]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame_incremental - fs/namespace.c
fs_pin: Allow for the possibility that m_list or s_list go unused.
[mirror_ubuntu-focal-kernel.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/init.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
23#include <linux/proc_ns.h>
24#include <linux/magic.h>
25#include <linux/bootmem.h>
26#include <linux/task_work.h>
27#include "pnode.h"
28#include "internal.h"
29
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
54
55static u64 event;
56static DEFINE_IDA(mnt_id_ida);
57static DEFINE_IDA(mnt_group_ida);
58static DEFINE_SPINLOCK(mnt_id_lock);
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
61
62static struct hlist_head *mount_hashtable __read_mostly;
63static struct hlist_head *mountpoint_hashtable __read_mostly;
64static struct kmem_cache *mnt_cache __read_mostly;
65static DECLARE_RWSEM(namespace_sem);
66
67/* /sys/fs */
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
70
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82{
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94}
95
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100static int mnt_alloc_id(struct mount *mnt)
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
117static void mnt_free_id(struct mount *mnt)
118{
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125}
126
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132static int mnt_alloc_group_id(struct mount *mnt)
133{
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146}
147
148/*
149 * Release a peer group ID
150 */
151void mnt_release_group_id(struct mount *mnt)
152{
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158}
159
160/*
161 * vfsmount lock must be held for read
162 */
163static inline void mnt_add_count(struct mount *mnt, int n)
164{
165#ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167#else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171#endif
172}
173
174/*
175 * vfsmount lock must be held for write
176 */
177unsigned int mnt_get_count(struct mount *mnt)
178{
179#ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188#else
189 return mnt->mnt_count;
190#endif
191}
192
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
201static struct mount *alloc_vfsmnt(const char *name)
202{
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
206
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
215 }
216
217#ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
221
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223#else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226#endif
227
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239#endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244#ifdef CONFIG_SMP
245out_free_devname:
246 kfree_const(mnt->mnt_devname);
247#endif
248out_free_id:
249 mnt_free_id(mnt);
250out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253}
254
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284static inline void mnt_inc_writers(struct mount *mnt)
285{
286#ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288#else
289 mnt->mnt_writers++;
290#endif
291}
292
293static inline void mnt_dec_writers(struct mount *mnt)
294{
295#ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297#else
298 mnt->mnt_writers--;
299#endif
300}
301
302static unsigned int mnt_get_writers(struct mount *mnt)
303{
304#ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
316}
317
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
327/*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333/**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343int __mnt_want_write(struct vfsmount *m)
344{
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425int __mnt_want_write_file(struct file *file)
426{
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452/**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
459 */
460void __mnt_drop_write(struct vfsmount *mnt)
461{
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
465}
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
493static int mnt_make_readonly(struct mount *mnt)
494{
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533}
534
535static void __mnt_unmake_readonly(struct mount *mnt)
536{
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540}
541
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576}
577
578static void free_vfsmnt(struct mount *mnt)
579{
580 kfree_const(mnt->mnt_devname);
581#ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583#endif
584 kmem_cache_free(mnt_cache, mnt);
585}
586
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
592/* call under rcu_read_lock */
593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612}
613
614/*
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
617 */
618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
619{
620 struct hlist_head *head = m_hash(mnt, dentry);
621 struct mount *p;
622
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627}
628
629/*
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
632 */
633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634{
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
641 hlist_for_each_entry_continue(p, mnt_hash) {
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
646 }
647out:
648 return res;
649}
650
651/*
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
666 */
667struct vfsmount *lookup_mnt(struct path *path)
668{
669 struct mount *child_mnt;
670 struct vfsmount *m;
671 unsigned seq;
672
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
681}
682
683/*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698bool __is_local_mountpoint(struct dentry *dentry)
699{
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 if (!d_mountpoint(dentry))
705 goto out;
706
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 up_read(&namespace_sem);
714out:
715 return is_covered;
716}
717
718static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719{
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
722
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
730 }
731 }
732 return NULL;
733}
734
735static struct mountpoint *new_mountpoint(struct dentry *dentry)
736{
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
740
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
744
745 ret = d_set_mounted(dentry);
746 if (ret) {
747 kfree(mp);
748 return ERR_PTR(ret);
749 }
750
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
753 hlist_add_head(&mp->m_hash, chain);
754 INIT_HLIST_HEAD(&mp->m_list);
755 return mp;
756}
757
758static void put_mountpoint(struct mountpoint *mp)
759{
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
762 BUG_ON(!hlist_empty(&mp->m_list));
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
766 hlist_del(&mp->m_hash);
767 kfree(mp);
768 }
769}
770
771static inline int check_mnt(struct mount *mnt)
772{
773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
774}
775
776/*
777 * vfsmount lock must be held for write
778 */
779static void touch_mnt_namespace(struct mnt_namespace *ns)
780{
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
784 }
785}
786
787/*
788 * vfsmount lock must be held for write
789 */
790static void __touch_mnt_namespace(struct mnt_namespace *ns)
791{
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
795 }
796}
797
798/*
799 * vfsmount lock must be held for write
800 */
801static void unhash_mnt(struct mount *mnt)
802{
803 mnt->mnt_parent = mnt;
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 list_del_init(&mnt->mnt_child);
806 hlist_del_init_rcu(&mnt->mnt_hash);
807 hlist_del_init(&mnt->mnt_mp_list);
808 put_mountpoint(mnt->mnt_mp);
809 mnt->mnt_mp = NULL;
810}
811
812/*
813 * vfsmount lock must be held for write
814 */
815static void detach_mnt(struct mount *mnt, struct path *old_path)
816{
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
819 unhash_mnt(mnt);
820}
821
822/*
823 * vfsmount lock must be held for write
824 */
825static void umount_mnt(struct mount *mnt)
826{
827 /* old mountpoint will be dropped when we can do that */
828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829 unhash_mnt(mnt);
830}
831
832/*
833 * vfsmount lock must be held for write
834 */
835void mnt_set_mountpoint(struct mount *mnt,
836 struct mountpoint *mp,
837 struct mount *child_mnt)
838{
839 mp->m_count++;
840 mnt_add_count(mnt, 1); /* essentially, that's mntget */
841 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842 child_mnt->mnt_parent = mnt;
843 child_mnt->mnt_mp = mp;
844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
845}
846
847/*
848 * vfsmount lock must be held for write
849 */
850static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
853{
854 mnt_set_mountpoint(parent, mp, mnt);
855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
857}
858
859static void attach_shadowed(struct mount *mnt,
860 struct mount *parent,
861 struct mount *shadows)
862{
863 if (shadows) {
864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865 list_add(&mnt->mnt_child, &shadows->mnt_child);
866 } else {
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
870 }
871}
872
873/*
874 * vfsmount lock must be held for write
875 */
876static void commit_tree(struct mount *mnt, struct mount *shadows)
877{
878 struct mount *parent = mnt->mnt_parent;
879 struct mount *m;
880 LIST_HEAD(head);
881 struct mnt_namespace *n = parent->mnt_ns;
882
883 BUG_ON(parent == mnt);
884
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
887 m->mnt_ns = n;
888
889 list_splice(&head, n->list.prev);
890
891 attach_shadowed(mnt, parent, shadows);
892 touch_mnt_namespace(n);
893}
894
895static struct mount *next_mnt(struct mount *p, struct mount *root)
896{
897 struct list_head *next = p->mnt_mounts.next;
898 if (next == &p->mnt_mounts) {
899 while (1) {
900 if (p == root)
901 return NULL;
902 next = p->mnt_child.next;
903 if (next != &p->mnt_parent->mnt_mounts)
904 break;
905 p = p->mnt_parent;
906 }
907 }
908 return list_entry(next, struct mount, mnt_child);
909}
910
911static struct mount *skip_mnt_tree(struct mount *p)
912{
913 struct list_head *prev = p->mnt_mounts.prev;
914 while (prev != &p->mnt_mounts) {
915 p = list_entry(prev, struct mount, mnt_child);
916 prev = p->mnt_mounts.prev;
917 }
918 return p;
919}
920
921struct vfsmount *
922vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
923{
924 struct mount *mnt;
925 struct dentry *root;
926
927 if (!type)
928 return ERR_PTR(-ENODEV);
929
930 mnt = alloc_vfsmnt(name);
931 if (!mnt)
932 return ERR_PTR(-ENOMEM);
933
934 if (flags & MS_KERNMOUNT)
935 mnt->mnt.mnt_flags = MNT_INTERNAL;
936
937 root = mount_fs(type, flags, name, data);
938 if (IS_ERR(root)) {
939 mnt_free_id(mnt);
940 free_vfsmnt(mnt);
941 return ERR_CAST(root);
942 }
943
944 mnt->mnt.mnt_root = root;
945 mnt->mnt.mnt_sb = root->d_sb;
946 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947 mnt->mnt_parent = mnt;
948 lock_mount_hash();
949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
950 unlock_mount_hash();
951 return &mnt->mnt;
952}
953EXPORT_SYMBOL_GPL(vfs_kern_mount);
954
955static struct mount *clone_mnt(struct mount *old, struct dentry *root,
956 int flag)
957{
958 struct super_block *sb = old->mnt.mnt_sb;
959 struct mount *mnt;
960 int err;
961
962 mnt = alloc_vfsmnt(old->mnt_devname);
963 if (!mnt)
964 return ERR_PTR(-ENOMEM);
965
966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967 mnt->mnt_group_id = 0; /* not a peer of original */
968 else
969 mnt->mnt_group_id = old->mnt_group_id;
970
971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 err = mnt_alloc_group_id(mnt);
973 if (err)
974 goto out_free;
975 }
976
977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978 /* Don't allow unprivileged users to change mount flags */
979 if (flag & CL_UNPRIVILEGED) {
980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
981
982 if (mnt->mnt.mnt_flags & MNT_READONLY)
983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
984
985 if (mnt->mnt.mnt_flags & MNT_NODEV)
986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
987
988 if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
990
991 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
993 }
994
995 /* Don't allow unprivileged users to reveal what is under a mount */
996 if ((flag & CL_UNPRIVILEGED) &&
997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998 mnt->mnt.mnt_flags |= MNT_LOCKED;
999
1000 atomic_inc(&sb->s_active);
1001 mnt->mnt.mnt_sb = sb;
1002 mnt->mnt.mnt_root = dget(root);
1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 mnt->mnt_parent = mnt;
1005 lock_mount_hash();
1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007 unlock_mount_hash();
1008
1009 if ((flag & CL_SLAVE) ||
1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 mnt->mnt_master = old;
1013 CLEAR_MNT_SHARED(mnt);
1014 } else if (!(flag & CL_PRIVATE)) {
1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 list_add(&mnt->mnt_share, &old->mnt_share);
1017 if (IS_MNT_SLAVE(old))
1018 list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 mnt->mnt_master = old->mnt_master;
1020 }
1021 if (flag & CL_MAKE_SHARED)
1022 set_mnt_shared(mnt);
1023
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag & CL_EXPIRE) {
1027 if (!list_empty(&old->mnt_expire))
1028 list_add(&mnt->mnt_expire, &old->mnt_expire);
1029 }
1030
1031 return mnt;
1032
1033 out_free:
1034 mnt_free_id(mnt);
1035 free_vfsmnt(mnt);
1036 return ERR_PTR(err);
1037}
1038
1039static void cleanup_mnt(struct mount *mnt)
1040{
1041 /*
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1046 */
1047 /*
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1050 */
1051 WARN_ON(mnt_get_writers(mnt));
1052 if (unlikely(mnt->mnt_pins.first))
1053 mnt_pin_kill(mnt);
1054 fsnotify_vfsmount_delete(&mnt->mnt);
1055 dput(mnt->mnt.mnt_root);
1056 deactivate_super(mnt->mnt.mnt_sb);
1057 mnt_free_id(mnt);
1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1059}
1060
1061static void __cleanup_mnt(struct rcu_head *head)
1062{
1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1064}
1065
1066static LLIST_HEAD(delayed_mntput_list);
1067static void delayed_mntput(struct work_struct *unused)
1068{
1069 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 struct llist_node *next;
1071
1072 for (; node; node = next) {
1073 next = llist_next(node);
1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1075 }
1076}
1077static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1078
1079static void mntput_no_expire(struct mount *mnt)
1080{
1081 rcu_read_lock();
1082 mnt_add_count(mnt, -1);
1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084 rcu_read_unlock();
1085 return;
1086 }
1087 lock_mount_hash();
1088 if (mnt_get_count(mnt)) {
1089 rcu_read_unlock();
1090 unlock_mount_hash();
1091 return;
1092 }
1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094 rcu_read_unlock();
1095 unlock_mount_hash();
1096 return;
1097 }
1098 mnt->mnt.mnt_flags |= MNT_DOOMED;
1099 rcu_read_unlock();
1100
1101 list_del(&mnt->mnt_instance);
1102 unlock_mount_hash();
1103
1104 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1105 struct task_struct *task = current;
1106 if (likely(!(task->flags & PF_KTHREAD))) {
1107 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1108 if (!task_work_add(task, &mnt->mnt_rcu, true))
1109 return;
1110 }
1111 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1112 schedule_delayed_work(&delayed_mntput_work, 1);
1113 return;
1114 }
1115 cleanup_mnt(mnt);
1116}
1117
1118void mntput(struct vfsmount *mnt)
1119{
1120 if (mnt) {
1121 struct mount *m = real_mount(mnt);
1122 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1123 if (unlikely(m->mnt_expiry_mark))
1124 m->mnt_expiry_mark = 0;
1125 mntput_no_expire(m);
1126 }
1127}
1128EXPORT_SYMBOL(mntput);
1129
1130struct vfsmount *mntget(struct vfsmount *mnt)
1131{
1132 if (mnt)
1133 mnt_add_count(real_mount(mnt), 1);
1134 return mnt;
1135}
1136EXPORT_SYMBOL(mntget);
1137
1138struct vfsmount *mnt_clone_internal(struct path *path)
1139{
1140 struct mount *p;
1141 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1142 if (IS_ERR(p))
1143 return ERR_CAST(p);
1144 p->mnt.mnt_flags |= MNT_INTERNAL;
1145 return &p->mnt;
1146}
1147
1148static inline void mangle(struct seq_file *m, const char *s)
1149{
1150 seq_escape(m, s, " \t\n\\");
1151}
1152
1153/*
1154 * Simple .show_options callback for filesystems which don't want to
1155 * implement more complex mount option showing.
1156 *
1157 * See also save_mount_options().
1158 */
1159int generic_show_options(struct seq_file *m, struct dentry *root)
1160{
1161 const char *options;
1162
1163 rcu_read_lock();
1164 options = rcu_dereference(root->d_sb->s_options);
1165
1166 if (options != NULL && options[0]) {
1167 seq_putc(m, ',');
1168 mangle(m, options);
1169 }
1170 rcu_read_unlock();
1171
1172 return 0;
1173}
1174EXPORT_SYMBOL(generic_show_options);
1175
1176/*
1177 * If filesystem uses generic_show_options(), this function should be
1178 * called from the fill_super() callback.
1179 *
1180 * The .remount_fs callback usually needs to be handled in a special
1181 * way, to make sure, that previous options are not overwritten if the
1182 * remount fails.
1183 *
1184 * Also note, that if the filesystem's .remount_fs function doesn't
1185 * reset all options to their default value, but changes only newly
1186 * given options, then the displayed options will not reflect reality
1187 * any more.
1188 */
1189void save_mount_options(struct super_block *sb, char *options)
1190{
1191 BUG_ON(sb->s_options);
1192 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1193}
1194EXPORT_SYMBOL(save_mount_options);
1195
1196void replace_mount_options(struct super_block *sb, char *options)
1197{
1198 char *old = sb->s_options;
1199 rcu_assign_pointer(sb->s_options, options);
1200 if (old) {
1201 synchronize_rcu();
1202 kfree(old);
1203 }
1204}
1205EXPORT_SYMBOL(replace_mount_options);
1206
1207#ifdef CONFIG_PROC_FS
1208/* iterator; we want it to have access to namespace_sem, thus here... */
1209static void *m_start(struct seq_file *m, loff_t *pos)
1210{
1211 struct proc_mounts *p = proc_mounts(m);
1212
1213 down_read(&namespace_sem);
1214 if (p->cached_event == p->ns->event) {
1215 void *v = p->cached_mount;
1216 if (*pos == p->cached_index)
1217 return v;
1218 if (*pos == p->cached_index + 1) {
1219 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1220 return p->cached_mount = v;
1221 }
1222 }
1223
1224 p->cached_event = p->ns->event;
1225 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1226 p->cached_index = *pos;
1227 return p->cached_mount;
1228}
1229
1230static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1231{
1232 struct proc_mounts *p = proc_mounts(m);
1233
1234 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1235 p->cached_index = *pos;
1236 return p->cached_mount;
1237}
1238
1239static void m_stop(struct seq_file *m, void *v)
1240{
1241 up_read(&namespace_sem);
1242}
1243
1244static int m_show(struct seq_file *m, void *v)
1245{
1246 struct proc_mounts *p = proc_mounts(m);
1247 struct mount *r = list_entry(v, struct mount, mnt_list);
1248 return p->show(m, &r->mnt);
1249}
1250
1251const struct seq_operations mounts_op = {
1252 .start = m_start,
1253 .next = m_next,
1254 .stop = m_stop,
1255 .show = m_show,
1256};
1257#endif /* CONFIG_PROC_FS */
1258
1259/**
1260 * may_umount_tree - check if a mount tree is busy
1261 * @mnt: root of mount tree
1262 *
1263 * This is called to check if a tree of mounts has any
1264 * open files, pwds, chroots or sub mounts that are
1265 * busy.
1266 */
1267int may_umount_tree(struct vfsmount *m)
1268{
1269 struct mount *mnt = real_mount(m);
1270 int actual_refs = 0;
1271 int minimum_refs = 0;
1272 struct mount *p;
1273 BUG_ON(!m);
1274
1275 /* write lock needed for mnt_get_count */
1276 lock_mount_hash();
1277 for (p = mnt; p; p = next_mnt(p, mnt)) {
1278 actual_refs += mnt_get_count(p);
1279 minimum_refs += 2;
1280 }
1281 unlock_mount_hash();
1282
1283 if (actual_refs > minimum_refs)
1284 return 0;
1285
1286 return 1;
1287}
1288
1289EXPORT_SYMBOL(may_umount_tree);
1290
1291/**
1292 * may_umount - check if a mount point is busy
1293 * @mnt: root of mount
1294 *
1295 * This is called to check if a mount point has any
1296 * open files, pwds, chroots or sub mounts. If the
1297 * mount has sub mounts this will return busy
1298 * regardless of whether the sub mounts are busy.
1299 *
1300 * Doesn't take quota and stuff into account. IOW, in some cases it will
1301 * give false negatives. The main reason why it's here is that we need
1302 * a non-destructive way to look for easily umountable filesystems.
1303 */
1304int may_umount(struct vfsmount *mnt)
1305{
1306 int ret = 1;
1307 down_read(&namespace_sem);
1308 lock_mount_hash();
1309 if (propagate_mount_busy(real_mount(mnt), 2))
1310 ret = 0;
1311 unlock_mount_hash();
1312 up_read(&namespace_sem);
1313 return ret;
1314}
1315
1316EXPORT_SYMBOL(may_umount);
1317
1318static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1319
1320static void namespace_unlock(void)
1321{
1322 struct hlist_head head;
1323
1324 hlist_move_list(&unmounted, &head);
1325
1326 up_write(&namespace_sem);
1327
1328 if (likely(hlist_empty(&head)))
1329 return;
1330
1331 synchronize_rcu();
1332
1333 group_pin_kill(&head);
1334}
1335
1336static inline void namespace_lock(void)
1337{
1338 down_write(&namespace_sem);
1339}
1340
1341enum umount_tree_flags {
1342 UMOUNT_SYNC = 1,
1343 UMOUNT_PROPAGATE = 2,
1344};
1345/*
1346 * mount_lock must be held
1347 * namespace_sem must be held for write
1348 */
1349static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1350{
1351 LIST_HEAD(tmp_list);
1352 struct mount *p;
1353
1354 if (how & UMOUNT_PROPAGATE)
1355 propagate_mount_unlock(mnt);
1356
1357 /* Gather the mounts to umount */
1358 for (p = mnt; p; p = next_mnt(p, mnt)) {
1359 p->mnt.mnt_flags |= MNT_UMOUNT;
1360 list_move(&p->mnt_list, &tmp_list);
1361 }
1362
1363 /* Hide the mounts from mnt_mounts */
1364 list_for_each_entry(p, &tmp_list, mnt_list) {
1365 list_del_init(&p->mnt_child);
1366 }
1367
1368 /* Add propogated mounts to the tmp_list */
1369 if (how & UMOUNT_PROPAGATE)
1370 propagate_umount(&tmp_list);
1371
1372 while (!list_empty(&tmp_list)) {
1373 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1374 list_del_init(&p->mnt_expire);
1375 list_del_init(&p->mnt_list);
1376 __touch_mnt_namespace(p->mnt_ns);
1377 p->mnt_ns = NULL;
1378 if (how & UMOUNT_SYNC)
1379 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1380
1381 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
1382 if (mnt_has_parent(p)) {
1383 mnt_add_count(p->mnt_parent, -1);
1384 umount_mnt(p);
1385 }
1386 change_mnt_propagation(p, MS_PRIVATE);
1387 }
1388}
1389
1390static void shrink_submounts(struct mount *mnt);
1391
1392static int do_umount(struct mount *mnt, int flags)
1393{
1394 struct super_block *sb = mnt->mnt.mnt_sb;
1395 int retval;
1396
1397 retval = security_sb_umount(&mnt->mnt, flags);
1398 if (retval)
1399 return retval;
1400
1401 /*
1402 * Allow userspace to request a mountpoint be expired rather than
1403 * unmounting unconditionally. Unmount only happens if:
1404 * (1) the mark is already set (the mark is cleared by mntput())
1405 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1406 */
1407 if (flags & MNT_EXPIRE) {
1408 if (&mnt->mnt == current->fs->root.mnt ||
1409 flags & (MNT_FORCE | MNT_DETACH))
1410 return -EINVAL;
1411
1412 /*
1413 * probably don't strictly need the lock here if we examined
1414 * all race cases, but it's a slowpath.
1415 */
1416 lock_mount_hash();
1417 if (mnt_get_count(mnt) != 2) {
1418 unlock_mount_hash();
1419 return -EBUSY;
1420 }
1421 unlock_mount_hash();
1422
1423 if (!xchg(&mnt->mnt_expiry_mark, 1))
1424 return -EAGAIN;
1425 }
1426
1427 /*
1428 * If we may have to abort operations to get out of this
1429 * mount, and they will themselves hold resources we must
1430 * allow the fs to do things. In the Unix tradition of
1431 * 'Gee thats tricky lets do it in userspace' the umount_begin
1432 * might fail to complete on the first run through as other tasks
1433 * must return, and the like. Thats for the mount program to worry
1434 * about for the moment.
1435 */
1436
1437 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1438 sb->s_op->umount_begin(sb);
1439 }
1440
1441 /*
1442 * No sense to grab the lock for this test, but test itself looks
1443 * somewhat bogus. Suggestions for better replacement?
1444 * Ho-hum... In principle, we might treat that as umount + switch
1445 * to rootfs. GC would eventually take care of the old vfsmount.
1446 * Actually it makes sense, especially if rootfs would contain a
1447 * /reboot - static binary that would close all descriptors and
1448 * call reboot(9). Then init(8) could umount root and exec /reboot.
1449 */
1450 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1451 /*
1452 * Special case for "unmounting" root ...
1453 * we just try to remount it readonly.
1454 */
1455 if (!capable(CAP_SYS_ADMIN))
1456 return -EPERM;
1457 down_write(&sb->s_umount);
1458 if (!(sb->s_flags & MS_RDONLY))
1459 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1460 up_write(&sb->s_umount);
1461 return retval;
1462 }
1463
1464 namespace_lock();
1465 lock_mount_hash();
1466 event++;
1467
1468 if (flags & MNT_DETACH) {
1469 if (!list_empty(&mnt->mnt_list))
1470 umount_tree(mnt, UMOUNT_PROPAGATE);
1471 retval = 0;
1472 } else {
1473 shrink_submounts(mnt);
1474 retval = -EBUSY;
1475 if (!propagate_mount_busy(mnt, 2)) {
1476 if (!list_empty(&mnt->mnt_list))
1477 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1478 retval = 0;
1479 }
1480 }
1481 unlock_mount_hash();
1482 namespace_unlock();
1483 return retval;
1484}
1485
1486/*
1487 * __detach_mounts - lazily unmount all mounts on the specified dentry
1488 *
1489 * During unlink, rmdir, and d_drop it is possible to loose the path
1490 * to an existing mountpoint, and wind up leaking the mount.
1491 * detach_mounts allows lazily unmounting those mounts instead of
1492 * leaking them.
1493 *
1494 * The caller may hold dentry->d_inode->i_mutex.
1495 */
1496void __detach_mounts(struct dentry *dentry)
1497{
1498 struct mountpoint *mp;
1499 struct mount *mnt;
1500
1501 namespace_lock();
1502 mp = lookup_mountpoint(dentry);
1503 if (!mp)
1504 goto out_unlock;
1505
1506 lock_mount_hash();
1507 while (!hlist_empty(&mp->m_list)) {
1508 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1509 umount_tree(mnt, 0);
1510 }
1511 unlock_mount_hash();
1512 put_mountpoint(mp);
1513out_unlock:
1514 namespace_unlock();
1515}
1516
1517/*
1518 * Is the caller allowed to modify his namespace?
1519 */
1520static inline bool may_mount(void)
1521{
1522 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1523}
1524
1525/*
1526 * Now umount can handle mount points as well as block devices.
1527 * This is important for filesystems which use unnamed block devices.
1528 *
1529 * We now support a flag for forced unmount like the other 'big iron'
1530 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1531 */
1532
1533SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1534{
1535 struct path path;
1536 struct mount *mnt;
1537 int retval;
1538 int lookup_flags = 0;
1539
1540 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1541 return -EINVAL;
1542
1543 if (!may_mount())
1544 return -EPERM;
1545
1546 if (!(flags & UMOUNT_NOFOLLOW))
1547 lookup_flags |= LOOKUP_FOLLOW;
1548
1549 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1550 if (retval)
1551 goto out;
1552 mnt = real_mount(path.mnt);
1553 retval = -EINVAL;
1554 if (path.dentry != path.mnt->mnt_root)
1555 goto dput_and_out;
1556 if (!check_mnt(mnt))
1557 goto dput_and_out;
1558 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1559 goto dput_and_out;
1560 retval = -EPERM;
1561 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1562 goto dput_and_out;
1563
1564 retval = do_umount(mnt, flags);
1565dput_and_out:
1566 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1567 dput(path.dentry);
1568 mntput_no_expire(mnt);
1569out:
1570 return retval;
1571}
1572
1573#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1574
1575/*
1576 * The 2.0 compatible umount. No flags.
1577 */
1578SYSCALL_DEFINE1(oldumount, char __user *, name)
1579{
1580 return sys_umount(name, 0);
1581}
1582
1583#endif
1584
1585static bool is_mnt_ns_file(struct dentry *dentry)
1586{
1587 /* Is this a proxy for a mount namespace? */
1588 return dentry->d_op == &ns_dentry_operations &&
1589 dentry->d_fsdata == &mntns_operations;
1590}
1591
1592struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1593{
1594 return container_of(ns, struct mnt_namespace, ns);
1595}
1596
1597static bool mnt_ns_loop(struct dentry *dentry)
1598{
1599 /* Could bind mounting the mount namespace inode cause a
1600 * mount namespace loop?
1601 */
1602 struct mnt_namespace *mnt_ns;
1603 if (!is_mnt_ns_file(dentry))
1604 return false;
1605
1606 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1607 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1608}
1609
1610struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1611 int flag)
1612{
1613 struct mount *res, *p, *q, *r, *parent;
1614
1615 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1616 return ERR_PTR(-EINVAL);
1617
1618 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1619 return ERR_PTR(-EINVAL);
1620
1621 res = q = clone_mnt(mnt, dentry, flag);
1622 if (IS_ERR(q))
1623 return q;
1624
1625 q->mnt_mountpoint = mnt->mnt_mountpoint;
1626
1627 p = mnt;
1628 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1629 struct mount *s;
1630 if (!is_subdir(r->mnt_mountpoint, dentry))
1631 continue;
1632
1633 for (s = r; s; s = next_mnt(s, r)) {
1634 struct mount *t = NULL;
1635 if (!(flag & CL_COPY_UNBINDABLE) &&
1636 IS_MNT_UNBINDABLE(s)) {
1637 s = skip_mnt_tree(s);
1638 continue;
1639 }
1640 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1641 is_mnt_ns_file(s->mnt.mnt_root)) {
1642 s = skip_mnt_tree(s);
1643 continue;
1644 }
1645 while (p != s->mnt_parent) {
1646 p = p->mnt_parent;
1647 q = q->mnt_parent;
1648 }
1649 p = s;
1650 parent = q;
1651 q = clone_mnt(p, p->mnt.mnt_root, flag);
1652 if (IS_ERR(q))
1653 goto out;
1654 lock_mount_hash();
1655 list_add_tail(&q->mnt_list, &res->mnt_list);
1656 mnt_set_mountpoint(parent, p->mnt_mp, q);
1657 if (!list_empty(&parent->mnt_mounts)) {
1658 t = list_last_entry(&parent->mnt_mounts,
1659 struct mount, mnt_child);
1660 if (t->mnt_mp != p->mnt_mp)
1661 t = NULL;
1662 }
1663 attach_shadowed(q, parent, t);
1664 unlock_mount_hash();
1665 }
1666 }
1667 return res;
1668out:
1669 if (res) {
1670 lock_mount_hash();
1671 umount_tree(res, UMOUNT_SYNC);
1672 unlock_mount_hash();
1673 }
1674 return q;
1675}
1676
1677/* Caller should check returned pointer for errors */
1678
1679struct vfsmount *collect_mounts(struct path *path)
1680{
1681 struct mount *tree;
1682 namespace_lock();
1683 if (!check_mnt(real_mount(path->mnt)))
1684 tree = ERR_PTR(-EINVAL);
1685 else
1686 tree = copy_tree(real_mount(path->mnt), path->dentry,
1687 CL_COPY_ALL | CL_PRIVATE);
1688 namespace_unlock();
1689 if (IS_ERR(tree))
1690 return ERR_CAST(tree);
1691 return &tree->mnt;
1692}
1693
1694void drop_collected_mounts(struct vfsmount *mnt)
1695{
1696 namespace_lock();
1697 lock_mount_hash();
1698 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1699 unlock_mount_hash();
1700 namespace_unlock();
1701}
1702
1703/**
1704 * clone_private_mount - create a private clone of a path
1705 *
1706 * This creates a new vfsmount, which will be the clone of @path. The new will
1707 * not be attached anywhere in the namespace and will be private (i.e. changes
1708 * to the originating mount won't be propagated into this).
1709 *
1710 * Release with mntput().
1711 */
1712struct vfsmount *clone_private_mount(struct path *path)
1713{
1714 struct mount *old_mnt = real_mount(path->mnt);
1715 struct mount *new_mnt;
1716
1717 if (IS_MNT_UNBINDABLE(old_mnt))
1718 return ERR_PTR(-EINVAL);
1719
1720 down_read(&namespace_sem);
1721 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1722 up_read(&namespace_sem);
1723 if (IS_ERR(new_mnt))
1724 return ERR_CAST(new_mnt);
1725
1726 return &new_mnt->mnt;
1727}
1728EXPORT_SYMBOL_GPL(clone_private_mount);
1729
1730int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1731 struct vfsmount *root)
1732{
1733 struct mount *mnt;
1734 int res = f(root, arg);
1735 if (res)
1736 return res;
1737 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1738 res = f(&mnt->mnt, arg);
1739 if (res)
1740 return res;
1741 }
1742 return 0;
1743}
1744
1745static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1746{
1747 struct mount *p;
1748
1749 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1750 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1751 mnt_release_group_id(p);
1752 }
1753}
1754
1755static int invent_group_ids(struct mount *mnt, bool recurse)
1756{
1757 struct mount *p;
1758
1759 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1760 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1761 int err = mnt_alloc_group_id(p);
1762 if (err) {
1763 cleanup_group_ids(mnt, p);
1764 return err;
1765 }
1766 }
1767 }
1768
1769 return 0;
1770}
1771
1772/*
1773 * @source_mnt : mount tree to be attached
1774 * @nd : place the mount tree @source_mnt is attached
1775 * @parent_nd : if non-null, detach the source_mnt from its parent and
1776 * store the parent mount and mountpoint dentry.
1777 * (done when source_mnt is moved)
1778 *
1779 * NOTE: in the table below explains the semantics when a source mount
1780 * of a given type is attached to a destination mount of a given type.
1781 * ---------------------------------------------------------------------------
1782 * | BIND MOUNT OPERATION |
1783 * |**************************************************************************
1784 * | source-->| shared | private | slave | unbindable |
1785 * | dest | | | | |
1786 * | | | | | | |
1787 * | v | | | | |
1788 * |**************************************************************************
1789 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1790 * | | | | | |
1791 * |non-shared| shared (+) | private | slave (*) | invalid |
1792 * ***************************************************************************
1793 * A bind operation clones the source mount and mounts the clone on the
1794 * destination mount.
1795 *
1796 * (++) the cloned mount is propagated to all the mounts in the propagation
1797 * tree of the destination mount and the cloned mount is added to
1798 * the peer group of the source mount.
1799 * (+) the cloned mount is created under the destination mount and is marked
1800 * as shared. The cloned mount is added to the peer group of the source
1801 * mount.
1802 * (+++) the mount is propagated to all the mounts in the propagation tree
1803 * of the destination mount and the cloned mount is made slave
1804 * of the same master as that of the source mount. The cloned mount
1805 * is marked as 'shared and slave'.
1806 * (*) the cloned mount is made a slave of the same master as that of the
1807 * source mount.
1808 *
1809 * ---------------------------------------------------------------------------
1810 * | MOVE MOUNT OPERATION |
1811 * |**************************************************************************
1812 * | source-->| shared | private | slave | unbindable |
1813 * | dest | | | | |
1814 * | | | | | | |
1815 * | v | | | | |
1816 * |**************************************************************************
1817 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1818 * | | | | | |
1819 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1820 * ***************************************************************************
1821 *
1822 * (+) the mount is moved to the destination. And is then propagated to
1823 * all the mounts in the propagation tree of the destination mount.
1824 * (+*) the mount is moved to the destination.
1825 * (+++) the mount is moved to the destination and is then propagated to
1826 * all the mounts belonging to the destination mount's propagation tree.
1827 * the mount is marked as 'shared and slave'.
1828 * (*) the mount continues to be a slave at the new location.
1829 *
1830 * if the source mount is a tree, the operations explained above is
1831 * applied to each mount in the tree.
1832 * Must be called without spinlocks held, since this function can sleep
1833 * in allocations.
1834 */
1835static int attach_recursive_mnt(struct mount *source_mnt,
1836 struct mount *dest_mnt,
1837 struct mountpoint *dest_mp,
1838 struct path *parent_path)
1839{
1840 HLIST_HEAD(tree_list);
1841 struct mount *child, *p;
1842 struct hlist_node *n;
1843 int err;
1844
1845 if (IS_MNT_SHARED(dest_mnt)) {
1846 err = invent_group_ids(source_mnt, true);
1847 if (err)
1848 goto out;
1849 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1850 lock_mount_hash();
1851 if (err)
1852 goto out_cleanup_ids;
1853 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1854 set_mnt_shared(p);
1855 } else {
1856 lock_mount_hash();
1857 }
1858 if (parent_path) {
1859 detach_mnt(source_mnt, parent_path);
1860 attach_mnt(source_mnt, dest_mnt, dest_mp);
1861 touch_mnt_namespace(source_mnt->mnt_ns);
1862 } else {
1863 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1864 commit_tree(source_mnt, NULL);
1865 }
1866
1867 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1868 struct mount *q;
1869 hlist_del_init(&child->mnt_hash);
1870 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1871 child->mnt_mountpoint);
1872 commit_tree(child, q);
1873 }
1874 unlock_mount_hash();
1875
1876 return 0;
1877
1878 out_cleanup_ids:
1879 while (!hlist_empty(&tree_list)) {
1880 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1881 umount_tree(child, UMOUNT_SYNC);
1882 }
1883 unlock_mount_hash();
1884 cleanup_group_ids(source_mnt, NULL);
1885 out:
1886 return err;
1887}
1888
1889static struct mountpoint *lock_mount(struct path *path)
1890{
1891 struct vfsmount *mnt;
1892 struct dentry *dentry = path->dentry;
1893retry:
1894 mutex_lock(&dentry->d_inode->i_mutex);
1895 if (unlikely(cant_mount(dentry))) {
1896 mutex_unlock(&dentry->d_inode->i_mutex);
1897 return ERR_PTR(-ENOENT);
1898 }
1899 namespace_lock();
1900 mnt = lookup_mnt(path);
1901 if (likely(!mnt)) {
1902 struct mountpoint *mp = lookup_mountpoint(dentry);
1903 if (!mp)
1904 mp = new_mountpoint(dentry);
1905 if (IS_ERR(mp)) {
1906 namespace_unlock();
1907 mutex_unlock(&dentry->d_inode->i_mutex);
1908 return mp;
1909 }
1910 return mp;
1911 }
1912 namespace_unlock();
1913 mutex_unlock(&path->dentry->d_inode->i_mutex);
1914 path_put(path);
1915 path->mnt = mnt;
1916 dentry = path->dentry = dget(mnt->mnt_root);
1917 goto retry;
1918}
1919
1920static void unlock_mount(struct mountpoint *where)
1921{
1922 struct dentry *dentry = where->m_dentry;
1923 put_mountpoint(where);
1924 namespace_unlock();
1925 mutex_unlock(&dentry->d_inode->i_mutex);
1926}
1927
1928static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1929{
1930 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1931 return -EINVAL;
1932
1933 if (d_is_dir(mp->m_dentry) !=
1934 d_is_dir(mnt->mnt.mnt_root))
1935 return -ENOTDIR;
1936
1937 return attach_recursive_mnt(mnt, p, mp, NULL);
1938}
1939
1940/*
1941 * Sanity check the flags to change_mnt_propagation.
1942 */
1943
1944static int flags_to_propagation_type(int flags)
1945{
1946 int type = flags & ~(MS_REC | MS_SILENT);
1947
1948 /* Fail if any non-propagation flags are set */
1949 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1950 return 0;
1951 /* Only one propagation flag should be set */
1952 if (!is_power_of_2(type))
1953 return 0;
1954 return type;
1955}
1956
1957/*
1958 * recursively change the type of the mountpoint.
1959 */
1960static int do_change_type(struct path *path, int flag)
1961{
1962 struct mount *m;
1963 struct mount *mnt = real_mount(path->mnt);
1964 int recurse = flag & MS_REC;
1965 int type;
1966 int err = 0;
1967
1968 if (path->dentry != path->mnt->mnt_root)
1969 return -EINVAL;
1970
1971 type = flags_to_propagation_type(flag);
1972 if (!type)
1973 return -EINVAL;
1974
1975 namespace_lock();
1976 if (type == MS_SHARED) {
1977 err = invent_group_ids(mnt, recurse);
1978 if (err)
1979 goto out_unlock;
1980 }
1981
1982 lock_mount_hash();
1983 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1984 change_mnt_propagation(m, type);
1985 unlock_mount_hash();
1986
1987 out_unlock:
1988 namespace_unlock();
1989 return err;
1990}
1991
1992static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1993{
1994 struct mount *child;
1995 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1996 if (!is_subdir(child->mnt_mountpoint, dentry))
1997 continue;
1998
1999 if (child->mnt.mnt_flags & MNT_LOCKED)
2000 return true;
2001 }
2002 return false;
2003}
2004
2005/*
2006 * do loopback mount.
2007 */
2008static int do_loopback(struct path *path, const char *old_name,
2009 int recurse)
2010{
2011 struct path old_path;
2012 struct mount *mnt = NULL, *old, *parent;
2013 struct mountpoint *mp;
2014 int err;
2015 if (!old_name || !*old_name)
2016 return -EINVAL;
2017 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2018 if (err)
2019 return err;
2020
2021 err = -EINVAL;
2022 if (mnt_ns_loop(old_path.dentry))
2023 goto out;
2024
2025 mp = lock_mount(path);
2026 err = PTR_ERR(mp);
2027 if (IS_ERR(mp))
2028 goto out;
2029
2030 old = real_mount(old_path.mnt);
2031 parent = real_mount(path->mnt);
2032
2033 err = -EINVAL;
2034 if (IS_MNT_UNBINDABLE(old))
2035 goto out2;
2036
2037 if (!check_mnt(parent))
2038 goto out2;
2039
2040 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2041 goto out2;
2042
2043 if (!recurse && has_locked_children(old, old_path.dentry))
2044 goto out2;
2045
2046 if (recurse)
2047 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2048 else
2049 mnt = clone_mnt(old, old_path.dentry, 0);
2050
2051 if (IS_ERR(mnt)) {
2052 err = PTR_ERR(mnt);
2053 goto out2;
2054 }
2055
2056 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2057
2058 err = graft_tree(mnt, parent, mp);
2059 if (err) {
2060 lock_mount_hash();
2061 umount_tree(mnt, UMOUNT_SYNC);
2062 unlock_mount_hash();
2063 }
2064out2:
2065 unlock_mount(mp);
2066out:
2067 path_put(&old_path);
2068 return err;
2069}
2070
2071static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2072{
2073 int error = 0;
2074 int readonly_request = 0;
2075
2076 if (ms_flags & MS_RDONLY)
2077 readonly_request = 1;
2078 if (readonly_request == __mnt_is_readonly(mnt))
2079 return 0;
2080
2081 if (readonly_request)
2082 error = mnt_make_readonly(real_mount(mnt));
2083 else
2084 __mnt_unmake_readonly(real_mount(mnt));
2085 return error;
2086}
2087
2088/*
2089 * change filesystem flags. dir should be a physical root of filesystem.
2090 * If you've mounted a non-root directory somewhere and want to do remount
2091 * on it - tough luck.
2092 */
2093static int do_remount(struct path *path, int flags, int mnt_flags,
2094 void *data)
2095{
2096 int err;
2097 struct super_block *sb = path->mnt->mnt_sb;
2098 struct mount *mnt = real_mount(path->mnt);
2099
2100 if (!check_mnt(mnt))
2101 return -EINVAL;
2102
2103 if (path->dentry != path->mnt->mnt_root)
2104 return -EINVAL;
2105
2106 /* Don't allow changing of locked mnt flags.
2107 *
2108 * No locks need to be held here while testing the various
2109 * MNT_LOCK flags because those flags can never be cleared
2110 * once they are set.
2111 */
2112 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2113 !(mnt_flags & MNT_READONLY)) {
2114 return -EPERM;
2115 }
2116 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2117 !(mnt_flags & MNT_NODEV)) {
2118 /* Was the nodev implicitly added in mount? */
2119 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2120 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2121 mnt_flags |= MNT_NODEV;
2122 } else {
2123 return -EPERM;
2124 }
2125 }
2126 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2127 !(mnt_flags & MNT_NOSUID)) {
2128 return -EPERM;
2129 }
2130 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2131 !(mnt_flags & MNT_NOEXEC)) {
2132 return -EPERM;
2133 }
2134 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2135 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2136 return -EPERM;
2137 }
2138
2139 err = security_sb_remount(sb, data);
2140 if (err)
2141 return err;
2142
2143 down_write(&sb->s_umount);
2144 if (flags & MS_BIND)
2145 err = change_mount_flags(path->mnt, flags);
2146 else if (!capable(CAP_SYS_ADMIN))
2147 err = -EPERM;
2148 else
2149 err = do_remount_sb(sb, flags, data, 0);
2150 if (!err) {
2151 lock_mount_hash();
2152 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2153 mnt->mnt.mnt_flags = mnt_flags;
2154 touch_mnt_namespace(mnt->mnt_ns);
2155 unlock_mount_hash();
2156 }
2157 up_write(&sb->s_umount);
2158 return err;
2159}
2160
2161static inline int tree_contains_unbindable(struct mount *mnt)
2162{
2163 struct mount *p;
2164 for (p = mnt; p; p = next_mnt(p, mnt)) {
2165 if (IS_MNT_UNBINDABLE(p))
2166 return 1;
2167 }
2168 return 0;
2169}
2170
2171static int do_move_mount(struct path *path, const char *old_name)
2172{
2173 struct path old_path, parent_path;
2174 struct mount *p;
2175 struct mount *old;
2176 struct mountpoint *mp;
2177 int err;
2178 if (!old_name || !*old_name)
2179 return -EINVAL;
2180 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2181 if (err)
2182 return err;
2183
2184 mp = lock_mount(path);
2185 err = PTR_ERR(mp);
2186 if (IS_ERR(mp))
2187 goto out;
2188
2189 old = real_mount(old_path.mnt);
2190 p = real_mount(path->mnt);
2191
2192 err = -EINVAL;
2193 if (!check_mnt(p) || !check_mnt(old))
2194 goto out1;
2195
2196 if (old->mnt.mnt_flags & MNT_LOCKED)
2197 goto out1;
2198
2199 err = -EINVAL;
2200 if (old_path.dentry != old_path.mnt->mnt_root)
2201 goto out1;
2202
2203 if (!mnt_has_parent(old))
2204 goto out1;
2205
2206 if (d_is_dir(path->dentry) !=
2207 d_is_dir(old_path.dentry))
2208 goto out1;
2209 /*
2210 * Don't move a mount residing in a shared parent.
2211 */
2212 if (IS_MNT_SHARED(old->mnt_parent))
2213 goto out1;
2214 /*
2215 * Don't move a mount tree containing unbindable mounts to a destination
2216 * mount which is shared.
2217 */
2218 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2219 goto out1;
2220 err = -ELOOP;
2221 for (; mnt_has_parent(p); p = p->mnt_parent)
2222 if (p == old)
2223 goto out1;
2224
2225 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2226 if (err)
2227 goto out1;
2228
2229 /* if the mount is moved, it should no longer be expire
2230 * automatically */
2231 list_del_init(&old->mnt_expire);
2232out1:
2233 unlock_mount(mp);
2234out:
2235 if (!err)
2236 path_put(&parent_path);
2237 path_put(&old_path);
2238 return err;
2239}
2240
2241static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2242{
2243 int err;
2244 const char *subtype = strchr(fstype, '.');
2245 if (subtype) {
2246 subtype++;
2247 err = -EINVAL;
2248 if (!subtype[0])
2249 goto err;
2250 } else
2251 subtype = "";
2252
2253 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2254 err = -ENOMEM;
2255 if (!mnt->mnt_sb->s_subtype)
2256 goto err;
2257 return mnt;
2258
2259 err:
2260 mntput(mnt);
2261 return ERR_PTR(err);
2262}
2263
2264/*
2265 * add a mount into a namespace's mount tree
2266 */
2267static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2268{
2269 struct mountpoint *mp;
2270 struct mount *parent;
2271 int err;
2272
2273 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2274
2275 mp = lock_mount(path);
2276 if (IS_ERR(mp))
2277 return PTR_ERR(mp);
2278
2279 parent = real_mount(path->mnt);
2280 err = -EINVAL;
2281 if (unlikely(!check_mnt(parent))) {
2282 /* that's acceptable only for automounts done in private ns */
2283 if (!(mnt_flags & MNT_SHRINKABLE))
2284 goto unlock;
2285 /* ... and for those we'd better have mountpoint still alive */
2286 if (!parent->mnt_ns)
2287 goto unlock;
2288 }
2289
2290 /* Refuse the same filesystem on the same mount point */
2291 err = -EBUSY;
2292 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2293 path->mnt->mnt_root == path->dentry)
2294 goto unlock;
2295
2296 err = -EINVAL;
2297 if (d_is_symlink(newmnt->mnt.mnt_root))
2298 goto unlock;
2299
2300 newmnt->mnt.mnt_flags = mnt_flags;
2301 err = graft_tree(newmnt, parent, mp);
2302
2303unlock:
2304 unlock_mount(mp);
2305 return err;
2306}
2307
2308/*
2309 * create a new mount for userspace and request it to be added into the
2310 * namespace's tree
2311 */
2312static int do_new_mount(struct path *path, const char *fstype, int flags,
2313 int mnt_flags, const char *name, void *data)
2314{
2315 struct file_system_type *type;
2316 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2317 struct vfsmount *mnt;
2318 int err;
2319
2320 if (!fstype)
2321 return -EINVAL;
2322
2323 type = get_fs_type(fstype);
2324 if (!type)
2325 return -ENODEV;
2326
2327 if (user_ns != &init_user_ns) {
2328 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2329 put_filesystem(type);
2330 return -EPERM;
2331 }
2332 /* Only in special cases allow devices from mounts
2333 * created outside the initial user namespace.
2334 */
2335 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2336 flags |= MS_NODEV;
2337 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2338 }
2339 }
2340
2341 mnt = vfs_kern_mount(type, flags, name, data);
2342 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2343 !mnt->mnt_sb->s_subtype)
2344 mnt = fs_set_subtype(mnt, fstype);
2345
2346 put_filesystem(type);
2347 if (IS_ERR(mnt))
2348 return PTR_ERR(mnt);
2349
2350 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2351 if (err)
2352 mntput(mnt);
2353 return err;
2354}
2355
2356int finish_automount(struct vfsmount *m, struct path *path)
2357{
2358 struct mount *mnt = real_mount(m);
2359 int err;
2360 /* The new mount record should have at least 2 refs to prevent it being
2361 * expired before we get a chance to add it
2362 */
2363 BUG_ON(mnt_get_count(mnt) < 2);
2364
2365 if (m->mnt_sb == path->mnt->mnt_sb &&
2366 m->mnt_root == path->dentry) {
2367 err = -ELOOP;
2368 goto fail;
2369 }
2370
2371 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2372 if (!err)
2373 return 0;
2374fail:
2375 /* remove m from any expiration list it may be on */
2376 if (!list_empty(&mnt->mnt_expire)) {
2377 namespace_lock();
2378 list_del_init(&mnt->mnt_expire);
2379 namespace_unlock();
2380 }
2381 mntput(m);
2382 mntput(m);
2383 return err;
2384}
2385
2386/**
2387 * mnt_set_expiry - Put a mount on an expiration list
2388 * @mnt: The mount to list.
2389 * @expiry_list: The list to add the mount to.
2390 */
2391void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2392{
2393 namespace_lock();
2394
2395 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2396
2397 namespace_unlock();
2398}
2399EXPORT_SYMBOL(mnt_set_expiry);
2400
2401/*
2402 * process a list of expirable mountpoints with the intent of discarding any
2403 * mountpoints that aren't in use and haven't been touched since last we came
2404 * here
2405 */
2406void mark_mounts_for_expiry(struct list_head *mounts)
2407{
2408 struct mount *mnt, *next;
2409 LIST_HEAD(graveyard);
2410
2411 if (list_empty(mounts))
2412 return;
2413
2414 namespace_lock();
2415 lock_mount_hash();
2416
2417 /* extract from the expiration list every vfsmount that matches the
2418 * following criteria:
2419 * - only referenced by its parent vfsmount
2420 * - still marked for expiry (marked on the last call here; marks are
2421 * cleared by mntput())
2422 */
2423 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2424 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2425 propagate_mount_busy(mnt, 1))
2426 continue;
2427 list_move(&mnt->mnt_expire, &graveyard);
2428 }
2429 while (!list_empty(&graveyard)) {
2430 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2431 touch_mnt_namespace(mnt->mnt_ns);
2432 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2433 }
2434 unlock_mount_hash();
2435 namespace_unlock();
2436}
2437
2438EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2439
2440/*
2441 * Ripoff of 'select_parent()'
2442 *
2443 * search the list of submounts for a given mountpoint, and move any
2444 * shrinkable submounts to the 'graveyard' list.
2445 */
2446static int select_submounts(struct mount *parent, struct list_head *graveyard)
2447{
2448 struct mount *this_parent = parent;
2449 struct list_head *next;
2450 int found = 0;
2451
2452repeat:
2453 next = this_parent->mnt_mounts.next;
2454resume:
2455 while (next != &this_parent->mnt_mounts) {
2456 struct list_head *tmp = next;
2457 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2458
2459 next = tmp->next;
2460 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2461 continue;
2462 /*
2463 * Descend a level if the d_mounts list is non-empty.
2464 */
2465 if (!list_empty(&mnt->mnt_mounts)) {
2466 this_parent = mnt;
2467 goto repeat;
2468 }
2469
2470 if (!propagate_mount_busy(mnt, 1)) {
2471 list_move_tail(&mnt->mnt_expire, graveyard);
2472 found++;
2473 }
2474 }
2475 /*
2476 * All done at this level ... ascend and resume the search
2477 */
2478 if (this_parent != parent) {
2479 next = this_parent->mnt_child.next;
2480 this_parent = this_parent->mnt_parent;
2481 goto resume;
2482 }
2483 return found;
2484}
2485
2486/*
2487 * process a list of expirable mountpoints with the intent of discarding any
2488 * submounts of a specific parent mountpoint
2489 *
2490 * mount_lock must be held for write
2491 */
2492static void shrink_submounts(struct mount *mnt)
2493{
2494 LIST_HEAD(graveyard);
2495 struct mount *m;
2496
2497 /* extract submounts of 'mountpoint' from the expiration list */
2498 while (select_submounts(mnt, &graveyard)) {
2499 while (!list_empty(&graveyard)) {
2500 m = list_first_entry(&graveyard, struct mount,
2501 mnt_expire);
2502 touch_mnt_namespace(m->mnt_ns);
2503 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2504 }
2505 }
2506}
2507
2508/*
2509 * Some copy_from_user() implementations do not return the exact number of
2510 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2511 * Note that this function differs from copy_from_user() in that it will oops
2512 * on bad values of `to', rather than returning a short copy.
2513 */
2514static long exact_copy_from_user(void *to, const void __user * from,
2515 unsigned long n)
2516{
2517 char *t = to;
2518 const char __user *f = from;
2519 char c;
2520
2521 if (!access_ok(VERIFY_READ, from, n))
2522 return n;
2523
2524 while (n) {
2525 if (__get_user(c, f)) {
2526 memset(t, 0, n);
2527 break;
2528 }
2529 *t++ = c;
2530 f++;
2531 n--;
2532 }
2533 return n;
2534}
2535
2536int copy_mount_options(const void __user * data, unsigned long *where)
2537{
2538 int i;
2539 unsigned long page;
2540 unsigned long size;
2541
2542 *where = 0;
2543 if (!data)
2544 return 0;
2545
2546 if (!(page = __get_free_page(GFP_KERNEL)))
2547 return -ENOMEM;
2548
2549 /* We only care that *some* data at the address the user
2550 * gave us is valid. Just in case, we'll zero
2551 * the remainder of the page.
2552 */
2553 /* copy_from_user cannot cross TASK_SIZE ! */
2554 size = TASK_SIZE - (unsigned long)data;
2555 if (size > PAGE_SIZE)
2556 size = PAGE_SIZE;
2557
2558 i = size - exact_copy_from_user((void *)page, data, size);
2559 if (!i) {
2560 free_page(page);
2561 return -EFAULT;
2562 }
2563 if (i != PAGE_SIZE)
2564 memset((char *)page + i, 0, PAGE_SIZE - i);
2565 *where = page;
2566 return 0;
2567}
2568
2569char *copy_mount_string(const void __user *data)
2570{
2571 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2572}
2573
2574/*
2575 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2576 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2577 *
2578 * data is a (void *) that can point to any structure up to
2579 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2580 * information (or be NULL).
2581 *
2582 * Pre-0.97 versions of mount() didn't have a flags word.
2583 * When the flags word was introduced its top half was required
2584 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2585 * Therefore, if this magic number is present, it carries no information
2586 * and must be discarded.
2587 */
2588long do_mount(const char *dev_name, const char __user *dir_name,
2589 const char *type_page, unsigned long flags, void *data_page)
2590{
2591 struct path path;
2592 int retval = 0;
2593 int mnt_flags = 0;
2594
2595 /* Discard magic */
2596 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2597 flags &= ~MS_MGC_MSK;
2598
2599 /* Basic sanity checks */
2600 if (data_page)
2601 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2602
2603 /* ... and get the mountpoint */
2604 retval = user_path(dir_name, &path);
2605 if (retval)
2606 return retval;
2607
2608 retval = security_sb_mount(dev_name, &path,
2609 type_page, flags, data_page);
2610 if (!retval && !may_mount())
2611 retval = -EPERM;
2612 if (retval)
2613 goto dput_out;
2614
2615 /* Default to relatime unless overriden */
2616 if (!(flags & MS_NOATIME))
2617 mnt_flags |= MNT_RELATIME;
2618
2619 /* Separate the per-mountpoint flags */
2620 if (flags & MS_NOSUID)
2621 mnt_flags |= MNT_NOSUID;
2622 if (flags & MS_NODEV)
2623 mnt_flags |= MNT_NODEV;
2624 if (flags & MS_NOEXEC)
2625 mnt_flags |= MNT_NOEXEC;
2626 if (flags & MS_NOATIME)
2627 mnt_flags |= MNT_NOATIME;
2628 if (flags & MS_NODIRATIME)
2629 mnt_flags |= MNT_NODIRATIME;
2630 if (flags & MS_STRICTATIME)
2631 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2632 if (flags & MS_RDONLY)
2633 mnt_flags |= MNT_READONLY;
2634
2635 /* The default atime for remount is preservation */
2636 if ((flags & MS_REMOUNT) &&
2637 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2638 MS_STRICTATIME)) == 0)) {
2639 mnt_flags &= ~MNT_ATIME_MASK;
2640 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2641 }
2642
2643 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2644 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2645 MS_STRICTATIME);
2646
2647 if (flags & MS_REMOUNT)
2648 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2649 data_page);
2650 else if (flags & MS_BIND)
2651 retval = do_loopback(&path, dev_name, flags & MS_REC);
2652 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2653 retval = do_change_type(&path, flags);
2654 else if (flags & MS_MOVE)
2655 retval = do_move_mount(&path, dev_name);
2656 else
2657 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2658 dev_name, data_page);
2659dput_out:
2660 path_put(&path);
2661 return retval;
2662}
2663
2664static void free_mnt_ns(struct mnt_namespace *ns)
2665{
2666 ns_free_inum(&ns->ns);
2667 put_user_ns(ns->user_ns);
2668 kfree(ns);
2669}
2670
2671/*
2672 * Assign a sequence number so we can detect when we attempt to bind
2673 * mount a reference to an older mount namespace into the current
2674 * mount namespace, preventing reference counting loops. A 64bit
2675 * number incrementing at 10Ghz will take 12,427 years to wrap which
2676 * is effectively never, so we can ignore the possibility.
2677 */
2678static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2679
2680static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2681{
2682 struct mnt_namespace *new_ns;
2683 int ret;
2684
2685 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2686 if (!new_ns)
2687 return ERR_PTR(-ENOMEM);
2688 ret = ns_alloc_inum(&new_ns->ns);
2689 if (ret) {
2690 kfree(new_ns);
2691 return ERR_PTR(ret);
2692 }
2693 new_ns->ns.ops = &mntns_operations;
2694 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2695 atomic_set(&new_ns->count, 1);
2696 new_ns->root = NULL;
2697 INIT_LIST_HEAD(&new_ns->list);
2698 init_waitqueue_head(&new_ns->poll);
2699 new_ns->event = 0;
2700 new_ns->user_ns = get_user_ns(user_ns);
2701 return new_ns;
2702}
2703
2704struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2705 struct user_namespace *user_ns, struct fs_struct *new_fs)
2706{
2707 struct mnt_namespace *new_ns;
2708 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2709 struct mount *p, *q;
2710 struct mount *old;
2711 struct mount *new;
2712 int copy_flags;
2713
2714 BUG_ON(!ns);
2715
2716 if (likely(!(flags & CLONE_NEWNS))) {
2717 get_mnt_ns(ns);
2718 return ns;
2719 }
2720
2721 old = ns->root;
2722
2723 new_ns = alloc_mnt_ns(user_ns);
2724 if (IS_ERR(new_ns))
2725 return new_ns;
2726
2727 namespace_lock();
2728 /* First pass: copy the tree topology */
2729 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2730 if (user_ns != ns->user_ns)
2731 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2732 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2733 if (IS_ERR(new)) {
2734 namespace_unlock();
2735 free_mnt_ns(new_ns);
2736 return ERR_CAST(new);
2737 }
2738 new_ns->root = new;
2739 list_add_tail(&new_ns->list, &new->mnt_list);
2740
2741 /*
2742 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2743 * as belonging to new namespace. We have already acquired a private
2744 * fs_struct, so tsk->fs->lock is not needed.
2745 */
2746 p = old;
2747 q = new;
2748 while (p) {
2749 q->mnt_ns = new_ns;
2750 if (new_fs) {
2751 if (&p->mnt == new_fs->root.mnt) {
2752 new_fs->root.mnt = mntget(&q->mnt);
2753 rootmnt = &p->mnt;
2754 }
2755 if (&p->mnt == new_fs->pwd.mnt) {
2756 new_fs->pwd.mnt = mntget(&q->mnt);
2757 pwdmnt = &p->mnt;
2758 }
2759 }
2760 p = next_mnt(p, old);
2761 q = next_mnt(q, new);
2762 if (!q)
2763 break;
2764 while (p->mnt.mnt_root != q->mnt.mnt_root)
2765 p = next_mnt(p, old);
2766 }
2767 namespace_unlock();
2768
2769 if (rootmnt)
2770 mntput(rootmnt);
2771 if (pwdmnt)
2772 mntput(pwdmnt);
2773
2774 return new_ns;
2775}
2776
2777/**
2778 * create_mnt_ns - creates a private namespace and adds a root filesystem
2779 * @mnt: pointer to the new root filesystem mountpoint
2780 */
2781static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2782{
2783 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2784 if (!IS_ERR(new_ns)) {
2785 struct mount *mnt = real_mount(m);
2786 mnt->mnt_ns = new_ns;
2787 new_ns->root = mnt;
2788 list_add(&mnt->mnt_list, &new_ns->list);
2789 } else {
2790 mntput(m);
2791 }
2792 return new_ns;
2793}
2794
2795struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2796{
2797 struct mnt_namespace *ns;
2798 struct super_block *s;
2799 struct path path;
2800 int err;
2801
2802 ns = create_mnt_ns(mnt);
2803 if (IS_ERR(ns))
2804 return ERR_CAST(ns);
2805
2806 err = vfs_path_lookup(mnt->mnt_root, mnt,
2807 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2808
2809 put_mnt_ns(ns);
2810
2811 if (err)
2812 return ERR_PTR(err);
2813
2814 /* trade a vfsmount reference for active sb one */
2815 s = path.mnt->mnt_sb;
2816 atomic_inc(&s->s_active);
2817 mntput(path.mnt);
2818 /* lock the sucker */
2819 down_write(&s->s_umount);
2820 /* ... and return the root of (sub)tree on it */
2821 return path.dentry;
2822}
2823EXPORT_SYMBOL(mount_subtree);
2824
2825SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2826 char __user *, type, unsigned long, flags, void __user *, data)
2827{
2828 int ret;
2829 char *kernel_type;
2830 char *kernel_dev;
2831 unsigned long data_page;
2832
2833 kernel_type = copy_mount_string(type);
2834 ret = PTR_ERR(kernel_type);
2835 if (IS_ERR(kernel_type))
2836 goto out_type;
2837
2838 kernel_dev = copy_mount_string(dev_name);
2839 ret = PTR_ERR(kernel_dev);
2840 if (IS_ERR(kernel_dev))
2841 goto out_dev;
2842
2843 ret = copy_mount_options(data, &data_page);
2844 if (ret < 0)
2845 goto out_data;
2846
2847 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2848 (void *) data_page);
2849
2850 free_page(data_page);
2851out_data:
2852 kfree(kernel_dev);
2853out_dev:
2854 kfree(kernel_type);
2855out_type:
2856 return ret;
2857}
2858
2859/*
2860 * Return true if path is reachable from root
2861 *
2862 * namespace_sem or mount_lock is held
2863 */
2864bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2865 const struct path *root)
2866{
2867 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2868 dentry = mnt->mnt_mountpoint;
2869 mnt = mnt->mnt_parent;
2870 }
2871 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2872}
2873
2874int path_is_under(struct path *path1, struct path *path2)
2875{
2876 int res;
2877 read_seqlock_excl(&mount_lock);
2878 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2879 read_sequnlock_excl(&mount_lock);
2880 return res;
2881}
2882EXPORT_SYMBOL(path_is_under);
2883
2884/*
2885 * pivot_root Semantics:
2886 * Moves the root file system of the current process to the directory put_old,
2887 * makes new_root as the new root file system of the current process, and sets
2888 * root/cwd of all processes which had them on the current root to new_root.
2889 *
2890 * Restrictions:
2891 * The new_root and put_old must be directories, and must not be on the
2892 * same file system as the current process root. The put_old must be
2893 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2894 * pointed to by put_old must yield the same directory as new_root. No other
2895 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2896 *
2897 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2898 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2899 * in this situation.
2900 *
2901 * Notes:
2902 * - we don't move root/cwd if they are not at the root (reason: if something
2903 * cared enough to change them, it's probably wrong to force them elsewhere)
2904 * - it's okay to pick a root that isn't the root of a file system, e.g.
2905 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2906 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2907 * first.
2908 */
2909SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2910 const char __user *, put_old)
2911{
2912 struct path new, old, parent_path, root_parent, root;
2913 struct mount *new_mnt, *root_mnt, *old_mnt;
2914 struct mountpoint *old_mp, *root_mp;
2915 int error;
2916
2917 if (!may_mount())
2918 return -EPERM;
2919
2920 error = user_path_dir(new_root, &new);
2921 if (error)
2922 goto out0;
2923
2924 error = user_path_dir(put_old, &old);
2925 if (error)
2926 goto out1;
2927
2928 error = security_sb_pivotroot(&old, &new);
2929 if (error)
2930 goto out2;
2931
2932 get_fs_root(current->fs, &root);
2933 old_mp = lock_mount(&old);
2934 error = PTR_ERR(old_mp);
2935 if (IS_ERR(old_mp))
2936 goto out3;
2937
2938 error = -EINVAL;
2939 new_mnt = real_mount(new.mnt);
2940 root_mnt = real_mount(root.mnt);
2941 old_mnt = real_mount(old.mnt);
2942 if (IS_MNT_SHARED(old_mnt) ||
2943 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2944 IS_MNT_SHARED(root_mnt->mnt_parent))
2945 goto out4;
2946 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2947 goto out4;
2948 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2949 goto out4;
2950 error = -ENOENT;
2951 if (d_unlinked(new.dentry))
2952 goto out4;
2953 error = -EBUSY;
2954 if (new_mnt == root_mnt || old_mnt == root_mnt)
2955 goto out4; /* loop, on the same file system */
2956 error = -EINVAL;
2957 if (root.mnt->mnt_root != root.dentry)
2958 goto out4; /* not a mountpoint */
2959 if (!mnt_has_parent(root_mnt))
2960 goto out4; /* not attached */
2961 root_mp = root_mnt->mnt_mp;
2962 if (new.mnt->mnt_root != new.dentry)
2963 goto out4; /* not a mountpoint */
2964 if (!mnt_has_parent(new_mnt))
2965 goto out4; /* not attached */
2966 /* make sure we can reach put_old from new_root */
2967 if (!is_path_reachable(old_mnt, old.dentry, &new))
2968 goto out4;
2969 /* make certain new is below the root */
2970 if (!is_path_reachable(new_mnt, new.dentry, &root))
2971 goto out4;
2972 root_mp->m_count++; /* pin it so it won't go away */
2973 lock_mount_hash();
2974 detach_mnt(new_mnt, &parent_path);
2975 detach_mnt(root_mnt, &root_parent);
2976 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2977 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2978 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2979 }
2980 /* mount old root on put_old */
2981 attach_mnt(root_mnt, old_mnt, old_mp);
2982 /* mount new_root on / */
2983 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2984 touch_mnt_namespace(current->nsproxy->mnt_ns);
2985 /* A moved mount should not expire automatically */
2986 list_del_init(&new_mnt->mnt_expire);
2987 unlock_mount_hash();
2988 chroot_fs_refs(&root, &new);
2989 put_mountpoint(root_mp);
2990 error = 0;
2991out4:
2992 unlock_mount(old_mp);
2993 if (!error) {
2994 path_put(&root_parent);
2995 path_put(&parent_path);
2996 }
2997out3:
2998 path_put(&root);
2999out2:
3000 path_put(&old);
3001out1:
3002 path_put(&new);
3003out0:
3004 return error;
3005}
3006
3007static void __init init_mount_tree(void)
3008{
3009 struct vfsmount *mnt;
3010 struct mnt_namespace *ns;
3011 struct path root;
3012 struct file_system_type *type;
3013
3014 type = get_fs_type("rootfs");
3015 if (!type)
3016 panic("Can't find rootfs type");
3017 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3018 put_filesystem(type);
3019 if (IS_ERR(mnt))
3020 panic("Can't create rootfs");
3021
3022 ns = create_mnt_ns(mnt);
3023 if (IS_ERR(ns))
3024 panic("Can't allocate initial namespace");
3025
3026 init_task.nsproxy->mnt_ns = ns;
3027 get_mnt_ns(ns);
3028
3029 root.mnt = mnt;
3030 root.dentry = mnt->mnt_root;
3031 mnt->mnt_flags |= MNT_LOCKED;
3032
3033 set_fs_pwd(current->fs, &root);
3034 set_fs_root(current->fs, &root);
3035}
3036
3037void __init mnt_init(void)
3038{
3039 unsigned u;
3040 int err;
3041
3042 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3043 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3044
3045 mount_hashtable = alloc_large_system_hash("Mount-cache",
3046 sizeof(struct hlist_head),
3047 mhash_entries, 19,
3048 0,
3049 &m_hash_shift, &m_hash_mask, 0, 0);
3050 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3051 sizeof(struct hlist_head),
3052 mphash_entries, 19,
3053 0,
3054 &mp_hash_shift, &mp_hash_mask, 0, 0);
3055
3056 if (!mount_hashtable || !mountpoint_hashtable)
3057 panic("Failed to allocate mount hash table\n");
3058
3059 for (u = 0; u <= m_hash_mask; u++)
3060 INIT_HLIST_HEAD(&mount_hashtable[u]);
3061 for (u = 0; u <= mp_hash_mask; u++)
3062 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3063
3064 kernfs_init();
3065
3066 err = sysfs_init();
3067 if (err)
3068 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3069 __func__, err);
3070 fs_kobj = kobject_create_and_add("fs", NULL);
3071 if (!fs_kobj)
3072 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3073 init_rootfs();
3074 init_mount_tree();
3075}
3076
3077void put_mnt_ns(struct mnt_namespace *ns)
3078{
3079 if (!atomic_dec_and_test(&ns->count))
3080 return;
3081 drop_collected_mounts(&ns->root->mnt);
3082 free_mnt_ns(ns);
3083}
3084
3085struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3086{
3087 struct vfsmount *mnt;
3088 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3089 if (!IS_ERR(mnt)) {
3090 /*
3091 * it is a longterm mount, don't release mnt until
3092 * we unmount before file sys is unregistered
3093 */
3094 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3095 }
3096 return mnt;
3097}
3098EXPORT_SYMBOL_GPL(kern_mount_data);
3099
3100void kern_unmount(struct vfsmount *mnt)
3101{
3102 /* release long term mount so mount point can be released */
3103 if (!IS_ERR_OR_NULL(mnt)) {
3104 real_mount(mnt)->mnt_ns = NULL;
3105 synchronize_rcu(); /* yecchhh... */
3106 mntput(mnt);
3107 }
3108}
3109EXPORT_SYMBOL(kern_unmount);
3110
3111bool our_mnt(struct vfsmount *mnt)
3112{
3113 return check_mnt(real_mount(mnt));
3114}
3115
3116bool current_chrooted(void)
3117{
3118 /* Does the current process have a non-standard root */
3119 struct path ns_root;
3120 struct path fs_root;
3121 bool chrooted;
3122
3123 /* Find the namespace root */
3124 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3125 ns_root.dentry = ns_root.mnt->mnt_root;
3126 path_get(&ns_root);
3127 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3128 ;
3129
3130 get_fs_root(current->fs, &fs_root);
3131
3132 chrooted = !path_equal(&fs_root, &ns_root);
3133
3134 path_put(&fs_root);
3135 path_put(&ns_root);
3136
3137 return chrooted;
3138}
3139
3140bool fs_fully_visible(struct file_system_type *type)
3141{
3142 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3143 struct mount *mnt;
3144 bool visible = false;
3145
3146 if (unlikely(!ns))
3147 return false;
3148
3149 down_read(&namespace_sem);
3150 list_for_each_entry(mnt, &ns->list, mnt_list) {
3151 struct mount *child;
3152 if (mnt->mnt.mnt_sb->s_type != type)
3153 continue;
3154
3155 /* This mount is not fully visible if there are any child mounts
3156 * that cover anything except for empty directories.
3157 */
3158 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3159 struct inode *inode = child->mnt_mountpoint->d_inode;
3160 if (!S_ISDIR(inode->i_mode))
3161 goto next;
3162 if (inode->i_nlink > 2)
3163 goto next;
3164 }
3165 visible = true;
3166 goto found;
3167 next: ;
3168 }
3169found:
3170 up_read(&namespace_sem);
3171 return visible;
3172}
3173
3174static struct ns_common *mntns_get(struct task_struct *task)
3175{
3176 struct ns_common *ns = NULL;
3177 struct nsproxy *nsproxy;
3178
3179 task_lock(task);
3180 nsproxy = task->nsproxy;
3181 if (nsproxy) {
3182 ns = &nsproxy->mnt_ns->ns;
3183 get_mnt_ns(to_mnt_ns(ns));
3184 }
3185 task_unlock(task);
3186
3187 return ns;
3188}
3189
3190static void mntns_put(struct ns_common *ns)
3191{
3192 put_mnt_ns(to_mnt_ns(ns));
3193}
3194
3195static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3196{
3197 struct fs_struct *fs = current->fs;
3198 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3199 struct path root;
3200
3201 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3202 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3203 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3204 return -EPERM;
3205
3206 if (fs->users != 1)
3207 return -EINVAL;
3208
3209 get_mnt_ns(mnt_ns);
3210 put_mnt_ns(nsproxy->mnt_ns);
3211 nsproxy->mnt_ns = mnt_ns;
3212
3213 /* Find the root */
3214 root.mnt = &mnt_ns->root->mnt;
3215 root.dentry = mnt_ns->root->mnt.mnt_root;
3216 path_get(&root);
3217 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3218 ;
3219
3220 /* Update the pwd and root */
3221 set_fs_pwd(fs, &root);
3222 set_fs_root(fs, &root);
3223
3224 path_put(&root);
3225 return 0;
3226}
3227
3228const struct proc_ns_operations mntns_operations = {
3229 .name = "mnt",
3230 .type = CLONE_NEWNS,
3231 .get = mntns_get,
3232 .put = mntns_put,
3233 .install = mntns_install,
3234};