]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/xfs/xfs_aops.c
xfs: handle DIO overwrite EOF update completion correctly
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_aops.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include <linux/aio.h>
35#include <linux/gfp.h>
36#include <linux/mpage.h>
37#include <linux/pagevec.h>
38#include <linux/writeback.h>
39
40void
41xfs_count_page_state(
42 struct page *page,
43 int *delalloc,
44 int *unwritten)
45{
46 struct buffer_head *bh, *head;
47
48 *delalloc = *unwritten = 0;
49
50 bh = head = page_buffers(page);
51 do {
52 if (buffer_unwritten(bh))
53 (*unwritten) = 1;
54 else if (buffer_delay(bh))
55 (*delalloc) = 1;
56 } while ((bh = bh->b_this_page) != head);
57}
58
59STATIC struct block_device *
60xfs_find_bdev_for_inode(
61 struct inode *inode)
62{
63 struct xfs_inode *ip = XFS_I(inode);
64 struct xfs_mount *mp = ip->i_mount;
65
66 if (XFS_IS_REALTIME_INODE(ip))
67 return mp->m_rtdev_targp->bt_bdev;
68 else
69 return mp->m_ddev_targp->bt_bdev;
70}
71
72/*
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
77 */
78STATIC void
79xfs_destroy_ioend(
80 xfs_ioend_t *ioend)
81{
82 struct buffer_head *bh, *next;
83
84 for (bh = ioend->io_buffer_head; bh; bh = next) {
85 next = bh->b_private;
86 bh->b_end_io(bh, !ioend->io_error);
87 }
88
89 mempool_free(ioend, xfs_ioend_pool);
90}
91
92/*
93 * Fast and loose check if this write could update the on-disk inode size.
94 */
95static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
96{
97 return ioend->io_offset + ioend->io_size >
98 XFS_I(ioend->io_inode)->i_d.di_size;
99}
100
101STATIC int
102xfs_setfilesize_trans_alloc(
103 struct xfs_ioend *ioend)
104{
105 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
106 struct xfs_trans *tp;
107 int error;
108
109 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
110
111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
112 if (error) {
113 xfs_trans_cancel(tp, 0);
114 return error;
115 }
116
117 ioend->io_append_trans = tp;
118
119 /*
120 * We may pass freeze protection with a transaction. So tell lockdep
121 * we released it.
122 */
123 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
124 1, _THIS_IP_);
125 /*
126 * We hand off the transaction to the completion thread now, so
127 * clear the flag here.
128 */
129 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
130 return 0;
131}
132
133/*
134 * Update on-disk file size now that data has been written to disk.
135 */
136STATIC int
137xfs_setfilesize(
138 struct xfs_inode *ip,
139 struct xfs_trans *tp,
140 xfs_off_t offset,
141 size_t size)
142{
143 xfs_fsize_t isize;
144
145 xfs_ilock(ip, XFS_ILOCK_EXCL);
146 isize = xfs_new_eof(ip, offset + size);
147 if (!isize) {
148 xfs_iunlock(ip, XFS_ILOCK_EXCL);
149 xfs_trans_cancel(tp, 0);
150 return 0;
151 }
152
153 trace_xfs_setfilesize(ip, offset, size);
154
155 ip->i_d.di_size = isize;
156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
158
159 return xfs_trans_commit(tp, 0);
160}
161
162STATIC int
163xfs_setfilesize_ioend(
164 struct xfs_ioend *ioend)
165{
166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
167 struct xfs_trans *tp = ioend->io_append_trans;
168
169 /*
170 * The transaction may have been allocated in the I/O submission thread,
171 * thus we need to mark ourselves as being in a transaction manually.
172 * Similarly for freeze protection.
173 */
174 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
175 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
176 0, 1, _THIS_IP_);
177
178 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
179}
180
181/*
182 * Schedule IO completion handling on the final put of an ioend.
183 *
184 * If there is no work to do we might as well call it a day and free the
185 * ioend right now.
186 */
187STATIC void
188xfs_finish_ioend(
189 struct xfs_ioend *ioend)
190{
191 if (atomic_dec_and_test(&ioend->io_remaining)) {
192 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
193
194 if (ioend->io_type == XFS_IO_UNWRITTEN)
195 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
196 else if (ioend->io_append_trans)
197 queue_work(mp->m_data_workqueue, &ioend->io_work);
198 else
199 xfs_destroy_ioend(ioend);
200 }
201}
202
203/*
204 * IO write completion.
205 */
206STATIC void
207xfs_end_io(
208 struct work_struct *work)
209{
210 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
211 struct xfs_inode *ip = XFS_I(ioend->io_inode);
212 int error = 0;
213
214 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
215 ioend->io_error = -EIO;
216 goto done;
217 }
218 if (ioend->io_error)
219 goto done;
220
221 /*
222 * For unwritten extents we need to issue transactions to convert a
223 * range to normal written extens after the data I/O has finished.
224 */
225 if (ioend->io_type == XFS_IO_UNWRITTEN) {
226 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
227 ioend->io_size);
228 } else if (ioend->io_append_trans) {
229 error = xfs_setfilesize_ioend(ioend);
230 } else {
231 ASSERT(!xfs_ioend_is_append(ioend));
232 }
233
234done:
235 if (error)
236 ioend->io_error = error;
237 xfs_destroy_ioend(ioend);
238}
239
240/*
241 * Allocate and initialise an IO completion structure.
242 * We need to track unwritten extent write completion here initially.
243 * We'll need to extend this for updating the ondisk inode size later
244 * (vs. incore size).
245 */
246STATIC xfs_ioend_t *
247xfs_alloc_ioend(
248 struct inode *inode,
249 unsigned int type)
250{
251 xfs_ioend_t *ioend;
252
253 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
254
255 /*
256 * Set the count to 1 initially, which will prevent an I/O
257 * completion callback from happening before we have started
258 * all the I/O from calling the completion routine too early.
259 */
260 atomic_set(&ioend->io_remaining, 1);
261 ioend->io_error = 0;
262 ioend->io_list = NULL;
263 ioend->io_type = type;
264 ioend->io_inode = inode;
265 ioend->io_buffer_head = NULL;
266 ioend->io_buffer_tail = NULL;
267 ioend->io_offset = 0;
268 ioend->io_size = 0;
269 ioend->io_append_trans = NULL;
270
271 INIT_WORK(&ioend->io_work, xfs_end_io);
272 return ioend;
273}
274
275STATIC int
276xfs_map_blocks(
277 struct inode *inode,
278 loff_t offset,
279 struct xfs_bmbt_irec *imap,
280 int type,
281 int nonblocking)
282{
283 struct xfs_inode *ip = XFS_I(inode);
284 struct xfs_mount *mp = ip->i_mount;
285 ssize_t count = 1 << inode->i_blkbits;
286 xfs_fileoff_t offset_fsb, end_fsb;
287 int error = 0;
288 int bmapi_flags = XFS_BMAPI_ENTIRE;
289 int nimaps = 1;
290
291 if (XFS_FORCED_SHUTDOWN(mp))
292 return -EIO;
293
294 if (type == XFS_IO_UNWRITTEN)
295 bmapi_flags |= XFS_BMAPI_IGSTATE;
296
297 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
298 if (nonblocking)
299 return -EAGAIN;
300 xfs_ilock(ip, XFS_ILOCK_SHARED);
301 }
302
303 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
304 (ip->i_df.if_flags & XFS_IFEXTENTS));
305 ASSERT(offset <= mp->m_super->s_maxbytes);
306
307 if (offset + count > mp->m_super->s_maxbytes)
308 count = mp->m_super->s_maxbytes - offset;
309 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
310 offset_fsb = XFS_B_TO_FSBT(mp, offset);
311 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
312 imap, &nimaps, bmapi_flags);
313 xfs_iunlock(ip, XFS_ILOCK_SHARED);
314
315 if (error)
316 return error;
317
318 if (type == XFS_IO_DELALLOC &&
319 (!nimaps || isnullstartblock(imap->br_startblock))) {
320 error = xfs_iomap_write_allocate(ip, offset, imap);
321 if (!error)
322 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
323 return error;
324 }
325
326#ifdef DEBUG
327 if (type == XFS_IO_UNWRITTEN) {
328 ASSERT(nimaps);
329 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
330 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
331 }
332#endif
333 if (nimaps)
334 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
335 return 0;
336}
337
338STATIC int
339xfs_imap_valid(
340 struct inode *inode,
341 struct xfs_bmbt_irec *imap,
342 xfs_off_t offset)
343{
344 offset >>= inode->i_blkbits;
345
346 return offset >= imap->br_startoff &&
347 offset < imap->br_startoff + imap->br_blockcount;
348}
349
350/*
351 * BIO completion handler for buffered IO.
352 */
353STATIC void
354xfs_end_bio(
355 struct bio *bio,
356 int error)
357{
358 xfs_ioend_t *ioend = bio->bi_private;
359
360 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
361 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
362
363 /* Toss bio and pass work off to an xfsdatad thread */
364 bio->bi_private = NULL;
365 bio->bi_end_io = NULL;
366 bio_put(bio);
367
368 xfs_finish_ioend(ioend);
369}
370
371STATIC void
372xfs_submit_ioend_bio(
373 struct writeback_control *wbc,
374 xfs_ioend_t *ioend,
375 struct bio *bio)
376{
377 atomic_inc(&ioend->io_remaining);
378 bio->bi_private = ioend;
379 bio->bi_end_io = xfs_end_bio;
380 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
381}
382
383STATIC struct bio *
384xfs_alloc_ioend_bio(
385 struct buffer_head *bh)
386{
387 int nvecs = bio_get_nr_vecs(bh->b_bdev);
388 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
389
390 ASSERT(bio->bi_private == NULL);
391 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
392 bio->bi_bdev = bh->b_bdev;
393 return bio;
394}
395
396STATIC void
397xfs_start_buffer_writeback(
398 struct buffer_head *bh)
399{
400 ASSERT(buffer_mapped(bh));
401 ASSERT(buffer_locked(bh));
402 ASSERT(!buffer_delay(bh));
403 ASSERT(!buffer_unwritten(bh));
404
405 mark_buffer_async_write(bh);
406 set_buffer_uptodate(bh);
407 clear_buffer_dirty(bh);
408}
409
410STATIC void
411xfs_start_page_writeback(
412 struct page *page,
413 int clear_dirty,
414 int buffers)
415{
416 ASSERT(PageLocked(page));
417 ASSERT(!PageWriteback(page));
418
419 /*
420 * if the page was not fully cleaned, we need to ensure that the higher
421 * layers come back to it correctly. That means we need to keep the page
422 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
423 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
424 * write this page in this writeback sweep will be made.
425 */
426 if (clear_dirty) {
427 clear_page_dirty_for_io(page);
428 set_page_writeback(page);
429 } else
430 set_page_writeback_keepwrite(page);
431
432 unlock_page(page);
433
434 /* If no buffers on the page are to be written, finish it here */
435 if (!buffers)
436 end_page_writeback(page);
437}
438
439static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
440{
441 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
442}
443
444/*
445 * Submit all of the bios for all of the ioends we have saved up, covering the
446 * initial writepage page and also any probed pages.
447 *
448 * Because we may have multiple ioends spanning a page, we need to start
449 * writeback on all the buffers before we submit them for I/O. If we mark the
450 * buffers as we got, then we can end up with a page that only has buffers
451 * marked async write and I/O complete on can occur before we mark the other
452 * buffers async write.
453 *
454 * The end result of this is that we trip a bug in end_page_writeback() because
455 * we call it twice for the one page as the code in end_buffer_async_write()
456 * assumes that all buffers on the page are started at the same time.
457 *
458 * The fix is two passes across the ioend list - one to start writeback on the
459 * buffer_heads, and then submit them for I/O on the second pass.
460 *
461 * If @fail is non-zero, it means that we have a situation where some part of
462 * the submission process has failed after we have marked paged for writeback
463 * and unlocked them. In this situation, we need to fail the ioend chain rather
464 * than submit it to IO. This typically only happens on a filesystem shutdown.
465 */
466STATIC void
467xfs_submit_ioend(
468 struct writeback_control *wbc,
469 xfs_ioend_t *ioend,
470 int fail)
471{
472 xfs_ioend_t *head = ioend;
473 xfs_ioend_t *next;
474 struct buffer_head *bh;
475 struct bio *bio;
476 sector_t lastblock = 0;
477
478 /* Pass 1 - start writeback */
479 do {
480 next = ioend->io_list;
481 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
482 xfs_start_buffer_writeback(bh);
483 } while ((ioend = next) != NULL);
484
485 /* Pass 2 - submit I/O */
486 ioend = head;
487 do {
488 next = ioend->io_list;
489 bio = NULL;
490
491 /*
492 * If we are failing the IO now, just mark the ioend with an
493 * error and finish it. This will run IO completion immediately
494 * as there is only one reference to the ioend at this point in
495 * time.
496 */
497 if (fail) {
498 ioend->io_error = fail;
499 xfs_finish_ioend(ioend);
500 continue;
501 }
502
503 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
504
505 if (!bio) {
506 retry:
507 bio = xfs_alloc_ioend_bio(bh);
508 } else if (bh->b_blocknr != lastblock + 1) {
509 xfs_submit_ioend_bio(wbc, ioend, bio);
510 goto retry;
511 }
512
513 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
514 xfs_submit_ioend_bio(wbc, ioend, bio);
515 goto retry;
516 }
517
518 lastblock = bh->b_blocknr;
519 }
520 if (bio)
521 xfs_submit_ioend_bio(wbc, ioend, bio);
522 xfs_finish_ioend(ioend);
523 } while ((ioend = next) != NULL);
524}
525
526/*
527 * Cancel submission of all buffer_heads so far in this endio.
528 * Toss the endio too. Only ever called for the initial page
529 * in a writepage request, so only ever one page.
530 */
531STATIC void
532xfs_cancel_ioend(
533 xfs_ioend_t *ioend)
534{
535 xfs_ioend_t *next;
536 struct buffer_head *bh, *next_bh;
537
538 do {
539 next = ioend->io_list;
540 bh = ioend->io_buffer_head;
541 do {
542 next_bh = bh->b_private;
543 clear_buffer_async_write(bh);
544 /*
545 * The unwritten flag is cleared when added to the
546 * ioend. We're not submitting for I/O so mark the
547 * buffer unwritten again for next time around.
548 */
549 if (ioend->io_type == XFS_IO_UNWRITTEN)
550 set_buffer_unwritten(bh);
551 unlock_buffer(bh);
552 } while ((bh = next_bh) != NULL);
553
554 mempool_free(ioend, xfs_ioend_pool);
555 } while ((ioend = next) != NULL);
556}
557
558/*
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
563 */
564STATIC void
565xfs_add_to_ioend(
566 struct inode *inode,
567 struct buffer_head *bh,
568 xfs_off_t offset,
569 unsigned int type,
570 xfs_ioend_t **result,
571 int need_ioend)
572{
573 xfs_ioend_t *ioend = *result;
574
575 if (!ioend || need_ioend || type != ioend->io_type) {
576 xfs_ioend_t *previous = *result;
577
578 ioend = xfs_alloc_ioend(inode, type);
579 ioend->io_offset = offset;
580 ioend->io_buffer_head = bh;
581 ioend->io_buffer_tail = bh;
582 if (previous)
583 previous->io_list = ioend;
584 *result = ioend;
585 } else {
586 ioend->io_buffer_tail->b_private = bh;
587 ioend->io_buffer_tail = bh;
588 }
589
590 bh->b_private = NULL;
591 ioend->io_size += bh->b_size;
592}
593
594STATIC void
595xfs_map_buffer(
596 struct inode *inode,
597 struct buffer_head *bh,
598 struct xfs_bmbt_irec *imap,
599 xfs_off_t offset)
600{
601 sector_t bn;
602 struct xfs_mount *m = XFS_I(inode)->i_mount;
603 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
604 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
605
606 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
607 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
608
609 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
610 ((offset - iomap_offset) >> inode->i_blkbits);
611
612 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
613
614 bh->b_blocknr = bn;
615 set_buffer_mapped(bh);
616}
617
618STATIC void
619xfs_map_at_offset(
620 struct inode *inode,
621 struct buffer_head *bh,
622 struct xfs_bmbt_irec *imap,
623 xfs_off_t offset)
624{
625 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
627
628 xfs_map_buffer(inode, bh, imap, offset);
629 set_buffer_mapped(bh);
630 clear_buffer_delay(bh);
631 clear_buffer_unwritten(bh);
632}
633
634/*
635 * Test if a given page contains at least one buffer of a given @type.
636 * If @check_all_buffers is true, then we walk all the buffers in the page to
637 * try to find one of the type passed in. If it is not set, then the caller only
638 * needs to check the first buffer on the page for a match.
639 */
640STATIC bool
641xfs_check_page_type(
642 struct page *page,
643 unsigned int type,
644 bool check_all_buffers)
645{
646 struct buffer_head *bh;
647 struct buffer_head *head;
648
649 if (PageWriteback(page))
650 return false;
651 if (!page->mapping)
652 return false;
653 if (!page_has_buffers(page))
654 return false;
655
656 bh = head = page_buffers(page);
657 do {
658 if (buffer_unwritten(bh)) {
659 if (type == XFS_IO_UNWRITTEN)
660 return true;
661 } else if (buffer_delay(bh)) {
662 if (type == XFS_IO_DELALLOC)
663 return true;
664 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
665 if (type == XFS_IO_OVERWRITE)
666 return true;
667 }
668
669 /* If we are only checking the first buffer, we are done now. */
670 if (!check_all_buffers)
671 break;
672 } while ((bh = bh->b_this_page) != head);
673
674 return false;
675}
676
677/*
678 * Allocate & map buffers for page given the extent map. Write it out.
679 * except for the original page of a writepage, this is called on
680 * delalloc/unwritten pages only, for the original page it is possible
681 * that the page has no mapping at all.
682 */
683STATIC int
684xfs_convert_page(
685 struct inode *inode,
686 struct page *page,
687 loff_t tindex,
688 struct xfs_bmbt_irec *imap,
689 xfs_ioend_t **ioendp,
690 struct writeback_control *wbc)
691{
692 struct buffer_head *bh, *head;
693 xfs_off_t end_offset;
694 unsigned long p_offset;
695 unsigned int type;
696 int len, page_dirty;
697 int count = 0, done = 0, uptodate = 1;
698 xfs_off_t offset = page_offset(page);
699
700 if (page->index != tindex)
701 goto fail;
702 if (!trylock_page(page))
703 goto fail;
704 if (PageWriteback(page))
705 goto fail_unlock_page;
706 if (page->mapping != inode->i_mapping)
707 goto fail_unlock_page;
708 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
709 goto fail_unlock_page;
710
711 /*
712 * page_dirty is initially a count of buffers on the page before
713 * EOF and is decremented as we move each into a cleanable state.
714 *
715 * Derivation:
716 *
717 * End offset is the highest offset that this page should represent.
718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
720 * hence give us the correct page_dirty count. On any other page,
721 * it will be zero and in that case we need page_dirty to be the
722 * count of buffers on the page.
723 */
724 end_offset = min_t(unsigned long long,
725 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
726 i_size_read(inode));
727
728 /*
729 * If the current map does not span the entire page we are about to try
730 * to write, then give up. The only way we can write a page that spans
731 * multiple mappings in a single writeback iteration is via the
732 * xfs_vm_writepage() function. Data integrity writeback requires the
733 * entire page to be written in a single attempt, otherwise the part of
734 * the page we don't write here doesn't get written as part of the data
735 * integrity sync.
736 *
737 * For normal writeback, we also don't attempt to write partial pages
738 * here as it simply means that write_cache_pages() will see it under
739 * writeback and ignore the page until some point in the future, at
740 * which time this will be the only page in the file that needs
741 * writeback. Hence for more optimal IO patterns, we should always
742 * avoid partial page writeback due to multiple mappings on a page here.
743 */
744 if (!xfs_imap_valid(inode, imap, end_offset))
745 goto fail_unlock_page;
746
747 len = 1 << inode->i_blkbits;
748 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
749 PAGE_CACHE_SIZE);
750 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
751 page_dirty = p_offset / len;
752
753 /*
754 * The moment we find a buffer that doesn't match our current type
755 * specification or can't be written, abort the loop and start
756 * writeback. As per the above xfs_imap_valid() check, only
757 * xfs_vm_writepage() can handle partial page writeback fully - we are
758 * limited here to the buffers that are contiguous with the current
759 * ioend, and hence a buffer we can't write breaks that contiguity and
760 * we have to defer the rest of the IO to xfs_vm_writepage().
761 */
762 bh = head = page_buffers(page);
763 do {
764 if (offset >= end_offset)
765 break;
766 if (!buffer_uptodate(bh))
767 uptodate = 0;
768 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
769 done = 1;
770 break;
771 }
772
773 if (buffer_unwritten(bh) || buffer_delay(bh) ||
774 buffer_mapped(bh)) {
775 if (buffer_unwritten(bh))
776 type = XFS_IO_UNWRITTEN;
777 else if (buffer_delay(bh))
778 type = XFS_IO_DELALLOC;
779 else
780 type = XFS_IO_OVERWRITE;
781
782 /*
783 * imap should always be valid because of the above
784 * partial page end_offset check on the imap.
785 */
786 ASSERT(xfs_imap_valid(inode, imap, offset));
787
788 lock_buffer(bh);
789 if (type != XFS_IO_OVERWRITE)
790 xfs_map_at_offset(inode, bh, imap, offset);
791 xfs_add_to_ioend(inode, bh, offset, type,
792 ioendp, done);
793
794 page_dirty--;
795 count++;
796 } else {
797 done = 1;
798 break;
799 }
800 } while (offset += len, (bh = bh->b_this_page) != head);
801
802 if (uptodate && bh == head)
803 SetPageUptodate(page);
804
805 if (count) {
806 if (--wbc->nr_to_write <= 0 &&
807 wbc->sync_mode == WB_SYNC_NONE)
808 done = 1;
809 }
810 xfs_start_page_writeback(page, !page_dirty, count);
811
812 return done;
813 fail_unlock_page:
814 unlock_page(page);
815 fail:
816 return 1;
817}
818
819/*
820 * Convert & write out a cluster of pages in the same extent as defined
821 * by mp and following the start page.
822 */
823STATIC void
824xfs_cluster_write(
825 struct inode *inode,
826 pgoff_t tindex,
827 struct xfs_bmbt_irec *imap,
828 xfs_ioend_t **ioendp,
829 struct writeback_control *wbc,
830 pgoff_t tlast)
831{
832 struct pagevec pvec;
833 int done = 0, i;
834
835 pagevec_init(&pvec, 0);
836 while (!done && tindex <= tlast) {
837 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
838
839 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
840 break;
841
842 for (i = 0; i < pagevec_count(&pvec); i++) {
843 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
844 imap, ioendp, wbc);
845 if (done)
846 break;
847 }
848
849 pagevec_release(&pvec);
850 cond_resched();
851 }
852}
853
854STATIC void
855xfs_vm_invalidatepage(
856 struct page *page,
857 unsigned int offset,
858 unsigned int length)
859{
860 trace_xfs_invalidatepage(page->mapping->host, page, offset,
861 length);
862 block_invalidatepage(page, offset, length);
863}
864
865/*
866 * If the page has delalloc buffers on it, we need to punch them out before we
867 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
868 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
869 * is done on that same region - the delalloc extent is returned when none is
870 * supposed to be there.
871 *
872 * We prevent this by truncating away the delalloc regions on the page before
873 * invalidating it. Because they are delalloc, we can do this without needing a
874 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
875 * truncation without a transaction as there is no space left for block
876 * reservation (typically why we see a ENOSPC in writeback).
877 *
878 * This is not a performance critical path, so for now just do the punching a
879 * buffer head at a time.
880 */
881STATIC void
882xfs_aops_discard_page(
883 struct page *page)
884{
885 struct inode *inode = page->mapping->host;
886 struct xfs_inode *ip = XFS_I(inode);
887 struct buffer_head *bh, *head;
888 loff_t offset = page_offset(page);
889
890 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
891 goto out_invalidate;
892
893 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
894 goto out_invalidate;
895
896 xfs_alert(ip->i_mount,
897 "page discard on page %p, inode 0x%llx, offset %llu.",
898 page, ip->i_ino, offset);
899
900 xfs_ilock(ip, XFS_ILOCK_EXCL);
901 bh = head = page_buffers(page);
902 do {
903 int error;
904 xfs_fileoff_t start_fsb;
905
906 if (!buffer_delay(bh))
907 goto next_buffer;
908
909 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
910 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
911 if (error) {
912 /* something screwed, just bail */
913 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
914 xfs_alert(ip->i_mount,
915 "page discard unable to remove delalloc mapping.");
916 }
917 break;
918 }
919next_buffer:
920 offset += 1 << inode->i_blkbits;
921
922 } while ((bh = bh->b_this_page) != head);
923
924 xfs_iunlock(ip, XFS_ILOCK_EXCL);
925out_invalidate:
926 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
927 return;
928}
929
930/*
931 * Write out a dirty page.
932 *
933 * For delalloc space on the page we need to allocate space and flush it.
934 * For unwritten space on the page we need to start the conversion to
935 * regular allocated space.
936 * For any other dirty buffer heads on the page we should flush them.
937 */
938STATIC int
939xfs_vm_writepage(
940 struct page *page,
941 struct writeback_control *wbc)
942{
943 struct inode *inode = page->mapping->host;
944 struct buffer_head *bh, *head;
945 struct xfs_bmbt_irec imap;
946 xfs_ioend_t *ioend = NULL, *iohead = NULL;
947 loff_t offset;
948 unsigned int type;
949 __uint64_t end_offset;
950 pgoff_t end_index, last_index;
951 ssize_t len;
952 int err, imap_valid = 0, uptodate = 1;
953 int count = 0;
954 int nonblocking = 0;
955
956 trace_xfs_writepage(inode, page, 0, 0);
957
958 ASSERT(page_has_buffers(page));
959
960 /*
961 * Refuse to write the page out if we are called from reclaim context.
962 *
963 * This avoids stack overflows when called from deeply used stacks in
964 * random callers for direct reclaim or memcg reclaim. We explicitly
965 * allow reclaim from kswapd as the stack usage there is relatively low.
966 *
967 * This should never happen except in the case of a VM regression so
968 * warn about it.
969 */
970 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
971 PF_MEMALLOC))
972 goto redirty;
973
974 /*
975 * Given that we do not allow direct reclaim to call us, we should
976 * never be called while in a filesystem transaction.
977 */
978 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
979 goto redirty;
980
981 /* Is this page beyond the end of the file? */
982 offset = i_size_read(inode);
983 end_index = offset >> PAGE_CACHE_SHIFT;
984 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
985
986 /*
987 * The page index is less than the end_index, adjust the end_offset
988 * to the highest offset that this page should represent.
989 * -----------------------------------------------------
990 * | file mapping | <EOF> |
991 * -----------------------------------------------------
992 * | Page ... | Page N-2 | Page N-1 | Page N | |
993 * ^--------------------------------^----------|--------
994 * | desired writeback range | see else |
995 * ---------------------------------^------------------|
996 */
997 if (page->index < end_index)
998 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
999 else {
1000 /*
1001 * Check whether the page to write out is beyond or straddles
1002 * i_size or not.
1003 * -------------------------------------------------------
1004 * | file mapping | <EOF> |
1005 * -------------------------------------------------------
1006 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1007 * ^--------------------------------^-----------|---------
1008 * | | Straddles |
1009 * ---------------------------------^-----------|--------|
1010 */
1011 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1012
1013 /*
1014 * Skip the page if it is fully outside i_size, e.g. due to a
1015 * truncate operation that is in progress. We must redirty the
1016 * page so that reclaim stops reclaiming it. Otherwise
1017 * xfs_vm_releasepage() is called on it and gets confused.
1018 *
1019 * Note that the end_index is unsigned long, it would overflow
1020 * if the given offset is greater than 16TB on 32-bit system
1021 * and if we do check the page is fully outside i_size or not
1022 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1023 * will be evaluated to 0. Hence this page will be redirtied
1024 * and be written out repeatedly which would result in an
1025 * infinite loop, the user program that perform this operation
1026 * will hang. Instead, we can verify this situation by checking
1027 * if the page to write is totally beyond the i_size or if it's
1028 * offset is just equal to the EOF.
1029 */
1030 if (page->index > end_index ||
1031 (page->index == end_index && offset_into_page == 0))
1032 goto redirty;
1033
1034 /*
1035 * The page straddles i_size. It must be zeroed out on each
1036 * and every writepage invocation because it may be mmapped.
1037 * "A file is mapped in multiples of the page size. For a file
1038 * that is not a multiple of the page size, the remaining
1039 * memory is zeroed when mapped, and writes to that region are
1040 * not written out to the file."
1041 */
1042 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1043
1044 /* Adjust the end_offset to the end of file */
1045 end_offset = offset;
1046 }
1047
1048 len = 1 << inode->i_blkbits;
1049
1050 bh = head = page_buffers(page);
1051 offset = page_offset(page);
1052 type = XFS_IO_OVERWRITE;
1053
1054 if (wbc->sync_mode == WB_SYNC_NONE)
1055 nonblocking = 1;
1056
1057 do {
1058 int new_ioend = 0;
1059
1060 if (offset >= end_offset)
1061 break;
1062 if (!buffer_uptodate(bh))
1063 uptodate = 0;
1064
1065 /*
1066 * set_page_dirty dirties all buffers in a page, independent
1067 * of their state. The dirty state however is entirely
1068 * meaningless for holes (!mapped && uptodate), so skip
1069 * buffers covering holes here.
1070 */
1071 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1072 imap_valid = 0;
1073 continue;
1074 }
1075
1076 if (buffer_unwritten(bh)) {
1077 if (type != XFS_IO_UNWRITTEN) {
1078 type = XFS_IO_UNWRITTEN;
1079 imap_valid = 0;
1080 }
1081 } else if (buffer_delay(bh)) {
1082 if (type != XFS_IO_DELALLOC) {
1083 type = XFS_IO_DELALLOC;
1084 imap_valid = 0;
1085 }
1086 } else if (buffer_uptodate(bh)) {
1087 if (type != XFS_IO_OVERWRITE) {
1088 type = XFS_IO_OVERWRITE;
1089 imap_valid = 0;
1090 }
1091 } else {
1092 if (PageUptodate(page))
1093 ASSERT(buffer_mapped(bh));
1094 /*
1095 * This buffer is not uptodate and will not be
1096 * written to disk. Ensure that we will put any
1097 * subsequent writeable buffers into a new
1098 * ioend.
1099 */
1100 imap_valid = 0;
1101 continue;
1102 }
1103
1104 if (imap_valid)
1105 imap_valid = xfs_imap_valid(inode, &imap, offset);
1106 if (!imap_valid) {
1107 /*
1108 * If we didn't have a valid mapping then we need to
1109 * put the new mapping into a separate ioend structure.
1110 * This ensures non-contiguous extents always have
1111 * separate ioends, which is particularly important
1112 * for unwritten extent conversion at I/O completion
1113 * time.
1114 */
1115 new_ioend = 1;
1116 err = xfs_map_blocks(inode, offset, &imap, type,
1117 nonblocking);
1118 if (err)
1119 goto error;
1120 imap_valid = xfs_imap_valid(inode, &imap, offset);
1121 }
1122 if (imap_valid) {
1123 lock_buffer(bh);
1124 if (type != XFS_IO_OVERWRITE)
1125 xfs_map_at_offset(inode, bh, &imap, offset);
1126 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1127 new_ioend);
1128 count++;
1129 }
1130
1131 if (!iohead)
1132 iohead = ioend;
1133
1134 } while (offset += len, ((bh = bh->b_this_page) != head));
1135
1136 if (uptodate && bh == head)
1137 SetPageUptodate(page);
1138
1139 xfs_start_page_writeback(page, 1, count);
1140
1141 /* if there is no IO to be submitted for this page, we are done */
1142 if (!ioend)
1143 return 0;
1144
1145 ASSERT(iohead);
1146
1147 /*
1148 * Any errors from this point onwards need tobe reported through the IO
1149 * completion path as we have marked the initial page as under writeback
1150 * and unlocked it.
1151 */
1152 if (imap_valid) {
1153 xfs_off_t end_index;
1154
1155 end_index = imap.br_startoff + imap.br_blockcount;
1156
1157 /* to bytes */
1158 end_index <<= inode->i_blkbits;
1159
1160 /* to pages */
1161 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1162
1163 /* check against file size */
1164 if (end_index > last_index)
1165 end_index = last_index;
1166
1167 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1168 wbc, end_index);
1169 }
1170
1171
1172 /*
1173 * Reserve log space if we might write beyond the on-disk inode size.
1174 */
1175 err = 0;
1176 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1177 err = xfs_setfilesize_trans_alloc(ioend);
1178
1179 xfs_submit_ioend(wbc, iohead, err);
1180
1181 return 0;
1182
1183error:
1184 if (iohead)
1185 xfs_cancel_ioend(iohead);
1186
1187 if (err == -EAGAIN)
1188 goto redirty;
1189
1190 xfs_aops_discard_page(page);
1191 ClearPageUptodate(page);
1192 unlock_page(page);
1193 return err;
1194
1195redirty:
1196 redirty_page_for_writepage(wbc, page);
1197 unlock_page(page);
1198 return 0;
1199}
1200
1201STATIC int
1202xfs_vm_writepages(
1203 struct address_space *mapping,
1204 struct writeback_control *wbc)
1205{
1206 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1207 return generic_writepages(mapping, wbc);
1208}
1209
1210/*
1211 * Called to move a page into cleanable state - and from there
1212 * to be released. The page should already be clean. We always
1213 * have buffer heads in this call.
1214 *
1215 * Returns 1 if the page is ok to release, 0 otherwise.
1216 */
1217STATIC int
1218xfs_vm_releasepage(
1219 struct page *page,
1220 gfp_t gfp_mask)
1221{
1222 int delalloc, unwritten;
1223
1224 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1225
1226 xfs_count_page_state(page, &delalloc, &unwritten);
1227
1228 if (WARN_ON_ONCE(delalloc))
1229 return 0;
1230 if (WARN_ON_ONCE(unwritten))
1231 return 0;
1232
1233 return try_to_free_buffers(page);
1234}
1235
1236/*
1237 * When we map a DIO buffer, we need to attach an ioend that describes the type
1238 * of write IO we are doing. This passes to the completion function the
1239 * operations it needs to perform.
1240 *
1241 * If we get multiple mappings in a single IO, we might be mapping different
1242 * types. But because the direct IO can only have a single private pointer, we
1243 * need to ensure that:
1244 *
1245 * a) the ioend spans the entire region of the IO; and
1246 * b) if it contains unwritten extents, it is *permanently* marked as such
1247 *
1248 * We could do this by chaining ioends like buffered IO does, but we only
1249 * actually get one IO completion callback from the direct IO, and that spans
1250 * the entire IO regardless of how many mappings and IOs are needed to complete
1251 * the DIO. There is only going to be one reference to the ioend and its life
1252 * cycle is constrained by the DIO completion code. hence we don't need
1253 * reference counting here.
1254 */
1255static void
1256xfs_map_direct(
1257 struct inode *inode,
1258 struct buffer_head *bh_result,
1259 struct xfs_bmbt_irec *imap,
1260 xfs_off_t offset)
1261{
1262 struct xfs_ioend *ioend;
1263 xfs_off_t size = bh_result->b_size;
1264 int type;
1265
1266 if (ISUNWRITTEN(imap))
1267 type = XFS_IO_UNWRITTEN;
1268 else
1269 type = XFS_IO_OVERWRITE;
1270
1271 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1272
1273 if (bh_result->b_private) {
1274 ioend = bh_result->b_private;
1275 ASSERT(ioend->io_size > 0);
1276 ASSERT(offset >= ioend->io_offset);
1277 if (offset + size > ioend->io_offset + ioend->io_size)
1278 ioend->io_size = offset - ioend->io_offset + size;
1279
1280 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1281 ioend->io_type = XFS_IO_UNWRITTEN;
1282
1283 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1284 ioend->io_size, ioend->io_type,
1285 imap);
1286 } else {
1287 ioend = xfs_alloc_ioend(inode, type);
1288 ioend->io_offset = offset;
1289 ioend->io_size = size;
1290 bh_result->b_private = ioend;
1291
1292 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1293 imap);
1294 }
1295
1296 if (ioend->io_type == XFS_IO_UNWRITTEN || xfs_ioend_is_append(ioend))
1297 set_buffer_defer_completion(bh_result);
1298}
1299
1300
1301/*
1302 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1303 * is, so that we can avoid repeated get_blocks calls.
1304 *
1305 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1306 * for blocks beyond EOF must be marked new so that sub block regions can be
1307 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1308 * was just allocated or is unwritten, otherwise the callers would overwrite
1309 * existing data with zeros. Hence we have to split the mapping into a range up
1310 * to and including EOF, and a second mapping for beyond EOF.
1311 */
1312static void
1313xfs_map_trim_size(
1314 struct inode *inode,
1315 sector_t iblock,
1316 struct buffer_head *bh_result,
1317 struct xfs_bmbt_irec *imap,
1318 xfs_off_t offset,
1319 ssize_t size)
1320{
1321 xfs_off_t mapping_size;
1322
1323 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1324 mapping_size <<= inode->i_blkbits;
1325
1326 ASSERT(mapping_size > 0);
1327 if (mapping_size > size)
1328 mapping_size = size;
1329 if (offset < i_size_read(inode) &&
1330 offset + mapping_size >= i_size_read(inode)) {
1331 /* limit mapping to block that spans EOF */
1332 mapping_size = roundup_64(i_size_read(inode) - offset,
1333 1 << inode->i_blkbits);
1334 }
1335 if (mapping_size > LONG_MAX)
1336 mapping_size = LONG_MAX;
1337
1338 bh_result->b_size = mapping_size;
1339}
1340
1341STATIC int
1342__xfs_get_blocks(
1343 struct inode *inode,
1344 sector_t iblock,
1345 struct buffer_head *bh_result,
1346 int create,
1347 int direct)
1348{
1349 struct xfs_inode *ip = XFS_I(inode);
1350 struct xfs_mount *mp = ip->i_mount;
1351 xfs_fileoff_t offset_fsb, end_fsb;
1352 int error = 0;
1353 int lockmode = 0;
1354 struct xfs_bmbt_irec imap;
1355 int nimaps = 1;
1356 xfs_off_t offset;
1357 ssize_t size;
1358 int new = 0;
1359
1360 if (XFS_FORCED_SHUTDOWN(mp))
1361 return -EIO;
1362
1363 offset = (xfs_off_t)iblock << inode->i_blkbits;
1364 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1365 size = bh_result->b_size;
1366
1367 if (!create && direct && offset >= i_size_read(inode))
1368 return 0;
1369
1370 /*
1371 * Direct I/O is usually done on preallocated files, so try getting
1372 * a block mapping without an exclusive lock first. For buffered
1373 * writes we already have the exclusive iolock anyway, so avoiding
1374 * a lock roundtrip here by taking the ilock exclusive from the
1375 * beginning is a useful micro optimization.
1376 */
1377 if (create && !direct) {
1378 lockmode = XFS_ILOCK_EXCL;
1379 xfs_ilock(ip, lockmode);
1380 } else {
1381 lockmode = xfs_ilock_data_map_shared(ip);
1382 }
1383
1384 ASSERT(offset <= mp->m_super->s_maxbytes);
1385 if (offset + size > mp->m_super->s_maxbytes)
1386 size = mp->m_super->s_maxbytes - offset;
1387 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1388 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1389
1390 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1391 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1392 if (error)
1393 goto out_unlock;
1394
1395 if (create &&
1396 (!nimaps ||
1397 (imap.br_startblock == HOLESTARTBLOCK ||
1398 imap.br_startblock == DELAYSTARTBLOCK))) {
1399 if (direct || xfs_get_extsz_hint(ip)) {
1400 /*
1401 * Drop the ilock in preparation for starting the block
1402 * allocation transaction. It will be retaken
1403 * exclusively inside xfs_iomap_write_direct for the
1404 * actual allocation.
1405 */
1406 xfs_iunlock(ip, lockmode);
1407 error = xfs_iomap_write_direct(ip, offset, size,
1408 &imap, nimaps);
1409 if (error)
1410 return error;
1411 new = 1;
1412 } else {
1413 /*
1414 * Delalloc reservations do not require a transaction,
1415 * we can go on without dropping the lock here. If we
1416 * are allocating a new delalloc block, make sure that
1417 * we set the new flag so that we mark the buffer new so
1418 * that we know that it is newly allocated if the write
1419 * fails.
1420 */
1421 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1422 new = 1;
1423 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1424 if (error)
1425 goto out_unlock;
1426
1427 xfs_iunlock(ip, lockmode);
1428 }
1429 trace_xfs_get_blocks_alloc(ip, offset, size,
1430 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1431 : XFS_IO_DELALLOC, &imap);
1432 } else if (nimaps) {
1433 trace_xfs_get_blocks_found(ip, offset, size,
1434 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1435 : XFS_IO_OVERWRITE, &imap);
1436 xfs_iunlock(ip, lockmode);
1437 } else {
1438 trace_xfs_get_blocks_notfound(ip, offset, size);
1439 goto out_unlock;
1440 }
1441
1442 /* trim mapping down to size requested */
1443 if (direct || size > (1 << inode->i_blkbits))
1444 xfs_map_trim_size(inode, iblock, bh_result,
1445 &imap, offset, size);
1446
1447 /*
1448 * For unwritten extents do not report a disk address in the buffered
1449 * read case (treat as if we're reading into a hole).
1450 */
1451 if (imap.br_startblock != HOLESTARTBLOCK &&
1452 imap.br_startblock != DELAYSTARTBLOCK &&
1453 (create || !ISUNWRITTEN(&imap))) {
1454 xfs_map_buffer(inode, bh_result, &imap, offset);
1455 if (ISUNWRITTEN(&imap))
1456 set_buffer_unwritten(bh_result);
1457 /* direct IO needs special help */
1458 if (create && direct)
1459 xfs_map_direct(inode, bh_result, &imap, offset);
1460 }
1461
1462 /*
1463 * If this is a realtime file, data may be on a different device.
1464 * to that pointed to from the buffer_head b_bdev currently.
1465 */
1466 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1467
1468 /*
1469 * If we previously allocated a block out beyond eof and we are now
1470 * coming back to use it then we will need to flag it as new even if it
1471 * has a disk address.
1472 *
1473 * With sub-block writes into unwritten extents we also need to mark
1474 * the buffer as new so that the unwritten parts of the buffer gets
1475 * correctly zeroed.
1476 */
1477 if (create &&
1478 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1479 (offset >= i_size_read(inode)) ||
1480 (new || ISUNWRITTEN(&imap))))
1481 set_buffer_new(bh_result);
1482
1483 if (imap.br_startblock == DELAYSTARTBLOCK) {
1484 BUG_ON(direct);
1485 if (create) {
1486 set_buffer_uptodate(bh_result);
1487 set_buffer_mapped(bh_result);
1488 set_buffer_delay(bh_result);
1489 }
1490 }
1491
1492 return 0;
1493
1494out_unlock:
1495 xfs_iunlock(ip, lockmode);
1496 return error;
1497}
1498
1499int
1500xfs_get_blocks(
1501 struct inode *inode,
1502 sector_t iblock,
1503 struct buffer_head *bh_result,
1504 int create)
1505{
1506 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1507}
1508
1509STATIC int
1510xfs_get_blocks_direct(
1511 struct inode *inode,
1512 sector_t iblock,
1513 struct buffer_head *bh_result,
1514 int create)
1515{
1516 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1517}
1518
1519/*
1520 * Complete a direct I/O write request.
1521 *
1522 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1523 * need to issue a transaction to convert the range from unwritten to written
1524 * extents.
1525 */
1526STATIC void
1527xfs_end_io_direct_write(
1528 struct kiocb *iocb,
1529 loff_t offset,
1530 ssize_t size,
1531 void *private)
1532{
1533 struct inode *inode = file_inode(iocb->ki_filp);
1534 struct xfs_inode *ip = XFS_I(inode);
1535 struct xfs_mount *mp = ip->i_mount;
1536 struct xfs_ioend *ioend = private;
1537
1538 trace_xfs_gbmap_direct_endio(ip, offset, size, ioend->io_type, NULL);
1539
1540 if (XFS_FORCED_SHUTDOWN(mp))
1541 goto out_end_io;
1542
1543 /*
1544 * dio completion end_io functions are only called on writes if more
1545 * than 0 bytes was written.
1546 */
1547 ASSERT(size > 0);
1548
1549 /*
1550 * The ioend only maps whole blocks, while the IO may be sector aligned.
1551 * Hence the ioend offset/size may not match the IO offset/size exactly,
1552 * but should span it completely. Write the IO sizes into the ioend so
1553 * that completion processing does the right thing.
1554 */
1555 ASSERT(size <= ioend->io_size);
1556 ASSERT(offset >= ioend->io_offset);
1557 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1558 ioend->io_size = size;
1559 ioend->io_offset = offset;
1560
1561 /*
1562 * The ioend tells us whether we are doing unwritten extent conversion
1563 * or an append transaction that updates the on-disk file size. These
1564 * cases are the only cases where we should *potentially* be needing
1565 * to update the VFS inode size. When the ioend indicates this, we
1566 * are *guaranteed* to be running in non-interrupt context.
1567 *
1568 * We need to update the in-core inode size here so that we don't end up
1569 * with the on-disk inode size being outside the in-core inode size.
1570 * While we can do this in the process context after the IO has
1571 * completed, this does not work for AIO and hence we always update
1572 * the in-core inode size here if necessary.
1573 */
1574 if (ioend->io_type == XFS_IO_UNWRITTEN || xfs_ioend_is_append(ioend)) {
1575 if (offset + size > i_size_read(inode))
1576 i_size_write(inode, offset + size);
1577 } else
1578 ASSERT(offset + size <= i_size_read(inode));
1579
1580 /*
1581 * If we are doing an append IO that needs to update the EOF on disk,
1582 * do the transaction reserve now so we can use common end io
1583 * processing. Stashing the error (if there is one) in the ioend will
1584 * result in the ioend processing passing on the error if it is
1585 * possible as we can't return it from here.
1586 */
1587 if (ioend->io_type == XFS_IO_OVERWRITE && xfs_ioend_is_append(ioend))
1588 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1589
1590out_end_io:
1591 xfs_end_io(&ioend->io_work);
1592 return;
1593}
1594
1595STATIC ssize_t
1596xfs_vm_direct_IO(
1597 int rw,
1598 struct kiocb *iocb,
1599 struct iov_iter *iter,
1600 loff_t offset)
1601{
1602 struct inode *inode = iocb->ki_filp->f_mapping->host;
1603 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1604
1605 if (rw & WRITE) {
1606 return __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1607 offset, xfs_get_blocks_direct,
1608 xfs_end_io_direct_write, NULL,
1609 DIO_ASYNC_EXTEND);
1610 }
1611 return __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1612 offset, xfs_get_blocks_direct,
1613 NULL, NULL, 0);
1614}
1615
1616/*
1617 * Punch out the delalloc blocks we have already allocated.
1618 *
1619 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1620 * as the page is still locked at this point.
1621 */
1622STATIC void
1623xfs_vm_kill_delalloc_range(
1624 struct inode *inode,
1625 loff_t start,
1626 loff_t end)
1627{
1628 struct xfs_inode *ip = XFS_I(inode);
1629 xfs_fileoff_t start_fsb;
1630 xfs_fileoff_t end_fsb;
1631 int error;
1632
1633 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1634 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1635 if (end_fsb <= start_fsb)
1636 return;
1637
1638 xfs_ilock(ip, XFS_ILOCK_EXCL);
1639 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1640 end_fsb - start_fsb);
1641 if (error) {
1642 /* something screwed, just bail */
1643 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1644 xfs_alert(ip->i_mount,
1645 "xfs_vm_write_failed: unable to clean up ino %lld",
1646 ip->i_ino);
1647 }
1648 }
1649 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1650}
1651
1652STATIC void
1653xfs_vm_write_failed(
1654 struct inode *inode,
1655 struct page *page,
1656 loff_t pos,
1657 unsigned len)
1658{
1659 loff_t block_offset;
1660 loff_t block_start;
1661 loff_t block_end;
1662 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1663 loff_t to = from + len;
1664 struct buffer_head *bh, *head;
1665
1666 /*
1667 * The request pos offset might be 32 or 64 bit, this is all fine
1668 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1669 * platform, the high 32-bit will be masked off if we evaluate the
1670 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1671 * 0xfffff000 as an unsigned long, hence the result is incorrect
1672 * which could cause the following ASSERT failed in most cases.
1673 * In order to avoid this, we can evaluate the block_offset of the
1674 * start of the page by using shifts rather than masks the mismatch
1675 * problem.
1676 */
1677 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1678
1679 ASSERT(block_offset + from == pos);
1680
1681 head = page_buffers(page);
1682 block_start = 0;
1683 for (bh = head; bh != head || !block_start;
1684 bh = bh->b_this_page, block_start = block_end,
1685 block_offset += bh->b_size) {
1686 block_end = block_start + bh->b_size;
1687
1688 /* skip buffers before the write */
1689 if (block_end <= from)
1690 continue;
1691
1692 /* if the buffer is after the write, we're done */
1693 if (block_start >= to)
1694 break;
1695
1696 if (!buffer_delay(bh))
1697 continue;
1698
1699 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1700 continue;
1701
1702 xfs_vm_kill_delalloc_range(inode, block_offset,
1703 block_offset + bh->b_size);
1704
1705 /*
1706 * This buffer does not contain data anymore. make sure anyone
1707 * who finds it knows that for certain.
1708 */
1709 clear_buffer_delay(bh);
1710 clear_buffer_uptodate(bh);
1711 clear_buffer_mapped(bh);
1712 clear_buffer_new(bh);
1713 clear_buffer_dirty(bh);
1714 }
1715
1716}
1717
1718/*
1719 * This used to call block_write_begin(), but it unlocks and releases the page
1720 * on error, and we need that page to be able to punch stale delalloc blocks out
1721 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1722 * the appropriate point.
1723 */
1724STATIC int
1725xfs_vm_write_begin(
1726 struct file *file,
1727 struct address_space *mapping,
1728 loff_t pos,
1729 unsigned len,
1730 unsigned flags,
1731 struct page **pagep,
1732 void **fsdata)
1733{
1734 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1735 struct page *page;
1736 int status;
1737
1738 ASSERT(len <= PAGE_CACHE_SIZE);
1739
1740 page = grab_cache_page_write_begin(mapping, index, flags);
1741 if (!page)
1742 return -ENOMEM;
1743
1744 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1745 if (unlikely(status)) {
1746 struct inode *inode = mapping->host;
1747 size_t isize = i_size_read(inode);
1748
1749 xfs_vm_write_failed(inode, page, pos, len);
1750 unlock_page(page);
1751
1752 /*
1753 * If the write is beyond EOF, we only want to kill blocks
1754 * allocated in this write, not blocks that were previously
1755 * written successfully.
1756 */
1757 if (pos + len > isize) {
1758 ssize_t start = max_t(ssize_t, pos, isize);
1759
1760 truncate_pagecache_range(inode, start, pos + len);
1761 }
1762
1763 page_cache_release(page);
1764 page = NULL;
1765 }
1766
1767 *pagep = page;
1768 return status;
1769}
1770
1771/*
1772 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1773 * this specific write because they will never be written. Previous writes
1774 * beyond EOF where block allocation succeeded do not need to be trashed, so
1775 * only new blocks from this write should be trashed. For blocks within
1776 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1777 * written with all the other valid data.
1778 */
1779STATIC int
1780xfs_vm_write_end(
1781 struct file *file,
1782 struct address_space *mapping,
1783 loff_t pos,
1784 unsigned len,
1785 unsigned copied,
1786 struct page *page,
1787 void *fsdata)
1788{
1789 int ret;
1790
1791 ASSERT(len <= PAGE_CACHE_SIZE);
1792
1793 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1794 if (unlikely(ret < len)) {
1795 struct inode *inode = mapping->host;
1796 size_t isize = i_size_read(inode);
1797 loff_t to = pos + len;
1798
1799 if (to > isize) {
1800 /* only kill blocks in this write beyond EOF */
1801 if (pos > isize)
1802 isize = pos;
1803 xfs_vm_kill_delalloc_range(inode, isize, to);
1804 truncate_pagecache_range(inode, isize, to);
1805 }
1806 }
1807 return ret;
1808}
1809
1810STATIC sector_t
1811xfs_vm_bmap(
1812 struct address_space *mapping,
1813 sector_t block)
1814{
1815 struct inode *inode = (struct inode *)mapping->host;
1816 struct xfs_inode *ip = XFS_I(inode);
1817
1818 trace_xfs_vm_bmap(XFS_I(inode));
1819 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1820 filemap_write_and_wait(mapping);
1821 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1822 return generic_block_bmap(mapping, block, xfs_get_blocks);
1823}
1824
1825STATIC int
1826xfs_vm_readpage(
1827 struct file *unused,
1828 struct page *page)
1829{
1830 return mpage_readpage(page, xfs_get_blocks);
1831}
1832
1833STATIC int
1834xfs_vm_readpages(
1835 struct file *unused,
1836 struct address_space *mapping,
1837 struct list_head *pages,
1838 unsigned nr_pages)
1839{
1840 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1841}
1842
1843/*
1844 * This is basically a copy of __set_page_dirty_buffers() with one
1845 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1846 * dirty, we'll never be able to clean them because we don't write buffers
1847 * beyond EOF, and that means we can't invalidate pages that span EOF
1848 * that have been marked dirty. Further, the dirty state can leak into
1849 * the file interior if the file is extended, resulting in all sorts of
1850 * bad things happening as the state does not match the underlying data.
1851 *
1852 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1853 * this only exist because of bufferheads and how the generic code manages them.
1854 */
1855STATIC int
1856xfs_vm_set_page_dirty(
1857 struct page *page)
1858{
1859 struct address_space *mapping = page->mapping;
1860 struct inode *inode = mapping->host;
1861 loff_t end_offset;
1862 loff_t offset;
1863 int newly_dirty;
1864
1865 if (unlikely(!mapping))
1866 return !TestSetPageDirty(page);
1867
1868 end_offset = i_size_read(inode);
1869 offset = page_offset(page);
1870
1871 spin_lock(&mapping->private_lock);
1872 if (page_has_buffers(page)) {
1873 struct buffer_head *head = page_buffers(page);
1874 struct buffer_head *bh = head;
1875
1876 do {
1877 if (offset < end_offset)
1878 set_buffer_dirty(bh);
1879 bh = bh->b_this_page;
1880 offset += 1 << inode->i_blkbits;
1881 } while (bh != head);
1882 }
1883 newly_dirty = !TestSetPageDirty(page);
1884 spin_unlock(&mapping->private_lock);
1885
1886 if (newly_dirty) {
1887 /* sigh - __set_page_dirty() is static, so copy it here, too */
1888 unsigned long flags;
1889
1890 spin_lock_irqsave(&mapping->tree_lock, flags);
1891 if (page->mapping) { /* Race with truncate? */
1892 WARN_ON_ONCE(!PageUptodate(page));
1893 account_page_dirtied(page, mapping);
1894 radix_tree_tag_set(&mapping->page_tree,
1895 page_index(page), PAGECACHE_TAG_DIRTY);
1896 }
1897 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1898 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1899 }
1900 return newly_dirty;
1901}
1902
1903const struct address_space_operations xfs_address_space_operations = {
1904 .readpage = xfs_vm_readpage,
1905 .readpages = xfs_vm_readpages,
1906 .writepage = xfs_vm_writepage,
1907 .writepages = xfs_vm_writepages,
1908 .set_page_dirty = xfs_vm_set_page_dirty,
1909 .releasepage = xfs_vm_releasepage,
1910 .invalidatepage = xfs_vm_invalidatepage,
1911 .write_begin = xfs_vm_write_begin,
1912 .write_end = xfs_vm_write_end,
1913 .bmap = xfs_vm_bmap,
1914 .direct_IO = xfs_vm_direct_IO,
1915 .migratepage = buffer_migrate_page,
1916 .is_partially_uptodate = block_is_partially_uptodate,
1917 .error_remove_page = generic_error_remove_page,
1918};