]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/nfs/direct.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / fs / nfs / direct.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42#include <linux/errno.h>
43#include <linux/sched.h>
44#include <linux/kernel.h>
45#include <linux/file.h>
46#include <linux/pagemap.h>
47#include <linux/kref.h>
48#include <linux/slab.h>
49#include <linux/task_io_accounting_ops.h>
50#include <linux/module.h>
51
52#include <linux/nfs_fs.h>
53#include <linux/nfs_page.h>
54#include <linux/sunrpc/clnt.h>
55
56#include <linux/uaccess.h>
57#include <linux/atomic.h>
58
59#include "internal.h"
60#include "iostat.h"
61#include "pnfs.h"
62
63#define NFSDBG_FACILITY NFSDBG_VFS
64
65static struct kmem_cache *nfs_direct_cachep;
66
67struct nfs_direct_req {
68 struct kref kref; /* release manager */
69
70 /* I/O parameters */
71 struct nfs_open_context *ctx; /* file open context info */
72 struct nfs_lock_context *l_ctx; /* Lock context info */
73 struct kiocb * iocb; /* controlling i/o request */
74 struct inode * inode; /* target file of i/o */
75
76 /* completion state */
77 atomic_t io_count; /* i/os we're waiting for */
78 spinlock_t lock; /* protect completion state */
79
80 loff_t io_start; /* Start offset for I/O */
81 ssize_t count, /* bytes actually processed */
82 max_count, /* max expected count */
83 bytes_left, /* bytes left to be sent */
84 error; /* any reported error */
85 struct completion completion; /* wait for i/o completion */
86
87 /* commit state */
88 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
89 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
90 struct work_struct work;
91 int flags;
92 /* for write */
93#define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
94#define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
95 /* for read */
96#define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */
97#define NFS_ODIRECT_DONE INT_MAX /* write verification failed */
98};
99
100static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
101static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
102static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
103static void nfs_direct_write_schedule_work(struct work_struct *work);
104
105static inline void get_dreq(struct nfs_direct_req *dreq)
106{
107 atomic_inc(&dreq->io_count);
108}
109
110static inline int put_dreq(struct nfs_direct_req *dreq)
111{
112 return atomic_dec_and_test(&dreq->io_count);
113}
114
115static void
116nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
117 const struct nfs_pgio_header *hdr,
118 ssize_t dreq_len)
119{
120 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
121 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
122 return;
123 if (dreq->max_count >= dreq_len) {
124 dreq->max_count = dreq_len;
125 if (dreq->count > dreq_len)
126 dreq->count = dreq_len;
127
128 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
129 dreq->error = hdr->error;
130 else /* Clear outstanding error if this is EOF */
131 dreq->error = 0;
132 }
133}
134
135static void
136nfs_direct_count_bytes(struct nfs_direct_req *dreq,
137 const struct nfs_pgio_header *hdr)
138{
139 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
140 ssize_t dreq_len = 0;
141
142 if (hdr_end > dreq->io_start)
143 dreq_len = hdr_end - dreq->io_start;
144
145 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
146
147 if (dreq_len > dreq->max_count)
148 dreq_len = dreq->max_count;
149
150 if (dreq->count < dreq_len)
151 dreq->count = dreq_len;
152}
153
154/**
155 * nfs_direct_IO - NFS address space operation for direct I/O
156 * @iocb: target I/O control block
157 * @iter: I/O buffer
158 *
159 * The presence of this routine in the address space ops vector means
160 * the NFS client supports direct I/O. However, for most direct IO, we
161 * shunt off direct read and write requests before the VFS gets them,
162 * so this method is only ever called for swap.
163 */
164ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
165{
166 struct inode *inode = iocb->ki_filp->f_mapping->host;
167
168 /* we only support swap file calling nfs_direct_IO */
169 if (!IS_SWAPFILE(inode))
170 return 0;
171
172 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
173
174 if (iov_iter_rw(iter) == READ)
175 return nfs_file_direct_read(iocb, iter, true);
176 return nfs_file_direct_write(iocb, iter, true);
177}
178
179static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
180{
181 unsigned int i;
182 for (i = 0; i < npages; i++)
183 put_page(pages[i]);
184}
185
186void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
187 struct nfs_direct_req *dreq)
188{
189 cinfo->inode = dreq->inode;
190 cinfo->mds = &dreq->mds_cinfo;
191 cinfo->ds = &dreq->ds_cinfo;
192 cinfo->dreq = dreq;
193 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
194}
195
196static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
197{
198 struct nfs_direct_req *dreq;
199
200 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
201 if (!dreq)
202 return NULL;
203
204 kref_init(&dreq->kref);
205 kref_get(&dreq->kref);
206 init_completion(&dreq->completion);
207 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
208 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
209 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
210 spin_lock_init(&dreq->lock);
211
212 return dreq;
213}
214
215static void nfs_direct_req_free(struct kref *kref)
216{
217 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
218
219 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
220 if (dreq->l_ctx != NULL)
221 nfs_put_lock_context(dreq->l_ctx);
222 if (dreq->ctx != NULL)
223 put_nfs_open_context(dreq->ctx);
224 kmem_cache_free(nfs_direct_cachep, dreq);
225}
226
227static void nfs_direct_req_release(struct nfs_direct_req *dreq)
228{
229 kref_put(&dreq->kref, nfs_direct_req_free);
230}
231
232ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
233{
234 return dreq->bytes_left;
235}
236EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
237
238/*
239 * Collects and returns the final error value/byte-count.
240 */
241static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
242{
243 ssize_t result = -EIOCBQUEUED;
244
245 /* Async requests don't wait here */
246 if (dreq->iocb)
247 goto out;
248
249 result = wait_for_completion_killable(&dreq->completion);
250
251 if (!result) {
252 result = dreq->count;
253 WARN_ON_ONCE(dreq->count < 0);
254 }
255 if (!result)
256 result = dreq->error;
257
258out:
259 return (ssize_t) result;
260}
261
262/*
263 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
264 * the iocb is still valid here if this is a synchronous request.
265 */
266static void nfs_direct_complete(struct nfs_direct_req *dreq)
267{
268 struct inode *inode = dreq->inode;
269
270 inode_dio_end(inode);
271
272 if (dreq->iocb) {
273 long res = (long) dreq->error;
274 if (dreq->count != 0) {
275 res = (long) dreq->count;
276 WARN_ON_ONCE(dreq->count < 0);
277 }
278 dreq->iocb->ki_complete(dreq->iocb, res, 0);
279 }
280
281 complete(&dreq->completion);
282
283 nfs_direct_req_release(dreq);
284}
285
286static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
287{
288 unsigned long bytes = 0;
289 struct nfs_direct_req *dreq = hdr->dreq;
290
291 spin_lock(&dreq->lock);
292 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
293 spin_unlock(&dreq->lock);
294 goto out_put;
295 }
296
297 nfs_direct_count_bytes(dreq, hdr);
298 spin_unlock(&dreq->lock);
299
300 while (!list_empty(&hdr->pages)) {
301 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
302 struct page *page = req->wb_page;
303
304 if (!PageCompound(page) && bytes < hdr->good_bytes &&
305 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
306 set_page_dirty(page);
307 bytes += req->wb_bytes;
308 nfs_list_remove_request(req);
309 nfs_release_request(req);
310 }
311out_put:
312 if (put_dreq(dreq))
313 nfs_direct_complete(dreq);
314 hdr->release(hdr);
315}
316
317static void nfs_read_sync_pgio_error(struct list_head *head, int error)
318{
319 struct nfs_page *req;
320
321 while (!list_empty(head)) {
322 req = nfs_list_entry(head->next);
323 nfs_list_remove_request(req);
324 nfs_release_request(req);
325 }
326}
327
328static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
329{
330 get_dreq(hdr->dreq);
331}
332
333static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
334 .error_cleanup = nfs_read_sync_pgio_error,
335 .init_hdr = nfs_direct_pgio_init,
336 .completion = nfs_direct_read_completion,
337};
338
339/*
340 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
341 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
342 * bail and stop sending more reads. Read length accounting is
343 * handled automatically by nfs_direct_read_result(). Otherwise, if
344 * no requests have been sent, just return an error.
345 */
346
347static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
348 struct iov_iter *iter,
349 loff_t pos)
350{
351 struct nfs_pageio_descriptor desc;
352 struct inode *inode = dreq->inode;
353 ssize_t result = -EINVAL;
354 size_t requested_bytes = 0;
355 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
356
357 nfs_pageio_init_read(&desc, dreq->inode, false,
358 &nfs_direct_read_completion_ops);
359 get_dreq(dreq);
360 desc.pg_dreq = dreq;
361 inode_dio_begin(inode);
362
363 while (iov_iter_count(iter)) {
364 struct page **pagevec;
365 size_t bytes;
366 size_t pgbase;
367 unsigned npages, i;
368
369 result = iov_iter_get_pages_alloc(iter, &pagevec,
370 rsize, &pgbase);
371 if (result < 0)
372 break;
373
374 bytes = result;
375 iov_iter_advance(iter, bytes);
376 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
377 for (i = 0; i < npages; i++) {
378 struct nfs_page *req;
379 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380 /* XXX do we need to do the eof zeroing found in async_filler? */
381 req = nfs_create_request(dreq->ctx, pagevec[i],
382 pgbase, req_len);
383 if (IS_ERR(req)) {
384 result = PTR_ERR(req);
385 break;
386 }
387 req->wb_index = pos >> PAGE_SHIFT;
388 req->wb_offset = pos & ~PAGE_MASK;
389 if (!nfs_pageio_add_request(&desc, req)) {
390 result = desc.pg_error;
391 nfs_release_request(req);
392 break;
393 }
394 pgbase = 0;
395 bytes -= req_len;
396 requested_bytes += req_len;
397 pos += req_len;
398 dreq->bytes_left -= req_len;
399 }
400 nfs_direct_release_pages(pagevec, npages);
401 kvfree(pagevec);
402 if (result < 0)
403 break;
404 }
405
406 nfs_pageio_complete(&desc);
407
408 /*
409 * If no bytes were started, return the error, and let the
410 * generic layer handle the completion.
411 */
412 if (requested_bytes == 0) {
413 inode_dio_end(inode);
414 nfs_direct_req_release(dreq);
415 return result < 0 ? result : -EIO;
416 }
417
418 if (put_dreq(dreq))
419 nfs_direct_complete(dreq);
420 return requested_bytes;
421}
422
423/**
424 * nfs_file_direct_read - file direct read operation for NFS files
425 * @iocb: target I/O control block
426 * @iter: vector of user buffers into which to read data
427 * @swap: flag indicating this is swap IO, not O_DIRECT IO
428 *
429 * We use this function for direct reads instead of calling
430 * generic_file_aio_read() in order to avoid gfar's check to see if
431 * the request starts before the end of the file. For that check
432 * to work, we must generate a GETATTR before each direct read, and
433 * even then there is a window between the GETATTR and the subsequent
434 * READ where the file size could change. Our preference is simply
435 * to do all reads the application wants, and the server will take
436 * care of managing the end of file boundary.
437 *
438 * This function also eliminates unnecessarily updating the file's
439 * atime locally, as the NFS server sets the file's atime, and this
440 * client must read the updated atime from the server back into its
441 * cache.
442 */
443ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
444 bool swap)
445{
446 struct file *file = iocb->ki_filp;
447 struct address_space *mapping = file->f_mapping;
448 struct inode *inode = mapping->host;
449 struct nfs_direct_req *dreq;
450 struct nfs_lock_context *l_ctx;
451 ssize_t result, requested;
452 size_t count = iov_iter_count(iter);
453 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
454
455 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
456 file, count, (long long) iocb->ki_pos);
457
458 result = 0;
459 if (!count)
460 goto out;
461
462 task_io_account_read(count);
463
464 result = -ENOMEM;
465 dreq = nfs_direct_req_alloc();
466 if (dreq == NULL)
467 goto out;
468
469 dreq->inode = inode;
470 dreq->bytes_left = dreq->max_count = count;
471 dreq->io_start = iocb->ki_pos;
472 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
473 l_ctx = nfs_get_lock_context(dreq->ctx);
474 if (IS_ERR(l_ctx)) {
475 result = PTR_ERR(l_ctx);
476 nfs_direct_req_release(dreq);
477 goto out_release;
478 }
479 dreq->l_ctx = l_ctx;
480 if (!is_sync_kiocb(iocb))
481 dreq->iocb = iocb;
482
483 if (iter_is_iovec(iter))
484 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
485
486 if (!swap)
487 nfs_start_io_direct(inode);
488
489 NFS_I(inode)->read_io += count;
490 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
491
492 if (!swap)
493 nfs_end_io_direct(inode);
494
495 if (requested > 0) {
496 result = nfs_direct_wait(dreq);
497 if (result > 0) {
498 requested -= result;
499 iocb->ki_pos += result;
500 }
501 iov_iter_revert(iter, requested);
502 } else {
503 result = requested;
504 }
505
506out_release:
507 nfs_direct_req_release(dreq);
508out:
509 return result;
510}
511
512static void
513nfs_direct_join_group(struct list_head *list, struct inode *inode)
514{
515 struct nfs_page *req, *next;
516
517 list_for_each_entry(req, list, wb_list) {
518 if (req->wb_head != req || req->wb_this_page == req)
519 continue;
520 for (next = req->wb_this_page;
521 next != req->wb_head;
522 next = next->wb_this_page) {
523 nfs_list_remove_request(next);
524 nfs_release_request(next);
525 }
526 nfs_join_page_group(req, inode);
527 }
528}
529
530static void
531nfs_direct_write_scan_commit_list(struct inode *inode,
532 struct list_head *list,
533 struct nfs_commit_info *cinfo)
534{
535 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
536 pnfs_recover_commit_reqs(list, cinfo);
537 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
538 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
539}
540
541static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
542{
543 struct nfs_pageio_descriptor desc;
544 struct nfs_page *req, *tmp;
545 LIST_HEAD(reqs);
546 struct nfs_commit_info cinfo;
547 LIST_HEAD(failed);
548
549 nfs_init_cinfo_from_dreq(&cinfo, dreq);
550 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
551
552 nfs_direct_join_group(&reqs, dreq->inode);
553
554 dreq->count = 0;
555 dreq->max_count = 0;
556 list_for_each_entry(req, &reqs, wb_list)
557 dreq->max_count += req->wb_bytes;
558 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
559 get_dreq(dreq);
560
561 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
562 &nfs_direct_write_completion_ops);
563 desc.pg_dreq = dreq;
564
565 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
566 /* Bump the transmission count */
567 req->wb_nio++;
568 if (!nfs_pageio_add_request(&desc, req)) {
569 nfs_list_move_request(req, &failed);
570 spin_lock(&cinfo.inode->i_lock);
571 dreq->flags = 0;
572 if (desc.pg_error < 0)
573 dreq->error = desc.pg_error;
574 else
575 dreq->error = -EIO;
576 spin_unlock(&cinfo.inode->i_lock);
577 }
578 nfs_release_request(req);
579 }
580 nfs_pageio_complete(&desc);
581
582 while (!list_empty(&failed)) {
583 req = nfs_list_entry(failed.next);
584 nfs_list_remove_request(req);
585 nfs_unlock_and_release_request(req);
586 }
587
588 if (put_dreq(dreq))
589 nfs_direct_write_complete(dreq);
590}
591
592static void nfs_direct_commit_complete(struct nfs_commit_data *data)
593{
594 const struct nfs_writeverf *verf = data->res.verf;
595 struct nfs_direct_req *dreq = data->dreq;
596 struct nfs_commit_info cinfo;
597 struct nfs_page *req;
598 int status = data->task.tk_status;
599
600 if (status < 0) {
601 /* Errors in commit are fatal */
602 dreq->error = status;
603 dreq->max_count = 0;
604 dreq->count = 0;
605 dreq->flags = NFS_ODIRECT_DONE;
606 } else if (dreq->flags == NFS_ODIRECT_DONE)
607 status = dreq->error;
608
609 nfs_init_cinfo_from_dreq(&cinfo, dreq);
610
611 while (!list_empty(&data->pages)) {
612 req = nfs_list_entry(data->pages.next);
613 nfs_list_remove_request(req);
614 if (status >= 0 && !nfs_write_match_verf(verf, req)) {
615 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
616 /*
617 * Despite the reboot, the write was successful,
618 * so reset wb_nio.
619 */
620 req->wb_nio = 0;
621 nfs_mark_request_commit(req, NULL, &cinfo, 0);
622 } else /* Error or match */
623 nfs_release_request(req);
624 nfs_unlock_and_release_request(req);
625 }
626
627 if (nfs_commit_end(cinfo.mds))
628 nfs_direct_write_complete(dreq);
629}
630
631static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
632 struct nfs_page *req)
633{
634 struct nfs_direct_req *dreq = cinfo->dreq;
635
636 spin_lock(&dreq->lock);
637 if (dreq->flags != NFS_ODIRECT_DONE)
638 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
639 spin_unlock(&dreq->lock);
640 nfs_mark_request_commit(req, NULL, cinfo, 0);
641}
642
643static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
644 .completion = nfs_direct_commit_complete,
645 .resched_write = nfs_direct_resched_write,
646};
647
648static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
649{
650 int res;
651 struct nfs_commit_info cinfo;
652 LIST_HEAD(mds_list);
653
654 nfs_init_cinfo_from_dreq(&cinfo, dreq);
655 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
656 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
657 if (res < 0) /* res == -ENOMEM */
658 nfs_direct_write_reschedule(dreq);
659}
660
661static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
662{
663 struct nfs_commit_info cinfo;
664 struct nfs_page *req;
665 LIST_HEAD(reqs);
666
667 nfs_init_cinfo_from_dreq(&cinfo, dreq);
668 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
669
670 while (!list_empty(&reqs)) {
671 req = nfs_list_entry(reqs.next);
672 nfs_list_remove_request(req);
673 nfs_release_request(req);
674 nfs_unlock_and_release_request(req);
675 }
676}
677
678static void nfs_direct_write_schedule_work(struct work_struct *work)
679{
680 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
681 int flags = dreq->flags;
682
683 dreq->flags = 0;
684 switch (flags) {
685 case NFS_ODIRECT_DO_COMMIT:
686 nfs_direct_commit_schedule(dreq);
687 break;
688 case NFS_ODIRECT_RESCHED_WRITES:
689 nfs_direct_write_reschedule(dreq);
690 break;
691 default:
692 nfs_direct_write_clear_reqs(dreq);
693 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
694 nfs_direct_complete(dreq);
695 }
696}
697
698static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
699{
700 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
701}
702
703static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
704{
705 struct nfs_direct_req *dreq = hdr->dreq;
706 struct nfs_commit_info cinfo;
707 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
708 int flags = NFS_ODIRECT_DONE;
709
710 nfs_init_cinfo_from_dreq(&cinfo, dreq);
711
712 spin_lock(&dreq->lock);
713 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
714 spin_unlock(&dreq->lock);
715 goto out_put;
716 }
717
718 nfs_direct_count_bytes(dreq, hdr);
719 if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
720 if (!dreq->flags)
721 dreq->flags = NFS_ODIRECT_DO_COMMIT;
722 flags = dreq->flags;
723 }
724 spin_unlock(&dreq->lock);
725
726 while (!list_empty(&hdr->pages)) {
727
728 req = nfs_list_entry(hdr->pages.next);
729 nfs_list_remove_request(req);
730 if (flags == NFS_ODIRECT_DO_COMMIT) {
731 kref_get(&req->wb_kref);
732 memcpy(&req->wb_verf, &hdr->verf.verifier,
733 sizeof(req->wb_verf));
734 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
735 hdr->ds_commit_idx);
736 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
737 kref_get(&req->wb_kref);
738 nfs_mark_request_commit(req, NULL, &cinfo, 0);
739 }
740 nfs_unlock_and_release_request(req);
741 }
742
743out_put:
744 if (put_dreq(dreq))
745 nfs_direct_write_complete(dreq);
746 hdr->release(hdr);
747}
748
749static void nfs_write_sync_pgio_error(struct list_head *head, int error)
750{
751 struct nfs_page *req;
752
753 while (!list_empty(head)) {
754 req = nfs_list_entry(head->next);
755 nfs_list_remove_request(req);
756 nfs_unlock_and_release_request(req);
757 }
758}
759
760static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
761{
762 struct nfs_direct_req *dreq = hdr->dreq;
763
764 spin_lock(&dreq->lock);
765 if (dreq->error == 0) {
766 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
767 /* fake unstable write to let common nfs resend pages */
768 hdr->verf.committed = NFS_UNSTABLE;
769 hdr->good_bytes = hdr->args.offset + hdr->args.count -
770 hdr->io_start;
771 }
772 spin_unlock(&dreq->lock);
773}
774
775static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
776 .error_cleanup = nfs_write_sync_pgio_error,
777 .init_hdr = nfs_direct_pgio_init,
778 .completion = nfs_direct_write_completion,
779 .reschedule_io = nfs_direct_write_reschedule_io,
780};
781
782
783/*
784 * NB: Return the value of the first error return code. Subsequent
785 * errors after the first one are ignored.
786 */
787/*
788 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
789 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
790 * bail and stop sending more writes. Write length accounting is
791 * handled automatically by nfs_direct_write_result(). Otherwise, if
792 * no requests have been sent, just return an error.
793 */
794static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
795 struct iov_iter *iter,
796 loff_t pos, int ioflags)
797{
798 struct nfs_pageio_descriptor desc;
799 struct inode *inode = dreq->inode;
800 ssize_t result = 0;
801 size_t requested_bytes = 0;
802 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
803
804 nfs_pageio_init_write(&desc, inode, ioflags, false,
805 &nfs_direct_write_completion_ops);
806 desc.pg_dreq = dreq;
807 get_dreq(dreq);
808 inode_dio_begin(inode);
809
810 NFS_I(inode)->write_io += iov_iter_count(iter);
811 while (iov_iter_count(iter)) {
812 struct page **pagevec;
813 size_t bytes;
814 size_t pgbase;
815 unsigned npages, i;
816
817 result = iov_iter_get_pages_alloc(iter, &pagevec,
818 wsize, &pgbase);
819 if (result < 0)
820 break;
821
822 bytes = result;
823 iov_iter_advance(iter, bytes);
824 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
825 for (i = 0; i < npages; i++) {
826 struct nfs_page *req;
827 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
828
829 req = nfs_create_request(dreq->ctx, pagevec[i],
830 pgbase, req_len);
831 if (IS_ERR(req)) {
832 result = PTR_ERR(req);
833 break;
834 }
835
836 if (desc.pg_error < 0) {
837 nfs_free_request(req);
838 result = desc.pg_error;
839 break;
840 }
841
842 nfs_lock_request(req);
843 req->wb_index = pos >> PAGE_SHIFT;
844 req->wb_offset = pos & ~PAGE_MASK;
845 if (!nfs_pageio_add_request(&desc, req)) {
846 result = desc.pg_error;
847 nfs_unlock_and_release_request(req);
848 break;
849 }
850 pgbase = 0;
851 bytes -= req_len;
852 requested_bytes += req_len;
853 pos += req_len;
854 dreq->bytes_left -= req_len;
855 }
856 nfs_direct_release_pages(pagevec, npages);
857 kvfree(pagevec);
858 if (result < 0)
859 break;
860 }
861 nfs_pageio_complete(&desc);
862
863 /*
864 * If no bytes were started, return the error, and let the
865 * generic layer handle the completion.
866 */
867 if (requested_bytes == 0) {
868 inode_dio_end(inode);
869 nfs_direct_req_release(dreq);
870 return result < 0 ? result : -EIO;
871 }
872
873 if (put_dreq(dreq))
874 nfs_direct_write_complete(dreq);
875 return requested_bytes;
876}
877
878/**
879 * nfs_file_direct_write - file direct write operation for NFS files
880 * @iocb: target I/O control block
881 * @iter: vector of user buffers from which to write data
882 * @swap: flag indicating this is swap IO, not O_DIRECT IO
883 *
884 * We use this function for direct writes instead of calling
885 * generic_file_aio_write() in order to avoid taking the inode
886 * semaphore and updating the i_size. The NFS server will set
887 * the new i_size and this client must read the updated size
888 * back into its cache. We let the server do generic write
889 * parameter checking and report problems.
890 *
891 * We eliminate local atime updates, see direct read above.
892 *
893 * We avoid unnecessary page cache invalidations for normal cached
894 * readers of this file.
895 *
896 * Note that O_APPEND is not supported for NFS direct writes, as there
897 * is no atomic O_APPEND write facility in the NFS protocol.
898 */
899ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
900 bool swap)
901{
902 ssize_t result, requested;
903 size_t count;
904 struct file *file = iocb->ki_filp;
905 struct address_space *mapping = file->f_mapping;
906 struct inode *inode = mapping->host;
907 struct nfs_direct_req *dreq;
908 struct nfs_lock_context *l_ctx;
909 loff_t pos, end;
910
911 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
912 file, iov_iter_count(iter), (long long) iocb->ki_pos);
913
914 if (swap)
915 /* bypass generic checks */
916 result = iov_iter_count(iter);
917 else
918 result = generic_write_checks(iocb, iter);
919 if (result <= 0)
920 return result;
921 count = result;
922 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
923
924 pos = iocb->ki_pos;
925 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
926
927 task_io_account_write(count);
928
929 result = -ENOMEM;
930 dreq = nfs_direct_req_alloc();
931 if (!dreq)
932 goto out;
933
934 dreq->inode = inode;
935 dreq->bytes_left = dreq->max_count = count;
936 dreq->io_start = pos;
937 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
938 l_ctx = nfs_get_lock_context(dreq->ctx);
939 if (IS_ERR(l_ctx)) {
940 result = PTR_ERR(l_ctx);
941 nfs_direct_req_release(dreq);
942 goto out_release;
943 }
944 dreq->l_ctx = l_ctx;
945 if (!is_sync_kiocb(iocb))
946 dreq->iocb = iocb;
947 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
948
949 if (swap) {
950 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
951 FLUSH_STABLE);
952 } else {
953 nfs_start_io_direct(inode);
954
955 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
956 FLUSH_COND_STABLE);
957
958 if (mapping->nrpages) {
959 invalidate_inode_pages2_range(mapping,
960 pos >> PAGE_SHIFT, end);
961 }
962
963 nfs_end_io_direct(inode);
964 }
965
966 if (requested > 0) {
967 result = nfs_direct_wait(dreq);
968 if (result > 0) {
969 requested -= result;
970 iocb->ki_pos = pos + result;
971 /* XXX: should check the generic_write_sync retval */
972 generic_write_sync(iocb, result);
973 }
974 iov_iter_revert(iter, requested);
975 } else {
976 result = requested;
977 }
978out_release:
979 nfs_direct_req_release(dreq);
980out:
981 return result;
982}
983
984/**
985 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
986 *
987 */
988int __init nfs_init_directcache(void)
989{
990 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
991 sizeof(struct nfs_direct_req),
992 0, (SLAB_RECLAIM_ACCOUNT|
993 SLAB_MEM_SPREAD),
994 NULL);
995 if (nfs_direct_cachep == NULL)
996 return -ENOMEM;
997
998 return 0;
999}
1000
1001/**
1002 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1003 *
1004 */
1005void nfs_destroy_directcache(void)
1006{
1007 kmem_cache_destroy(nfs_direct_cachep);
1008}