]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - fs/splice.c
Remove remnants of sendfile()
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
... / ...
CommitLineData
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/mm_inline.h>
25#include <linux/swap.h>
26#include <linux/writeback.h>
27#include <linux/buffer_head.h>
28#include <linux/module.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31
32/*
33 * Attempt to steal a page from a pipe buffer. This should perhaps go into
34 * a vm helper function, it's already simplified quite a bit by the
35 * addition of remove_mapping(). If success is returned, the caller may
36 * attempt to reuse this page for another destination.
37 */
38static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
39 struct pipe_buffer *buf)
40{
41 struct page *page = buf->page;
42 struct address_space *mapping;
43
44 lock_page(page);
45
46 mapping = page_mapping(page);
47 if (mapping) {
48 WARN_ON(!PageUptodate(page));
49
50 /*
51 * At least for ext2 with nobh option, we need to wait on
52 * writeback completing on this page, since we'll remove it
53 * from the pagecache. Otherwise truncate wont wait on the
54 * page, allowing the disk blocks to be reused by someone else
55 * before we actually wrote our data to them. fs corruption
56 * ensues.
57 */
58 wait_on_page_writeback(page);
59
60 if (PagePrivate(page))
61 try_to_release_page(page, GFP_KERNEL);
62
63 /*
64 * If we succeeded in removing the mapping, set LRU flag
65 * and return good.
66 */
67 if (remove_mapping(mapping, page)) {
68 buf->flags |= PIPE_BUF_FLAG_LRU;
69 return 0;
70 }
71 }
72
73 /*
74 * Raced with truncate or failed to remove page from current
75 * address space, unlock and return failure.
76 */
77 unlock_page(page);
78 return 1;
79}
80
81static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
83{
84 page_cache_release(buf->page);
85 buf->flags &= ~PIPE_BUF_FLAG_LRU;
86}
87
88static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90{
91 struct page *page = buf->page;
92 int err;
93
94 if (!PageUptodate(page)) {
95 lock_page(page);
96
97 /*
98 * Page got truncated/unhashed. This will cause a 0-byte
99 * splice, if this is the first page.
100 */
101 if (!page->mapping) {
102 err = -ENODATA;
103 goto error;
104 }
105
106 /*
107 * Uh oh, read-error from disk.
108 */
109 if (!PageUptodate(page)) {
110 err = -EIO;
111 goto error;
112 }
113
114 /*
115 * Page is ok afterall, we are done.
116 */
117 unlock_page(page);
118 }
119
120 return 0;
121error:
122 unlock_page(page);
123 return err;
124}
125
126static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
127 .can_merge = 0,
128 .map = generic_pipe_buf_map,
129 .unmap = generic_pipe_buf_unmap,
130 .pin = page_cache_pipe_buf_pin,
131 .release = page_cache_pipe_buf_release,
132 .steal = page_cache_pipe_buf_steal,
133 .get = generic_pipe_buf_get,
134};
135
136static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
137 struct pipe_buffer *buf)
138{
139 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
140 return 1;
141
142 buf->flags |= PIPE_BUF_FLAG_LRU;
143 return generic_pipe_buf_steal(pipe, buf);
144}
145
146static const struct pipe_buf_operations user_page_pipe_buf_ops = {
147 .can_merge = 0,
148 .map = generic_pipe_buf_map,
149 .unmap = generic_pipe_buf_unmap,
150 .pin = generic_pipe_buf_pin,
151 .release = page_cache_pipe_buf_release,
152 .steal = user_page_pipe_buf_steal,
153 .get = generic_pipe_buf_get,
154};
155
156/**
157 * splice_to_pipe - fill passed data into a pipe
158 * @pipe: pipe to fill
159 * @spd: data to fill
160 *
161 * Description:
162 * @spd contains a map of pages and len/offset tupples, a long with
163 * the struct pipe_buf_operations associated with these pages. This
164 * function will link that data to the pipe.
165 *
166 */
167ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
168 struct splice_pipe_desc *spd)
169{
170 unsigned int spd_pages = spd->nr_pages;
171 int ret, do_wakeup, page_nr;
172
173 ret = 0;
174 do_wakeup = 0;
175 page_nr = 0;
176
177 if (pipe->inode)
178 mutex_lock(&pipe->inode->i_mutex);
179
180 for (;;) {
181 if (!pipe->readers) {
182 send_sig(SIGPIPE, current, 0);
183 if (!ret)
184 ret = -EPIPE;
185 break;
186 }
187
188 if (pipe->nrbufs < PIPE_BUFFERS) {
189 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
190 struct pipe_buffer *buf = pipe->bufs + newbuf;
191
192 buf->page = spd->pages[page_nr];
193 buf->offset = spd->partial[page_nr].offset;
194 buf->len = spd->partial[page_nr].len;
195 buf->private = spd->partial[page_nr].private;
196 buf->ops = spd->ops;
197 if (spd->flags & SPLICE_F_GIFT)
198 buf->flags |= PIPE_BUF_FLAG_GIFT;
199
200 pipe->nrbufs++;
201 page_nr++;
202 ret += buf->len;
203
204 if (pipe->inode)
205 do_wakeup = 1;
206
207 if (!--spd->nr_pages)
208 break;
209 if (pipe->nrbufs < PIPE_BUFFERS)
210 continue;
211
212 break;
213 }
214
215 if (spd->flags & SPLICE_F_NONBLOCK) {
216 if (!ret)
217 ret = -EAGAIN;
218 break;
219 }
220
221 if (signal_pending(current)) {
222 if (!ret)
223 ret = -ERESTARTSYS;
224 break;
225 }
226
227 if (do_wakeup) {
228 smp_mb();
229 if (waitqueue_active(&pipe->wait))
230 wake_up_interruptible_sync(&pipe->wait);
231 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
232 do_wakeup = 0;
233 }
234
235 pipe->waiting_writers++;
236 pipe_wait(pipe);
237 pipe->waiting_writers--;
238 }
239
240 if (pipe->inode) {
241 mutex_unlock(&pipe->inode->i_mutex);
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 }
249 }
250
251 while (page_nr < spd_pages)
252 page_cache_release(spd->pages[page_nr++]);
253
254 return ret;
255}
256
257static int
258__generic_file_splice_read(struct file *in, loff_t *ppos,
259 struct pipe_inode_info *pipe, size_t len,
260 unsigned int flags)
261{
262 struct address_space *mapping = in->f_mapping;
263 unsigned int loff, nr_pages;
264 struct page *pages[PIPE_BUFFERS];
265 struct partial_page partial[PIPE_BUFFERS];
266 struct page *page;
267 pgoff_t index, end_index;
268 loff_t isize;
269 int error, page_nr;
270 struct splice_pipe_desc spd = {
271 .pages = pages,
272 .partial = partial,
273 .flags = flags,
274 .ops = &page_cache_pipe_buf_ops,
275 };
276
277 index = *ppos >> PAGE_CACHE_SHIFT;
278 loff = *ppos & ~PAGE_CACHE_MASK;
279 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
280
281 if (nr_pages > PIPE_BUFFERS)
282 nr_pages = PIPE_BUFFERS;
283
284 /*
285 * Don't try to 2nd guess the read-ahead logic, call into
286 * page_cache_readahead() like the page cache reads would do.
287 */
288 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
289
290 /*
291 * Lookup the (hopefully) full range of pages we need.
292 */
293 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
294
295 /*
296 * If find_get_pages_contig() returned fewer pages than we needed,
297 * allocate the rest and fill in the holes.
298 */
299 error = 0;
300 index += spd.nr_pages;
301 while (spd.nr_pages < nr_pages) {
302 /*
303 * Page could be there, find_get_pages_contig() breaks on
304 * the first hole.
305 */
306 page = find_get_page(mapping, index);
307 if (!page) {
308 /*
309 * Make sure the read-ahead engine is notified
310 * about this failure.
311 */
312 handle_ra_miss(mapping, &in->f_ra, index);
313
314 /*
315 * page didn't exist, allocate one.
316 */
317 page = page_cache_alloc_cold(mapping);
318 if (!page)
319 break;
320
321 error = add_to_page_cache_lru(page, mapping, index,
322 GFP_KERNEL);
323 if (unlikely(error)) {
324 page_cache_release(page);
325 if (error == -EEXIST)
326 continue;
327 break;
328 }
329 /*
330 * add_to_page_cache() locks the page, unlock it
331 * to avoid convoluting the logic below even more.
332 */
333 unlock_page(page);
334 }
335
336 pages[spd.nr_pages++] = page;
337 index++;
338 }
339
340 /*
341 * Now loop over the map and see if we need to start IO on any
342 * pages, fill in the partial map, etc.
343 */
344 index = *ppos >> PAGE_CACHE_SHIFT;
345 nr_pages = spd.nr_pages;
346 spd.nr_pages = 0;
347 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
348 unsigned int this_len;
349
350 if (!len)
351 break;
352
353 /*
354 * this_len is the max we'll use from this page
355 */
356 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
357 page = pages[page_nr];
358
359 /*
360 * If the page isn't uptodate, we may need to start io on it
361 */
362 if (!PageUptodate(page)) {
363 /*
364 * If in nonblock mode then dont block on waiting
365 * for an in-flight io page
366 */
367 if (flags & SPLICE_F_NONBLOCK) {
368 if (TestSetPageLocked(page))
369 break;
370 } else
371 lock_page(page);
372
373 /*
374 * page was truncated, stop here. if this isn't the
375 * first page, we'll just complete what we already
376 * added
377 */
378 if (!page->mapping) {
379 unlock_page(page);
380 break;
381 }
382 /*
383 * page was already under io and is now done, great
384 */
385 if (PageUptodate(page)) {
386 unlock_page(page);
387 goto fill_it;
388 }
389
390 /*
391 * need to read in the page
392 */
393 error = mapping->a_ops->readpage(in, page);
394 if (unlikely(error)) {
395 /*
396 * We really should re-lookup the page here,
397 * but it complicates things a lot. Instead
398 * lets just do what we already stored, and
399 * we'll get it the next time we are called.
400 */
401 if (error == AOP_TRUNCATED_PAGE)
402 error = 0;
403
404 break;
405 }
406 }
407fill_it:
408 /*
409 * i_size must be checked after PageUptodate.
410 */
411 isize = i_size_read(mapping->host);
412 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
413 if (unlikely(!isize || index > end_index))
414 break;
415
416 /*
417 * if this is the last page, see if we need to shrink
418 * the length and stop
419 */
420 if (end_index == index) {
421 unsigned int plen;
422
423 /*
424 * max good bytes in this page
425 */
426 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
427 if (plen <= loff)
428 break;
429
430 /*
431 * force quit after adding this page
432 */
433 this_len = min(this_len, plen - loff);
434 len = this_len;
435 }
436
437 partial[page_nr].offset = loff;
438 partial[page_nr].len = this_len;
439 len -= this_len;
440 loff = 0;
441 spd.nr_pages++;
442 index++;
443 }
444
445 /*
446 * Release any pages at the end, if we quit early. 'page_nr' is how far
447 * we got, 'nr_pages' is how many pages are in the map.
448 */
449 while (page_nr < nr_pages)
450 page_cache_release(pages[page_nr++]);
451
452 if (spd.nr_pages)
453 return splice_to_pipe(pipe, &spd);
454
455 return error;
456}
457
458/**
459 * generic_file_splice_read - splice data from file to a pipe
460 * @in: file to splice from
461 * @ppos: position in @in
462 * @pipe: pipe to splice to
463 * @len: number of bytes to splice
464 * @flags: splice modifier flags
465 *
466 * Description:
467 * Will read pages from given file and fill them into a pipe. Can be
468 * used as long as the address_space operations for the source implements
469 * a readpage() hook.
470 *
471 */
472ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
473 struct pipe_inode_info *pipe, size_t len,
474 unsigned int flags)
475{
476 ssize_t spliced;
477 int ret;
478 loff_t isize, left;
479
480 isize = i_size_read(in->f_mapping->host);
481 if (unlikely(*ppos >= isize))
482 return 0;
483
484 left = isize - *ppos;
485 if (unlikely(left < len))
486 len = left;
487
488 ret = 0;
489 spliced = 0;
490 while (len) {
491 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
492
493 if (ret < 0)
494 break;
495 else if (!ret) {
496 if (spliced)
497 break;
498 if (flags & SPLICE_F_NONBLOCK) {
499 ret = -EAGAIN;
500 break;
501 }
502 }
503
504 *ppos += ret;
505 len -= ret;
506 spliced += ret;
507 }
508
509 if (spliced)
510 return spliced;
511
512 return ret;
513}
514
515EXPORT_SYMBOL(generic_file_splice_read);
516
517/*
518 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
519 * using sendpage(). Return the number of bytes sent.
520 */
521static int pipe_to_sendpage(struct pipe_inode_info *pipe,
522 struct pipe_buffer *buf, struct splice_desc *sd)
523{
524 struct file *file = sd->u.file;
525 loff_t pos = sd->pos;
526 int ret, more;
527
528 ret = buf->ops->pin(pipe, buf);
529 if (!ret) {
530 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
531
532 ret = file->f_op->sendpage(file, buf->page, buf->offset,
533 sd->len, &pos, more);
534 }
535
536 return ret;
537}
538
539/*
540 * This is a little more tricky than the file -> pipe splicing. There are
541 * basically three cases:
542 *
543 * - Destination page already exists in the address space and there
544 * are users of it. For that case we have no other option that
545 * copying the data. Tough luck.
546 * - Destination page already exists in the address space, but there
547 * are no users of it. Make sure it's uptodate, then drop it. Fall
548 * through to last case.
549 * - Destination page does not exist, we can add the pipe page to
550 * the page cache and avoid the copy.
551 *
552 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
553 * sd->flags), we attempt to migrate pages from the pipe to the output
554 * file address space page cache. This is possible if no one else has
555 * the pipe page referenced outside of the pipe and page cache. If
556 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
557 * a new page in the output file page cache and fill/dirty that.
558 */
559static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
560 struct splice_desc *sd)
561{
562 struct file *file = sd->u.file;
563 struct address_space *mapping = file->f_mapping;
564 unsigned int offset, this_len;
565 struct page *page;
566 pgoff_t index;
567 int ret;
568
569 /*
570 * make sure the data in this buffer is uptodate
571 */
572 ret = buf->ops->pin(pipe, buf);
573 if (unlikely(ret))
574 return ret;
575
576 index = sd->pos >> PAGE_CACHE_SHIFT;
577 offset = sd->pos & ~PAGE_CACHE_MASK;
578
579 this_len = sd->len;
580 if (this_len + offset > PAGE_CACHE_SIZE)
581 this_len = PAGE_CACHE_SIZE - offset;
582
583find_page:
584 page = find_lock_page(mapping, index);
585 if (!page) {
586 ret = -ENOMEM;
587 page = page_cache_alloc_cold(mapping);
588 if (unlikely(!page))
589 goto out_ret;
590
591 /*
592 * This will also lock the page
593 */
594 ret = add_to_page_cache_lru(page, mapping, index,
595 GFP_KERNEL);
596 if (unlikely(ret))
597 goto out;
598 }
599
600 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
601 if (unlikely(ret)) {
602 loff_t isize = i_size_read(mapping->host);
603
604 if (ret != AOP_TRUNCATED_PAGE)
605 unlock_page(page);
606 page_cache_release(page);
607 if (ret == AOP_TRUNCATED_PAGE)
608 goto find_page;
609
610 /*
611 * prepare_write() may have instantiated a few blocks
612 * outside i_size. Trim these off again.
613 */
614 if (sd->pos + this_len > isize)
615 vmtruncate(mapping->host, isize);
616
617 goto out_ret;
618 }
619
620 if (buf->page != page) {
621 /*
622 * Careful, ->map() uses KM_USER0!
623 */
624 char *src = buf->ops->map(pipe, buf, 1);
625 char *dst = kmap_atomic(page, KM_USER1);
626
627 memcpy(dst + offset, src + buf->offset, this_len);
628 flush_dcache_page(page);
629 kunmap_atomic(dst, KM_USER1);
630 buf->ops->unmap(pipe, buf, src);
631 }
632
633 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
634 if (ret) {
635 if (ret == AOP_TRUNCATED_PAGE) {
636 page_cache_release(page);
637 goto find_page;
638 }
639 if (ret < 0)
640 goto out;
641 /*
642 * Partial write has happened, so 'ret' already initialized by
643 * number of bytes written, Where is nothing we have to do here.
644 */
645 } else
646 ret = this_len;
647 /*
648 * Return the number of bytes written and mark page as
649 * accessed, we are now done!
650 */
651 mark_page_accessed(page);
652out:
653 page_cache_release(page);
654 unlock_page(page);
655out_ret:
656 return ret;
657}
658
659/**
660 * __splice_from_pipe - splice data from a pipe to given actor
661 * @pipe: pipe to splice from
662 * @sd: information to @actor
663 * @actor: handler that splices the data
664 *
665 * Description:
666 * This function does little more than loop over the pipe and call
667 * @actor to do the actual moving of a single struct pipe_buffer to
668 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
669 * pipe_to_user.
670 *
671 */
672ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
673 splice_actor *actor)
674{
675 int ret, do_wakeup, err;
676
677 ret = 0;
678 do_wakeup = 0;
679
680 for (;;) {
681 if (pipe->nrbufs) {
682 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
683 const struct pipe_buf_operations *ops = buf->ops;
684
685 sd->len = buf->len;
686 if (sd->len > sd->total_len)
687 sd->len = sd->total_len;
688
689 err = actor(pipe, buf, sd);
690 if (err <= 0) {
691 if (!ret && err != -ENODATA)
692 ret = err;
693
694 break;
695 }
696
697 ret += err;
698 buf->offset += err;
699 buf->len -= err;
700
701 sd->len -= err;
702 sd->pos += err;
703 sd->total_len -= err;
704 if (sd->len)
705 continue;
706
707 if (!buf->len) {
708 buf->ops = NULL;
709 ops->release(pipe, buf);
710 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
711 pipe->nrbufs--;
712 if (pipe->inode)
713 do_wakeup = 1;
714 }
715
716 if (!sd->total_len)
717 break;
718 }
719
720 if (pipe->nrbufs)
721 continue;
722 if (!pipe->writers)
723 break;
724 if (!pipe->waiting_writers) {
725 if (ret)
726 break;
727 }
728
729 if (sd->flags & SPLICE_F_NONBLOCK) {
730 if (!ret)
731 ret = -EAGAIN;
732 break;
733 }
734
735 if (signal_pending(current)) {
736 if (!ret)
737 ret = -ERESTARTSYS;
738 break;
739 }
740
741 if (do_wakeup) {
742 smp_mb();
743 if (waitqueue_active(&pipe->wait))
744 wake_up_interruptible_sync(&pipe->wait);
745 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
746 do_wakeup = 0;
747 }
748
749 pipe_wait(pipe);
750 }
751
752 if (do_wakeup) {
753 smp_mb();
754 if (waitqueue_active(&pipe->wait))
755 wake_up_interruptible(&pipe->wait);
756 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
757 }
758
759 return ret;
760}
761EXPORT_SYMBOL(__splice_from_pipe);
762
763/**
764 * splice_from_pipe - splice data from a pipe to a file
765 * @pipe: pipe to splice from
766 * @out: file to splice to
767 * @ppos: position in @out
768 * @len: how many bytes to splice
769 * @flags: splice modifier flags
770 * @actor: handler that splices the data
771 *
772 * Description:
773 * See __splice_from_pipe. This function locks the input and output inodes,
774 * otherwise it's identical to __splice_from_pipe().
775 *
776 */
777ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
778 loff_t *ppos, size_t len, unsigned int flags,
779 splice_actor *actor)
780{
781 ssize_t ret;
782 struct inode *inode = out->f_mapping->host;
783 struct splice_desc sd = {
784 .total_len = len,
785 .flags = flags,
786 .pos = *ppos,
787 .u.file = out,
788 };
789
790 /*
791 * The actor worker might be calling ->prepare_write and
792 * ->commit_write. Most of the time, these expect i_mutex to
793 * be held. Since this may result in an ABBA deadlock with
794 * pipe->inode, we have to order lock acquiry here.
795 */
796 inode_double_lock(inode, pipe->inode);
797 ret = __splice_from_pipe(pipe, &sd, actor);
798 inode_double_unlock(inode, pipe->inode);
799
800 return ret;
801}
802
803/**
804 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
805 * @pipe: pipe info
806 * @out: file to write to
807 * @ppos: position in @out
808 * @len: number of bytes to splice
809 * @flags: splice modifier flags
810 *
811 * Description:
812 * Will either move or copy pages (determined by @flags options) from
813 * the given pipe inode to the given file. The caller is responsible
814 * for acquiring i_mutex on both inodes.
815 *
816 */
817ssize_t
818generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
819 loff_t *ppos, size_t len, unsigned int flags)
820{
821 struct address_space *mapping = out->f_mapping;
822 struct inode *inode = mapping->host;
823 struct splice_desc sd = {
824 .total_len = len,
825 .flags = flags,
826 .pos = *ppos,
827 .u.file = out,
828 };
829 ssize_t ret;
830 int err;
831
832 err = remove_suid(out->f_path.dentry);
833 if (unlikely(err))
834 return err;
835
836 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
837 if (ret > 0) {
838 unsigned long nr_pages;
839
840 *ppos += ret;
841 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
842
843 /*
844 * If file or inode is SYNC and we actually wrote some data,
845 * sync it.
846 */
847 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
848 err = generic_osync_inode(inode, mapping,
849 OSYNC_METADATA|OSYNC_DATA);
850
851 if (err)
852 ret = err;
853 }
854 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
855 }
856
857 return ret;
858}
859
860EXPORT_SYMBOL(generic_file_splice_write_nolock);
861
862/**
863 * generic_file_splice_write - splice data from a pipe to a file
864 * @pipe: pipe info
865 * @out: file to write to
866 * @ppos: position in @out
867 * @len: number of bytes to splice
868 * @flags: splice modifier flags
869 *
870 * Description:
871 * Will either move or copy pages (determined by @flags options) from
872 * the given pipe inode to the given file.
873 *
874 */
875ssize_t
876generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
877 loff_t *ppos, size_t len, unsigned int flags)
878{
879 struct address_space *mapping = out->f_mapping;
880 struct inode *inode = mapping->host;
881 ssize_t ret;
882 int err;
883
884 err = should_remove_suid(out->f_path.dentry);
885 if (unlikely(err)) {
886 mutex_lock(&inode->i_mutex);
887 err = __remove_suid(out->f_path.dentry, err);
888 mutex_unlock(&inode->i_mutex);
889 if (err)
890 return err;
891 }
892
893 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
894 if (ret > 0) {
895 unsigned long nr_pages;
896
897 *ppos += ret;
898 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
899
900 /*
901 * If file or inode is SYNC and we actually wrote some data,
902 * sync it.
903 */
904 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
905 mutex_lock(&inode->i_mutex);
906 err = generic_osync_inode(inode, mapping,
907 OSYNC_METADATA|OSYNC_DATA);
908 mutex_unlock(&inode->i_mutex);
909
910 if (err)
911 ret = err;
912 }
913 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
914 }
915
916 return ret;
917}
918
919EXPORT_SYMBOL(generic_file_splice_write);
920
921/**
922 * generic_splice_sendpage - splice data from a pipe to a socket
923 * @pipe: pipe to splice from
924 * @out: socket to write to
925 * @ppos: position in @out
926 * @len: number of bytes to splice
927 * @flags: splice modifier flags
928 *
929 * Description:
930 * Will send @len bytes from the pipe to a network socket. No data copying
931 * is involved.
932 *
933 */
934ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
935 loff_t *ppos, size_t len, unsigned int flags)
936{
937 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
938}
939
940EXPORT_SYMBOL(generic_splice_sendpage);
941
942/*
943 * Attempt to initiate a splice from pipe to file.
944 */
945static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
946 loff_t *ppos, size_t len, unsigned int flags)
947{
948 int ret;
949
950 if (unlikely(!out->f_op || !out->f_op->splice_write))
951 return -EINVAL;
952
953 if (unlikely(!(out->f_mode & FMODE_WRITE)))
954 return -EBADF;
955
956 ret = rw_verify_area(WRITE, out, ppos, len);
957 if (unlikely(ret < 0))
958 return ret;
959
960 return out->f_op->splice_write(pipe, out, ppos, len, flags);
961}
962
963/*
964 * Attempt to initiate a splice from a file to a pipe.
965 */
966static long do_splice_to(struct file *in, loff_t *ppos,
967 struct pipe_inode_info *pipe, size_t len,
968 unsigned int flags)
969{
970 int ret;
971
972 if (unlikely(!in->f_op || !in->f_op->splice_read))
973 return -EINVAL;
974
975 if (unlikely(!(in->f_mode & FMODE_READ)))
976 return -EBADF;
977
978 ret = rw_verify_area(READ, in, ppos, len);
979 if (unlikely(ret < 0))
980 return ret;
981
982 return in->f_op->splice_read(in, ppos, pipe, len, flags);
983}
984
985/**
986 * splice_direct_to_actor - splices data directly between two non-pipes
987 * @in: file to splice from
988 * @sd: actor information on where to splice to
989 * @actor: handles the data splicing
990 *
991 * Description:
992 * This is a special case helper to splice directly between two
993 * points, without requiring an explicit pipe. Internally an allocated
994 * pipe is cached in the process, and reused during the life time of
995 * that process.
996 *
997 */
998ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
999 splice_direct_actor *actor)
1000{
1001 struct pipe_inode_info *pipe;
1002 long ret, bytes;
1003 umode_t i_mode;
1004 size_t len;
1005 int i, flags;
1006
1007 /*
1008 * We require the input being a regular file, as we don't want to
1009 * randomly drop data for eg socket -> socket splicing. Use the
1010 * piped splicing for that!
1011 */
1012 i_mode = in->f_path.dentry->d_inode->i_mode;
1013 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1014 return -EINVAL;
1015
1016 /*
1017 * neither in nor out is a pipe, setup an internal pipe attached to
1018 * 'out' and transfer the wanted data from 'in' to 'out' through that
1019 */
1020 pipe = current->splice_pipe;
1021 if (unlikely(!pipe)) {
1022 pipe = alloc_pipe_info(NULL);
1023 if (!pipe)
1024 return -ENOMEM;
1025
1026 /*
1027 * We don't have an immediate reader, but we'll read the stuff
1028 * out of the pipe right after the splice_to_pipe(). So set
1029 * PIPE_READERS appropriately.
1030 */
1031 pipe->readers = 1;
1032
1033 current->splice_pipe = pipe;
1034 }
1035
1036 /*
1037 * Do the splice.
1038 */
1039 ret = 0;
1040 bytes = 0;
1041 len = sd->total_len;
1042 flags = sd->flags;
1043
1044 /*
1045 * Don't block on output, we have to drain the direct pipe.
1046 */
1047 sd->flags &= ~SPLICE_F_NONBLOCK;
1048
1049 while (len) {
1050 size_t read_len, max_read_len;
1051
1052 /*
1053 * Do at most PIPE_BUFFERS pages worth of transfer:
1054 */
1055 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1056
1057 ret = do_splice_to(in, &sd->pos, pipe, max_read_len, flags);
1058 if (unlikely(ret < 0))
1059 goto out_release;
1060
1061 read_len = ret;
1062 sd->total_len = read_len;
1063
1064 /*
1065 * NOTE: nonblocking mode only applies to the input. We
1066 * must not do the output in nonblocking mode as then we
1067 * could get stuck data in the internal pipe:
1068 */
1069 ret = actor(pipe, sd);
1070 if (unlikely(ret < 0))
1071 goto out_release;
1072
1073 bytes += ret;
1074 len -= ret;
1075
1076 /*
1077 * In nonblocking mode, if we got back a short read then
1078 * that was due to either an IO error or due to the
1079 * pagecache entry not being there. In the IO error case
1080 * the _next_ splice attempt will produce a clean IO error
1081 * return value (not a short read), so in both cases it's
1082 * correct to break out of the loop here:
1083 */
1084 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1085 break;
1086 }
1087
1088 pipe->nrbufs = pipe->curbuf = 0;
1089
1090 return bytes;
1091
1092out_release:
1093 /*
1094 * If we did an incomplete transfer we must release
1095 * the pipe buffers in question:
1096 */
1097 for (i = 0; i < PIPE_BUFFERS; i++) {
1098 struct pipe_buffer *buf = pipe->bufs + i;
1099
1100 if (buf->ops) {
1101 buf->ops->release(pipe, buf);
1102 buf->ops = NULL;
1103 }
1104 }
1105 pipe->nrbufs = pipe->curbuf = 0;
1106
1107 /*
1108 * If we transferred some data, return the number of bytes:
1109 */
1110 if (bytes > 0)
1111 return bytes;
1112
1113 return ret;
1114
1115}
1116EXPORT_SYMBOL(splice_direct_to_actor);
1117
1118static int direct_splice_actor(struct pipe_inode_info *pipe,
1119 struct splice_desc *sd)
1120{
1121 struct file *file = sd->u.file;
1122
1123 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1124}
1125
1126/**
1127 * do_splice_direct - splices data directly between two files
1128 * @in: file to splice from
1129 * @ppos: input file offset
1130 * @out: file to splice to
1131 * @len: number of bytes to splice
1132 * @flags: splice modifier flags
1133 *
1134 * Description:
1135 * For use by do_sendfile(). splice can easily emulate sendfile, but
1136 * doing it in the application would incur an extra system call
1137 * (splice in + splice out, as compared to just sendfile()). So this helper
1138 * can splice directly through a process-private pipe.
1139 *
1140 */
1141long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1142 size_t len, unsigned int flags)
1143{
1144 struct splice_desc sd = {
1145 .len = len,
1146 .total_len = len,
1147 .flags = flags,
1148 .pos = *ppos,
1149 .u.file = out,
1150 };
1151 size_t ret;
1152
1153 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1154 *ppos = sd.pos;
1155 return ret;
1156}
1157
1158/*
1159 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1160 * location, so checking ->i_pipe is not enough to verify that this is a
1161 * pipe.
1162 */
1163static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1164{
1165 if (S_ISFIFO(inode->i_mode))
1166 return inode->i_pipe;
1167
1168 return NULL;
1169}
1170
1171/*
1172 * Determine where to splice to/from.
1173 */
1174static long do_splice(struct file *in, loff_t __user *off_in,
1175 struct file *out, loff_t __user *off_out,
1176 size_t len, unsigned int flags)
1177{
1178 struct pipe_inode_info *pipe;
1179 loff_t offset, *off;
1180 long ret;
1181
1182 pipe = pipe_info(in->f_path.dentry->d_inode);
1183 if (pipe) {
1184 if (off_in)
1185 return -ESPIPE;
1186 if (off_out) {
1187 if (out->f_op->llseek == no_llseek)
1188 return -EINVAL;
1189 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1190 return -EFAULT;
1191 off = &offset;
1192 } else
1193 off = &out->f_pos;
1194
1195 ret = do_splice_from(pipe, out, off, len, flags);
1196
1197 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1198 ret = -EFAULT;
1199
1200 return ret;
1201 }
1202
1203 pipe = pipe_info(out->f_path.dentry->d_inode);
1204 if (pipe) {
1205 if (off_out)
1206 return -ESPIPE;
1207 if (off_in) {
1208 if (in->f_op->llseek == no_llseek)
1209 return -EINVAL;
1210 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1211 return -EFAULT;
1212 off = &offset;
1213 } else
1214 off = &in->f_pos;
1215
1216 ret = do_splice_to(in, off, pipe, len, flags);
1217
1218 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1219 ret = -EFAULT;
1220
1221 return ret;
1222 }
1223
1224 return -EINVAL;
1225}
1226
1227/*
1228 * Map an iov into an array of pages and offset/length tupples. With the
1229 * partial_page structure, we can map several non-contiguous ranges into
1230 * our ones pages[] map instead of splitting that operation into pieces.
1231 * Could easily be exported as a generic helper for other users, in which
1232 * case one would probably want to add a 'max_nr_pages' parameter as well.
1233 */
1234static int get_iovec_page_array(const struct iovec __user *iov,
1235 unsigned int nr_vecs, struct page **pages,
1236 struct partial_page *partial, int aligned)
1237{
1238 int buffers = 0, error = 0;
1239
1240 /*
1241 * It's ok to take the mmap_sem for reading, even
1242 * across a "get_user()".
1243 */
1244 down_read(&current->mm->mmap_sem);
1245
1246 while (nr_vecs) {
1247 unsigned long off, npages;
1248 void __user *base;
1249 size_t len;
1250 int i;
1251
1252 /*
1253 * Get user address base and length for this iovec.
1254 */
1255 error = get_user(base, &iov->iov_base);
1256 if (unlikely(error))
1257 break;
1258 error = get_user(len, &iov->iov_len);
1259 if (unlikely(error))
1260 break;
1261
1262 /*
1263 * Sanity check this iovec. 0 read succeeds.
1264 */
1265 if (unlikely(!len))
1266 break;
1267 error = -EFAULT;
1268 if (unlikely(!base))
1269 break;
1270
1271 /*
1272 * Get this base offset and number of pages, then map
1273 * in the user pages.
1274 */
1275 off = (unsigned long) base & ~PAGE_MASK;
1276
1277 /*
1278 * If asked for alignment, the offset must be zero and the
1279 * length a multiple of the PAGE_SIZE.
1280 */
1281 error = -EINVAL;
1282 if (aligned && (off || len & ~PAGE_MASK))
1283 break;
1284
1285 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1286 if (npages > PIPE_BUFFERS - buffers)
1287 npages = PIPE_BUFFERS - buffers;
1288
1289 error = get_user_pages(current, current->mm,
1290 (unsigned long) base, npages, 0, 0,
1291 &pages[buffers], NULL);
1292
1293 if (unlikely(error <= 0))
1294 break;
1295
1296 /*
1297 * Fill this contiguous range into the partial page map.
1298 */
1299 for (i = 0; i < error; i++) {
1300 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1301
1302 partial[buffers].offset = off;
1303 partial[buffers].len = plen;
1304
1305 off = 0;
1306 len -= plen;
1307 buffers++;
1308 }
1309
1310 /*
1311 * We didn't complete this iov, stop here since it probably
1312 * means we have to move some of this into a pipe to
1313 * be able to continue.
1314 */
1315 if (len)
1316 break;
1317
1318 /*
1319 * Don't continue if we mapped fewer pages than we asked for,
1320 * or if we mapped the max number of pages that we have
1321 * room for.
1322 */
1323 if (error < npages || buffers == PIPE_BUFFERS)
1324 break;
1325
1326 nr_vecs--;
1327 iov++;
1328 }
1329
1330 up_read(&current->mm->mmap_sem);
1331
1332 if (buffers)
1333 return buffers;
1334
1335 return error;
1336}
1337
1338static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1339 struct splice_desc *sd)
1340{
1341 char *src;
1342 int ret;
1343
1344 ret = buf->ops->pin(pipe, buf);
1345 if (unlikely(ret))
1346 return ret;
1347
1348 /*
1349 * See if we can use the atomic maps, by prefaulting in the
1350 * pages and doing an atomic copy
1351 */
1352 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1353 src = buf->ops->map(pipe, buf, 1);
1354 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1355 sd->len);
1356 buf->ops->unmap(pipe, buf, src);
1357 if (!ret) {
1358 ret = sd->len;
1359 goto out;
1360 }
1361 }
1362
1363 /*
1364 * No dice, use slow non-atomic map and copy
1365 */
1366 src = buf->ops->map(pipe, buf, 0);
1367
1368 ret = sd->len;
1369 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1370 ret = -EFAULT;
1371
1372out:
1373 if (ret > 0)
1374 sd->u.userptr += ret;
1375 buf->ops->unmap(pipe, buf, src);
1376 return ret;
1377}
1378
1379/*
1380 * For lack of a better implementation, implement vmsplice() to userspace
1381 * as a simple copy of the pipes pages to the user iov.
1382 */
1383static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1384 unsigned long nr_segs, unsigned int flags)
1385{
1386 struct pipe_inode_info *pipe;
1387 struct splice_desc sd;
1388 ssize_t size;
1389 int error;
1390 long ret;
1391
1392 pipe = pipe_info(file->f_path.dentry->d_inode);
1393 if (!pipe)
1394 return -EBADF;
1395
1396 if (pipe->inode)
1397 mutex_lock(&pipe->inode->i_mutex);
1398
1399 error = ret = 0;
1400 while (nr_segs) {
1401 void __user *base;
1402 size_t len;
1403
1404 /*
1405 * Get user address base and length for this iovec.
1406 */
1407 error = get_user(base, &iov->iov_base);
1408 if (unlikely(error))
1409 break;
1410 error = get_user(len, &iov->iov_len);
1411 if (unlikely(error))
1412 break;
1413
1414 /*
1415 * Sanity check this iovec. 0 read succeeds.
1416 */
1417 if (unlikely(!len))
1418 break;
1419 if (unlikely(!base)) {
1420 error = -EFAULT;
1421 break;
1422 }
1423
1424 sd.len = 0;
1425 sd.total_len = len;
1426 sd.flags = flags;
1427 sd.u.userptr = base;
1428 sd.pos = 0;
1429
1430 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1431 if (size < 0) {
1432 if (!ret)
1433 ret = size;
1434
1435 break;
1436 }
1437
1438 ret += size;
1439
1440 if (size < len)
1441 break;
1442
1443 nr_segs--;
1444 iov++;
1445 }
1446
1447 if (pipe->inode)
1448 mutex_unlock(&pipe->inode->i_mutex);
1449
1450 if (!ret)
1451 ret = error;
1452
1453 return ret;
1454}
1455
1456/*
1457 * vmsplice splices a user address range into a pipe. It can be thought of
1458 * as splice-from-memory, where the regular splice is splice-from-file (or
1459 * to file). In both cases the output is a pipe, naturally.
1460 */
1461static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1462 unsigned long nr_segs, unsigned int flags)
1463{
1464 struct pipe_inode_info *pipe;
1465 struct page *pages[PIPE_BUFFERS];
1466 struct partial_page partial[PIPE_BUFFERS];
1467 struct splice_pipe_desc spd = {
1468 .pages = pages,
1469 .partial = partial,
1470 .flags = flags,
1471 .ops = &user_page_pipe_buf_ops,
1472 };
1473
1474 pipe = pipe_info(file->f_path.dentry->d_inode);
1475 if (!pipe)
1476 return -EBADF;
1477
1478 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1479 flags & SPLICE_F_GIFT);
1480 if (spd.nr_pages <= 0)
1481 return spd.nr_pages;
1482
1483 return splice_to_pipe(pipe, &spd);
1484}
1485
1486/*
1487 * Note that vmsplice only really supports true splicing _from_ user memory
1488 * to a pipe, not the other way around. Splicing from user memory is a simple
1489 * operation that can be supported without any funky alignment restrictions
1490 * or nasty vm tricks. We simply map in the user memory and fill them into
1491 * a pipe. The reverse isn't quite as easy, though. There are two possible
1492 * solutions for that:
1493 *
1494 * - memcpy() the data internally, at which point we might as well just
1495 * do a regular read() on the buffer anyway.
1496 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1497 * has restriction limitations on both ends of the pipe).
1498 *
1499 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1500 *
1501 */
1502asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1503 unsigned long nr_segs, unsigned int flags)
1504{
1505 struct file *file;
1506 long error;
1507 int fput;
1508
1509 if (unlikely(nr_segs > UIO_MAXIOV))
1510 return -EINVAL;
1511 else if (unlikely(!nr_segs))
1512 return 0;
1513
1514 error = -EBADF;
1515 file = fget_light(fd, &fput);
1516 if (file) {
1517 if (file->f_mode & FMODE_WRITE)
1518 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1519 else if (file->f_mode & FMODE_READ)
1520 error = vmsplice_to_user(file, iov, nr_segs, flags);
1521
1522 fput_light(file, fput);
1523 }
1524
1525 return error;
1526}
1527
1528asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1529 int fd_out, loff_t __user *off_out,
1530 size_t len, unsigned int flags)
1531{
1532 long error;
1533 struct file *in, *out;
1534 int fput_in, fput_out;
1535
1536 if (unlikely(!len))
1537 return 0;
1538
1539 error = -EBADF;
1540 in = fget_light(fd_in, &fput_in);
1541 if (in) {
1542 if (in->f_mode & FMODE_READ) {
1543 out = fget_light(fd_out, &fput_out);
1544 if (out) {
1545 if (out->f_mode & FMODE_WRITE)
1546 error = do_splice(in, off_in,
1547 out, off_out,
1548 len, flags);
1549 fput_light(out, fput_out);
1550 }
1551 }
1552
1553 fput_light(in, fput_in);
1554 }
1555
1556 return error;
1557}
1558
1559/*
1560 * Make sure there's data to read. Wait for input if we can, otherwise
1561 * return an appropriate error.
1562 */
1563static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1564{
1565 int ret;
1566
1567 /*
1568 * Check ->nrbufs without the inode lock first. This function
1569 * is speculative anyways, so missing one is ok.
1570 */
1571 if (pipe->nrbufs)
1572 return 0;
1573
1574 ret = 0;
1575 mutex_lock(&pipe->inode->i_mutex);
1576
1577 while (!pipe->nrbufs) {
1578 if (signal_pending(current)) {
1579 ret = -ERESTARTSYS;
1580 break;
1581 }
1582 if (!pipe->writers)
1583 break;
1584 if (!pipe->waiting_writers) {
1585 if (flags & SPLICE_F_NONBLOCK) {
1586 ret = -EAGAIN;
1587 break;
1588 }
1589 }
1590 pipe_wait(pipe);
1591 }
1592
1593 mutex_unlock(&pipe->inode->i_mutex);
1594 return ret;
1595}
1596
1597/*
1598 * Make sure there's writeable room. Wait for room if we can, otherwise
1599 * return an appropriate error.
1600 */
1601static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1602{
1603 int ret;
1604
1605 /*
1606 * Check ->nrbufs without the inode lock first. This function
1607 * is speculative anyways, so missing one is ok.
1608 */
1609 if (pipe->nrbufs < PIPE_BUFFERS)
1610 return 0;
1611
1612 ret = 0;
1613 mutex_lock(&pipe->inode->i_mutex);
1614
1615 while (pipe->nrbufs >= PIPE_BUFFERS) {
1616 if (!pipe->readers) {
1617 send_sig(SIGPIPE, current, 0);
1618 ret = -EPIPE;
1619 break;
1620 }
1621 if (flags & SPLICE_F_NONBLOCK) {
1622 ret = -EAGAIN;
1623 break;
1624 }
1625 if (signal_pending(current)) {
1626 ret = -ERESTARTSYS;
1627 break;
1628 }
1629 pipe->waiting_writers++;
1630 pipe_wait(pipe);
1631 pipe->waiting_writers--;
1632 }
1633
1634 mutex_unlock(&pipe->inode->i_mutex);
1635 return ret;
1636}
1637
1638/*
1639 * Link contents of ipipe to opipe.
1640 */
1641static int link_pipe(struct pipe_inode_info *ipipe,
1642 struct pipe_inode_info *opipe,
1643 size_t len, unsigned int flags)
1644{
1645 struct pipe_buffer *ibuf, *obuf;
1646 int ret = 0, i = 0, nbuf;
1647
1648 /*
1649 * Potential ABBA deadlock, work around it by ordering lock
1650 * grabbing by inode address. Otherwise two different processes
1651 * could deadlock (one doing tee from A -> B, the other from B -> A).
1652 */
1653 inode_double_lock(ipipe->inode, opipe->inode);
1654
1655 do {
1656 if (!opipe->readers) {
1657 send_sig(SIGPIPE, current, 0);
1658 if (!ret)
1659 ret = -EPIPE;
1660 break;
1661 }
1662
1663 /*
1664 * If we have iterated all input buffers or ran out of
1665 * output room, break.
1666 */
1667 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1668 break;
1669
1670 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1671 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1672
1673 /*
1674 * Get a reference to this pipe buffer,
1675 * so we can copy the contents over.
1676 */
1677 ibuf->ops->get(ipipe, ibuf);
1678
1679 obuf = opipe->bufs + nbuf;
1680 *obuf = *ibuf;
1681
1682 /*
1683 * Don't inherit the gift flag, we need to
1684 * prevent multiple steals of this page.
1685 */
1686 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1687
1688 if (obuf->len > len)
1689 obuf->len = len;
1690
1691 opipe->nrbufs++;
1692 ret += obuf->len;
1693 len -= obuf->len;
1694 i++;
1695 } while (len);
1696
1697 inode_double_unlock(ipipe->inode, opipe->inode);
1698
1699 /*
1700 * If we put data in the output pipe, wakeup any potential readers.
1701 */
1702 if (ret > 0) {
1703 smp_mb();
1704 if (waitqueue_active(&opipe->wait))
1705 wake_up_interruptible(&opipe->wait);
1706 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1707 }
1708
1709 return ret;
1710}
1711
1712/*
1713 * This is a tee(1) implementation that works on pipes. It doesn't copy
1714 * any data, it simply references the 'in' pages on the 'out' pipe.
1715 * The 'flags' used are the SPLICE_F_* variants, currently the only
1716 * applicable one is SPLICE_F_NONBLOCK.
1717 */
1718static long do_tee(struct file *in, struct file *out, size_t len,
1719 unsigned int flags)
1720{
1721 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1722 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1723 int ret = -EINVAL;
1724
1725 /*
1726 * Duplicate the contents of ipipe to opipe without actually
1727 * copying the data.
1728 */
1729 if (ipipe && opipe && ipipe != opipe) {
1730 /*
1731 * Keep going, unless we encounter an error. The ipipe/opipe
1732 * ordering doesn't really matter.
1733 */
1734 ret = link_ipipe_prep(ipipe, flags);
1735 if (!ret) {
1736 ret = link_opipe_prep(opipe, flags);
1737 if (!ret) {
1738 ret = link_pipe(ipipe, opipe, len, flags);
1739 if (!ret && (flags & SPLICE_F_NONBLOCK))
1740 ret = -EAGAIN;
1741 }
1742 }
1743 }
1744
1745 return ret;
1746}
1747
1748asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1749{
1750 struct file *in;
1751 int error, fput_in;
1752
1753 if (unlikely(!len))
1754 return 0;
1755
1756 error = -EBADF;
1757 in = fget_light(fdin, &fput_in);
1758 if (in) {
1759 if (in->f_mode & FMODE_READ) {
1760 int fput_out;
1761 struct file *out = fget_light(fdout, &fput_out);
1762
1763 if (out) {
1764 if (out->f_mode & FMODE_WRITE)
1765 error = do_tee(in, out, len, flags);
1766 fput_light(out, fput_out);
1767 }
1768 }
1769 fput_light(in, fput_in);
1770 }
1771
1772 return error;
1773}