]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/nfs/dir.c
NFS: support RCU_WALK in nfs_permission()
[mirror_ubuntu-zesty-kernel.git] / fs / nfs / dir.c
... / ...
CommitLineData
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128out:
129 put_rpccred(cred);
130 return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136 put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data);
137 return 0;
138}
139
140struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145};
146
147struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
152};
153
154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
164
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 unsigned int plus:1;
169 unsigned int eof:1;
170} nfs_readdir_descriptor_t;
171
172/*
173 * The caller is responsible for calling nfs_readdir_release_array(page)
174 */
175static
176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177{
178 void *ptr;
179 if (page == NULL)
180 return ERR_PTR(-EIO);
181 ptr = kmap(page);
182 if (ptr == NULL)
183 return ERR_PTR(-ENOMEM);
184 return ptr;
185}
186
187static
188void nfs_readdir_release_array(struct page *page)
189{
190 kunmap(page);
191}
192
193/*
194 * we are freeing strings created by nfs_add_to_readdir_array()
195 */
196static
197void nfs_readdir_clear_array(struct page *page)
198{
199 struct nfs_cache_array *array;
200 int i;
201
202 array = kmap_atomic(page);
203 for (i = 0; i < array->size; i++)
204 kfree(array->array[i].string.name);
205 kunmap_atomic(array);
206}
207
208/*
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
212 */
213static
214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215{
216 string->len = len;
217 string->name = kmemdup(name, len, GFP_KERNEL);
218 if (string->name == NULL)
219 return -ENOMEM;
220 /*
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
223 */
224 kmemleak_not_leak(string->name);
225 string->hash = full_name_hash(name, len);
226 return 0;
227}
228
229static
230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231{
232 struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 struct nfs_cache_array_entry *cache_entry;
234 int ret;
235
236 if (IS_ERR(array))
237 return PTR_ERR(array);
238
239 cache_entry = &array->array[array->size];
240
241 /* Check that this entry lies within the page bounds */
242 ret = -ENOSPC;
243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 goto out;
245
246 cache_entry->cookie = entry->prev_cookie;
247 cache_entry->ino = entry->ino;
248 cache_entry->d_type = entry->d_type;
249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 if (ret)
251 goto out;
252 array->last_cookie = entry->cookie;
253 array->size++;
254 if (entry->eof != 0)
255 array->eof_index = array->size;
256out:
257 nfs_readdir_release_array(page);
258 return ret;
259}
260
261static
262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263{
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279out_eof:
280 desc->eof = 1;
281 return -EBADCOOKIE;
282}
283
284static bool
285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286{
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291}
292
293static
294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295{
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->ctx->pos) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 desc->ctx->pos = new_pos;
327 desc->cache_entry_index = i;
328 return 0;
329 }
330 }
331 if (array->eof_index >= 0) {
332 status = -EBADCOOKIE;
333 if (*desc->dir_cookie == array->last_cookie)
334 desc->eof = 1;
335 }
336out:
337 return status;
338}
339
340static
341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342{
343 struct nfs_cache_array *array;
344 int status;
345
346 array = nfs_readdir_get_array(desc->page);
347 if (IS_ERR(array)) {
348 status = PTR_ERR(array);
349 goto out;
350 }
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 nfs_readdir_release_array(desc->page);
363out:
364 return status;
365}
366
367/* Fill a page with xdr information before transferring to the cache page */
368static
369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct file *file, struct inode *inode)
371{
372 struct nfs_open_dir_context *ctx = file->private_data;
373 struct rpc_cred *cred = ctx->cred;
374 unsigned long timestamp, gencount;
375 int error;
376
377 again:
378 timestamp = jiffies;
379 gencount = nfs_inc_attr_generation_counter();
380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = 0;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394error:
395 return error;
396}
397
398static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400{
401 int error;
402
403 error = desc->decode(xdr, entry, desc->plus);
404 if (error)
405 return error;
406 entry->fattr->time_start = desc->timestamp;
407 entry->fattr->gencount = desc->gencount;
408 return 0;
409}
410
411static
412int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
413{
414 if (dentry->d_inode == NULL)
415 goto different;
416 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
417 goto different;
418 return 1;
419different:
420 return 0;
421}
422
423static
424bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
425{
426 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
427 return false;
428 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
429 return true;
430 if (ctx->pos == 0)
431 return true;
432 return false;
433}
434
435/*
436 * This function is called by the lookup code to request the use of
437 * readdirplus to accelerate any future lookups in the same
438 * directory.
439 */
440static
441void nfs_advise_use_readdirplus(struct inode *dir)
442{
443 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
444}
445
446/*
447 * This function is mainly for use by nfs_getattr().
448 *
449 * If this is an 'ls -l', we want to force use of readdirplus.
450 * Do this by checking if there is an active file descriptor
451 * and calling nfs_advise_use_readdirplus, then forcing a
452 * cache flush.
453 */
454void nfs_force_use_readdirplus(struct inode *dir)
455{
456 if (!list_empty(&NFS_I(dir)->open_files)) {
457 nfs_advise_use_readdirplus(dir);
458 nfs_zap_mapping(dir, dir->i_mapping);
459 }
460}
461
462static
463void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
464{
465 struct qstr filename = QSTR_INIT(entry->name, entry->len);
466 struct dentry *dentry;
467 struct dentry *alias;
468 struct inode *dir = parent->d_inode;
469 struct inode *inode;
470 int status;
471
472 if (filename.name[0] == '.') {
473 if (filename.len == 1)
474 return;
475 if (filename.len == 2 && filename.name[1] == '.')
476 return;
477 }
478 filename.hash = full_name_hash(filename.name, filename.len);
479
480 dentry = d_lookup(parent, &filename);
481 if (dentry != NULL) {
482 if (nfs_same_file(dentry, entry)) {
483 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
484 status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
485 if (!status)
486 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
487 goto out;
488 } else {
489 if (d_invalidate(dentry) != 0)
490 goto out;
491 dput(dentry);
492 }
493 }
494
495 dentry = d_alloc(parent, &filename);
496 if (dentry == NULL)
497 return;
498
499 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
500 if (IS_ERR(inode))
501 goto out;
502
503 alias = d_materialise_unique(dentry, inode);
504 if (IS_ERR(alias))
505 goto out;
506 else if (alias) {
507 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
508 dput(alias);
509 } else
510 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
511
512out:
513 dput(dentry);
514}
515
516/* Perform conversion from xdr to cache array */
517static
518int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
519 struct page **xdr_pages, struct page *page, unsigned int buflen)
520{
521 struct xdr_stream stream;
522 struct xdr_buf buf;
523 struct page *scratch;
524 struct nfs_cache_array *array;
525 unsigned int count = 0;
526 int status;
527
528 scratch = alloc_page(GFP_KERNEL);
529 if (scratch == NULL)
530 return -ENOMEM;
531
532 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
533 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
534
535 do {
536 status = xdr_decode(desc, entry, &stream);
537 if (status != 0) {
538 if (status == -EAGAIN)
539 status = 0;
540 break;
541 }
542
543 count++;
544
545 if (desc->plus != 0)
546 nfs_prime_dcache(desc->file->f_path.dentry, entry);
547
548 status = nfs_readdir_add_to_array(entry, page);
549 if (status != 0)
550 break;
551 } while (!entry->eof);
552
553 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
554 array = nfs_readdir_get_array(page);
555 if (!IS_ERR(array)) {
556 array->eof_index = array->size;
557 status = 0;
558 nfs_readdir_release_array(page);
559 } else
560 status = PTR_ERR(array);
561 }
562
563 put_page(scratch);
564 return status;
565}
566
567static
568void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
569{
570 unsigned int i;
571 for (i = 0; i < npages; i++)
572 put_page(pages[i]);
573}
574
575static
576void nfs_readdir_free_large_page(void *ptr, struct page **pages,
577 unsigned int npages)
578{
579 nfs_readdir_free_pagearray(pages, npages);
580}
581
582/*
583 * nfs_readdir_large_page will allocate pages that must be freed with a call
584 * to nfs_readdir_free_large_page
585 */
586static
587int nfs_readdir_large_page(struct page **pages, unsigned int npages)
588{
589 unsigned int i;
590
591 for (i = 0; i < npages; i++) {
592 struct page *page = alloc_page(GFP_KERNEL);
593 if (page == NULL)
594 goto out_freepages;
595 pages[i] = page;
596 }
597 return 0;
598
599out_freepages:
600 nfs_readdir_free_pagearray(pages, i);
601 return -ENOMEM;
602}
603
604static
605int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
606{
607 struct page *pages[NFS_MAX_READDIR_PAGES];
608 void *pages_ptr = NULL;
609 struct nfs_entry entry;
610 struct file *file = desc->file;
611 struct nfs_cache_array *array;
612 int status = -ENOMEM;
613 unsigned int array_size = ARRAY_SIZE(pages);
614
615 entry.prev_cookie = 0;
616 entry.cookie = desc->last_cookie;
617 entry.eof = 0;
618 entry.fh = nfs_alloc_fhandle();
619 entry.fattr = nfs_alloc_fattr();
620 entry.server = NFS_SERVER(inode);
621 if (entry.fh == NULL || entry.fattr == NULL)
622 goto out;
623
624 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
625 if (IS_ERR(entry.label)) {
626 status = PTR_ERR(entry.label);
627 goto out;
628 }
629
630 array = nfs_readdir_get_array(page);
631 if (IS_ERR(array)) {
632 status = PTR_ERR(array);
633 goto out_label_free;
634 }
635 memset(array, 0, sizeof(struct nfs_cache_array));
636 array->eof_index = -1;
637
638 status = nfs_readdir_large_page(pages, array_size);
639 if (status < 0)
640 goto out_release_array;
641 do {
642 unsigned int pglen;
643 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
644
645 if (status < 0)
646 break;
647 pglen = status;
648 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
649 if (status < 0) {
650 if (status == -ENOSPC)
651 status = 0;
652 break;
653 }
654 } while (array->eof_index < 0);
655
656 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
657out_release_array:
658 nfs_readdir_release_array(page);
659out_label_free:
660 nfs4_label_free(entry.label);
661out:
662 nfs_free_fattr(entry.fattr);
663 nfs_free_fhandle(entry.fh);
664 return status;
665}
666
667/*
668 * Now we cache directories properly, by converting xdr information
669 * to an array that can be used for lookups later. This results in
670 * fewer cache pages, since we can store more information on each page.
671 * We only need to convert from xdr once so future lookups are much simpler
672 */
673static
674int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
675{
676 struct inode *inode = file_inode(desc->file);
677 int ret;
678
679 ret = nfs_readdir_xdr_to_array(desc, page, inode);
680 if (ret < 0)
681 goto error;
682 SetPageUptodate(page);
683
684 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
685 /* Should never happen */
686 nfs_zap_mapping(inode, inode->i_mapping);
687 }
688 unlock_page(page);
689 return 0;
690 error:
691 unlock_page(page);
692 return ret;
693}
694
695static
696void cache_page_release(nfs_readdir_descriptor_t *desc)
697{
698 if (!desc->page->mapping)
699 nfs_readdir_clear_array(desc->page);
700 page_cache_release(desc->page);
701 desc->page = NULL;
702}
703
704static
705struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
706{
707 return read_cache_page(file_inode(desc->file)->i_mapping,
708 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
709}
710
711/*
712 * Returns 0 if desc->dir_cookie was found on page desc->page_index
713 */
714static
715int find_cache_page(nfs_readdir_descriptor_t *desc)
716{
717 int res;
718
719 desc->page = get_cache_page(desc);
720 if (IS_ERR(desc->page))
721 return PTR_ERR(desc->page);
722
723 res = nfs_readdir_search_array(desc);
724 if (res != 0)
725 cache_page_release(desc);
726 return res;
727}
728
729/* Search for desc->dir_cookie from the beginning of the page cache */
730static inline
731int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
732{
733 int res;
734
735 if (desc->page_index == 0) {
736 desc->current_index = 0;
737 desc->last_cookie = 0;
738 }
739 do {
740 res = find_cache_page(desc);
741 } while (res == -EAGAIN);
742 return res;
743}
744
745/*
746 * Once we've found the start of the dirent within a page: fill 'er up...
747 */
748static
749int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
750{
751 struct file *file = desc->file;
752 int i = 0;
753 int res = 0;
754 struct nfs_cache_array *array = NULL;
755 struct nfs_open_dir_context *ctx = file->private_data;
756
757 array = nfs_readdir_get_array(desc->page);
758 if (IS_ERR(array)) {
759 res = PTR_ERR(array);
760 goto out;
761 }
762
763 for (i = desc->cache_entry_index; i < array->size; i++) {
764 struct nfs_cache_array_entry *ent;
765
766 ent = &array->array[i];
767 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
768 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
769 desc->eof = 1;
770 break;
771 }
772 desc->ctx->pos++;
773 if (i < (array->size-1))
774 *desc->dir_cookie = array->array[i+1].cookie;
775 else
776 *desc->dir_cookie = array->last_cookie;
777 if (ctx->duped != 0)
778 ctx->duped = 1;
779 }
780 if (array->eof_index >= 0)
781 desc->eof = 1;
782
783 nfs_readdir_release_array(desc->page);
784out:
785 cache_page_release(desc);
786 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
787 (unsigned long long)*desc->dir_cookie, res);
788 return res;
789}
790
791/*
792 * If we cannot find a cookie in our cache, we suspect that this is
793 * because it points to a deleted file, so we ask the server to return
794 * whatever it thinks is the next entry. We then feed this to filldir.
795 * If all goes well, we should then be able to find our way round the
796 * cache on the next call to readdir_search_pagecache();
797 *
798 * NOTE: we cannot add the anonymous page to the pagecache because
799 * the data it contains might not be page aligned. Besides,
800 * we should already have a complete representation of the
801 * directory in the page cache by the time we get here.
802 */
803static inline
804int uncached_readdir(nfs_readdir_descriptor_t *desc)
805{
806 struct page *page = NULL;
807 int status;
808 struct inode *inode = file_inode(desc->file);
809 struct nfs_open_dir_context *ctx = desc->file->private_data;
810
811 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
812 (unsigned long long)*desc->dir_cookie);
813
814 page = alloc_page(GFP_HIGHUSER);
815 if (!page) {
816 status = -ENOMEM;
817 goto out;
818 }
819
820 desc->page_index = 0;
821 desc->last_cookie = *desc->dir_cookie;
822 desc->page = page;
823 ctx->duped = 0;
824
825 status = nfs_readdir_xdr_to_array(desc, page, inode);
826 if (status < 0)
827 goto out_release;
828
829 status = nfs_do_filldir(desc);
830
831 out:
832 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
833 __func__, status);
834 return status;
835 out_release:
836 cache_page_release(desc);
837 goto out;
838}
839
840static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
841{
842 struct nfs_inode *nfsi = NFS_I(dir);
843
844 if (nfs_attribute_cache_expired(dir))
845 return true;
846 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
847 return true;
848 return false;
849}
850
851/* The file offset position represents the dirent entry number. A
852 last cookie cache takes care of the common case of reading the
853 whole directory.
854 */
855static int nfs_readdir(struct file *file, struct dir_context *ctx)
856{
857 struct dentry *dentry = file->f_path.dentry;
858 struct inode *inode = dentry->d_inode;
859 nfs_readdir_descriptor_t my_desc,
860 *desc = &my_desc;
861 struct nfs_open_dir_context *dir_ctx = file->private_data;
862 int res = 0;
863
864 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
865 file, (long long)ctx->pos);
866 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
867
868 /*
869 * ctx->pos points to the dirent entry number.
870 * *desc->dir_cookie has the cookie for the next entry. We have
871 * to either find the entry with the appropriate number or
872 * revalidate the cookie.
873 */
874 memset(desc, 0, sizeof(*desc));
875
876 desc->file = file;
877 desc->ctx = ctx;
878 desc->dir_cookie = &dir_ctx->dir_cookie;
879 desc->decode = NFS_PROTO(inode)->decode_dirent;
880 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
881
882 nfs_block_sillyrename(dentry);
883 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
884 res = nfs_revalidate_mapping(inode, file->f_mapping);
885 if (res < 0)
886 goto out;
887
888 do {
889 res = readdir_search_pagecache(desc);
890
891 if (res == -EBADCOOKIE) {
892 res = 0;
893 /* This means either end of directory */
894 if (*desc->dir_cookie && desc->eof == 0) {
895 /* Or that the server has 'lost' a cookie */
896 res = uncached_readdir(desc);
897 if (res == 0)
898 continue;
899 }
900 break;
901 }
902 if (res == -ETOOSMALL && desc->plus) {
903 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
904 nfs_zap_caches(inode);
905 desc->page_index = 0;
906 desc->plus = 0;
907 desc->eof = 0;
908 continue;
909 }
910 if (res < 0)
911 break;
912
913 res = nfs_do_filldir(desc);
914 if (res < 0)
915 break;
916 } while (!desc->eof);
917out:
918 nfs_unblock_sillyrename(dentry);
919 if (res > 0)
920 res = 0;
921 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
922 return res;
923}
924
925static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
926{
927 struct inode *inode = file_inode(filp);
928 struct nfs_open_dir_context *dir_ctx = filp->private_data;
929
930 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
931 filp, offset, whence);
932
933 mutex_lock(&inode->i_mutex);
934 switch (whence) {
935 case 1:
936 offset += filp->f_pos;
937 case 0:
938 if (offset >= 0)
939 break;
940 default:
941 offset = -EINVAL;
942 goto out;
943 }
944 if (offset != filp->f_pos) {
945 filp->f_pos = offset;
946 dir_ctx->dir_cookie = 0;
947 dir_ctx->duped = 0;
948 }
949out:
950 mutex_unlock(&inode->i_mutex);
951 return offset;
952}
953
954/*
955 * All directory operations under NFS are synchronous, so fsync()
956 * is a dummy operation.
957 */
958static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
959 int datasync)
960{
961 struct inode *inode = file_inode(filp);
962
963 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
964
965 mutex_lock(&inode->i_mutex);
966 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
967 mutex_unlock(&inode->i_mutex);
968 return 0;
969}
970
971/**
972 * nfs_force_lookup_revalidate - Mark the directory as having changed
973 * @dir - pointer to directory inode
974 *
975 * This forces the revalidation code in nfs_lookup_revalidate() to do a
976 * full lookup on all child dentries of 'dir' whenever a change occurs
977 * on the server that might have invalidated our dcache.
978 *
979 * The caller should be holding dir->i_lock
980 */
981void nfs_force_lookup_revalidate(struct inode *dir)
982{
983 NFS_I(dir)->cache_change_attribute++;
984}
985EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
986
987/*
988 * A check for whether or not the parent directory has changed.
989 * In the case it has, we assume that the dentries are untrustworthy
990 * and may need to be looked up again.
991 */
992static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
993{
994 if (IS_ROOT(dentry))
995 return 1;
996 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
997 return 0;
998 if (!nfs_verify_change_attribute(dir, dentry->d_time))
999 return 0;
1000 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1001 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1002 return 0;
1003 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1004 return 0;
1005 return 1;
1006}
1007
1008/*
1009 * Use intent information to check whether or not we're going to do
1010 * an O_EXCL create using this path component.
1011 */
1012static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1013{
1014 if (NFS_PROTO(dir)->version == 2)
1015 return 0;
1016 return flags & LOOKUP_EXCL;
1017}
1018
1019/*
1020 * Inode and filehandle revalidation for lookups.
1021 *
1022 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1023 * or if the intent information indicates that we're about to open this
1024 * particular file and the "nocto" mount flag is not set.
1025 *
1026 */
1027static
1028int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1029{
1030 struct nfs_server *server = NFS_SERVER(inode);
1031 int ret;
1032
1033 if (IS_AUTOMOUNT(inode))
1034 return 0;
1035 /* VFS wants an on-the-wire revalidation */
1036 if (flags & LOOKUP_REVAL)
1037 goto out_force;
1038 /* This is an open(2) */
1039 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1040 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1041 goto out_force;
1042out:
1043 return (inode->i_nlink == 0) ? -ENOENT : 0;
1044out_force:
1045 ret = __nfs_revalidate_inode(server, inode);
1046 if (ret != 0)
1047 return ret;
1048 goto out;
1049}
1050
1051/*
1052 * We judge how long we want to trust negative
1053 * dentries by looking at the parent inode mtime.
1054 *
1055 * If parent mtime has changed, we revalidate, else we wait for a
1056 * period corresponding to the parent's attribute cache timeout value.
1057 */
1058static inline
1059int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1060 unsigned int flags)
1061{
1062 /* Don't revalidate a negative dentry if we're creating a new file */
1063 if (flags & LOOKUP_CREATE)
1064 return 0;
1065 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1066 return 1;
1067 return !nfs_check_verifier(dir, dentry);
1068}
1069
1070/*
1071 * This is called every time the dcache has a lookup hit,
1072 * and we should check whether we can really trust that
1073 * lookup.
1074 *
1075 * NOTE! The hit can be a negative hit too, don't assume
1076 * we have an inode!
1077 *
1078 * If the parent directory is seen to have changed, we throw out the
1079 * cached dentry and do a new lookup.
1080 */
1081static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1082{
1083 struct inode *dir;
1084 struct inode *inode;
1085 struct dentry *parent;
1086 struct nfs_fh *fhandle = NULL;
1087 struct nfs_fattr *fattr = NULL;
1088 struct nfs4_label *label = NULL;
1089 int error;
1090
1091 if (flags & LOOKUP_RCU) {
1092 parent = rcu_dereference(dentry->d_parent);
1093 dir = ACCESS_ONCE(parent->d_inode);
1094 if (!dir)
1095 return -ECHILD;
1096 } else {
1097 parent = dget_parent(dentry);
1098 dir = parent->d_inode;
1099 }
1100 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1101 inode = dentry->d_inode;
1102
1103 if (!inode) {
1104 if (flags & LOOKUP_RCU)
1105 return -ECHILD;
1106
1107 if (nfs_neg_need_reval(dir, dentry, flags))
1108 goto out_bad;
1109 goto out_valid_noent;
1110 }
1111
1112 if (is_bad_inode(inode)) {
1113 if (flags & LOOKUP_RCU)
1114 return -ECHILD;
1115 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1116 __func__, dentry);
1117 goto out_bad;
1118 }
1119
1120 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1121 goto out_set_verifier;
1122
1123 if (flags & LOOKUP_RCU)
1124 return -ECHILD;
1125
1126 /* Force a full look up iff the parent directory has changed */
1127 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1128 if (nfs_lookup_verify_inode(inode, flags))
1129 goto out_zap_parent;
1130 goto out_valid;
1131 }
1132
1133 if (NFS_STALE(inode))
1134 goto out_bad;
1135
1136 error = -ENOMEM;
1137 fhandle = nfs_alloc_fhandle();
1138 fattr = nfs_alloc_fattr();
1139 if (fhandle == NULL || fattr == NULL)
1140 goto out_error;
1141
1142 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1143 if (IS_ERR(label))
1144 goto out_error;
1145
1146 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1147 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1148 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1149 if (error)
1150 goto out_bad;
1151 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1152 goto out_bad;
1153 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1154 goto out_bad;
1155
1156 nfs_setsecurity(inode, fattr, label);
1157
1158 nfs_free_fattr(fattr);
1159 nfs_free_fhandle(fhandle);
1160 nfs4_label_free(label);
1161
1162out_set_verifier:
1163 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1164 out_valid:
1165 /* Success: notify readdir to use READDIRPLUS */
1166 nfs_advise_use_readdirplus(dir);
1167 out_valid_noent:
1168 if (flags & LOOKUP_RCU) {
1169 if (parent != rcu_dereference(dentry->d_parent))
1170 return -ECHILD;
1171 } else
1172 dput(parent);
1173 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1174 __func__, dentry);
1175 return 1;
1176out_zap_parent:
1177 nfs_zap_caches(dir);
1178 out_bad:
1179 WARN_ON(flags & LOOKUP_RCU);
1180 nfs_free_fattr(fattr);
1181 nfs_free_fhandle(fhandle);
1182 nfs4_label_free(label);
1183 nfs_mark_for_revalidate(dir);
1184 if (inode && S_ISDIR(inode->i_mode)) {
1185 /* Purge readdir caches. */
1186 nfs_zap_caches(inode);
1187 /*
1188 * We can't d_drop the root of a disconnected tree:
1189 * its d_hash is on the s_anon list and d_drop() would hide
1190 * it from shrink_dcache_for_unmount(), leading to busy
1191 * inodes on unmount and further oopses.
1192 */
1193 if (IS_ROOT(dentry))
1194 goto out_valid;
1195 }
1196 /* If we have submounts, don't unhash ! */
1197 if (check_submounts_and_drop(dentry) != 0)
1198 goto out_valid;
1199
1200 dput(parent);
1201 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1202 __func__, dentry);
1203 return 0;
1204out_error:
1205 WARN_ON(flags & LOOKUP_RCU);
1206 nfs_free_fattr(fattr);
1207 nfs_free_fhandle(fhandle);
1208 nfs4_label_free(label);
1209 dput(parent);
1210 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1211 __func__, dentry, error);
1212 return error;
1213}
1214
1215/*
1216 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1217 * when we don't really care about the dentry name. This is called when a
1218 * pathwalk ends on a dentry that was not found via a normal lookup in the
1219 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1220 *
1221 * In this situation, we just want to verify that the inode itself is OK
1222 * since the dentry might have changed on the server.
1223 */
1224static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1225{
1226 int error;
1227 struct inode *inode = dentry->d_inode;
1228
1229 /*
1230 * I believe we can only get a negative dentry here in the case of a
1231 * procfs-style symlink. Just assume it's correct for now, but we may
1232 * eventually need to do something more here.
1233 */
1234 if (!inode) {
1235 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1236 __func__, dentry);
1237 return 1;
1238 }
1239
1240 if (is_bad_inode(inode)) {
1241 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1242 __func__, dentry);
1243 return 0;
1244 }
1245
1246 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1247 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1248 __func__, inode->i_ino, error ? "invalid" : "valid");
1249 return !error;
1250}
1251
1252/*
1253 * This is called from dput() when d_count is going to 0.
1254 */
1255static int nfs_dentry_delete(const struct dentry *dentry)
1256{
1257 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1258 dentry, dentry->d_flags);
1259
1260 /* Unhash any dentry with a stale inode */
1261 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1262 return 1;
1263
1264 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1265 /* Unhash it, so that ->d_iput() would be called */
1266 return 1;
1267 }
1268 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1269 /* Unhash it, so that ancestors of killed async unlink
1270 * files will be cleaned up during umount */
1271 return 1;
1272 }
1273 return 0;
1274
1275}
1276
1277/* Ensure that we revalidate inode->i_nlink */
1278static void nfs_drop_nlink(struct inode *inode)
1279{
1280 spin_lock(&inode->i_lock);
1281 /* drop the inode if we're reasonably sure this is the last link */
1282 if (inode->i_nlink == 1)
1283 clear_nlink(inode);
1284 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1285 spin_unlock(&inode->i_lock);
1286}
1287
1288/*
1289 * Called when the dentry loses inode.
1290 * We use it to clean up silly-renamed files.
1291 */
1292static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1293{
1294 if (S_ISDIR(inode->i_mode))
1295 /* drop any readdir cache as it could easily be old */
1296 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1297
1298 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1299 nfs_complete_unlink(dentry, inode);
1300 nfs_drop_nlink(inode);
1301 }
1302 iput(inode);
1303}
1304
1305static void nfs_d_release(struct dentry *dentry)
1306{
1307 /* free cached devname value, if it survived that far */
1308 if (unlikely(dentry->d_fsdata)) {
1309 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1310 WARN_ON(1);
1311 else
1312 kfree(dentry->d_fsdata);
1313 }
1314}
1315
1316const struct dentry_operations nfs_dentry_operations = {
1317 .d_revalidate = nfs_lookup_revalidate,
1318 .d_weak_revalidate = nfs_weak_revalidate,
1319 .d_delete = nfs_dentry_delete,
1320 .d_iput = nfs_dentry_iput,
1321 .d_automount = nfs_d_automount,
1322 .d_release = nfs_d_release,
1323};
1324EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1325
1326struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1327{
1328 struct dentry *res;
1329 struct dentry *parent;
1330 struct inode *inode = NULL;
1331 struct nfs_fh *fhandle = NULL;
1332 struct nfs_fattr *fattr = NULL;
1333 struct nfs4_label *label = NULL;
1334 int error;
1335
1336 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1337 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1338
1339 res = ERR_PTR(-ENAMETOOLONG);
1340 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1341 goto out;
1342
1343 /*
1344 * If we're doing an exclusive create, optimize away the lookup
1345 * but don't hash the dentry.
1346 */
1347 if (nfs_is_exclusive_create(dir, flags)) {
1348 d_instantiate(dentry, NULL);
1349 res = NULL;
1350 goto out;
1351 }
1352
1353 res = ERR_PTR(-ENOMEM);
1354 fhandle = nfs_alloc_fhandle();
1355 fattr = nfs_alloc_fattr();
1356 if (fhandle == NULL || fattr == NULL)
1357 goto out;
1358
1359 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1360 if (IS_ERR(label))
1361 goto out;
1362
1363 parent = dentry->d_parent;
1364 /* Protect against concurrent sillydeletes */
1365 trace_nfs_lookup_enter(dir, dentry, flags);
1366 nfs_block_sillyrename(parent);
1367 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1368 if (error == -ENOENT)
1369 goto no_entry;
1370 if (error < 0) {
1371 res = ERR_PTR(error);
1372 goto out_unblock_sillyrename;
1373 }
1374 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1375 res = ERR_CAST(inode);
1376 if (IS_ERR(res))
1377 goto out_unblock_sillyrename;
1378
1379 /* Success: notify readdir to use READDIRPLUS */
1380 nfs_advise_use_readdirplus(dir);
1381
1382no_entry:
1383 res = d_materialise_unique(dentry, inode);
1384 if (res != NULL) {
1385 if (IS_ERR(res))
1386 goto out_unblock_sillyrename;
1387 dentry = res;
1388 }
1389 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1390out_unblock_sillyrename:
1391 nfs_unblock_sillyrename(parent);
1392 trace_nfs_lookup_exit(dir, dentry, flags, error);
1393 nfs4_label_free(label);
1394out:
1395 nfs_free_fattr(fattr);
1396 nfs_free_fhandle(fhandle);
1397 return res;
1398}
1399EXPORT_SYMBOL_GPL(nfs_lookup);
1400
1401#if IS_ENABLED(CONFIG_NFS_V4)
1402static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1403
1404const struct dentry_operations nfs4_dentry_operations = {
1405 .d_revalidate = nfs4_lookup_revalidate,
1406 .d_delete = nfs_dentry_delete,
1407 .d_iput = nfs_dentry_iput,
1408 .d_automount = nfs_d_automount,
1409 .d_release = nfs_d_release,
1410};
1411EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1412
1413static fmode_t flags_to_mode(int flags)
1414{
1415 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1416 if ((flags & O_ACCMODE) != O_WRONLY)
1417 res |= FMODE_READ;
1418 if ((flags & O_ACCMODE) != O_RDONLY)
1419 res |= FMODE_WRITE;
1420 return res;
1421}
1422
1423static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1424{
1425 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1426}
1427
1428static int do_open(struct inode *inode, struct file *filp)
1429{
1430 nfs_fscache_open_file(inode, filp);
1431 return 0;
1432}
1433
1434static int nfs_finish_open(struct nfs_open_context *ctx,
1435 struct dentry *dentry,
1436 struct file *file, unsigned open_flags,
1437 int *opened)
1438{
1439 int err;
1440
1441 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1442 *opened |= FILE_CREATED;
1443
1444 err = finish_open(file, dentry, do_open, opened);
1445 if (err)
1446 goto out;
1447 nfs_file_set_open_context(file, ctx);
1448
1449out:
1450 return err;
1451}
1452
1453int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1454 struct file *file, unsigned open_flags,
1455 umode_t mode, int *opened)
1456{
1457 struct nfs_open_context *ctx;
1458 struct dentry *res;
1459 struct iattr attr = { .ia_valid = ATTR_OPEN };
1460 struct inode *inode;
1461 unsigned int lookup_flags = 0;
1462 int err;
1463
1464 /* Expect a negative dentry */
1465 BUG_ON(dentry->d_inode);
1466
1467 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1468 dir->i_sb->s_id, dir->i_ino, dentry);
1469
1470 err = nfs_check_flags(open_flags);
1471 if (err)
1472 return err;
1473
1474 /* NFS only supports OPEN on regular files */
1475 if ((open_flags & O_DIRECTORY)) {
1476 if (!d_unhashed(dentry)) {
1477 /*
1478 * Hashed negative dentry with O_DIRECTORY: dentry was
1479 * revalidated and is fine, no need to perform lookup
1480 * again
1481 */
1482 return -ENOENT;
1483 }
1484 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1485 goto no_open;
1486 }
1487
1488 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1489 return -ENAMETOOLONG;
1490
1491 if (open_flags & O_CREAT) {
1492 attr.ia_valid |= ATTR_MODE;
1493 attr.ia_mode = mode & ~current_umask();
1494 }
1495 if (open_flags & O_TRUNC) {
1496 attr.ia_valid |= ATTR_SIZE;
1497 attr.ia_size = 0;
1498 }
1499
1500 ctx = create_nfs_open_context(dentry, open_flags);
1501 err = PTR_ERR(ctx);
1502 if (IS_ERR(ctx))
1503 goto out;
1504
1505 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1506 nfs_block_sillyrename(dentry->d_parent);
1507 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1508 nfs_unblock_sillyrename(dentry->d_parent);
1509 if (IS_ERR(inode)) {
1510 err = PTR_ERR(inode);
1511 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1512 put_nfs_open_context(ctx);
1513 switch (err) {
1514 case -ENOENT:
1515 d_drop(dentry);
1516 d_add(dentry, NULL);
1517 break;
1518 case -EISDIR:
1519 case -ENOTDIR:
1520 goto no_open;
1521 case -ELOOP:
1522 if (!(open_flags & O_NOFOLLOW))
1523 goto no_open;
1524 break;
1525 /* case -EINVAL: */
1526 default:
1527 break;
1528 }
1529 goto out;
1530 }
1531
1532 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1533 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1534 put_nfs_open_context(ctx);
1535out:
1536 return err;
1537
1538no_open:
1539 res = nfs_lookup(dir, dentry, lookup_flags);
1540 err = PTR_ERR(res);
1541 if (IS_ERR(res))
1542 goto out;
1543
1544 return finish_no_open(file, res);
1545}
1546EXPORT_SYMBOL_GPL(nfs_atomic_open);
1547
1548static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1549{
1550 struct inode *inode;
1551 int ret = 0;
1552
1553 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1554 goto no_open;
1555 if (d_mountpoint(dentry))
1556 goto no_open;
1557 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1558 goto no_open;
1559
1560 inode = dentry->d_inode;
1561
1562 /* We can't create new files in nfs_open_revalidate(), so we
1563 * optimize away revalidation of negative dentries.
1564 */
1565 if (inode == NULL) {
1566 struct dentry *parent;
1567 struct inode *dir;
1568
1569 if (flags & LOOKUP_RCU)
1570 return -ECHILD;
1571
1572 parent = dget_parent(dentry);
1573 dir = parent->d_inode;
1574 if (!nfs_neg_need_reval(dir, dentry, flags))
1575 ret = 1;
1576 dput(parent);
1577 goto out;
1578 }
1579
1580 /* NFS only supports OPEN on regular files */
1581 if (!S_ISREG(inode->i_mode))
1582 goto no_open;
1583 /* We cannot do exclusive creation on a positive dentry */
1584 if (flags & LOOKUP_EXCL)
1585 goto no_open;
1586
1587 /* Let f_op->open() actually open (and revalidate) the file */
1588 ret = 1;
1589
1590out:
1591 return ret;
1592
1593no_open:
1594 return nfs_lookup_revalidate(dentry, flags);
1595}
1596
1597#endif /* CONFIG_NFSV4 */
1598
1599/*
1600 * Code common to create, mkdir, and mknod.
1601 */
1602int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1603 struct nfs_fattr *fattr,
1604 struct nfs4_label *label)
1605{
1606 struct dentry *parent = dget_parent(dentry);
1607 struct inode *dir = parent->d_inode;
1608 struct inode *inode;
1609 int error = -EACCES;
1610
1611 d_drop(dentry);
1612
1613 /* We may have been initialized further down */
1614 if (dentry->d_inode)
1615 goto out;
1616 if (fhandle->size == 0) {
1617 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1618 if (error)
1619 goto out_error;
1620 }
1621 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1622 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1623 struct nfs_server *server = NFS_SB(dentry->d_sb);
1624 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1625 if (error < 0)
1626 goto out_error;
1627 }
1628 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1629 error = PTR_ERR(inode);
1630 if (IS_ERR(inode))
1631 goto out_error;
1632 d_add(dentry, inode);
1633out:
1634 dput(parent);
1635 return 0;
1636out_error:
1637 nfs_mark_for_revalidate(dir);
1638 dput(parent);
1639 return error;
1640}
1641EXPORT_SYMBOL_GPL(nfs_instantiate);
1642
1643/*
1644 * Following a failed create operation, we drop the dentry rather
1645 * than retain a negative dentry. This avoids a problem in the event
1646 * that the operation succeeded on the server, but an error in the
1647 * reply path made it appear to have failed.
1648 */
1649int nfs_create(struct inode *dir, struct dentry *dentry,
1650 umode_t mode, bool excl)
1651{
1652 struct iattr attr;
1653 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1654 int error;
1655
1656 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1657 dir->i_sb->s_id, dir->i_ino, dentry);
1658
1659 attr.ia_mode = mode;
1660 attr.ia_valid = ATTR_MODE;
1661
1662 trace_nfs_create_enter(dir, dentry, open_flags);
1663 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1664 trace_nfs_create_exit(dir, dentry, open_flags, error);
1665 if (error != 0)
1666 goto out_err;
1667 return 0;
1668out_err:
1669 d_drop(dentry);
1670 return error;
1671}
1672EXPORT_SYMBOL_GPL(nfs_create);
1673
1674/*
1675 * See comments for nfs_proc_create regarding failed operations.
1676 */
1677int
1678nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1679{
1680 struct iattr attr;
1681 int status;
1682
1683 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1684 dir->i_sb->s_id, dir->i_ino, dentry);
1685
1686 if (!new_valid_dev(rdev))
1687 return -EINVAL;
1688
1689 attr.ia_mode = mode;
1690 attr.ia_valid = ATTR_MODE;
1691
1692 trace_nfs_mknod_enter(dir, dentry);
1693 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1694 trace_nfs_mknod_exit(dir, dentry, status);
1695 if (status != 0)
1696 goto out_err;
1697 return 0;
1698out_err:
1699 d_drop(dentry);
1700 return status;
1701}
1702EXPORT_SYMBOL_GPL(nfs_mknod);
1703
1704/*
1705 * See comments for nfs_proc_create regarding failed operations.
1706 */
1707int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1708{
1709 struct iattr attr;
1710 int error;
1711
1712 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1713 dir->i_sb->s_id, dir->i_ino, dentry);
1714
1715 attr.ia_valid = ATTR_MODE;
1716 attr.ia_mode = mode | S_IFDIR;
1717
1718 trace_nfs_mkdir_enter(dir, dentry);
1719 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1720 trace_nfs_mkdir_exit(dir, dentry, error);
1721 if (error != 0)
1722 goto out_err;
1723 return 0;
1724out_err:
1725 d_drop(dentry);
1726 return error;
1727}
1728EXPORT_SYMBOL_GPL(nfs_mkdir);
1729
1730static void nfs_dentry_handle_enoent(struct dentry *dentry)
1731{
1732 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1733 d_delete(dentry);
1734}
1735
1736int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1737{
1738 int error;
1739
1740 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1741 dir->i_sb->s_id, dir->i_ino, dentry);
1742
1743 trace_nfs_rmdir_enter(dir, dentry);
1744 if (dentry->d_inode) {
1745 nfs_wait_on_sillyrename(dentry);
1746 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1747 /* Ensure the VFS deletes this inode */
1748 switch (error) {
1749 case 0:
1750 clear_nlink(dentry->d_inode);
1751 break;
1752 case -ENOENT:
1753 nfs_dentry_handle_enoent(dentry);
1754 }
1755 } else
1756 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1757 trace_nfs_rmdir_exit(dir, dentry, error);
1758
1759 return error;
1760}
1761EXPORT_SYMBOL_GPL(nfs_rmdir);
1762
1763/*
1764 * Remove a file after making sure there are no pending writes,
1765 * and after checking that the file has only one user.
1766 *
1767 * We invalidate the attribute cache and free the inode prior to the operation
1768 * to avoid possible races if the server reuses the inode.
1769 */
1770static int nfs_safe_remove(struct dentry *dentry)
1771{
1772 struct inode *dir = dentry->d_parent->d_inode;
1773 struct inode *inode = dentry->d_inode;
1774 int error = -EBUSY;
1775
1776 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1777
1778 /* If the dentry was sillyrenamed, we simply call d_delete() */
1779 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1780 error = 0;
1781 goto out;
1782 }
1783
1784 trace_nfs_remove_enter(dir, dentry);
1785 if (inode != NULL) {
1786 NFS_PROTO(inode)->return_delegation(inode);
1787 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1788 if (error == 0)
1789 nfs_drop_nlink(inode);
1790 } else
1791 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1792 if (error == -ENOENT)
1793 nfs_dentry_handle_enoent(dentry);
1794 trace_nfs_remove_exit(dir, dentry, error);
1795out:
1796 return error;
1797}
1798
1799/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1800 * belongs to an active ".nfs..." file and we return -EBUSY.
1801 *
1802 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1803 */
1804int nfs_unlink(struct inode *dir, struct dentry *dentry)
1805{
1806 int error;
1807 int need_rehash = 0;
1808
1809 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1810 dir->i_ino, dentry);
1811
1812 trace_nfs_unlink_enter(dir, dentry);
1813 spin_lock(&dentry->d_lock);
1814 if (d_count(dentry) > 1) {
1815 spin_unlock(&dentry->d_lock);
1816 /* Start asynchronous writeout of the inode */
1817 write_inode_now(dentry->d_inode, 0);
1818 error = nfs_sillyrename(dir, dentry);
1819 goto out;
1820 }
1821 if (!d_unhashed(dentry)) {
1822 __d_drop(dentry);
1823 need_rehash = 1;
1824 }
1825 spin_unlock(&dentry->d_lock);
1826 error = nfs_safe_remove(dentry);
1827 if (!error || error == -ENOENT) {
1828 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1829 } else if (need_rehash)
1830 d_rehash(dentry);
1831out:
1832 trace_nfs_unlink_exit(dir, dentry, error);
1833 return error;
1834}
1835EXPORT_SYMBOL_GPL(nfs_unlink);
1836
1837/*
1838 * To create a symbolic link, most file systems instantiate a new inode,
1839 * add a page to it containing the path, then write it out to the disk
1840 * using prepare_write/commit_write.
1841 *
1842 * Unfortunately the NFS client can't create the in-core inode first
1843 * because it needs a file handle to create an in-core inode (see
1844 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1845 * symlink request has completed on the server.
1846 *
1847 * So instead we allocate a raw page, copy the symname into it, then do
1848 * the SYMLINK request with the page as the buffer. If it succeeds, we
1849 * now have a new file handle and can instantiate an in-core NFS inode
1850 * and move the raw page into its mapping.
1851 */
1852int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1853{
1854 struct page *page;
1855 char *kaddr;
1856 struct iattr attr;
1857 unsigned int pathlen = strlen(symname);
1858 int error;
1859
1860 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1861 dir->i_ino, dentry, symname);
1862
1863 if (pathlen > PAGE_SIZE)
1864 return -ENAMETOOLONG;
1865
1866 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1867 attr.ia_valid = ATTR_MODE;
1868
1869 page = alloc_page(GFP_HIGHUSER);
1870 if (!page)
1871 return -ENOMEM;
1872
1873 kaddr = kmap_atomic(page);
1874 memcpy(kaddr, symname, pathlen);
1875 if (pathlen < PAGE_SIZE)
1876 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1877 kunmap_atomic(kaddr);
1878
1879 trace_nfs_symlink_enter(dir, dentry);
1880 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1881 trace_nfs_symlink_exit(dir, dentry, error);
1882 if (error != 0) {
1883 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1884 dir->i_sb->s_id, dir->i_ino,
1885 dentry, symname, error);
1886 d_drop(dentry);
1887 __free_page(page);
1888 return error;
1889 }
1890
1891 /*
1892 * No big deal if we can't add this page to the page cache here.
1893 * READLINK will get the missing page from the server if needed.
1894 */
1895 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1896 GFP_KERNEL)) {
1897 SetPageUptodate(page);
1898 unlock_page(page);
1899 /*
1900 * add_to_page_cache_lru() grabs an extra page refcount.
1901 * Drop it here to avoid leaking this page later.
1902 */
1903 page_cache_release(page);
1904 } else
1905 __free_page(page);
1906
1907 return 0;
1908}
1909EXPORT_SYMBOL_GPL(nfs_symlink);
1910
1911int
1912nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1913{
1914 struct inode *inode = old_dentry->d_inode;
1915 int error;
1916
1917 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1918 old_dentry, dentry);
1919
1920 trace_nfs_link_enter(inode, dir, dentry);
1921 NFS_PROTO(inode)->return_delegation(inode);
1922
1923 d_drop(dentry);
1924 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1925 if (error == 0) {
1926 ihold(inode);
1927 d_add(dentry, inode);
1928 }
1929 trace_nfs_link_exit(inode, dir, dentry, error);
1930 return error;
1931}
1932EXPORT_SYMBOL_GPL(nfs_link);
1933
1934/*
1935 * RENAME
1936 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1937 * different file handle for the same inode after a rename (e.g. when
1938 * moving to a different directory). A fail-safe method to do so would
1939 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1940 * rename the old file using the sillyrename stuff. This way, the original
1941 * file in old_dir will go away when the last process iput()s the inode.
1942 *
1943 * FIXED.
1944 *
1945 * It actually works quite well. One needs to have the possibility for
1946 * at least one ".nfs..." file in each directory the file ever gets
1947 * moved or linked to which happens automagically with the new
1948 * implementation that only depends on the dcache stuff instead of
1949 * using the inode layer
1950 *
1951 * Unfortunately, things are a little more complicated than indicated
1952 * above. For a cross-directory move, we want to make sure we can get
1953 * rid of the old inode after the operation. This means there must be
1954 * no pending writes (if it's a file), and the use count must be 1.
1955 * If these conditions are met, we can drop the dentries before doing
1956 * the rename.
1957 */
1958int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1959 struct inode *new_dir, struct dentry *new_dentry)
1960{
1961 struct inode *old_inode = old_dentry->d_inode;
1962 struct inode *new_inode = new_dentry->d_inode;
1963 struct dentry *dentry = NULL, *rehash = NULL;
1964 struct rpc_task *task;
1965 int error = -EBUSY;
1966
1967 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1968 old_dentry, new_dentry,
1969 d_count(new_dentry));
1970
1971 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1972 /*
1973 * For non-directories, check whether the target is busy and if so,
1974 * make a copy of the dentry and then do a silly-rename. If the
1975 * silly-rename succeeds, the copied dentry is hashed and becomes
1976 * the new target.
1977 */
1978 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1979 /*
1980 * To prevent any new references to the target during the
1981 * rename, we unhash the dentry in advance.
1982 */
1983 if (!d_unhashed(new_dentry)) {
1984 d_drop(new_dentry);
1985 rehash = new_dentry;
1986 }
1987
1988 if (d_count(new_dentry) > 2) {
1989 int err;
1990
1991 /* copy the target dentry's name */
1992 dentry = d_alloc(new_dentry->d_parent,
1993 &new_dentry->d_name);
1994 if (!dentry)
1995 goto out;
1996
1997 /* silly-rename the existing target ... */
1998 err = nfs_sillyrename(new_dir, new_dentry);
1999 if (err)
2000 goto out;
2001
2002 new_dentry = dentry;
2003 rehash = NULL;
2004 new_inode = NULL;
2005 }
2006 }
2007
2008 NFS_PROTO(old_inode)->return_delegation(old_inode);
2009 if (new_inode != NULL)
2010 NFS_PROTO(new_inode)->return_delegation(new_inode);
2011
2012 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2013 if (IS_ERR(task)) {
2014 error = PTR_ERR(task);
2015 goto out;
2016 }
2017
2018 error = rpc_wait_for_completion_task(task);
2019 if (error == 0)
2020 error = task->tk_status;
2021 rpc_put_task(task);
2022 nfs_mark_for_revalidate(old_inode);
2023out:
2024 if (rehash)
2025 d_rehash(rehash);
2026 trace_nfs_rename_exit(old_dir, old_dentry,
2027 new_dir, new_dentry, error);
2028 if (!error) {
2029 if (new_inode != NULL)
2030 nfs_drop_nlink(new_inode);
2031 d_move(old_dentry, new_dentry);
2032 nfs_set_verifier(new_dentry,
2033 nfs_save_change_attribute(new_dir));
2034 } else if (error == -ENOENT)
2035 nfs_dentry_handle_enoent(old_dentry);
2036
2037 /* new dentry created? */
2038 if (dentry)
2039 dput(dentry);
2040 return error;
2041}
2042EXPORT_SYMBOL_GPL(nfs_rename);
2043
2044static DEFINE_SPINLOCK(nfs_access_lru_lock);
2045static LIST_HEAD(nfs_access_lru_list);
2046static atomic_long_t nfs_access_nr_entries;
2047
2048static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2049module_param(nfs_access_max_cachesize, ulong, 0644);
2050MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2051
2052static void nfs_access_free_entry(struct nfs_access_entry *entry)
2053{
2054 put_rpccred(entry->cred);
2055 kfree(entry);
2056 smp_mb__before_atomic();
2057 atomic_long_dec(&nfs_access_nr_entries);
2058 smp_mb__after_atomic();
2059}
2060
2061static void nfs_access_free_list(struct list_head *head)
2062{
2063 struct nfs_access_entry *cache;
2064
2065 while (!list_empty(head)) {
2066 cache = list_entry(head->next, struct nfs_access_entry, lru);
2067 list_del(&cache->lru);
2068 nfs_access_free_entry(cache);
2069 }
2070}
2071
2072static unsigned long
2073nfs_do_access_cache_scan(unsigned int nr_to_scan)
2074{
2075 LIST_HEAD(head);
2076 struct nfs_inode *nfsi, *next;
2077 struct nfs_access_entry *cache;
2078 long freed = 0;
2079
2080 spin_lock(&nfs_access_lru_lock);
2081 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2082 struct inode *inode;
2083
2084 if (nr_to_scan-- == 0)
2085 break;
2086 inode = &nfsi->vfs_inode;
2087 spin_lock(&inode->i_lock);
2088 if (list_empty(&nfsi->access_cache_entry_lru))
2089 goto remove_lru_entry;
2090 cache = list_entry(nfsi->access_cache_entry_lru.next,
2091 struct nfs_access_entry, lru);
2092 list_move(&cache->lru, &head);
2093 rb_erase(&cache->rb_node, &nfsi->access_cache);
2094 freed++;
2095 if (!list_empty(&nfsi->access_cache_entry_lru))
2096 list_move_tail(&nfsi->access_cache_inode_lru,
2097 &nfs_access_lru_list);
2098 else {
2099remove_lru_entry:
2100 list_del_init(&nfsi->access_cache_inode_lru);
2101 smp_mb__before_atomic();
2102 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2103 smp_mb__after_atomic();
2104 }
2105 spin_unlock(&inode->i_lock);
2106 }
2107 spin_unlock(&nfs_access_lru_lock);
2108 nfs_access_free_list(&head);
2109 return freed;
2110}
2111
2112unsigned long
2113nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2114{
2115 int nr_to_scan = sc->nr_to_scan;
2116 gfp_t gfp_mask = sc->gfp_mask;
2117
2118 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2119 return SHRINK_STOP;
2120 return nfs_do_access_cache_scan(nr_to_scan);
2121}
2122
2123
2124unsigned long
2125nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2126{
2127 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2128}
2129
2130static void
2131nfs_access_cache_enforce_limit(void)
2132{
2133 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2134 unsigned long diff;
2135 unsigned int nr_to_scan;
2136
2137 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2138 return;
2139 nr_to_scan = 100;
2140 diff = nr_entries - nfs_access_max_cachesize;
2141 if (diff < nr_to_scan)
2142 nr_to_scan = diff;
2143 nfs_do_access_cache_scan(nr_to_scan);
2144}
2145
2146static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2147{
2148 struct rb_root *root_node = &nfsi->access_cache;
2149 struct rb_node *n;
2150 struct nfs_access_entry *entry;
2151
2152 /* Unhook entries from the cache */
2153 while ((n = rb_first(root_node)) != NULL) {
2154 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2155 rb_erase(n, root_node);
2156 list_move(&entry->lru, head);
2157 }
2158 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2159}
2160
2161void nfs_access_zap_cache(struct inode *inode)
2162{
2163 LIST_HEAD(head);
2164
2165 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2166 return;
2167 /* Remove from global LRU init */
2168 spin_lock(&nfs_access_lru_lock);
2169 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2170 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2171
2172 spin_lock(&inode->i_lock);
2173 __nfs_access_zap_cache(NFS_I(inode), &head);
2174 spin_unlock(&inode->i_lock);
2175 spin_unlock(&nfs_access_lru_lock);
2176 nfs_access_free_list(&head);
2177}
2178EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2179
2180static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2181{
2182 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2183 struct nfs_access_entry *entry;
2184
2185 while (n != NULL) {
2186 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2187
2188 if (cred < entry->cred)
2189 n = n->rb_left;
2190 else if (cred > entry->cred)
2191 n = n->rb_right;
2192 else
2193 return entry;
2194 }
2195 return NULL;
2196}
2197
2198static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2199{
2200 struct nfs_inode *nfsi = NFS_I(inode);
2201 struct nfs_access_entry *cache;
2202 int err = -ENOENT;
2203
2204 spin_lock(&inode->i_lock);
2205 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2206 goto out_zap;
2207 cache = nfs_access_search_rbtree(inode, cred);
2208 if (cache == NULL)
2209 goto out;
2210 if (!nfs_have_delegated_attributes(inode) &&
2211 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2212 goto out_stale;
2213 res->jiffies = cache->jiffies;
2214 res->cred = cache->cred;
2215 res->mask = cache->mask;
2216 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2217 err = 0;
2218out:
2219 spin_unlock(&inode->i_lock);
2220 return err;
2221out_stale:
2222 rb_erase(&cache->rb_node, &nfsi->access_cache);
2223 list_del(&cache->lru);
2224 spin_unlock(&inode->i_lock);
2225 nfs_access_free_entry(cache);
2226 return -ENOENT;
2227out_zap:
2228 spin_unlock(&inode->i_lock);
2229 nfs_access_zap_cache(inode);
2230 return -ENOENT;
2231}
2232
2233static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2234{
2235 struct nfs_inode *nfsi = NFS_I(inode);
2236 struct rb_root *root_node = &nfsi->access_cache;
2237 struct rb_node **p = &root_node->rb_node;
2238 struct rb_node *parent = NULL;
2239 struct nfs_access_entry *entry;
2240
2241 spin_lock(&inode->i_lock);
2242 while (*p != NULL) {
2243 parent = *p;
2244 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2245
2246 if (set->cred < entry->cred)
2247 p = &parent->rb_left;
2248 else if (set->cred > entry->cred)
2249 p = &parent->rb_right;
2250 else
2251 goto found;
2252 }
2253 rb_link_node(&set->rb_node, parent, p);
2254 rb_insert_color(&set->rb_node, root_node);
2255 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2256 spin_unlock(&inode->i_lock);
2257 return;
2258found:
2259 rb_replace_node(parent, &set->rb_node, root_node);
2260 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2261 list_del(&entry->lru);
2262 spin_unlock(&inode->i_lock);
2263 nfs_access_free_entry(entry);
2264}
2265
2266void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2267{
2268 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2269 if (cache == NULL)
2270 return;
2271 RB_CLEAR_NODE(&cache->rb_node);
2272 cache->jiffies = set->jiffies;
2273 cache->cred = get_rpccred(set->cred);
2274 cache->mask = set->mask;
2275
2276 nfs_access_add_rbtree(inode, cache);
2277
2278 /* Update accounting */
2279 smp_mb__before_atomic();
2280 atomic_long_inc(&nfs_access_nr_entries);
2281 smp_mb__after_atomic();
2282
2283 /* Add inode to global LRU list */
2284 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2285 spin_lock(&nfs_access_lru_lock);
2286 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2287 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2288 &nfs_access_lru_list);
2289 spin_unlock(&nfs_access_lru_lock);
2290 }
2291 nfs_access_cache_enforce_limit();
2292}
2293EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2294
2295void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2296{
2297 entry->mask = 0;
2298 if (access_result & NFS4_ACCESS_READ)
2299 entry->mask |= MAY_READ;
2300 if (access_result &
2301 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2302 entry->mask |= MAY_WRITE;
2303 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2304 entry->mask |= MAY_EXEC;
2305}
2306EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2307
2308static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2309{
2310 struct nfs_access_entry cache;
2311 int status;
2312
2313 trace_nfs_access_enter(inode);
2314
2315 status = nfs_access_get_cached(inode, cred, &cache);
2316 if (status == 0)
2317 goto out_cached;
2318
2319 status = -ECHILD;
2320 if (mask & MAY_NOT_BLOCK)
2321 goto out;
2322
2323 /* Be clever: ask server to check for all possible rights */
2324 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2325 cache.cred = cred;
2326 cache.jiffies = jiffies;
2327 status = NFS_PROTO(inode)->access(inode, &cache);
2328 if (status != 0) {
2329 if (status == -ESTALE) {
2330 nfs_zap_caches(inode);
2331 if (!S_ISDIR(inode->i_mode))
2332 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2333 }
2334 goto out;
2335 }
2336 nfs_access_add_cache(inode, &cache);
2337out_cached:
2338 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2339 status = -EACCES;
2340out:
2341 trace_nfs_access_exit(inode, status);
2342 return status;
2343}
2344
2345static int nfs_open_permission_mask(int openflags)
2346{
2347 int mask = 0;
2348
2349 if (openflags & __FMODE_EXEC) {
2350 /* ONLY check exec rights */
2351 mask = MAY_EXEC;
2352 } else {
2353 if ((openflags & O_ACCMODE) != O_WRONLY)
2354 mask |= MAY_READ;
2355 if ((openflags & O_ACCMODE) != O_RDONLY)
2356 mask |= MAY_WRITE;
2357 }
2358
2359 return mask;
2360}
2361
2362int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2363{
2364 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2365}
2366EXPORT_SYMBOL_GPL(nfs_may_open);
2367
2368int nfs_permission(struct inode *inode, int mask)
2369{
2370 struct rpc_cred *cred;
2371 int res = 0;
2372
2373 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2374
2375 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2376 goto out;
2377 /* Is this sys_access() ? */
2378 if (mask & (MAY_ACCESS | MAY_CHDIR))
2379 goto force_lookup;
2380
2381 switch (inode->i_mode & S_IFMT) {
2382 case S_IFLNK:
2383 goto out;
2384 case S_IFREG:
2385 break;
2386 case S_IFDIR:
2387 /*
2388 * Optimize away all write operations, since the server
2389 * will check permissions when we perform the op.
2390 */
2391 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2392 goto out;
2393 }
2394
2395force_lookup:
2396 if (!NFS_PROTO(inode)->access)
2397 goto out_notsup;
2398
2399 /* Always try fast lookups first */
2400 rcu_read_lock();
2401 cred = rpc_lookup_cred_nonblock();
2402 if (!IS_ERR(cred))
2403 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2404 else
2405 res = PTR_ERR(cred);
2406 rcu_read_unlock();
2407 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2408 /* Fast lookup failed, try the slow way */
2409 cred = rpc_lookup_cred();
2410 if (!IS_ERR(cred)) {
2411 res = nfs_do_access(inode, cred, mask);
2412 put_rpccred(cred);
2413 } else
2414 res = PTR_ERR(cred);
2415 }
2416out:
2417 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2418 res = -EACCES;
2419
2420 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2421 inode->i_sb->s_id, inode->i_ino, mask, res);
2422 return res;
2423out_notsup:
2424 if (mask & MAY_NOT_BLOCK)
2425 return -ECHILD;
2426
2427 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2428 if (res == 0)
2429 res = generic_permission(inode, mask);
2430 goto out;
2431}
2432EXPORT_SYMBOL_GPL(nfs_permission);
2433
2434/*
2435 * Local variables:
2436 * version-control: t
2437 * kept-new-versions: 5
2438 * End:
2439 */