]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/super.c
vfs: keep list of mounts for each superblock
[mirror_ubuntu-artful-kernel.git] / fs / super.c
... / ...
CommitLineData
1/*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/acct.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include "internal.h"
36
37
38LIST_HEAD(super_blocks);
39DEFINE_SPINLOCK(sb_lock);
40
41/*
42 * One thing we have to be careful of with a per-sb shrinker is that we don't
43 * drop the last active reference to the superblock from within the shrinker.
44 * If that happens we could trigger unregistering the shrinker from within the
45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
46 * take a passive reference to the superblock to avoid this from occurring.
47 */
48static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
49{
50 struct super_block *sb;
51 int fs_objects = 0;
52 int total_objects;
53
54 sb = container_of(shrink, struct super_block, s_shrink);
55
56 /*
57 * Deadlock avoidance. We may hold various FS locks, and we don't want
58 * to recurse into the FS that called us in clear_inode() and friends..
59 */
60 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
61 return -1;
62
63 if (!grab_super_passive(sb))
64 return !sc->nr_to_scan ? 0 : -1;
65
66 if (sb->s_op && sb->s_op->nr_cached_objects)
67 fs_objects = sb->s_op->nr_cached_objects(sb);
68
69 total_objects = sb->s_nr_dentry_unused +
70 sb->s_nr_inodes_unused + fs_objects + 1;
71
72 if (sc->nr_to_scan) {
73 int dentries;
74 int inodes;
75
76 /* proportion the scan between the caches */
77 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
78 total_objects;
79 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
80 total_objects;
81 if (fs_objects)
82 fs_objects = (sc->nr_to_scan * fs_objects) /
83 total_objects;
84 /*
85 * prune the dcache first as the icache is pinned by it, then
86 * prune the icache, followed by the filesystem specific caches
87 */
88 prune_dcache_sb(sb, dentries);
89 prune_icache_sb(sb, inodes);
90
91 if (fs_objects && sb->s_op->free_cached_objects) {
92 sb->s_op->free_cached_objects(sb, fs_objects);
93 fs_objects = sb->s_op->nr_cached_objects(sb);
94 }
95 total_objects = sb->s_nr_dentry_unused +
96 sb->s_nr_inodes_unused + fs_objects;
97 }
98
99 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
100 drop_super(sb);
101 return total_objects;
102}
103
104/**
105 * alloc_super - create new superblock
106 * @type: filesystem type superblock should belong to
107 *
108 * Allocates and initializes a new &struct super_block. alloc_super()
109 * returns a pointer new superblock or %NULL if allocation had failed.
110 */
111static struct super_block *alloc_super(struct file_system_type *type)
112{
113 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
114 static const struct super_operations default_op;
115
116 if (s) {
117 if (security_sb_alloc(s)) {
118 kfree(s);
119 s = NULL;
120 goto out;
121 }
122#ifdef CONFIG_SMP
123 s->s_files = alloc_percpu(struct list_head);
124 if (!s->s_files) {
125 security_sb_free(s);
126 kfree(s);
127 s = NULL;
128 goto out;
129 } else {
130 int i;
131
132 for_each_possible_cpu(i)
133 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
134 }
135#else
136 INIT_LIST_HEAD(&s->s_files);
137#endif
138 s->s_bdi = &default_backing_dev_info;
139 INIT_HLIST_NODE(&s->s_instances);
140 INIT_HLIST_BL_HEAD(&s->s_anon);
141 INIT_LIST_HEAD(&s->s_inodes);
142 INIT_LIST_HEAD(&s->s_dentry_lru);
143 INIT_LIST_HEAD(&s->s_inode_lru);
144 spin_lock_init(&s->s_inode_lru_lock);
145 INIT_LIST_HEAD(&s->s_mounts);
146 init_rwsem(&s->s_umount);
147 mutex_init(&s->s_lock);
148 lockdep_set_class(&s->s_umount, &type->s_umount_key);
149 /*
150 * The locking rules for s_lock are up to the
151 * filesystem. For example ext3fs has different
152 * lock ordering than usbfs:
153 */
154 lockdep_set_class(&s->s_lock, &type->s_lock_key);
155 /*
156 * sget() can have s_umount recursion.
157 *
158 * When it cannot find a suitable sb, it allocates a new
159 * one (this one), and tries again to find a suitable old
160 * one.
161 *
162 * In case that succeeds, it will acquire the s_umount
163 * lock of the old one. Since these are clearly distrinct
164 * locks, and this object isn't exposed yet, there's no
165 * risk of deadlocks.
166 *
167 * Annotate this by putting this lock in a different
168 * subclass.
169 */
170 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
171 s->s_count = 1;
172 atomic_set(&s->s_active, 1);
173 mutex_init(&s->s_vfs_rename_mutex);
174 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
175 mutex_init(&s->s_dquot.dqio_mutex);
176 mutex_init(&s->s_dquot.dqonoff_mutex);
177 init_rwsem(&s->s_dquot.dqptr_sem);
178 init_waitqueue_head(&s->s_wait_unfrozen);
179 s->s_maxbytes = MAX_NON_LFS;
180 s->s_op = &default_op;
181 s->s_time_gran = 1000000000;
182 s->cleancache_poolid = -1;
183
184 s->s_shrink.seeks = DEFAULT_SEEKS;
185 s->s_shrink.shrink = prune_super;
186 s->s_shrink.batch = 1024;
187 }
188out:
189 return s;
190}
191
192/**
193 * destroy_super - frees a superblock
194 * @s: superblock to free
195 *
196 * Frees a superblock.
197 */
198static inline void destroy_super(struct super_block *s)
199{
200#ifdef CONFIG_SMP
201 free_percpu(s->s_files);
202#endif
203 security_sb_free(s);
204 WARN_ON(!list_empty(&s->s_mounts));
205 kfree(s->s_subtype);
206 kfree(s->s_options);
207 kfree(s);
208}
209
210/* Superblock refcounting */
211
212/*
213 * Drop a superblock's refcount. The caller must hold sb_lock.
214 */
215static void __put_super(struct super_block *sb)
216{
217 if (!--sb->s_count) {
218 list_del_init(&sb->s_list);
219 destroy_super(sb);
220 }
221}
222
223/**
224 * put_super - drop a temporary reference to superblock
225 * @sb: superblock in question
226 *
227 * Drops a temporary reference, frees superblock if there's no
228 * references left.
229 */
230static void put_super(struct super_block *sb)
231{
232 spin_lock(&sb_lock);
233 __put_super(sb);
234 spin_unlock(&sb_lock);
235}
236
237
238/**
239 * deactivate_locked_super - drop an active reference to superblock
240 * @s: superblock to deactivate
241 *
242 * Drops an active reference to superblock, converting it into a temprory
243 * one if there is no other active references left. In that case we
244 * tell fs driver to shut it down and drop the temporary reference we
245 * had just acquired.
246 *
247 * Caller holds exclusive lock on superblock; that lock is released.
248 */
249void deactivate_locked_super(struct super_block *s)
250{
251 struct file_system_type *fs = s->s_type;
252 if (atomic_dec_and_test(&s->s_active)) {
253 cleancache_flush_fs(s);
254 fs->kill_sb(s);
255
256 /* caches are now gone, we can safely kill the shrinker now */
257 unregister_shrinker(&s->s_shrink);
258
259 /*
260 * We need to call rcu_barrier so all the delayed rcu free
261 * inodes are flushed before we release the fs module.
262 */
263 rcu_barrier();
264 put_filesystem(fs);
265 put_super(s);
266 } else {
267 up_write(&s->s_umount);
268 }
269}
270
271EXPORT_SYMBOL(deactivate_locked_super);
272
273/**
274 * deactivate_super - drop an active reference to superblock
275 * @s: superblock to deactivate
276 *
277 * Variant of deactivate_locked_super(), except that superblock is *not*
278 * locked by caller. If we are going to drop the final active reference,
279 * lock will be acquired prior to that.
280 */
281void deactivate_super(struct super_block *s)
282{
283 if (!atomic_add_unless(&s->s_active, -1, 1)) {
284 down_write(&s->s_umount);
285 deactivate_locked_super(s);
286 }
287}
288
289EXPORT_SYMBOL(deactivate_super);
290
291/**
292 * grab_super - acquire an active reference
293 * @s: reference we are trying to make active
294 *
295 * Tries to acquire an active reference. grab_super() is used when we
296 * had just found a superblock in super_blocks or fs_type->fs_supers
297 * and want to turn it into a full-blown active reference. grab_super()
298 * is called with sb_lock held and drops it. Returns 1 in case of
299 * success, 0 if we had failed (superblock contents was already dead or
300 * dying when grab_super() had been called).
301 */
302static int grab_super(struct super_block *s) __releases(sb_lock)
303{
304 if (atomic_inc_not_zero(&s->s_active)) {
305 spin_unlock(&sb_lock);
306 return 1;
307 }
308 /* it's going away */
309 s->s_count++;
310 spin_unlock(&sb_lock);
311 /* wait for it to die */
312 down_write(&s->s_umount);
313 up_write(&s->s_umount);
314 put_super(s);
315 return 0;
316}
317
318/*
319 * grab_super_passive - acquire a passive reference
320 * @s: reference we are trying to grab
321 *
322 * Tries to acquire a passive reference. This is used in places where we
323 * cannot take an active reference but we need to ensure that the
324 * superblock does not go away while we are working on it. It returns
325 * false if a reference was not gained, and returns true with the s_umount
326 * lock held in read mode if a reference is gained. On successful return,
327 * the caller must drop the s_umount lock and the passive reference when
328 * done.
329 */
330bool grab_super_passive(struct super_block *sb)
331{
332 spin_lock(&sb_lock);
333 if (hlist_unhashed(&sb->s_instances)) {
334 spin_unlock(&sb_lock);
335 return false;
336 }
337
338 sb->s_count++;
339 spin_unlock(&sb_lock);
340
341 if (down_read_trylock(&sb->s_umount)) {
342 if (sb->s_root && (sb->s_flags & MS_BORN))
343 return true;
344 up_read(&sb->s_umount);
345 }
346
347 put_super(sb);
348 return false;
349}
350
351/*
352 * Superblock locking. We really ought to get rid of these two.
353 */
354void lock_super(struct super_block * sb)
355{
356 mutex_lock(&sb->s_lock);
357}
358
359void unlock_super(struct super_block * sb)
360{
361 mutex_unlock(&sb->s_lock);
362}
363
364EXPORT_SYMBOL(lock_super);
365EXPORT_SYMBOL(unlock_super);
366
367/**
368 * generic_shutdown_super - common helper for ->kill_sb()
369 * @sb: superblock to kill
370 *
371 * generic_shutdown_super() does all fs-independent work on superblock
372 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
373 * that need destruction out of superblock, call generic_shutdown_super()
374 * and release aforementioned objects. Note: dentries and inodes _are_
375 * taken care of and do not need specific handling.
376 *
377 * Upon calling this function, the filesystem may no longer alter or
378 * rearrange the set of dentries belonging to this super_block, nor may it
379 * change the attachments of dentries to inodes.
380 */
381void generic_shutdown_super(struct super_block *sb)
382{
383 const struct super_operations *sop = sb->s_op;
384
385 if (sb->s_root) {
386 shrink_dcache_for_umount(sb);
387 sync_filesystem(sb);
388 sb->s_flags &= ~MS_ACTIVE;
389
390 fsnotify_unmount_inodes(&sb->s_inodes);
391
392 evict_inodes(sb);
393
394 if (sop->put_super)
395 sop->put_super(sb);
396
397 if (!list_empty(&sb->s_inodes)) {
398 printk("VFS: Busy inodes after unmount of %s. "
399 "Self-destruct in 5 seconds. Have a nice day...\n",
400 sb->s_id);
401 }
402 }
403 spin_lock(&sb_lock);
404 /* should be initialized for __put_super_and_need_restart() */
405 hlist_del_init(&sb->s_instances);
406 spin_unlock(&sb_lock);
407 up_write(&sb->s_umount);
408}
409
410EXPORT_SYMBOL(generic_shutdown_super);
411
412/**
413 * sget - find or create a superblock
414 * @type: filesystem type superblock should belong to
415 * @test: comparison callback
416 * @set: setup callback
417 * @data: argument to each of them
418 */
419struct super_block *sget(struct file_system_type *type,
420 int (*test)(struct super_block *,void *),
421 int (*set)(struct super_block *,void *),
422 void *data)
423{
424 struct super_block *s = NULL;
425 struct hlist_node *node;
426 struct super_block *old;
427 int err;
428
429retry:
430 spin_lock(&sb_lock);
431 if (test) {
432 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
433 if (!test(old, data))
434 continue;
435 if (!grab_super(old))
436 goto retry;
437 if (s) {
438 up_write(&s->s_umount);
439 destroy_super(s);
440 s = NULL;
441 }
442 down_write(&old->s_umount);
443 if (unlikely(!(old->s_flags & MS_BORN))) {
444 deactivate_locked_super(old);
445 goto retry;
446 }
447 return old;
448 }
449 }
450 if (!s) {
451 spin_unlock(&sb_lock);
452 s = alloc_super(type);
453 if (!s)
454 return ERR_PTR(-ENOMEM);
455 goto retry;
456 }
457
458 err = set(s, data);
459 if (err) {
460 spin_unlock(&sb_lock);
461 up_write(&s->s_umount);
462 destroy_super(s);
463 return ERR_PTR(err);
464 }
465 s->s_type = type;
466 strlcpy(s->s_id, type->name, sizeof(s->s_id));
467 list_add_tail(&s->s_list, &super_blocks);
468 hlist_add_head(&s->s_instances, &type->fs_supers);
469 spin_unlock(&sb_lock);
470 get_filesystem(type);
471 register_shrinker(&s->s_shrink);
472 return s;
473}
474
475EXPORT_SYMBOL(sget);
476
477void drop_super(struct super_block *sb)
478{
479 up_read(&sb->s_umount);
480 put_super(sb);
481}
482
483EXPORT_SYMBOL(drop_super);
484
485/**
486 * sync_supers - helper for periodic superblock writeback
487 *
488 * Call the write_super method if present on all dirty superblocks in
489 * the system. This is for the periodic writeback used by most older
490 * filesystems. For data integrity superblock writeback use
491 * sync_filesystems() instead.
492 *
493 * Note: check the dirty flag before waiting, so we don't
494 * hold up the sync while mounting a device. (The newly
495 * mounted device won't need syncing.)
496 */
497void sync_supers(void)
498{
499 struct super_block *sb, *p = NULL;
500
501 spin_lock(&sb_lock);
502 list_for_each_entry(sb, &super_blocks, s_list) {
503 if (hlist_unhashed(&sb->s_instances))
504 continue;
505 if (sb->s_op->write_super && sb->s_dirt) {
506 sb->s_count++;
507 spin_unlock(&sb_lock);
508
509 down_read(&sb->s_umount);
510 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
511 sb->s_op->write_super(sb);
512 up_read(&sb->s_umount);
513
514 spin_lock(&sb_lock);
515 if (p)
516 __put_super(p);
517 p = sb;
518 }
519 }
520 if (p)
521 __put_super(p);
522 spin_unlock(&sb_lock);
523}
524
525/**
526 * iterate_supers - call function for all active superblocks
527 * @f: function to call
528 * @arg: argument to pass to it
529 *
530 * Scans the superblock list and calls given function, passing it
531 * locked superblock and given argument.
532 */
533void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
534{
535 struct super_block *sb, *p = NULL;
536
537 spin_lock(&sb_lock);
538 list_for_each_entry(sb, &super_blocks, s_list) {
539 if (hlist_unhashed(&sb->s_instances))
540 continue;
541 sb->s_count++;
542 spin_unlock(&sb_lock);
543
544 down_read(&sb->s_umount);
545 if (sb->s_root && (sb->s_flags & MS_BORN))
546 f(sb, arg);
547 up_read(&sb->s_umount);
548
549 spin_lock(&sb_lock);
550 if (p)
551 __put_super(p);
552 p = sb;
553 }
554 if (p)
555 __put_super(p);
556 spin_unlock(&sb_lock);
557}
558
559/**
560 * iterate_supers_type - call function for superblocks of given type
561 * @type: fs type
562 * @f: function to call
563 * @arg: argument to pass to it
564 *
565 * Scans the superblock list and calls given function, passing it
566 * locked superblock and given argument.
567 */
568void iterate_supers_type(struct file_system_type *type,
569 void (*f)(struct super_block *, void *), void *arg)
570{
571 struct super_block *sb, *p = NULL;
572 struct hlist_node *node;
573
574 spin_lock(&sb_lock);
575 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
576 sb->s_count++;
577 spin_unlock(&sb_lock);
578
579 down_read(&sb->s_umount);
580 if (sb->s_root && (sb->s_flags & MS_BORN))
581 f(sb, arg);
582 up_read(&sb->s_umount);
583
584 spin_lock(&sb_lock);
585 if (p)
586 __put_super(p);
587 p = sb;
588 }
589 if (p)
590 __put_super(p);
591 spin_unlock(&sb_lock);
592}
593
594EXPORT_SYMBOL(iterate_supers_type);
595
596/**
597 * get_super - get the superblock of a device
598 * @bdev: device to get the superblock for
599 *
600 * Scans the superblock list and finds the superblock of the file system
601 * mounted on the device given. %NULL is returned if no match is found.
602 */
603
604struct super_block *get_super(struct block_device *bdev)
605{
606 struct super_block *sb;
607
608 if (!bdev)
609 return NULL;
610
611 spin_lock(&sb_lock);
612rescan:
613 list_for_each_entry(sb, &super_blocks, s_list) {
614 if (hlist_unhashed(&sb->s_instances))
615 continue;
616 if (sb->s_bdev == bdev) {
617 sb->s_count++;
618 spin_unlock(&sb_lock);
619 down_read(&sb->s_umount);
620 /* still alive? */
621 if (sb->s_root && (sb->s_flags & MS_BORN))
622 return sb;
623 up_read(&sb->s_umount);
624 /* nope, got unmounted */
625 spin_lock(&sb_lock);
626 __put_super(sb);
627 goto rescan;
628 }
629 }
630 spin_unlock(&sb_lock);
631 return NULL;
632}
633
634EXPORT_SYMBOL(get_super);
635
636/**
637 * get_active_super - get an active reference to the superblock of a device
638 * @bdev: device to get the superblock for
639 *
640 * Scans the superblock list and finds the superblock of the file system
641 * mounted on the device given. Returns the superblock with an active
642 * reference or %NULL if none was found.
643 */
644struct super_block *get_active_super(struct block_device *bdev)
645{
646 struct super_block *sb;
647
648 if (!bdev)
649 return NULL;
650
651restart:
652 spin_lock(&sb_lock);
653 list_for_each_entry(sb, &super_blocks, s_list) {
654 if (hlist_unhashed(&sb->s_instances))
655 continue;
656 if (sb->s_bdev == bdev) {
657 if (grab_super(sb)) /* drops sb_lock */
658 return sb;
659 else
660 goto restart;
661 }
662 }
663 spin_unlock(&sb_lock);
664 return NULL;
665}
666
667struct super_block *user_get_super(dev_t dev)
668{
669 struct super_block *sb;
670
671 spin_lock(&sb_lock);
672rescan:
673 list_for_each_entry(sb, &super_blocks, s_list) {
674 if (hlist_unhashed(&sb->s_instances))
675 continue;
676 if (sb->s_dev == dev) {
677 sb->s_count++;
678 spin_unlock(&sb_lock);
679 down_read(&sb->s_umount);
680 /* still alive? */
681 if (sb->s_root && (sb->s_flags & MS_BORN))
682 return sb;
683 up_read(&sb->s_umount);
684 /* nope, got unmounted */
685 spin_lock(&sb_lock);
686 __put_super(sb);
687 goto rescan;
688 }
689 }
690 spin_unlock(&sb_lock);
691 return NULL;
692}
693
694/**
695 * do_remount_sb - asks filesystem to change mount options.
696 * @sb: superblock in question
697 * @flags: numeric part of options
698 * @data: the rest of options
699 * @force: whether or not to force the change
700 *
701 * Alters the mount options of a mounted file system.
702 */
703int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
704{
705 int retval;
706 int remount_ro;
707
708 if (sb->s_frozen != SB_UNFROZEN)
709 return -EBUSY;
710
711#ifdef CONFIG_BLOCK
712 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
713 return -EACCES;
714#endif
715
716 if (flags & MS_RDONLY)
717 acct_auto_close(sb);
718 shrink_dcache_sb(sb);
719 sync_filesystem(sb);
720
721 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
722
723 /* If we are remounting RDONLY and current sb is read/write,
724 make sure there are no rw files opened */
725 if (remount_ro) {
726 if (force)
727 mark_files_ro(sb);
728 else if (!fs_may_remount_ro(sb))
729 return -EBUSY;
730 }
731
732 if (sb->s_op->remount_fs) {
733 retval = sb->s_op->remount_fs(sb, &flags, data);
734 if (retval) {
735 if (!force)
736 return retval;
737 /* If forced remount, go ahead despite any errors */
738 WARN(1, "forced remount of a %s fs returned %i\n",
739 sb->s_type->name, retval);
740 }
741 }
742 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
743
744 /*
745 * Some filesystems modify their metadata via some other path than the
746 * bdev buffer cache (eg. use a private mapping, or directories in
747 * pagecache, etc). Also file data modifications go via their own
748 * mappings. So If we try to mount readonly then copy the filesystem
749 * from bdev, we could get stale data, so invalidate it to give a best
750 * effort at coherency.
751 */
752 if (remount_ro && sb->s_bdev)
753 invalidate_bdev(sb->s_bdev);
754 return 0;
755}
756
757static void do_emergency_remount(struct work_struct *work)
758{
759 struct super_block *sb, *p = NULL;
760
761 spin_lock(&sb_lock);
762 list_for_each_entry(sb, &super_blocks, s_list) {
763 if (hlist_unhashed(&sb->s_instances))
764 continue;
765 sb->s_count++;
766 spin_unlock(&sb_lock);
767 down_write(&sb->s_umount);
768 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
769 !(sb->s_flags & MS_RDONLY)) {
770 /*
771 * What lock protects sb->s_flags??
772 */
773 do_remount_sb(sb, MS_RDONLY, NULL, 1);
774 }
775 up_write(&sb->s_umount);
776 spin_lock(&sb_lock);
777 if (p)
778 __put_super(p);
779 p = sb;
780 }
781 if (p)
782 __put_super(p);
783 spin_unlock(&sb_lock);
784 kfree(work);
785 printk("Emergency Remount complete\n");
786}
787
788void emergency_remount(void)
789{
790 struct work_struct *work;
791
792 work = kmalloc(sizeof(*work), GFP_ATOMIC);
793 if (work) {
794 INIT_WORK(work, do_emergency_remount);
795 schedule_work(work);
796 }
797}
798
799/*
800 * Unnamed block devices are dummy devices used by virtual
801 * filesystems which don't use real block-devices. -- jrs
802 */
803
804static DEFINE_IDA(unnamed_dev_ida);
805static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
806static int unnamed_dev_start = 0; /* don't bother trying below it */
807
808int get_anon_bdev(dev_t *p)
809{
810 int dev;
811 int error;
812
813 retry:
814 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
815 return -ENOMEM;
816 spin_lock(&unnamed_dev_lock);
817 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
818 if (!error)
819 unnamed_dev_start = dev + 1;
820 spin_unlock(&unnamed_dev_lock);
821 if (error == -EAGAIN)
822 /* We raced and lost with another CPU. */
823 goto retry;
824 else if (error)
825 return -EAGAIN;
826
827 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
828 spin_lock(&unnamed_dev_lock);
829 ida_remove(&unnamed_dev_ida, dev);
830 if (unnamed_dev_start > dev)
831 unnamed_dev_start = dev;
832 spin_unlock(&unnamed_dev_lock);
833 return -EMFILE;
834 }
835 *p = MKDEV(0, dev & MINORMASK);
836 return 0;
837}
838EXPORT_SYMBOL(get_anon_bdev);
839
840void free_anon_bdev(dev_t dev)
841{
842 int slot = MINOR(dev);
843 spin_lock(&unnamed_dev_lock);
844 ida_remove(&unnamed_dev_ida, slot);
845 if (slot < unnamed_dev_start)
846 unnamed_dev_start = slot;
847 spin_unlock(&unnamed_dev_lock);
848}
849EXPORT_SYMBOL(free_anon_bdev);
850
851int set_anon_super(struct super_block *s, void *data)
852{
853 int error = get_anon_bdev(&s->s_dev);
854 if (!error)
855 s->s_bdi = &noop_backing_dev_info;
856 return error;
857}
858
859EXPORT_SYMBOL(set_anon_super);
860
861void kill_anon_super(struct super_block *sb)
862{
863 dev_t dev = sb->s_dev;
864 generic_shutdown_super(sb);
865 free_anon_bdev(dev);
866}
867
868EXPORT_SYMBOL(kill_anon_super);
869
870void kill_litter_super(struct super_block *sb)
871{
872 if (sb->s_root)
873 d_genocide(sb->s_root);
874 kill_anon_super(sb);
875}
876
877EXPORT_SYMBOL(kill_litter_super);
878
879static int ns_test_super(struct super_block *sb, void *data)
880{
881 return sb->s_fs_info == data;
882}
883
884static int ns_set_super(struct super_block *sb, void *data)
885{
886 sb->s_fs_info = data;
887 return set_anon_super(sb, NULL);
888}
889
890struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
891 void *data, int (*fill_super)(struct super_block *, void *, int))
892{
893 struct super_block *sb;
894
895 sb = sget(fs_type, ns_test_super, ns_set_super, data);
896 if (IS_ERR(sb))
897 return ERR_CAST(sb);
898
899 if (!sb->s_root) {
900 int err;
901 sb->s_flags = flags;
902 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
903 if (err) {
904 deactivate_locked_super(sb);
905 return ERR_PTR(err);
906 }
907
908 sb->s_flags |= MS_ACTIVE;
909 }
910
911 return dget(sb->s_root);
912}
913
914EXPORT_SYMBOL(mount_ns);
915
916#ifdef CONFIG_BLOCK
917static int set_bdev_super(struct super_block *s, void *data)
918{
919 s->s_bdev = data;
920 s->s_dev = s->s_bdev->bd_dev;
921
922 /*
923 * We set the bdi here to the queue backing, file systems can
924 * overwrite this in ->fill_super()
925 */
926 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
927 return 0;
928}
929
930static int test_bdev_super(struct super_block *s, void *data)
931{
932 return (void *)s->s_bdev == data;
933}
934
935struct dentry *mount_bdev(struct file_system_type *fs_type,
936 int flags, const char *dev_name, void *data,
937 int (*fill_super)(struct super_block *, void *, int))
938{
939 struct block_device *bdev;
940 struct super_block *s;
941 fmode_t mode = FMODE_READ | FMODE_EXCL;
942 int error = 0;
943
944 if (!(flags & MS_RDONLY))
945 mode |= FMODE_WRITE;
946
947 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
948 if (IS_ERR(bdev))
949 return ERR_CAST(bdev);
950
951 /*
952 * once the super is inserted into the list by sget, s_umount
953 * will protect the lockfs code from trying to start a snapshot
954 * while we are mounting
955 */
956 mutex_lock(&bdev->bd_fsfreeze_mutex);
957 if (bdev->bd_fsfreeze_count > 0) {
958 mutex_unlock(&bdev->bd_fsfreeze_mutex);
959 error = -EBUSY;
960 goto error_bdev;
961 }
962 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
963 mutex_unlock(&bdev->bd_fsfreeze_mutex);
964 if (IS_ERR(s))
965 goto error_s;
966
967 if (s->s_root) {
968 if ((flags ^ s->s_flags) & MS_RDONLY) {
969 deactivate_locked_super(s);
970 error = -EBUSY;
971 goto error_bdev;
972 }
973
974 /*
975 * s_umount nests inside bd_mutex during
976 * __invalidate_device(). blkdev_put() acquires
977 * bd_mutex and can't be called under s_umount. Drop
978 * s_umount temporarily. This is safe as we're
979 * holding an active reference.
980 */
981 up_write(&s->s_umount);
982 blkdev_put(bdev, mode);
983 down_write(&s->s_umount);
984 } else {
985 char b[BDEVNAME_SIZE];
986
987 s->s_flags = flags | MS_NOSEC;
988 s->s_mode = mode;
989 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
990 sb_set_blocksize(s, block_size(bdev));
991 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
992 if (error) {
993 deactivate_locked_super(s);
994 goto error;
995 }
996
997 s->s_flags |= MS_ACTIVE;
998 bdev->bd_super = s;
999 }
1000
1001 return dget(s->s_root);
1002
1003error_s:
1004 error = PTR_ERR(s);
1005error_bdev:
1006 blkdev_put(bdev, mode);
1007error:
1008 return ERR_PTR(error);
1009}
1010EXPORT_SYMBOL(mount_bdev);
1011
1012void kill_block_super(struct super_block *sb)
1013{
1014 struct block_device *bdev = sb->s_bdev;
1015 fmode_t mode = sb->s_mode;
1016
1017 bdev->bd_super = NULL;
1018 generic_shutdown_super(sb);
1019 sync_blockdev(bdev);
1020 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1021 blkdev_put(bdev, mode | FMODE_EXCL);
1022}
1023
1024EXPORT_SYMBOL(kill_block_super);
1025#endif
1026
1027struct dentry *mount_nodev(struct file_system_type *fs_type,
1028 int flags, void *data,
1029 int (*fill_super)(struct super_block *, void *, int))
1030{
1031 int error;
1032 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1033
1034 if (IS_ERR(s))
1035 return ERR_CAST(s);
1036
1037 s->s_flags = flags;
1038
1039 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1040 if (error) {
1041 deactivate_locked_super(s);
1042 return ERR_PTR(error);
1043 }
1044 s->s_flags |= MS_ACTIVE;
1045 return dget(s->s_root);
1046}
1047EXPORT_SYMBOL(mount_nodev);
1048
1049static int compare_single(struct super_block *s, void *p)
1050{
1051 return 1;
1052}
1053
1054struct dentry *mount_single(struct file_system_type *fs_type,
1055 int flags, void *data,
1056 int (*fill_super)(struct super_block *, void *, int))
1057{
1058 struct super_block *s;
1059 int error;
1060
1061 s = sget(fs_type, compare_single, set_anon_super, NULL);
1062 if (IS_ERR(s))
1063 return ERR_CAST(s);
1064 if (!s->s_root) {
1065 s->s_flags = flags;
1066 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1067 if (error) {
1068 deactivate_locked_super(s);
1069 return ERR_PTR(error);
1070 }
1071 s->s_flags |= MS_ACTIVE;
1072 } else {
1073 do_remount_sb(s, flags, data, 0);
1074 }
1075 return dget(s->s_root);
1076}
1077EXPORT_SYMBOL(mount_single);
1078
1079struct dentry *
1080mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1081{
1082 struct dentry *root;
1083 struct super_block *sb;
1084 char *secdata = NULL;
1085 int error = -ENOMEM;
1086
1087 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1088 secdata = alloc_secdata();
1089 if (!secdata)
1090 goto out;
1091
1092 error = security_sb_copy_data(data, secdata);
1093 if (error)
1094 goto out_free_secdata;
1095 }
1096
1097 root = type->mount(type, flags, name, data);
1098 if (IS_ERR(root)) {
1099 error = PTR_ERR(root);
1100 goto out_free_secdata;
1101 }
1102 sb = root->d_sb;
1103 BUG_ON(!sb);
1104 WARN_ON(!sb->s_bdi);
1105 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1106 sb->s_flags |= MS_BORN;
1107
1108 error = security_sb_kern_mount(sb, flags, secdata);
1109 if (error)
1110 goto out_sb;
1111
1112 /*
1113 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1114 * but s_maxbytes was an unsigned long long for many releases. Throw
1115 * this warning for a little while to try and catch filesystems that
1116 * violate this rule.
1117 */
1118 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1119 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1120
1121 up_write(&sb->s_umount);
1122 free_secdata(secdata);
1123 return root;
1124out_sb:
1125 dput(root);
1126 deactivate_locked_super(sb);
1127out_free_secdata:
1128 free_secdata(secdata);
1129out:
1130 return ERR_PTR(error);
1131}
1132
1133/**
1134 * freeze_super - lock the filesystem and force it into a consistent state
1135 * @sb: the super to lock
1136 *
1137 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1138 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1139 * -EBUSY.
1140 */
1141int freeze_super(struct super_block *sb)
1142{
1143 int ret;
1144
1145 atomic_inc(&sb->s_active);
1146 down_write(&sb->s_umount);
1147 if (sb->s_frozen) {
1148 deactivate_locked_super(sb);
1149 return -EBUSY;
1150 }
1151
1152 if (!(sb->s_flags & MS_BORN)) {
1153 up_write(&sb->s_umount);
1154 return 0; /* sic - it's "nothing to do" */
1155 }
1156
1157 if (sb->s_flags & MS_RDONLY) {
1158 sb->s_frozen = SB_FREEZE_TRANS;
1159 smp_wmb();
1160 up_write(&sb->s_umount);
1161 return 0;
1162 }
1163
1164 sb->s_frozen = SB_FREEZE_WRITE;
1165 smp_wmb();
1166
1167 sync_filesystem(sb);
1168
1169 sb->s_frozen = SB_FREEZE_TRANS;
1170 smp_wmb();
1171
1172 sync_blockdev(sb->s_bdev);
1173 if (sb->s_op->freeze_fs) {
1174 ret = sb->s_op->freeze_fs(sb);
1175 if (ret) {
1176 printk(KERN_ERR
1177 "VFS:Filesystem freeze failed\n");
1178 sb->s_frozen = SB_UNFROZEN;
1179 deactivate_locked_super(sb);
1180 return ret;
1181 }
1182 }
1183 up_write(&sb->s_umount);
1184 return 0;
1185}
1186EXPORT_SYMBOL(freeze_super);
1187
1188/**
1189 * thaw_super -- unlock filesystem
1190 * @sb: the super to thaw
1191 *
1192 * Unlocks the filesystem and marks it writeable again after freeze_super().
1193 */
1194int thaw_super(struct super_block *sb)
1195{
1196 int error;
1197
1198 down_write(&sb->s_umount);
1199 if (sb->s_frozen == SB_UNFROZEN) {
1200 up_write(&sb->s_umount);
1201 return -EINVAL;
1202 }
1203
1204 if (sb->s_flags & MS_RDONLY)
1205 goto out;
1206
1207 if (sb->s_op->unfreeze_fs) {
1208 error = sb->s_op->unfreeze_fs(sb);
1209 if (error) {
1210 printk(KERN_ERR
1211 "VFS:Filesystem thaw failed\n");
1212 sb->s_frozen = SB_FREEZE_TRANS;
1213 up_write(&sb->s_umount);
1214 return error;
1215 }
1216 }
1217
1218out:
1219 sb->s_frozen = SB_UNFROZEN;
1220 smp_wmb();
1221 wake_up(&sb->s_wait_unfrozen);
1222 deactivate_locked_super(sb);
1223
1224 return 0;
1225}
1226EXPORT_SYMBOL(thaw_super);