]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - fs/pipe.c
Merge tag 'for-5.5-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-hirsute-kernel.git] / fs / pipe.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/file.h>
10#include <linux/poll.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/fs.h>
15#include <linux/log2.h>
16#include <linux/mount.h>
17#include <linux/pseudo_fs.h>
18#include <linux/magic.h>
19#include <linux/pipe_fs_i.h>
20#include <linux/uio.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/audit.h>
24#include <linux/syscalls.h>
25#include <linux/fcntl.h>
26#include <linux/memcontrol.h>
27
28#include <linux/uaccess.h>
29#include <asm/ioctls.h>
30
31#include "internal.h"
32
33/*
34 * The max size that a non-root user is allowed to grow the pipe. Can
35 * be set by root in /proc/sys/fs/pipe-max-size
36 */
37unsigned int pipe_max_size = 1048576;
38
39/* Maximum allocatable pages per user. Hard limit is unset by default, soft
40 * matches default values.
41 */
42unsigned long pipe_user_pages_hard;
43unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44
45/*
46 * We use head and tail indices that aren't masked off, except at the point of
47 * dereference, but rather they're allowed to wrap naturally. This means there
48 * isn't a dead spot in the buffer, but the ring has to be a power of two and
49 * <= 2^31.
50 * -- David Howells 2019-09-23.
51 *
52 * Reads with count = 0 should always return 0.
53 * -- Julian Bradfield 1999-06-07.
54 *
55 * FIFOs and Pipes now generate SIGIO for both readers and writers.
56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57 *
58 * pipe_read & write cleanup
59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60 */
61
62static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63{
64 if (pipe->files)
65 mutex_lock_nested(&pipe->mutex, subclass);
66}
67
68void pipe_lock(struct pipe_inode_info *pipe)
69{
70 /*
71 * pipe_lock() nests non-pipe inode locks (for writing to a file)
72 */
73 pipe_lock_nested(pipe, I_MUTEX_PARENT);
74}
75EXPORT_SYMBOL(pipe_lock);
76
77void pipe_unlock(struct pipe_inode_info *pipe)
78{
79 if (pipe->files)
80 mutex_unlock(&pipe->mutex);
81}
82EXPORT_SYMBOL(pipe_unlock);
83
84static inline void __pipe_lock(struct pipe_inode_info *pipe)
85{
86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87}
88
89static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90{
91 mutex_unlock(&pipe->mutex);
92}
93
94void pipe_double_lock(struct pipe_inode_info *pipe1,
95 struct pipe_inode_info *pipe2)
96{
97 BUG_ON(pipe1 == pipe2);
98
99 if (pipe1 < pipe2) {
100 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102 } else {
103 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105 }
106}
107
108/* Drop the inode semaphore and wait for a pipe event, atomically */
109void pipe_wait(struct pipe_inode_info *pipe)
110{
111 DEFINE_WAIT(wait);
112
113 /*
114 * Pipes are system-local resources, so sleeping on them
115 * is considered a noninteractive wait:
116 */
117 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
118 pipe_unlock(pipe);
119 schedule();
120 finish_wait(&pipe->wait, &wait);
121 pipe_lock(pipe);
122}
123
124static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 struct pipe_buffer *buf)
126{
127 struct page *page = buf->page;
128
129 /*
130 * If nobody else uses this page, and we don't already have a
131 * temporary page, let's keep track of it as a one-deep
132 * allocation cache. (Otherwise just release our reference to it)
133 */
134 if (page_count(page) == 1 && !pipe->tmp_page)
135 pipe->tmp_page = page;
136 else
137 put_page(page);
138}
139
140static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
141 struct pipe_buffer *buf)
142{
143 struct page *page = buf->page;
144
145 if (page_count(page) == 1) {
146 memcg_kmem_uncharge(page, 0);
147 __SetPageLocked(page);
148 return 0;
149 }
150 return 1;
151}
152
153/**
154 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
157 *
158 * Description:
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
163 * page cache.
164 */
165int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
167{
168 struct page *page = buf->page;
169
170 /*
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
173 * and return OK.
174 */
175 if (page_count(page) == 1) {
176 lock_page(page);
177 return 0;
178 }
179
180 return 1;
181}
182EXPORT_SYMBOL(generic_pipe_buf_steal);
183
184/**
185 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
186 * @pipe: the pipe that the buffer belongs to
187 * @buf: the buffer to get a reference to
188 *
189 * Description:
190 * This function grabs an extra reference to @buf. It's used in
191 * in the tee() system call, when we duplicate the buffers in one
192 * pipe into another.
193 */
194bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195{
196 return try_get_page(buf->page);
197}
198EXPORT_SYMBOL(generic_pipe_buf_get);
199
200/**
201 * generic_pipe_buf_confirm - verify contents of the pipe buffer
202 * @info: the pipe that the buffer belongs to
203 * @buf: the buffer to confirm
204 *
205 * Description:
206 * This function does nothing, because the generic pipe code uses
207 * pages that are always good when inserted into the pipe.
208 */
209int generic_pipe_buf_confirm(struct pipe_inode_info *info,
210 struct pipe_buffer *buf)
211{
212 return 0;
213}
214EXPORT_SYMBOL(generic_pipe_buf_confirm);
215
216/**
217 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
218 * @pipe: the pipe that the buffer belongs to
219 * @buf: the buffer to put a reference to
220 *
221 * Description:
222 * This function releases a reference to @buf.
223 */
224void generic_pipe_buf_release(struct pipe_inode_info *pipe,
225 struct pipe_buffer *buf)
226{
227 put_page(buf->page);
228}
229EXPORT_SYMBOL(generic_pipe_buf_release);
230
231/* New data written to a pipe may be appended to a buffer with this type. */
232static const struct pipe_buf_operations anon_pipe_buf_ops = {
233 .confirm = generic_pipe_buf_confirm,
234 .release = anon_pipe_buf_release,
235 .steal = anon_pipe_buf_steal,
236 .get = generic_pipe_buf_get,
237};
238
239static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
240 .confirm = generic_pipe_buf_confirm,
241 .release = anon_pipe_buf_release,
242 .steal = anon_pipe_buf_steal,
243 .get = generic_pipe_buf_get,
244};
245
246static const struct pipe_buf_operations packet_pipe_buf_ops = {
247 .confirm = generic_pipe_buf_confirm,
248 .release = anon_pipe_buf_release,
249 .steal = anon_pipe_buf_steal,
250 .get = generic_pipe_buf_get,
251};
252
253/**
254 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
255 * @buf: the buffer to mark
256 *
257 * Description:
258 * This function ensures that no future writes will be merged into the
259 * given &struct pipe_buffer. This is necessary when multiple pipe buffers
260 * share the same backing page.
261 */
262void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
263{
264 if (buf->ops == &anon_pipe_buf_ops)
265 buf->ops = &anon_pipe_buf_nomerge_ops;
266}
267
268static bool pipe_buf_can_merge(struct pipe_buffer *buf)
269{
270 return buf->ops == &anon_pipe_buf_ops;
271}
272
273/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
274static inline bool pipe_readable(const struct pipe_inode_info *pipe)
275{
276 unsigned int head = READ_ONCE(pipe->head);
277 unsigned int tail = READ_ONCE(pipe->tail);
278 unsigned int writers = READ_ONCE(pipe->writers);
279
280 return !pipe_empty(head, tail) || !writers;
281}
282
283static ssize_t
284pipe_read(struct kiocb *iocb, struct iov_iter *to)
285{
286 size_t total_len = iov_iter_count(to);
287 struct file *filp = iocb->ki_filp;
288 struct pipe_inode_info *pipe = filp->private_data;
289 bool was_full;
290 ssize_t ret;
291
292 /* Null read succeeds. */
293 if (unlikely(total_len == 0))
294 return 0;
295
296 ret = 0;
297 __pipe_lock(pipe);
298
299 /*
300 * We only wake up writers if the pipe was full when we started
301 * reading in order to avoid unnecessary wakeups.
302 *
303 * But when we do wake up writers, we do so using a sync wakeup
304 * (WF_SYNC), because we want them to get going and generate more
305 * data for us.
306 */
307 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
308 for (;;) {
309 unsigned int head = pipe->head;
310 unsigned int tail = pipe->tail;
311 unsigned int mask = pipe->ring_size - 1;
312
313 if (!pipe_empty(head, tail)) {
314 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
315 size_t chars = buf->len;
316 size_t written;
317 int error;
318
319 if (chars > total_len)
320 chars = total_len;
321
322 error = pipe_buf_confirm(pipe, buf);
323 if (error) {
324 if (!ret)
325 ret = error;
326 break;
327 }
328
329 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
330 if (unlikely(written < chars)) {
331 if (!ret)
332 ret = -EFAULT;
333 break;
334 }
335 ret += chars;
336 buf->offset += chars;
337 buf->len -= chars;
338
339 /* Was it a packet buffer? Clean up and exit */
340 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
341 total_len = chars;
342 buf->len = 0;
343 }
344
345 if (!buf->len) {
346 pipe_buf_release(pipe, buf);
347 spin_lock_irq(&pipe->wait.lock);
348 tail++;
349 pipe->tail = tail;
350 spin_unlock_irq(&pipe->wait.lock);
351 }
352 total_len -= chars;
353 if (!total_len)
354 break; /* common path: read succeeded */
355 if (!pipe_empty(head, tail)) /* More to do? */
356 continue;
357 }
358
359 if (!pipe->writers)
360 break;
361 if (ret)
362 break;
363 if (filp->f_flags & O_NONBLOCK) {
364 ret = -EAGAIN;
365 break;
366 }
367 __pipe_unlock(pipe);
368
369 /*
370 * We only get here if we didn't actually read anything.
371 *
372 * However, we could have seen (and removed) a zero-sized
373 * pipe buffer, and might have made space in the buffers
374 * that way.
375 *
376 * You can't make zero-sized pipe buffers by doing an empty
377 * write (not even in packet mode), but they can happen if
378 * the writer gets an EFAULT when trying to fill a buffer
379 * that already got allocated and inserted in the buffer
380 * array.
381 *
382 * So we still need to wake up any pending writers in the
383 * _very_ unlikely case that the pipe was full, but we got
384 * no data.
385 */
386 if (unlikely(was_full)) {
387 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
388 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
389 }
390
391 /*
392 * But because we didn't read anything, at this point we can
393 * just return directly with -ERESTARTSYS if we're interrupted,
394 * since we've done any required wakeups and there's no need
395 * to mark anything accessed. And we've dropped the lock.
396 */
397 if (wait_event_interruptible(pipe->wait, pipe_readable(pipe)) < 0)
398 return -ERESTARTSYS;
399
400 __pipe_lock(pipe);
401 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
402 }
403 __pipe_unlock(pipe);
404
405 if (was_full) {
406 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
407 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
408 }
409 if (ret > 0)
410 file_accessed(filp);
411 return ret;
412}
413
414static inline int is_packetized(struct file *file)
415{
416 return (file->f_flags & O_DIRECT) != 0;
417}
418
419/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
420static inline bool pipe_writable(const struct pipe_inode_info *pipe)
421{
422 unsigned int head = READ_ONCE(pipe->head);
423 unsigned int tail = READ_ONCE(pipe->tail);
424 unsigned int max_usage = READ_ONCE(pipe->max_usage);
425
426 return !pipe_full(head, tail, max_usage) ||
427 !READ_ONCE(pipe->readers);
428}
429
430static ssize_t
431pipe_write(struct kiocb *iocb, struct iov_iter *from)
432{
433 struct file *filp = iocb->ki_filp;
434 struct pipe_inode_info *pipe = filp->private_data;
435 unsigned int head;
436 ssize_t ret = 0;
437 size_t total_len = iov_iter_count(from);
438 ssize_t chars;
439 bool was_empty = false;
440
441 /* Null write succeeds. */
442 if (unlikely(total_len == 0))
443 return 0;
444
445 __pipe_lock(pipe);
446
447 if (!pipe->readers) {
448 send_sig(SIGPIPE, current, 0);
449 ret = -EPIPE;
450 goto out;
451 }
452
453 /*
454 * Only wake up if the pipe started out empty, since
455 * otherwise there should be no readers waiting.
456 *
457 * If it wasn't empty we try to merge new data into
458 * the last buffer.
459 *
460 * That naturally merges small writes, but it also
461 * page-aligs the rest of the writes for large writes
462 * spanning multiple pages.
463 */
464 head = pipe->head;
465 was_empty = pipe_empty(head, pipe->tail);
466 chars = total_len & (PAGE_SIZE-1);
467 if (chars && !was_empty) {
468 unsigned int mask = pipe->ring_size - 1;
469 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
470 int offset = buf->offset + buf->len;
471
472 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
473 ret = pipe_buf_confirm(pipe, buf);
474 if (ret)
475 goto out;
476
477 ret = copy_page_from_iter(buf->page, offset, chars, from);
478 if (unlikely(ret < chars)) {
479 ret = -EFAULT;
480 goto out;
481 }
482
483 buf->len += ret;
484 if (!iov_iter_count(from))
485 goto out;
486 }
487 }
488
489 for (;;) {
490 if (!pipe->readers) {
491 send_sig(SIGPIPE, current, 0);
492 if (!ret)
493 ret = -EPIPE;
494 break;
495 }
496
497 head = pipe->head;
498 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
499 unsigned int mask = pipe->ring_size - 1;
500 struct pipe_buffer *buf = &pipe->bufs[head & mask];
501 struct page *page = pipe->tmp_page;
502 int copied;
503
504 if (!page) {
505 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
506 if (unlikely(!page)) {
507 ret = ret ? : -ENOMEM;
508 break;
509 }
510 pipe->tmp_page = page;
511 }
512
513 /* Allocate a slot in the ring in advance and attach an
514 * empty buffer. If we fault or otherwise fail to use
515 * it, either the reader will consume it or it'll still
516 * be there for the next write.
517 */
518 spin_lock_irq(&pipe->wait.lock);
519
520 head = pipe->head;
521 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
522 spin_unlock_irq(&pipe->wait.lock);
523 continue;
524 }
525
526 pipe->head = head + 1;
527 spin_unlock_irq(&pipe->wait.lock);
528
529 /* Insert it into the buffer array */
530 buf = &pipe->bufs[head & mask];
531 buf->page = page;
532 buf->ops = &anon_pipe_buf_ops;
533 buf->offset = 0;
534 buf->len = 0;
535 buf->flags = 0;
536 if (is_packetized(filp)) {
537 buf->ops = &packet_pipe_buf_ops;
538 buf->flags = PIPE_BUF_FLAG_PACKET;
539 }
540 pipe->tmp_page = NULL;
541
542 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
543 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
544 if (!ret)
545 ret = -EFAULT;
546 break;
547 }
548 ret += copied;
549 buf->offset = 0;
550 buf->len = copied;
551
552 if (!iov_iter_count(from))
553 break;
554 }
555
556 if (!pipe_full(head, pipe->tail, pipe->max_usage))
557 continue;
558
559 /* Wait for buffer space to become available. */
560 if (filp->f_flags & O_NONBLOCK) {
561 if (!ret)
562 ret = -EAGAIN;
563 break;
564 }
565 if (signal_pending(current)) {
566 if (!ret)
567 ret = -ERESTARTSYS;
568 break;
569 }
570
571 /*
572 * We're going to release the pipe lock and wait for more
573 * space. We wake up any readers if necessary, and then
574 * after waiting we need to re-check whether the pipe
575 * become empty while we dropped the lock.
576 */
577 __pipe_unlock(pipe);
578 if (was_empty) {
579 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
580 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
581 }
582 wait_event_interruptible(pipe->wait, pipe_writable(pipe));
583 __pipe_lock(pipe);
584 was_empty = pipe_empty(pipe->head, pipe->tail);
585 }
586out:
587 __pipe_unlock(pipe);
588
589 /*
590 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591 * want the reader to start processing things asap, rather than
592 * leave the data pending.
593 *
594 * This is particularly important for small writes, because of
595 * how (for example) the GNU make jobserver uses small writes to
596 * wake up pending jobs
597 */
598 if (was_empty) {
599 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
600 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
601 }
602 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
603 int err = file_update_time(filp);
604 if (err)
605 ret = err;
606 sb_end_write(file_inode(filp)->i_sb);
607 }
608 return ret;
609}
610
611static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
612{
613 struct pipe_inode_info *pipe = filp->private_data;
614 int count, head, tail, mask;
615
616 switch (cmd) {
617 case FIONREAD:
618 __pipe_lock(pipe);
619 count = 0;
620 head = pipe->head;
621 tail = pipe->tail;
622 mask = pipe->ring_size - 1;
623
624 while (tail != head) {
625 count += pipe->bufs[tail & mask].len;
626 tail++;
627 }
628 __pipe_unlock(pipe);
629
630 return put_user(count, (int __user *)arg);
631 default:
632 return -ENOIOCTLCMD;
633 }
634}
635
636/* No kernel lock held - fine */
637static __poll_t
638pipe_poll(struct file *filp, poll_table *wait)
639{
640 __poll_t mask;
641 struct pipe_inode_info *pipe = filp->private_data;
642 unsigned int head, tail;
643
644 /*
645 * Reading only -- no need for acquiring the semaphore.
646 *
647 * But because this is racy, the code has to add the
648 * entry to the poll table _first_ ..
649 */
650 poll_wait(filp, &pipe->wait, wait);
651
652 /*
653 * .. and only then can you do the racy tests. That way,
654 * if something changes and you got it wrong, the poll
655 * table entry will wake you up and fix it.
656 */
657 head = READ_ONCE(pipe->head);
658 tail = READ_ONCE(pipe->tail);
659
660 mask = 0;
661 if (filp->f_mode & FMODE_READ) {
662 if (!pipe_empty(head, tail))
663 mask |= EPOLLIN | EPOLLRDNORM;
664 if (!pipe->writers && filp->f_version != pipe->w_counter)
665 mask |= EPOLLHUP;
666 }
667
668 if (filp->f_mode & FMODE_WRITE) {
669 if (!pipe_full(head, tail, pipe->max_usage))
670 mask |= EPOLLOUT | EPOLLWRNORM;
671 /*
672 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
673 * behave exactly like pipes for poll().
674 */
675 if (!pipe->readers)
676 mask |= EPOLLERR;
677 }
678
679 return mask;
680}
681
682static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
683{
684 int kill = 0;
685
686 spin_lock(&inode->i_lock);
687 if (!--pipe->files) {
688 inode->i_pipe = NULL;
689 kill = 1;
690 }
691 spin_unlock(&inode->i_lock);
692
693 if (kill)
694 free_pipe_info(pipe);
695}
696
697static int
698pipe_release(struct inode *inode, struct file *file)
699{
700 struct pipe_inode_info *pipe = file->private_data;
701
702 __pipe_lock(pipe);
703 if (file->f_mode & FMODE_READ)
704 pipe->readers--;
705 if (file->f_mode & FMODE_WRITE)
706 pipe->writers--;
707
708 if (pipe->readers || pipe->writers) {
709 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
710 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
711 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
712 }
713 __pipe_unlock(pipe);
714
715 put_pipe_info(inode, pipe);
716 return 0;
717}
718
719static int
720pipe_fasync(int fd, struct file *filp, int on)
721{
722 struct pipe_inode_info *pipe = filp->private_data;
723 int retval = 0;
724
725 __pipe_lock(pipe);
726 if (filp->f_mode & FMODE_READ)
727 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
728 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
729 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
730 if (retval < 0 && (filp->f_mode & FMODE_READ))
731 /* this can happen only if on == T */
732 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
733 }
734 __pipe_unlock(pipe);
735 return retval;
736}
737
738static unsigned long account_pipe_buffers(struct user_struct *user,
739 unsigned long old, unsigned long new)
740{
741 return atomic_long_add_return(new - old, &user->pipe_bufs);
742}
743
744static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
745{
746 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
747
748 return soft_limit && user_bufs > soft_limit;
749}
750
751static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
752{
753 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
754
755 return hard_limit && user_bufs > hard_limit;
756}
757
758static bool is_unprivileged_user(void)
759{
760 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
761}
762
763struct pipe_inode_info *alloc_pipe_info(void)
764{
765 struct pipe_inode_info *pipe;
766 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
767 struct user_struct *user = get_current_user();
768 unsigned long user_bufs;
769 unsigned int max_size = READ_ONCE(pipe_max_size);
770
771 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
772 if (pipe == NULL)
773 goto out_free_uid;
774
775 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
776 pipe_bufs = max_size >> PAGE_SHIFT;
777
778 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
779
780 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
781 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
782 pipe_bufs = 1;
783 }
784
785 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
786 goto out_revert_acct;
787
788 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
789 GFP_KERNEL_ACCOUNT);
790
791 if (pipe->bufs) {
792 init_waitqueue_head(&pipe->wait);
793 pipe->r_counter = pipe->w_counter = 1;
794 pipe->max_usage = pipe_bufs;
795 pipe->ring_size = pipe_bufs;
796 pipe->user = user;
797 mutex_init(&pipe->mutex);
798 return pipe;
799 }
800
801out_revert_acct:
802 (void) account_pipe_buffers(user, pipe_bufs, 0);
803 kfree(pipe);
804out_free_uid:
805 free_uid(user);
806 return NULL;
807}
808
809void free_pipe_info(struct pipe_inode_info *pipe)
810{
811 int i;
812
813 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
814 free_uid(pipe->user);
815 for (i = 0; i < pipe->ring_size; i++) {
816 struct pipe_buffer *buf = pipe->bufs + i;
817 if (buf->ops)
818 pipe_buf_release(pipe, buf);
819 }
820 if (pipe->tmp_page)
821 __free_page(pipe->tmp_page);
822 kfree(pipe->bufs);
823 kfree(pipe);
824}
825
826static struct vfsmount *pipe_mnt __read_mostly;
827
828/*
829 * pipefs_dname() is called from d_path().
830 */
831static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
832{
833 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
834 d_inode(dentry)->i_ino);
835}
836
837static const struct dentry_operations pipefs_dentry_operations = {
838 .d_dname = pipefs_dname,
839};
840
841static struct inode * get_pipe_inode(void)
842{
843 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
844 struct pipe_inode_info *pipe;
845
846 if (!inode)
847 goto fail_inode;
848
849 inode->i_ino = get_next_ino();
850
851 pipe = alloc_pipe_info();
852 if (!pipe)
853 goto fail_iput;
854
855 inode->i_pipe = pipe;
856 pipe->files = 2;
857 pipe->readers = pipe->writers = 1;
858 inode->i_fop = &pipefifo_fops;
859
860 /*
861 * Mark the inode dirty from the very beginning,
862 * that way it will never be moved to the dirty
863 * list because "mark_inode_dirty()" will think
864 * that it already _is_ on the dirty list.
865 */
866 inode->i_state = I_DIRTY;
867 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
868 inode->i_uid = current_fsuid();
869 inode->i_gid = current_fsgid();
870 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
871
872 return inode;
873
874fail_iput:
875 iput(inode);
876
877fail_inode:
878 return NULL;
879}
880
881int create_pipe_files(struct file **res, int flags)
882{
883 struct inode *inode = get_pipe_inode();
884 struct file *f;
885
886 if (!inode)
887 return -ENFILE;
888
889 f = alloc_file_pseudo(inode, pipe_mnt, "",
890 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
891 &pipefifo_fops);
892 if (IS_ERR(f)) {
893 free_pipe_info(inode->i_pipe);
894 iput(inode);
895 return PTR_ERR(f);
896 }
897
898 f->private_data = inode->i_pipe;
899
900 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
901 &pipefifo_fops);
902 if (IS_ERR(res[0])) {
903 put_pipe_info(inode, inode->i_pipe);
904 fput(f);
905 return PTR_ERR(res[0]);
906 }
907 res[0]->private_data = inode->i_pipe;
908 res[1] = f;
909 stream_open(inode, res[0]);
910 stream_open(inode, res[1]);
911 return 0;
912}
913
914static int __do_pipe_flags(int *fd, struct file **files, int flags)
915{
916 int error;
917 int fdw, fdr;
918
919 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
920 return -EINVAL;
921
922 error = create_pipe_files(files, flags);
923 if (error)
924 return error;
925
926 error = get_unused_fd_flags(flags);
927 if (error < 0)
928 goto err_read_pipe;
929 fdr = error;
930
931 error = get_unused_fd_flags(flags);
932 if (error < 0)
933 goto err_fdr;
934 fdw = error;
935
936 audit_fd_pair(fdr, fdw);
937 fd[0] = fdr;
938 fd[1] = fdw;
939 return 0;
940
941 err_fdr:
942 put_unused_fd(fdr);
943 err_read_pipe:
944 fput(files[0]);
945 fput(files[1]);
946 return error;
947}
948
949int do_pipe_flags(int *fd, int flags)
950{
951 struct file *files[2];
952 int error = __do_pipe_flags(fd, files, flags);
953 if (!error) {
954 fd_install(fd[0], files[0]);
955 fd_install(fd[1], files[1]);
956 }
957 return error;
958}
959
960/*
961 * sys_pipe() is the normal C calling standard for creating
962 * a pipe. It's not the way Unix traditionally does this, though.
963 */
964static int do_pipe2(int __user *fildes, int flags)
965{
966 struct file *files[2];
967 int fd[2];
968 int error;
969
970 error = __do_pipe_flags(fd, files, flags);
971 if (!error) {
972 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
973 fput(files[0]);
974 fput(files[1]);
975 put_unused_fd(fd[0]);
976 put_unused_fd(fd[1]);
977 error = -EFAULT;
978 } else {
979 fd_install(fd[0], files[0]);
980 fd_install(fd[1], files[1]);
981 }
982 }
983 return error;
984}
985
986SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
987{
988 return do_pipe2(fildes, flags);
989}
990
991SYSCALL_DEFINE1(pipe, int __user *, fildes)
992{
993 return do_pipe2(fildes, 0);
994}
995
996static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
997{
998 int cur = *cnt;
999
1000 while (cur == *cnt) {
1001 pipe_wait(pipe);
1002 if (signal_pending(current))
1003 break;
1004 }
1005 return cur == *cnt ? -ERESTARTSYS : 0;
1006}
1007
1008static void wake_up_partner(struct pipe_inode_info *pipe)
1009{
1010 wake_up_interruptible(&pipe->wait);
1011}
1012
1013static int fifo_open(struct inode *inode, struct file *filp)
1014{
1015 struct pipe_inode_info *pipe;
1016 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1017 int ret;
1018
1019 filp->f_version = 0;
1020
1021 spin_lock(&inode->i_lock);
1022 if (inode->i_pipe) {
1023 pipe = inode->i_pipe;
1024 pipe->files++;
1025 spin_unlock(&inode->i_lock);
1026 } else {
1027 spin_unlock(&inode->i_lock);
1028 pipe = alloc_pipe_info();
1029 if (!pipe)
1030 return -ENOMEM;
1031 pipe->files = 1;
1032 spin_lock(&inode->i_lock);
1033 if (unlikely(inode->i_pipe)) {
1034 inode->i_pipe->files++;
1035 spin_unlock(&inode->i_lock);
1036 free_pipe_info(pipe);
1037 pipe = inode->i_pipe;
1038 } else {
1039 inode->i_pipe = pipe;
1040 spin_unlock(&inode->i_lock);
1041 }
1042 }
1043 filp->private_data = pipe;
1044 /* OK, we have a pipe and it's pinned down */
1045
1046 __pipe_lock(pipe);
1047
1048 /* We can only do regular read/write on fifos */
1049 stream_open(inode, filp);
1050
1051 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1052 case FMODE_READ:
1053 /*
1054 * O_RDONLY
1055 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1056 * opened, even when there is no process writing the FIFO.
1057 */
1058 pipe->r_counter++;
1059 if (pipe->readers++ == 0)
1060 wake_up_partner(pipe);
1061
1062 if (!is_pipe && !pipe->writers) {
1063 if ((filp->f_flags & O_NONBLOCK)) {
1064 /* suppress EPOLLHUP until we have
1065 * seen a writer */
1066 filp->f_version = pipe->w_counter;
1067 } else {
1068 if (wait_for_partner(pipe, &pipe->w_counter))
1069 goto err_rd;
1070 }
1071 }
1072 break;
1073
1074 case FMODE_WRITE:
1075 /*
1076 * O_WRONLY
1077 * POSIX.1 says that O_NONBLOCK means return -1 with
1078 * errno=ENXIO when there is no process reading the FIFO.
1079 */
1080 ret = -ENXIO;
1081 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1082 goto err;
1083
1084 pipe->w_counter++;
1085 if (!pipe->writers++)
1086 wake_up_partner(pipe);
1087
1088 if (!is_pipe && !pipe->readers) {
1089 if (wait_for_partner(pipe, &pipe->r_counter))
1090 goto err_wr;
1091 }
1092 break;
1093
1094 case FMODE_READ | FMODE_WRITE:
1095 /*
1096 * O_RDWR
1097 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1098 * This implementation will NEVER block on a O_RDWR open, since
1099 * the process can at least talk to itself.
1100 */
1101
1102 pipe->readers++;
1103 pipe->writers++;
1104 pipe->r_counter++;
1105 pipe->w_counter++;
1106 if (pipe->readers == 1 || pipe->writers == 1)
1107 wake_up_partner(pipe);
1108 break;
1109
1110 default:
1111 ret = -EINVAL;
1112 goto err;
1113 }
1114
1115 /* Ok! */
1116 __pipe_unlock(pipe);
1117 return 0;
1118
1119err_rd:
1120 if (!--pipe->readers)
1121 wake_up_interruptible(&pipe->wait);
1122 ret = -ERESTARTSYS;
1123 goto err;
1124
1125err_wr:
1126 if (!--pipe->writers)
1127 wake_up_interruptible(&pipe->wait);
1128 ret = -ERESTARTSYS;
1129 goto err;
1130
1131err:
1132 __pipe_unlock(pipe);
1133
1134 put_pipe_info(inode, pipe);
1135 return ret;
1136}
1137
1138const struct file_operations pipefifo_fops = {
1139 .open = fifo_open,
1140 .llseek = no_llseek,
1141 .read_iter = pipe_read,
1142 .write_iter = pipe_write,
1143 .poll = pipe_poll,
1144 .unlocked_ioctl = pipe_ioctl,
1145 .release = pipe_release,
1146 .fasync = pipe_fasync,
1147};
1148
1149/*
1150 * Currently we rely on the pipe array holding a power-of-2 number
1151 * of pages. Returns 0 on error.
1152 */
1153unsigned int round_pipe_size(unsigned long size)
1154{
1155 if (size > (1U << 31))
1156 return 0;
1157
1158 /* Minimum pipe size, as required by POSIX */
1159 if (size < PAGE_SIZE)
1160 return PAGE_SIZE;
1161
1162 return roundup_pow_of_two(size);
1163}
1164
1165/*
1166 * Allocate a new array of pipe buffers and copy the info over. Returns the
1167 * pipe size if successful, or return -ERROR on error.
1168 */
1169static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1170{
1171 struct pipe_buffer *bufs;
1172 unsigned int size, nr_slots, head, tail, mask, n;
1173 unsigned long user_bufs;
1174 long ret = 0;
1175
1176 size = round_pipe_size(arg);
1177 nr_slots = size >> PAGE_SHIFT;
1178
1179 if (!nr_slots)
1180 return -EINVAL;
1181
1182 /*
1183 * If trying to increase the pipe capacity, check that an
1184 * unprivileged user is not trying to exceed various limits
1185 * (soft limit check here, hard limit check just below).
1186 * Decreasing the pipe capacity is always permitted, even
1187 * if the user is currently over a limit.
1188 */
1189 if (nr_slots > pipe->ring_size &&
1190 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1191 return -EPERM;
1192
1193 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1194
1195 if (nr_slots > pipe->ring_size &&
1196 (too_many_pipe_buffers_hard(user_bufs) ||
1197 too_many_pipe_buffers_soft(user_bufs)) &&
1198 is_unprivileged_user()) {
1199 ret = -EPERM;
1200 goto out_revert_acct;
1201 }
1202
1203 /*
1204 * We can shrink the pipe, if arg is greater than the ring occupancy.
1205 * Since we don't expect a lot of shrink+grow operations, just free and
1206 * allocate again like we would do for growing. If the pipe currently
1207 * contains more buffers than arg, then return busy.
1208 */
1209 mask = pipe->ring_size - 1;
1210 head = pipe->head;
1211 tail = pipe->tail;
1212 n = pipe_occupancy(pipe->head, pipe->tail);
1213 if (nr_slots < n) {
1214 ret = -EBUSY;
1215 goto out_revert_acct;
1216 }
1217
1218 bufs = kcalloc(nr_slots, sizeof(*bufs),
1219 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1220 if (unlikely(!bufs)) {
1221 ret = -ENOMEM;
1222 goto out_revert_acct;
1223 }
1224
1225 /*
1226 * The pipe array wraps around, so just start the new one at zero
1227 * and adjust the indices.
1228 */
1229 if (n > 0) {
1230 unsigned int h = head & mask;
1231 unsigned int t = tail & mask;
1232 if (h > t) {
1233 memcpy(bufs, pipe->bufs + t,
1234 n * sizeof(struct pipe_buffer));
1235 } else {
1236 unsigned int tsize = pipe->ring_size - t;
1237 if (h > 0)
1238 memcpy(bufs + tsize, pipe->bufs,
1239 h * sizeof(struct pipe_buffer));
1240 memcpy(bufs, pipe->bufs + t,
1241 tsize * sizeof(struct pipe_buffer));
1242 }
1243 }
1244
1245 head = n;
1246 tail = 0;
1247
1248 kfree(pipe->bufs);
1249 pipe->bufs = bufs;
1250 pipe->ring_size = nr_slots;
1251 pipe->max_usage = nr_slots;
1252 pipe->tail = tail;
1253 pipe->head = head;
1254 wake_up_interruptible_all(&pipe->wait);
1255 return pipe->max_usage * PAGE_SIZE;
1256
1257out_revert_acct:
1258 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1259 return ret;
1260}
1261
1262/*
1263 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1264 * location, so checking ->i_pipe is not enough to verify that this is a
1265 * pipe.
1266 */
1267struct pipe_inode_info *get_pipe_info(struct file *file)
1268{
1269 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1270}
1271
1272long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1273{
1274 struct pipe_inode_info *pipe;
1275 long ret;
1276
1277 pipe = get_pipe_info(file);
1278 if (!pipe)
1279 return -EBADF;
1280
1281 __pipe_lock(pipe);
1282
1283 switch (cmd) {
1284 case F_SETPIPE_SZ:
1285 ret = pipe_set_size(pipe, arg);
1286 break;
1287 case F_GETPIPE_SZ:
1288 ret = pipe->max_usage * PAGE_SIZE;
1289 break;
1290 default:
1291 ret = -EINVAL;
1292 break;
1293 }
1294
1295 __pipe_unlock(pipe);
1296 return ret;
1297}
1298
1299static const struct super_operations pipefs_ops = {
1300 .destroy_inode = free_inode_nonrcu,
1301 .statfs = simple_statfs,
1302};
1303
1304/*
1305 * pipefs should _never_ be mounted by userland - too much of security hassle,
1306 * no real gain from having the whole whorehouse mounted. So we don't need
1307 * any operations on the root directory. However, we need a non-trivial
1308 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1309 */
1310
1311static int pipefs_init_fs_context(struct fs_context *fc)
1312{
1313 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1314 if (!ctx)
1315 return -ENOMEM;
1316 ctx->ops = &pipefs_ops;
1317 ctx->dops = &pipefs_dentry_operations;
1318 return 0;
1319}
1320
1321static struct file_system_type pipe_fs_type = {
1322 .name = "pipefs",
1323 .init_fs_context = pipefs_init_fs_context,
1324 .kill_sb = kill_anon_super,
1325};
1326
1327static int __init init_pipe_fs(void)
1328{
1329 int err = register_filesystem(&pipe_fs_type);
1330
1331 if (!err) {
1332 pipe_mnt = kern_mount(&pipe_fs_type);
1333 if (IS_ERR(pipe_mnt)) {
1334 err = PTR_ERR(pipe_mnt);
1335 unregister_filesystem(&pipe_fs_type);
1336 }
1337 }
1338 return err;
1339}
1340
1341fs_initcall(init_pipe_fs);