry->d_inode->i_mapping;
2821 page = read_mapping_page(mapping, 0, NULL);
2822 if (IS_ERR(page))
2823 return (char*)page;
2824 *ppage = page;
2825 kaddr = kmap(page);
2826 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2827 return kaddr;
2828}
2829
2830int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2831{
2832 struct page *page = NULL;
2833 char *s = page_getlink(dentry, &page);
2834 int res = vfs_readlink(dentry,buffer,buflen,s);
2835 if (page) {
2836 kunmap(page);
2837 page_cache_release(page);
2838 }
2839 return res;
2840}
2841
2842void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2843{
2844 struct page *page = NULL;
2845 nd_set_link(nd, page_getlink(dentry, &page));
2846 return page;
2847}
2848
2849void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2850{
2851 struct page *page = cookie;
2852
2853 if (page) {
2854 kunmap(page);
2855 page_cache_release(page);
2856 }
2857}
2858
2859/*
2860 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2861 */
2862int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2863{
2864 struct address_space *mapping = inode->i_mapping;
2865 struct page *page;
2866 void *fsdata;
2867 int err;
2868 char *kaddr;
2869 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2870 if (nofs)
2871 flags |= AOP_FLAG_NOFS;
2872
2873retry:
2874 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2875 flags, &page, &fsdata);
2876 if (err)
2877 goto fail;
2878
2879 kaddr = kmap_atomic(page, KM_USER0);
2880 memcpy(kaddr, symname, len-1);
2881 kunmap_atomic(kaddr, KM_USER0);
2882
2883 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2884 page, fsdata);
2885 if (err < 0)
2886 goto fail;
2887 if (err < len-1)
2888 goto retry;
2889
2890 mark_inode_dirty(inode);
2891 return 0;
2892fail:
2893 return err;
2894}
2895
2896int page_symlink(struct inode *inode, const char *symname, int len)
2897{
2898 return __page_symlink(inode, symname, len,
2899 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2900}
2901
2902const struct inode_operations page_symlink_inode_operations = {
2903 .readlink = generic_readlink,
2904 .follow_link = page_follow_link_light,
2905 .put_link = page_put_link,
2906};
2907
2908EXPORT_SYMBOL(user_path_at);
2909EXPORT_SYMBOL(follow_down);
2910EXPORT_SYMBOL(follow_up);
2911EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2912EXPORT_SYMBOL(getname);
2913EXPORT_SYMBOL(lock_rename);
2914EXPORT_SYMBOL(lookup_one_len);
2915EXPORT_SYMBOL(page_follow_link_light);
2916EXPORT_SYMBOL(page_put_link);
2917EXPORT_SYMBOL(page_readlink);
2918EXPORT_SYMBOL(__page_symlink);
2919EXPORT_SYMBOL(page_symlink);
2920EXPORT_SYMBOL(page_symlink_inode_operations);
2921EXPORT_SYMBOL(path_lookup);
2922EXPORT_SYMBOL(kern_path);
2923EXPORT_SYMBOL(vfs_path_lookup);
2924EXPORT_SYMBOL(inode_permission);
2925EXPORT_SYMBOL(file_permission);
2926EXPORT_SYMBOL(unlock_rename);
2927EXPORT_SYMBOL(vfs_create);
2928EXPORT_SYMBOL(vfs_follow_link);
2929EXPORT_SYMBOL(vfs_link);
2930EXPORT_SYMBOL(vfs_mkdir);
2931EXPORT_SYMBOL(vfs_mknod);
2932EXPORT_SYMBOL(generic_permission);
2933EXPORT_SYMBOL(vfs_readlink);
2934EXPORT_SYMBOL(vfs_rename);
2935EXPORT_SYMBOL(vfs_rmdir);
2936EXPORT_SYMBOL(vfs_symlink);
2937EXPORT_SYMBOL(vfs_unlink);
2938EXPORT_SYMBOL(dentry_unhash);
2939EXPORT_SYMBOL(generic_readlink);