]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/nfs/dir.c
NFSv4: Refactor _nfs4_open_and_get_state to set ctx->state
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
... / ...
CommitLineData
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/sched.h>
37#include <linux/kmemleak.h>
38#include <linux/xattr.h>
39
40#include "delegation.h"
41#include "iostat.h"
42#include "internal.h"
43#include "fscache.h"
44
45/* #define NFS_DEBUG_VERBOSE 1 */
46
47static int nfs_opendir(struct inode *, struct file *);
48static int nfs_closedir(struct inode *, struct file *);
49static int nfs_readdir(struct file *, void *, filldir_t);
50static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52static void nfs_readdir_clear_array(struct page*);
53
54const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
61};
62
63const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
65};
66
67static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68{
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
78 }
79 return ERR_PTR(-ENOMEM);
80}
81
82static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83{
84 put_rpccred(ctx->cred);
85 kfree(ctx);
86}
87
88/*
89 * Open file
90 */
91static int
92nfs_opendir(struct inode *inode, struct file *filp)
93{
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
97
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
101
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
111 }
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
117 */
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 }
120out:
121 put_rpccred(cred);
122 return res;
123}
124
125static int
126nfs_closedir(struct inode *inode, struct file *filp)
127{
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
130}
131
132struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
137};
138
139struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
144};
145
146typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
155
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161} nfs_readdir_descriptor_t;
162
163/*
164 * The caller is responsible for calling nfs_readdir_release_array(page)
165 */
166static
167struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168{
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
176}
177
178static
179void nfs_readdir_release_array(struct page *page)
180{
181 kunmap(page);
182}
183
184/*
185 * we are freeing strings created by nfs_add_to_readdir_array()
186 */
187static
188void nfs_readdir_clear_array(struct page *page)
189{
190 struct nfs_cache_array *array;
191 int i;
192
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
197}
198
199/*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204static
205int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206{
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
218}
219
220static
221int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222{
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 if (IS_ERR(array))
228 return PTR_ERR(array);
229
230 cache_entry = &array->array[array->size];
231
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
236
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247out:
248 nfs_readdir_release_array(page);
249 return ret;
250}
251
252static
253int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254{
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
257
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
264 }
265
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
273}
274
275static
276int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277{
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
281
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
286
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
303 }
304 status = -ELOOP;
305 goto out;
306 }
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
309 }
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
313 }
314 }
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
319 }
320out:
321 return status;
322}
323
324static
325int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326{
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 nfs_readdir_release_array(desc->page);
347out:
348 return status;
349}
350
351/* Fill a page with xdr information before transferring to the cache page */
352static
353int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
355{
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378error:
379 return error;
380}
381
382static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384{
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393}
394
395static
396int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397{
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403different:
404 return 0;
405}
406
407static
408bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409{
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
417}
418
419/*
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
423 */
424static
425void nfs_advise_use_readdirplus(struct inode *dir)
426{
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428}
429
430static
431void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432{
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
438
439 if (filename.name[0] == '.') {
440 if (filename.len == 1)
441 return;
442 if (filename.len == 2 && filename.name[1] == '.')
443 return;
444 }
445 filename.hash = full_name_hash(filename.name, filename.len);
446
447 dentry = d_lookup(parent, &filename);
448 if (dentry != NULL) {
449 if (nfs_same_file(dentry, entry)) {
450 nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 goto out;
452 } else {
453 if (d_invalidate(dentry) != 0)
454 goto out;
455 dput(dentry);
456 }
457 }
458
459 dentry = d_alloc(parent, &filename);
460 if (dentry == NULL)
461 return;
462
463 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
464 if (IS_ERR(inode))
465 goto out;
466
467 alias = d_materialise_unique(dentry, inode);
468 if (IS_ERR(alias))
469 goto out;
470 else if (alias) {
471 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
472 dput(alias);
473 } else
474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
475
476out:
477 dput(dentry);
478}
479
480/* Perform conversion from xdr to cache array */
481static
482int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
483 struct page **xdr_pages, struct page *page, unsigned int buflen)
484{
485 struct xdr_stream stream;
486 struct xdr_buf buf;
487 struct page *scratch;
488 struct nfs_cache_array *array;
489 unsigned int count = 0;
490 int status;
491
492 scratch = alloc_page(GFP_KERNEL);
493 if (scratch == NULL)
494 return -ENOMEM;
495
496 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
497 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
498
499 do {
500 status = xdr_decode(desc, entry, &stream);
501 if (status != 0) {
502 if (status == -EAGAIN)
503 status = 0;
504 break;
505 }
506
507 count++;
508
509 if (desc->plus != 0)
510 nfs_prime_dcache(desc->file->f_path.dentry, entry);
511
512 status = nfs_readdir_add_to_array(entry, page);
513 if (status != 0)
514 break;
515 } while (!entry->eof);
516
517 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
518 array = nfs_readdir_get_array(page);
519 if (!IS_ERR(array)) {
520 array->eof_index = array->size;
521 status = 0;
522 nfs_readdir_release_array(page);
523 } else
524 status = PTR_ERR(array);
525 }
526
527 put_page(scratch);
528 return status;
529}
530
531static
532void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
533{
534 unsigned int i;
535 for (i = 0; i < npages; i++)
536 put_page(pages[i]);
537}
538
539static
540void nfs_readdir_free_large_page(void *ptr, struct page **pages,
541 unsigned int npages)
542{
543 nfs_readdir_free_pagearray(pages, npages);
544}
545
546/*
547 * nfs_readdir_large_page will allocate pages that must be freed with a call
548 * to nfs_readdir_free_large_page
549 */
550static
551int nfs_readdir_large_page(struct page **pages, unsigned int npages)
552{
553 unsigned int i;
554
555 for (i = 0; i < npages; i++) {
556 struct page *page = alloc_page(GFP_KERNEL);
557 if (page == NULL)
558 goto out_freepages;
559 pages[i] = page;
560 }
561 return 0;
562
563out_freepages:
564 nfs_readdir_free_pagearray(pages, i);
565 return -ENOMEM;
566}
567
568static
569int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
570{
571 struct page *pages[NFS_MAX_READDIR_PAGES];
572 void *pages_ptr = NULL;
573 struct nfs_entry entry;
574 struct file *file = desc->file;
575 struct nfs_cache_array *array;
576 int status = -ENOMEM;
577 unsigned int array_size = ARRAY_SIZE(pages);
578
579 entry.prev_cookie = 0;
580 entry.cookie = desc->last_cookie;
581 entry.eof = 0;
582 entry.fh = nfs_alloc_fhandle();
583 entry.fattr = nfs_alloc_fattr();
584 entry.server = NFS_SERVER(inode);
585 if (entry.fh == NULL || entry.fattr == NULL)
586 goto out;
587
588 array = nfs_readdir_get_array(page);
589 if (IS_ERR(array)) {
590 status = PTR_ERR(array);
591 goto out;
592 }
593 memset(array, 0, sizeof(struct nfs_cache_array));
594 array->eof_index = -1;
595
596 status = nfs_readdir_large_page(pages, array_size);
597 if (status < 0)
598 goto out_release_array;
599 do {
600 unsigned int pglen;
601 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
602
603 if (status < 0)
604 break;
605 pglen = status;
606 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
607 if (status < 0) {
608 if (status == -ENOSPC)
609 status = 0;
610 break;
611 }
612 } while (array->eof_index < 0);
613
614 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
615out_release_array:
616 nfs_readdir_release_array(page);
617out:
618 nfs_free_fattr(entry.fattr);
619 nfs_free_fhandle(entry.fh);
620 return status;
621}
622
623/*
624 * Now we cache directories properly, by converting xdr information
625 * to an array that can be used for lookups later. This results in
626 * fewer cache pages, since we can store more information on each page.
627 * We only need to convert from xdr once so future lookups are much simpler
628 */
629static
630int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
631{
632 struct inode *inode = file_inode(desc->file);
633 int ret;
634
635 ret = nfs_readdir_xdr_to_array(desc, page, inode);
636 if (ret < 0)
637 goto error;
638 SetPageUptodate(page);
639
640 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
641 /* Should never happen */
642 nfs_zap_mapping(inode, inode->i_mapping);
643 }
644 unlock_page(page);
645 return 0;
646 error:
647 unlock_page(page);
648 return ret;
649}
650
651static
652void cache_page_release(nfs_readdir_descriptor_t *desc)
653{
654 if (!desc->page->mapping)
655 nfs_readdir_clear_array(desc->page);
656 page_cache_release(desc->page);
657 desc->page = NULL;
658}
659
660static
661struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
662{
663 return read_cache_page(file_inode(desc->file)->i_mapping,
664 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
665}
666
667/*
668 * Returns 0 if desc->dir_cookie was found on page desc->page_index
669 */
670static
671int find_cache_page(nfs_readdir_descriptor_t *desc)
672{
673 int res;
674
675 desc->page = get_cache_page(desc);
676 if (IS_ERR(desc->page))
677 return PTR_ERR(desc->page);
678
679 res = nfs_readdir_search_array(desc);
680 if (res != 0)
681 cache_page_release(desc);
682 return res;
683}
684
685/* Search for desc->dir_cookie from the beginning of the page cache */
686static inline
687int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
688{
689 int res;
690
691 if (desc->page_index == 0) {
692 desc->current_index = 0;
693 desc->last_cookie = 0;
694 }
695 do {
696 res = find_cache_page(desc);
697 } while (res == -EAGAIN);
698 return res;
699}
700
701/*
702 * Once we've found the start of the dirent within a page: fill 'er up...
703 */
704static
705int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
706 filldir_t filldir)
707{
708 struct file *file = desc->file;
709 int i = 0;
710 int res = 0;
711 struct nfs_cache_array *array = NULL;
712 struct nfs_open_dir_context *ctx = file->private_data;
713
714 array = nfs_readdir_get_array(desc->page);
715 if (IS_ERR(array)) {
716 res = PTR_ERR(array);
717 goto out;
718 }
719
720 for (i = desc->cache_entry_index; i < array->size; i++) {
721 struct nfs_cache_array_entry *ent;
722
723 ent = &array->array[i];
724 if (filldir(dirent, ent->string.name, ent->string.len,
725 file->f_pos, nfs_compat_user_ino64(ent->ino),
726 ent->d_type) < 0) {
727 desc->eof = 1;
728 break;
729 }
730 file->f_pos++;
731 if (i < (array->size-1))
732 *desc->dir_cookie = array->array[i+1].cookie;
733 else
734 *desc->dir_cookie = array->last_cookie;
735 if (ctx->duped != 0)
736 ctx->duped = 1;
737 }
738 if (array->eof_index >= 0)
739 desc->eof = 1;
740
741 nfs_readdir_release_array(desc->page);
742out:
743 cache_page_release(desc);
744 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
745 (unsigned long long)*desc->dir_cookie, res);
746 return res;
747}
748
749/*
750 * If we cannot find a cookie in our cache, we suspect that this is
751 * because it points to a deleted file, so we ask the server to return
752 * whatever it thinks is the next entry. We then feed this to filldir.
753 * If all goes well, we should then be able to find our way round the
754 * cache on the next call to readdir_search_pagecache();
755 *
756 * NOTE: we cannot add the anonymous page to the pagecache because
757 * the data it contains might not be page aligned. Besides,
758 * we should already have a complete representation of the
759 * directory in the page cache by the time we get here.
760 */
761static inline
762int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
763 filldir_t filldir)
764{
765 struct page *page = NULL;
766 int status;
767 struct inode *inode = file_inode(desc->file);
768 struct nfs_open_dir_context *ctx = desc->file->private_data;
769
770 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
771 (unsigned long long)*desc->dir_cookie);
772
773 page = alloc_page(GFP_HIGHUSER);
774 if (!page) {
775 status = -ENOMEM;
776 goto out;
777 }
778
779 desc->page_index = 0;
780 desc->last_cookie = *desc->dir_cookie;
781 desc->page = page;
782 ctx->duped = 0;
783
784 status = nfs_readdir_xdr_to_array(desc, page, inode);
785 if (status < 0)
786 goto out_release;
787
788 status = nfs_do_filldir(desc, dirent, filldir);
789
790 out:
791 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
792 __func__, status);
793 return status;
794 out_release:
795 cache_page_release(desc);
796 goto out;
797}
798
799/* The file offset position represents the dirent entry number. A
800 last cookie cache takes care of the common case of reading the
801 whole directory.
802 */
803static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
804{
805 struct dentry *dentry = filp->f_path.dentry;
806 struct inode *inode = dentry->d_inode;
807 nfs_readdir_descriptor_t my_desc,
808 *desc = &my_desc;
809 struct nfs_open_dir_context *dir_ctx = filp->private_data;
810 int res;
811
812 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
813 dentry->d_parent->d_name.name, dentry->d_name.name,
814 (long long)filp->f_pos);
815 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
816
817 /*
818 * filp->f_pos points to the dirent entry number.
819 * *desc->dir_cookie has the cookie for the next entry. We have
820 * to either find the entry with the appropriate number or
821 * revalidate the cookie.
822 */
823 memset(desc, 0, sizeof(*desc));
824
825 desc->file = filp;
826 desc->dir_cookie = &dir_ctx->dir_cookie;
827 desc->decode = NFS_PROTO(inode)->decode_dirent;
828 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
829
830 nfs_block_sillyrename(dentry);
831 res = nfs_revalidate_mapping(inode, filp->f_mapping);
832 if (res < 0)
833 goto out;
834
835 do {
836 res = readdir_search_pagecache(desc);
837
838 if (res == -EBADCOOKIE) {
839 res = 0;
840 /* This means either end of directory */
841 if (*desc->dir_cookie && desc->eof == 0) {
842 /* Or that the server has 'lost' a cookie */
843 res = uncached_readdir(desc, dirent, filldir);
844 if (res == 0)
845 continue;
846 }
847 break;
848 }
849 if (res == -ETOOSMALL && desc->plus) {
850 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
851 nfs_zap_caches(inode);
852 desc->page_index = 0;
853 desc->plus = 0;
854 desc->eof = 0;
855 continue;
856 }
857 if (res < 0)
858 break;
859
860 res = nfs_do_filldir(desc, dirent, filldir);
861 if (res < 0)
862 break;
863 } while (!desc->eof);
864out:
865 nfs_unblock_sillyrename(dentry);
866 if (res > 0)
867 res = 0;
868 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
869 dentry->d_parent->d_name.name, dentry->d_name.name,
870 res);
871 return res;
872}
873
874static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
875{
876 struct dentry *dentry = filp->f_path.dentry;
877 struct inode *inode = dentry->d_inode;
878 struct nfs_open_dir_context *dir_ctx = filp->private_data;
879
880 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
881 dentry->d_parent->d_name.name,
882 dentry->d_name.name,
883 offset, whence);
884
885 mutex_lock(&inode->i_mutex);
886 switch (whence) {
887 case 1:
888 offset += filp->f_pos;
889 case 0:
890 if (offset >= 0)
891 break;
892 default:
893 offset = -EINVAL;
894 goto out;
895 }
896 if (offset != filp->f_pos) {
897 filp->f_pos = offset;
898 dir_ctx->dir_cookie = 0;
899 dir_ctx->duped = 0;
900 }
901out:
902 mutex_unlock(&inode->i_mutex);
903 return offset;
904}
905
906/*
907 * All directory operations under NFS are synchronous, so fsync()
908 * is a dummy operation.
909 */
910static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
911 int datasync)
912{
913 struct dentry *dentry = filp->f_path.dentry;
914 struct inode *inode = dentry->d_inode;
915
916 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
917 dentry->d_parent->d_name.name, dentry->d_name.name,
918 datasync);
919
920 mutex_lock(&inode->i_mutex);
921 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
922 mutex_unlock(&inode->i_mutex);
923 return 0;
924}
925
926/**
927 * nfs_force_lookup_revalidate - Mark the directory as having changed
928 * @dir - pointer to directory inode
929 *
930 * This forces the revalidation code in nfs_lookup_revalidate() to do a
931 * full lookup on all child dentries of 'dir' whenever a change occurs
932 * on the server that might have invalidated our dcache.
933 *
934 * The caller should be holding dir->i_lock
935 */
936void nfs_force_lookup_revalidate(struct inode *dir)
937{
938 NFS_I(dir)->cache_change_attribute++;
939}
940EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
941
942/*
943 * A check for whether or not the parent directory has changed.
944 * In the case it has, we assume that the dentries are untrustworthy
945 * and may need to be looked up again.
946 */
947static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
948{
949 if (IS_ROOT(dentry))
950 return 1;
951 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
952 return 0;
953 if (!nfs_verify_change_attribute(dir, dentry->d_time))
954 return 0;
955 /* Revalidate nfsi->cache_change_attribute before we declare a match */
956 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
957 return 0;
958 if (!nfs_verify_change_attribute(dir, dentry->d_time))
959 return 0;
960 return 1;
961}
962
963/*
964 * Use intent information to check whether or not we're going to do
965 * an O_EXCL create using this path component.
966 */
967static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
968{
969 if (NFS_PROTO(dir)->version == 2)
970 return 0;
971 return flags & LOOKUP_EXCL;
972}
973
974/*
975 * Inode and filehandle revalidation for lookups.
976 *
977 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
978 * or if the intent information indicates that we're about to open this
979 * particular file and the "nocto" mount flag is not set.
980 *
981 */
982static
983int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
984{
985 struct nfs_server *server = NFS_SERVER(inode);
986 int ret;
987
988 if (IS_AUTOMOUNT(inode))
989 return 0;
990 /* VFS wants an on-the-wire revalidation */
991 if (flags & LOOKUP_REVAL)
992 goto out_force;
993 /* This is an open(2) */
994 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
995 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
996 goto out_force;
997out:
998 return (inode->i_nlink == 0) ? -ENOENT : 0;
999out_force:
1000 ret = __nfs_revalidate_inode(server, inode);
1001 if (ret != 0)
1002 return ret;
1003 goto out;
1004}
1005
1006/*
1007 * We judge how long we want to trust negative
1008 * dentries by looking at the parent inode mtime.
1009 *
1010 * If parent mtime has changed, we revalidate, else we wait for a
1011 * period corresponding to the parent's attribute cache timeout value.
1012 */
1013static inline
1014int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1015 unsigned int flags)
1016{
1017 /* Don't revalidate a negative dentry if we're creating a new file */
1018 if (flags & LOOKUP_CREATE)
1019 return 0;
1020 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1021 return 1;
1022 return !nfs_check_verifier(dir, dentry);
1023}
1024
1025/*
1026 * This is called every time the dcache has a lookup hit,
1027 * and we should check whether we can really trust that
1028 * lookup.
1029 *
1030 * NOTE! The hit can be a negative hit too, don't assume
1031 * we have an inode!
1032 *
1033 * If the parent directory is seen to have changed, we throw out the
1034 * cached dentry and do a new lookup.
1035 */
1036static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1037{
1038 struct inode *dir;
1039 struct inode *inode;
1040 struct dentry *parent;
1041 struct nfs_fh *fhandle = NULL;
1042 struct nfs_fattr *fattr = NULL;
1043 int error;
1044
1045 if (flags & LOOKUP_RCU)
1046 return -ECHILD;
1047
1048 parent = dget_parent(dentry);
1049 dir = parent->d_inode;
1050 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1051 inode = dentry->d_inode;
1052
1053 if (!inode) {
1054 if (nfs_neg_need_reval(dir, dentry, flags))
1055 goto out_bad;
1056 goto out_valid_noent;
1057 }
1058
1059 if (is_bad_inode(inode)) {
1060 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1061 __func__, dentry->d_parent->d_name.name,
1062 dentry->d_name.name);
1063 goto out_bad;
1064 }
1065
1066 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1067 goto out_set_verifier;
1068
1069 /* Force a full look up iff the parent directory has changed */
1070 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1071 if (nfs_lookup_verify_inode(inode, flags))
1072 goto out_zap_parent;
1073 goto out_valid;
1074 }
1075
1076 if (NFS_STALE(inode))
1077 goto out_bad;
1078
1079 error = -ENOMEM;
1080 fhandle = nfs_alloc_fhandle();
1081 fattr = nfs_alloc_fattr();
1082 if (fhandle == NULL || fattr == NULL)
1083 goto out_error;
1084
1085 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1086 if (error)
1087 goto out_bad;
1088 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1089 goto out_bad;
1090 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1091 goto out_bad;
1092
1093 nfs_free_fattr(fattr);
1094 nfs_free_fhandle(fhandle);
1095out_set_verifier:
1096 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1097 out_valid:
1098 /* Success: notify readdir to use READDIRPLUS */
1099 nfs_advise_use_readdirplus(dir);
1100 out_valid_noent:
1101 dput(parent);
1102 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1103 __func__, dentry->d_parent->d_name.name,
1104 dentry->d_name.name);
1105 return 1;
1106out_zap_parent:
1107 nfs_zap_caches(dir);
1108 out_bad:
1109 nfs_free_fattr(fattr);
1110 nfs_free_fhandle(fhandle);
1111 nfs_mark_for_revalidate(dir);
1112 if (inode && S_ISDIR(inode->i_mode)) {
1113 /* Purge readdir caches. */
1114 nfs_zap_caches(inode);
1115 /* If we have submounts, don't unhash ! */
1116 if (have_submounts(dentry))
1117 goto out_valid;
1118 if (dentry->d_flags & DCACHE_DISCONNECTED)
1119 goto out_valid;
1120 shrink_dcache_parent(dentry);
1121 }
1122 d_drop(dentry);
1123 dput(parent);
1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1125 __func__, dentry->d_parent->d_name.name,
1126 dentry->d_name.name);
1127 return 0;
1128out_error:
1129 nfs_free_fattr(fattr);
1130 nfs_free_fhandle(fhandle);
1131 dput(parent);
1132 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1133 __func__, dentry->d_parent->d_name.name,
1134 dentry->d_name.name, error);
1135 return error;
1136}
1137
1138/*
1139 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1140 * when we don't really care about the dentry name. This is called when a
1141 * pathwalk ends on a dentry that was not found via a normal lookup in the
1142 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1143 *
1144 * In this situation, we just want to verify that the inode itself is OK
1145 * since the dentry might have changed on the server.
1146 */
1147static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1148{
1149 int error;
1150 struct inode *inode = dentry->d_inode;
1151
1152 /*
1153 * I believe we can only get a negative dentry here in the case of a
1154 * procfs-style symlink. Just assume it's correct for now, but we may
1155 * eventually need to do something more here.
1156 */
1157 if (!inode) {
1158 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1159 __func__, dentry->d_parent->d_name.name,
1160 dentry->d_name.name);
1161 return 1;
1162 }
1163
1164 if (is_bad_inode(inode)) {
1165 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1166 __func__, dentry->d_parent->d_name.name,
1167 dentry->d_name.name);
1168 return 0;
1169 }
1170
1171 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1172 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1173 __func__, inode->i_ino, error ? "invalid" : "valid");
1174 return !error;
1175}
1176
1177/*
1178 * This is called from dput() when d_count is going to 0.
1179 */
1180static int nfs_dentry_delete(const struct dentry *dentry)
1181{
1182 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1183 dentry->d_parent->d_name.name, dentry->d_name.name,
1184 dentry->d_flags);
1185
1186 /* Unhash any dentry with a stale inode */
1187 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1188 return 1;
1189
1190 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1191 /* Unhash it, so that ->d_iput() would be called */
1192 return 1;
1193 }
1194 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1195 /* Unhash it, so that ancestors of killed async unlink
1196 * files will be cleaned up during umount */
1197 return 1;
1198 }
1199 return 0;
1200
1201}
1202
1203/* Ensure that we revalidate inode->i_nlink */
1204static void nfs_drop_nlink(struct inode *inode)
1205{
1206 spin_lock(&inode->i_lock);
1207 /* drop the inode if we're reasonably sure this is the last link */
1208 if (inode->i_nlink == 1)
1209 clear_nlink(inode);
1210 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1211 spin_unlock(&inode->i_lock);
1212}
1213
1214/*
1215 * Called when the dentry loses inode.
1216 * We use it to clean up silly-renamed files.
1217 */
1218static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1219{
1220 if (S_ISDIR(inode->i_mode))
1221 /* drop any readdir cache as it could easily be old */
1222 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1223
1224 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1225 nfs_complete_unlink(dentry, inode);
1226 nfs_drop_nlink(inode);
1227 }
1228 iput(inode);
1229}
1230
1231static void nfs_d_release(struct dentry *dentry)
1232{
1233 /* free cached devname value, if it survived that far */
1234 if (unlikely(dentry->d_fsdata)) {
1235 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1236 WARN_ON(1);
1237 else
1238 kfree(dentry->d_fsdata);
1239 }
1240}
1241
1242const struct dentry_operations nfs_dentry_operations = {
1243 .d_revalidate = nfs_lookup_revalidate,
1244 .d_weak_revalidate = nfs_weak_revalidate,
1245 .d_delete = nfs_dentry_delete,
1246 .d_iput = nfs_dentry_iput,
1247 .d_automount = nfs_d_automount,
1248 .d_release = nfs_d_release,
1249};
1250EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1251
1252struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1253{
1254 struct dentry *res;
1255 struct dentry *parent;
1256 struct inode *inode = NULL;
1257 struct nfs_fh *fhandle = NULL;
1258 struct nfs_fattr *fattr = NULL;
1259 int error;
1260
1261 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1262 dentry->d_parent->d_name.name, dentry->d_name.name);
1263 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1264
1265 res = ERR_PTR(-ENAMETOOLONG);
1266 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1267 goto out;
1268
1269 /*
1270 * If we're doing an exclusive create, optimize away the lookup
1271 * but don't hash the dentry.
1272 */
1273 if (nfs_is_exclusive_create(dir, flags)) {
1274 d_instantiate(dentry, NULL);
1275 res = NULL;
1276 goto out;
1277 }
1278
1279 res = ERR_PTR(-ENOMEM);
1280 fhandle = nfs_alloc_fhandle();
1281 fattr = nfs_alloc_fattr();
1282 if (fhandle == NULL || fattr == NULL)
1283 goto out;
1284
1285 parent = dentry->d_parent;
1286 /* Protect against concurrent sillydeletes */
1287 nfs_block_sillyrename(parent);
1288 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1289 if (error == -ENOENT)
1290 goto no_entry;
1291 if (error < 0) {
1292 res = ERR_PTR(error);
1293 goto out_unblock_sillyrename;
1294 }
1295 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1296 res = ERR_CAST(inode);
1297 if (IS_ERR(res))
1298 goto out_unblock_sillyrename;
1299
1300 /* Success: notify readdir to use READDIRPLUS */
1301 nfs_advise_use_readdirplus(dir);
1302
1303no_entry:
1304 res = d_materialise_unique(dentry, inode);
1305 if (res != NULL) {
1306 if (IS_ERR(res))
1307 goto out_unblock_sillyrename;
1308 dentry = res;
1309 }
1310 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1311out_unblock_sillyrename:
1312 nfs_unblock_sillyrename(parent);
1313out:
1314 nfs_free_fattr(fattr);
1315 nfs_free_fhandle(fhandle);
1316 return res;
1317}
1318EXPORT_SYMBOL_GPL(nfs_lookup);
1319
1320#if IS_ENABLED(CONFIG_NFS_V4)
1321static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1322
1323const struct dentry_operations nfs4_dentry_operations = {
1324 .d_revalidate = nfs4_lookup_revalidate,
1325 .d_delete = nfs_dentry_delete,
1326 .d_iput = nfs_dentry_iput,
1327 .d_automount = nfs_d_automount,
1328 .d_release = nfs_d_release,
1329};
1330EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1331
1332static fmode_t flags_to_mode(int flags)
1333{
1334 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1335 if ((flags & O_ACCMODE) != O_WRONLY)
1336 res |= FMODE_READ;
1337 if ((flags & O_ACCMODE) != O_RDONLY)
1338 res |= FMODE_WRITE;
1339 return res;
1340}
1341
1342static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1343{
1344 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1345}
1346
1347static int do_open(struct inode *inode, struct file *filp)
1348{
1349 nfs_fscache_set_inode_cookie(inode, filp);
1350 return 0;
1351}
1352
1353static int nfs_finish_open(struct nfs_open_context *ctx,
1354 struct dentry *dentry,
1355 struct file *file, unsigned open_flags,
1356 int *opened)
1357{
1358 int err;
1359
1360 if (ctx->dentry != dentry) {
1361 dput(ctx->dentry);
1362 ctx->dentry = dget(dentry);
1363 }
1364
1365 err = finish_open(file, dentry, do_open, opened);
1366 if (err)
1367 goto out;
1368 nfs_file_set_open_context(file, ctx);
1369
1370out:
1371 put_nfs_open_context(ctx);
1372 return err;
1373}
1374
1375int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1376 struct file *file, unsigned open_flags,
1377 umode_t mode, int *opened)
1378{
1379 struct nfs_open_context *ctx;
1380 struct dentry *res;
1381 struct iattr attr = { .ia_valid = ATTR_OPEN };
1382 struct inode *inode;
1383 int err;
1384
1385 /* Expect a negative dentry */
1386 BUG_ON(dentry->d_inode);
1387
1388 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1389 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1390
1391 /* NFS only supports OPEN on regular files */
1392 if ((open_flags & O_DIRECTORY)) {
1393 if (!d_unhashed(dentry)) {
1394 /*
1395 * Hashed negative dentry with O_DIRECTORY: dentry was
1396 * revalidated and is fine, no need to perform lookup
1397 * again
1398 */
1399 return -ENOENT;
1400 }
1401 goto no_open;
1402 }
1403
1404 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1405 return -ENAMETOOLONG;
1406
1407 if (open_flags & O_CREAT) {
1408 attr.ia_valid |= ATTR_MODE;
1409 attr.ia_mode = mode & ~current_umask();
1410 }
1411 if (open_flags & O_TRUNC) {
1412 attr.ia_valid |= ATTR_SIZE;
1413 attr.ia_size = 0;
1414 }
1415
1416 ctx = create_nfs_open_context(dentry, open_flags);
1417 err = PTR_ERR(ctx);
1418 if (IS_ERR(ctx))
1419 goto out;
1420
1421 nfs_block_sillyrename(dentry->d_parent);
1422 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1423 d_drop(dentry);
1424 if (IS_ERR(inode)) {
1425 nfs_unblock_sillyrename(dentry->d_parent);
1426 put_nfs_open_context(ctx);
1427 err = PTR_ERR(inode);
1428 switch (err) {
1429 case -ENOENT:
1430 d_add(dentry, NULL);
1431 break;
1432 case -EISDIR:
1433 case -ENOTDIR:
1434 goto no_open;
1435 case -ELOOP:
1436 if (!(open_flags & O_NOFOLLOW))
1437 goto no_open;
1438 break;
1439 /* case -EINVAL: */
1440 default:
1441 break;
1442 }
1443 goto out;
1444 }
1445 res = d_add_unique(dentry, inode);
1446 if (res != NULL)
1447 dentry = res;
1448
1449 nfs_unblock_sillyrename(dentry->d_parent);
1450 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1451
1452 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1453
1454 dput(res);
1455out:
1456 return err;
1457
1458no_open:
1459 res = nfs_lookup(dir, dentry, 0);
1460 err = PTR_ERR(res);
1461 if (IS_ERR(res))
1462 goto out;
1463
1464 return finish_no_open(file, res);
1465}
1466EXPORT_SYMBOL_GPL(nfs_atomic_open);
1467
1468static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1469{
1470 struct dentry *parent = NULL;
1471 struct inode *inode;
1472 struct inode *dir;
1473 int ret = 0;
1474
1475 if (flags & LOOKUP_RCU)
1476 return -ECHILD;
1477
1478 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1479 goto no_open;
1480 if (d_mountpoint(dentry))
1481 goto no_open;
1482 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1483 goto no_open;
1484
1485 inode = dentry->d_inode;
1486 parent = dget_parent(dentry);
1487 dir = parent->d_inode;
1488
1489 /* We can't create new files in nfs_open_revalidate(), so we
1490 * optimize away revalidation of negative dentries.
1491 */
1492 if (inode == NULL) {
1493 if (!nfs_neg_need_reval(dir, dentry, flags))
1494 ret = 1;
1495 goto out;
1496 }
1497
1498 /* NFS only supports OPEN on regular files */
1499 if (!S_ISREG(inode->i_mode))
1500 goto no_open_dput;
1501 /* We cannot do exclusive creation on a positive dentry */
1502 if (flags & LOOKUP_EXCL)
1503 goto no_open_dput;
1504
1505 /* Let f_op->open() actually open (and revalidate) the file */
1506 ret = 1;
1507
1508out:
1509 dput(parent);
1510 return ret;
1511
1512no_open_dput:
1513 dput(parent);
1514no_open:
1515 return nfs_lookup_revalidate(dentry, flags);
1516}
1517
1518#endif /* CONFIG_NFSV4 */
1519
1520/*
1521 * Code common to create, mkdir, and mknod.
1522 */
1523int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1524 struct nfs_fattr *fattr)
1525{
1526 struct dentry *parent = dget_parent(dentry);
1527 struct inode *dir = parent->d_inode;
1528 struct inode *inode;
1529 int error = -EACCES;
1530
1531 d_drop(dentry);
1532
1533 /* We may have been initialized further down */
1534 if (dentry->d_inode)
1535 goto out;
1536 if (fhandle->size == 0) {
1537 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1538 if (error)
1539 goto out_error;
1540 }
1541 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1542 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1543 struct nfs_server *server = NFS_SB(dentry->d_sb);
1544 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1545 if (error < 0)
1546 goto out_error;
1547 }
1548 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1549 error = PTR_ERR(inode);
1550 if (IS_ERR(inode))
1551 goto out_error;
1552 d_add(dentry, inode);
1553out:
1554 dput(parent);
1555 return 0;
1556out_error:
1557 nfs_mark_for_revalidate(dir);
1558 dput(parent);
1559 return error;
1560}
1561EXPORT_SYMBOL_GPL(nfs_instantiate);
1562
1563/*
1564 * Following a failed create operation, we drop the dentry rather
1565 * than retain a negative dentry. This avoids a problem in the event
1566 * that the operation succeeded on the server, but an error in the
1567 * reply path made it appear to have failed.
1568 */
1569int nfs_create(struct inode *dir, struct dentry *dentry,
1570 umode_t mode, bool excl)
1571{
1572 struct iattr attr;
1573 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1574 int error;
1575
1576 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1577 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1578
1579 attr.ia_mode = mode;
1580 attr.ia_valid = ATTR_MODE;
1581
1582 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1583 if (error != 0)
1584 goto out_err;
1585 return 0;
1586out_err:
1587 d_drop(dentry);
1588 return error;
1589}
1590EXPORT_SYMBOL_GPL(nfs_create);
1591
1592/*
1593 * See comments for nfs_proc_create regarding failed operations.
1594 */
1595int
1596nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1597{
1598 struct iattr attr;
1599 int status;
1600
1601 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1602 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1603
1604 if (!new_valid_dev(rdev))
1605 return -EINVAL;
1606
1607 attr.ia_mode = mode;
1608 attr.ia_valid = ATTR_MODE;
1609
1610 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1611 if (status != 0)
1612 goto out_err;
1613 return 0;
1614out_err:
1615 d_drop(dentry);
1616 return status;
1617}
1618EXPORT_SYMBOL_GPL(nfs_mknod);
1619
1620/*
1621 * See comments for nfs_proc_create regarding failed operations.
1622 */
1623int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1624{
1625 struct iattr attr;
1626 int error;
1627
1628 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1629 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1630
1631 attr.ia_valid = ATTR_MODE;
1632 attr.ia_mode = mode | S_IFDIR;
1633
1634 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1635 if (error != 0)
1636 goto out_err;
1637 return 0;
1638out_err:
1639 d_drop(dentry);
1640 return error;
1641}
1642EXPORT_SYMBOL_GPL(nfs_mkdir);
1643
1644static void nfs_dentry_handle_enoent(struct dentry *dentry)
1645{
1646 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1647 d_delete(dentry);
1648}
1649
1650int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1651{
1652 int error;
1653
1654 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1655 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1656
1657 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1658 /* Ensure the VFS deletes this inode */
1659 if (error == 0 && dentry->d_inode != NULL)
1660 clear_nlink(dentry->d_inode);
1661 else if (error == -ENOENT)
1662 nfs_dentry_handle_enoent(dentry);
1663
1664 return error;
1665}
1666EXPORT_SYMBOL_GPL(nfs_rmdir);
1667
1668/*
1669 * Remove a file after making sure there are no pending writes,
1670 * and after checking that the file has only one user.
1671 *
1672 * We invalidate the attribute cache and free the inode prior to the operation
1673 * to avoid possible races if the server reuses the inode.
1674 */
1675static int nfs_safe_remove(struct dentry *dentry)
1676{
1677 struct inode *dir = dentry->d_parent->d_inode;
1678 struct inode *inode = dentry->d_inode;
1679 int error = -EBUSY;
1680
1681 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1682 dentry->d_parent->d_name.name, dentry->d_name.name);
1683
1684 /* If the dentry was sillyrenamed, we simply call d_delete() */
1685 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1686 error = 0;
1687 goto out;
1688 }
1689
1690 if (inode != NULL) {
1691 NFS_PROTO(inode)->return_delegation(inode);
1692 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1693 if (error == 0)
1694 nfs_drop_nlink(inode);
1695 } else
1696 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1697 if (error == -ENOENT)
1698 nfs_dentry_handle_enoent(dentry);
1699out:
1700 return error;
1701}
1702
1703/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1704 * belongs to an active ".nfs..." file and we return -EBUSY.
1705 *
1706 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1707 */
1708int nfs_unlink(struct inode *dir, struct dentry *dentry)
1709{
1710 int error;
1711 int need_rehash = 0;
1712
1713 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1714 dir->i_ino, dentry->d_name.name);
1715
1716 spin_lock(&dentry->d_lock);
1717 if (dentry->d_count > 1) {
1718 spin_unlock(&dentry->d_lock);
1719 /* Start asynchronous writeout of the inode */
1720 write_inode_now(dentry->d_inode, 0);
1721 error = nfs_sillyrename(dir, dentry);
1722 return error;
1723 }
1724 if (!d_unhashed(dentry)) {
1725 __d_drop(dentry);
1726 need_rehash = 1;
1727 }
1728 spin_unlock(&dentry->d_lock);
1729 error = nfs_safe_remove(dentry);
1730 if (!error || error == -ENOENT) {
1731 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1732 } else if (need_rehash)
1733 d_rehash(dentry);
1734 return error;
1735}
1736EXPORT_SYMBOL_GPL(nfs_unlink);
1737
1738/*
1739 * To create a symbolic link, most file systems instantiate a new inode,
1740 * add a page to it containing the path, then write it out to the disk
1741 * using prepare_write/commit_write.
1742 *
1743 * Unfortunately the NFS client can't create the in-core inode first
1744 * because it needs a file handle to create an in-core inode (see
1745 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1746 * symlink request has completed on the server.
1747 *
1748 * So instead we allocate a raw page, copy the symname into it, then do
1749 * the SYMLINK request with the page as the buffer. If it succeeds, we
1750 * now have a new file handle and can instantiate an in-core NFS inode
1751 * and move the raw page into its mapping.
1752 */
1753int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1754{
1755 struct pagevec lru_pvec;
1756 struct page *page;
1757 char *kaddr;
1758 struct iattr attr;
1759 unsigned int pathlen = strlen(symname);
1760 int error;
1761
1762 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1763 dir->i_ino, dentry->d_name.name, symname);
1764
1765 if (pathlen > PAGE_SIZE)
1766 return -ENAMETOOLONG;
1767
1768 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1769 attr.ia_valid = ATTR_MODE;
1770
1771 page = alloc_page(GFP_HIGHUSER);
1772 if (!page)
1773 return -ENOMEM;
1774
1775 kaddr = kmap_atomic(page);
1776 memcpy(kaddr, symname, pathlen);
1777 if (pathlen < PAGE_SIZE)
1778 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1779 kunmap_atomic(kaddr);
1780
1781 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1782 if (error != 0) {
1783 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1784 dir->i_sb->s_id, dir->i_ino,
1785 dentry->d_name.name, symname, error);
1786 d_drop(dentry);
1787 __free_page(page);
1788 return error;
1789 }
1790
1791 /*
1792 * No big deal if we can't add this page to the page cache here.
1793 * READLINK will get the missing page from the server if needed.
1794 */
1795 pagevec_init(&lru_pvec, 0);
1796 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1797 GFP_KERNEL)) {
1798 pagevec_add(&lru_pvec, page);
1799 pagevec_lru_add_file(&lru_pvec);
1800 SetPageUptodate(page);
1801 unlock_page(page);
1802 } else
1803 __free_page(page);
1804
1805 return 0;
1806}
1807EXPORT_SYMBOL_GPL(nfs_symlink);
1808
1809int
1810nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1811{
1812 struct inode *inode = old_dentry->d_inode;
1813 int error;
1814
1815 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1816 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1817 dentry->d_parent->d_name.name, dentry->d_name.name);
1818
1819 NFS_PROTO(inode)->return_delegation(inode);
1820
1821 d_drop(dentry);
1822 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1823 if (error == 0) {
1824 ihold(inode);
1825 d_add(dentry, inode);
1826 }
1827 return error;
1828}
1829EXPORT_SYMBOL_GPL(nfs_link);
1830
1831/*
1832 * RENAME
1833 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1834 * different file handle for the same inode after a rename (e.g. when
1835 * moving to a different directory). A fail-safe method to do so would
1836 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1837 * rename the old file using the sillyrename stuff. This way, the original
1838 * file in old_dir will go away when the last process iput()s the inode.
1839 *
1840 * FIXED.
1841 *
1842 * It actually works quite well. One needs to have the possibility for
1843 * at least one ".nfs..." file in each directory the file ever gets
1844 * moved or linked to which happens automagically with the new
1845 * implementation that only depends on the dcache stuff instead of
1846 * using the inode layer
1847 *
1848 * Unfortunately, things are a little more complicated than indicated
1849 * above. For a cross-directory move, we want to make sure we can get
1850 * rid of the old inode after the operation. This means there must be
1851 * no pending writes (if it's a file), and the use count must be 1.
1852 * If these conditions are met, we can drop the dentries before doing
1853 * the rename.
1854 */
1855int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1856 struct inode *new_dir, struct dentry *new_dentry)
1857{
1858 struct inode *old_inode = old_dentry->d_inode;
1859 struct inode *new_inode = new_dentry->d_inode;
1860 struct dentry *dentry = NULL, *rehash = NULL;
1861 int error = -EBUSY;
1862
1863 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1864 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1865 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1866 new_dentry->d_count);
1867
1868 /*
1869 * For non-directories, check whether the target is busy and if so,
1870 * make a copy of the dentry and then do a silly-rename. If the
1871 * silly-rename succeeds, the copied dentry is hashed and becomes
1872 * the new target.
1873 */
1874 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1875 /*
1876 * To prevent any new references to the target during the
1877 * rename, we unhash the dentry in advance.
1878 */
1879 if (!d_unhashed(new_dentry)) {
1880 d_drop(new_dentry);
1881 rehash = new_dentry;
1882 }
1883
1884 if (new_dentry->d_count > 2) {
1885 int err;
1886
1887 /* copy the target dentry's name */
1888 dentry = d_alloc(new_dentry->d_parent,
1889 &new_dentry->d_name);
1890 if (!dentry)
1891 goto out;
1892
1893 /* silly-rename the existing target ... */
1894 err = nfs_sillyrename(new_dir, new_dentry);
1895 if (err)
1896 goto out;
1897
1898 new_dentry = dentry;
1899 rehash = NULL;
1900 new_inode = NULL;
1901 }
1902 }
1903
1904 NFS_PROTO(old_inode)->return_delegation(old_inode);
1905 if (new_inode != NULL)
1906 NFS_PROTO(new_inode)->return_delegation(new_inode);
1907
1908 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1909 new_dir, &new_dentry->d_name);
1910 nfs_mark_for_revalidate(old_inode);
1911out:
1912 if (rehash)
1913 d_rehash(rehash);
1914 if (!error) {
1915 if (new_inode != NULL)
1916 nfs_drop_nlink(new_inode);
1917 d_move(old_dentry, new_dentry);
1918 nfs_set_verifier(new_dentry,
1919 nfs_save_change_attribute(new_dir));
1920 } else if (error == -ENOENT)
1921 nfs_dentry_handle_enoent(old_dentry);
1922
1923 /* new dentry created? */
1924 if (dentry)
1925 dput(dentry);
1926 return error;
1927}
1928EXPORT_SYMBOL_GPL(nfs_rename);
1929
1930static DEFINE_SPINLOCK(nfs_access_lru_lock);
1931static LIST_HEAD(nfs_access_lru_list);
1932static atomic_long_t nfs_access_nr_entries;
1933
1934static void nfs_access_free_entry(struct nfs_access_entry *entry)
1935{
1936 put_rpccred(entry->cred);
1937 kfree(entry);
1938 smp_mb__before_atomic_dec();
1939 atomic_long_dec(&nfs_access_nr_entries);
1940 smp_mb__after_atomic_dec();
1941}
1942
1943static void nfs_access_free_list(struct list_head *head)
1944{
1945 struct nfs_access_entry *cache;
1946
1947 while (!list_empty(head)) {
1948 cache = list_entry(head->next, struct nfs_access_entry, lru);
1949 list_del(&cache->lru);
1950 nfs_access_free_entry(cache);
1951 }
1952}
1953
1954int nfs_access_cache_shrinker(struct shrinker *shrink,
1955 struct shrink_control *sc)
1956{
1957 LIST_HEAD(head);
1958 struct nfs_inode *nfsi, *next;
1959 struct nfs_access_entry *cache;
1960 int nr_to_scan = sc->nr_to_scan;
1961 gfp_t gfp_mask = sc->gfp_mask;
1962
1963 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1964 return (nr_to_scan == 0) ? 0 : -1;
1965
1966 spin_lock(&nfs_access_lru_lock);
1967 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1968 struct inode *inode;
1969
1970 if (nr_to_scan-- == 0)
1971 break;
1972 inode = &nfsi->vfs_inode;
1973 spin_lock(&inode->i_lock);
1974 if (list_empty(&nfsi->access_cache_entry_lru))
1975 goto remove_lru_entry;
1976 cache = list_entry(nfsi->access_cache_entry_lru.next,
1977 struct nfs_access_entry, lru);
1978 list_move(&cache->lru, &head);
1979 rb_erase(&cache->rb_node, &nfsi->access_cache);
1980 if (!list_empty(&nfsi->access_cache_entry_lru))
1981 list_move_tail(&nfsi->access_cache_inode_lru,
1982 &nfs_access_lru_list);
1983 else {
1984remove_lru_entry:
1985 list_del_init(&nfsi->access_cache_inode_lru);
1986 smp_mb__before_clear_bit();
1987 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1988 smp_mb__after_clear_bit();
1989 }
1990 spin_unlock(&inode->i_lock);
1991 }
1992 spin_unlock(&nfs_access_lru_lock);
1993 nfs_access_free_list(&head);
1994 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1995}
1996
1997static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1998{
1999 struct rb_root *root_node = &nfsi->access_cache;
2000 struct rb_node *n;
2001 struct nfs_access_entry *entry;
2002
2003 /* Unhook entries from the cache */
2004 while ((n = rb_first(root_node)) != NULL) {
2005 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2006 rb_erase(n, root_node);
2007 list_move(&entry->lru, head);
2008 }
2009 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2010}
2011
2012void nfs_access_zap_cache(struct inode *inode)
2013{
2014 LIST_HEAD(head);
2015
2016 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2017 return;
2018 /* Remove from global LRU init */
2019 spin_lock(&nfs_access_lru_lock);
2020 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2021 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2022
2023 spin_lock(&inode->i_lock);
2024 __nfs_access_zap_cache(NFS_I(inode), &head);
2025 spin_unlock(&inode->i_lock);
2026 spin_unlock(&nfs_access_lru_lock);
2027 nfs_access_free_list(&head);
2028}
2029EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2030
2031static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2032{
2033 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2034 struct nfs_access_entry *entry;
2035
2036 while (n != NULL) {
2037 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2038
2039 if (cred < entry->cred)
2040 n = n->rb_left;
2041 else if (cred > entry->cred)
2042 n = n->rb_right;
2043 else
2044 return entry;
2045 }
2046 return NULL;
2047}
2048
2049static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2050{
2051 struct nfs_inode *nfsi = NFS_I(inode);
2052 struct nfs_access_entry *cache;
2053 int err = -ENOENT;
2054
2055 spin_lock(&inode->i_lock);
2056 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2057 goto out_zap;
2058 cache = nfs_access_search_rbtree(inode, cred);
2059 if (cache == NULL)
2060 goto out;
2061 if (!nfs_have_delegated_attributes(inode) &&
2062 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2063 goto out_stale;
2064 res->jiffies = cache->jiffies;
2065 res->cred = cache->cred;
2066 res->mask = cache->mask;
2067 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2068 err = 0;
2069out:
2070 spin_unlock(&inode->i_lock);
2071 return err;
2072out_stale:
2073 rb_erase(&cache->rb_node, &nfsi->access_cache);
2074 list_del(&cache->lru);
2075 spin_unlock(&inode->i_lock);
2076 nfs_access_free_entry(cache);
2077 return -ENOENT;
2078out_zap:
2079 spin_unlock(&inode->i_lock);
2080 nfs_access_zap_cache(inode);
2081 return -ENOENT;
2082}
2083
2084static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2085{
2086 struct nfs_inode *nfsi = NFS_I(inode);
2087 struct rb_root *root_node = &nfsi->access_cache;
2088 struct rb_node **p = &root_node->rb_node;
2089 struct rb_node *parent = NULL;
2090 struct nfs_access_entry *entry;
2091
2092 spin_lock(&inode->i_lock);
2093 while (*p != NULL) {
2094 parent = *p;
2095 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2096
2097 if (set->cred < entry->cred)
2098 p = &parent->rb_left;
2099 else if (set->cred > entry->cred)
2100 p = &parent->rb_right;
2101 else
2102 goto found;
2103 }
2104 rb_link_node(&set->rb_node, parent, p);
2105 rb_insert_color(&set->rb_node, root_node);
2106 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2107 spin_unlock(&inode->i_lock);
2108 return;
2109found:
2110 rb_replace_node(parent, &set->rb_node, root_node);
2111 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2112 list_del(&entry->lru);
2113 spin_unlock(&inode->i_lock);
2114 nfs_access_free_entry(entry);
2115}
2116
2117void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2118{
2119 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2120 if (cache == NULL)
2121 return;
2122 RB_CLEAR_NODE(&cache->rb_node);
2123 cache->jiffies = set->jiffies;
2124 cache->cred = get_rpccred(set->cred);
2125 cache->mask = set->mask;
2126
2127 nfs_access_add_rbtree(inode, cache);
2128
2129 /* Update accounting */
2130 smp_mb__before_atomic_inc();
2131 atomic_long_inc(&nfs_access_nr_entries);
2132 smp_mb__after_atomic_inc();
2133
2134 /* Add inode to global LRU list */
2135 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2136 spin_lock(&nfs_access_lru_lock);
2137 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2138 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2139 &nfs_access_lru_list);
2140 spin_unlock(&nfs_access_lru_lock);
2141 }
2142}
2143EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2144
2145void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2146{
2147 entry->mask = 0;
2148 if (access_result & NFS4_ACCESS_READ)
2149 entry->mask |= MAY_READ;
2150 if (access_result &
2151 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2152 entry->mask |= MAY_WRITE;
2153 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2154 entry->mask |= MAY_EXEC;
2155}
2156EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2157
2158static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2159{
2160 struct nfs_access_entry cache;
2161 int status;
2162
2163 status = nfs_access_get_cached(inode, cred, &cache);
2164 if (status == 0)
2165 goto out;
2166
2167 /* Be clever: ask server to check for all possible rights */
2168 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2169 cache.cred = cred;
2170 cache.jiffies = jiffies;
2171 status = NFS_PROTO(inode)->access(inode, &cache);
2172 if (status != 0) {
2173 if (status == -ESTALE) {
2174 nfs_zap_caches(inode);
2175 if (!S_ISDIR(inode->i_mode))
2176 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2177 }
2178 return status;
2179 }
2180 nfs_access_add_cache(inode, &cache);
2181out:
2182 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2183 return 0;
2184 return -EACCES;
2185}
2186
2187static int nfs_open_permission_mask(int openflags)
2188{
2189 int mask = 0;
2190
2191 if (openflags & __FMODE_EXEC) {
2192 /* ONLY check exec rights */
2193 mask = MAY_EXEC;
2194 } else {
2195 if ((openflags & O_ACCMODE) != O_WRONLY)
2196 mask |= MAY_READ;
2197 if ((openflags & O_ACCMODE) != O_RDONLY)
2198 mask |= MAY_WRITE;
2199 }
2200
2201 return mask;
2202}
2203
2204int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2205{
2206 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2207}
2208EXPORT_SYMBOL_GPL(nfs_may_open);
2209
2210int nfs_permission(struct inode *inode, int mask)
2211{
2212 struct rpc_cred *cred;
2213 int res = 0;
2214
2215 if (mask & MAY_NOT_BLOCK)
2216 return -ECHILD;
2217
2218 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2219
2220 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2221 goto out;
2222 /* Is this sys_access() ? */
2223 if (mask & (MAY_ACCESS | MAY_CHDIR))
2224 goto force_lookup;
2225
2226 switch (inode->i_mode & S_IFMT) {
2227 case S_IFLNK:
2228 goto out;
2229 case S_IFREG:
2230 /* NFSv4 has atomic_open... */
2231 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2232 && (mask & MAY_OPEN)
2233 && !(mask & MAY_EXEC))
2234 goto out;
2235 break;
2236 case S_IFDIR:
2237 /*
2238 * Optimize away all write operations, since the server
2239 * will check permissions when we perform the op.
2240 */
2241 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2242 goto out;
2243 }
2244
2245force_lookup:
2246 if (!NFS_PROTO(inode)->access)
2247 goto out_notsup;
2248
2249 cred = rpc_lookup_cred();
2250 if (!IS_ERR(cred)) {
2251 res = nfs_do_access(inode, cred, mask);
2252 put_rpccred(cred);
2253 } else
2254 res = PTR_ERR(cred);
2255out:
2256 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2257 res = -EACCES;
2258
2259 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2260 inode->i_sb->s_id, inode->i_ino, mask, res);
2261 return res;
2262out_notsup:
2263 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2264 if (res == 0)
2265 res = generic_permission(inode, mask);
2266 goto out;
2267}
2268EXPORT_SYMBOL_GPL(nfs_permission);
2269
2270/*
2271 * Local variables:
2272 * version-control: t
2273 * kept-new-versions: 5
2274 * End:
2275 */