]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/namespace.c
get rid of propagate_umount() mistakenly treating slaves as busy.
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/init.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
23#include <linux/proc_ns.h>
24#include <linux/magic.h>
25#include <linux/bootmem.h>
26#include "pnode.h"
27#include "internal.h"
28
29static unsigned int m_hash_mask __read_mostly;
30static unsigned int m_hash_shift __read_mostly;
31static unsigned int mp_hash_mask __read_mostly;
32static unsigned int mp_hash_shift __read_mostly;
33
34static __initdata unsigned long mhash_entries;
35static int __init set_mhash_entries(char *str)
36{
37 if (!str)
38 return 0;
39 mhash_entries = simple_strtoul(str, &str, 0);
40 return 1;
41}
42__setup("mhash_entries=", set_mhash_entries);
43
44static __initdata unsigned long mphash_entries;
45static int __init set_mphash_entries(char *str)
46{
47 if (!str)
48 return 0;
49 mphash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51}
52__setup("mphash_entries=", set_mphash_entries);
53
54static u64 event;
55static DEFINE_IDA(mnt_id_ida);
56static DEFINE_IDA(mnt_group_ida);
57static DEFINE_SPINLOCK(mnt_id_lock);
58static int mnt_id_start = 0;
59static int mnt_group_start = 1;
60
61static struct hlist_head *mount_hashtable __read_mostly;
62static struct hlist_head *mountpoint_hashtable __read_mostly;
63static struct kmem_cache *mnt_cache __read_mostly;
64static DECLARE_RWSEM(namespace_sem);
65
66/* /sys/fs */
67struct kobject *fs_kobj;
68EXPORT_SYMBOL_GPL(fs_kobj);
69
70/*
71 * vfsmount lock may be taken for read to prevent changes to the
72 * vfsmount hash, ie. during mountpoint lookups or walking back
73 * up the tree.
74 *
75 * It should be taken for write in all cases where the vfsmount
76 * tree or hash is modified or when a vfsmount structure is modified.
77 */
78__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
79
80static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
81{
82 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
83 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
84 tmp = tmp + (tmp >> m_hash_shift);
85 return &mount_hashtable[tmp & m_hash_mask];
86}
87
88static inline struct hlist_head *mp_hash(struct dentry *dentry)
89{
90 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> mp_hash_shift);
92 return &mountpoint_hashtable[tmp & mp_hash_mask];
93}
94
95/*
96 * allocation is serialized by namespace_sem, but we need the spinlock to
97 * serialize with freeing.
98 */
99static int mnt_alloc_id(struct mount *mnt)
100{
101 int res;
102
103retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114}
115
116static void mnt_free_id(struct mount *mnt)
117{
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124}
125
126/*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131static int mnt_alloc_group_id(struct mount *mnt)
132{
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145}
146
147/*
148 * Release a peer group ID
149 */
150void mnt_release_group_id(struct mount *mnt)
151{
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157}
158
159/*
160 * vfsmount lock must be held for read
161 */
162static inline void mnt_add_count(struct mount *mnt, int n)
163{
164#ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166#else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170#endif
171}
172
173/*
174 * vfsmount lock must be held for write
175 */
176unsigned int mnt_get_count(struct mount *mnt)
177{
178#ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187#else
188 return mnt->mnt_count;
189#endif
190}
191
192static struct mount *alloc_vfsmnt(const char *name)
193{
194 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
195 if (mnt) {
196 int err;
197
198 err = mnt_alloc_id(mnt);
199 if (err)
200 goto out_free_cache;
201
202 if (name) {
203 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
204 if (!mnt->mnt_devname)
205 goto out_free_id;
206 }
207
208#ifdef CONFIG_SMP
209 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
210 if (!mnt->mnt_pcp)
211 goto out_free_devname;
212
213 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
214#else
215 mnt->mnt_count = 1;
216 mnt->mnt_writers = 0;
217#endif
218
219 INIT_HLIST_NODE(&mnt->mnt_hash);
220 INIT_LIST_HEAD(&mnt->mnt_child);
221 INIT_LIST_HEAD(&mnt->mnt_mounts);
222 INIT_LIST_HEAD(&mnt->mnt_list);
223 INIT_LIST_HEAD(&mnt->mnt_expire);
224 INIT_LIST_HEAD(&mnt->mnt_share);
225 INIT_LIST_HEAD(&mnt->mnt_slave_list);
226 INIT_LIST_HEAD(&mnt->mnt_slave);
227#ifdef CONFIG_FSNOTIFY
228 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
229#endif
230 }
231 return mnt;
232
233#ifdef CONFIG_SMP
234out_free_devname:
235 kfree(mnt->mnt_devname);
236#endif
237out_free_id:
238 mnt_free_id(mnt);
239out_free_cache:
240 kmem_cache_free(mnt_cache, mnt);
241 return NULL;
242}
243
244/*
245 * Most r/o checks on a fs are for operations that take
246 * discrete amounts of time, like a write() or unlink().
247 * We must keep track of when those operations start
248 * (for permission checks) and when they end, so that
249 * we can determine when writes are able to occur to
250 * a filesystem.
251 */
252/*
253 * __mnt_is_readonly: check whether a mount is read-only
254 * @mnt: the mount to check for its write status
255 *
256 * This shouldn't be used directly ouside of the VFS.
257 * It does not guarantee that the filesystem will stay
258 * r/w, just that it is right *now*. This can not and
259 * should not be used in place of IS_RDONLY(inode).
260 * mnt_want/drop_write() will _keep_ the filesystem
261 * r/w.
262 */
263int __mnt_is_readonly(struct vfsmount *mnt)
264{
265 if (mnt->mnt_flags & MNT_READONLY)
266 return 1;
267 if (mnt->mnt_sb->s_flags & MS_RDONLY)
268 return 1;
269 return 0;
270}
271EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272
273static inline void mnt_inc_writers(struct mount *mnt)
274{
275#ifdef CONFIG_SMP
276 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277#else
278 mnt->mnt_writers++;
279#endif
280}
281
282static inline void mnt_dec_writers(struct mount *mnt)
283{
284#ifdef CONFIG_SMP
285 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286#else
287 mnt->mnt_writers--;
288#endif
289}
290
291static unsigned int mnt_get_writers(struct mount *mnt)
292{
293#ifdef CONFIG_SMP
294 unsigned int count = 0;
295 int cpu;
296
297 for_each_possible_cpu(cpu) {
298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 }
300
301 return count;
302#else
303 return mnt->mnt_writers;
304#endif
305}
306
307static int mnt_is_readonly(struct vfsmount *mnt)
308{
309 if (mnt->mnt_sb->s_readonly_remount)
310 return 1;
311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 smp_rmb();
313 return __mnt_is_readonly(mnt);
314}
315
316/*
317 * Most r/o & frozen checks on a fs are for operations that take discrete
318 * amounts of time, like a write() or unlink(). We must keep track of when
319 * those operations start (for permission checks) and when they end, so that we
320 * can determine when writes are able to occur to a filesystem.
321 */
322/**
323 * __mnt_want_write - get write access to a mount without freeze protection
324 * @m: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is about to be performed to
327 * it, and makes sure that writes are allowed (mnt it read-write) before
328 * returning success. This operation does not protect against filesystem being
329 * frozen. When the write operation is finished, __mnt_drop_write() must be
330 * called. This is effectively a refcount.
331 */
332int __mnt_want_write(struct vfsmount *m)
333{
334 struct mount *mnt = real_mount(m);
335 int ret = 0;
336
337 preempt_disable();
338 mnt_inc_writers(mnt);
339 /*
340 * The store to mnt_inc_writers must be visible before we pass
341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 * incremented count after it has set MNT_WRITE_HOLD.
343 */
344 smp_mb();
345 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 cpu_relax();
347 /*
348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 * be set to match its requirements. So we must not load that until
350 * MNT_WRITE_HOLD is cleared.
351 */
352 smp_rmb();
353 if (mnt_is_readonly(m)) {
354 mnt_dec_writers(mnt);
355 ret = -EROFS;
356 }
357 preempt_enable();
358
359 return ret;
360}
361
362/**
363 * mnt_want_write - get write access to a mount
364 * @m: the mount on which to take a write
365 *
366 * This tells the low-level filesystem that a write is about to be performed to
367 * it, and makes sure that writes are allowed (mount is read-write, filesystem
368 * is not frozen) before returning success. When the write operation is
369 * finished, mnt_drop_write() must be called. This is effectively a refcount.
370 */
371int mnt_want_write(struct vfsmount *m)
372{
373 int ret;
374
375 sb_start_write(m->mnt_sb);
376 ret = __mnt_want_write(m);
377 if (ret)
378 sb_end_write(m->mnt_sb);
379 return ret;
380}
381EXPORT_SYMBOL_GPL(mnt_want_write);
382
383/**
384 * mnt_clone_write - get write access to a mount
385 * @mnt: the mount on which to take a write
386 *
387 * This is effectively like mnt_want_write, except
388 * it must only be used to take an extra write reference
389 * on a mountpoint that we already know has a write reference
390 * on it. This allows some optimisation.
391 *
392 * After finished, mnt_drop_write must be called as usual to
393 * drop the reference.
394 */
395int mnt_clone_write(struct vfsmount *mnt)
396{
397 /* superblock may be r/o */
398 if (__mnt_is_readonly(mnt))
399 return -EROFS;
400 preempt_disable();
401 mnt_inc_writers(real_mount(mnt));
402 preempt_enable();
403 return 0;
404}
405EXPORT_SYMBOL_GPL(mnt_clone_write);
406
407/**
408 * __mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like __mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
413 */
414int __mnt_want_write_file(struct file *file)
415{
416 if (!(file->f_mode & FMODE_WRITER))
417 return __mnt_want_write(file->f_path.mnt);
418 else
419 return mnt_clone_write(file->f_path.mnt);
420}
421
422/**
423 * mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
425 *
426 * This is like mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
428 */
429int mnt_want_write_file(struct file *file)
430{
431 int ret;
432
433 sb_start_write(file->f_path.mnt->mnt_sb);
434 ret = __mnt_want_write_file(file);
435 if (ret)
436 sb_end_write(file->f_path.mnt->mnt_sb);
437 return ret;
438}
439EXPORT_SYMBOL_GPL(mnt_want_write_file);
440
441/**
442 * __mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done
446 * performing writes to it. Must be matched with
447 * __mnt_want_write() call above.
448 */
449void __mnt_drop_write(struct vfsmount *mnt)
450{
451 preempt_disable();
452 mnt_dec_writers(real_mount(mnt));
453 preempt_enable();
454}
455
456/**
457 * mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
459 *
460 * Tells the low-level filesystem that we are done performing writes to it and
461 * also allows filesystem to be frozen again. Must be matched with
462 * mnt_want_write() call above.
463 */
464void mnt_drop_write(struct vfsmount *mnt)
465{
466 __mnt_drop_write(mnt);
467 sb_end_write(mnt->mnt_sb);
468}
469EXPORT_SYMBOL_GPL(mnt_drop_write);
470
471void __mnt_drop_write_file(struct file *file)
472{
473 __mnt_drop_write(file->f_path.mnt);
474}
475
476void mnt_drop_write_file(struct file *file)
477{
478 mnt_drop_write(file->f_path.mnt);
479}
480EXPORT_SYMBOL(mnt_drop_write_file);
481
482static int mnt_make_readonly(struct mount *mnt)
483{
484 int ret = 0;
485
486 lock_mount_hash();
487 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
488 /*
489 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
490 * should be visible before we do.
491 */
492 smp_mb();
493
494 /*
495 * With writers on hold, if this value is zero, then there are
496 * definitely no active writers (although held writers may subsequently
497 * increment the count, they'll have to wait, and decrement it after
498 * seeing MNT_READONLY).
499 *
500 * It is OK to have counter incremented on one CPU and decremented on
501 * another: the sum will add up correctly. The danger would be when we
502 * sum up each counter, if we read a counter before it is incremented,
503 * but then read another CPU's count which it has been subsequently
504 * decremented from -- we would see more decrements than we should.
505 * MNT_WRITE_HOLD protects against this scenario, because
506 * mnt_want_write first increments count, then smp_mb, then spins on
507 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
508 * we're counting up here.
509 */
510 if (mnt_get_writers(mnt) > 0)
511 ret = -EBUSY;
512 else
513 mnt->mnt.mnt_flags |= MNT_READONLY;
514 /*
515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 * that become unheld will see MNT_READONLY.
517 */
518 smp_wmb();
519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
520 unlock_mount_hash();
521 return ret;
522}
523
524static void __mnt_unmake_readonly(struct mount *mnt)
525{
526 lock_mount_hash();
527 mnt->mnt.mnt_flags &= ~MNT_READONLY;
528 unlock_mount_hash();
529}
530
531int sb_prepare_remount_readonly(struct super_block *sb)
532{
533 struct mount *mnt;
534 int err = 0;
535
536 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
537 if (atomic_long_read(&sb->s_remove_count))
538 return -EBUSY;
539
540 lock_mount_hash();
541 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
542 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
543 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
544 smp_mb();
545 if (mnt_get_writers(mnt) > 0) {
546 err = -EBUSY;
547 break;
548 }
549 }
550 }
551 if (!err && atomic_long_read(&sb->s_remove_count))
552 err = -EBUSY;
553
554 if (!err) {
555 sb->s_readonly_remount = 1;
556 smp_wmb();
557 }
558 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
559 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
560 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
561 }
562 unlock_mount_hash();
563
564 return err;
565}
566
567static void free_vfsmnt(struct mount *mnt)
568{
569 kfree(mnt->mnt_devname);
570#ifdef CONFIG_SMP
571 free_percpu(mnt->mnt_pcp);
572#endif
573 kmem_cache_free(mnt_cache, mnt);
574}
575
576static void delayed_free_vfsmnt(struct rcu_head *head)
577{
578 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
579}
580
581/* call under rcu_read_lock */
582bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
583{
584 struct mount *mnt;
585 if (read_seqretry(&mount_lock, seq))
586 return false;
587 if (bastard == NULL)
588 return true;
589 mnt = real_mount(bastard);
590 mnt_add_count(mnt, 1);
591 if (likely(!read_seqretry(&mount_lock, seq)))
592 return true;
593 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
594 mnt_add_count(mnt, -1);
595 return false;
596 }
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 return false;
601}
602
603/*
604 * find the first mount at @dentry on vfsmount @mnt.
605 * call under rcu_read_lock()
606 */
607struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
608{
609 struct hlist_head *head = m_hash(mnt, dentry);
610 struct mount *p;
611
612 hlist_for_each_entry_rcu(p, head, mnt_hash)
613 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
614 return p;
615 return NULL;
616}
617
618/*
619 * find the last mount at @dentry on vfsmount @mnt.
620 * mount_lock must be held.
621 */
622struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
623{
624 struct mount *p, *res;
625 res = p = __lookup_mnt(mnt, dentry);
626 if (!p)
627 goto out;
628 hlist_for_each_entry_continue(p, mnt_hash) {
629 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
630 break;
631 res = p;
632 }
633out:
634 return res;
635}
636
637/*
638 * lookup_mnt - Return the first child mount mounted at path
639 *
640 * "First" means first mounted chronologically. If you create the
641 * following mounts:
642 *
643 * mount /dev/sda1 /mnt
644 * mount /dev/sda2 /mnt
645 * mount /dev/sda3 /mnt
646 *
647 * Then lookup_mnt() on the base /mnt dentry in the root mount will
648 * return successively the root dentry and vfsmount of /dev/sda1, then
649 * /dev/sda2, then /dev/sda3, then NULL.
650 *
651 * lookup_mnt takes a reference to the found vfsmount.
652 */
653struct vfsmount *lookup_mnt(struct path *path)
654{
655 struct mount *child_mnt;
656 struct vfsmount *m;
657 unsigned seq;
658
659 rcu_read_lock();
660 do {
661 seq = read_seqbegin(&mount_lock);
662 child_mnt = __lookup_mnt(path->mnt, path->dentry);
663 m = child_mnt ? &child_mnt->mnt : NULL;
664 } while (!legitimize_mnt(m, seq));
665 rcu_read_unlock();
666 return m;
667}
668
669static struct mountpoint *new_mountpoint(struct dentry *dentry)
670{
671 struct hlist_head *chain = mp_hash(dentry);
672 struct mountpoint *mp;
673 int ret;
674
675 hlist_for_each_entry(mp, chain, m_hash) {
676 if (mp->m_dentry == dentry) {
677 /* might be worth a WARN_ON() */
678 if (d_unlinked(dentry))
679 return ERR_PTR(-ENOENT);
680 mp->m_count++;
681 return mp;
682 }
683 }
684
685 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
686 if (!mp)
687 return ERR_PTR(-ENOMEM);
688
689 ret = d_set_mounted(dentry);
690 if (ret) {
691 kfree(mp);
692 return ERR_PTR(ret);
693 }
694
695 mp->m_dentry = dentry;
696 mp->m_count = 1;
697 hlist_add_head(&mp->m_hash, chain);
698 return mp;
699}
700
701static void put_mountpoint(struct mountpoint *mp)
702{
703 if (!--mp->m_count) {
704 struct dentry *dentry = mp->m_dentry;
705 spin_lock(&dentry->d_lock);
706 dentry->d_flags &= ~DCACHE_MOUNTED;
707 spin_unlock(&dentry->d_lock);
708 hlist_del(&mp->m_hash);
709 kfree(mp);
710 }
711}
712
713static inline int check_mnt(struct mount *mnt)
714{
715 return mnt->mnt_ns == current->nsproxy->mnt_ns;
716}
717
718/*
719 * vfsmount lock must be held for write
720 */
721static void touch_mnt_namespace(struct mnt_namespace *ns)
722{
723 if (ns) {
724 ns->event = ++event;
725 wake_up_interruptible(&ns->poll);
726 }
727}
728
729/*
730 * vfsmount lock must be held for write
731 */
732static void __touch_mnt_namespace(struct mnt_namespace *ns)
733{
734 if (ns && ns->event != event) {
735 ns->event = event;
736 wake_up_interruptible(&ns->poll);
737 }
738}
739
740/*
741 * vfsmount lock must be held for write
742 */
743static void detach_mnt(struct mount *mnt, struct path *old_path)
744{
745 old_path->dentry = mnt->mnt_mountpoint;
746 old_path->mnt = &mnt->mnt_parent->mnt;
747 mnt->mnt_parent = mnt;
748 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
749 list_del_init(&mnt->mnt_child);
750 hlist_del_init_rcu(&mnt->mnt_hash);
751 put_mountpoint(mnt->mnt_mp);
752 mnt->mnt_mp = NULL;
753}
754
755/*
756 * vfsmount lock must be held for write
757 */
758void mnt_set_mountpoint(struct mount *mnt,
759 struct mountpoint *mp,
760 struct mount *child_mnt)
761{
762 mp->m_count++;
763 mnt_add_count(mnt, 1); /* essentially, that's mntget */
764 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
765 child_mnt->mnt_parent = mnt;
766 child_mnt->mnt_mp = mp;
767}
768
769/*
770 * vfsmount lock must be held for write
771 */
772static void attach_mnt(struct mount *mnt,
773 struct mount *parent,
774 struct mountpoint *mp)
775{
776 mnt_set_mountpoint(parent, mp, mnt);
777 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
778 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
779}
780
781static void attach_shadowed(struct mount *mnt,
782 struct mount *parent,
783 struct mount *shadows)
784{
785 if (shadows) {
786 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
787 list_add(&mnt->mnt_child, &shadows->mnt_child);
788 } else {
789 hlist_add_head_rcu(&mnt->mnt_hash,
790 m_hash(&parent->mnt, mnt->mnt_mountpoint));
791 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
792 }
793}
794
795/*
796 * vfsmount lock must be held for write
797 */
798static void commit_tree(struct mount *mnt, struct mount *shadows)
799{
800 struct mount *parent = mnt->mnt_parent;
801 struct mount *m;
802 LIST_HEAD(head);
803 struct mnt_namespace *n = parent->mnt_ns;
804
805 BUG_ON(parent == mnt);
806
807 list_add_tail(&head, &mnt->mnt_list);
808 list_for_each_entry(m, &head, mnt_list)
809 m->mnt_ns = n;
810
811 list_splice(&head, n->list.prev);
812
813 attach_shadowed(mnt, parent, shadows);
814 touch_mnt_namespace(n);
815}
816
817static struct mount *next_mnt(struct mount *p, struct mount *root)
818{
819 struct list_head *next = p->mnt_mounts.next;
820 if (next == &p->mnt_mounts) {
821 while (1) {
822 if (p == root)
823 return NULL;
824 next = p->mnt_child.next;
825 if (next != &p->mnt_parent->mnt_mounts)
826 break;
827 p = p->mnt_parent;
828 }
829 }
830 return list_entry(next, struct mount, mnt_child);
831}
832
833static struct mount *skip_mnt_tree(struct mount *p)
834{
835 struct list_head *prev = p->mnt_mounts.prev;
836 while (prev != &p->mnt_mounts) {
837 p = list_entry(prev, struct mount, mnt_child);
838 prev = p->mnt_mounts.prev;
839 }
840 return p;
841}
842
843struct vfsmount *
844vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
845{
846 struct mount *mnt;
847 struct dentry *root;
848
849 if (!type)
850 return ERR_PTR(-ENODEV);
851
852 mnt = alloc_vfsmnt(name);
853 if (!mnt)
854 return ERR_PTR(-ENOMEM);
855
856 if (flags & MS_KERNMOUNT)
857 mnt->mnt.mnt_flags = MNT_INTERNAL;
858
859 root = mount_fs(type, flags, name, data);
860 if (IS_ERR(root)) {
861 mnt_free_id(mnt);
862 free_vfsmnt(mnt);
863 return ERR_CAST(root);
864 }
865
866 mnt->mnt.mnt_root = root;
867 mnt->mnt.mnt_sb = root->d_sb;
868 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
869 mnt->mnt_parent = mnt;
870 lock_mount_hash();
871 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
872 unlock_mount_hash();
873 return &mnt->mnt;
874}
875EXPORT_SYMBOL_GPL(vfs_kern_mount);
876
877static struct mount *clone_mnt(struct mount *old, struct dentry *root,
878 int flag)
879{
880 struct super_block *sb = old->mnt.mnt_sb;
881 struct mount *mnt;
882 int err;
883
884 mnt = alloc_vfsmnt(old->mnt_devname);
885 if (!mnt)
886 return ERR_PTR(-ENOMEM);
887
888 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
889 mnt->mnt_group_id = 0; /* not a peer of original */
890 else
891 mnt->mnt_group_id = old->mnt_group_id;
892
893 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
894 err = mnt_alloc_group_id(mnt);
895 if (err)
896 goto out_free;
897 }
898
899 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
900 /* Don't allow unprivileged users to change mount flags */
901 if (flag & CL_UNPRIVILEGED) {
902 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
903
904 if (mnt->mnt.mnt_flags & MNT_READONLY)
905 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
906
907 if (mnt->mnt.mnt_flags & MNT_NODEV)
908 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
909
910 if (mnt->mnt.mnt_flags & MNT_NOSUID)
911 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
912
913 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
914 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
915 }
916
917 /* Don't allow unprivileged users to reveal what is under a mount */
918 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
919 mnt->mnt.mnt_flags |= MNT_LOCKED;
920
921 atomic_inc(&sb->s_active);
922 mnt->mnt.mnt_sb = sb;
923 mnt->mnt.mnt_root = dget(root);
924 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
925 mnt->mnt_parent = mnt;
926 lock_mount_hash();
927 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
928 unlock_mount_hash();
929
930 if ((flag & CL_SLAVE) ||
931 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
932 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
933 mnt->mnt_master = old;
934 CLEAR_MNT_SHARED(mnt);
935 } else if (!(flag & CL_PRIVATE)) {
936 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
937 list_add(&mnt->mnt_share, &old->mnt_share);
938 if (IS_MNT_SLAVE(old))
939 list_add(&mnt->mnt_slave, &old->mnt_slave);
940 mnt->mnt_master = old->mnt_master;
941 }
942 if (flag & CL_MAKE_SHARED)
943 set_mnt_shared(mnt);
944
945 /* stick the duplicate mount on the same expiry list
946 * as the original if that was on one */
947 if (flag & CL_EXPIRE) {
948 if (!list_empty(&old->mnt_expire))
949 list_add(&mnt->mnt_expire, &old->mnt_expire);
950 }
951
952 return mnt;
953
954 out_free:
955 mnt_free_id(mnt);
956 free_vfsmnt(mnt);
957 return ERR_PTR(err);
958}
959
960static void mntput_no_expire(struct mount *mnt)
961{
962 rcu_read_lock();
963 mnt_add_count(mnt, -1);
964 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
965 rcu_read_unlock();
966 return;
967 }
968 lock_mount_hash();
969 if (mnt_get_count(mnt)) {
970 rcu_read_unlock();
971 unlock_mount_hash();
972 return;
973 }
974 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
975 rcu_read_unlock();
976 unlock_mount_hash();
977 return;
978 }
979 mnt->mnt.mnt_flags |= MNT_DOOMED;
980 rcu_read_unlock();
981
982 list_del(&mnt->mnt_instance);
983 unlock_mount_hash();
984
985 /*
986 * This probably indicates that somebody messed
987 * up a mnt_want/drop_write() pair. If this
988 * happens, the filesystem was probably unable
989 * to make r/w->r/o transitions.
990 */
991 /*
992 * The locking used to deal with mnt_count decrement provides barriers,
993 * so mnt_get_writers() below is safe.
994 */
995 WARN_ON(mnt_get_writers(mnt));
996 if (unlikely(mnt->mnt_pins.first))
997 mnt_pin_kill(mnt);
998 fsnotify_vfsmount_delete(&mnt->mnt);
999 dput(mnt->mnt.mnt_root);
1000 deactivate_super(mnt->mnt.mnt_sb);
1001 mnt_free_id(mnt);
1002 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1003}
1004
1005void mntput(struct vfsmount *mnt)
1006{
1007 if (mnt) {
1008 struct mount *m = real_mount(mnt);
1009 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1010 if (unlikely(m->mnt_expiry_mark))
1011 m->mnt_expiry_mark = 0;
1012 mntput_no_expire(m);
1013 }
1014}
1015EXPORT_SYMBOL(mntput);
1016
1017struct vfsmount *mntget(struct vfsmount *mnt)
1018{
1019 if (mnt)
1020 mnt_add_count(real_mount(mnt), 1);
1021 return mnt;
1022}
1023EXPORT_SYMBOL(mntget);
1024
1025struct vfsmount *mnt_clone_internal(struct path *path)
1026{
1027 struct mount *p;
1028 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1029 if (IS_ERR(p))
1030 return ERR_CAST(p);
1031 p->mnt.mnt_flags |= MNT_INTERNAL;
1032 return &p->mnt;
1033}
1034
1035static inline void mangle(struct seq_file *m, const char *s)
1036{
1037 seq_escape(m, s, " \t\n\\");
1038}
1039
1040/*
1041 * Simple .show_options callback for filesystems which don't want to
1042 * implement more complex mount option showing.
1043 *
1044 * See also save_mount_options().
1045 */
1046int generic_show_options(struct seq_file *m, struct dentry *root)
1047{
1048 const char *options;
1049
1050 rcu_read_lock();
1051 options = rcu_dereference(root->d_sb->s_options);
1052
1053 if (options != NULL && options[0]) {
1054 seq_putc(m, ',');
1055 mangle(m, options);
1056 }
1057 rcu_read_unlock();
1058
1059 return 0;
1060}
1061EXPORT_SYMBOL(generic_show_options);
1062
1063/*
1064 * If filesystem uses generic_show_options(), this function should be
1065 * called from the fill_super() callback.
1066 *
1067 * The .remount_fs callback usually needs to be handled in a special
1068 * way, to make sure, that previous options are not overwritten if the
1069 * remount fails.
1070 *
1071 * Also note, that if the filesystem's .remount_fs function doesn't
1072 * reset all options to their default value, but changes only newly
1073 * given options, then the displayed options will not reflect reality
1074 * any more.
1075 */
1076void save_mount_options(struct super_block *sb, char *options)
1077{
1078 BUG_ON(sb->s_options);
1079 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1080}
1081EXPORT_SYMBOL(save_mount_options);
1082
1083void replace_mount_options(struct super_block *sb, char *options)
1084{
1085 char *old = sb->s_options;
1086 rcu_assign_pointer(sb->s_options, options);
1087 if (old) {
1088 synchronize_rcu();
1089 kfree(old);
1090 }
1091}
1092EXPORT_SYMBOL(replace_mount_options);
1093
1094#ifdef CONFIG_PROC_FS
1095/* iterator; we want it to have access to namespace_sem, thus here... */
1096static void *m_start(struct seq_file *m, loff_t *pos)
1097{
1098 struct proc_mounts *p = proc_mounts(m);
1099
1100 down_read(&namespace_sem);
1101 if (p->cached_event == p->ns->event) {
1102 void *v = p->cached_mount;
1103 if (*pos == p->cached_index)
1104 return v;
1105 if (*pos == p->cached_index + 1) {
1106 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1107 return p->cached_mount = v;
1108 }
1109 }
1110
1111 p->cached_event = p->ns->event;
1112 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1113 p->cached_index = *pos;
1114 return p->cached_mount;
1115}
1116
1117static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1118{
1119 struct proc_mounts *p = proc_mounts(m);
1120
1121 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1122 p->cached_index = *pos;
1123 return p->cached_mount;
1124}
1125
1126static void m_stop(struct seq_file *m, void *v)
1127{
1128 up_read(&namespace_sem);
1129}
1130
1131static int m_show(struct seq_file *m, void *v)
1132{
1133 struct proc_mounts *p = proc_mounts(m);
1134 struct mount *r = list_entry(v, struct mount, mnt_list);
1135 return p->show(m, &r->mnt);
1136}
1137
1138const struct seq_operations mounts_op = {
1139 .start = m_start,
1140 .next = m_next,
1141 .stop = m_stop,
1142 .show = m_show,
1143};
1144#endif /* CONFIG_PROC_FS */
1145
1146/**
1147 * may_umount_tree - check if a mount tree is busy
1148 * @mnt: root of mount tree
1149 *
1150 * This is called to check if a tree of mounts has any
1151 * open files, pwds, chroots or sub mounts that are
1152 * busy.
1153 */
1154int may_umount_tree(struct vfsmount *m)
1155{
1156 struct mount *mnt = real_mount(m);
1157 int actual_refs = 0;
1158 int minimum_refs = 0;
1159 struct mount *p;
1160 BUG_ON(!m);
1161
1162 /* write lock needed for mnt_get_count */
1163 lock_mount_hash();
1164 for (p = mnt; p; p = next_mnt(p, mnt)) {
1165 actual_refs += mnt_get_count(p);
1166 minimum_refs += 2;
1167 }
1168 unlock_mount_hash();
1169
1170 if (actual_refs > minimum_refs)
1171 return 0;
1172
1173 return 1;
1174}
1175
1176EXPORT_SYMBOL(may_umount_tree);
1177
1178/**
1179 * may_umount - check if a mount point is busy
1180 * @mnt: root of mount
1181 *
1182 * This is called to check if a mount point has any
1183 * open files, pwds, chroots or sub mounts. If the
1184 * mount has sub mounts this will return busy
1185 * regardless of whether the sub mounts are busy.
1186 *
1187 * Doesn't take quota and stuff into account. IOW, in some cases it will
1188 * give false negatives. The main reason why it's here is that we need
1189 * a non-destructive way to look for easily umountable filesystems.
1190 */
1191int may_umount(struct vfsmount *mnt)
1192{
1193 int ret = 1;
1194 down_read(&namespace_sem);
1195 lock_mount_hash();
1196 if (propagate_mount_busy(real_mount(mnt), 2))
1197 ret = 0;
1198 unlock_mount_hash();
1199 up_read(&namespace_sem);
1200 return ret;
1201}
1202
1203EXPORT_SYMBOL(may_umount);
1204
1205static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1206
1207static void namespace_unlock(void)
1208{
1209 struct mount *mnt;
1210 struct hlist_head head = unmounted;
1211
1212 if (likely(hlist_empty(&head))) {
1213 up_write(&namespace_sem);
1214 return;
1215 }
1216
1217 head.first->pprev = &head.first;
1218 INIT_HLIST_HEAD(&unmounted);
1219
1220 up_write(&namespace_sem);
1221
1222 synchronize_rcu();
1223
1224 while (!hlist_empty(&head)) {
1225 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1226 hlist_del_init(&mnt->mnt_hash);
1227 if (mnt->mnt_ex_mountpoint.mnt)
1228 path_put(&mnt->mnt_ex_mountpoint);
1229 mntput(&mnt->mnt);
1230 }
1231}
1232
1233static inline void namespace_lock(void)
1234{
1235 down_write(&namespace_sem);
1236}
1237
1238/*
1239 * mount_lock must be held
1240 * namespace_sem must be held for write
1241 * how = 0 => just this tree, don't propagate
1242 * how = 1 => propagate; we know that nobody else has reference to any victims
1243 * how = 2 => lazy umount
1244 */
1245void umount_tree(struct mount *mnt, int how)
1246{
1247 HLIST_HEAD(tmp_list);
1248 struct mount *p;
1249 struct mount *last = NULL;
1250
1251 for (p = mnt; p; p = next_mnt(p, mnt)) {
1252 hlist_del_init_rcu(&p->mnt_hash);
1253 hlist_add_head(&p->mnt_hash, &tmp_list);
1254 }
1255
1256 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1257 list_del_init(&p->mnt_child);
1258
1259 if (how)
1260 propagate_umount(&tmp_list);
1261
1262 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1263 list_del_init(&p->mnt_expire);
1264 list_del_init(&p->mnt_list);
1265 __touch_mnt_namespace(p->mnt_ns);
1266 p->mnt_ns = NULL;
1267 if (how < 2)
1268 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1269 if (mnt_has_parent(p)) {
1270 put_mountpoint(p->mnt_mp);
1271 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1272 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1273 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1274 p->mnt_mountpoint = p->mnt.mnt_root;
1275 p->mnt_parent = p;
1276 p->mnt_mp = NULL;
1277 }
1278 change_mnt_propagation(p, MS_PRIVATE);
1279 last = p;
1280 }
1281 if (last) {
1282 last->mnt_hash.next = unmounted.first;
1283 unmounted.first = tmp_list.first;
1284 unmounted.first->pprev = &unmounted.first;
1285 }
1286}
1287
1288static void shrink_submounts(struct mount *mnt);
1289
1290static int do_umount(struct mount *mnt, int flags)
1291{
1292 struct super_block *sb = mnt->mnt.mnt_sb;
1293 int retval;
1294
1295 retval = security_sb_umount(&mnt->mnt, flags);
1296 if (retval)
1297 return retval;
1298
1299 /*
1300 * Allow userspace to request a mountpoint be expired rather than
1301 * unmounting unconditionally. Unmount only happens if:
1302 * (1) the mark is already set (the mark is cleared by mntput())
1303 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1304 */
1305 if (flags & MNT_EXPIRE) {
1306 if (&mnt->mnt == current->fs->root.mnt ||
1307 flags & (MNT_FORCE | MNT_DETACH))
1308 return -EINVAL;
1309
1310 /*
1311 * probably don't strictly need the lock here if we examined
1312 * all race cases, but it's a slowpath.
1313 */
1314 lock_mount_hash();
1315 if (mnt_get_count(mnt) != 2) {
1316 unlock_mount_hash();
1317 return -EBUSY;
1318 }
1319 unlock_mount_hash();
1320
1321 if (!xchg(&mnt->mnt_expiry_mark, 1))
1322 return -EAGAIN;
1323 }
1324
1325 /*
1326 * If we may have to abort operations to get out of this
1327 * mount, and they will themselves hold resources we must
1328 * allow the fs to do things. In the Unix tradition of
1329 * 'Gee thats tricky lets do it in userspace' the umount_begin
1330 * might fail to complete on the first run through as other tasks
1331 * must return, and the like. Thats for the mount program to worry
1332 * about for the moment.
1333 */
1334
1335 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1336 sb->s_op->umount_begin(sb);
1337 }
1338
1339 /*
1340 * No sense to grab the lock for this test, but test itself looks
1341 * somewhat bogus. Suggestions for better replacement?
1342 * Ho-hum... In principle, we might treat that as umount + switch
1343 * to rootfs. GC would eventually take care of the old vfsmount.
1344 * Actually it makes sense, especially if rootfs would contain a
1345 * /reboot - static binary that would close all descriptors and
1346 * call reboot(9). Then init(8) could umount root and exec /reboot.
1347 */
1348 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1349 /*
1350 * Special case for "unmounting" root ...
1351 * we just try to remount it readonly.
1352 */
1353 down_write(&sb->s_umount);
1354 if (!(sb->s_flags & MS_RDONLY))
1355 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1356 up_write(&sb->s_umount);
1357 return retval;
1358 }
1359
1360 namespace_lock();
1361 lock_mount_hash();
1362 event++;
1363
1364 if (flags & MNT_DETACH) {
1365 if (!list_empty(&mnt->mnt_list))
1366 umount_tree(mnt, 2);
1367 retval = 0;
1368 } else {
1369 shrink_submounts(mnt);
1370 retval = -EBUSY;
1371 if (!propagate_mount_busy(mnt, 2)) {
1372 if (!list_empty(&mnt->mnt_list))
1373 umount_tree(mnt, 1);
1374 retval = 0;
1375 }
1376 }
1377 unlock_mount_hash();
1378 namespace_unlock();
1379 return retval;
1380}
1381
1382/*
1383 * Is the caller allowed to modify his namespace?
1384 */
1385static inline bool may_mount(void)
1386{
1387 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1388}
1389
1390/*
1391 * Now umount can handle mount points as well as block devices.
1392 * This is important for filesystems which use unnamed block devices.
1393 *
1394 * We now support a flag for forced unmount like the other 'big iron'
1395 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1396 */
1397
1398SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1399{
1400 struct path path;
1401 struct mount *mnt;
1402 int retval;
1403 int lookup_flags = 0;
1404
1405 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1406 return -EINVAL;
1407
1408 if (!may_mount())
1409 return -EPERM;
1410
1411 if (!(flags & UMOUNT_NOFOLLOW))
1412 lookup_flags |= LOOKUP_FOLLOW;
1413
1414 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1415 if (retval)
1416 goto out;
1417 mnt = real_mount(path.mnt);
1418 retval = -EINVAL;
1419 if (path.dentry != path.mnt->mnt_root)
1420 goto dput_and_out;
1421 if (!check_mnt(mnt))
1422 goto dput_and_out;
1423 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1424 goto dput_and_out;
1425
1426 retval = do_umount(mnt, flags);
1427dput_and_out:
1428 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1429 dput(path.dentry);
1430 mntput_no_expire(mnt);
1431out:
1432 return retval;
1433}
1434
1435#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1436
1437/*
1438 * The 2.0 compatible umount. No flags.
1439 */
1440SYSCALL_DEFINE1(oldumount, char __user *, name)
1441{
1442 return sys_umount(name, 0);
1443}
1444
1445#endif
1446
1447static bool is_mnt_ns_file(struct dentry *dentry)
1448{
1449 /* Is this a proxy for a mount namespace? */
1450 struct inode *inode = dentry->d_inode;
1451 struct proc_ns *ei;
1452
1453 if (!proc_ns_inode(inode))
1454 return false;
1455
1456 ei = get_proc_ns(inode);
1457 if (ei->ns_ops != &mntns_operations)
1458 return false;
1459
1460 return true;
1461}
1462
1463static bool mnt_ns_loop(struct dentry *dentry)
1464{
1465 /* Could bind mounting the mount namespace inode cause a
1466 * mount namespace loop?
1467 */
1468 struct mnt_namespace *mnt_ns;
1469 if (!is_mnt_ns_file(dentry))
1470 return false;
1471
1472 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1473 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1474}
1475
1476struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1477 int flag)
1478{
1479 struct mount *res, *p, *q, *r, *parent;
1480
1481 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1482 return ERR_PTR(-EINVAL);
1483
1484 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1485 return ERR_PTR(-EINVAL);
1486
1487 res = q = clone_mnt(mnt, dentry, flag);
1488 if (IS_ERR(q))
1489 return q;
1490
1491 q->mnt.mnt_flags &= ~MNT_LOCKED;
1492 q->mnt_mountpoint = mnt->mnt_mountpoint;
1493
1494 p = mnt;
1495 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1496 struct mount *s;
1497 if (!is_subdir(r->mnt_mountpoint, dentry))
1498 continue;
1499
1500 for (s = r; s; s = next_mnt(s, r)) {
1501 struct mount *t = NULL;
1502 if (!(flag & CL_COPY_UNBINDABLE) &&
1503 IS_MNT_UNBINDABLE(s)) {
1504 s = skip_mnt_tree(s);
1505 continue;
1506 }
1507 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1508 is_mnt_ns_file(s->mnt.mnt_root)) {
1509 s = skip_mnt_tree(s);
1510 continue;
1511 }
1512 while (p != s->mnt_parent) {
1513 p = p->mnt_parent;
1514 q = q->mnt_parent;
1515 }
1516 p = s;
1517 parent = q;
1518 q = clone_mnt(p, p->mnt.mnt_root, flag);
1519 if (IS_ERR(q))
1520 goto out;
1521 lock_mount_hash();
1522 list_add_tail(&q->mnt_list, &res->mnt_list);
1523 mnt_set_mountpoint(parent, p->mnt_mp, q);
1524 if (!list_empty(&parent->mnt_mounts)) {
1525 t = list_last_entry(&parent->mnt_mounts,
1526 struct mount, mnt_child);
1527 if (t->mnt_mp != p->mnt_mp)
1528 t = NULL;
1529 }
1530 attach_shadowed(q, parent, t);
1531 unlock_mount_hash();
1532 }
1533 }
1534 return res;
1535out:
1536 if (res) {
1537 lock_mount_hash();
1538 umount_tree(res, 0);
1539 unlock_mount_hash();
1540 }
1541 return q;
1542}
1543
1544/* Caller should check returned pointer for errors */
1545
1546struct vfsmount *collect_mounts(struct path *path)
1547{
1548 struct mount *tree;
1549 namespace_lock();
1550 tree = copy_tree(real_mount(path->mnt), path->dentry,
1551 CL_COPY_ALL | CL_PRIVATE);
1552 namespace_unlock();
1553 if (IS_ERR(tree))
1554 return ERR_CAST(tree);
1555 return &tree->mnt;
1556}
1557
1558void drop_collected_mounts(struct vfsmount *mnt)
1559{
1560 namespace_lock();
1561 lock_mount_hash();
1562 umount_tree(real_mount(mnt), 0);
1563 unlock_mount_hash();
1564 namespace_unlock();
1565}
1566
1567int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1568 struct vfsmount *root)
1569{
1570 struct mount *mnt;
1571 int res = f(root, arg);
1572 if (res)
1573 return res;
1574 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1575 res = f(&mnt->mnt, arg);
1576 if (res)
1577 return res;
1578 }
1579 return 0;
1580}
1581
1582static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1583{
1584 struct mount *p;
1585
1586 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1587 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1588 mnt_release_group_id(p);
1589 }
1590}
1591
1592static int invent_group_ids(struct mount *mnt, bool recurse)
1593{
1594 struct mount *p;
1595
1596 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1597 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1598 int err = mnt_alloc_group_id(p);
1599 if (err) {
1600 cleanup_group_ids(mnt, p);
1601 return err;
1602 }
1603 }
1604 }
1605
1606 return 0;
1607}
1608
1609/*
1610 * @source_mnt : mount tree to be attached
1611 * @nd : place the mount tree @source_mnt is attached
1612 * @parent_nd : if non-null, detach the source_mnt from its parent and
1613 * store the parent mount and mountpoint dentry.
1614 * (done when source_mnt is moved)
1615 *
1616 * NOTE: in the table below explains the semantics when a source mount
1617 * of a given type is attached to a destination mount of a given type.
1618 * ---------------------------------------------------------------------------
1619 * | BIND MOUNT OPERATION |
1620 * |**************************************************************************
1621 * | source-->| shared | private | slave | unbindable |
1622 * | dest | | | | |
1623 * | | | | | | |
1624 * | v | | | | |
1625 * |**************************************************************************
1626 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1627 * | | | | | |
1628 * |non-shared| shared (+) | private | slave (*) | invalid |
1629 * ***************************************************************************
1630 * A bind operation clones the source mount and mounts the clone on the
1631 * destination mount.
1632 *
1633 * (++) the cloned mount is propagated to all the mounts in the propagation
1634 * tree of the destination mount and the cloned mount is added to
1635 * the peer group of the source mount.
1636 * (+) the cloned mount is created under the destination mount and is marked
1637 * as shared. The cloned mount is added to the peer group of the source
1638 * mount.
1639 * (+++) the mount is propagated to all the mounts in the propagation tree
1640 * of the destination mount and the cloned mount is made slave
1641 * of the same master as that of the source mount. The cloned mount
1642 * is marked as 'shared and slave'.
1643 * (*) the cloned mount is made a slave of the same master as that of the
1644 * source mount.
1645 *
1646 * ---------------------------------------------------------------------------
1647 * | MOVE MOUNT OPERATION |
1648 * |**************************************************************************
1649 * | source-->| shared | private | slave | unbindable |
1650 * | dest | | | | |
1651 * | | | | | | |
1652 * | v | | | | |
1653 * |**************************************************************************
1654 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1655 * | | | | | |
1656 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1657 * ***************************************************************************
1658 *
1659 * (+) the mount is moved to the destination. And is then propagated to
1660 * all the mounts in the propagation tree of the destination mount.
1661 * (+*) the mount is moved to the destination.
1662 * (+++) the mount is moved to the destination and is then propagated to
1663 * all the mounts belonging to the destination mount's propagation tree.
1664 * the mount is marked as 'shared and slave'.
1665 * (*) the mount continues to be a slave at the new location.
1666 *
1667 * if the source mount is a tree, the operations explained above is
1668 * applied to each mount in the tree.
1669 * Must be called without spinlocks held, since this function can sleep
1670 * in allocations.
1671 */
1672static int attach_recursive_mnt(struct mount *source_mnt,
1673 struct mount *dest_mnt,
1674 struct mountpoint *dest_mp,
1675 struct path *parent_path)
1676{
1677 HLIST_HEAD(tree_list);
1678 struct mount *child, *p;
1679 struct hlist_node *n;
1680 int err;
1681
1682 if (IS_MNT_SHARED(dest_mnt)) {
1683 err = invent_group_ids(source_mnt, true);
1684 if (err)
1685 goto out;
1686 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1687 lock_mount_hash();
1688 if (err)
1689 goto out_cleanup_ids;
1690 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1691 set_mnt_shared(p);
1692 } else {
1693 lock_mount_hash();
1694 }
1695 if (parent_path) {
1696 detach_mnt(source_mnt, parent_path);
1697 attach_mnt(source_mnt, dest_mnt, dest_mp);
1698 touch_mnt_namespace(source_mnt->mnt_ns);
1699 } else {
1700 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1701 commit_tree(source_mnt, NULL);
1702 }
1703
1704 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1705 struct mount *q;
1706 hlist_del_init(&child->mnt_hash);
1707 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1708 child->mnt_mountpoint);
1709 commit_tree(child, q);
1710 }
1711 unlock_mount_hash();
1712
1713 return 0;
1714
1715 out_cleanup_ids:
1716 while (!hlist_empty(&tree_list)) {
1717 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1718 umount_tree(child, 0);
1719 }
1720 unlock_mount_hash();
1721 cleanup_group_ids(source_mnt, NULL);
1722 out:
1723 return err;
1724}
1725
1726static struct mountpoint *lock_mount(struct path *path)
1727{
1728 struct vfsmount *mnt;
1729 struct dentry *dentry = path->dentry;
1730retry:
1731 mutex_lock(&dentry->d_inode->i_mutex);
1732 if (unlikely(cant_mount(dentry))) {
1733 mutex_unlock(&dentry->d_inode->i_mutex);
1734 return ERR_PTR(-ENOENT);
1735 }
1736 namespace_lock();
1737 mnt = lookup_mnt(path);
1738 if (likely(!mnt)) {
1739 struct mountpoint *mp = new_mountpoint(dentry);
1740 if (IS_ERR(mp)) {
1741 namespace_unlock();
1742 mutex_unlock(&dentry->d_inode->i_mutex);
1743 return mp;
1744 }
1745 return mp;
1746 }
1747 namespace_unlock();
1748 mutex_unlock(&path->dentry->d_inode->i_mutex);
1749 path_put(path);
1750 path->mnt = mnt;
1751 dentry = path->dentry = dget(mnt->mnt_root);
1752 goto retry;
1753}
1754
1755static void unlock_mount(struct mountpoint *where)
1756{
1757 struct dentry *dentry = where->m_dentry;
1758 put_mountpoint(where);
1759 namespace_unlock();
1760 mutex_unlock(&dentry->d_inode->i_mutex);
1761}
1762
1763static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1764{
1765 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1766 return -EINVAL;
1767
1768 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1769 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1770 return -ENOTDIR;
1771
1772 return attach_recursive_mnt(mnt, p, mp, NULL);
1773}
1774
1775/*
1776 * Sanity check the flags to change_mnt_propagation.
1777 */
1778
1779static int flags_to_propagation_type(int flags)
1780{
1781 int type = flags & ~(MS_REC | MS_SILENT);
1782
1783 /* Fail if any non-propagation flags are set */
1784 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1785 return 0;
1786 /* Only one propagation flag should be set */
1787 if (!is_power_of_2(type))
1788 return 0;
1789 return type;
1790}
1791
1792/*
1793 * recursively change the type of the mountpoint.
1794 */
1795static int do_change_type(struct path *path, int flag)
1796{
1797 struct mount *m;
1798 struct mount *mnt = real_mount(path->mnt);
1799 int recurse = flag & MS_REC;
1800 int type;
1801 int err = 0;
1802
1803 if (path->dentry != path->mnt->mnt_root)
1804 return -EINVAL;
1805
1806 type = flags_to_propagation_type(flag);
1807 if (!type)
1808 return -EINVAL;
1809
1810 namespace_lock();
1811 if (type == MS_SHARED) {
1812 err = invent_group_ids(mnt, recurse);
1813 if (err)
1814 goto out_unlock;
1815 }
1816
1817 lock_mount_hash();
1818 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1819 change_mnt_propagation(m, type);
1820 unlock_mount_hash();
1821
1822 out_unlock:
1823 namespace_unlock();
1824 return err;
1825}
1826
1827static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1828{
1829 struct mount *child;
1830 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1831 if (!is_subdir(child->mnt_mountpoint, dentry))
1832 continue;
1833
1834 if (child->mnt.mnt_flags & MNT_LOCKED)
1835 return true;
1836 }
1837 return false;
1838}
1839
1840/*
1841 * do loopback mount.
1842 */
1843static int do_loopback(struct path *path, const char *old_name,
1844 int recurse)
1845{
1846 struct path old_path;
1847 struct mount *mnt = NULL, *old, *parent;
1848 struct mountpoint *mp;
1849 int err;
1850 if (!old_name || !*old_name)
1851 return -EINVAL;
1852 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1853 if (err)
1854 return err;
1855
1856 err = -EINVAL;
1857 if (mnt_ns_loop(old_path.dentry))
1858 goto out;
1859
1860 mp = lock_mount(path);
1861 err = PTR_ERR(mp);
1862 if (IS_ERR(mp))
1863 goto out;
1864
1865 old = real_mount(old_path.mnt);
1866 parent = real_mount(path->mnt);
1867
1868 err = -EINVAL;
1869 if (IS_MNT_UNBINDABLE(old))
1870 goto out2;
1871
1872 if (!check_mnt(parent) || !check_mnt(old))
1873 goto out2;
1874
1875 if (!recurse && has_locked_children(old, old_path.dentry))
1876 goto out2;
1877
1878 if (recurse)
1879 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1880 else
1881 mnt = clone_mnt(old, old_path.dentry, 0);
1882
1883 if (IS_ERR(mnt)) {
1884 err = PTR_ERR(mnt);
1885 goto out2;
1886 }
1887
1888 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1889
1890 err = graft_tree(mnt, parent, mp);
1891 if (err) {
1892 lock_mount_hash();
1893 umount_tree(mnt, 0);
1894 unlock_mount_hash();
1895 }
1896out2:
1897 unlock_mount(mp);
1898out:
1899 path_put(&old_path);
1900 return err;
1901}
1902
1903static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1904{
1905 int error = 0;
1906 int readonly_request = 0;
1907
1908 if (ms_flags & MS_RDONLY)
1909 readonly_request = 1;
1910 if (readonly_request == __mnt_is_readonly(mnt))
1911 return 0;
1912
1913 if (readonly_request)
1914 error = mnt_make_readonly(real_mount(mnt));
1915 else
1916 __mnt_unmake_readonly(real_mount(mnt));
1917 return error;
1918}
1919
1920/*
1921 * change filesystem flags. dir should be a physical root of filesystem.
1922 * If you've mounted a non-root directory somewhere and want to do remount
1923 * on it - tough luck.
1924 */
1925static int do_remount(struct path *path, int flags, int mnt_flags,
1926 void *data)
1927{
1928 int err;
1929 struct super_block *sb = path->mnt->mnt_sb;
1930 struct mount *mnt = real_mount(path->mnt);
1931
1932 if (!check_mnt(mnt))
1933 return -EINVAL;
1934
1935 if (path->dentry != path->mnt->mnt_root)
1936 return -EINVAL;
1937
1938 /* Don't allow changing of locked mnt flags.
1939 *
1940 * No locks need to be held here while testing the various
1941 * MNT_LOCK flags because those flags can never be cleared
1942 * once they are set.
1943 */
1944 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1945 !(mnt_flags & MNT_READONLY)) {
1946 return -EPERM;
1947 }
1948 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1949 !(mnt_flags & MNT_NODEV)) {
1950 return -EPERM;
1951 }
1952 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1953 !(mnt_flags & MNT_NOSUID)) {
1954 return -EPERM;
1955 }
1956 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1957 !(mnt_flags & MNT_NOEXEC)) {
1958 return -EPERM;
1959 }
1960 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1961 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1962 return -EPERM;
1963 }
1964
1965 err = security_sb_remount(sb, data);
1966 if (err)
1967 return err;
1968
1969 down_write(&sb->s_umount);
1970 if (flags & MS_BIND)
1971 err = change_mount_flags(path->mnt, flags);
1972 else if (!capable(CAP_SYS_ADMIN))
1973 err = -EPERM;
1974 else
1975 err = do_remount_sb(sb, flags, data, 0);
1976 if (!err) {
1977 lock_mount_hash();
1978 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1979 mnt->mnt.mnt_flags = mnt_flags;
1980 touch_mnt_namespace(mnt->mnt_ns);
1981 unlock_mount_hash();
1982 }
1983 up_write(&sb->s_umount);
1984 return err;
1985}
1986
1987static inline int tree_contains_unbindable(struct mount *mnt)
1988{
1989 struct mount *p;
1990 for (p = mnt; p; p = next_mnt(p, mnt)) {
1991 if (IS_MNT_UNBINDABLE(p))
1992 return 1;
1993 }
1994 return 0;
1995}
1996
1997static int do_move_mount(struct path *path, const char *old_name)
1998{
1999 struct path old_path, parent_path;
2000 struct mount *p;
2001 struct mount *old;
2002 struct mountpoint *mp;
2003 int err;
2004 if (!old_name || !*old_name)
2005 return -EINVAL;
2006 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2007 if (err)
2008 return err;
2009
2010 mp = lock_mount(path);
2011 err = PTR_ERR(mp);
2012 if (IS_ERR(mp))
2013 goto out;
2014
2015 old = real_mount(old_path.mnt);
2016 p = real_mount(path->mnt);
2017
2018 err = -EINVAL;
2019 if (!check_mnt(p) || !check_mnt(old))
2020 goto out1;
2021
2022 if (old->mnt.mnt_flags & MNT_LOCKED)
2023 goto out1;
2024
2025 err = -EINVAL;
2026 if (old_path.dentry != old_path.mnt->mnt_root)
2027 goto out1;
2028
2029 if (!mnt_has_parent(old))
2030 goto out1;
2031
2032 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2033 S_ISDIR(old_path.dentry->d_inode->i_mode))
2034 goto out1;
2035 /*
2036 * Don't move a mount residing in a shared parent.
2037 */
2038 if (IS_MNT_SHARED(old->mnt_parent))
2039 goto out1;
2040 /*
2041 * Don't move a mount tree containing unbindable mounts to a destination
2042 * mount which is shared.
2043 */
2044 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2045 goto out1;
2046 err = -ELOOP;
2047 for (; mnt_has_parent(p); p = p->mnt_parent)
2048 if (p == old)
2049 goto out1;
2050
2051 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2052 if (err)
2053 goto out1;
2054
2055 /* if the mount is moved, it should no longer be expire
2056 * automatically */
2057 list_del_init(&old->mnt_expire);
2058out1:
2059 unlock_mount(mp);
2060out:
2061 if (!err)
2062 path_put(&parent_path);
2063 path_put(&old_path);
2064 return err;
2065}
2066
2067static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2068{
2069 int err;
2070 const char *subtype = strchr(fstype, '.');
2071 if (subtype) {
2072 subtype++;
2073 err = -EINVAL;
2074 if (!subtype[0])
2075 goto err;
2076 } else
2077 subtype = "";
2078
2079 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2080 err = -ENOMEM;
2081 if (!mnt->mnt_sb->s_subtype)
2082 goto err;
2083 return mnt;
2084
2085 err:
2086 mntput(mnt);
2087 return ERR_PTR(err);
2088}
2089
2090/*
2091 * add a mount into a namespace's mount tree
2092 */
2093static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2094{
2095 struct mountpoint *mp;
2096 struct mount *parent;
2097 int err;
2098
2099 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2100
2101 mp = lock_mount(path);
2102 if (IS_ERR(mp))
2103 return PTR_ERR(mp);
2104
2105 parent = real_mount(path->mnt);
2106 err = -EINVAL;
2107 if (unlikely(!check_mnt(parent))) {
2108 /* that's acceptable only for automounts done in private ns */
2109 if (!(mnt_flags & MNT_SHRINKABLE))
2110 goto unlock;
2111 /* ... and for those we'd better have mountpoint still alive */
2112 if (!parent->mnt_ns)
2113 goto unlock;
2114 }
2115
2116 /* Refuse the same filesystem on the same mount point */
2117 err = -EBUSY;
2118 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2119 path->mnt->mnt_root == path->dentry)
2120 goto unlock;
2121
2122 err = -EINVAL;
2123 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2124 goto unlock;
2125
2126 newmnt->mnt.mnt_flags = mnt_flags;
2127 err = graft_tree(newmnt, parent, mp);
2128
2129unlock:
2130 unlock_mount(mp);
2131 return err;
2132}
2133
2134/*
2135 * create a new mount for userspace and request it to be added into the
2136 * namespace's tree
2137 */
2138static int do_new_mount(struct path *path, const char *fstype, int flags,
2139 int mnt_flags, const char *name, void *data)
2140{
2141 struct file_system_type *type;
2142 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2143 struct vfsmount *mnt;
2144 int err;
2145
2146 if (!fstype)
2147 return -EINVAL;
2148
2149 type = get_fs_type(fstype);
2150 if (!type)
2151 return -ENODEV;
2152
2153 if (user_ns != &init_user_ns) {
2154 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2155 put_filesystem(type);
2156 return -EPERM;
2157 }
2158 /* Only in special cases allow devices from mounts
2159 * created outside the initial user namespace.
2160 */
2161 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2162 flags |= MS_NODEV;
2163 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2164 }
2165 }
2166
2167 mnt = vfs_kern_mount(type, flags, name, data);
2168 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2169 !mnt->mnt_sb->s_subtype)
2170 mnt = fs_set_subtype(mnt, fstype);
2171
2172 put_filesystem(type);
2173 if (IS_ERR(mnt))
2174 return PTR_ERR(mnt);
2175
2176 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2177 if (err)
2178 mntput(mnt);
2179 return err;
2180}
2181
2182int finish_automount(struct vfsmount *m, struct path *path)
2183{
2184 struct mount *mnt = real_mount(m);
2185 int err;
2186 /* The new mount record should have at least 2 refs to prevent it being
2187 * expired before we get a chance to add it
2188 */
2189 BUG_ON(mnt_get_count(mnt) < 2);
2190
2191 if (m->mnt_sb == path->mnt->mnt_sb &&
2192 m->mnt_root == path->dentry) {
2193 err = -ELOOP;
2194 goto fail;
2195 }
2196
2197 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2198 if (!err)
2199 return 0;
2200fail:
2201 /* remove m from any expiration list it may be on */
2202 if (!list_empty(&mnt->mnt_expire)) {
2203 namespace_lock();
2204 list_del_init(&mnt->mnt_expire);
2205 namespace_unlock();
2206 }
2207 mntput(m);
2208 mntput(m);
2209 return err;
2210}
2211
2212/**
2213 * mnt_set_expiry - Put a mount on an expiration list
2214 * @mnt: The mount to list.
2215 * @expiry_list: The list to add the mount to.
2216 */
2217void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2218{
2219 namespace_lock();
2220
2221 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2222
2223 namespace_unlock();
2224}
2225EXPORT_SYMBOL(mnt_set_expiry);
2226
2227/*
2228 * process a list of expirable mountpoints with the intent of discarding any
2229 * mountpoints that aren't in use and haven't been touched since last we came
2230 * here
2231 */
2232void mark_mounts_for_expiry(struct list_head *mounts)
2233{
2234 struct mount *mnt, *next;
2235 LIST_HEAD(graveyard);
2236
2237 if (list_empty(mounts))
2238 return;
2239
2240 namespace_lock();
2241 lock_mount_hash();
2242
2243 /* extract from the expiration list every vfsmount that matches the
2244 * following criteria:
2245 * - only referenced by its parent vfsmount
2246 * - still marked for expiry (marked on the last call here; marks are
2247 * cleared by mntput())
2248 */
2249 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2250 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2251 propagate_mount_busy(mnt, 1))
2252 continue;
2253 list_move(&mnt->mnt_expire, &graveyard);
2254 }
2255 while (!list_empty(&graveyard)) {
2256 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2257 touch_mnt_namespace(mnt->mnt_ns);
2258 umount_tree(mnt, 1);
2259 }
2260 unlock_mount_hash();
2261 namespace_unlock();
2262}
2263
2264EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2265
2266/*
2267 * Ripoff of 'select_parent()'
2268 *
2269 * search the list of submounts for a given mountpoint, and move any
2270 * shrinkable submounts to the 'graveyard' list.
2271 */
2272static int select_submounts(struct mount *parent, struct list_head *graveyard)
2273{
2274 struct mount *this_parent = parent;
2275 struct list_head *next;
2276 int found = 0;
2277
2278repeat:
2279 next = this_parent->mnt_mounts.next;
2280resume:
2281 while (next != &this_parent->mnt_mounts) {
2282 struct list_head *tmp = next;
2283 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2284
2285 next = tmp->next;
2286 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2287 continue;
2288 /*
2289 * Descend a level if the d_mounts list is non-empty.
2290 */
2291 if (!list_empty(&mnt->mnt_mounts)) {
2292 this_parent = mnt;
2293 goto repeat;
2294 }
2295
2296 if (!propagate_mount_busy(mnt, 1)) {
2297 list_move_tail(&mnt->mnt_expire, graveyard);
2298 found++;
2299 }
2300 }
2301 /*
2302 * All done at this level ... ascend and resume the search
2303 */
2304 if (this_parent != parent) {
2305 next = this_parent->mnt_child.next;
2306 this_parent = this_parent->mnt_parent;
2307 goto resume;
2308 }
2309 return found;
2310}
2311
2312/*
2313 * process a list of expirable mountpoints with the intent of discarding any
2314 * submounts of a specific parent mountpoint
2315 *
2316 * mount_lock must be held for write
2317 */
2318static void shrink_submounts(struct mount *mnt)
2319{
2320 LIST_HEAD(graveyard);
2321 struct mount *m;
2322
2323 /* extract submounts of 'mountpoint' from the expiration list */
2324 while (select_submounts(mnt, &graveyard)) {
2325 while (!list_empty(&graveyard)) {
2326 m = list_first_entry(&graveyard, struct mount,
2327 mnt_expire);
2328 touch_mnt_namespace(m->mnt_ns);
2329 umount_tree(m, 1);
2330 }
2331 }
2332}
2333
2334/*
2335 * Some copy_from_user() implementations do not return the exact number of
2336 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2337 * Note that this function differs from copy_from_user() in that it will oops
2338 * on bad values of `to', rather than returning a short copy.
2339 */
2340static long exact_copy_from_user(void *to, const void __user * from,
2341 unsigned long n)
2342{
2343 char *t = to;
2344 const char __user *f = from;
2345 char c;
2346
2347 if (!access_ok(VERIFY_READ, from, n))
2348 return n;
2349
2350 while (n) {
2351 if (__get_user(c, f)) {
2352 memset(t, 0, n);
2353 break;
2354 }
2355 *t++ = c;
2356 f++;
2357 n--;
2358 }
2359 return n;
2360}
2361
2362int copy_mount_options(const void __user * data, unsigned long *where)
2363{
2364 int i;
2365 unsigned long page;
2366 unsigned long size;
2367
2368 *where = 0;
2369 if (!data)
2370 return 0;
2371
2372 if (!(page = __get_free_page(GFP_KERNEL)))
2373 return -ENOMEM;
2374
2375 /* We only care that *some* data at the address the user
2376 * gave us is valid. Just in case, we'll zero
2377 * the remainder of the page.
2378 */
2379 /* copy_from_user cannot cross TASK_SIZE ! */
2380 size = TASK_SIZE - (unsigned long)data;
2381 if (size > PAGE_SIZE)
2382 size = PAGE_SIZE;
2383
2384 i = size - exact_copy_from_user((void *)page, data, size);
2385 if (!i) {
2386 free_page(page);
2387 return -EFAULT;
2388 }
2389 if (i != PAGE_SIZE)
2390 memset((char *)page + i, 0, PAGE_SIZE - i);
2391 *where = page;
2392 return 0;
2393}
2394
2395int copy_mount_string(const void __user *data, char **where)
2396{
2397 char *tmp;
2398
2399 if (!data) {
2400 *where = NULL;
2401 return 0;
2402 }
2403
2404 tmp = strndup_user(data, PAGE_SIZE);
2405 if (IS_ERR(tmp))
2406 return PTR_ERR(tmp);
2407
2408 *where = tmp;
2409 return 0;
2410}
2411
2412/*
2413 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2414 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2415 *
2416 * data is a (void *) that can point to any structure up to
2417 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2418 * information (or be NULL).
2419 *
2420 * Pre-0.97 versions of mount() didn't have a flags word.
2421 * When the flags word was introduced its top half was required
2422 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2423 * Therefore, if this magic number is present, it carries no information
2424 * and must be discarded.
2425 */
2426long do_mount(const char *dev_name, const char *dir_name,
2427 const char *type_page, unsigned long flags, void *data_page)
2428{
2429 struct path path;
2430 int retval = 0;
2431 int mnt_flags = 0;
2432
2433 /* Discard magic */
2434 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2435 flags &= ~MS_MGC_MSK;
2436
2437 /* Basic sanity checks */
2438
2439 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2440 return -EINVAL;
2441
2442 if (data_page)
2443 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2444
2445 /* ... and get the mountpoint */
2446 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2447 if (retval)
2448 return retval;
2449
2450 retval = security_sb_mount(dev_name, &path,
2451 type_page, flags, data_page);
2452 if (!retval && !may_mount())
2453 retval = -EPERM;
2454 if (retval)
2455 goto dput_out;
2456
2457 /* Default to relatime unless overriden */
2458 if (!(flags & MS_NOATIME))
2459 mnt_flags |= MNT_RELATIME;
2460
2461 /* Separate the per-mountpoint flags */
2462 if (flags & MS_NOSUID)
2463 mnt_flags |= MNT_NOSUID;
2464 if (flags & MS_NODEV)
2465 mnt_flags |= MNT_NODEV;
2466 if (flags & MS_NOEXEC)
2467 mnt_flags |= MNT_NOEXEC;
2468 if (flags & MS_NOATIME)
2469 mnt_flags |= MNT_NOATIME;
2470 if (flags & MS_NODIRATIME)
2471 mnt_flags |= MNT_NODIRATIME;
2472 if (flags & MS_STRICTATIME)
2473 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2474 if (flags & MS_RDONLY)
2475 mnt_flags |= MNT_READONLY;
2476
2477 /* The default atime for remount is preservation */
2478 if ((flags & MS_REMOUNT) &&
2479 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2480 MS_STRICTATIME)) == 0)) {
2481 mnt_flags &= ~MNT_ATIME_MASK;
2482 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2483 }
2484
2485 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2486 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2487 MS_STRICTATIME);
2488
2489 if (flags & MS_REMOUNT)
2490 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2491 data_page);
2492 else if (flags & MS_BIND)
2493 retval = do_loopback(&path, dev_name, flags & MS_REC);
2494 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2495 retval = do_change_type(&path, flags);
2496 else if (flags & MS_MOVE)
2497 retval = do_move_mount(&path, dev_name);
2498 else
2499 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2500 dev_name, data_page);
2501dput_out:
2502 path_put(&path);
2503 return retval;
2504}
2505
2506static void free_mnt_ns(struct mnt_namespace *ns)
2507{
2508 proc_free_inum(ns->proc_inum);
2509 put_user_ns(ns->user_ns);
2510 kfree(ns);
2511}
2512
2513/*
2514 * Assign a sequence number so we can detect when we attempt to bind
2515 * mount a reference to an older mount namespace into the current
2516 * mount namespace, preventing reference counting loops. A 64bit
2517 * number incrementing at 10Ghz will take 12,427 years to wrap which
2518 * is effectively never, so we can ignore the possibility.
2519 */
2520static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2521
2522static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2523{
2524 struct mnt_namespace *new_ns;
2525 int ret;
2526
2527 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2528 if (!new_ns)
2529 return ERR_PTR(-ENOMEM);
2530 ret = proc_alloc_inum(&new_ns->proc_inum);
2531 if (ret) {
2532 kfree(new_ns);
2533 return ERR_PTR(ret);
2534 }
2535 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2536 atomic_set(&new_ns->count, 1);
2537 new_ns->root = NULL;
2538 INIT_LIST_HEAD(&new_ns->list);
2539 init_waitqueue_head(&new_ns->poll);
2540 new_ns->event = 0;
2541 new_ns->user_ns = get_user_ns(user_ns);
2542 return new_ns;
2543}
2544
2545struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2546 struct user_namespace *user_ns, struct fs_struct *new_fs)
2547{
2548 struct mnt_namespace *new_ns;
2549 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2550 struct mount *p, *q;
2551 struct mount *old;
2552 struct mount *new;
2553 int copy_flags;
2554
2555 BUG_ON(!ns);
2556
2557 if (likely(!(flags & CLONE_NEWNS))) {
2558 get_mnt_ns(ns);
2559 return ns;
2560 }
2561
2562 old = ns->root;
2563
2564 new_ns = alloc_mnt_ns(user_ns);
2565 if (IS_ERR(new_ns))
2566 return new_ns;
2567
2568 namespace_lock();
2569 /* First pass: copy the tree topology */
2570 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2571 if (user_ns != ns->user_ns)
2572 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2573 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2574 if (IS_ERR(new)) {
2575 namespace_unlock();
2576 free_mnt_ns(new_ns);
2577 return ERR_CAST(new);
2578 }
2579 new_ns->root = new;
2580 list_add_tail(&new_ns->list, &new->mnt_list);
2581
2582 /*
2583 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2584 * as belonging to new namespace. We have already acquired a private
2585 * fs_struct, so tsk->fs->lock is not needed.
2586 */
2587 p = old;
2588 q = new;
2589 while (p) {
2590 q->mnt_ns = new_ns;
2591 if (new_fs) {
2592 if (&p->mnt == new_fs->root.mnt) {
2593 new_fs->root.mnt = mntget(&q->mnt);
2594 rootmnt = &p->mnt;
2595 }
2596 if (&p->mnt == new_fs->pwd.mnt) {
2597 new_fs->pwd.mnt = mntget(&q->mnt);
2598 pwdmnt = &p->mnt;
2599 }
2600 }
2601 p = next_mnt(p, old);
2602 q = next_mnt(q, new);
2603 if (!q)
2604 break;
2605 while (p->mnt.mnt_root != q->mnt.mnt_root)
2606 p = next_mnt(p, old);
2607 }
2608 namespace_unlock();
2609
2610 if (rootmnt)
2611 mntput(rootmnt);
2612 if (pwdmnt)
2613 mntput(pwdmnt);
2614
2615 return new_ns;
2616}
2617
2618/**
2619 * create_mnt_ns - creates a private namespace and adds a root filesystem
2620 * @mnt: pointer to the new root filesystem mountpoint
2621 */
2622static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2623{
2624 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2625 if (!IS_ERR(new_ns)) {
2626 struct mount *mnt = real_mount(m);
2627 mnt->mnt_ns = new_ns;
2628 new_ns->root = mnt;
2629 list_add(&mnt->mnt_list, &new_ns->list);
2630 } else {
2631 mntput(m);
2632 }
2633 return new_ns;
2634}
2635
2636struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2637{
2638 struct mnt_namespace *ns;
2639 struct super_block *s;
2640 struct path path;
2641 int err;
2642
2643 ns = create_mnt_ns(mnt);
2644 if (IS_ERR(ns))
2645 return ERR_CAST(ns);
2646
2647 err = vfs_path_lookup(mnt->mnt_root, mnt,
2648 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2649
2650 put_mnt_ns(ns);
2651
2652 if (err)
2653 return ERR_PTR(err);
2654
2655 /* trade a vfsmount reference for active sb one */
2656 s = path.mnt->mnt_sb;
2657 atomic_inc(&s->s_active);
2658 mntput(path.mnt);
2659 /* lock the sucker */
2660 down_write(&s->s_umount);
2661 /* ... and return the root of (sub)tree on it */
2662 return path.dentry;
2663}
2664EXPORT_SYMBOL(mount_subtree);
2665
2666SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2667 char __user *, type, unsigned long, flags, void __user *, data)
2668{
2669 int ret;
2670 char *kernel_type;
2671 struct filename *kernel_dir;
2672 char *kernel_dev;
2673 unsigned long data_page;
2674
2675 ret = copy_mount_string(type, &kernel_type);
2676 if (ret < 0)
2677 goto out_type;
2678
2679 kernel_dir = getname(dir_name);
2680 if (IS_ERR(kernel_dir)) {
2681 ret = PTR_ERR(kernel_dir);
2682 goto out_dir;
2683 }
2684
2685 ret = copy_mount_string(dev_name, &kernel_dev);
2686 if (ret < 0)
2687 goto out_dev;
2688
2689 ret = copy_mount_options(data, &data_page);
2690 if (ret < 0)
2691 goto out_data;
2692
2693 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2694 (void *) data_page);
2695
2696 free_page(data_page);
2697out_data:
2698 kfree(kernel_dev);
2699out_dev:
2700 putname(kernel_dir);
2701out_dir:
2702 kfree(kernel_type);
2703out_type:
2704 return ret;
2705}
2706
2707/*
2708 * Return true if path is reachable from root
2709 *
2710 * namespace_sem or mount_lock is held
2711 */
2712bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2713 const struct path *root)
2714{
2715 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2716 dentry = mnt->mnt_mountpoint;
2717 mnt = mnt->mnt_parent;
2718 }
2719 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2720}
2721
2722int path_is_under(struct path *path1, struct path *path2)
2723{
2724 int res;
2725 read_seqlock_excl(&mount_lock);
2726 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2727 read_sequnlock_excl(&mount_lock);
2728 return res;
2729}
2730EXPORT_SYMBOL(path_is_under);
2731
2732/*
2733 * pivot_root Semantics:
2734 * Moves the root file system of the current process to the directory put_old,
2735 * makes new_root as the new root file system of the current process, and sets
2736 * root/cwd of all processes which had them on the current root to new_root.
2737 *
2738 * Restrictions:
2739 * The new_root and put_old must be directories, and must not be on the
2740 * same file system as the current process root. The put_old must be
2741 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2742 * pointed to by put_old must yield the same directory as new_root. No other
2743 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2744 *
2745 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2746 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2747 * in this situation.
2748 *
2749 * Notes:
2750 * - we don't move root/cwd if they are not at the root (reason: if something
2751 * cared enough to change them, it's probably wrong to force them elsewhere)
2752 * - it's okay to pick a root that isn't the root of a file system, e.g.
2753 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2754 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2755 * first.
2756 */
2757SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2758 const char __user *, put_old)
2759{
2760 struct path new, old, parent_path, root_parent, root;
2761 struct mount *new_mnt, *root_mnt, *old_mnt;
2762 struct mountpoint *old_mp, *root_mp;
2763 int error;
2764
2765 if (!may_mount())
2766 return -EPERM;
2767
2768 error = user_path_dir(new_root, &new);
2769 if (error)
2770 goto out0;
2771
2772 error = user_path_dir(put_old, &old);
2773 if (error)
2774 goto out1;
2775
2776 error = security_sb_pivotroot(&old, &new);
2777 if (error)
2778 goto out2;
2779
2780 get_fs_root(current->fs, &root);
2781 old_mp = lock_mount(&old);
2782 error = PTR_ERR(old_mp);
2783 if (IS_ERR(old_mp))
2784 goto out3;
2785
2786 error = -EINVAL;
2787 new_mnt = real_mount(new.mnt);
2788 root_mnt = real_mount(root.mnt);
2789 old_mnt = real_mount(old.mnt);
2790 if (IS_MNT_SHARED(old_mnt) ||
2791 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2792 IS_MNT_SHARED(root_mnt->mnt_parent))
2793 goto out4;
2794 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2795 goto out4;
2796 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2797 goto out4;
2798 error = -ENOENT;
2799 if (d_unlinked(new.dentry))
2800 goto out4;
2801 error = -EBUSY;
2802 if (new_mnt == root_mnt || old_mnt == root_mnt)
2803 goto out4; /* loop, on the same file system */
2804 error = -EINVAL;
2805 if (root.mnt->mnt_root != root.dentry)
2806 goto out4; /* not a mountpoint */
2807 if (!mnt_has_parent(root_mnt))
2808 goto out4; /* not attached */
2809 root_mp = root_mnt->mnt_mp;
2810 if (new.mnt->mnt_root != new.dentry)
2811 goto out4; /* not a mountpoint */
2812 if (!mnt_has_parent(new_mnt))
2813 goto out4; /* not attached */
2814 /* make sure we can reach put_old from new_root */
2815 if (!is_path_reachable(old_mnt, old.dentry, &new))
2816 goto out4;
2817 root_mp->m_count++; /* pin it so it won't go away */
2818 lock_mount_hash();
2819 detach_mnt(new_mnt, &parent_path);
2820 detach_mnt(root_mnt, &root_parent);
2821 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2822 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2823 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2824 }
2825 /* mount old root on put_old */
2826 attach_mnt(root_mnt, old_mnt, old_mp);
2827 /* mount new_root on / */
2828 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2829 touch_mnt_namespace(current->nsproxy->mnt_ns);
2830 unlock_mount_hash();
2831 chroot_fs_refs(&root, &new);
2832 put_mountpoint(root_mp);
2833 error = 0;
2834out4:
2835 unlock_mount(old_mp);
2836 if (!error) {
2837 path_put(&root_parent);
2838 path_put(&parent_path);
2839 }
2840out3:
2841 path_put(&root);
2842out2:
2843 path_put(&old);
2844out1:
2845 path_put(&new);
2846out0:
2847 return error;
2848}
2849
2850static void __init init_mount_tree(void)
2851{
2852 struct vfsmount *mnt;
2853 struct mnt_namespace *ns;
2854 struct path root;
2855 struct file_system_type *type;
2856
2857 type = get_fs_type("rootfs");
2858 if (!type)
2859 panic("Can't find rootfs type");
2860 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2861 put_filesystem(type);
2862 if (IS_ERR(mnt))
2863 panic("Can't create rootfs");
2864
2865 ns = create_mnt_ns(mnt);
2866 if (IS_ERR(ns))
2867 panic("Can't allocate initial namespace");
2868
2869 init_task.nsproxy->mnt_ns = ns;
2870 get_mnt_ns(ns);
2871
2872 root.mnt = mnt;
2873 root.dentry = mnt->mnt_root;
2874
2875 set_fs_pwd(current->fs, &root);
2876 set_fs_root(current->fs, &root);
2877}
2878
2879void __init mnt_init(void)
2880{
2881 unsigned u;
2882 int err;
2883
2884 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2885 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2886
2887 mount_hashtable = alloc_large_system_hash("Mount-cache",
2888 sizeof(struct hlist_head),
2889 mhash_entries, 19,
2890 0,
2891 &m_hash_shift, &m_hash_mask, 0, 0);
2892 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2893 sizeof(struct hlist_head),
2894 mphash_entries, 19,
2895 0,
2896 &mp_hash_shift, &mp_hash_mask, 0, 0);
2897
2898 if (!mount_hashtable || !mountpoint_hashtable)
2899 panic("Failed to allocate mount hash table\n");
2900
2901 for (u = 0; u <= m_hash_mask; u++)
2902 INIT_HLIST_HEAD(&mount_hashtable[u]);
2903 for (u = 0; u <= mp_hash_mask; u++)
2904 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2905
2906 kernfs_init();
2907
2908 err = sysfs_init();
2909 if (err)
2910 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2911 __func__, err);
2912 fs_kobj = kobject_create_and_add("fs", NULL);
2913 if (!fs_kobj)
2914 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2915 init_rootfs();
2916 init_mount_tree();
2917}
2918
2919void put_mnt_ns(struct mnt_namespace *ns)
2920{
2921 if (!atomic_dec_and_test(&ns->count))
2922 return;
2923 drop_collected_mounts(&ns->root->mnt);
2924 free_mnt_ns(ns);
2925}
2926
2927struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2928{
2929 struct vfsmount *mnt;
2930 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2931 if (!IS_ERR(mnt)) {
2932 /*
2933 * it is a longterm mount, don't release mnt until
2934 * we unmount before file sys is unregistered
2935 */
2936 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2937 }
2938 return mnt;
2939}
2940EXPORT_SYMBOL_GPL(kern_mount_data);
2941
2942void kern_unmount(struct vfsmount *mnt)
2943{
2944 /* release long term mount so mount point can be released */
2945 if (!IS_ERR_OR_NULL(mnt)) {
2946 real_mount(mnt)->mnt_ns = NULL;
2947 synchronize_rcu(); /* yecchhh... */
2948 mntput(mnt);
2949 }
2950}
2951EXPORT_SYMBOL(kern_unmount);
2952
2953bool our_mnt(struct vfsmount *mnt)
2954{
2955 return check_mnt(real_mount(mnt));
2956}
2957
2958bool current_chrooted(void)
2959{
2960 /* Does the current process have a non-standard root */
2961 struct path ns_root;
2962 struct path fs_root;
2963 bool chrooted;
2964
2965 /* Find the namespace root */
2966 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2967 ns_root.dentry = ns_root.mnt->mnt_root;
2968 path_get(&ns_root);
2969 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2970 ;
2971
2972 get_fs_root(current->fs, &fs_root);
2973
2974 chrooted = !path_equal(&fs_root, &ns_root);
2975
2976 path_put(&fs_root);
2977 path_put(&ns_root);
2978
2979 return chrooted;
2980}
2981
2982bool fs_fully_visible(struct file_system_type *type)
2983{
2984 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2985 struct mount *mnt;
2986 bool visible = false;
2987
2988 if (unlikely(!ns))
2989 return false;
2990
2991 down_read(&namespace_sem);
2992 list_for_each_entry(mnt, &ns->list, mnt_list) {
2993 struct mount *child;
2994 if (mnt->mnt.mnt_sb->s_type != type)
2995 continue;
2996
2997 /* This mount is not fully visible if there are any child mounts
2998 * that cover anything except for empty directories.
2999 */
3000 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3001 struct inode *inode = child->mnt_mountpoint->d_inode;
3002 if (!S_ISDIR(inode->i_mode))
3003 goto next;
3004 if (inode->i_nlink > 2)
3005 goto next;
3006 }
3007 visible = true;
3008 goto found;
3009 next: ;
3010 }
3011found:
3012 up_read(&namespace_sem);
3013 return visible;
3014}
3015
3016static void *mntns_get(struct task_struct *task)
3017{
3018 struct mnt_namespace *ns = NULL;
3019 struct nsproxy *nsproxy;
3020
3021 task_lock(task);
3022 nsproxy = task->nsproxy;
3023 if (nsproxy) {
3024 ns = nsproxy->mnt_ns;
3025 get_mnt_ns(ns);
3026 }
3027 task_unlock(task);
3028
3029 return ns;
3030}
3031
3032static void mntns_put(void *ns)
3033{
3034 put_mnt_ns(ns);
3035}
3036
3037static int mntns_install(struct nsproxy *nsproxy, void *ns)
3038{
3039 struct fs_struct *fs = current->fs;
3040 struct mnt_namespace *mnt_ns = ns;
3041 struct path root;
3042
3043 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3044 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3045 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3046 return -EPERM;
3047
3048 if (fs->users != 1)
3049 return -EINVAL;
3050
3051 get_mnt_ns(mnt_ns);
3052 put_mnt_ns(nsproxy->mnt_ns);
3053 nsproxy->mnt_ns = mnt_ns;
3054
3055 /* Find the root */
3056 root.mnt = &mnt_ns->root->mnt;
3057 root.dentry = mnt_ns->root->mnt.mnt_root;
3058 path_get(&root);
3059 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3060 ;
3061
3062 /* Update the pwd and root */
3063 set_fs_pwd(fs, &root);
3064 set_fs_root(fs, &root);
3065
3066 path_put(&root);
3067 return 0;
3068}
3069
3070static unsigned int mntns_inum(void *ns)
3071{
3072 struct mnt_namespace *mnt_ns = ns;
3073 return mnt_ns->proc_inum;
3074}
3075
3076const struct proc_ns_operations mntns_operations = {
3077 .name = "mnt",
3078 .type = CLONE_NEWNS,
3079 .get = mntns_get,
3080 .put = mntns_put,
3081 .install = mntns_install,
3082 .inum = mntns_inum,
3083};