]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/namespace.c
umount: Disallow unprivileged mount force
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/init.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
23#include <linux/proc_ns.h>
24#include <linux/magic.h>
25#include <linux/bootmem.h>
26#include <linux/task_work.h>
27#include "pnode.h"
28#include "internal.h"
29
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
54
55static u64 event;
56static DEFINE_IDA(mnt_id_ida);
57static DEFINE_IDA(mnt_group_ida);
58static DEFINE_SPINLOCK(mnt_id_lock);
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
61
62static struct hlist_head *mount_hashtable __read_mostly;
63static struct hlist_head *mountpoint_hashtable __read_mostly;
64static struct kmem_cache *mnt_cache __read_mostly;
65static DECLARE_RWSEM(namespace_sem);
66
67/* /sys/fs */
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
70
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82{
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94}
95
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100static int mnt_alloc_id(struct mount *mnt)
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
117static void mnt_free_id(struct mount *mnt)
118{
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125}
126
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132static int mnt_alloc_group_id(struct mount *mnt)
133{
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146}
147
148/*
149 * Release a peer group ID
150 */
151void mnt_release_group_id(struct mount *mnt)
152{
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158}
159
160/*
161 * vfsmount lock must be held for read
162 */
163static inline void mnt_add_count(struct mount *mnt, int n)
164{
165#ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167#else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171#endif
172}
173
174/*
175 * vfsmount lock must be held for write
176 */
177unsigned int mnt_get_count(struct mount *mnt)
178{
179#ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188#else
189 return mnt->mnt_count;
190#endif
191}
192
193static struct mount *alloc_vfsmnt(const char *name)
194{
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
198
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
207 }
208
209#ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
213
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215#else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218#endif
219
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
229#ifdef CONFIG_FSNOTIFY
230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
231#endif
232 }
233 return mnt;
234
235#ifdef CONFIG_SMP
236out_free_devname:
237 kfree(mnt->mnt_devname);
238#endif
239out_free_id:
240 mnt_free_id(mnt);
241out_free_cache:
242 kmem_cache_free(mnt_cache, mnt);
243 return NULL;
244}
245
246/*
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
253 */
254/*
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
257 *
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
264 */
265int __mnt_is_readonly(struct vfsmount *mnt)
266{
267 if (mnt->mnt_flags & MNT_READONLY)
268 return 1;
269 if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 return 1;
271 return 0;
272}
273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
275static inline void mnt_inc_writers(struct mount *mnt)
276{
277#ifdef CONFIG_SMP
278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279#else
280 mnt->mnt_writers++;
281#endif
282}
283
284static inline void mnt_dec_writers(struct mount *mnt)
285{
286#ifdef CONFIG_SMP
287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288#else
289 mnt->mnt_writers--;
290#endif
291}
292
293static unsigned int mnt_get_writers(struct mount *mnt)
294{
295#ifdef CONFIG_SMP
296 unsigned int count = 0;
297 int cpu;
298
299 for_each_possible_cpu(cpu) {
300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 }
302
303 return count;
304#else
305 return mnt->mnt_writers;
306#endif
307}
308
309static int mnt_is_readonly(struct vfsmount *mnt)
310{
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316}
317
318/*
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
323 */
324/**
325 * __mnt_want_write - get write access to a mount without freeze protection
326 * @m: the mount on which to take a write
327 *
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
333 */
334int __mnt_want_write(struct vfsmount *m)
335{
336 struct mount *mnt = real_mount(m);
337 int ret = 0;
338
339 preempt_disable();
340 mnt_inc_writers(mnt);
341 /*
342 * The store to mnt_inc_writers must be visible before we pass
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
355 if (mnt_is_readonly(m)) {
356 mnt_dec_writers(mnt);
357 ret = -EROFS;
358 }
359 preempt_enable();
360
361 return ret;
362}
363
364/**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373int mnt_want_write(struct vfsmount *m)
374{
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
381 return ret;
382}
383EXPORT_SYMBOL_GPL(mnt_want_write);
384
385/**
386 * mnt_clone_write - get write access to a mount
387 * @mnt: the mount on which to take a write
388 *
389 * This is effectively like mnt_want_write, except
390 * it must only be used to take an extra write reference
391 * on a mountpoint that we already know has a write reference
392 * on it. This allows some optimisation.
393 *
394 * After finished, mnt_drop_write must be called as usual to
395 * drop the reference.
396 */
397int mnt_clone_write(struct vfsmount *mnt)
398{
399 /* superblock may be r/o */
400 if (__mnt_is_readonly(mnt))
401 return -EROFS;
402 preempt_disable();
403 mnt_inc_writers(real_mount(mnt));
404 preempt_enable();
405 return 0;
406}
407EXPORT_SYMBOL_GPL(mnt_clone_write);
408
409/**
410 * __mnt_want_write_file - get write access to a file's mount
411 * @file: the file who's mount on which to take a write
412 *
413 * This is like __mnt_want_write, but it takes a file and can
414 * do some optimisations if the file is open for write already
415 */
416int __mnt_want_write_file(struct file *file)
417{
418 if (!(file->f_mode & FMODE_WRITER))
419 return __mnt_want_write(file->f_path.mnt);
420 else
421 return mnt_clone_write(file->f_path.mnt);
422}
423
424/**
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
427 *
428 * This is like mnt_want_write, but it takes a file and can
429 * do some optimisations if the file is open for write already
430 */
431int mnt_want_write_file(struct file *file)
432{
433 int ret;
434
435 sb_start_write(file->f_path.mnt->mnt_sb);
436 ret = __mnt_want_write_file(file);
437 if (ret)
438 sb_end_write(file->f_path.mnt->mnt_sb);
439 return ret;
440}
441EXPORT_SYMBOL_GPL(mnt_want_write_file);
442
443/**
444 * __mnt_drop_write - give up write access to a mount
445 * @mnt: the mount on which to give up write access
446 *
447 * Tells the low-level filesystem that we are done
448 * performing writes to it. Must be matched with
449 * __mnt_want_write() call above.
450 */
451void __mnt_drop_write(struct vfsmount *mnt)
452{
453 preempt_disable();
454 mnt_dec_writers(real_mount(mnt));
455 preempt_enable();
456}
457
458/**
459 * mnt_drop_write - give up write access to a mount
460 * @mnt: the mount on which to give up write access
461 *
462 * Tells the low-level filesystem that we are done performing writes to it and
463 * also allows filesystem to be frozen again. Must be matched with
464 * mnt_want_write() call above.
465 */
466void mnt_drop_write(struct vfsmount *mnt)
467{
468 __mnt_drop_write(mnt);
469 sb_end_write(mnt->mnt_sb);
470}
471EXPORT_SYMBOL_GPL(mnt_drop_write);
472
473void __mnt_drop_write_file(struct file *file)
474{
475 __mnt_drop_write(file->f_path.mnt);
476}
477
478void mnt_drop_write_file(struct file *file)
479{
480 mnt_drop_write(file->f_path.mnt);
481}
482EXPORT_SYMBOL(mnt_drop_write_file);
483
484static int mnt_make_readonly(struct mount *mnt)
485{
486 int ret = 0;
487
488 lock_mount_hash();
489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
490 /*
491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 * should be visible before we do.
493 */
494 smp_mb();
495
496 /*
497 * With writers on hold, if this value is zero, then there are
498 * definitely no active writers (although held writers may subsequently
499 * increment the count, they'll have to wait, and decrement it after
500 * seeing MNT_READONLY).
501 *
502 * It is OK to have counter incremented on one CPU and decremented on
503 * another: the sum will add up correctly. The danger would be when we
504 * sum up each counter, if we read a counter before it is incremented,
505 * but then read another CPU's count which it has been subsequently
506 * decremented from -- we would see more decrements than we should.
507 * MNT_WRITE_HOLD protects against this scenario, because
508 * mnt_want_write first increments count, then smp_mb, then spins on
509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 * we're counting up here.
511 */
512 if (mnt_get_writers(mnt) > 0)
513 ret = -EBUSY;
514 else
515 mnt->mnt.mnt_flags |= MNT_READONLY;
516 /*
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
519 */
520 smp_wmb();
521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 unlock_mount_hash();
523 return ret;
524}
525
526static void __mnt_unmake_readonly(struct mount *mnt)
527{
528 lock_mount_hash();
529 mnt->mnt.mnt_flags &= ~MNT_READONLY;
530 unlock_mount_hash();
531}
532
533int sb_prepare_remount_readonly(struct super_block *sb)
534{
535 struct mount *mnt;
536 int err = 0;
537
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
541
542 lock_mount_hash();
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
550 }
551 }
552 }
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
555
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
559 }
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 }
564 unlock_mount_hash();
565
566 return err;
567}
568
569static void free_vfsmnt(struct mount *mnt)
570{
571 kfree(mnt->mnt_devname);
572#ifdef CONFIG_SMP
573 free_percpu(mnt->mnt_pcp);
574#endif
575 kmem_cache_free(mnt_cache, mnt);
576}
577
578static void delayed_free_vfsmnt(struct rcu_head *head)
579{
580 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581}
582
583/* call under rcu_read_lock */
584bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585{
586 struct mount *mnt;
587 if (read_seqretry(&mount_lock, seq))
588 return false;
589 if (bastard == NULL)
590 return true;
591 mnt = real_mount(bastard);
592 mnt_add_count(mnt, 1);
593 if (likely(!read_seqretry(&mount_lock, seq)))
594 return true;
595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 mnt_add_count(mnt, -1);
597 return false;
598 }
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 return false;
603}
604
605/*
606 * find the first mount at @dentry on vfsmount @mnt.
607 * call under rcu_read_lock()
608 */
609struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610{
611 struct hlist_head *head = m_hash(mnt, dentry);
612 struct mount *p;
613
614 hlist_for_each_entry_rcu(p, head, mnt_hash)
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618}
619
620/*
621 * find the last mount at @dentry on vfsmount @mnt.
622 * mount_lock must be held.
623 */
624struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625{
626 struct mount *p, *res;
627 res = p = __lookup_mnt(mnt, dentry);
628 if (!p)
629 goto out;
630 hlist_for_each_entry_continue(p, mnt_hash) {
631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 break;
633 res = p;
634 }
635out:
636 return res;
637}
638
639/*
640 * lookup_mnt - Return the first child mount mounted at path
641 *
642 * "First" means first mounted chronologically. If you create the
643 * following mounts:
644 *
645 * mount /dev/sda1 /mnt
646 * mount /dev/sda2 /mnt
647 * mount /dev/sda3 /mnt
648 *
649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
650 * return successively the root dentry and vfsmount of /dev/sda1, then
651 * /dev/sda2, then /dev/sda3, then NULL.
652 *
653 * lookup_mnt takes a reference to the found vfsmount.
654 */
655struct vfsmount *lookup_mnt(struct path *path)
656{
657 struct mount *child_mnt;
658 struct vfsmount *m;
659 unsigned seq;
660
661 rcu_read_lock();
662 do {
663 seq = read_seqbegin(&mount_lock);
664 child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 m = child_mnt ? &child_mnt->mnt : NULL;
666 } while (!legitimize_mnt(m, seq));
667 rcu_read_unlock();
668 return m;
669}
670
671/*
672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673 * current mount namespace.
674 *
675 * The common case is dentries are not mountpoints at all and that
676 * test is handled inline. For the slow case when we are actually
677 * dealing with a mountpoint of some kind, walk through all of the
678 * mounts in the current mount namespace and test to see if the dentry
679 * is a mountpoint.
680 *
681 * The mount_hashtable is not usable in the context because we
682 * need to identify all mounts that may be in the current mount
683 * namespace not just a mount that happens to have some specified
684 * parent mount.
685 */
686bool __is_local_mountpoint(struct dentry *dentry)
687{
688 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 struct mount *mnt;
690 bool is_covered = false;
691
692 if (!d_mountpoint(dentry))
693 goto out;
694
695 down_read(&namespace_sem);
696 list_for_each_entry(mnt, &ns->list, mnt_list) {
697 is_covered = (mnt->mnt_mountpoint == dentry);
698 if (is_covered)
699 break;
700 }
701 up_read(&namespace_sem);
702out:
703 return is_covered;
704}
705
706static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
707{
708 struct hlist_head *chain = mp_hash(dentry);
709 struct mountpoint *mp;
710
711 hlist_for_each_entry(mp, chain, m_hash) {
712 if (mp->m_dentry == dentry) {
713 /* might be worth a WARN_ON() */
714 if (d_unlinked(dentry))
715 return ERR_PTR(-ENOENT);
716 mp->m_count++;
717 return mp;
718 }
719 }
720 return NULL;
721}
722
723static struct mountpoint *new_mountpoint(struct dentry *dentry)
724{
725 struct hlist_head *chain = mp_hash(dentry);
726 struct mountpoint *mp;
727 int ret;
728
729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 if (!mp)
731 return ERR_PTR(-ENOMEM);
732
733 ret = d_set_mounted(dentry);
734 if (ret) {
735 kfree(mp);
736 return ERR_PTR(ret);
737 }
738
739 mp->m_dentry = dentry;
740 mp->m_count = 1;
741 hlist_add_head(&mp->m_hash, chain);
742 INIT_HLIST_HEAD(&mp->m_list);
743 return mp;
744}
745
746static void put_mountpoint(struct mountpoint *mp)
747{
748 if (!--mp->m_count) {
749 struct dentry *dentry = mp->m_dentry;
750 BUG_ON(!hlist_empty(&mp->m_list));
751 spin_lock(&dentry->d_lock);
752 dentry->d_flags &= ~DCACHE_MOUNTED;
753 spin_unlock(&dentry->d_lock);
754 hlist_del(&mp->m_hash);
755 kfree(mp);
756 }
757}
758
759static inline int check_mnt(struct mount *mnt)
760{
761 return mnt->mnt_ns == current->nsproxy->mnt_ns;
762}
763
764/*
765 * vfsmount lock must be held for write
766 */
767static void touch_mnt_namespace(struct mnt_namespace *ns)
768{
769 if (ns) {
770 ns->event = ++event;
771 wake_up_interruptible(&ns->poll);
772 }
773}
774
775/*
776 * vfsmount lock must be held for write
777 */
778static void __touch_mnt_namespace(struct mnt_namespace *ns)
779{
780 if (ns && ns->event != event) {
781 ns->event = event;
782 wake_up_interruptible(&ns->poll);
783 }
784}
785
786/*
787 * vfsmount lock must be held for write
788 */
789static void detach_mnt(struct mount *mnt, struct path *old_path)
790{
791 old_path->dentry = mnt->mnt_mountpoint;
792 old_path->mnt = &mnt->mnt_parent->mnt;
793 mnt->mnt_parent = mnt;
794 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
795 list_del_init(&mnt->mnt_child);
796 hlist_del_init_rcu(&mnt->mnt_hash);
797 hlist_del_init(&mnt->mnt_mp_list);
798 put_mountpoint(mnt->mnt_mp);
799 mnt->mnt_mp = NULL;
800}
801
802/*
803 * vfsmount lock must be held for write
804 */
805void mnt_set_mountpoint(struct mount *mnt,
806 struct mountpoint *mp,
807 struct mount *child_mnt)
808{
809 mp->m_count++;
810 mnt_add_count(mnt, 1); /* essentially, that's mntget */
811 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
812 child_mnt->mnt_parent = mnt;
813 child_mnt->mnt_mp = mp;
814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
815}
816
817/*
818 * vfsmount lock must be held for write
819 */
820static void attach_mnt(struct mount *mnt,
821 struct mount *parent,
822 struct mountpoint *mp)
823{
824 mnt_set_mountpoint(parent, mp, mnt);
825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
827}
828
829static void attach_shadowed(struct mount *mnt,
830 struct mount *parent,
831 struct mount *shadows)
832{
833 if (shadows) {
834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
835 list_add(&mnt->mnt_child, &shadows->mnt_child);
836 } else {
837 hlist_add_head_rcu(&mnt->mnt_hash,
838 m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 }
841}
842
843/*
844 * vfsmount lock must be held for write
845 */
846static void commit_tree(struct mount *mnt, struct mount *shadows)
847{
848 struct mount *parent = mnt->mnt_parent;
849 struct mount *m;
850 LIST_HEAD(head);
851 struct mnt_namespace *n = parent->mnt_ns;
852
853 BUG_ON(parent == mnt);
854
855 list_add_tail(&head, &mnt->mnt_list);
856 list_for_each_entry(m, &head, mnt_list)
857 m->mnt_ns = n;
858
859 list_splice(&head, n->list.prev);
860
861 attach_shadowed(mnt, parent, shadows);
862 touch_mnt_namespace(n);
863}
864
865static struct mount *next_mnt(struct mount *p, struct mount *root)
866{
867 struct list_head *next = p->mnt_mounts.next;
868 if (next == &p->mnt_mounts) {
869 while (1) {
870 if (p == root)
871 return NULL;
872 next = p->mnt_child.next;
873 if (next != &p->mnt_parent->mnt_mounts)
874 break;
875 p = p->mnt_parent;
876 }
877 }
878 return list_entry(next, struct mount, mnt_child);
879}
880
881static struct mount *skip_mnt_tree(struct mount *p)
882{
883 struct list_head *prev = p->mnt_mounts.prev;
884 while (prev != &p->mnt_mounts) {
885 p = list_entry(prev, struct mount, mnt_child);
886 prev = p->mnt_mounts.prev;
887 }
888 return p;
889}
890
891struct vfsmount *
892vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893{
894 struct mount *mnt;
895 struct dentry *root;
896
897 if (!type)
898 return ERR_PTR(-ENODEV);
899
900 mnt = alloc_vfsmnt(name);
901 if (!mnt)
902 return ERR_PTR(-ENOMEM);
903
904 if (flags & MS_KERNMOUNT)
905 mnt->mnt.mnt_flags = MNT_INTERNAL;
906
907 root = mount_fs(type, flags, name, data);
908 if (IS_ERR(root)) {
909 mnt_free_id(mnt);
910 free_vfsmnt(mnt);
911 return ERR_CAST(root);
912 }
913
914 mnt->mnt.mnt_root = root;
915 mnt->mnt.mnt_sb = root->d_sb;
916 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 mnt->mnt_parent = mnt;
918 lock_mount_hash();
919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
920 unlock_mount_hash();
921 return &mnt->mnt;
922}
923EXPORT_SYMBOL_GPL(vfs_kern_mount);
924
925static struct mount *clone_mnt(struct mount *old, struct dentry *root,
926 int flag)
927{
928 struct super_block *sb = old->mnt.mnt_sb;
929 struct mount *mnt;
930 int err;
931
932 mnt = alloc_vfsmnt(old->mnt_devname);
933 if (!mnt)
934 return ERR_PTR(-ENOMEM);
935
936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
937 mnt->mnt_group_id = 0; /* not a peer of original */
938 else
939 mnt->mnt_group_id = old->mnt_group_id;
940
941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 err = mnt_alloc_group_id(mnt);
943 if (err)
944 goto out_free;
945 }
946
947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
948 /* Don't allow unprivileged users to change mount flags */
949 if (flag & CL_UNPRIVILEGED) {
950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951
952 if (mnt->mnt.mnt_flags & MNT_READONLY)
953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954
955 if (mnt->mnt.mnt_flags & MNT_NODEV)
956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957
958 if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960
961 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 }
964
965 /* Don't allow unprivileged users to reveal what is under a mount */
966 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
967 mnt->mnt.mnt_flags |= MNT_LOCKED;
968
969 atomic_inc(&sb->s_active);
970 mnt->mnt.mnt_sb = sb;
971 mnt->mnt.mnt_root = dget(root);
972 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
973 mnt->mnt_parent = mnt;
974 lock_mount_hash();
975 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
976 unlock_mount_hash();
977
978 if ((flag & CL_SLAVE) ||
979 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
980 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
981 mnt->mnt_master = old;
982 CLEAR_MNT_SHARED(mnt);
983 } else if (!(flag & CL_PRIVATE)) {
984 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
985 list_add(&mnt->mnt_share, &old->mnt_share);
986 if (IS_MNT_SLAVE(old))
987 list_add(&mnt->mnt_slave, &old->mnt_slave);
988 mnt->mnt_master = old->mnt_master;
989 }
990 if (flag & CL_MAKE_SHARED)
991 set_mnt_shared(mnt);
992
993 /* stick the duplicate mount on the same expiry list
994 * as the original if that was on one */
995 if (flag & CL_EXPIRE) {
996 if (!list_empty(&old->mnt_expire))
997 list_add(&mnt->mnt_expire, &old->mnt_expire);
998 }
999
1000 return mnt;
1001
1002 out_free:
1003 mnt_free_id(mnt);
1004 free_vfsmnt(mnt);
1005 return ERR_PTR(err);
1006}
1007
1008static void cleanup_mnt(struct mount *mnt)
1009{
1010 /*
1011 * This probably indicates that somebody messed
1012 * up a mnt_want/drop_write() pair. If this
1013 * happens, the filesystem was probably unable
1014 * to make r/w->r/o transitions.
1015 */
1016 /*
1017 * The locking used to deal with mnt_count decrement provides barriers,
1018 * so mnt_get_writers() below is safe.
1019 */
1020 WARN_ON(mnt_get_writers(mnt));
1021 if (unlikely(mnt->mnt_pins.first))
1022 mnt_pin_kill(mnt);
1023 fsnotify_vfsmount_delete(&mnt->mnt);
1024 dput(mnt->mnt.mnt_root);
1025 deactivate_super(mnt->mnt.mnt_sb);
1026 mnt_free_id(mnt);
1027 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1028}
1029
1030static void __cleanup_mnt(struct rcu_head *head)
1031{
1032 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1033}
1034
1035static LLIST_HEAD(delayed_mntput_list);
1036static void delayed_mntput(struct work_struct *unused)
1037{
1038 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1039 struct llist_node *next;
1040
1041 for (; node; node = next) {
1042 next = llist_next(node);
1043 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1044 }
1045}
1046static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1047
1048static void mntput_no_expire(struct mount *mnt)
1049{
1050 rcu_read_lock();
1051 mnt_add_count(mnt, -1);
1052 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1053 rcu_read_unlock();
1054 return;
1055 }
1056 lock_mount_hash();
1057 if (mnt_get_count(mnt)) {
1058 rcu_read_unlock();
1059 unlock_mount_hash();
1060 return;
1061 }
1062 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1063 rcu_read_unlock();
1064 unlock_mount_hash();
1065 return;
1066 }
1067 mnt->mnt.mnt_flags |= MNT_DOOMED;
1068 rcu_read_unlock();
1069
1070 list_del(&mnt->mnt_instance);
1071 unlock_mount_hash();
1072
1073 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1074 struct task_struct *task = current;
1075 if (likely(!(task->flags & PF_KTHREAD))) {
1076 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1077 if (!task_work_add(task, &mnt->mnt_rcu, true))
1078 return;
1079 }
1080 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1081 schedule_delayed_work(&delayed_mntput_work, 1);
1082 return;
1083 }
1084 cleanup_mnt(mnt);
1085}
1086
1087void mntput(struct vfsmount *mnt)
1088{
1089 if (mnt) {
1090 struct mount *m = real_mount(mnt);
1091 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1092 if (unlikely(m->mnt_expiry_mark))
1093 m->mnt_expiry_mark = 0;
1094 mntput_no_expire(m);
1095 }
1096}
1097EXPORT_SYMBOL(mntput);
1098
1099struct vfsmount *mntget(struct vfsmount *mnt)
1100{
1101 if (mnt)
1102 mnt_add_count(real_mount(mnt), 1);
1103 return mnt;
1104}
1105EXPORT_SYMBOL(mntget);
1106
1107struct vfsmount *mnt_clone_internal(struct path *path)
1108{
1109 struct mount *p;
1110 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1111 if (IS_ERR(p))
1112 return ERR_CAST(p);
1113 p->mnt.mnt_flags |= MNT_INTERNAL;
1114 return &p->mnt;
1115}
1116
1117static inline void mangle(struct seq_file *m, const char *s)
1118{
1119 seq_escape(m, s, " \t\n\\");
1120}
1121
1122/*
1123 * Simple .show_options callback for filesystems which don't want to
1124 * implement more complex mount option showing.
1125 *
1126 * See also save_mount_options().
1127 */
1128int generic_show_options(struct seq_file *m, struct dentry *root)
1129{
1130 const char *options;
1131
1132 rcu_read_lock();
1133 options = rcu_dereference(root->d_sb->s_options);
1134
1135 if (options != NULL && options[0]) {
1136 seq_putc(m, ',');
1137 mangle(m, options);
1138 }
1139 rcu_read_unlock();
1140
1141 return 0;
1142}
1143EXPORT_SYMBOL(generic_show_options);
1144
1145/*
1146 * If filesystem uses generic_show_options(), this function should be
1147 * called from the fill_super() callback.
1148 *
1149 * The .remount_fs callback usually needs to be handled in a special
1150 * way, to make sure, that previous options are not overwritten if the
1151 * remount fails.
1152 *
1153 * Also note, that if the filesystem's .remount_fs function doesn't
1154 * reset all options to their default value, but changes only newly
1155 * given options, then the displayed options will not reflect reality
1156 * any more.
1157 */
1158void save_mount_options(struct super_block *sb, char *options)
1159{
1160 BUG_ON(sb->s_options);
1161 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1162}
1163EXPORT_SYMBOL(save_mount_options);
1164
1165void replace_mount_options(struct super_block *sb, char *options)
1166{
1167 char *old = sb->s_options;
1168 rcu_assign_pointer(sb->s_options, options);
1169 if (old) {
1170 synchronize_rcu();
1171 kfree(old);
1172 }
1173}
1174EXPORT_SYMBOL(replace_mount_options);
1175
1176#ifdef CONFIG_PROC_FS
1177/* iterator; we want it to have access to namespace_sem, thus here... */
1178static void *m_start(struct seq_file *m, loff_t *pos)
1179{
1180 struct proc_mounts *p = proc_mounts(m);
1181
1182 down_read(&namespace_sem);
1183 if (p->cached_event == p->ns->event) {
1184 void *v = p->cached_mount;
1185 if (*pos == p->cached_index)
1186 return v;
1187 if (*pos == p->cached_index + 1) {
1188 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1189 return p->cached_mount = v;
1190 }
1191 }
1192
1193 p->cached_event = p->ns->event;
1194 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1195 p->cached_index = *pos;
1196 return p->cached_mount;
1197}
1198
1199static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1200{
1201 struct proc_mounts *p = proc_mounts(m);
1202
1203 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1204 p->cached_index = *pos;
1205 return p->cached_mount;
1206}
1207
1208static void m_stop(struct seq_file *m, void *v)
1209{
1210 up_read(&namespace_sem);
1211}
1212
1213static int m_show(struct seq_file *m, void *v)
1214{
1215 struct proc_mounts *p = proc_mounts(m);
1216 struct mount *r = list_entry(v, struct mount, mnt_list);
1217 return p->show(m, &r->mnt);
1218}
1219
1220const struct seq_operations mounts_op = {
1221 .start = m_start,
1222 .next = m_next,
1223 .stop = m_stop,
1224 .show = m_show,
1225};
1226#endif /* CONFIG_PROC_FS */
1227
1228/**
1229 * may_umount_tree - check if a mount tree is busy
1230 * @mnt: root of mount tree
1231 *
1232 * This is called to check if a tree of mounts has any
1233 * open files, pwds, chroots or sub mounts that are
1234 * busy.
1235 */
1236int may_umount_tree(struct vfsmount *m)
1237{
1238 struct mount *mnt = real_mount(m);
1239 int actual_refs = 0;
1240 int minimum_refs = 0;
1241 struct mount *p;
1242 BUG_ON(!m);
1243
1244 /* write lock needed for mnt_get_count */
1245 lock_mount_hash();
1246 for (p = mnt; p; p = next_mnt(p, mnt)) {
1247 actual_refs += mnt_get_count(p);
1248 minimum_refs += 2;
1249 }
1250 unlock_mount_hash();
1251
1252 if (actual_refs > minimum_refs)
1253 return 0;
1254
1255 return 1;
1256}
1257
1258EXPORT_SYMBOL(may_umount_tree);
1259
1260/**
1261 * may_umount - check if a mount point is busy
1262 * @mnt: root of mount
1263 *
1264 * This is called to check if a mount point has any
1265 * open files, pwds, chroots or sub mounts. If the
1266 * mount has sub mounts this will return busy
1267 * regardless of whether the sub mounts are busy.
1268 *
1269 * Doesn't take quota and stuff into account. IOW, in some cases it will
1270 * give false negatives. The main reason why it's here is that we need
1271 * a non-destructive way to look for easily umountable filesystems.
1272 */
1273int may_umount(struct vfsmount *mnt)
1274{
1275 int ret = 1;
1276 down_read(&namespace_sem);
1277 lock_mount_hash();
1278 if (propagate_mount_busy(real_mount(mnt), 2))
1279 ret = 0;
1280 unlock_mount_hash();
1281 up_read(&namespace_sem);
1282 return ret;
1283}
1284
1285EXPORT_SYMBOL(may_umount);
1286
1287static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1288
1289static void namespace_unlock(void)
1290{
1291 struct mount *mnt;
1292 struct hlist_head head = unmounted;
1293
1294 if (likely(hlist_empty(&head))) {
1295 up_write(&namespace_sem);
1296 return;
1297 }
1298
1299 head.first->pprev = &head.first;
1300 INIT_HLIST_HEAD(&unmounted);
1301
1302 /* undo decrements we'd done in umount_tree() */
1303 hlist_for_each_entry(mnt, &head, mnt_hash)
1304 if (mnt->mnt_ex_mountpoint.mnt)
1305 mntget(mnt->mnt_ex_mountpoint.mnt);
1306
1307 up_write(&namespace_sem);
1308
1309 synchronize_rcu();
1310
1311 while (!hlist_empty(&head)) {
1312 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1313 hlist_del_init(&mnt->mnt_hash);
1314 if (mnt->mnt_ex_mountpoint.mnt)
1315 path_put(&mnt->mnt_ex_mountpoint);
1316 mntput(&mnt->mnt);
1317 }
1318}
1319
1320static inline void namespace_lock(void)
1321{
1322 down_write(&namespace_sem);
1323}
1324
1325/*
1326 * mount_lock must be held
1327 * namespace_sem must be held for write
1328 * how = 0 => just this tree, don't propagate
1329 * how = 1 => propagate; we know that nobody else has reference to any victims
1330 * how = 2 => lazy umount
1331 */
1332void umount_tree(struct mount *mnt, int how)
1333{
1334 HLIST_HEAD(tmp_list);
1335 struct mount *p;
1336 struct mount *last = NULL;
1337
1338 for (p = mnt; p; p = next_mnt(p, mnt)) {
1339 hlist_del_init_rcu(&p->mnt_hash);
1340 hlist_add_head(&p->mnt_hash, &tmp_list);
1341 }
1342
1343 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1344 list_del_init(&p->mnt_child);
1345
1346 if (how)
1347 propagate_umount(&tmp_list);
1348
1349 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1350 list_del_init(&p->mnt_expire);
1351 list_del_init(&p->mnt_list);
1352 __touch_mnt_namespace(p->mnt_ns);
1353 p->mnt_ns = NULL;
1354 if (how < 2)
1355 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1356 if (mnt_has_parent(p)) {
1357 hlist_del_init(&p->mnt_mp_list);
1358 put_mountpoint(p->mnt_mp);
1359 mnt_add_count(p->mnt_parent, -1);
1360 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1361 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1362 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1363 p->mnt_mountpoint = p->mnt.mnt_root;
1364 p->mnt_parent = p;
1365 p->mnt_mp = NULL;
1366 }
1367 change_mnt_propagation(p, MS_PRIVATE);
1368 last = p;
1369 }
1370 if (last) {
1371 last->mnt_hash.next = unmounted.first;
1372 unmounted.first = tmp_list.first;
1373 unmounted.first->pprev = &unmounted.first;
1374 }
1375}
1376
1377static void shrink_submounts(struct mount *mnt);
1378
1379static int do_umount(struct mount *mnt, int flags)
1380{
1381 struct super_block *sb = mnt->mnt.mnt_sb;
1382 int retval;
1383
1384 retval = security_sb_umount(&mnt->mnt, flags);
1385 if (retval)
1386 return retval;
1387
1388 /*
1389 * Allow userspace to request a mountpoint be expired rather than
1390 * unmounting unconditionally. Unmount only happens if:
1391 * (1) the mark is already set (the mark is cleared by mntput())
1392 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1393 */
1394 if (flags & MNT_EXPIRE) {
1395 if (&mnt->mnt == current->fs->root.mnt ||
1396 flags & (MNT_FORCE | MNT_DETACH))
1397 return -EINVAL;
1398
1399 /*
1400 * probably don't strictly need the lock here if we examined
1401 * all race cases, but it's a slowpath.
1402 */
1403 lock_mount_hash();
1404 if (mnt_get_count(mnt) != 2) {
1405 unlock_mount_hash();
1406 return -EBUSY;
1407 }
1408 unlock_mount_hash();
1409
1410 if (!xchg(&mnt->mnt_expiry_mark, 1))
1411 return -EAGAIN;
1412 }
1413
1414 /*
1415 * If we may have to abort operations to get out of this
1416 * mount, and they will themselves hold resources we must
1417 * allow the fs to do things. In the Unix tradition of
1418 * 'Gee thats tricky lets do it in userspace' the umount_begin
1419 * might fail to complete on the first run through as other tasks
1420 * must return, and the like. Thats for the mount program to worry
1421 * about for the moment.
1422 */
1423
1424 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1425 sb->s_op->umount_begin(sb);
1426 }
1427
1428 /*
1429 * No sense to grab the lock for this test, but test itself looks
1430 * somewhat bogus. Suggestions for better replacement?
1431 * Ho-hum... In principle, we might treat that as umount + switch
1432 * to rootfs. GC would eventually take care of the old vfsmount.
1433 * Actually it makes sense, especially if rootfs would contain a
1434 * /reboot - static binary that would close all descriptors and
1435 * call reboot(9). Then init(8) could umount root and exec /reboot.
1436 */
1437 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1438 /*
1439 * Special case for "unmounting" root ...
1440 * we just try to remount it readonly.
1441 */
1442 if (!capable(CAP_SYS_ADMIN))
1443 return -EPERM;
1444 down_write(&sb->s_umount);
1445 if (!(sb->s_flags & MS_RDONLY))
1446 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1447 up_write(&sb->s_umount);
1448 return retval;
1449 }
1450
1451 namespace_lock();
1452 lock_mount_hash();
1453 event++;
1454
1455 if (flags & MNT_DETACH) {
1456 if (!list_empty(&mnt->mnt_list))
1457 umount_tree(mnt, 2);
1458 retval = 0;
1459 } else {
1460 shrink_submounts(mnt);
1461 retval = -EBUSY;
1462 if (!propagate_mount_busy(mnt, 2)) {
1463 if (!list_empty(&mnt->mnt_list))
1464 umount_tree(mnt, 1);
1465 retval = 0;
1466 }
1467 }
1468 unlock_mount_hash();
1469 namespace_unlock();
1470 return retval;
1471}
1472
1473/*
1474 * __detach_mounts - lazily unmount all mounts on the specified dentry
1475 *
1476 * During unlink, rmdir, and d_drop it is possible to loose the path
1477 * to an existing mountpoint, and wind up leaking the mount.
1478 * detach_mounts allows lazily unmounting those mounts instead of
1479 * leaking them.
1480 *
1481 * The caller may hold dentry->d_inode->i_mutex.
1482 */
1483void __detach_mounts(struct dentry *dentry)
1484{
1485 struct mountpoint *mp;
1486 struct mount *mnt;
1487
1488 namespace_lock();
1489 mp = lookup_mountpoint(dentry);
1490 if (!mp)
1491 goto out_unlock;
1492
1493 lock_mount_hash();
1494 while (!hlist_empty(&mp->m_list)) {
1495 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1496 umount_tree(mnt, 2);
1497 }
1498 unlock_mount_hash();
1499 put_mountpoint(mp);
1500out_unlock:
1501 namespace_unlock();
1502}
1503
1504/*
1505 * Is the caller allowed to modify his namespace?
1506 */
1507static inline bool may_mount(void)
1508{
1509 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1510}
1511
1512/*
1513 * Now umount can handle mount points as well as block devices.
1514 * This is important for filesystems which use unnamed block devices.
1515 *
1516 * We now support a flag for forced unmount like the other 'big iron'
1517 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1518 */
1519
1520SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1521{
1522 struct path path;
1523 struct mount *mnt;
1524 int retval;
1525 int lookup_flags = 0;
1526
1527 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1528 return -EINVAL;
1529
1530 if (!may_mount())
1531 return -EPERM;
1532
1533 if (!(flags & UMOUNT_NOFOLLOW))
1534 lookup_flags |= LOOKUP_FOLLOW;
1535
1536 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1537 if (retval)
1538 goto out;
1539 mnt = real_mount(path.mnt);
1540 retval = -EINVAL;
1541 if (path.dentry != path.mnt->mnt_root)
1542 goto dput_and_out;
1543 if (!check_mnt(mnt))
1544 goto dput_and_out;
1545 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1546 goto dput_and_out;
1547 retval = -EPERM;
1548 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1549 goto dput_and_out;
1550
1551 retval = do_umount(mnt, flags);
1552dput_and_out:
1553 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1554 dput(path.dentry);
1555 mntput_no_expire(mnt);
1556out:
1557 return retval;
1558}
1559
1560#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1561
1562/*
1563 * The 2.0 compatible umount. No flags.
1564 */
1565SYSCALL_DEFINE1(oldumount, char __user *, name)
1566{
1567 return sys_umount(name, 0);
1568}
1569
1570#endif
1571
1572static bool is_mnt_ns_file(struct dentry *dentry)
1573{
1574 /* Is this a proxy for a mount namespace? */
1575 struct inode *inode = dentry->d_inode;
1576 struct proc_ns *ei;
1577
1578 if (!proc_ns_inode(inode))
1579 return false;
1580
1581 ei = get_proc_ns(inode);
1582 if (ei->ns_ops != &mntns_operations)
1583 return false;
1584
1585 return true;
1586}
1587
1588static bool mnt_ns_loop(struct dentry *dentry)
1589{
1590 /* Could bind mounting the mount namespace inode cause a
1591 * mount namespace loop?
1592 */
1593 struct mnt_namespace *mnt_ns;
1594 if (!is_mnt_ns_file(dentry))
1595 return false;
1596
1597 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1598 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1599}
1600
1601struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1602 int flag)
1603{
1604 struct mount *res, *p, *q, *r, *parent;
1605
1606 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1607 return ERR_PTR(-EINVAL);
1608
1609 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1610 return ERR_PTR(-EINVAL);
1611
1612 res = q = clone_mnt(mnt, dentry, flag);
1613 if (IS_ERR(q))
1614 return q;
1615
1616 q->mnt.mnt_flags &= ~MNT_LOCKED;
1617 q->mnt_mountpoint = mnt->mnt_mountpoint;
1618
1619 p = mnt;
1620 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1621 struct mount *s;
1622 if (!is_subdir(r->mnt_mountpoint, dentry))
1623 continue;
1624
1625 for (s = r; s; s = next_mnt(s, r)) {
1626 struct mount *t = NULL;
1627 if (!(flag & CL_COPY_UNBINDABLE) &&
1628 IS_MNT_UNBINDABLE(s)) {
1629 s = skip_mnt_tree(s);
1630 continue;
1631 }
1632 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1633 is_mnt_ns_file(s->mnt.mnt_root)) {
1634 s = skip_mnt_tree(s);
1635 continue;
1636 }
1637 while (p != s->mnt_parent) {
1638 p = p->mnt_parent;
1639 q = q->mnt_parent;
1640 }
1641 p = s;
1642 parent = q;
1643 q = clone_mnt(p, p->mnt.mnt_root, flag);
1644 if (IS_ERR(q))
1645 goto out;
1646 lock_mount_hash();
1647 list_add_tail(&q->mnt_list, &res->mnt_list);
1648 mnt_set_mountpoint(parent, p->mnt_mp, q);
1649 if (!list_empty(&parent->mnt_mounts)) {
1650 t = list_last_entry(&parent->mnt_mounts,
1651 struct mount, mnt_child);
1652 if (t->mnt_mp != p->mnt_mp)
1653 t = NULL;
1654 }
1655 attach_shadowed(q, parent, t);
1656 unlock_mount_hash();
1657 }
1658 }
1659 return res;
1660out:
1661 if (res) {
1662 lock_mount_hash();
1663 umount_tree(res, 0);
1664 unlock_mount_hash();
1665 }
1666 return q;
1667}
1668
1669/* Caller should check returned pointer for errors */
1670
1671struct vfsmount *collect_mounts(struct path *path)
1672{
1673 struct mount *tree;
1674 namespace_lock();
1675 tree = copy_tree(real_mount(path->mnt), path->dentry,
1676 CL_COPY_ALL | CL_PRIVATE);
1677 namespace_unlock();
1678 if (IS_ERR(tree))
1679 return ERR_CAST(tree);
1680 return &tree->mnt;
1681}
1682
1683void drop_collected_mounts(struct vfsmount *mnt)
1684{
1685 namespace_lock();
1686 lock_mount_hash();
1687 umount_tree(real_mount(mnt), 0);
1688 unlock_mount_hash();
1689 namespace_unlock();
1690}
1691
1692/**
1693 * clone_private_mount - create a private clone of a path
1694 *
1695 * This creates a new vfsmount, which will be the clone of @path. The new will
1696 * not be attached anywhere in the namespace and will be private (i.e. changes
1697 * to the originating mount won't be propagated into this).
1698 *
1699 * Release with mntput().
1700 */
1701struct vfsmount *clone_private_mount(struct path *path)
1702{
1703 struct mount *old_mnt = real_mount(path->mnt);
1704 struct mount *new_mnt;
1705
1706 if (IS_MNT_UNBINDABLE(old_mnt))
1707 return ERR_PTR(-EINVAL);
1708
1709 down_read(&namespace_sem);
1710 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1711 up_read(&namespace_sem);
1712 if (IS_ERR(new_mnt))
1713 return ERR_CAST(new_mnt);
1714
1715 return &new_mnt->mnt;
1716}
1717EXPORT_SYMBOL_GPL(clone_private_mount);
1718
1719int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1720 struct vfsmount *root)
1721{
1722 struct mount *mnt;
1723 int res = f(root, arg);
1724 if (res)
1725 return res;
1726 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1727 res = f(&mnt->mnt, arg);
1728 if (res)
1729 return res;
1730 }
1731 return 0;
1732}
1733
1734static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1735{
1736 struct mount *p;
1737
1738 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1739 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1740 mnt_release_group_id(p);
1741 }
1742}
1743
1744static int invent_group_ids(struct mount *mnt, bool recurse)
1745{
1746 struct mount *p;
1747
1748 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1749 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1750 int err = mnt_alloc_group_id(p);
1751 if (err) {
1752 cleanup_group_ids(mnt, p);
1753 return err;
1754 }
1755 }
1756 }
1757
1758 return 0;
1759}
1760
1761/*
1762 * @source_mnt : mount tree to be attached
1763 * @nd : place the mount tree @source_mnt is attached
1764 * @parent_nd : if non-null, detach the source_mnt from its parent and
1765 * store the parent mount and mountpoint dentry.
1766 * (done when source_mnt is moved)
1767 *
1768 * NOTE: in the table below explains the semantics when a source mount
1769 * of a given type is attached to a destination mount of a given type.
1770 * ---------------------------------------------------------------------------
1771 * | BIND MOUNT OPERATION |
1772 * |**************************************************************************
1773 * | source-->| shared | private | slave | unbindable |
1774 * | dest | | | | |
1775 * | | | | | | |
1776 * | v | | | | |
1777 * |**************************************************************************
1778 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1779 * | | | | | |
1780 * |non-shared| shared (+) | private | slave (*) | invalid |
1781 * ***************************************************************************
1782 * A bind operation clones the source mount and mounts the clone on the
1783 * destination mount.
1784 *
1785 * (++) the cloned mount is propagated to all the mounts in the propagation
1786 * tree of the destination mount and the cloned mount is added to
1787 * the peer group of the source mount.
1788 * (+) the cloned mount is created under the destination mount and is marked
1789 * as shared. The cloned mount is added to the peer group of the source
1790 * mount.
1791 * (+++) the mount is propagated to all the mounts in the propagation tree
1792 * of the destination mount and the cloned mount is made slave
1793 * of the same master as that of the source mount. The cloned mount
1794 * is marked as 'shared and slave'.
1795 * (*) the cloned mount is made a slave of the same master as that of the
1796 * source mount.
1797 *
1798 * ---------------------------------------------------------------------------
1799 * | MOVE MOUNT OPERATION |
1800 * |**************************************************************************
1801 * | source-->| shared | private | slave | unbindable |
1802 * | dest | | | | |
1803 * | | | | | | |
1804 * | v | | | | |
1805 * |**************************************************************************
1806 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1807 * | | | | | |
1808 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1809 * ***************************************************************************
1810 *
1811 * (+) the mount is moved to the destination. And is then propagated to
1812 * all the mounts in the propagation tree of the destination mount.
1813 * (+*) the mount is moved to the destination.
1814 * (+++) the mount is moved to the destination and is then propagated to
1815 * all the mounts belonging to the destination mount's propagation tree.
1816 * the mount is marked as 'shared and slave'.
1817 * (*) the mount continues to be a slave at the new location.
1818 *
1819 * if the source mount is a tree, the operations explained above is
1820 * applied to each mount in the tree.
1821 * Must be called without spinlocks held, since this function can sleep
1822 * in allocations.
1823 */
1824static int attach_recursive_mnt(struct mount *source_mnt,
1825 struct mount *dest_mnt,
1826 struct mountpoint *dest_mp,
1827 struct path *parent_path)
1828{
1829 HLIST_HEAD(tree_list);
1830 struct mount *child, *p;
1831 struct hlist_node *n;
1832 int err;
1833
1834 if (IS_MNT_SHARED(dest_mnt)) {
1835 err = invent_group_ids(source_mnt, true);
1836 if (err)
1837 goto out;
1838 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1839 lock_mount_hash();
1840 if (err)
1841 goto out_cleanup_ids;
1842 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1843 set_mnt_shared(p);
1844 } else {
1845 lock_mount_hash();
1846 }
1847 if (parent_path) {
1848 detach_mnt(source_mnt, parent_path);
1849 attach_mnt(source_mnt, dest_mnt, dest_mp);
1850 touch_mnt_namespace(source_mnt->mnt_ns);
1851 } else {
1852 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1853 commit_tree(source_mnt, NULL);
1854 }
1855
1856 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1857 struct mount *q;
1858 hlist_del_init(&child->mnt_hash);
1859 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1860 child->mnt_mountpoint);
1861 commit_tree(child, q);
1862 }
1863 unlock_mount_hash();
1864
1865 return 0;
1866
1867 out_cleanup_ids:
1868 while (!hlist_empty(&tree_list)) {
1869 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1870 umount_tree(child, 0);
1871 }
1872 unlock_mount_hash();
1873 cleanup_group_ids(source_mnt, NULL);
1874 out:
1875 return err;
1876}
1877
1878static struct mountpoint *lock_mount(struct path *path)
1879{
1880 struct vfsmount *mnt;
1881 struct dentry *dentry = path->dentry;
1882retry:
1883 mutex_lock(&dentry->d_inode->i_mutex);
1884 if (unlikely(cant_mount(dentry))) {
1885 mutex_unlock(&dentry->d_inode->i_mutex);
1886 return ERR_PTR(-ENOENT);
1887 }
1888 namespace_lock();
1889 mnt = lookup_mnt(path);
1890 if (likely(!mnt)) {
1891 struct mountpoint *mp = lookup_mountpoint(dentry);
1892 if (!mp)
1893 mp = new_mountpoint(dentry);
1894 if (IS_ERR(mp)) {
1895 namespace_unlock();
1896 mutex_unlock(&dentry->d_inode->i_mutex);
1897 return mp;
1898 }
1899 return mp;
1900 }
1901 namespace_unlock();
1902 mutex_unlock(&path->dentry->d_inode->i_mutex);
1903 path_put(path);
1904 path->mnt = mnt;
1905 dentry = path->dentry = dget(mnt->mnt_root);
1906 goto retry;
1907}
1908
1909static void unlock_mount(struct mountpoint *where)
1910{
1911 struct dentry *dentry = where->m_dentry;
1912 put_mountpoint(where);
1913 namespace_unlock();
1914 mutex_unlock(&dentry->d_inode->i_mutex);
1915}
1916
1917static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1918{
1919 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1920 return -EINVAL;
1921
1922 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1923 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1924 return -ENOTDIR;
1925
1926 return attach_recursive_mnt(mnt, p, mp, NULL);
1927}
1928
1929/*
1930 * Sanity check the flags to change_mnt_propagation.
1931 */
1932
1933static int flags_to_propagation_type(int flags)
1934{
1935 int type = flags & ~(MS_REC | MS_SILENT);
1936
1937 /* Fail if any non-propagation flags are set */
1938 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1939 return 0;
1940 /* Only one propagation flag should be set */
1941 if (!is_power_of_2(type))
1942 return 0;
1943 return type;
1944}
1945
1946/*
1947 * recursively change the type of the mountpoint.
1948 */
1949static int do_change_type(struct path *path, int flag)
1950{
1951 struct mount *m;
1952 struct mount *mnt = real_mount(path->mnt);
1953 int recurse = flag & MS_REC;
1954 int type;
1955 int err = 0;
1956
1957 if (path->dentry != path->mnt->mnt_root)
1958 return -EINVAL;
1959
1960 type = flags_to_propagation_type(flag);
1961 if (!type)
1962 return -EINVAL;
1963
1964 namespace_lock();
1965 if (type == MS_SHARED) {
1966 err = invent_group_ids(mnt, recurse);
1967 if (err)
1968 goto out_unlock;
1969 }
1970
1971 lock_mount_hash();
1972 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1973 change_mnt_propagation(m, type);
1974 unlock_mount_hash();
1975
1976 out_unlock:
1977 namespace_unlock();
1978 return err;
1979}
1980
1981static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1982{
1983 struct mount *child;
1984 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1985 if (!is_subdir(child->mnt_mountpoint, dentry))
1986 continue;
1987
1988 if (child->mnt.mnt_flags & MNT_LOCKED)
1989 return true;
1990 }
1991 return false;
1992}
1993
1994/*
1995 * do loopback mount.
1996 */
1997static int do_loopback(struct path *path, const char *old_name,
1998 int recurse)
1999{
2000 struct path old_path;
2001 struct mount *mnt = NULL, *old, *parent;
2002 struct mountpoint *mp;
2003 int err;
2004 if (!old_name || !*old_name)
2005 return -EINVAL;
2006 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2007 if (err)
2008 return err;
2009
2010 err = -EINVAL;
2011 if (mnt_ns_loop(old_path.dentry))
2012 goto out;
2013
2014 mp = lock_mount(path);
2015 err = PTR_ERR(mp);
2016 if (IS_ERR(mp))
2017 goto out;
2018
2019 old = real_mount(old_path.mnt);
2020 parent = real_mount(path->mnt);
2021
2022 err = -EINVAL;
2023 if (IS_MNT_UNBINDABLE(old))
2024 goto out2;
2025
2026 if (!check_mnt(parent) || !check_mnt(old))
2027 goto out2;
2028
2029 if (!recurse && has_locked_children(old, old_path.dentry))
2030 goto out2;
2031
2032 if (recurse)
2033 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2034 else
2035 mnt = clone_mnt(old, old_path.dentry, 0);
2036
2037 if (IS_ERR(mnt)) {
2038 err = PTR_ERR(mnt);
2039 goto out2;
2040 }
2041
2042 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2043
2044 err = graft_tree(mnt, parent, mp);
2045 if (err) {
2046 lock_mount_hash();
2047 umount_tree(mnt, 0);
2048 unlock_mount_hash();
2049 }
2050out2:
2051 unlock_mount(mp);
2052out:
2053 path_put(&old_path);
2054 return err;
2055}
2056
2057static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2058{
2059 int error = 0;
2060 int readonly_request = 0;
2061
2062 if (ms_flags & MS_RDONLY)
2063 readonly_request = 1;
2064 if (readonly_request == __mnt_is_readonly(mnt))
2065 return 0;
2066
2067 if (readonly_request)
2068 error = mnt_make_readonly(real_mount(mnt));
2069 else
2070 __mnt_unmake_readonly(real_mount(mnt));
2071 return error;
2072}
2073
2074/*
2075 * change filesystem flags. dir should be a physical root of filesystem.
2076 * If you've mounted a non-root directory somewhere and want to do remount
2077 * on it - tough luck.
2078 */
2079static int do_remount(struct path *path, int flags, int mnt_flags,
2080 void *data)
2081{
2082 int err;
2083 struct super_block *sb = path->mnt->mnt_sb;
2084 struct mount *mnt = real_mount(path->mnt);
2085
2086 if (!check_mnt(mnt))
2087 return -EINVAL;
2088
2089 if (path->dentry != path->mnt->mnt_root)
2090 return -EINVAL;
2091
2092 /* Don't allow changing of locked mnt flags.
2093 *
2094 * No locks need to be held here while testing the various
2095 * MNT_LOCK flags because those flags can never be cleared
2096 * once they are set.
2097 */
2098 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2099 !(mnt_flags & MNT_READONLY)) {
2100 return -EPERM;
2101 }
2102 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2103 !(mnt_flags & MNT_NODEV)) {
2104 /* Was the nodev implicitly added in mount? */
2105 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2106 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2107 mnt_flags |= MNT_NODEV;
2108 } else {
2109 return -EPERM;
2110 }
2111 }
2112 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2113 !(mnt_flags & MNT_NOSUID)) {
2114 return -EPERM;
2115 }
2116 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2117 !(mnt_flags & MNT_NOEXEC)) {
2118 return -EPERM;
2119 }
2120 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2121 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2122 return -EPERM;
2123 }
2124
2125 err = security_sb_remount(sb, data);
2126 if (err)
2127 return err;
2128
2129 down_write(&sb->s_umount);
2130 if (flags & MS_BIND)
2131 err = change_mount_flags(path->mnt, flags);
2132 else if (!capable(CAP_SYS_ADMIN))
2133 err = -EPERM;
2134 else
2135 err = do_remount_sb(sb, flags, data, 0);
2136 if (!err) {
2137 lock_mount_hash();
2138 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2139 mnt->mnt.mnt_flags = mnt_flags;
2140 touch_mnt_namespace(mnt->mnt_ns);
2141 unlock_mount_hash();
2142 }
2143 up_write(&sb->s_umount);
2144 return err;
2145}
2146
2147static inline int tree_contains_unbindable(struct mount *mnt)
2148{
2149 struct mount *p;
2150 for (p = mnt; p; p = next_mnt(p, mnt)) {
2151 if (IS_MNT_UNBINDABLE(p))
2152 return 1;
2153 }
2154 return 0;
2155}
2156
2157static int do_move_mount(struct path *path, const char *old_name)
2158{
2159 struct path old_path, parent_path;
2160 struct mount *p;
2161 struct mount *old;
2162 struct mountpoint *mp;
2163 int err;
2164 if (!old_name || !*old_name)
2165 return -EINVAL;
2166 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2167 if (err)
2168 return err;
2169
2170 mp = lock_mount(path);
2171 err = PTR_ERR(mp);
2172 if (IS_ERR(mp))
2173 goto out;
2174
2175 old = real_mount(old_path.mnt);
2176 p = real_mount(path->mnt);
2177
2178 err = -EINVAL;
2179 if (!check_mnt(p) || !check_mnt(old))
2180 goto out1;
2181
2182 if (old->mnt.mnt_flags & MNT_LOCKED)
2183 goto out1;
2184
2185 err = -EINVAL;
2186 if (old_path.dentry != old_path.mnt->mnt_root)
2187 goto out1;
2188
2189 if (!mnt_has_parent(old))
2190 goto out1;
2191
2192 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2193 S_ISDIR(old_path.dentry->d_inode->i_mode))
2194 goto out1;
2195 /*
2196 * Don't move a mount residing in a shared parent.
2197 */
2198 if (IS_MNT_SHARED(old->mnt_parent))
2199 goto out1;
2200 /*
2201 * Don't move a mount tree containing unbindable mounts to a destination
2202 * mount which is shared.
2203 */
2204 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2205 goto out1;
2206 err = -ELOOP;
2207 for (; mnt_has_parent(p); p = p->mnt_parent)
2208 if (p == old)
2209 goto out1;
2210
2211 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2212 if (err)
2213 goto out1;
2214
2215 /* if the mount is moved, it should no longer be expire
2216 * automatically */
2217 list_del_init(&old->mnt_expire);
2218out1:
2219 unlock_mount(mp);
2220out:
2221 if (!err)
2222 path_put(&parent_path);
2223 path_put(&old_path);
2224 return err;
2225}
2226
2227static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2228{
2229 int err;
2230 const char *subtype = strchr(fstype, '.');
2231 if (subtype) {
2232 subtype++;
2233 err = -EINVAL;
2234 if (!subtype[0])
2235 goto err;
2236 } else
2237 subtype = "";
2238
2239 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2240 err = -ENOMEM;
2241 if (!mnt->mnt_sb->s_subtype)
2242 goto err;
2243 return mnt;
2244
2245 err:
2246 mntput(mnt);
2247 return ERR_PTR(err);
2248}
2249
2250/*
2251 * add a mount into a namespace's mount tree
2252 */
2253static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2254{
2255 struct mountpoint *mp;
2256 struct mount *parent;
2257 int err;
2258
2259 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2260
2261 mp = lock_mount(path);
2262 if (IS_ERR(mp))
2263 return PTR_ERR(mp);
2264
2265 parent = real_mount(path->mnt);
2266 err = -EINVAL;
2267 if (unlikely(!check_mnt(parent))) {
2268 /* that's acceptable only for automounts done in private ns */
2269 if (!(mnt_flags & MNT_SHRINKABLE))
2270 goto unlock;
2271 /* ... and for those we'd better have mountpoint still alive */
2272 if (!parent->mnt_ns)
2273 goto unlock;
2274 }
2275
2276 /* Refuse the same filesystem on the same mount point */
2277 err = -EBUSY;
2278 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2279 path->mnt->mnt_root == path->dentry)
2280 goto unlock;
2281
2282 err = -EINVAL;
2283 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2284 goto unlock;
2285
2286 newmnt->mnt.mnt_flags = mnt_flags;
2287 err = graft_tree(newmnt, parent, mp);
2288
2289unlock:
2290 unlock_mount(mp);
2291 return err;
2292}
2293
2294/*
2295 * create a new mount for userspace and request it to be added into the
2296 * namespace's tree
2297 */
2298static int do_new_mount(struct path *path, const char *fstype, int flags,
2299 int mnt_flags, const char *name, void *data)
2300{
2301 struct file_system_type *type;
2302 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2303 struct vfsmount *mnt;
2304 int err;
2305
2306 if (!fstype)
2307 return -EINVAL;
2308
2309 type = get_fs_type(fstype);
2310 if (!type)
2311 return -ENODEV;
2312
2313 if (user_ns != &init_user_ns) {
2314 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2315 put_filesystem(type);
2316 return -EPERM;
2317 }
2318 /* Only in special cases allow devices from mounts
2319 * created outside the initial user namespace.
2320 */
2321 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2322 flags |= MS_NODEV;
2323 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2324 }
2325 }
2326
2327 mnt = vfs_kern_mount(type, flags, name, data);
2328 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2329 !mnt->mnt_sb->s_subtype)
2330 mnt = fs_set_subtype(mnt, fstype);
2331
2332 put_filesystem(type);
2333 if (IS_ERR(mnt))
2334 return PTR_ERR(mnt);
2335
2336 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2337 if (err)
2338 mntput(mnt);
2339 return err;
2340}
2341
2342int finish_automount(struct vfsmount *m, struct path *path)
2343{
2344 struct mount *mnt = real_mount(m);
2345 int err;
2346 /* The new mount record should have at least 2 refs to prevent it being
2347 * expired before we get a chance to add it
2348 */
2349 BUG_ON(mnt_get_count(mnt) < 2);
2350
2351 if (m->mnt_sb == path->mnt->mnt_sb &&
2352 m->mnt_root == path->dentry) {
2353 err = -ELOOP;
2354 goto fail;
2355 }
2356
2357 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2358 if (!err)
2359 return 0;
2360fail:
2361 /* remove m from any expiration list it may be on */
2362 if (!list_empty(&mnt->mnt_expire)) {
2363 namespace_lock();
2364 list_del_init(&mnt->mnt_expire);
2365 namespace_unlock();
2366 }
2367 mntput(m);
2368 mntput(m);
2369 return err;
2370}
2371
2372/**
2373 * mnt_set_expiry - Put a mount on an expiration list
2374 * @mnt: The mount to list.
2375 * @expiry_list: The list to add the mount to.
2376 */
2377void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2378{
2379 namespace_lock();
2380
2381 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2382
2383 namespace_unlock();
2384}
2385EXPORT_SYMBOL(mnt_set_expiry);
2386
2387/*
2388 * process a list of expirable mountpoints with the intent of discarding any
2389 * mountpoints that aren't in use and haven't been touched since last we came
2390 * here
2391 */
2392void mark_mounts_for_expiry(struct list_head *mounts)
2393{
2394 struct mount *mnt, *next;
2395 LIST_HEAD(graveyard);
2396
2397 if (list_empty(mounts))
2398 return;
2399
2400 namespace_lock();
2401 lock_mount_hash();
2402
2403 /* extract from the expiration list every vfsmount that matches the
2404 * following criteria:
2405 * - only referenced by its parent vfsmount
2406 * - still marked for expiry (marked on the last call here; marks are
2407 * cleared by mntput())
2408 */
2409 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2410 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2411 propagate_mount_busy(mnt, 1))
2412 continue;
2413 list_move(&mnt->mnt_expire, &graveyard);
2414 }
2415 while (!list_empty(&graveyard)) {
2416 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2417 touch_mnt_namespace(mnt->mnt_ns);
2418 umount_tree(mnt, 1);
2419 }
2420 unlock_mount_hash();
2421 namespace_unlock();
2422}
2423
2424EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2425
2426/*
2427 * Ripoff of 'select_parent()'
2428 *
2429 * search the list of submounts for a given mountpoint, and move any
2430 * shrinkable submounts to the 'graveyard' list.
2431 */
2432static int select_submounts(struct mount *parent, struct list_head *graveyard)
2433{
2434 struct mount *this_parent = parent;
2435 struct list_head *next;
2436 int found = 0;
2437
2438repeat:
2439 next = this_parent->mnt_mounts.next;
2440resume:
2441 while (next != &this_parent->mnt_mounts) {
2442 struct list_head *tmp = next;
2443 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2444
2445 next = tmp->next;
2446 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2447 continue;
2448 /*
2449 * Descend a level if the d_mounts list is non-empty.
2450 */
2451 if (!list_empty(&mnt->mnt_mounts)) {
2452 this_parent = mnt;
2453 goto repeat;
2454 }
2455
2456 if (!propagate_mount_busy(mnt, 1)) {
2457 list_move_tail(&mnt->mnt_expire, graveyard);
2458 found++;
2459 }
2460 }
2461 /*
2462 * All done at this level ... ascend and resume the search
2463 */
2464 if (this_parent != parent) {
2465 next = this_parent->mnt_child.next;
2466 this_parent = this_parent->mnt_parent;
2467 goto resume;
2468 }
2469 return found;
2470}
2471
2472/*
2473 * process a list of expirable mountpoints with the intent of discarding any
2474 * submounts of a specific parent mountpoint
2475 *
2476 * mount_lock must be held for write
2477 */
2478static void shrink_submounts(struct mount *mnt)
2479{
2480 LIST_HEAD(graveyard);
2481 struct mount *m;
2482
2483 /* extract submounts of 'mountpoint' from the expiration list */
2484 while (select_submounts(mnt, &graveyard)) {
2485 while (!list_empty(&graveyard)) {
2486 m = list_first_entry(&graveyard, struct mount,
2487 mnt_expire);
2488 touch_mnt_namespace(m->mnt_ns);
2489 umount_tree(m, 1);
2490 }
2491 }
2492}
2493
2494/*
2495 * Some copy_from_user() implementations do not return the exact number of
2496 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2497 * Note that this function differs from copy_from_user() in that it will oops
2498 * on bad values of `to', rather than returning a short copy.
2499 */
2500static long exact_copy_from_user(void *to, const void __user * from,
2501 unsigned long n)
2502{
2503 char *t = to;
2504 const char __user *f = from;
2505 char c;
2506
2507 if (!access_ok(VERIFY_READ, from, n))
2508 return n;
2509
2510 while (n) {
2511 if (__get_user(c, f)) {
2512 memset(t, 0, n);
2513 break;
2514 }
2515 *t++ = c;
2516 f++;
2517 n--;
2518 }
2519 return n;
2520}
2521
2522int copy_mount_options(const void __user * data, unsigned long *where)
2523{
2524 int i;
2525 unsigned long page;
2526 unsigned long size;
2527
2528 *where = 0;
2529 if (!data)
2530 return 0;
2531
2532 if (!(page = __get_free_page(GFP_KERNEL)))
2533 return -ENOMEM;
2534
2535 /* We only care that *some* data at the address the user
2536 * gave us is valid. Just in case, we'll zero
2537 * the remainder of the page.
2538 */
2539 /* copy_from_user cannot cross TASK_SIZE ! */
2540 size = TASK_SIZE - (unsigned long)data;
2541 if (size > PAGE_SIZE)
2542 size = PAGE_SIZE;
2543
2544 i = size - exact_copy_from_user((void *)page, data, size);
2545 if (!i) {
2546 free_page(page);
2547 return -EFAULT;
2548 }
2549 if (i != PAGE_SIZE)
2550 memset((char *)page + i, 0, PAGE_SIZE - i);
2551 *where = page;
2552 return 0;
2553}
2554
2555char *copy_mount_string(const void __user *data)
2556{
2557 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2558}
2559
2560/*
2561 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2562 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2563 *
2564 * data is a (void *) that can point to any structure up to
2565 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2566 * information (or be NULL).
2567 *
2568 * Pre-0.97 versions of mount() didn't have a flags word.
2569 * When the flags word was introduced its top half was required
2570 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2571 * Therefore, if this magic number is present, it carries no information
2572 * and must be discarded.
2573 */
2574long do_mount(const char *dev_name, const char __user *dir_name,
2575 const char *type_page, unsigned long flags, void *data_page)
2576{
2577 struct path path;
2578 int retval = 0;
2579 int mnt_flags = 0;
2580
2581 /* Discard magic */
2582 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2583 flags &= ~MS_MGC_MSK;
2584
2585 /* Basic sanity checks */
2586 if (data_page)
2587 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2588
2589 /* ... and get the mountpoint */
2590 retval = user_path(dir_name, &path);
2591 if (retval)
2592 return retval;
2593
2594 retval = security_sb_mount(dev_name, &path,
2595 type_page, flags, data_page);
2596 if (!retval && !may_mount())
2597 retval = -EPERM;
2598 if (retval)
2599 goto dput_out;
2600
2601 /* Default to relatime unless overriden */
2602 if (!(flags & MS_NOATIME))
2603 mnt_flags |= MNT_RELATIME;
2604
2605 /* Separate the per-mountpoint flags */
2606 if (flags & MS_NOSUID)
2607 mnt_flags |= MNT_NOSUID;
2608 if (flags & MS_NODEV)
2609 mnt_flags |= MNT_NODEV;
2610 if (flags & MS_NOEXEC)
2611 mnt_flags |= MNT_NOEXEC;
2612 if (flags & MS_NOATIME)
2613 mnt_flags |= MNT_NOATIME;
2614 if (flags & MS_NODIRATIME)
2615 mnt_flags |= MNT_NODIRATIME;
2616 if (flags & MS_STRICTATIME)
2617 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2618 if (flags & MS_RDONLY)
2619 mnt_flags |= MNT_READONLY;
2620
2621 /* The default atime for remount is preservation */
2622 if ((flags & MS_REMOUNT) &&
2623 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2624 MS_STRICTATIME)) == 0)) {
2625 mnt_flags &= ~MNT_ATIME_MASK;
2626 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2627 }
2628
2629 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2630 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2631 MS_STRICTATIME);
2632
2633 if (flags & MS_REMOUNT)
2634 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2635 data_page);
2636 else if (flags & MS_BIND)
2637 retval = do_loopback(&path, dev_name, flags & MS_REC);
2638 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2639 retval = do_change_type(&path, flags);
2640 else if (flags & MS_MOVE)
2641 retval = do_move_mount(&path, dev_name);
2642 else
2643 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2644 dev_name, data_page);
2645dput_out:
2646 path_put(&path);
2647 return retval;
2648}
2649
2650static void free_mnt_ns(struct mnt_namespace *ns)
2651{
2652 proc_free_inum(ns->proc_inum);
2653 put_user_ns(ns->user_ns);
2654 kfree(ns);
2655}
2656
2657/*
2658 * Assign a sequence number so we can detect when we attempt to bind
2659 * mount a reference to an older mount namespace into the current
2660 * mount namespace, preventing reference counting loops. A 64bit
2661 * number incrementing at 10Ghz will take 12,427 years to wrap which
2662 * is effectively never, so we can ignore the possibility.
2663 */
2664static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2665
2666static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2667{
2668 struct mnt_namespace *new_ns;
2669 int ret;
2670
2671 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2672 if (!new_ns)
2673 return ERR_PTR(-ENOMEM);
2674 ret = proc_alloc_inum(&new_ns->proc_inum);
2675 if (ret) {
2676 kfree(new_ns);
2677 return ERR_PTR(ret);
2678 }
2679 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2680 atomic_set(&new_ns->count, 1);
2681 new_ns->root = NULL;
2682 INIT_LIST_HEAD(&new_ns->list);
2683 init_waitqueue_head(&new_ns->poll);
2684 new_ns->event = 0;
2685 new_ns->user_ns = get_user_ns(user_ns);
2686 return new_ns;
2687}
2688
2689struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2690 struct user_namespace *user_ns, struct fs_struct *new_fs)
2691{
2692 struct mnt_namespace *new_ns;
2693 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2694 struct mount *p, *q;
2695 struct mount *old;
2696 struct mount *new;
2697 int copy_flags;
2698
2699 BUG_ON(!ns);
2700
2701 if (likely(!(flags & CLONE_NEWNS))) {
2702 get_mnt_ns(ns);
2703 return ns;
2704 }
2705
2706 old = ns->root;
2707
2708 new_ns = alloc_mnt_ns(user_ns);
2709 if (IS_ERR(new_ns))
2710 return new_ns;
2711
2712 namespace_lock();
2713 /* First pass: copy the tree topology */
2714 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2715 if (user_ns != ns->user_ns)
2716 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2717 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2718 if (IS_ERR(new)) {
2719 namespace_unlock();
2720 free_mnt_ns(new_ns);
2721 return ERR_CAST(new);
2722 }
2723 new_ns->root = new;
2724 list_add_tail(&new_ns->list, &new->mnt_list);
2725
2726 /*
2727 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2728 * as belonging to new namespace. We have already acquired a private
2729 * fs_struct, so tsk->fs->lock is not needed.
2730 */
2731 p = old;
2732 q = new;
2733 while (p) {
2734 q->mnt_ns = new_ns;
2735 if (new_fs) {
2736 if (&p->mnt == new_fs->root.mnt) {
2737 new_fs->root.mnt = mntget(&q->mnt);
2738 rootmnt = &p->mnt;
2739 }
2740 if (&p->mnt == new_fs->pwd.mnt) {
2741 new_fs->pwd.mnt = mntget(&q->mnt);
2742 pwdmnt = &p->mnt;
2743 }
2744 }
2745 p = next_mnt(p, old);
2746 q = next_mnt(q, new);
2747 if (!q)
2748 break;
2749 while (p->mnt.mnt_root != q->mnt.mnt_root)
2750 p = next_mnt(p, old);
2751 }
2752 namespace_unlock();
2753
2754 if (rootmnt)
2755 mntput(rootmnt);
2756 if (pwdmnt)
2757 mntput(pwdmnt);
2758
2759 return new_ns;
2760}
2761
2762/**
2763 * create_mnt_ns - creates a private namespace and adds a root filesystem
2764 * @mnt: pointer to the new root filesystem mountpoint
2765 */
2766static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2767{
2768 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2769 if (!IS_ERR(new_ns)) {
2770 struct mount *mnt = real_mount(m);
2771 mnt->mnt_ns = new_ns;
2772 new_ns->root = mnt;
2773 list_add(&mnt->mnt_list, &new_ns->list);
2774 } else {
2775 mntput(m);
2776 }
2777 return new_ns;
2778}
2779
2780struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2781{
2782 struct mnt_namespace *ns;
2783 struct super_block *s;
2784 struct path path;
2785 int err;
2786
2787 ns = create_mnt_ns(mnt);
2788 if (IS_ERR(ns))
2789 return ERR_CAST(ns);
2790
2791 err = vfs_path_lookup(mnt->mnt_root, mnt,
2792 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2793
2794 put_mnt_ns(ns);
2795
2796 if (err)
2797 return ERR_PTR(err);
2798
2799 /* trade a vfsmount reference for active sb one */
2800 s = path.mnt->mnt_sb;
2801 atomic_inc(&s->s_active);
2802 mntput(path.mnt);
2803 /* lock the sucker */
2804 down_write(&s->s_umount);
2805 /* ... and return the root of (sub)tree on it */
2806 return path.dentry;
2807}
2808EXPORT_SYMBOL(mount_subtree);
2809
2810SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2811 char __user *, type, unsigned long, flags, void __user *, data)
2812{
2813 int ret;
2814 char *kernel_type;
2815 char *kernel_dev;
2816 unsigned long data_page;
2817
2818 kernel_type = copy_mount_string(type);
2819 ret = PTR_ERR(kernel_type);
2820 if (IS_ERR(kernel_type))
2821 goto out_type;
2822
2823 kernel_dev = copy_mount_string(dev_name);
2824 ret = PTR_ERR(kernel_dev);
2825 if (IS_ERR(kernel_dev))
2826 goto out_dev;
2827
2828 ret = copy_mount_options(data, &data_page);
2829 if (ret < 0)
2830 goto out_data;
2831
2832 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2833 (void *) data_page);
2834
2835 free_page(data_page);
2836out_data:
2837 kfree(kernel_dev);
2838out_dev:
2839 kfree(kernel_type);
2840out_type:
2841 return ret;
2842}
2843
2844/*
2845 * Return true if path is reachable from root
2846 *
2847 * namespace_sem or mount_lock is held
2848 */
2849bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2850 const struct path *root)
2851{
2852 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2853 dentry = mnt->mnt_mountpoint;
2854 mnt = mnt->mnt_parent;
2855 }
2856 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2857}
2858
2859int path_is_under(struct path *path1, struct path *path2)
2860{
2861 int res;
2862 read_seqlock_excl(&mount_lock);
2863 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2864 read_sequnlock_excl(&mount_lock);
2865 return res;
2866}
2867EXPORT_SYMBOL(path_is_under);
2868
2869/*
2870 * pivot_root Semantics:
2871 * Moves the root file system of the current process to the directory put_old,
2872 * makes new_root as the new root file system of the current process, and sets
2873 * root/cwd of all processes which had them on the current root to new_root.
2874 *
2875 * Restrictions:
2876 * The new_root and put_old must be directories, and must not be on the
2877 * same file system as the current process root. The put_old must be
2878 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2879 * pointed to by put_old must yield the same directory as new_root. No other
2880 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2881 *
2882 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2883 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2884 * in this situation.
2885 *
2886 * Notes:
2887 * - we don't move root/cwd if they are not at the root (reason: if something
2888 * cared enough to change them, it's probably wrong to force them elsewhere)
2889 * - it's okay to pick a root that isn't the root of a file system, e.g.
2890 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2891 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2892 * first.
2893 */
2894SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2895 const char __user *, put_old)
2896{
2897 struct path new, old, parent_path, root_parent, root;
2898 struct mount *new_mnt, *root_mnt, *old_mnt;
2899 struct mountpoint *old_mp, *root_mp;
2900 int error;
2901
2902 if (!may_mount())
2903 return -EPERM;
2904
2905 error = user_path_dir(new_root, &new);
2906 if (error)
2907 goto out0;
2908
2909 error = user_path_dir(put_old, &old);
2910 if (error)
2911 goto out1;
2912
2913 error = security_sb_pivotroot(&old, &new);
2914 if (error)
2915 goto out2;
2916
2917 get_fs_root(current->fs, &root);
2918 old_mp = lock_mount(&old);
2919 error = PTR_ERR(old_mp);
2920 if (IS_ERR(old_mp))
2921 goto out3;
2922
2923 error = -EINVAL;
2924 new_mnt = real_mount(new.mnt);
2925 root_mnt = real_mount(root.mnt);
2926 old_mnt = real_mount(old.mnt);
2927 if (IS_MNT_SHARED(old_mnt) ||
2928 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2929 IS_MNT_SHARED(root_mnt->mnt_parent))
2930 goto out4;
2931 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2932 goto out4;
2933 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2934 goto out4;
2935 error = -ENOENT;
2936 if (d_unlinked(new.dentry))
2937 goto out4;
2938 error = -EBUSY;
2939 if (new_mnt == root_mnt || old_mnt == root_mnt)
2940 goto out4; /* loop, on the same file system */
2941 error = -EINVAL;
2942 if (root.mnt->mnt_root != root.dentry)
2943 goto out4; /* not a mountpoint */
2944 if (!mnt_has_parent(root_mnt))
2945 goto out4; /* not attached */
2946 root_mp = root_mnt->mnt_mp;
2947 if (new.mnt->mnt_root != new.dentry)
2948 goto out4; /* not a mountpoint */
2949 if (!mnt_has_parent(new_mnt))
2950 goto out4; /* not attached */
2951 /* make sure we can reach put_old from new_root */
2952 if (!is_path_reachable(old_mnt, old.dentry, &new))
2953 goto out4;
2954 /* make certain new is below the root */
2955 if (!is_path_reachable(new_mnt, new.dentry, &root))
2956 goto out4;
2957 root_mp->m_count++; /* pin it so it won't go away */
2958 lock_mount_hash();
2959 detach_mnt(new_mnt, &parent_path);
2960 detach_mnt(root_mnt, &root_parent);
2961 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2962 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2963 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2964 }
2965 /* mount old root on put_old */
2966 attach_mnt(root_mnt, old_mnt, old_mp);
2967 /* mount new_root on / */
2968 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2969 touch_mnt_namespace(current->nsproxy->mnt_ns);
2970 unlock_mount_hash();
2971 chroot_fs_refs(&root, &new);
2972 put_mountpoint(root_mp);
2973 error = 0;
2974out4:
2975 unlock_mount(old_mp);
2976 if (!error) {
2977 path_put(&root_parent);
2978 path_put(&parent_path);
2979 }
2980out3:
2981 path_put(&root);
2982out2:
2983 path_put(&old);
2984out1:
2985 path_put(&new);
2986out0:
2987 return error;
2988}
2989
2990static void __init init_mount_tree(void)
2991{
2992 struct vfsmount *mnt;
2993 struct mnt_namespace *ns;
2994 struct path root;
2995 struct file_system_type *type;
2996
2997 type = get_fs_type("rootfs");
2998 if (!type)
2999 panic("Can't find rootfs type");
3000 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3001 put_filesystem(type);
3002 if (IS_ERR(mnt))
3003 panic("Can't create rootfs");
3004
3005 ns = create_mnt_ns(mnt);
3006 if (IS_ERR(ns))
3007 panic("Can't allocate initial namespace");
3008
3009 init_task.nsproxy->mnt_ns = ns;
3010 get_mnt_ns(ns);
3011
3012 root.mnt = mnt;
3013 root.dentry = mnt->mnt_root;
3014
3015 set_fs_pwd(current->fs, &root);
3016 set_fs_root(current->fs, &root);
3017}
3018
3019void __init mnt_init(void)
3020{
3021 unsigned u;
3022 int err;
3023
3024 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3025 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3026
3027 mount_hashtable = alloc_large_system_hash("Mount-cache",
3028 sizeof(struct hlist_head),
3029 mhash_entries, 19,
3030 0,
3031 &m_hash_shift, &m_hash_mask, 0, 0);
3032 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3033 sizeof(struct hlist_head),
3034 mphash_entries, 19,
3035 0,
3036 &mp_hash_shift, &mp_hash_mask, 0, 0);
3037
3038 if (!mount_hashtable || !mountpoint_hashtable)
3039 panic("Failed to allocate mount hash table\n");
3040
3041 for (u = 0; u <= m_hash_mask; u++)
3042 INIT_HLIST_HEAD(&mount_hashtable[u]);
3043 for (u = 0; u <= mp_hash_mask; u++)
3044 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3045
3046 kernfs_init();
3047
3048 err = sysfs_init();
3049 if (err)
3050 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3051 __func__, err);
3052 fs_kobj = kobject_create_and_add("fs", NULL);
3053 if (!fs_kobj)
3054 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3055 init_rootfs();
3056 init_mount_tree();
3057}
3058
3059void put_mnt_ns(struct mnt_namespace *ns)
3060{
3061 if (!atomic_dec_and_test(&ns->count))
3062 return;
3063 drop_collected_mounts(&ns->root->mnt);
3064 free_mnt_ns(ns);
3065}
3066
3067struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3068{
3069 struct vfsmount *mnt;
3070 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3071 if (!IS_ERR(mnt)) {
3072 /*
3073 * it is a longterm mount, don't release mnt until
3074 * we unmount before file sys is unregistered
3075 */
3076 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3077 }
3078 return mnt;
3079}
3080EXPORT_SYMBOL_GPL(kern_mount_data);
3081
3082void kern_unmount(struct vfsmount *mnt)
3083{
3084 /* release long term mount so mount point can be released */
3085 if (!IS_ERR_OR_NULL(mnt)) {
3086 real_mount(mnt)->mnt_ns = NULL;
3087 synchronize_rcu(); /* yecchhh... */
3088 mntput(mnt);
3089 }
3090}
3091EXPORT_SYMBOL(kern_unmount);
3092
3093bool our_mnt(struct vfsmount *mnt)
3094{
3095 return check_mnt(real_mount(mnt));
3096}
3097
3098bool current_chrooted(void)
3099{
3100 /* Does the current process have a non-standard root */
3101 struct path ns_root;
3102 struct path fs_root;
3103 bool chrooted;
3104
3105 /* Find the namespace root */
3106 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3107 ns_root.dentry = ns_root.mnt->mnt_root;
3108 path_get(&ns_root);
3109 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3110 ;
3111
3112 get_fs_root(current->fs, &fs_root);
3113
3114 chrooted = !path_equal(&fs_root, &ns_root);
3115
3116 path_put(&fs_root);
3117 path_put(&ns_root);
3118
3119 return chrooted;
3120}
3121
3122bool fs_fully_visible(struct file_system_type *type)
3123{
3124 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3125 struct mount *mnt;
3126 bool visible = false;
3127
3128 if (unlikely(!ns))
3129 return false;
3130
3131 down_read(&namespace_sem);
3132 list_for_each_entry(mnt, &ns->list, mnt_list) {
3133 struct mount *child;
3134 if (mnt->mnt.mnt_sb->s_type != type)
3135 continue;
3136
3137 /* This mount is not fully visible if there are any child mounts
3138 * that cover anything except for empty directories.
3139 */
3140 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3141 struct inode *inode = child->mnt_mountpoint->d_inode;
3142 if (!S_ISDIR(inode->i_mode))
3143 goto next;
3144 if (inode->i_nlink > 2)
3145 goto next;
3146 }
3147 visible = true;
3148 goto found;
3149 next: ;
3150 }
3151found:
3152 up_read(&namespace_sem);
3153 return visible;
3154}
3155
3156static void *mntns_get(struct task_struct *task)
3157{
3158 struct mnt_namespace *ns = NULL;
3159 struct nsproxy *nsproxy;
3160
3161 task_lock(task);
3162 nsproxy = task->nsproxy;
3163 if (nsproxy) {
3164 ns = nsproxy->mnt_ns;
3165 get_mnt_ns(ns);
3166 }
3167 task_unlock(task);
3168
3169 return ns;
3170}
3171
3172static void mntns_put(void *ns)
3173{
3174 put_mnt_ns(ns);
3175}
3176
3177static int mntns_install(struct nsproxy *nsproxy, void *ns)
3178{
3179 struct fs_struct *fs = current->fs;
3180 struct mnt_namespace *mnt_ns = ns;
3181 struct path root;
3182
3183 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3184 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3185 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3186 return -EPERM;
3187
3188 if (fs->users != 1)
3189 return -EINVAL;
3190
3191 get_mnt_ns(mnt_ns);
3192 put_mnt_ns(nsproxy->mnt_ns);
3193 nsproxy->mnt_ns = mnt_ns;
3194
3195 /* Find the root */
3196 root.mnt = &mnt_ns->root->mnt;
3197 root.dentry = mnt_ns->root->mnt.mnt_root;
3198 path_get(&root);
3199 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3200 ;
3201
3202 /* Update the pwd and root */
3203 set_fs_pwd(fs, &root);
3204 set_fs_root(fs, &root);
3205
3206 path_put(&root);
3207 return 0;
3208}
3209
3210static unsigned int mntns_inum(void *ns)
3211{
3212 struct mnt_namespace *mnt_ns = ns;
3213 return mnt_ns->proc_inum;
3214}
3215
3216const struct proc_ns_operations mntns_operations = {
3217 .name = "mnt",
3218 .type = CLONE_NEWNS,
3219 .get = mntns_get,
3220 .put = mntns_put,
3221 .install = mntns_install,
3222 .inum = mntns_inum,
3223};