]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/namespace.c
get rid of unprotected dereferencing of mnt->mnt_ns
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
24#include <linux/proc_fs.h>
25#include "pnode.h"
26#include "internal.h"
27
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
31static int event;
32static DEFINE_IDA(mnt_id_ida);
33static DEFINE_IDA(mnt_group_ida);
34static DEFINE_SPINLOCK(mnt_id_lock);
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
37
38static struct list_head *mount_hashtable __read_mostly;
39static struct kmem_cache *mnt_cache __read_mostly;
40static struct rw_semaphore namespace_sem;
41
42/* /sys/fs */
43struct kobject *fs_kobj;
44EXPORT_SYMBOL_GPL(fs_kobj);
45
46/*
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * up the tree.
50 *
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
53 */
54DEFINE_BRLOCK(vfsmount_lock);
55
56static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57{
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
62}
63
64#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65
66/*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
70static int mnt_alloc_id(struct mount *mnt)
71{
72 int res;
73
74retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 spin_lock(&mnt_id_lock);
77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 if (!res)
79 mnt_id_start = mnt->mnt_id + 1;
80 spin_unlock(&mnt_id_lock);
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85}
86
87static void mnt_free_id(struct mount *mnt)
88{
89 int id = mnt->mnt_id;
90 spin_lock(&mnt_id_lock);
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
94 spin_unlock(&mnt_id_lock);
95}
96
97/*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
102static int mnt_alloc_group_id(struct mount *mnt)
103{
104 int res;
105
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
111 &mnt->mnt_group_id);
112 if (!res)
113 mnt_group_start = mnt->mnt_group_id + 1;
114
115 return res;
116}
117
118/*
119 * Release a peer group ID
120 */
121void mnt_release_group_id(struct mount *mnt)
122{
123 int id = mnt->mnt_group_id;
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
127 mnt->mnt_group_id = 0;
128}
129
130/*
131 * vfsmount lock must be held for read
132 */
133static inline void mnt_add_count(struct mount *mnt, int n)
134{
135#ifdef CONFIG_SMP
136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137#else
138 preempt_disable();
139 mnt->mnt_count += n;
140 preempt_enable();
141#endif
142}
143
144/*
145 * vfsmount lock must be held for write
146 */
147unsigned int mnt_get_count(struct mount *mnt)
148{
149#ifdef CONFIG_SMP
150 unsigned int count = 0;
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 }
156
157 return count;
158#else
159 return mnt->mnt_count;
160#endif
161}
162
163static struct mount *alloc_vfsmnt(const char *name)
164{
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
167 int err;
168
169 err = mnt_alloc_id(mnt);
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
176 goto out_free_id;
177 }
178
179#ifdef CONFIG_SMP
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
182 goto out_free_devname;
183
184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185#else
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
188#endif
189
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
198#ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200#endif
201 }
202 return mnt;
203
204#ifdef CONFIG_SMP
205out_free_devname:
206 kfree(mnt->mnt_devname);
207#endif
208out_free_id:
209 mnt_free_id(mnt);
210out_free_cache:
211 kmem_cache_free(mnt_cache, mnt);
212 return NULL;
213}
214
215/*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223/*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234int __mnt_is_readonly(struct vfsmount *mnt)
235{
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
241}
242EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
244static inline void mnt_inc_writers(struct mount *mnt)
245{
246#ifdef CONFIG_SMP
247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248#else
249 mnt->mnt_writers++;
250#endif
251}
252
253static inline void mnt_dec_writers(struct mount *mnt)
254{
255#ifdef CONFIG_SMP
256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257#else
258 mnt->mnt_writers--;
259#endif
260}
261
262static unsigned int mnt_get_writers(struct mount *mnt)
263{
264#ifdef CONFIG_SMP
265 unsigned int count = 0;
266 int cpu;
267
268 for_each_possible_cpu(cpu) {
269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 }
271
272 return count;
273#else
274 return mnt->mnt_writers;
275#endif
276}
277
278static int mnt_is_readonly(struct vfsmount *mnt)
279{
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285}
286
287/*
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
292 */
293/**
294 * __mnt_want_write - get write access to a mount without freeze protection
295 * @m: the mount on which to take a write
296 *
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
302 */
303int __mnt_want_write(struct vfsmount *m)
304{
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
307
308 preempt_disable();
309 mnt_inc_writers(mnt);
310 /*
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
327 }
328 preempt_enable();
329
330 return ret;
331}
332
333/**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342int mnt_want_write(struct vfsmount *m)
343{
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
350 return ret;
351}
352EXPORT_SYMBOL_GPL(mnt_want_write);
353
354/**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366int mnt_clone_write(struct vfsmount *mnt)
367{
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
372 mnt_inc_writers(real_mount(mnt));
373 preempt_enable();
374 return 0;
375}
376EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378/**
379 * __mnt_want_write_file - get write access to a file's mount
380 * @file: the file who's mount on which to take a write
381 *
382 * This is like __mnt_want_write, but it takes a file and can
383 * do some optimisations if the file is open for write already
384 */
385int __mnt_want_write_file(struct file *file)
386{
387 struct inode *inode = file->f_dentry->d_inode;
388
389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 return __mnt_want_write(file->f_path.mnt);
391 else
392 return mnt_clone_write(file->f_path.mnt);
393}
394
395/**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402int mnt_want_write_file(struct file *file)
403{
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411}
412EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
414/**
415 * __mnt_drop_write - give up write access to a mount
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
420 * __mnt_want_write() call above.
421 */
422void __mnt_drop_write(struct vfsmount *mnt)
423{
424 preempt_disable();
425 mnt_dec_writers(real_mount(mnt));
426 preempt_enable();
427}
428
429/**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437void mnt_drop_write(struct vfsmount *mnt)
438{
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441}
442EXPORT_SYMBOL_GPL(mnt_drop_write);
443
444void __mnt_drop_write_file(struct file *file)
445{
446 __mnt_drop_write(file->f_path.mnt);
447}
448
449void mnt_drop_write_file(struct file *file)
450{
451 mnt_drop_write(file->f_path.mnt);
452}
453EXPORT_SYMBOL(mnt_drop_write_file);
454
455static int mnt_make_readonly(struct mount *mnt)
456{
457 int ret = 0;
458
459 br_write_lock(&vfsmount_lock);
460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 /*
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
464 */
465 smp_mb();
466
467 /*
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
482 */
483 if (mnt_get_writers(mnt) > 0)
484 ret = -EBUSY;
485 else
486 mnt->mnt.mnt_flags |= MNT_READONLY;
487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 br_write_unlock(&vfsmount_lock);
494 return ret;
495}
496
497static void __mnt_unmake_readonly(struct mount *mnt)
498{
499 br_write_lock(&vfsmount_lock);
500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 br_write_unlock(&vfsmount_lock);
502}
503
504int sb_prepare_remount_readonly(struct super_block *sb)
505{
506 struct mount *mnt;
507 int err = 0;
508
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
513 br_write_lock(&vfsmount_lock);
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
535 br_write_unlock(&vfsmount_lock);
536
537 return err;
538}
539
540static void free_vfsmnt(struct mount *mnt)
541{
542 kfree(mnt->mnt_devname);
543 mnt_free_id(mnt);
544#ifdef CONFIG_SMP
545 free_percpu(mnt->mnt_pcp);
546#endif
547 kmem_cache_free(mnt_cache, mnt);
548}
549
550/*
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
553 * vfsmount_lock must be held for read or write.
554 */
555struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
556 int dir)
557{
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
560 struct mount *p, *found = NULL;
561
562 for (;;) {
563 tmp = dir ? tmp->next : tmp->prev;
564 p = NULL;
565 if (tmp == head)
566 break;
567 p = list_entry(tmp, struct mount, mnt_hash);
568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
569 found = p;
570 break;
571 }
572 }
573 return found;
574}
575
576/*
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
591 */
592struct vfsmount *lookup_mnt(struct path *path)
593{
594 struct mount *child_mnt;
595
596 br_read_lock(&vfsmount_lock);
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
600 br_read_unlock(&vfsmount_lock);
601 return &child_mnt->mnt;
602 } else {
603 br_read_unlock(&vfsmount_lock);
604 return NULL;
605 }
606}
607
608static inline int check_mnt(struct mount *mnt)
609{
610 return mnt->mnt_ns == current->nsproxy->mnt_ns;
611}
612
613/*
614 * vfsmount lock must be held for write
615 */
616static void touch_mnt_namespace(struct mnt_namespace *ns)
617{
618 if (ns) {
619 ns->event = ++event;
620 wake_up_interruptible(&ns->poll);
621 }
622}
623
624/*
625 * vfsmount lock must be held for write
626 */
627static void __touch_mnt_namespace(struct mnt_namespace *ns)
628{
629 if (ns && ns->event != event) {
630 ns->event = event;
631 wake_up_interruptible(&ns->poll);
632 }
633}
634
635/*
636 * Clear dentry's mounted state if it has no remaining mounts.
637 * vfsmount_lock must be held for write.
638 */
639static void dentry_reset_mounted(struct dentry *dentry)
640{
641 unsigned u;
642
643 for (u = 0; u < HASH_SIZE; u++) {
644 struct mount *p;
645
646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
647 if (p->mnt_mountpoint == dentry)
648 return;
649 }
650 }
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654}
655
656/*
657 * vfsmount lock must be held for write
658 */
659static void detach_mnt(struct mount *mnt, struct path *old_path)
660{
661 old_path->dentry = mnt->mnt_mountpoint;
662 old_path->mnt = &mnt->mnt_parent->mnt;
663 mnt->mnt_parent = mnt;
664 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
665 list_del_init(&mnt->mnt_child);
666 list_del_init(&mnt->mnt_hash);
667 dentry_reset_mounted(old_path->dentry);
668}
669
670/*
671 * vfsmount lock must be held for write
672 */
673void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
674 struct mount *child_mnt)
675{
676 mnt_add_count(mnt, 1); /* essentially, that's mntget */
677 child_mnt->mnt_mountpoint = dget(dentry);
678 child_mnt->mnt_parent = mnt;
679 spin_lock(&dentry->d_lock);
680 dentry->d_flags |= DCACHE_MOUNTED;
681 spin_unlock(&dentry->d_lock);
682}
683
684/*
685 * vfsmount lock must be held for write
686 */
687static void attach_mnt(struct mount *mnt, struct path *path)
688{
689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
690 list_add_tail(&mnt->mnt_hash, mount_hashtable +
691 hash(path->mnt, path->dentry));
692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
693}
694
695/*
696 * vfsmount lock must be held for write
697 */
698static void commit_tree(struct mount *mnt)
699{
700 struct mount *parent = mnt->mnt_parent;
701 struct mount *m;
702 LIST_HEAD(head);
703 struct mnt_namespace *n = parent->mnt_ns;
704
705 BUG_ON(parent == mnt);
706
707 list_add_tail(&head, &mnt->mnt_list);
708 list_for_each_entry(m, &head, mnt_list)
709 m->mnt_ns = n;
710
711 list_splice(&head, n->list.prev);
712
713 list_add_tail(&mnt->mnt_hash, mount_hashtable +
714 hash(&parent->mnt, mnt->mnt_mountpoint));
715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
716 touch_mnt_namespace(n);
717}
718
719static struct mount *next_mnt(struct mount *p, struct mount *root)
720{
721 struct list_head *next = p->mnt_mounts.next;
722 if (next == &p->mnt_mounts) {
723 while (1) {
724 if (p == root)
725 return NULL;
726 next = p->mnt_child.next;
727 if (next != &p->mnt_parent->mnt_mounts)
728 break;
729 p = p->mnt_parent;
730 }
731 }
732 return list_entry(next, struct mount, mnt_child);
733}
734
735static struct mount *skip_mnt_tree(struct mount *p)
736{
737 struct list_head *prev = p->mnt_mounts.prev;
738 while (prev != &p->mnt_mounts) {
739 p = list_entry(prev, struct mount, mnt_child);
740 prev = p->mnt_mounts.prev;
741 }
742 return p;
743}
744
745struct vfsmount *
746vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747{
748 struct mount *mnt;
749 struct dentry *root;
750
751 if (!type)
752 return ERR_PTR(-ENODEV);
753
754 mnt = alloc_vfsmnt(name);
755 if (!mnt)
756 return ERR_PTR(-ENOMEM);
757
758 if (flags & MS_KERNMOUNT)
759 mnt->mnt.mnt_flags = MNT_INTERNAL;
760
761 root = mount_fs(type, flags, name, data);
762 if (IS_ERR(root)) {
763 free_vfsmnt(mnt);
764 return ERR_CAST(root);
765 }
766
767 mnt->mnt.mnt_root = root;
768 mnt->mnt.mnt_sb = root->d_sb;
769 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
770 mnt->mnt_parent = mnt;
771 br_write_lock(&vfsmount_lock);
772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
773 br_write_unlock(&vfsmount_lock);
774 return &mnt->mnt;
775}
776EXPORT_SYMBOL_GPL(vfs_kern_mount);
777
778static struct mount *clone_mnt(struct mount *old, struct dentry *root,
779 int flag)
780{
781 struct super_block *sb = old->mnt.mnt_sb;
782 struct mount *mnt;
783 int err;
784
785 mnt = alloc_vfsmnt(old->mnt_devname);
786 if (!mnt)
787 return ERR_PTR(-ENOMEM);
788
789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
790 mnt->mnt_group_id = 0; /* not a peer of original */
791 else
792 mnt->mnt_group_id = old->mnt_group_id;
793
794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 err = mnt_alloc_group_id(mnt);
796 if (err)
797 goto out_free;
798 }
799
800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 atomic_inc(&sb->s_active);
802 mnt->mnt.mnt_sb = sb;
803 mnt->mnt.mnt_root = dget(root);
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 mnt->mnt_parent = mnt;
806 br_write_lock(&vfsmount_lock);
807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 br_write_unlock(&vfsmount_lock);
809
810 if ((flag & CL_SLAVE) ||
811 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
812 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
813 mnt->mnt_master = old;
814 CLEAR_MNT_SHARED(mnt);
815 } else if (!(flag & CL_PRIVATE)) {
816 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
817 list_add(&mnt->mnt_share, &old->mnt_share);
818 if (IS_MNT_SLAVE(old))
819 list_add(&mnt->mnt_slave, &old->mnt_slave);
820 mnt->mnt_master = old->mnt_master;
821 }
822 if (flag & CL_MAKE_SHARED)
823 set_mnt_shared(mnt);
824
825 /* stick the duplicate mount on the same expiry list
826 * as the original if that was on one */
827 if (flag & CL_EXPIRE) {
828 if (!list_empty(&old->mnt_expire))
829 list_add(&mnt->mnt_expire, &old->mnt_expire);
830 }
831
832 return mnt;
833
834 out_free:
835 free_vfsmnt(mnt);
836 return ERR_PTR(err);
837}
838
839static inline void mntfree(struct mount *mnt)
840{
841 struct vfsmount *m = &mnt->mnt;
842 struct super_block *sb = m->mnt_sb;
843
844 /*
845 * This probably indicates that somebody messed
846 * up a mnt_want/drop_write() pair. If this
847 * happens, the filesystem was probably unable
848 * to make r/w->r/o transitions.
849 */
850 /*
851 * The locking used to deal with mnt_count decrement provides barriers,
852 * so mnt_get_writers() below is safe.
853 */
854 WARN_ON(mnt_get_writers(mnt));
855 fsnotify_vfsmount_delete(m);
856 dput(m->mnt_root);
857 free_vfsmnt(mnt);
858 deactivate_super(sb);
859}
860
861static void mntput_no_expire(struct mount *mnt)
862{
863put_again:
864#ifdef CONFIG_SMP
865 br_read_lock(&vfsmount_lock);
866 if (likely(mnt->mnt_ns)) {
867 /* shouldn't be the last one */
868 mnt_add_count(mnt, -1);
869 br_read_unlock(&vfsmount_lock);
870 return;
871 }
872 br_read_unlock(&vfsmount_lock);
873
874 br_write_lock(&vfsmount_lock);
875 mnt_add_count(mnt, -1);
876 if (mnt_get_count(mnt)) {
877 br_write_unlock(&vfsmount_lock);
878 return;
879 }
880#else
881 mnt_add_count(mnt, -1);
882 if (likely(mnt_get_count(mnt)))
883 return;
884 br_write_lock(&vfsmount_lock);
885#endif
886 if (unlikely(mnt->mnt_pinned)) {
887 mnt_add_count(mnt, mnt->mnt_pinned + 1);
888 mnt->mnt_pinned = 0;
889 br_write_unlock(&vfsmount_lock);
890 acct_auto_close_mnt(&mnt->mnt);
891 goto put_again;
892 }
893
894 list_del(&mnt->mnt_instance);
895 br_write_unlock(&vfsmount_lock);
896 mntfree(mnt);
897}
898
899void mntput(struct vfsmount *mnt)
900{
901 if (mnt) {
902 struct mount *m = real_mount(mnt);
903 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
904 if (unlikely(m->mnt_expiry_mark))
905 m->mnt_expiry_mark = 0;
906 mntput_no_expire(m);
907 }
908}
909EXPORT_SYMBOL(mntput);
910
911struct vfsmount *mntget(struct vfsmount *mnt)
912{
913 if (mnt)
914 mnt_add_count(real_mount(mnt), 1);
915 return mnt;
916}
917EXPORT_SYMBOL(mntget);
918
919void mnt_pin(struct vfsmount *mnt)
920{
921 br_write_lock(&vfsmount_lock);
922 real_mount(mnt)->mnt_pinned++;
923 br_write_unlock(&vfsmount_lock);
924}
925EXPORT_SYMBOL(mnt_pin);
926
927void mnt_unpin(struct vfsmount *m)
928{
929 struct mount *mnt = real_mount(m);
930 br_write_lock(&vfsmount_lock);
931 if (mnt->mnt_pinned) {
932 mnt_add_count(mnt, 1);
933 mnt->mnt_pinned--;
934 }
935 br_write_unlock(&vfsmount_lock);
936}
937EXPORT_SYMBOL(mnt_unpin);
938
939static inline void mangle(struct seq_file *m, const char *s)
940{
941 seq_escape(m, s, " \t\n\\");
942}
943
944/*
945 * Simple .show_options callback for filesystems which don't want to
946 * implement more complex mount option showing.
947 *
948 * See also save_mount_options().
949 */
950int generic_show_options(struct seq_file *m, struct dentry *root)
951{
952 const char *options;
953
954 rcu_read_lock();
955 options = rcu_dereference(root->d_sb->s_options);
956
957 if (options != NULL && options[0]) {
958 seq_putc(m, ',');
959 mangle(m, options);
960 }
961 rcu_read_unlock();
962
963 return 0;
964}
965EXPORT_SYMBOL(generic_show_options);
966
967/*
968 * If filesystem uses generic_show_options(), this function should be
969 * called from the fill_super() callback.
970 *
971 * The .remount_fs callback usually needs to be handled in a special
972 * way, to make sure, that previous options are not overwritten if the
973 * remount fails.
974 *
975 * Also note, that if the filesystem's .remount_fs function doesn't
976 * reset all options to their default value, but changes only newly
977 * given options, then the displayed options will not reflect reality
978 * any more.
979 */
980void save_mount_options(struct super_block *sb, char *options)
981{
982 BUG_ON(sb->s_options);
983 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
984}
985EXPORT_SYMBOL(save_mount_options);
986
987void replace_mount_options(struct super_block *sb, char *options)
988{
989 char *old = sb->s_options;
990 rcu_assign_pointer(sb->s_options, options);
991 if (old) {
992 synchronize_rcu();
993 kfree(old);
994 }
995}
996EXPORT_SYMBOL(replace_mount_options);
997
998#ifdef CONFIG_PROC_FS
999/* iterator; we want it to have access to namespace_sem, thus here... */
1000static void *m_start(struct seq_file *m, loff_t *pos)
1001{
1002 struct proc_mounts *p = proc_mounts(m);
1003
1004 down_read(&namespace_sem);
1005 return seq_list_start(&p->ns->list, *pos);
1006}
1007
1008static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1009{
1010 struct proc_mounts *p = proc_mounts(m);
1011
1012 return seq_list_next(v, &p->ns->list, pos);
1013}
1014
1015static void m_stop(struct seq_file *m, void *v)
1016{
1017 up_read(&namespace_sem);
1018}
1019
1020static int m_show(struct seq_file *m, void *v)
1021{
1022 struct proc_mounts *p = proc_mounts(m);
1023 struct mount *r = list_entry(v, struct mount, mnt_list);
1024 return p->show(m, &r->mnt);
1025}
1026
1027const struct seq_operations mounts_op = {
1028 .start = m_start,
1029 .next = m_next,
1030 .stop = m_stop,
1031 .show = m_show,
1032};
1033#endif /* CONFIG_PROC_FS */
1034
1035/**
1036 * may_umount_tree - check if a mount tree is busy
1037 * @mnt: root of mount tree
1038 *
1039 * This is called to check if a tree of mounts has any
1040 * open files, pwds, chroots or sub mounts that are
1041 * busy.
1042 */
1043int may_umount_tree(struct vfsmount *m)
1044{
1045 struct mount *mnt = real_mount(m);
1046 int actual_refs = 0;
1047 int minimum_refs = 0;
1048 struct mount *p;
1049 BUG_ON(!m);
1050
1051 /* write lock needed for mnt_get_count */
1052 br_write_lock(&vfsmount_lock);
1053 for (p = mnt; p; p = next_mnt(p, mnt)) {
1054 actual_refs += mnt_get_count(p);
1055 minimum_refs += 2;
1056 }
1057 br_write_unlock(&vfsmount_lock);
1058
1059 if (actual_refs > minimum_refs)
1060 return 0;
1061
1062 return 1;
1063}
1064
1065EXPORT_SYMBOL(may_umount_tree);
1066
1067/**
1068 * may_umount - check if a mount point is busy
1069 * @mnt: root of mount
1070 *
1071 * This is called to check if a mount point has any
1072 * open files, pwds, chroots or sub mounts. If the
1073 * mount has sub mounts this will return busy
1074 * regardless of whether the sub mounts are busy.
1075 *
1076 * Doesn't take quota and stuff into account. IOW, in some cases it will
1077 * give false negatives. The main reason why it's here is that we need
1078 * a non-destructive way to look for easily umountable filesystems.
1079 */
1080int may_umount(struct vfsmount *mnt)
1081{
1082 int ret = 1;
1083 down_read(&namespace_sem);
1084 br_write_lock(&vfsmount_lock);
1085 if (propagate_mount_busy(real_mount(mnt), 2))
1086 ret = 0;
1087 br_write_unlock(&vfsmount_lock);
1088 up_read(&namespace_sem);
1089 return ret;
1090}
1091
1092EXPORT_SYMBOL(may_umount);
1093
1094void release_mounts(struct list_head *head)
1095{
1096 struct mount *mnt;
1097 while (!list_empty(head)) {
1098 mnt = list_first_entry(head, struct mount, mnt_hash);
1099 list_del_init(&mnt->mnt_hash);
1100 if (mnt_has_parent(mnt)) {
1101 struct dentry *dentry;
1102 struct mount *m;
1103
1104 br_write_lock(&vfsmount_lock);
1105 dentry = mnt->mnt_mountpoint;
1106 m = mnt->mnt_parent;
1107 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1108 mnt->mnt_parent = mnt;
1109 m->mnt_ghosts--;
1110 br_write_unlock(&vfsmount_lock);
1111 dput(dentry);
1112 mntput(&m->mnt);
1113 }
1114 mntput(&mnt->mnt);
1115 }
1116}
1117
1118/*
1119 * vfsmount lock must be held for write
1120 * namespace_sem must be held for write
1121 */
1122void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1123{
1124 LIST_HEAD(tmp_list);
1125 struct mount *p;
1126
1127 for (p = mnt; p; p = next_mnt(p, mnt))
1128 list_move(&p->mnt_hash, &tmp_list);
1129
1130 if (propagate)
1131 propagate_umount(&tmp_list);
1132
1133 list_for_each_entry(p, &tmp_list, mnt_hash) {
1134 list_del_init(&p->mnt_expire);
1135 list_del_init(&p->mnt_list);
1136 __touch_mnt_namespace(p->mnt_ns);
1137 p->mnt_ns = NULL;
1138 list_del_init(&p->mnt_child);
1139 if (mnt_has_parent(p)) {
1140 p->mnt_parent->mnt_ghosts++;
1141 dentry_reset_mounted(p->mnt_mountpoint);
1142 }
1143 change_mnt_propagation(p, MS_PRIVATE);
1144 }
1145 list_splice(&tmp_list, kill);
1146}
1147
1148static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1149
1150static int do_umount(struct mount *mnt, int flags)
1151{
1152 struct super_block *sb = mnt->mnt.mnt_sb;
1153 int retval;
1154 LIST_HEAD(umount_list);
1155
1156 retval = security_sb_umount(&mnt->mnt, flags);
1157 if (retval)
1158 return retval;
1159
1160 /*
1161 * Allow userspace to request a mountpoint be expired rather than
1162 * unmounting unconditionally. Unmount only happens if:
1163 * (1) the mark is already set (the mark is cleared by mntput())
1164 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1165 */
1166 if (flags & MNT_EXPIRE) {
1167 if (&mnt->mnt == current->fs->root.mnt ||
1168 flags & (MNT_FORCE | MNT_DETACH))
1169 return -EINVAL;
1170
1171 /*
1172 * probably don't strictly need the lock here if we examined
1173 * all race cases, but it's a slowpath.
1174 */
1175 br_write_lock(&vfsmount_lock);
1176 if (mnt_get_count(mnt) != 2) {
1177 br_write_unlock(&vfsmount_lock);
1178 return -EBUSY;
1179 }
1180 br_write_unlock(&vfsmount_lock);
1181
1182 if (!xchg(&mnt->mnt_expiry_mark, 1))
1183 return -EAGAIN;
1184 }
1185
1186 /*
1187 * If we may have to abort operations to get out of this
1188 * mount, and they will themselves hold resources we must
1189 * allow the fs to do things. In the Unix tradition of
1190 * 'Gee thats tricky lets do it in userspace' the umount_begin
1191 * might fail to complete on the first run through as other tasks
1192 * must return, and the like. Thats for the mount program to worry
1193 * about for the moment.
1194 */
1195
1196 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1197 sb->s_op->umount_begin(sb);
1198 }
1199
1200 /*
1201 * No sense to grab the lock for this test, but test itself looks
1202 * somewhat bogus. Suggestions for better replacement?
1203 * Ho-hum... In principle, we might treat that as umount + switch
1204 * to rootfs. GC would eventually take care of the old vfsmount.
1205 * Actually it makes sense, especially if rootfs would contain a
1206 * /reboot - static binary that would close all descriptors and
1207 * call reboot(9). Then init(8) could umount root and exec /reboot.
1208 */
1209 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1210 /*
1211 * Special case for "unmounting" root ...
1212 * we just try to remount it readonly.
1213 */
1214 down_write(&sb->s_umount);
1215 if (!(sb->s_flags & MS_RDONLY))
1216 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1217 up_write(&sb->s_umount);
1218 return retval;
1219 }
1220
1221 down_write(&namespace_sem);
1222 br_write_lock(&vfsmount_lock);
1223 event++;
1224
1225 if (!(flags & MNT_DETACH))
1226 shrink_submounts(mnt, &umount_list);
1227
1228 retval = -EBUSY;
1229 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1230 if (!list_empty(&mnt->mnt_list))
1231 umount_tree(mnt, 1, &umount_list);
1232 retval = 0;
1233 }
1234 br_write_unlock(&vfsmount_lock);
1235 up_write(&namespace_sem);
1236 release_mounts(&umount_list);
1237 return retval;
1238}
1239
1240/*
1241 * Is the caller allowed to modify his namespace?
1242 */
1243static inline bool may_mount(void)
1244{
1245 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1246}
1247
1248/*
1249 * Now umount can handle mount points as well as block devices.
1250 * This is important for filesystems which use unnamed block devices.
1251 *
1252 * We now support a flag for forced unmount like the other 'big iron'
1253 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1254 */
1255
1256SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1257{
1258 struct path path;
1259 struct mount *mnt;
1260 int retval;
1261 int lookup_flags = 0;
1262
1263 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1264 return -EINVAL;
1265
1266 if (!may_mount())
1267 return -EPERM;
1268
1269 if (!(flags & UMOUNT_NOFOLLOW))
1270 lookup_flags |= LOOKUP_FOLLOW;
1271
1272 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1273 if (retval)
1274 goto out;
1275 mnt = real_mount(path.mnt);
1276 retval = -EINVAL;
1277 if (path.dentry != path.mnt->mnt_root)
1278 goto dput_and_out;
1279 if (!check_mnt(mnt))
1280 goto dput_and_out;
1281
1282 retval = do_umount(mnt, flags);
1283dput_and_out:
1284 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1285 dput(path.dentry);
1286 mntput_no_expire(mnt);
1287out:
1288 return retval;
1289}
1290
1291#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1292
1293/*
1294 * The 2.0 compatible umount. No flags.
1295 */
1296SYSCALL_DEFINE1(oldumount, char __user *, name)
1297{
1298 return sys_umount(name, 0);
1299}
1300
1301#endif
1302
1303static int mount_is_safe(struct path *path)
1304{
1305 if (may_mount())
1306 return 0;
1307 return -EPERM;
1308#ifdef notyet
1309 if (S_ISLNK(path->dentry->d_inode->i_mode))
1310 return -EPERM;
1311 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1312 if (current_uid() != path->dentry->d_inode->i_uid)
1313 return -EPERM;
1314 }
1315 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1316 return -EPERM;
1317 return 0;
1318#endif
1319}
1320
1321static bool mnt_ns_loop(struct path *path)
1322{
1323 /* Could bind mounting the mount namespace inode cause a
1324 * mount namespace loop?
1325 */
1326 struct inode *inode = path->dentry->d_inode;
1327 struct proc_inode *ei;
1328 struct mnt_namespace *mnt_ns;
1329
1330 if (!proc_ns_inode(inode))
1331 return false;
1332
1333 ei = PROC_I(inode);
1334 if (ei->ns_ops != &mntns_operations)
1335 return false;
1336
1337 mnt_ns = ei->ns;
1338 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1339}
1340
1341struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1342 int flag)
1343{
1344 struct mount *res, *p, *q, *r;
1345 struct path path;
1346
1347 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1348 return ERR_PTR(-EINVAL);
1349
1350 res = q = clone_mnt(mnt, dentry, flag);
1351 if (IS_ERR(q))
1352 return q;
1353
1354 q->mnt_mountpoint = mnt->mnt_mountpoint;
1355
1356 p = mnt;
1357 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1358 struct mount *s;
1359 if (!is_subdir(r->mnt_mountpoint, dentry))
1360 continue;
1361
1362 for (s = r; s; s = next_mnt(s, r)) {
1363 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1364 s = skip_mnt_tree(s);
1365 continue;
1366 }
1367 while (p != s->mnt_parent) {
1368 p = p->mnt_parent;
1369 q = q->mnt_parent;
1370 }
1371 p = s;
1372 path.mnt = &q->mnt;
1373 path.dentry = p->mnt_mountpoint;
1374 q = clone_mnt(p, p->mnt.mnt_root, flag);
1375 if (IS_ERR(q))
1376 goto out;
1377 br_write_lock(&vfsmount_lock);
1378 list_add_tail(&q->mnt_list, &res->mnt_list);
1379 attach_mnt(q, &path);
1380 br_write_unlock(&vfsmount_lock);
1381 }
1382 }
1383 return res;
1384out:
1385 if (res) {
1386 LIST_HEAD(umount_list);
1387 br_write_lock(&vfsmount_lock);
1388 umount_tree(res, 0, &umount_list);
1389 br_write_unlock(&vfsmount_lock);
1390 release_mounts(&umount_list);
1391 }
1392 return q;
1393}
1394
1395/* Caller should check returned pointer for errors */
1396
1397struct vfsmount *collect_mounts(struct path *path)
1398{
1399 struct mount *tree;
1400 down_write(&namespace_sem);
1401 tree = copy_tree(real_mount(path->mnt), path->dentry,
1402 CL_COPY_ALL | CL_PRIVATE);
1403 up_write(&namespace_sem);
1404 if (IS_ERR(tree))
1405 return NULL;
1406 return &tree->mnt;
1407}
1408
1409void drop_collected_mounts(struct vfsmount *mnt)
1410{
1411 LIST_HEAD(umount_list);
1412 down_write(&namespace_sem);
1413 br_write_lock(&vfsmount_lock);
1414 umount_tree(real_mount(mnt), 0, &umount_list);
1415 br_write_unlock(&vfsmount_lock);
1416 up_write(&namespace_sem);
1417 release_mounts(&umount_list);
1418}
1419
1420int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1421 struct vfsmount *root)
1422{
1423 struct mount *mnt;
1424 int res = f(root, arg);
1425 if (res)
1426 return res;
1427 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1428 res = f(&mnt->mnt, arg);
1429 if (res)
1430 return res;
1431 }
1432 return 0;
1433}
1434
1435static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1436{
1437 struct mount *p;
1438
1439 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1440 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1441 mnt_release_group_id(p);
1442 }
1443}
1444
1445static int invent_group_ids(struct mount *mnt, bool recurse)
1446{
1447 struct mount *p;
1448
1449 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1450 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1451 int err = mnt_alloc_group_id(p);
1452 if (err) {
1453 cleanup_group_ids(mnt, p);
1454 return err;
1455 }
1456 }
1457 }
1458
1459 return 0;
1460}
1461
1462/*
1463 * @source_mnt : mount tree to be attached
1464 * @nd : place the mount tree @source_mnt is attached
1465 * @parent_nd : if non-null, detach the source_mnt from its parent and
1466 * store the parent mount and mountpoint dentry.
1467 * (done when source_mnt is moved)
1468 *
1469 * NOTE: in the table below explains the semantics when a source mount
1470 * of a given type is attached to a destination mount of a given type.
1471 * ---------------------------------------------------------------------------
1472 * | BIND MOUNT OPERATION |
1473 * |**************************************************************************
1474 * | source-->| shared | private | slave | unbindable |
1475 * | dest | | | | |
1476 * | | | | | | |
1477 * | v | | | | |
1478 * |**************************************************************************
1479 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1480 * | | | | | |
1481 * |non-shared| shared (+) | private | slave (*) | invalid |
1482 * ***************************************************************************
1483 * A bind operation clones the source mount and mounts the clone on the
1484 * destination mount.
1485 *
1486 * (++) the cloned mount is propagated to all the mounts in the propagation
1487 * tree of the destination mount and the cloned mount is added to
1488 * the peer group of the source mount.
1489 * (+) the cloned mount is created under the destination mount and is marked
1490 * as shared. The cloned mount is added to the peer group of the source
1491 * mount.
1492 * (+++) the mount is propagated to all the mounts in the propagation tree
1493 * of the destination mount and the cloned mount is made slave
1494 * of the same master as that of the source mount. The cloned mount
1495 * is marked as 'shared and slave'.
1496 * (*) the cloned mount is made a slave of the same master as that of the
1497 * source mount.
1498 *
1499 * ---------------------------------------------------------------------------
1500 * | MOVE MOUNT OPERATION |
1501 * |**************************************************************************
1502 * | source-->| shared | private | slave | unbindable |
1503 * | dest | | | | |
1504 * | | | | | | |
1505 * | v | | | | |
1506 * |**************************************************************************
1507 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1508 * | | | | | |
1509 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1510 * ***************************************************************************
1511 *
1512 * (+) the mount is moved to the destination. And is then propagated to
1513 * all the mounts in the propagation tree of the destination mount.
1514 * (+*) the mount is moved to the destination.
1515 * (+++) the mount is moved to the destination and is then propagated to
1516 * all the mounts belonging to the destination mount's propagation tree.
1517 * the mount is marked as 'shared and slave'.
1518 * (*) the mount continues to be a slave at the new location.
1519 *
1520 * if the source mount is a tree, the operations explained above is
1521 * applied to each mount in the tree.
1522 * Must be called without spinlocks held, since this function can sleep
1523 * in allocations.
1524 */
1525static int attach_recursive_mnt(struct mount *source_mnt,
1526 struct path *path, struct path *parent_path)
1527{
1528 LIST_HEAD(tree_list);
1529 struct mount *dest_mnt = real_mount(path->mnt);
1530 struct dentry *dest_dentry = path->dentry;
1531 struct mount *child, *p;
1532 int err;
1533
1534 if (IS_MNT_SHARED(dest_mnt)) {
1535 err = invent_group_ids(source_mnt, true);
1536 if (err)
1537 goto out;
1538 }
1539 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1540 if (err)
1541 goto out_cleanup_ids;
1542
1543 br_write_lock(&vfsmount_lock);
1544
1545 if (IS_MNT_SHARED(dest_mnt)) {
1546 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1547 set_mnt_shared(p);
1548 }
1549 if (parent_path) {
1550 detach_mnt(source_mnt, parent_path);
1551 attach_mnt(source_mnt, path);
1552 touch_mnt_namespace(source_mnt->mnt_ns);
1553 } else {
1554 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1555 commit_tree(source_mnt);
1556 }
1557
1558 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1559 list_del_init(&child->mnt_hash);
1560 commit_tree(child);
1561 }
1562 br_write_unlock(&vfsmount_lock);
1563
1564 return 0;
1565
1566 out_cleanup_ids:
1567 if (IS_MNT_SHARED(dest_mnt))
1568 cleanup_group_ids(source_mnt, NULL);
1569 out:
1570 return err;
1571}
1572
1573static int lock_mount(struct path *path)
1574{
1575 struct vfsmount *mnt;
1576retry:
1577 mutex_lock(&path->dentry->d_inode->i_mutex);
1578 if (unlikely(cant_mount(path->dentry))) {
1579 mutex_unlock(&path->dentry->d_inode->i_mutex);
1580 return -ENOENT;
1581 }
1582 down_write(&namespace_sem);
1583 mnt = lookup_mnt(path);
1584 if (likely(!mnt))
1585 return 0;
1586 up_write(&namespace_sem);
1587 mutex_unlock(&path->dentry->d_inode->i_mutex);
1588 path_put(path);
1589 path->mnt = mnt;
1590 path->dentry = dget(mnt->mnt_root);
1591 goto retry;
1592}
1593
1594static void unlock_mount(struct path *path)
1595{
1596 up_write(&namespace_sem);
1597 mutex_unlock(&path->dentry->d_inode->i_mutex);
1598}
1599
1600static int graft_tree(struct mount *mnt, struct path *path)
1601{
1602 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1603 return -EINVAL;
1604
1605 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1606 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1607 return -ENOTDIR;
1608
1609 if (d_unlinked(path->dentry))
1610 return -ENOENT;
1611
1612 return attach_recursive_mnt(mnt, path, NULL);
1613}
1614
1615/*
1616 * Sanity check the flags to change_mnt_propagation.
1617 */
1618
1619static int flags_to_propagation_type(int flags)
1620{
1621 int type = flags & ~(MS_REC | MS_SILENT);
1622
1623 /* Fail if any non-propagation flags are set */
1624 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1625 return 0;
1626 /* Only one propagation flag should be set */
1627 if (!is_power_of_2(type))
1628 return 0;
1629 return type;
1630}
1631
1632/*
1633 * recursively change the type of the mountpoint.
1634 */
1635static int do_change_type(struct path *path, int flag)
1636{
1637 struct mount *m;
1638 struct mount *mnt = real_mount(path->mnt);
1639 int recurse = flag & MS_REC;
1640 int type;
1641 int err = 0;
1642
1643 if (!may_mount())
1644 return -EPERM;
1645
1646 if (path->dentry != path->mnt->mnt_root)
1647 return -EINVAL;
1648
1649 type = flags_to_propagation_type(flag);
1650 if (!type)
1651 return -EINVAL;
1652
1653 down_write(&namespace_sem);
1654 if (type == MS_SHARED) {
1655 err = invent_group_ids(mnt, recurse);
1656 if (err)
1657 goto out_unlock;
1658 }
1659
1660 br_write_lock(&vfsmount_lock);
1661 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1662 change_mnt_propagation(m, type);
1663 br_write_unlock(&vfsmount_lock);
1664
1665 out_unlock:
1666 up_write(&namespace_sem);
1667 return err;
1668}
1669
1670/*
1671 * do loopback mount.
1672 */
1673static int do_loopback(struct path *path, const char *old_name,
1674 int recurse)
1675{
1676 LIST_HEAD(umount_list);
1677 struct path old_path;
1678 struct mount *mnt = NULL, *old;
1679 int err = mount_is_safe(path);
1680 if (err)
1681 return err;
1682 if (!old_name || !*old_name)
1683 return -EINVAL;
1684 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1685 if (err)
1686 return err;
1687
1688 err = -EINVAL;
1689 if (mnt_ns_loop(&old_path))
1690 goto out;
1691
1692 err = lock_mount(path);
1693 if (err)
1694 goto out;
1695
1696 old = real_mount(old_path.mnt);
1697
1698 err = -EINVAL;
1699 if (IS_MNT_UNBINDABLE(old))
1700 goto out2;
1701
1702 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1703 goto out2;
1704
1705 if (recurse)
1706 mnt = copy_tree(old, old_path.dentry, 0);
1707 else
1708 mnt = clone_mnt(old, old_path.dentry, 0);
1709
1710 if (IS_ERR(mnt)) {
1711 err = PTR_ERR(mnt);
1712 goto out;
1713 }
1714
1715 err = graft_tree(mnt, path);
1716 if (err) {
1717 br_write_lock(&vfsmount_lock);
1718 umount_tree(mnt, 0, &umount_list);
1719 br_write_unlock(&vfsmount_lock);
1720 }
1721out2:
1722 unlock_mount(path);
1723 release_mounts(&umount_list);
1724out:
1725 path_put(&old_path);
1726 return err;
1727}
1728
1729static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1730{
1731 int error = 0;
1732 int readonly_request = 0;
1733
1734 if (ms_flags & MS_RDONLY)
1735 readonly_request = 1;
1736 if (readonly_request == __mnt_is_readonly(mnt))
1737 return 0;
1738
1739 if (readonly_request)
1740 error = mnt_make_readonly(real_mount(mnt));
1741 else
1742 __mnt_unmake_readonly(real_mount(mnt));
1743 return error;
1744}
1745
1746/*
1747 * change filesystem flags. dir should be a physical root of filesystem.
1748 * If you've mounted a non-root directory somewhere and want to do remount
1749 * on it - tough luck.
1750 */
1751static int do_remount(struct path *path, int flags, int mnt_flags,
1752 void *data)
1753{
1754 int err;
1755 struct super_block *sb = path->mnt->mnt_sb;
1756 struct mount *mnt = real_mount(path->mnt);
1757
1758 if (!capable(CAP_SYS_ADMIN))
1759 return -EPERM;
1760
1761 if (!check_mnt(mnt))
1762 return -EINVAL;
1763
1764 if (path->dentry != path->mnt->mnt_root)
1765 return -EINVAL;
1766
1767 err = security_sb_remount(sb, data);
1768 if (err)
1769 return err;
1770
1771 down_write(&sb->s_umount);
1772 if (flags & MS_BIND)
1773 err = change_mount_flags(path->mnt, flags);
1774 else
1775 err = do_remount_sb(sb, flags, data, 0);
1776 if (!err) {
1777 br_write_lock(&vfsmount_lock);
1778 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1779 mnt->mnt.mnt_flags = mnt_flags;
1780 br_write_unlock(&vfsmount_lock);
1781 }
1782 up_write(&sb->s_umount);
1783 if (!err) {
1784 br_write_lock(&vfsmount_lock);
1785 touch_mnt_namespace(mnt->mnt_ns);
1786 br_write_unlock(&vfsmount_lock);
1787 }
1788 return err;
1789}
1790
1791static inline int tree_contains_unbindable(struct mount *mnt)
1792{
1793 struct mount *p;
1794 for (p = mnt; p; p = next_mnt(p, mnt)) {
1795 if (IS_MNT_UNBINDABLE(p))
1796 return 1;
1797 }
1798 return 0;
1799}
1800
1801static int do_move_mount(struct path *path, const char *old_name)
1802{
1803 struct path old_path, parent_path;
1804 struct mount *p;
1805 struct mount *old;
1806 int err = 0;
1807 if (!may_mount())
1808 return -EPERM;
1809 if (!old_name || !*old_name)
1810 return -EINVAL;
1811 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1812 if (err)
1813 return err;
1814
1815 err = lock_mount(path);
1816 if (err < 0)
1817 goto out;
1818
1819 old = real_mount(old_path.mnt);
1820 p = real_mount(path->mnt);
1821
1822 err = -EINVAL;
1823 if (!check_mnt(p) || !check_mnt(old))
1824 goto out1;
1825
1826 if (d_unlinked(path->dentry))
1827 goto out1;
1828
1829 err = -EINVAL;
1830 if (old_path.dentry != old_path.mnt->mnt_root)
1831 goto out1;
1832
1833 if (!mnt_has_parent(old))
1834 goto out1;
1835
1836 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1837 S_ISDIR(old_path.dentry->d_inode->i_mode))
1838 goto out1;
1839 /*
1840 * Don't move a mount residing in a shared parent.
1841 */
1842 if (IS_MNT_SHARED(old->mnt_parent))
1843 goto out1;
1844 /*
1845 * Don't move a mount tree containing unbindable mounts to a destination
1846 * mount which is shared.
1847 */
1848 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1849 goto out1;
1850 err = -ELOOP;
1851 for (; mnt_has_parent(p); p = p->mnt_parent)
1852 if (p == old)
1853 goto out1;
1854
1855 err = attach_recursive_mnt(old, path, &parent_path);
1856 if (err)
1857 goto out1;
1858
1859 /* if the mount is moved, it should no longer be expire
1860 * automatically */
1861 list_del_init(&old->mnt_expire);
1862out1:
1863 unlock_mount(path);
1864out:
1865 if (!err)
1866 path_put(&parent_path);
1867 path_put(&old_path);
1868 return err;
1869}
1870
1871static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1872{
1873 int err;
1874 const char *subtype = strchr(fstype, '.');
1875 if (subtype) {
1876 subtype++;
1877 err = -EINVAL;
1878 if (!subtype[0])
1879 goto err;
1880 } else
1881 subtype = "";
1882
1883 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1884 err = -ENOMEM;
1885 if (!mnt->mnt_sb->s_subtype)
1886 goto err;
1887 return mnt;
1888
1889 err:
1890 mntput(mnt);
1891 return ERR_PTR(err);
1892}
1893
1894/*
1895 * add a mount into a namespace's mount tree
1896 */
1897static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1898{
1899 int err;
1900
1901 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1902
1903 err = lock_mount(path);
1904 if (err)
1905 return err;
1906
1907 err = -EINVAL;
1908 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1909 /* that's acceptable only for automounts done in private ns */
1910 if (!(mnt_flags & MNT_SHRINKABLE))
1911 goto unlock;
1912 /* ... and for those we'd better have mountpoint still alive */
1913 if (!real_mount(path->mnt)->mnt_ns)
1914 goto unlock;
1915 }
1916
1917 /* Refuse the same filesystem on the same mount point */
1918 err = -EBUSY;
1919 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1920 path->mnt->mnt_root == path->dentry)
1921 goto unlock;
1922
1923 err = -EINVAL;
1924 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1925 goto unlock;
1926
1927 newmnt->mnt.mnt_flags = mnt_flags;
1928 err = graft_tree(newmnt, path);
1929
1930unlock:
1931 unlock_mount(path);
1932 return err;
1933}
1934
1935/*
1936 * create a new mount for userspace and request it to be added into the
1937 * namespace's tree
1938 */
1939static int do_new_mount(struct path *path, const char *fstype, int flags,
1940 int mnt_flags, const char *name, void *data)
1941{
1942 struct file_system_type *type;
1943 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1944 struct vfsmount *mnt;
1945 int err;
1946
1947 if (!fstype)
1948 return -EINVAL;
1949
1950 if (!may_mount())
1951 return -EPERM;
1952
1953 type = get_fs_type(fstype);
1954 if (!type)
1955 return -ENODEV;
1956
1957 if (user_ns != &init_user_ns) {
1958 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1959 put_filesystem(type);
1960 return -EPERM;
1961 }
1962 /* Only in special cases allow devices from mounts
1963 * created outside the initial user namespace.
1964 */
1965 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1966 flags |= MS_NODEV;
1967 mnt_flags |= MNT_NODEV;
1968 }
1969 }
1970
1971 mnt = vfs_kern_mount(type, flags, name, data);
1972 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1973 !mnt->mnt_sb->s_subtype)
1974 mnt = fs_set_subtype(mnt, fstype);
1975
1976 put_filesystem(type);
1977 if (IS_ERR(mnt))
1978 return PTR_ERR(mnt);
1979
1980 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1981 if (err)
1982 mntput(mnt);
1983 return err;
1984}
1985
1986int finish_automount(struct vfsmount *m, struct path *path)
1987{
1988 struct mount *mnt = real_mount(m);
1989 int err;
1990 /* The new mount record should have at least 2 refs to prevent it being
1991 * expired before we get a chance to add it
1992 */
1993 BUG_ON(mnt_get_count(mnt) < 2);
1994
1995 if (m->mnt_sb == path->mnt->mnt_sb &&
1996 m->mnt_root == path->dentry) {
1997 err = -ELOOP;
1998 goto fail;
1999 }
2000
2001 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2002 if (!err)
2003 return 0;
2004fail:
2005 /* remove m from any expiration list it may be on */
2006 if (!list_empty(&mnt->mnt_expire)) {
2007 down_write(&namespace_sem);
2008 br_write_lock(&vfsmount_lock);
2009 list_del_init(&mnt->mnt_expire);
2010 br_write_unlock(&vfsmount_lock);
2011 up_write(&namespace_sem);
2012 }
2013 mntput(m);
2014 mntput(m);
2015 return err;
2016}
2017
2018/**
2019 * mnt_set_expiry - Put a mount on an expiration list
2020 * @mnt: The mount to list.
2021 * @expiry_list: The list to add the mount to.
2022 */
2023void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2024{
2025 down_write(&namespace_sem);
2026 br_write_lock(&vfsmount_lock);
2027
2028 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2029
2030 br_write_unlock(&vfsmount_lock);
2031 up_write(&namespace_sem);
2032}
2033EXPORT_SYMBOL(mnt_set_expiry);
2034
2035/*
2036 * process a list of expirable mountpoints with the intent of discarding any
2037 * mountpoints that aren't in use and haven't been touched since last we came
2038 * here
2039 */
2040void mark_mounts_for_expiry(struct list_head *mounts)
2041{
2042 struct mount *mnt, *next;
2043 LIST_HEAD(graveyard);
2044 LIST_HEAD(umounts);
2045
2046 if (list_empty(mounts))
2047 return;
2048
2049 down_write(&namespace_sem);
2050 br_write_lock(&vfsmount_lock);
2051
2052 /* extract from the expiration list every vfsmount that matches the
2053 * following criteria:
2054 * - only referenced by its parent vfsmount
2055 * - still marked for expiry (marked on the last call here; marks are
2056 * cleared by mntput())
2057 */
2058 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2059 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2060 propagate_mount_busy(mnt, 1))
2061 continue;
2062 list_move(&mnt->mnt_expire, &graveyard);
2063 }
2064 while (!list_empty(&graveyard)) {
2065 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2066 touch_mnt_namespace(mnt->mnt_ns);
2067 umount_tree(mnt, 1, &umounts);
2068 }
2069 br_write_unlock(&vfsmount_lock);
2070 up_write(&namespace_sem);
2071
2072 release_mounts(&umounts);
2073}
2074
2075EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2076
2077/*
2078 * Ripoff of 'select_parent()'
2079 *
2080 * search the list of submounts for a given mountpoint, and move any
2081 * shrinkable submounts to the 'graveyard' list.
2082 */
2083static int select_submounts(struct mount *parent, struct list_head *graveyard)
2084{
2085 struct mount *this_parent = parent;
2086 struct list_head *next;
2087 int found = 0;
2088
2089repeat:
2090 next = this_parent->mnt_mounts.next;
2091resume:
2092 while (next != &this_parent->mnt_mounts) {
2093 struct list_head *tmp = next;
2094 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2095
2096 next = tmp->next;
2097 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2098 continue;
2099 /*
2100 * Descend a level if the d_mounts list is non-empty.
2101 */
2102 if (!list_empty(&mnt->mnt_mounts)) {
2103 this_parent = mnt;
2104 goto repeat;
2105 }
2106
2107 if (!propagate_mount_busy(mnt, 1)) {
2108 list_move_tail(&mnt->mnt_expire, graveyard);
2109 found++;
2110 }
2111 }
2112 /*
2113 * All done at this level ... ascend and resume the search
2114 */
2115 if (this_parent != parent) {
2116 next = this_parent->mnt_child.next;
2117 this_parent = this_parent->mnt_parent;
2118 goto resume;
2119 }
2120 return found;
2121}
2122
2123/*
2124 * process a list of expirable mountpoints with the intent of discarding any
2125 * submounts of a specific parent mountpoint
2126 *
2127 * vfsmount_lock must be held for write
2128 */
2129static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2130{
2131 LIST_HEAD(graveyard);
2132 struct mount *m;
2133
2134 /* extract submounts of 'mountpoint' from the expiration list */
2135 while (select_submounts(mnt, &graveyard)) {
2136 while (!list_empty(&graveyard)) {
2137 m = list_first_entry(&graveyard, struct mount,
2138 mnt_expire);
2139 touch_mnt_namespace(m->mnt_ns);
2140 umount_tree(m, 1, umounts);
2141 }
2142 }
2143}
2144
2145/*
2146 * Some copy_from_user() implementations do not return the exact number of
2147 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2148 * Note that this function differs from copy_from_user() in that it will oops
2149 * on bad values of `to', rather than returning a short copy.
2150 */
2151static long exact_copy_from_user(void *to, const void __user * from,
2152 unsigned long n)
2153{
2154 char *t = to;
2155 const char __user *f = from;
2156 char c;
2157
2158 if (!access_ok(VERIFY_READ, from, n))
2159 return n;
2160
2161 while (n) {
2162 if (__get_user(c, f)) {
2163 memset(t, 0, n);
2164 break;
2165 }
2166 *t++ = c;
2167 f++;
2168 n--;
2169 }
2170 return n;
2171}
2172
2173int copy_mount_options(const void __user * data, unsigned long *where)
2174{
2175 int i;
2176 unsigned long page;
2177 unsigned long size;
2178
2179 *where = 0;
2180 if (!data)
2181 return 0;
2182
2183 if (!(page = __get_free_page(GFP_KERNEL)))
2184 return -ENOMEM;
2185
2186 /* We only care that *some* data at the address the user
2187 * gave us is valid. Just in case, we'll zero
2188 * the remainder of the page.
2189 */
2190 /* copy_from_user cannot cross TASK_SIZE ! */
2191 size = TASK_SIZE - (unsigned long)data;
2192 if (size > PAGE_SIZE)
2193 size = PAGE_SIZE;
2194
2195 i = size - exact_copy_from_user((void *)page, data, size);
2196 if (!i) {
2197 free_page(page);
2198 return -EFAULT;
2199 }
2200 if (i != PAGE_SIZE)
2201 memset((char *)page + i, 0, PAGE_SIZE - i);
2202 *where = page;
2203 return 0;
2204}
2205
2206int copy_mount_string(const void __user *data, char **where)
2207{
2208 char *tmp;
2209
2210 if (!data) {
2211 *where = NULL;
2212 return 0;
2213 }
2214
2215 tmp = strndup_user(data, PAGE_SIZE);
2216 if (IS_ERR(tmp))
2217 return PTR_ERR(tmp);
2218
2219 *where = tmp;
2220 return 0;
2221}
2222
2223/*
2224 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2225 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2226 *
2227 * data is a (void *) that can point to any structure up to
2228 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2229 * information (or be NULL).
2230 *
2231 * Pre-0.97 versions of mount() didn't have a flags word.
2232 * When the flags word was introduced its top half was required
2233 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2234 * Therefore, if this magic number is present, it carries no information
2235 * and must be discarded.
2236 */
2237long do_mount(const char *dev_name, const char *dir_name,
2238 const char *type_page, unsigned long flags, void *data_page)
2239{
2240 struct path path;
2241 int retval = 0;
2242 int mnt_flags = 0;
2243
2244 /* Discard magic */
2245 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2246 flags &= ~MS_MGC_MSK;
2247
2248 /* Basic sanity checks */
2249
2250 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2251 return -EINVAL;
2252
2253 if (data_page)
2254 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2255
2256 /* ... and get the mountpoint */
2257 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2258 if (retval)
2259 return retval;
2260
2261 retval = security_sb_mount(dev_name, &path,
2262 type_page, flags, data_page);
2263 if (retval)
2264 goto dput_out;
2265
2266 /* Default to relatime unless overriden */
2267 if (!(flags & MS_NOATIME))
2268 mnt_flags |= MNT_RELATIME;
2269
2270 /* Separate the per-mountpoint flags */
2271 if (flags & MS_NOSUID)
2272 mnt_flags |= MNT_NOSUID;
2273 if (flags & MS_NODEV)
2274 mnt_flags |= MNT_NODEV;
2275 if (flags & MS_NOEXEC)
2276 mnt_flags |= MNT_NOEXEC;
2277 if (flags & MS_NOATIME)
2278 mnt_flags |= MNT_NOATIME;
2279 if (flags & MS_NODIRATIME)
2280 mnt_flags |= MNT_NODIRATIME;
2281 if (flags & MS_STRICTATIME)
2282 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2283 if (flags & MS_RDONLY)
2284 mnt_flags |= MNT_READONLY;
2285
2286 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2287 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2288 MS_STRICTATIME);
2289
2290 if (flags & MS_REMOUNT)
2291 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2292 data_page);
2293 else if (flags & MS_BIND)
2294 retval = do_loopback(&path, dev_name, flags & MS_REC);
2295 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2296 retval = do_change_type(&path, flags);
2297 else if (flags & MS_MOVE)
2298 retval = do_move_mount(&path, dev_name);
2299 else
2300 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2301 dev_name, data_page);
2302dput_out:
2303 path_put(&path);
2304 return retval;
2305}
2306
2307static void free_mnt_ns(struct mnt_namespace *ns)
2308{
2309 proc_free_inum(ns->proc_inum);
2310 put_user_ns(ns->user_ns);
2311 kfree(ns);
2312}
2313
2314/*
2315 * Assign a sequence number so we can detect when we attempt to bind
2316 * mount a reference to an older mount namespace into the current
2317 * mount namespace, preventing reference counting loops. A 64bit
2318 * number incrementing at 10Ghz will take 12,427 years to wrap which
2319 * is effectively never, so we can ignore the possibility.
2320 */
2321static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2322
2323static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2324{
2325 struct mnt_namespace *new_ns;
2326 int ret;
2327
2328 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2329 if (!new_ns)
2330 return ERR_PTR(-ENOMEM);
2331 ret = proc_alloc_inum(&new_ns->proc_inum);
2332 if (ret) {
2333 kfree(new_ns);
2334 return ERR_PTR(ret);
2335 }
2336 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2337 atomic_set(&new_ns->count, 1);
2338 new_ns->root = NULL;
2339 INIT_LIST_HEAD(&new_ns->list);
2340 init_waitqueue_head(&new_ns->poll);
2341 new_ns->event = 0;
2342 new_ns->user_ns = get_user_ns(user_ns);
2343 return new_ns;
2344}
2345
2346/*
2347 * Allocate a new namespace structure and populate it with contents
2348 * copied from the namespace of the passed in task structure.
2349 */
2350static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2351 struct user_namespace *user_ns, struct fs_struct *fs)
2352{
2353 struct mnt_namespace *new_ns;
2354 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2355 struct mount *p, *q;
2356 struct mount *old = mnt_ns->root;
2357 struct mount *new;
2358 int copy_flags;
2359
2360 new_ns = alloc_mnt_ns(user_ns);
2361 if (IS_ERR(new_ns))
2362 return new_ns;
2363
2364 down_write(&namespace_sem);
2365 /* First pass: copy the tree topology */
2366 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2367 if (user_ns != mnt_ns->user_ns)
2368 copy_flags |= CL_SHARED_TO_SLAVE;
2369 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2370 if (IS_ERR(new)) {
2371 up_write(&namespace_sem);
2372 free_mnt_ns(new_ns);
2373 return ERR_CAST(new);
2374 }
2375 new_ns->root = new;
2376 br_write_lock(&vfsmount_lock);
2377 list_add_tail(&new_ns->list, &new->mnt_list);
2378 br_write_unlock(&vfsmount_lock);
2379
2380 /*
2381 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2382 * as belonging to new namespace. We have already acquired a private
2383 * fs_struct, so tsk->fs->lock is not needed.
2384 */
2385 p = old;
2386 q = new;
2387 while (p) {
2388 q->mnt_ns = new_ns;
2389 if (fs) {
2390 if (&p->mnt == fs->root.mnt) {
2391 fs->root.mnt = mntget(&q->mnt);
2392 rootmnt = &p->mnt;
2393 }
2394 if (&p->mnt == fs->pwd.mnt) {
2395 fs->pwd.mnt = mntget(&q->mnt);
2396 pwdmnt = &p->mnt;
2397 }
2398 }
2399 p = next_mnt(p, old);
2400 q = next_mnt(q, new);
2401 }
2402 up_write(&namespace_sem);
2403
2404 if (rootmnt)
2405 mntput(rootmnt);
2406 if (pwdmnt)
2407 mntput(pwdmnt);
2408
2409 return new_ns;
2410}
2411
2412struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2413 struct user_namespace *user_ns, struct fs_struct *new_fs)
2414{
2415 struct mnt_namespace *new_ns;
2416
2417 BUG_ON(!ns);
2418 get_mnt_ns(ns);
2419
2420 if (!(flags & CLONE_NEWNS))
2421 return ns;
2422
2423 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2424
2425 put_mnt_ns(ns);
2426 return new_ns;
2427}
2428
2429/**
2430 * create_mnt_ns - creates a private namespace and adds a root filesystem
2431 * @mnt: pointer to the new root filesystem mountpoint
2432 */
2433static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2434{
2435 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2436 if (!IS_ERR(new_ns)) {
2437 struct mount *mnt = real_mount(m);
2438 mnt->mnt_ns = new_ns;
2439 new_ns->root = mnt;
2440 list_add(&new_ns->list, &mnt->mnt_list);
2441 } else {
2442 mntput(m);
2443 }
2444 return new_ns;
2445}
2446
2447struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2448{
2449 struct mnt_namespace *ns;
2450 struct super_block *s;
2451 struct path path;
2452 int err;
2453
2454 ns = create_mnt_ns(mnt);
2455 if (IS_ERR(ns))
2456 return ERR_CAST(ns);
2457
2458 err = vfs_path_lookup(mnt->mnt_root, mnt,
2459 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2460
2461 put_mnt_ns(ns);
2462
2463 if (err)
2464 return ERR_PTR(err);
2465
2466 /* trade a vfsmount reference for active sb one */
2467 s = path.mnt->mnt_sb;
2468 atomic_inc(&s->s_active);
2469 mntput(path.mnt);
2470 /* lock the sucker */
2471 down_write(&s->s_umount);
2472 /* ... and return the root of (sub)tree on it */
2473 return path.dentry;
2474}
2475EXPORT_SYMBOL(mount_subtree);
2476
2477SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2478 char __user *, type, unsigned long, flags, void __user *, data)
2479{
2480 int ret;
2481 char *kernel_type;
2482 struct filename *kernel_dir;
2483 char *kernel_dev;
2484 unsigned long data_page;
2485
2486 ret = copy_mount_string(type, &kernel_type);
2487 if (ret < 0)
2488 goto out_type;
2489
2490 kernel_dir = getname(dir_name);
2491 if (IS_ERR(kernel_dir)) {
2492 ret = PTR_ERR(kernel_dir);
2493 goto out_dir;
2494 }
2495
2496 ret = copy_mount_string(dev_name, &kernel_dev);
2497 if (ret < 0)
2498 goto out_dev;
2499
2500 ret = copy_mount_options(data, &data_page);
2501 if (ret < 0)
2502 goto out_data;
2503
2504 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2505 (void *) data_page);
2506
2507 free_page(data_page);
2508out_data:
2509 kfree(kernel_dev);
2510out_dev:
2511 putname(kernel_dir);
2512out_dir:
2513 kfree(kernel_type);
2514out_type:
2515 return ret;
2516}
2517
2518/*
2519 * Return true if path is reachable from root
2520 *
2521 * namespace_sem or vfsmount_lock is held
2522 */
2523bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2524 const struct path *root)
2525{
2526 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2527 dentry = mnt->mnt_mountpoint;
2528 mnt = mnt->mnt_parent;
2529 }
2530 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2531}
2532
2533int path_is_under(struct path *path1, struct path *path2)
2534{
2535 int res;
2536 br_read_lock(&vfsmount_lock);
2537 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2538 br_read_unlock(&vfsmount_lock);
2539 return res;
2540}
2541EXPORT_SYMBOL(path_is_under);
2542
2543/*
2544 * pivot_root Semantics:
2545 * Moves the root file system of the current process to the directory put_old,
2546 * makes new_root as the new root file system of the current process, and sets
2547 * root/cwd of all processes which had them on the current root to new_root.
2548 *
2549 * Restrictions:
2550 * The new_root and put_old must be directories, and must not be on the
2551 * same file system as the current process root. The put_old must be
2552 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2553 * pointed to by put_old must yield the same directory as new_root. No other
2554 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2555 *
2556 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2557 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2558 * in this situation.
2559 *
2560 * Notes:
2561 * - we don't move root/cwd if they are not at the root (reason: if something
2562 * cared enough to change them, it's probably wrong to force them elsewhere)
2563 * - it's okay to pick a root that isn't the root of a file system, e.g.
2564 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2565 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2566 * first.
2567 */
2568SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2569 const char __user *, put_old)
2570{
2571 struct path new, old, parent_path, root_parent, root;
2572 struct mount *new_mnt, *root_mnt;
2573 int error;
2574
2575 if (!may_mount())
2576 return -EPERM;
2577
2578 error = user_path_dir(new_root, &new);
2579 if (error)
2580 goto out0;
2581
2582 error = user_path_dir(put_old, &old);
2583 if (error)
2584 goto out1;
2585
2586 error = security_sb_pivotroot(&old, &new);
2587 if (error)
2588 goto out2;
2589
2590 get_fs_root(current->fs, &root);
2591 error = lock_mount(&old);
2592 if (error)
2593 goto out3;
2594
2595 error = -EINVAL;
2596 new_mnt = real_mount(new.mnt);
2597 root_mnt = real_mount(root.mnt);
2598 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2599 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2600 IS_MNT_SHARED(root_mnt->mnt_parent))
2601 goto out4;
2602 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2603 goto out4;
2604 error = -ENOENT;
2605 if (d_unlinked(new.dentry))
2606 goto out4;
2607 if (d_unlinked(old.dentry))
2608 goto out4;
2609 error = -EBUSY;
2610 if (new.mnt == root.mnt ||
2611 old.mnt == root.mnt)
2612 goto out4; /* loop, on the same file system */
2613 error = -EINVAL;
2614 if (root.mnt->mnt_root != root.dentry)
2615 goto out4; /* not a mountpoint */
2616 if (!mnt_has_parent(root_mnt))
2617 goto out4; /* not attached */
2618 if (new.mnt->mnt_root != new.dentry)
2619 goto out4; /* not a mountpoint */
2620 if (!mnt_has_parent(new_mnt))
2621 goto out4; /* not attached */
2622 /* make sure we can reach put_old from new_root */
2623 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2624 goto out4;
2625 br_write_lock(&vfsmount_lock);
2626 detach_mnt(new_mnt, &parent_path);
2627 detach_mnt(root_mnt, &root_parent);
2628 /* mount old root on put_old */
2629 attach_mnt(root_mnt, &old);
2630 /* mount new_root on / */
2631 attach_mnt(new_mnt, &root_parent);
2632 touch_mnt_namespace(current->nsproxy->mnt_ns);
2633 br_write_unlock(&vfsmount_lock);
2634 chroot_fs_refs(&root, &new);
2635 error = 0;
2636out4:
2637 unlock_mount(&old);
2638 if (!error) {
2639 path_put(&root_parent);
2640 path_put(&parent_path);
2641 }
2642out3:
2643 path_put(&root);
2644out2:
2645 path_put(&old);
2646out1:
2647 path_put(&new);
2648out0:
2649 return error;
2650}
2651
2652static void __init init_mount_tree(void)
2653{
2654 struct vfsmount *mnt;
2655 struct mnt_namespace *ns;
2656 struct path root;
2657 struct file_system_type *type;
2658
2659 type = get_fs_type("rootfs");
2660 if (!type)
2661 panic("Can't find rootfs type");
2662 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2663 put_filesystem(type);
2664 if (IS_ERR(mnt))
2665 panic("Can't create rootfs");
2666
2667 ns = create_mnt_ns(mnt);
2668 if (IS_ERR(ns))
2669 panic("Can't allocate initial namespace");
2670
2671 init_task.nsproxy->mnt_ns = ns;
2672 get_mnt_ns(ns);
2673
2674 root.mnt = mnt;
2675 root.dentry = mnt->mnt_root;
2676
2677 set_fs_pwd(current->fs, &root);
2678 set_fs_root(current->fs, &root);
2679}
2680
2681void __init mnt_init(void)
2682{
2683 unsigned u;
2684 int err;
2685
2686 init_rwsem(&namespace_sem);
2687
2688 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2689 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2690
2691 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2692
2693 if (!mount_hashtable)
2694 panic("Failed to allocate mount hash table\n");
2695
2696 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2697
2698 for (u = 0; u < HASH_SIZE; u++)
2699 INIT_LIST_HEAD(&mount_hashtable[u]);
2700
2701 br_lock_init(&vfsmount_lock);
2702
2703 err = sysfs_init();
2704 if (err)
2705 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2706 __func__, err);
2707 fs_kobj = kobject_create_and_add("fs", NULL);
2708 if (!fs_kobj)
2709 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2710 init_rootfs();
2711 init_mount_tree();
2712}
2713
2714void put_mnt_ns(struct mnt_namespace *ns)
2715{
2716 LIST_HEAD(umount_list);
2717
2718 if (!atomic_dec_and_test(&ns->count))
2719 return;
2720 down_write(&namespace_sem);
2721 br_write_lock(&vfsmount_lock);
2722 umount_tree(ns->root, 0, &umount_list);
2723 br_write_unlock(&vfsmount_lock);
2724 up_write(&namespace_sem);
2725 release_mounts(&umount_list);
2726 free_mnt_ns(ns);
2727}
2728
2729struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2730{
2731 struct vfsmount *mnt;
2732 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2733 if (!IS_ERR(mnt)) {
2734 /*
2735 * it is a longterm mount, don't release mnt until
2736 * we unmount before file sys is unregistered
2737 */
2738 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2739 }
2740 return mnt;
2741}
2742EXPORT_SYMBOL_GPL(kern_mount_data);
2743
2744void kern_unmount(struct vfsmount *mnt)
2745{
2746 /* release long term mount so mount point can be released */
2747 if (!IS_ERR_OR_NULL(mnt)) {
2748 br_write_lock(&vfsmount_lock);
2749 real_mount(mnt)->mnt_ns = NULL;
2750 br_write_unlock(&vfsmount_lock);
2751 mntput(mnt);
2752 }
2753}
2754EXPORT_SYMBOL(kern_unmount);
2755
2756bool our_mnt(struct vfsmount *mnt)
2757{
2758 return check_mnt(real_mount(mnt));
2759}
2760
2761static void *mntns_get(struct task_struct *task)
2762{
2763 struct mnt_namespace *ns = NULL;
2764 struct nsproxy *nsproxy;
2765
2766 rcu_read_lock();
2767 nsproxy = task_nsproxy(task);
2768 if (nsproxy) {
2769 ns = nsproxy->mnt_ns;
2770 get_mnt_ns(ns);
2771 }
2772 rcu_read_unlock();
2773
2774 return ns;
2775}
2776
2777static void mntns_put(void *ns)
2778{
2779 put_mnt_ns(ns);
2780}
2781
2782static int mntns_install(struct nsproxy *nsproxy, void *ns)
2783{
2784 struct fs_struct *fs = current->fs;
2785 struct mnt_namespace *mnt_ns = ns;
2786 struct path root;
2787
2788 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2789 !nsown_capable(CAP_SYS_CHROOT) ||
2790 !nsown_capable(CAP_SYS_ADMIN))
2791 return -EPERM;
2792
2793 if (fs->users != 1)
2794 return -EINVAL;
2795
2796 get_mnt_ns(mnt_ns);
2797 put_mnt_ns(nsproxy->mnt_ns);
2798 nsproxy->mnt_ns = mnt_ns;
2799
2800 /* Find the root */
2801 root.mnt = &mnt_ns->root->mnt;
2802 root.dentry = mnt_ns->root->mnt.mnt_root;
2803 path_get(&root);
2804 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2805 ;
2806
2807 /* Update the pwd and root */
2808 set_fs_pwd(fs, &root);
2809 set_fs_root(fs, &root);
2810
2811 path_put(&root);
2812 return 0;
2813}
2814
2815static unsigned int mntns_inum(void *ns)
2816{
2817 struct mnt_namespace *mnt_ns = ns;
2818 return mnt_ns->proc_inum;
2819}
2820
2821const struct proc_ns_operations mntns_operations = {
2822 .name = "mnt",
2823 .type = CLONE_NEWNS,
2824 .get = mntns_get,
2825 .put = mntns_put,
2826 .install = mntns_install,
2827 .inum = mntns_inum,
2828};