]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - hw/i386/pc.c
i8257: rewrite DMA_schedule to avoid hooking into the CPU loop
[mirror_qemu.git] / hw / i386 / pc.c
... / ...
CommitLineData
1/*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "hw/hw.h"
25#include "hw/i386/pc.h"
26#include "hw/char/serial.h"
27#include "hw/i386/apic.h"
28#include "hw/i386/topology.h"
29#include "sysemu/cpus.h"
30#include "hw/block/fdc.h"
31#include "hw/ide.h"
32#include "hw/pci/pci.h"
33#include "hw/pci/pci_bus.h"
34#include "hw/nvram/fw_cfg.h"
35#include "hw/timer/hpet.h"
36#include "hw/smbios/smbios.h"
37#include "hw/loader.h"
38#include "elf.h"
39#include "multiboot.h"
40#include "hw/timer/mc146818rtc.h"
41#include "hw/timer/i8254.h"
42#include "hw/audio/pcspk.h"
43#include "hw/pci/msi.h"
44#include "hw/sysbus.h"
45#include "sysemu/sysemu.h"
46#include "sysemu/numa.h"
47#include "sysemu/kvm.h"
48#include "sysemu/qtest.h"
49#include "kvm_i386.h"
50#include "hw/xen/xen.h"
51#include "sysemu/block-backend.h"
52#include "hw/block/block.h"
53#include "ui/qemu-spice.h"
54#include "exec/memory.h"
55#include "exec/address-spaces.h"
56#include "sysemu/arch_init.h"
57#include "qemu/bitmap.h"
58#include "qemu/config-file.h"
59#include "qemu/error-report.h"
60#include "hw/acpi/acpi.h"
61#include "hw/acpi/cpu_hotplug.h"
62#include "hw/cpu/icc_bus.h"
63#include "hw/boards.h"
64#include "hw/pci/pci_host.h"
65#include "acpi-build.h"
66#include "hw/mem/pc-dimm.h"
67#include "qapi/visitor.h"
68#include "qapi-visit.h"
69
70/* debug PC/ISA interrupts */
71//#define DEBUG_IRQ
72
73#ifdef DEBUG_IRQ
74#define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76#else
77#define DPRINTF(fmt, ...)
78#endif
79
80/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81 * (128K) and other BIOS datastructures (less than 4K reported to be used at
82 * the moment, 32K should be enough for a while). */
83static unsigned acpi_data_size = 0x20000 + 0x8000;
84void pc_set_legacy_acpi_data_size(void)
85{
86 acpi_data_size = 0x10000;
87}
88
89#define BIOS_CFG_IOPORT 0x510
90#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95
96#define E820_NR_ENTRIES 16
97
98struct e820_entry {
99 uint64_t address;
100 uint64_t length;
101 uint32_t type;
102} QEMU_PACKED __attribute((__aligned__(4)));
103
104struct e820_table {
105 uint32_t count;
106 struct e820_entry entry[E820_NR_ENTRIES];
107} QEMU_PACKED __attribute((__aligned__(4)));
108
109static struct e820_table e820_reserve;
110static struct e820_entry *e820_table;
111static unsigned e820_entries;
112struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113
114void gsi_handler(void *opaque, int n, int level)
115{
116 GSIState *s = opaque;
117
118 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119 if (n < ISA_NUM_IRQS) {
120 qemu_set_irq(s->i8259_irq[n], level);
121 }
122 qemu_set_irq(s->ioapic_irq[n], level);
123}
124
125static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
127{
128}
129
130static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131{
132 return 0xffffffffffffffffULL;
133}
134
135/* MSDOS compatibility mode FPU exception support */
136static qemu_irq ferr_irq;
137
138void pc_register_ferr_irq(qemu_irq irq)
139{
140 ferr_irq = irq;
141}
142
143/* XXX: add IGNNE support */
144void cpu_set_ferr(CPUX86State *s)
145{
146 qemu_irq_raise(ferr_irq);
147}
148
149static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150 unsigned size)
151{
152 qemu_irq_lower(ferr_irq);
153}
154
155static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156{
157 return 0xffffffffffffffffULL;
158}
159
160/* TSC handling */
161uint64_t cpu_get_tsc(CPUX86State *env)
162{
163 return cpu_get_ticks();
164}
165
166/* IRQ handling */
167int cpu_get_pic_interrupt(CPUX86State *env)
168{
169 X86CPU *cpu = x86_env_get_cpu(env);
170 int intno;
171
172 intno = apic_get_interrupt(cpu->apic_state);
173 if (intno >= 0) {
174 return intno;
175 }
176 /* read the irq from the PIC */
177 if (!apic_accept_pic_intr(cpu->apic_state)) {
178 return -1;
179 }
180
181 intno = pic_read_irq(isa_pic);
182 return intno;
183}
184
185static void pic_irq_request(void *opaque, int irq, int level)
186{
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
189
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (cpu->apic_state) {
192 CPU_FOREACH(cs) {
193 cpu = X86_CPU(cs);
194 if (apic_accept_pic_intr(cpu->apic_state)) {
195 apic_deliver_pic_intr(cpu->apic_state, level);
196 }
197 }
198 } else {
199 if (level) {
200 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201 } else {
202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203 }
204 }
205}
206
207/* PC cmos mappings */
208
209#define REG_EQUIPMENT_BYTE 0x14
210
211static int cmos_get_fd_drive_type(FDriveType fd0)
212{
213 int val;
214
215 switch (fd0) {
216 case FDRIVE_DRV_144:
217 /* 1.44 Mb 3"5 drive */
218 val = 4;
219 break;
220 case FDRIVE_DRV_288:
221 /* 2.88 Mb 3"5 drive */
222 val = 5;
223 break;
224 case FDRIVE_DRV_120:
225 /* 1.2 Mb 5"5 drive */
226 val = 2;
227 break;
228 case FDRIVE_DRV_NONE:
229 default:
230 val = 0;
231 break;
232 }
233 return val;
234}
235
236static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237 int16_t cylinders, int8_t heads, int8_t sectors)
238{
239 rtc_set_memory(s, type_ofs, 47);
240 rtc_set_memory(s, info_ofs, cylinders);
241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 2, heads);
243 rtc_set_memory(s, info_ofs + 3, 0xff);
244 rtc_set_memory(s, info_ofs + 4, 0xff);
245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246 rtc_set_memory(s, info_ofs + 6, cylinders);
247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248 rtc_set_memory(s, info_ofs + 8, sectors);
249}
250
251/* convert boot_device letter to something recognizable by the bios */
252static int boot_device2nibble(char boot_device)
253{
254 switch(boot_device) {
255 case 'a':
256 case 'b':
257 return 0x01; /* floppy boot */
258 case 'c':
259 return 0x02; /* hard drive boot */
260 case 'd':
261 return 0x03; /* CD-ROM boot */
262 case 'n':
263 return 0x04; /* Network boot */
264 }
265 return 0;
266}
267
268static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269{
270#define PC_MAX_BOOT_DEVICES 3
271 int nbds, bds[3] = { 0, };
272 int i;
273
274 nbds = strlen(boot_device);
275 if (nbds > PC_MAX_BOOT_DEVICES) {
276 error_setg(errp, "Too many boot devices for PC");
277 return;
278 }
279 for (i = 0; i < nbds; i++) {
280 bds[i] = boot_device2nibble(boot_device[i]);
281 if (bds[i] == 0) {
282 error_setg(errp, "Invalid boot device for PC: '%c'",
283 boot_device[i]);
284 return;
285 }
286 }
287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289}
290
291static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292{
293 set_boot_dev(opaque, boot_device, errp);
294}
295
296static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297{
298 int val, nb, i;
299 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
300
301 /* floppy type */
302 if (floppy) {
303 for (i = 0; i < 2; i++) {
304 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
305 }
306 }
307 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
308 cmos_get_fd_drive_type(fd_type[1]);
309 rtc_set_memory(rtc_state, 0x10, val);
310
311 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
312 nb = 0;
313 if (fd_type[0] < FDRIVE_DRV_NONE) {
314 nb++;
315 }
316 if (fd_type[1] < FDRIVE_DRV_NONE) {
317 nb++;
318 }
319 switch (nb) {
320 case 0:
321 break;
322 case 1:
323 val |= 0x01; /* 1 drive, ready for boot */
324 break;
325 case 2:
326 val |= 0x41; /* 2 drives, ready for boot */
327 break;
328 }
329 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
330}
331
332typedef struct pc_cmos_init_late_arg {
333 ISADevice *rtc_state;
334 BusState *idebus[2];
335} pc_cmos_init_late_arg;
336
337typedef struct check_fdc_state {
338 ISADevice *floppy;
339 bool multiple;
340} CheckFdcState;
341
342static int check_fdc(Object *obj, void *opaque)
343{
344 CheckFdcState *state = opaque;
345 Object *fdc;
346 uint32_t iobase;
347 Error *local_err = NULL;
348
349 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
350 if (!fdc) {
351 return 0;
352 }
353
354 iobase = object_property_get_int(obj, "iobase", &local_err);
355 if (local_err || iobase != 0x3f0) {
356 error_free(local_err);
357 return 0;
358 }
359
360 if (state->floppy) {
361 state->multiple = true;
362 } else {
363 state->floppy = ISA_DEVICE(obj);
364 }
365 return 0;
366}
367
368static const char * const fdc_container_path[] = {
369 "/unattached", "/peripheral", "/peripheral-anon"
370};
371
372static void pc_cmos_init_late(void *opaque)
373{
374 pc_cmos_init_late_arg *arg = opaque;
375 ISADevice *s = arg->rtc_state;
376 int16_t cylinders;
377 int8_t heads, sectors;
378 int val;
379 int i, trans;
380 Object *container;
381 CheckFdcState state = { 0 };
382
383 val = 0;
384 if (ide_get_geometry(arg->idebus[0], 0,
385 &cylinders, &heads, &sectors) >= 0) {
386 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
387 val |= 0xf0;
388 }
389 if (ide_get_geometry(arg->idebus[0], 1,
390 &cylinders, &heads, &sectors) >= 0) {
391 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
392 val |= 0x0f;
393 }
394 rtc_set_memory(s, 0x12, val);
395
396 val = 0;
397 for (i = 0; i < 4; i++) {
398 /* NOTE: ide_get_geometry() returns the physical
399 geometry. It is always such that: 1 <= sects <= 63, 1
400 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
401 geometry can be different if a translation is done. */
402 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
403 &cylinders, &heads, &sectors) >= 0) {
404 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
405 assert((trans & ~3) == 0);
406 val |= trans << (i * 2);
407 }
408 }
409 rtc_set_memory(s, 0x39, val);
410
411 /*
412 * Locate the FDC at IO address 0x3f0, and configure the CMOS registers
413 * accordingly.
414 */
415 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
416 container = container_get(qdev_get_machine(), fdc_container_path[i]);
417 object_child_foreach(container, check_fdc, &state);
418 }
419
420 if (state.multiple) {
421 error_report("warning: multiple floppy disk controllers with "
422 "iobase=0x3f0 have been found;\n"
423 "the one being picked for CMOS setup might not reflect "
424 "your intent");
425 }
426 pc_cmos_init_floppy(s, state.floppy);
427
428 qemu_unregister_reset(pc_cmos_init_late, opaque);
429}
430
431void pc_cmos_init(PCMachineState *pcms,
432 BusState *idebus0, BusState *idebus1,
433 ISADevice *s)
434{
435 int val;
436 static pc_cmos_init_late_arg arg;
437 Error *local_err = NULL;
438
439 /* various important CMOS locations needed by PC/Bochs bios */
440
441 /* memory size */
442 /* base memory (first MiB) */
443 val = MIN(pcms->below_4g_mem_size / 1024, 640);
444 rtc_set_memory(s, 0x15, val);
445 rtc_set_memory(s, 0x16, val >> 8);
446 /* extended memory (next 64MiB) */
447 if (pcms->below_4g_mem_size > 1024 * 1024) {
448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449 } else {
450 val = 0;
451 }
452 if (val > 65535)
453 val = 65535;
454 rtc_set_memory(s, 0x17, val);
455 rtc_set_memory(s, 0x18, val >> 8);
456 rtc_set_memory(s, 0x30, val);
457 rtc_set_memory(s, 0x31, val >> 8);
458 /* memory between 16MiB and 4GiB */
459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461 } else {
462 val = 0;
463 }
464 if (val > 65535)
465 val = 65535;
466 rtc_set_memory(s, 0x34, val);
467 rtc_set_memory(s, 0x35, val >> 8);
468 /* memory above 4GiB */
469 val = pcms->above_4g_mem_size / 65536;
470 rtc_set_memory(s, 0x5b, val);
471 rtc_set_memory(s, 0x5c, val >> 8);
472 rtc_set_memory(s, 0x5d, val >> 16);
473
474 /* set the number of CPU */
475 rtc_set_memory(s, 0x5f, smp_cpus - 1);
476
477 object_property_add_link(OBJECT(pcms), "rtc_state",
478 TYPE_ISA_DEVICE,
479 (Object **)&pcms->rtc,
480 object_property_allow_set_link,
481 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482 object_property_set_link(OBJECT(pcms), OBJECT(s),
483 "rtc_state", &error_abort);
484
485 set_boot_dev(s, MACHINE(pcms)->boot_order, &local_err);
486 if (local_err) {
487 error_report_err(local_err);
488 exit(1);
489 }
490
491 val = 0;
492 val |= 0x02; /* FPU is there */
493 val |= 0x04; /* PS/2 mouse installed */
494 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
495
496 /* hard drives and FDC */
497 arg.rtc_state = s;
498 arg.idebus[0] = idebus0;
499 arg.idebus[1] = idebus1;
500 qemu_register_reset(pc_cmos_init_late, &arg);
501}
502
503#define TYPE_PORT92 "port92"
504#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
505
506/* port 92 stuff: could be split off */
507typedef struct Port92State {
508 ISADevice parent_obj;
509
510 MemoryRegion io;
511 uint8_t outport;
512 qemu_irq *a20_out;
513} Port92State;
514
515static void port92_write(void *opaque, hwaddr addr, uint64_t val,
516 unsigned size)
517{
518 Port92State *s = opaque;
519 int oldval = s->outport;
520
521 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
522 s->outport = val;
523 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
524 if ((val & 1) && !(oldval & 1)) {
525 qemu_system_reset_request();
526 }
527}
528
529static uint64_t port92_read(void *opaque, hwaddr addr,
530 unsigned size)
531{
532 Port92State *s = opaque;
533 uint32_t ret;
534
535 ret = s->outport;
536 DPRINTF("port92: read 0x%02x\n", ret);
537 return ret;
538}
539
540static void port92_init(ISADevice *dev, qemu_irq *a20_out)
541{
542 Port92State *s = PORT92(dev);
543
544 s->a20_out = a20_out;
545}
546
547static const VMStateDescription vmstate_port92_isa = {
548 .name = "port92",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .fields = (VMStateField[]) {
552 VMSTATE_UINT8(outport, Port92State),
553 VMSTATE_END_OF_LIST()
554 }
555};
556
557static void port92_reset(DeviceState *d)
558{
559 Port92State *s = PORT92(d);
560
561 s->outport &= ~1;
562}
563
564static const MemoryRegionOps port92_ops = {
565 .read = port92_read,
566 .write = port92_write,
567 .impl = {
568 .min_access_size = 1,
569 .max_access_size = 1,
570 },
571 .endianness = DEVICE_LITTLE_ENDIAN,
572};
573
574static void port92_initfn(Object *obj)
575{
576 Port92State *s = PORT92(obj);
577
578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
579
580 s->outport = 0;
581}
582
583static void port92_realizefn(DeviceState *dev, Error **errp)
584{
585 ISADevice *isadev = ISA_DEVICE(dev);
586 Port92State *s = PORT92(dev);
587
588 isa_register_ioport(isadev, &s->io, 0x92);
589}
590
591static void port92_class_initfn(ObjectClass *klass, void *data)
592{
593 DeviceClass *dc = DEVICE_CLASS(klass);
594
595 dc->realize = port92_realizefn;
596 dc->reset = port92_reset;
597 dc->vmsd = &vmstate_port92_isa;
598 /*
599 * Reason: unlike ordinary ISA devices, this one needs additional
600 * wiring: its A20 output line needs to be wired up by
601 * port92_init().
602 */
603 dc->cannot_instantiate_with_device_add_yet = true;
604}
605
606static const TypeInfo port92_info = {
607 .name = TYPE_PORT92,
608 .parent = TYPE_ISA_DEVICE,
609 .instance_size = sizeof(Port92State),
610 .instance_init = port92_initfn,
611 .class_init = port92_class_initfn,
612};
613
614static void port92_register_types(void)
615{
616 type_register_static(&port92_info);
617}
618
619type_init(port92_register_types)
620
621static void handle_a20_line_change(void *opaque, int irq, int level)
622{
623 X86CPU *cpu = opaque;
624
625 /* XXX: send to all CPUs ? */
626 /* XXX: add logic to handle multiple A20 line sources */
627 x86_cpu_set_a20(cpu, level);
628}
629
630int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
631{
632 int index = le32_to_cpu(e820_reserve.count);
633 struct e820_entry *entry;
634
635 if (type != E820_RAM) {
636 /* old FW_CFG_E820_TABLE entry -- reservations only */
637 if (index >= E820_NR_ENTRIES) {
638 return -EBUSY;
639 }
640 entry = &e820_reserve.entry[index++];
641
642 entry->address = cpu_to_le64(address);
643 entry->length = cpu_to_le64(length);
644 entry->type = cpu_to_le32(type);
645
646 e820_reserve.count = cpu_to_le32(index);
647 }
648
649 /* new "etc/e820" file -- include ram too */
650 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
651 e820_table[e820_entries].address = cpu_to_le64(address);
652 e820_table[e820_entries].length = cpu_to_le64(length);
653 e820_table[e820_entries].type = cpu_to_le32(type);
654 e820_entries++;
655
656 return e820_entries;
657}
658
659int e820_get_num_entries(void)
660{
661 return e820_entries;
662}
663
664bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
665{
666 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
667 *address = le64_to_cpu(e820_table[idx].address);
668 *length = le64_to_cpu(e820_table[idx].length);
669 return true;
670 }
671 return false;
672}
673
674/* Enables contiguous-apic-ID mode, for compatibility */
675static bool compat_apic_id_mode;
676
677void enable_compat_apic_id_mode(void)
678{
679 compat_apic_id_mode = true;
680}
681
682/* Calculates initial APIC ID for a specific CPU index
683 *
684 * Currently we need to be able to calculate the APIC ID from the CPU index
685 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
686 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
687 * all CPUs up to max_cpus.
688 */
689static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
690{
691 uint32_t correct_id;
692 static bool warned;
693
694 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
695 if (compat_apic_id_mode) {
696 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
697 error_report("APIC IDs set in compatibility mode, "
698 "CPU topology won't match the configuration");
699 warned = true;
700 }
701 return cpu_index;
702 } else {
703 return correct_id;
704 }
705}
706
707/* Calculates the limit to CPU APIC ID values
708 *
709 * This function returns the limit for the APIC ID value, so that all
710 * CPU APIC IDs are < pc_apic_id_limit().
711 *
712 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
713 */
714static unsigned int pc_apic_id_limit(unsigned int max_cpus)
715{
716 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
717}
718
719static void pc_build_smbios(FWCfgState *fw_cfg)
720{
721 uint8_t *smbios_tables, *smbios_anchor;
722 size_t smbios_tables_len, smbios_anchor_len;
723 struct smbios_phys_mem_area *mem_array;
724 unsigned i, array_count;
725
726 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
727 if (smbios_tables) {
728 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
729 smbios_tables, smbios_tables_len);
730 }
731
732 /* build the array of physical mem area from e820 table */
733 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
734 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
735 uint64_t addr, len;
736
737 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
738 mem_array[array_count].address = addr;
739 mem_array[array_count].length = len;
740 array_count++;
741 }
742 }
743 smbios_get_tables(mem_array, array_count,
744 &smbios_tables, &smbios_tables_len,
745 &smbios_anchor, &smbios_anchor_len);
746 g_free(mem_array);
747
748 if (smbios_anchor) {
749 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
750 smbios_tables, smbios_tables_len);
751 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
752 smbios_anchor, smbios_anchor_len);
753 }
754}
755
756static FWCfgState *bochs_bios_init(void)
757{
758 FWCfgState *fw_cfg;
759 uint64_t *numa_fw_cfg;
760 int i, j;
761 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
762
763 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
764 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
765 *
766 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
767 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
768 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
769 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
770 * may see".
771 *
772 * So, this means we must not use max_cpus, here, but the maximum possible
773 * APIC ID value, plus one.
774 *
775 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
776 * the APIC ID, not the "CPU index"
777 */
778 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
779 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
780 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
781 acpi_tables, acpi_tables_len);
782 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
783
784 pc_build_smbios(fw_cfg);
785
786 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
787 &e820_reserve, sizeof(e820_reserve));
788 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
789 sizeof(struct e820_entry) * e820_entries);
790
791 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
792 /* allocate memory for the NUMA channel: one (64bit) word for the number
793 * of nodes, one word for each VCPU->node and one word for each node to
794 * hold the amount of memory.
795 */
796 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
797 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
798 for (i = 0; i < max_cpus; i++) {
799 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
800 assert(apic_id < apic_id_limit);
801 for (j = 0; j < nb_numa_nodes; j++) {
802 if (test_bit(i, numa_info[j].node_cpu)) {
803 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
804 break;
805 }
806 }
807 }
808 for (i = 0; i < nb_numa_nodes; i++) {
809 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
810 }
811 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
812 (1 + apic_id_limit + nb_numa_nodes) *
813 sizeof(*numa_fw_cfg));
814
815 return fw_cfg;
816}
817
818static long get_file_size(FILE *f)
819{
820 long where, size;
821
822 /* XXX: on Unix systems, using fstat() probably makes more sense */
823
824 where = ftell(f);
825 fseek(f, 0, SEEK_END);
826 size = ftell(f);
827 fseek(f, where, SEEK_SET);
828
829 return size;
830}
831
832static void load_linux(PCMachineState *pcms,
833 FWCfgState *fw_cfg)
834{
835 uint16_t protocol;
836 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
837 uint32_t initrd_max;
838 uint8_t header[8192], *setup, *kernel, *initrd_data;
839 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
840 FILE *f;
841 char *vmode;
842 MachineState *machine = MACHINE(pcms);
843 const char *kernel_filename = machine->kernel_filename;
844 const char *initrd_filename = machine->initrd_filename;
845 const char *kernel_cmdline = machine->kernel_cmdline;
846
847 /* Align to 16 bytes as a paranoia measure */
848 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
849
850 /* load the kernel header */
851 f = fopen(kernel_filename, "rb");
852 if (!f || !(kernel_size = get_file_size(f)) ||
853 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
854 MIN(ARRAY_SIZE(header), kernel_size)) {
855 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
856 kernel_filename, strerror(errno));
857 exit(1);
858 }
859
860 /* kernel protocol version */
861#if 0
862 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
863#endif
864 if (ldl_p(header+0x202) == 0x53726448) {
865 protocol = lduw_p(header+0x206);
866 } else {
867 /* This looks like a multiboot kernel. If it is, let's stop
868 treating it like a Linux kernel. */
869 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
870 kernel_cmdline, kernel_size, header)) {
871 return;
872 }
873 protocol = 0;
874 }
875
876 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
877 /* Low kernel */
878 real_addr = 0x90000;
879 cmdline_addr = 0x9a000 - cmdline_size;
880 prot_addr = 0x10000;
881 } else if (protocol < 0x202) {
882 /* High but ancient kernel */
883 real_addr = 0x90000;
884 cmdline_addr = 0x9a000 - cmdline_size;
885 prot_addr = 0x100000;
886 } else {
887 /* High and recent kernel */
888 real_addr = 0x10000;
889 cmdline_addr = 0x20000;
890 prot_addr = 0x100000;
891 }
892
893#if 0
894 fprintf(stderr,
895 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
896 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
897 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
898 real_addr,
899 cmdline_addr,
900 prot_addr);
901#endif
902
903 /* highest address for loading the initrd */
904 if (protocol >= 0x203) {
905 initrd_max = ldl_p(header+0x22c);
906 } else {
907 initrd_max = 0x37ffffff;
908 }
909
910 if (initrd_max >= pcms->below_4g_mem_size - acpi_data_size) {
911 initrd_max = pcms->below_4g_mem_size - acpi_data_size - 1;
912 }
913
914 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
915 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
916 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
917
918 if (protocol >= 0x202) {
919 stl_p(header+0x228, cmdline_addr);
920 } else {
921 stw_p(header+0x20, 0xA33F);
922 stw_p(header+0x22, cmdline_addr-real_addr);
923 }
924
925 /* handle vga= parameter */
926 vmode = strstr(kernel_cmdline, "vga=");
927 if (vmode) {
928 unsigned int video_mode;
929 /* skip "vga=" */
930 vmode += 4;
931 if (!strncmp(vmode, "normal", 6)) {
932 video_mode = 0xffff;
933 } else if (!strncmp(vmode, "ext", 3)) {
934 video_mode = 0xfffe;
935 } else if (!strncmp(vmode, "ask", 3)) {
936 video_mode = 0xfffd;
937 } else {
938 video_mode = strtol(vmode, NULL, 0);
939 }
940 stw_p(header+0x1fa, video_mode);
941 }
942
943 /* loader type */
944 /* High nybble = B reserved for QEMU; low nybble is revision number.
945 If this code is substantially changed, you may want to consider
946 incrementing the revision. */
947 if (protocol >= 0x200) {
948 header[0x210] = 0xB0;
949 }
950 /* heap */
951 if (protocol >= 0x201) {
952 header[0x211] |= 0x80; /* CAN_USE_HEAP */
953 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
954 }
955
956 /* load initrd */
957 if (initrd_filename) {
958 if (protocol < 0x200) {
959 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
960 exit(1);
961 }
962
963 initrd_size = get_image_size(initrd_filename);
964 if (initrd_size < 0) {
965 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
966 initrd_filename, strerror(errno));
967 exit(1);
968 }
969
970 initrd_addr = (initrd_max-initrd_size) & ~4095;
971
972 initrd_data = g_malloc(initrd_size);
973 load_image(initrd_filename, initrd_data);
974
975 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
976 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
977 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
978
979 stl_p(header+0x218, initrd_addr);
980 stl_p(header+0x21c, initrd_size);
981 }
982
983 /* load kernel and setup */
984 setup_size = header[0x1f1];
985 if (setup_size == 0) {
986 setup_size = 4;
987 }
988 setup_size = (setup_size+1)*512;
989 kernel_size -= setup_size;
990
991 setup = g_malloc(setup_size);
992 kernel = g_malloc(kernel_size);
993 fseek(f, 0, SEEK_SET);
994 if (fread(setup, 1, setup_size, f) != setup_size) {
995 fprintf(stderr, "fread() failed\n");
996 exit(1);
997 }
998 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
999 fprintf(stderr, "fread() failed\n");
1000 exit(1);
1001 }
1002 fclose(f);
1003 memcpy(setup, header, MIN(sizeof(header), setup_size));
1004
1005 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1006 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1007 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1008
1009 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1010 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1011 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1012
1013 option_rom[nb_option_roms].name = "linuxboot.bin";
1014 option_rom[nb_option_roms].bootindex = 0;
1015 nb_option_roms++;
1016}
1017
1018#define NE2000_NB_MAX 6
1019
1020static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1021 0x280, 0x380 };
1022static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1023
1024void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1025{
1026 static int nb_ne2k = 0;
1027
1028 if (nb_ne2k == NE2000_NB_MAX)
1029 return;
1030 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1031 ne2000_irq[nb_ne2k], nd);
1032 nb_ne2k++;
1033}
1034
1035DeviceState *cpu_get_current_apic(void)
1036{
1037 if (current_cpu) {
1038 X86CPU *cpu = X86_CPU(current_cpu);
1039 return cpu->apic_state;
1040 } else {
1041 return NULL;
1042 }
1043}
1044
1045void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1046{
1047 X86CPU *cpu = opaque;
1048
1049 if (level) {
1050 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1051 }
1052}
1053
1054static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1055 DeviceState *icc_bridge, Error **errp)
1056{
1057 X86CPU *cpu = NULL;
1058 Error *local_err = NULL;
1059
1060 if (icc_bridge == NULL) {
1061 error_setg(&local_err, "Invalid icc-bridge value");
1062 goto out;
1063 }
1064
1065 cpu = cpu_x86_create(cpu_model, &local_err);
1066 if (local_err != NULL) {
1067 goto out;
1068 }
1069
1070 qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
1071
1072 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1073 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1074
1075out:
1076 if (local_err) {
1077 error_propagate(errp, local_err);
1078 object_unref(OBJECT(cpu));
1079 cpu = NULL;
1080 }
1081 return cpu;
1082}
1083
1084static const char *current_cpu_model;
1085
1086void pc_hot_add_cpu(const int64_t id, Error **errp)
1087{
1088 DeviceState *icc_bridge;
1089 X86CPU *cpu;
1090 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1091 Error *local_err = NULL;
1092
1093 if (id < 0) {
1094 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1095 return;
1096 }
1097
1098 if (cpu_exists(apic_id)) {
1099 error_setg(errp, "Unable to add CPU: %" PRIi64
1100 ", it already exists", id);
1101 return;
1102 }
1103
1104 if (id >= max_cpus) {
1105 error_setg(errp, "Unable to add CPU: %" PRIi64
1106 ", max allowed: %d", id, max_cpus - 1);
1107 return;
1108 }
1109
1110 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1111 error_setg(errp, "Unable to add CPU: %" PRIi64
1112 ", resulting APIC ID (%" PRIi64 ") is too large",
1113 id, apic_id);
1114 return;
1115 }
1116
1117 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1118 TYPE_ICC_BRIDGE, NULL));
1119 cpu = pc_new_cpu(current_cpu_model, apic_id, icc_bridge, &local_err);
1120 if (local_err) {
1121 error_propagate(errp, local_err);
1122 return;
1123 }
1124 object_unref(OBJECT(cpu));
1125}
1126
1127void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1128{
1129 int i;
1130 X86CPU *cpu = NULL;
1131 Error *error = NULL;
1132 unsigned long apic_id_limit;
1133
1134 /* init CPUs */
1135 if (cpu_model == NULL) {
1136#ifdef TARGET_X86_64
1137 cpu_model = "qemu64";
1138#else
1139 cpu_model = "qemu32";
1140#endif
1141 }
1142 current_cpu_model = cpu_model;
1143
1144 apic_id_limit = pc_apic_id_limit(max_cpus);
1145 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1146 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1147 apic_id_limit - 1);
1148 exit(1);
1149 }
1150
1151 for (i = 0; i < smp_cpus; i++) {
1152 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1153 icc_bridge, &error);
1154 if (error) {
1155 error_report_err(error);
1156 exit(1);
1157 }
1158 object_unref(OBJECT(cpu));
1159 }
1160
1161 /* map APIC MMIO area if CPU has APIC */
1162 if (cpu && cpu->apic_state) {
1163 /* XXX: what if the base changes? */
1164 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1165 APIC_DEFAULT_ADDRESS, 0x1000);
1166 }
1167
1168 /* tell smbios about cpuid version and features */
1169 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1170}
1171
1172/* pci-info ROM file. Little endian format */
1173typedef struct PcRomPciInfo {
1174 uint64_t w32_min;
1175 uint64_t w32_max;
1176 uint64_t w64_min;
1177 uint64_t w64_max;
1178} PcRomPciInfo;
1179
1180typedef struct PcGuestInfoState {
1181 PcGuestInfo info;
1182 Notifier machine_done;
1183} PcGuestInfoState;
1184
1185static
1186void pc_guest_info_machine_done(Notifier *notifier, void *data)
1187{
1188 PcGuestInfoState *guest_info_state = container_of(notifier,
1189 PcGuestInfoState,
1190 machine_done);
1191 PCIBus *bus = find_i440fx();
1192
1193 if (bus) {
1194 int extra_hosts = 0;
1195
1196 QLIST_FOREACH(bus, &bus->child, sibling) {
1197 /* look for expander root buses */
1198 if (pci_bus_is_root(bus)) {
1199 extra_hosts++;
1200 }
1201 }
1202 if (extra_hosts && guest_info_state->info.fw_cfg) {
1203 uint64_t *val = g_malloc(sizeof(*val));
1204 *val = cpu_to_le64(extra_hosts);
1205 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1206 "etc/extra-pci-roots", val, sizeof(*val));
1207 }
1208 }
1209
1210 acpi_setup(&guest_info_state->info);
1211}
1212
1213PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1214{
1215 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1216 PcGuestInfo *guest_info = &guest_info_state->info;
1217 int i, j;
1218
1219 guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1220 guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1221 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1222 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1223 guest_info->numa_nodes = nb_numa_nodes;
1224 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1225 sizeof *guest_info->node_mem);
1226 for (i = 0; i < nb_numa_nodes; i++) {
1227 guest_info->node_mem[i] = numa_info[i].node_mem;
1228 }
1229
1230 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1231 sizeof *guest_info->node_cpu);
1232
1233 for (i = 0; i < max_cpus; i++) {
1234 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1235 assert(apic_id < guest_info->apic_id_limit);
1236 for (j = 0; j < nb_numa_nodes; j++) {
1237 if (test_bit(i, numa_info[j].node_cpu)) {
1238 guest_info->node_cpu[apic_id] = j;
1239 break;
1240 }
1241 }
1242 }
1243
1244 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1245 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1246 return guest_info;
1247}
1248
1249/* setup pci memory address space mapping into system address space */
1250void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1251 MemoryRegion *pci_address_space)
1252{
1253 /* Set to lower priority than RAM */
1254 memory_region_add_subregion_overlap(system_memory, 0x0,
1255 pci_address_space, -1);
1256}
1257
1258void pc_acpi_init(const char *default_dsdt)
1259{
1260 char *filename;
1261
1262 if (acpi_tables != NULL) {
1263 /* manually set via -acpitable, leave it alone */
1264 return;
1265 }
1266
1267 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1268 if (filename == NULL) {
1269 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1270 } else {
1271 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1272 &error_abort);
1273 Error *err = NULL;
1274
1275 qemu_opt_set(opts, "file", filename, &error_abort);
1276
1277 acpi_table_add_builtin(opts, &err);
1278 if (err) {
1279 error_report("WARNING: failed to load %s: %s", filename,
1280 error_get_pretty(err));
1281 error_free(err);
1282 }
1283 g_free(filename);
1284 }
1285}
1286
1287FWCfgState *xen_load_linux(PCMachineState *pcms,
1288 PcGuestInfo *guest_info)
1289{
1290 int i;
1291 FWCfgState *fw_cfg;
1292
1293 assert(MACHINE(pcms)->kernel_filename != NULL);
1294
1295 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1296 rom_set_fw(fw_cfg);
1297
1298 load_linux(pcms, fw_cfg);
1299 for (i = 0; i < nb_option_roms; i++) {
1300 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1301 !strcmp(option_rom[i].name, "multiboot.bin"));
1302 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1303 }
1304 guest_info->fw_cfg = fw_cfg;
1305 return fw_cfg;
1306}
1307
1308FWCfgState *pc_memory_init(PCMachineState *pcms,
1309 MemoryRegion *system_memory,
1310 MemoryRegion *rom_memory,
1311 MemoryRegion **ram_memory,
1312 PcGuestInfo *guest_info)
1313{
1314 int linux_boot, i;
1315 MemoryRegion *ram, *option_rom_mr;
1316 MemoryRegion *ram_below_4g, *ram_above_4g;
1317 FWCfgState *fw_cfg;
1318 MachineState *machine = MACHINE(pcms);
1319
1320 assert(machine->ram_size == pcms->below_4g_mem_size +
1321 pcms->above_4g_mem_size);
1322
1323 linux_boot = (machine->kernel_filename != NULL);
1324
1325 /* Allocate RAM. We allocate it as a single memory region and use
1326 * aliases to address portions of it, mostly for backwards compatibility
1327 * with older qemus that used qemu_ram_alloc().
1328 */
1329 ram = g_malloc(sizeof(*ram));
1330 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1331 machine->ram_size);
1332 *ram_memory = ram;
1333 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1334 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1335 0, pcms->below_4g_mem_size);
1336 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1337 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1338 if (pcms->above_4g_mem_size > 0) {
1339 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1340 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1341 pcms->below_4g_mem_size,
1342 pcms->above_4g_mem_size);
1343 memory_region_add_subregion(system_memory, 0x100000000ULL,
1344 ram_above_4g);
1345 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1346 }
1347
1348 if (!guest_info->has_reserved_memory &&
1349 (machine->ram_slots ||
1350 (machine->maxram_size > machine->ram_size))) {
1351 MachineClass *mc = MACHINE_GET_CLASS(machine);
1352
1353 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1354 mc->name);
1355 exit(EXIT_FAILURE);
1356 }
1357
1358 /* initialize hotplug memory address space */
1359 if (guest_info->has_reserved_memory &&
1360 (machine->ram_size < machine->maxram_size)) {
1361 ram_addr_t hotplug_mem_size =
1362 machine->maxram_size - machine->ram_size;
1363
1364 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1365 error_report("unsupported amount of memory slots: %"PRIu64,
1366 machine->ram_slots);
1367 exit(EXIT_FAILURE);
1368 }
1369
1370 if (QEMU_ALIGN_UP(machine->maxram_size,
1371 TARGET_PAGE_SIZE) != machine->maxram_size) {
1372 error_report("maximum memory size must by aligned to multiple of "
1373 "%d bytes", TARGET_PAGE_SIZE);
1374 exit(EXIT_FAILURE);
1375 }
1376
1377 pcms->hotplug_memory.base =
1378 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1379
1380 if (pcms->enforce_aligned_dimm) {
1381 /* size hotplug region assuming 1G page max alignment per slot */
1382 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1383 }
1384
1385 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1386 hotplug_mem_size) {
1387 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1388 machine->maxram_size);
1389 exit(EXIT_FAILURE);
1390 }
1391
1392 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1393 "hotplug-memory", hotplug_mem_size);
1394 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1395 &pcms->hotplug_memory.mr);
1396 }
1397
1398 /* Initialize PC system firmware */
1399 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1400
1401 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1402 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1403 &error_abort);
1404 vmstate_register_ram_global(option_rom_mr);
1405 memory_region_add_subregion_overlap(rom_memory,
1406 PC_ROM_MIN_VGA,
1407 option_rom_mr,
1408 1);
1409
1410 fw_cfg = bochs_bios_init();
1411 rom_set_fw(fw_cfg);
1412
1413 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1414 uint64_t *val = g_malloc(sizeof(*val));
1415 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory.base, 0x1ULL << 30));
1416 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1417 }
1418
1419 if (linux_boot) {
1420 load_linux(pcms, fw_cfg);
1421 }
1422
1423 for (i = 0; i < nb_option_roms; i++) {
1424 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1425 }
1426 guest_info->fw_cfg = fw_cfg;
1427 return fw_cfg;
1428}
1429
1430qemu_irq pc_allocate_cpu_irq(void)
1431{
1432 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1433}
1434
1435DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1436{
1437 DeviceState *dev = NULL;
1438
1439 if (pci_bus) {
1440 PCIDevice *pcidev = pci_vga_init(pci_bus);
1441 dev = pcidev ? &pcidev->qdev : NULL;
1442 } else if (isa_bus) {
1443 ISADevice *isadev = isa_vga_init(isa_bus);
1444 dev = isadev ? DEVICE(isadev) : NULL;
1445 }
1446 return dev;
1447}
1448
1449static void cpu_request_exit(void *opaque, int irq, int level)
1450{
1451 CPUState *cpu = current_cpu;
1452
1453 if (cpu && level) {
1454 cpu_exit(cpu);
1455 }
1456}
1457
1458static const MemoryRegionOps ioport80_io_ops = {
1459 .write = ioport80_write,
1460 .read = ioport80_read,
1461 .endianness = DEVICE_NATIVE_ENDIAN,
1462 .impl = {
1463 .min_access_size = 1,
1464 .max_access_size = 1,
1465 },
1466};
1467
1468static const MemoryRegionOps ioportF0_io_ops = {
1469 .write = ioportF0_write,
1470 .read = ioportF0_read,
1471 .endianness = DEVICE_NATIVE_ENDIAN,
1472 .impl = {
1473 .min_access_size = 1,
1474 .max_access_size = 1,
1475 },
1476};
1477
1478void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1479 ISADevice **rtc_state,
1480 bool create_fdctrl,
1481 bool no_vmport,
1482 uint32 hpet_irqs)
1483{
1484 int i;
1485 DriveInfo *fd[MAX_FD];
1486 DeviceState *hpet = NULL;
1487 int pit_isa_irq = 0;
1488 qemu_irq pit_alt_irq = NULL;
1489 qemu_irq rtc_irq = NULL;
1490 qemu_irq *a20_line;
1491 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1492 qemu_irq *cpu_exit_irq;
1493 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1494 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1495
1496 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1497 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1498
1499 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1500 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1501
1502 /*
1503 * Check if an HPET shall be created.
1504 *
1505 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1506 * when the HPET wants to take over. Thus we have to disable the latter.
1507 */
1508 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1509 /* In order to set property, here not using sysbus_try_create_simple */
1510 hpet = qdev_try_create(NULL, TYPE_HPET);
1511 if (hpet) {
1512 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1513 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1514 * IRQ8 and IRQ2.
1515 */
1516 uint8_t compat = object_property_get_int(OBJECT(hpet),
1517 HPET_INTCAP, NULL);
1518 if (!compat) {
1519 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1520 }
1521 qdev_init_nofail(hpet);
1522 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1523
1524 for (i = 0; i < GSI_NUM_PINS; i++) {
1525 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1526 }
1527 pit_isa_irq = -1;
1528 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1529 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1530 }
1531 }
1532 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1533
1534 qemu_register_boot_set(pc_boot_set, *rtc_state);
1535
1536 if (!xen_enabled()) {
1537 if (kvm_irqchip_in_kernel()) {
1538 pit = kvm_pit_init(isa_bus, 0x40);
1539 } else {
1540 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1541 }
1542 if (hpet) {
1543 /* connect PIT to output control line of the HPET */
1544 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1545 }
1546 pcspk_init(isa_bus, pit);
1547 }
1548
1549 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1550 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1551
1552 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1553 i8042 = isa_create_simple(isa_bus, "i8042");
1554 i8042_setup_a20_line(i8042, &a20_line[0]);
1555 if (!no_vmport) {
1556 vmport_init(isa_bus);
1557 vmmouse = isa_try_create(isa_bus, "vmmouse");
1558 } else {
1559 vmmouse = NULL;
1560 }
1561 if (vmmouse) {
1562 DeviceState *dev = DEVICE(vmmouse);
1563 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1564 qdev_init_nofail(dev);
1565 }
1566 port92 = isa_create_simple(isa_bus, "port92");
1567 port92_init(port92, &a20_line[1]);
1568
1569 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1570 DMA_init(0, cpu_exit_irq);
1571
1572 for(i = 0; i < MAX_FD; i++) {
1573 fd[i] = drive_get(IF_FLOPPY, 0, i);
1574 create_fdctrl |= !!fd[i];
1575 }
1576 if (create_fdctrl) {
1577 fdctrl_init_isa(isa_bus, fd);
1578 }
1579}
1580
1581void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1582{
1583 int i;
1584
1585 for (i = 0; i < nb_nics; i++) {
1586 NICInfo *nd = &nd_table[i];
1587
1588 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1589 pc_init_ne2k_isa(isa_bus, nd);
1590 } else {
1591 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1592 }
1593 }
1594}
1595
1596void pc_pci_device_init(PCIBus *pci_bus)
1597{
1598 int max_bus;
1599 int bus;
1600
1601 max_bus = drive_get_max_bus(IF_SCSI);
1602 for (bus = 0; bus <= max_bus; bus++) {
1603 pci_create_simple(pci_bus, -1, "lsi53c895a");
1604 }
1605}
1606
1607void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1608{
1609 DeviceState *dev;
1610 SysBusDevice *d;
1611 unsigned int i;
1612
1613 if (kvm_irqchip_in_kernel()) {
1614 dev = qdev_create(NULL, "kvm-ioapic");
1615 } else {
1616 dev = qdev_create(NULL, "ioapic");
1617 }
1618 if (parent_name) {
1619 object_property_add_child(object_resolve_path(parent_name, NULL),
1620 "ioapic", OBJECT(dev), NULL);
1621 }
1622 qdev_init_nofail(dev);
1623 d = SYS_BUS_DEVICE(dev);
1624 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1625
1626 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1627 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1628 }
1629}
1630
1631static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1632 DeviceState *dev, Error **errp)
1633{
1634 HotplugHandlerClass *hhc;
1635 Error *local_err = NULL;
1636 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1637 PCDIMMDevice *dimm = PC_DIMM(dev);
1638 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1639 MemoryRegion *mr = ddc->get_memory_region(dimm);
1640 uint64_t align = TARGET_PAGE_SIZE;
1641
1642 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1643 align = memory_region_get_alignment(mr);
1644 }
1645
1646 if (!pcms->acpi_dev) {
1647 error_setg(&local_err,
1648 "memory hotplug is not enabled: missing acpi device");
1649 goto out;
1650 }
1651
1652 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1653 if (local_err) {
1654 goto out;
1655 }
1656
1657 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1658 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1659out:
1660 error_propagate(errp, local_err);
1661}
1662
1663static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1664 DeviceState *dev, Error **errp)
1665{
1666 HotplugHandlerClass *hhc;
1667 Error *local_err = NULL;
1668 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1669
1670 if (!pcms->acpi_dev) {
1671 error_setg(&local_err,
1672 "memory hotplug is not enabled: missing acpi device");
1673 goto out;
1674 }
1675
1676 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1677 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1678
1679out:
1680 error_propagate(errp, local_err);
1681}
1682
1683static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1684 DeviceState *dev, Error **errp)
1685{
1686 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1687 PCDIMMDevice *dimm = PC_DIMM(dev);
1688 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1689 MemoryRegion *mr = ddc->get_memory_region(dimm);
1690 HotplugHandlerClass *hhc;
1691 Error *local_err = NULL;
1692
1693 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1694 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1695
1696 if (local_err) {
1697 goto out;
1698 }
1699
1700 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1701 object_unparent(OBJECT(dev));
1702
1703 out:
1704 error_propagate(errp, local_err);
1705}
1706
1707static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1708 DeviceState *dev, Error **errp)
1709{
1710 HotplugHandlerClass *hhc;
1711 Error *local_err = NULL;
1712 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1713
1714 if (!dev->hotplugged) {
1715 goto out;
1716 }
1717
1718 if (!pcms->acpi_dev) {
1719 error_setg(&local_err,
1720 "cpu hotplug is not enabled: missing acpi device");
1721 goto out;
1722 }
1723
1724 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1725 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1726 if (local_err) {
1727 goto out;
1728 }
1729
1730 /* increment the number of CPUs */
1731 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1732out:
1733 error_propagate(errp, local_err);
1734}
1735
1736static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1737 DeviceState *dev, Error **errp)
1738{
1739 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1740 pc_dimm_plug(hotplug_dev, dev, errp);
1741 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1742 pc_cpu_plug(hotplug_dev, dev, errp);
1743 }
1744}
1745
1746static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1747 DeviceState *dev, Error **errp)
1748{
1749 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1750 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1751 } else {
1752 error_setg(errp, "acpi: device unplug request for not supported device"
1753 " type: %s", object_get_typename(OBJECT(dev)));
1754 }
1755}
1756
1757static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1758 DeviceState *dev, Error **errp)
1759{
1760 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1761 pc_dimm_unplug(hotplug_dev, dev, errp);
1762 } else {
1763 error_setg(errp, "acpi: device unplug for not supported device"
1764 " type: %s", object_get_typename(OBJECT(dev)));
1765 }
1766}
1767
1768static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1769 DeviceState *dev)
1770{
1771 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1772
1773 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1774 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1775 return HOTPLUG_HANDLER(machine);
1776 }
1777
1778 return pcmc->get_hotplug_handler ?
1779 pcmc->get_hotplug_handler(machine, dev) : NULL;
1780}
1781
1782static void
1783pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1784 const char *name, Error **errp)
1785{
1786 PCMachineState *pcms = PC_MACHINE(obj);
1787 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1788
1789 visit_type_int(v, &value, name, errp);
1790}
1791
1792static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1793 void *opaque, const char *name,
1794 Error **errp)
1795{
1796 PCMachineState *pcms = PC_MACHINE(obj);
1797 uint64_t value = pcms->max_ram_below_4g;
1798
1799 visit_type_size(v, &value, name, errp);
1800}
1801
1802static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1803 void *opaque, const char *name,
1804 Error **errp)
1805{
1806 PCMachineState *pcms = PC_MACHINE(obj);
1807 Error *error = NULL;
1808 uint64_t value;
1809
1810 visit_type_size(v, &value, name, &error);
1811 if (error) {
1812 error_propagate(errp, error);
1813 return;
1814 }
1815 if (value > (1ULL << 32)) {
1816 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1817 "Machine option 'max-ram-below-4g=%"PRIu64
1818 "' expects size less than or equal to 4G", value);
1819 error_propagate(errp, error);
1820 return;
1821 }
1822
1823 if (value < (1ULL << 20)) {
1824 error_report("Warning: small max_ram_below_4g(%"PRIu64
1825 ") less than 1M. BIOS may not work..",
1826 value);
1827 }
1828
1829 pcms->max_ram_below_4g = value;
1830}
1831
1832static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1833 const char *name, Error **errp)
1834{
1835 PCMachineState *pcms = PC_MACHINE(obj);
1836 OnOffAuto vmport = pcms->vmport;
1837
1838 visit_type_OnOffAuto(v, &vmport, name, errp);
1839}
1840
1841static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1842 const char *name, Error **errp)
1843{
1844 PCMachineState *pcms = PC_MACHINE(obj);
1845
1846 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1847}
1848
1849bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1850{
1851 bool smm_available = false;
1852
1853 if (pcms->smm == ON_OFF_AUTO_OFF) {
1854 return false;
1855 }
1856
1857 if (tcg_enabled() || qtest_enabled()) {
1858 smm_available = true;
1859 } else if (kvm_enabled()) {
1860 smm_available = kvm_has_smm();
1861 }
1862
1863 if (smm_available) {
1864 return true;
1865 }
1866
1867 if (pcms->smm == ON_OFF_AUTO_ON) {
1868 error_report("System Management Mode not supported by this hypervisor.");
1869 exit(1);
1870 }
1871 return false;
1872}
1873
1874static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1875 const char *name, Error **errp)
1876{
1877 PCMachineState *pcms = PC_MACHINE(obj);
1878 OnOffAuto smm = pcms->smm;
1879
1880 visit_type_OnOffAuto(v, &smm, name, errp);
1881}
1882
1883static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1884 const char *name, Error **errp)
1885{
1886 PCMachineState *pcms = PC_MACHINE(obj);
1887
1888 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1889}
1890
1891static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1892{
1893 PCMachineState *pcms = PC_MACHINE(obj);
1894
1895 return pcms->enforce_aligned_dimm;
1896}
1897
1898static void pc_machine_initfn(Object *obj)
1899{
1900 PCMachineState *pcms = PC_MACHINE(obj);
1901
1902 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1903 pc_machine_get_hotplug_memory_region_size,
1904 NULL, NULL, NULL, &error_abort);
1905
1906 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1907 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1908 pc_machine_get_max_ram_below_4g,
1909 pc_machine_set_max_ram_below_4g,
1910 NULL, NULL, &error_abort);
1911 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1912 "Maximum ram below the 4G boundary (32bit boundary)",
1913 &error_abort);
1914
1915 pcms->smm = ON_OFF_AUTO_AUTO;
1916 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1917 pc_machine_get_smm,
1918 pc_machine_set_smm,
1919 NULL, NULL, &error_abort);
1920 object_property_set_description(obj, PC_MACHINE_SMM,
1921 "Enable SMM (pc & q35)",
1922 &error_abort);
1923
1924 pcms->vmport = ON_OFF_AUTO_AUTO;
1925 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1926 pc_machine_get_vmport,
1927 pc_machine_set_vmport,
1928 NULL, NULL, &error_abort);
1929 object_property_set_description(obj, PC_MACHINE_VMPORT,
1930 "Enable vmport (pc & q35)",
1931 &error_abort);
1932
1933 pcms->enforce_aligned_dimm = true;
1934 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1935 pc_machine_get_aligned_dimm,
1936 NULL, &error_abort);
1937}
1938
1939static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1940{
1941 unsigned pkg_id, core_id, smt_id;
1942 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1943 &pkg_id, &core_id, &smt_id);
1944 return pkg_id;
1945}
1946
1947static void pc_machine_class_init(ObjectClass *oc, void *data)
1948{
1949 MachineClass *mc = MACHINE_CLASS(oc);
1950 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1951 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1952
1953 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1954 mc->get_hotplug_handler = pc_get_hotpug_handler;
1955 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1956 mc->default_boot_order = "cad";
1957 mc->hot_add_cpu = pc_hot_add_cpu;
1958 mc->max_cpus = 255;
1959 hc->plug = pc_machine_device_plug_cb;
1960 hc->unplug_request = pc_machine_device_unplug_request_cb;
1961 hc->unplug = pc_machine_device_unplug_cb;
1962}
1963
1964static const TypeInfo pc_machine_info = {
1965 .name = TYPE_PC_MACHINE,
1966 .parent = TYPE_MACHINE,
1967 .abstract = true,
1968 .instance_size = sizeof(PCMachineState),
1969 .instance_init = pc_machine_initfn,
1970 .class_size = sizeof(PCMachineClass),
1971 .class_init = pc_machine_class_init,
1972 .interfaces = (InterfaceInfo[]) {
1973 { TYPE_HOTPLUG_HANDLER },
1974 { }
1975 },
1976};
1977
1978static void pc_machine_register_types(void)
1979{
1980 type_register_static(&pc_machine_info);
1981}
1982
1983type_init(pc_machine_register_types)