]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - include/linux/mm.h
mm: use passed vm_fault structure for in wp_pfn_shared()
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
... / ...
CommitLineData
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25#include <linux/page_ref.h>
26
27struct mempolicy;
28struct anon_vma;
29struct anon_vma_chain;
30struct file_ra_state;
31struct user_struct;
32struct writeback_control;
33struct bdi_writeback;
34
35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36extern unsigned long max_mapnr;
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
44#endif
45
46extern unsigned long totalram_pages;
47extern void * high_memory;
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
70
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
79/*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86#ifndef mm_forbids_zeropage
87#define mm_forbids_zeropage(X) (0)
88#endif
89
90/*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106#define MAPCOUNT_ELF_CORE_MARGIN (5)
107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109extern int sysctl_max_map_count;
110
111extern unsigned long sysctl_user_reserve_kbytes;
112extern unsigned long sysctl_admin_reserve_kbytes;
113
114extern int sysctl_overcommit_memory;
115extern int sysctl_overcommit_ratio;
116extern unsigned long sysctl_overcommit_kbytes;
117
118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
125/* to align the pointer to the (next) page boundary */
126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
130
131/*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
140extern struct kmem_cache *vm_area_cachep;
141
142#ifndef CONFIG_MMU
143extern struct rb_root nommu_region_tree;
144extern struct rw_semaphore nommu_region_sem;
145
146extern unsigned int kobjsize(const void *objp);
147#endif
148
149/*
150 * vm_flags in vm_area_struct, see mm_types.h.
151 * When changing, update also include/trace/events/mmflags.h
152 */
153#define VM_NONE 0x00000000
154
155#define VM_READ 0x00000001 /* currently active flags */
156#define VM_WRITE 0x00000002
157#define VM_EXEC 0x00000004
158#define VM_SHARED 0x00000008
159
160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162#define VM_MAYWRITE 0x00000020
163#define VM_MAYEXEC 0x00000040
164#define VM_MAYSHARE 0x00000080
165
166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
171
172#define VM_LOCKED 0x00002000
173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
186#define VM_ARCH_2 0x02000000
187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
188
189#ifdef CONFIG_MEM_SOFT_DIRTY
190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191#else
192# define VM_SOFTDIRTY 0
193#endif
194
195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
199
200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
211#if defined(CONFIG_X86)
212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219#endif
220#elif defined(CONFIG_PPC)
221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222#elif defined(CONFIG_PARISC)
223# define VM_GROWSUP VM_ARCH_1
224#elif defined(CONFIG_METAG)
225# define VM_GROWSUP VM_ARCH_1
226#elif defined(CONFIG_IA64)
227# define VM_GROWSUP VM_ARCH_1
228#elif !defined(CONFIG_MMU)
229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230#endif
231
232#if defined(CONFIG_X86)
233/* MPX specific bounds table or bounds directory */
234# define VM_MPX VM_ARCH_2
235#endif
236
237#ifndef VM_GROWSUP
238# define VM_GROWSUP VM_NONE
239#endif
240
241/* Bits set in the VMA until the stack is in its final location */
242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246#endif
247
248#ifdef CONFIG_STACK_GROWSUP
249#define VM_STACK VM_GROWSUP
250#else
251#define VM_STACK VM_GROWSDOWN
252#endif
253
254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
256/*
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
259 */
260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
261
262/* This mask defines which mm->def_flags a process can inherit its parent */
263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
265/* This mask is used to clear all the VMA flags used by mlock */
266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
268/*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272extern pgprot_t protection_map[16];
273
274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279#define FAULT_FLAG_TRIED 0x20 /* Second try */
280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
283
284/*
285 * vm_fault is filled by the the pagefault handler and passed to the vma's
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
288 *
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
292 * pgoff should be used in favour of virtual_address, if possible.
293 */
294struct vm_fault {
295 struct vm_area_struct *vma; /* Target VMA */
296 unsigned int flags; /* FAULT_FLAG_xxx flags */
297 gfp_t gfp_mask; /* gfp mask to be used for allocations */
298 pgoff_t pgoff; /* Logical page offset based on vma */
299 unsigned long address; /* Faulting virtual address */
300 pmd_t *pmd; /* Pointer to pmd entry matching
301 * the 'address'
302 */
303
304 struct page *cow_page; /* Handler may choose to COW */
305 struct page *page; /* ->fault handlers should return a
306 * page here, unless VM_FAULT_NOPAGE
307 * is set (which is also implied by
308 * VM_FAULT_ERROR).
309 */
310 void *entry; /* ->fault handler can alternatively
311 * return locked DAX entry. In that
312 * case handler should return
313 * VM_FAULT_DAX_LOCKED and fill in
314 * entry here.
315 */
316 /* These three entries are valid only while holding ptl lock */
317 pte_t *pte; /* Pointer to pte entry matching
318 * the 'address'. NULL if the page
319 * table hasn't been allocated.
320 */
321 spinlock_t *ptl; /* Page table lock.
322 * Protects pte page table if 'pte'
323 * is not NULL, otherwise pmd.
324 */
325 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
326 * vm_ops->map_pages() calls
327 * alloc_set_pte() from atomic context.
328 * do_fault_around() pre-allocates
329 * page table to avoid allocation from
330 * atomic context.
331 */
332};
333
334/*
335 * These are the virtual MM functions - opening of an area, closing and
336 * unmapping it (needed to keep files on disk up-to-date etc), pointer
337 * to the functions called when a no-page or a wp-page exception occurs.
338 */
339struct vm_operations_struct {
340 void (*open)(struct vm_area_struct * area);
341 void (*close)(struct vm_area_struct * area);
342 int (*mremap)(struct vm_area_struct * area);
343 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
344 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
345 pmd_t *, unsigned int flags);
346 void (*map_pages)(struct vm_fault *vmf,
347 pgoff_t start_pgoff, pgoff_t end_pgoff);
348
349 /* notification that a previously read-only page is about to become
350 * writable, if an error is returned it will cause a SIGBUS */
351 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
352
353 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
354 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
355
356 /* called by access_process_vm when get_user_pages() fails, typically
357 * for use by special VMAs that can switch between memory and hardware
358 */
359 int (*access)(struct vm_area_struct *vma, unsigned long addr,
360 void *buf, int len, int write);
361
362 /* Called by the /proc/PID/maps code to ask the vma whether it
363 * has a special name. Returning non-NULL will also cause this
364 * vma to be dumped unconditionally. */
365 const char *(*name)(struct vm_area_struct *vma);
366
367#ifdef CONFIG_NUMA
368 /*
369 * set_policy() op must add a reference to any non-NULL @new mempolicy
370 * to hold the policy upon return. Caller should pass NULL @new to
371 * remove a policy and fall back to surrounding context--i.e. do not
372 * install a MPOL_DEFAULT policy, nor the task or system default
373 * mempolicy.
374 */
375 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
376
377 /*
378 * get_policy() op must add reference [mpol_get()] to any policy at
379 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
380 * in mm/mempolicy.c will do this automatically.
381 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
382 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
383 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
384 * must return NULL--i.e., do not "fallback" to task or system default
385 * policy.
386 */
387 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
388 unsigned long addr);
389#endif
390 /*
391 * Called by vm_normal_page() for special PTEs to find the
392 * page for @addr. This is useful if the default behavior
393 * (using pte_page()) would not find the correct page.
394 */
395 struct page *(*find_special_page)(struct vm_area_struct *vma,
396 unsigned long addr);
397};
398
399struct mmu_gather;
400struct inode;
401
402#define page_private(page) ((page)->private)
403#define set_page_private(page, v) ((page)->private = (v))
404
405#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
406static inline int pmd_devmap(pmd_t pmd)
407{
408 return 0;
409}
410#endif
411
412/*
413 * FIXME: take this include out, include page-flags.h in
414 * files which need it (119 of them)
415 */
416#include <linux/page-flags.h>
417#include <linux/huge_mm.h>
418
419/*
420 * Methods to modify the page usage count.
421 *
422 * What counts for a page usage:
423 * - cache mapping (page->mapping)
424 * - private data (page->private)
425 * - page mapped in a task's page tables, each mapping
426 * is counted separately
427 *
428 * Also, many kernel routines increase the page count before a critical
429 * routine so they can be sure the page doesn't go away from under them.
430 */
431
432/*
433 * Drop a ref, return true if the refcount fell to zero (the page has no users)
434 */
435static inline int put_page_testzero(struct page *page)
436{
437 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
438 return page_ref_dec_and_test(page);
439}
440
441/*
442 * Try to grab a ref unless the page has a refcount of zero, return false if
443 * that is the case.
444 * This can be called when MMU is off so it must not access
445 * any of the virtual mappings.
446 */
447static inline int get_page_unless_zero(struct page *page)
448{
449 return page_ref_add_unless(page, 1, 0);
450}
451
452extern int page_is_ram(unsigned long pfn);
453
454enum {
455 REGION_INTERSECTS,
456 REGION_DISJOINT,
457 REGION_MIXED,
458};
459
460int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
461 unsigned long desc);
462
463/* Support for virtually mapped pages */
464struct page *vmalloc_to_page(const void *addr);
465unsigned long vmalloc_to_pfn(const void *addr);
466
467/*
468 * Determine if an address is within the vmalloc range
469 *
470 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
471 * is no special casing required.
472 */
473static inline bool is_vmalloc_addr(const void *x)
474{
475#ifdef CONFIG_MMU
476 unsigned long addr = (unsigned long)x;
477
478 return addr >= VMALLOC_START && addr < VMALLOC_END;
479#else
480 return false;
481#endif
482}
483#ifdef CONFIG_MMU
484extern int is_vmalloc_or_module_addr(const void *x);
485#else
486static inline int is_vmalloc_or_module_addr(const void *x)
487{
488 return 0;
489}
490#endif
491
492extern void kvfree(const void *addr);
493
494static inline atomic_t *compound_mapcount_ptr(struct page *page)
495{
496 return &page[1].compound_mapcount;
497}
498
499static inline int compound_mapcount(struct page *page)
500{
501 VM_BUG_ON_PAGE(!PageCompound(page), page);
502 page = compound_head(page);
503 return atomic_read(compound_mapcount_ptr(page)) + 1;
504}
505
506/*
507 * The atomic page->_mapcount, starts from -1: so that transitions
508 * both from it and to it can be tracked, using atomic_inc_and_test
509 * and atomic_add_negative(-1).
510 */
511static inline void page_mapcount_reset(struct page *page)
512{
513 atomic_set(&(page)->_mapcount, -1);
514}
515
516int __page_mapcount(struct page *page);
517
518static inline int page_mapcount(struct page *page)
519{
520 VM_BUG_ON_PAGE(PageSlab(page), page);
521
522 if (unlikely(PageCompound(page)))
523 return __page_mapcount(page);
524 return atomic_read(&page->_mapcount) + 1;
525}
526
527#ifdef CONFIG_TRANSPARENT_HUGEPAGE
528int total_mapcount(struct page *page);
529int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
530#else
531static inline int total_mapcount(struct page *page)
532{
533 return page_mapcount(page);
534}
535static inline int page_trans_huge_mapcount(struct page *page,
536 int *total_mapcount)
537{
538 int mapcount = page_mapcount(page);
539 if (total_mapcount)
540 *total_mapcount = mapcount;
541 return mapcount;
542}
543#endif
544
545static inline struct page *virt_to_head_page(const void *x)
546{
547 struct page *page = virt_to_page(x);
548
549 return compound_head(page);
550}
551
552void __put_page(struct page *page);
553
554void put_pages_list(struct list_head *pages);
555
556void split_page(struct page *page, unsigned int order);
557
558/*
559 * Compound pages have a destructor function. Provide a
560 * prototype for that function and accessor functions.
561 * These are _only_ valid on the head of a compound page.
562 */
563typedef void compound_page_dtor(struct page *);
564
565/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
566enum compound_dtor_id {
567 NULL_COMPOUND_DTOR,
568 COMPOUND_PAGE_DTOR,
569#ifdef CONFIG_HUGETLB_PAGE
570 HUGETLB_PAGE_DTOR,
571#endif
572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
573 TRANSHUGE_PAGE_DTOR,
574#endif
575 NR_COMPOUND_DTORS,
576};
577extern compound_page_dtor * const compound_page_dtors[];
578
579static inline void set_compound_page_dtor(struct page *page,
580 enum compound_dtor_id compound_dtor)
581{
582 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
583 page[1].compound_dtor = compound_dtor;
584}
585
586static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
587{
588 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
589 return compound_page_dtors[page[1].compound_dtor];
590}
591
592static inline unsigned int compound_order(struct page *page)
593{
594 if (!PageHead(page))
595 return 0;
596 return page[1].compound_order;
597}
598
599static inline void set_compound_order(struct page *page, unsigned int order)
600{
601 page[1].compound_order = order;
602}
603
604void free_compound_page(struct page *page);
605
606#ifdef CONFIG_MMU
607/*
608 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
609 * servicing faults for write access. In the normal case, do always want
610 * pte_mkwrite. But get_user_pages can cause write faults for mappings
611 * that do not have writing enabled, when used by access_process_vm.
612 */
613static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
614{
615 if (likely(vma->vm_flags & VM_WRITE))
616 pte = pte_mkwrite(pte);
617 return pte;
618}
619
620int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
621 struct page *page);
622#endif
623
624/*
625 * Multiple processes may "see" the same page. E.g. for untouched
626 * mappings of /dev/null, all processes see the same page full of
627 * zeroes, and text pages of executables and shared libraries have
628 * only one copy in memory, at most, normally.
629 *
630 * For the non-reserved pages, page_count(page) denotes a reference count.
631 * page_count() == 0 means the page is free. page->lru is then used for
632 * freelist management in the buddy allocator.
633 * page_count() > 0 means the page has been allocated.
634 *
635 * Pages are allocated by the slab allocator in order to provide memory
636 * to kmalloc and kmem_cache_alloc. In this case, the management of the
637 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
638 * unless a particular usage is carefully commented. (the responsibility of
639 * freeing the kmalloc memory is the caller's, of course).
640 *
641 * A page may be used by anyone else who does a __get_free_page().
642 * In this case, page_count still tracks the references, and should only
643 * be used through the normal accessor functions. The top bits of page->flags
644 * and page->virtual store page management information, but all other fields
645 * are unused and could be used privately, carefully. The management of this
646 * page is the responsibility of the one who allocated it, and those who have
647 * subsequently been given references to it.
648 *
649 * The other pages (we may call them "pagecache pages") are completely
650 * managed by the Linux memory manager: I/O, buffers, swapping etc.
651 * The following discussion applies only to them.
652 *
653 * A pagecache page contains an opaque `private' member, which belongs to the
654 * page's address_space. Usually, this is the address of a circular list of
655 * the page's disk buffers. PG_private must be set to tell the VM to call
656 * into the filesystem to release these pages.
657 *
658 * A page may belong to an inode's memory mapping. In this case, page->mapping
659 * is the pointer to the inode, and page->index is the file offset of the page,
660 * in units of PAGE_SIZE.
661 *
662 * If pagecache pages are not associated with an inode, they are said to be
663 * anonymous pages. These may become associated with the swapcache, and in that
664 * case PG_swapcache is set, and page->private is an offset into the swapcache.
665 *
666 * In either case (swapcache or inode backed), the pagecache itself holds one
667 * reference to the page. Setting PG_private should also increment the
668 * refcount. The each user mapping also has a reference to the page.
669 *
670 * The pagecache pages are stored in a per-mapping radix tree, which is
671 * rooted at mapping->page_tree, and indexed by offset.
672 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
673 * lists, we instead now tag pages as dirty/writeback in the radix tree.
674 *
675 * All pagecache pages may be subject to I/O:
676 * - inode pages may need to be read from disk,
677 * - inode pages which have been modified and are MAP_SHARED may need
678 * to be written back to the inode on disk,
679 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
680 * modified may need to be swapped out to swap space and (later) to be read
681 * back into memory.
682 */
683
684/*
685 * The zone field is never updated after free_area_init_core()
686 * sets it, so none of the operations on it need to be atomic.
687 */
688
689/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
690#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
691#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
692#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
693#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
694
695/*
696 * Define the bit shifts to access each section. For non-existent
697 * sections we define the shift as 0; that plus a 0 mask ensures
698 * the compiler will optimise away reference to them.
699 */
700#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
701#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
702#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
703#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
704
705/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
706#ifdef NODE_NOT_IN_PAGE_FLAGS
707#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
708#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
709 SECTIONS_PGOFF : ZONES_PGOFF)
710#else
711#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
712#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
713 NODES_PGOFF : ZONES_PGOFF)
714#endif
715
716#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
717
718#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
719#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
720#endif
721
722#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
723#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
724#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
725#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
726#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
727
728static inline enum zone_type page_zonenum(const struct page *page)
729{
730 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
731}
732
733#ifdef CONFIG_ZONE_DEVICE
734void get_zone_device_page(struct page *page);
735void put_zone_device_page(struct page *page);
736static inline bool is_zone_device_page(const struct page *page)
737{
738 return page_zonenum(page) == ZONE_DEVICE;
739}
740#else
741static inline void get_zone_device_page(struct page *page)
742{
743}
744static inline void put_zone_device_page(struct page *page)
745{
746}
747static inline bool is_zone_device_page(const struct page *page)
748{
749 return false;
750}
751#endif
752
753static inline void get_page(struct page *page)
754{
755 page = compound_head(page);
756 /*
757 * Getting a normal page or the head of a compound page
758 * requires to already have an elevated page->_refcount.
759 */
760 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
761 page_ref_inc(page);
762
763 if (unlikely(is_zone_device_page(page)))
764 get_zone_device_page(page);
765}
766
767static inline void put_page(struct page *page)
768{
769 page = compound_head(page);
770
771 if (put_page_testzero(page))
772 __put_page(page);
773
774 if (unlikely(is_zone_device_page(page)))
775 put_zone_device_page(page);
776}
777
778#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
779#define SECTION_IN_PAGE_FLAGS
780#endif
781
782/*
783 * The identification function is mainly used by the buddy allocator for
784 * determining if two pages could be buddies. We are not really identifying
785 * the zone since we could be using the section number id if we do not have
786 * node id available in page flags.
787 * We only guarantee that it will return the same value for two combinable
788 * pages in a zone.
789 */
790static inline int page_zone_id(struct page *page)
791{
792 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
793}
794
795static inline int zone_to_nid(struct zone *zone)
796{
797#ifdef CONFIG_NUMA
798 return zone->node;
799#else
800 return 0;
801#endif
802}
803
804#ifdef NODE_NOT_IN_PAGE_FLAGS
805extern int page_to_nid(const struct page *page);
806#else
807static inline int page_to_nid(const struct page *page)
808{
809 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
810}
811#endif
812
813#ifdef CONFIG_NUMA_BALANCING
814static inline int cpu_pid_to_cpupid(int cpu, int pid)
815{
816 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
817}
818
819static inline int cpupid_to_pid(int cpupid)
820{
821 return cpupid & LAST__PID_MASK;
822}
823
824static inline int cpupid_to_cpu(int cpupid)
825{
826 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
827}
828
829static inline int cpupid_to_nid(int cpupid)
830{
831 return cpu_to_node(cpupid_to_cpu(cpupid));
832}
833
834static inline bool cpupid_pid_unset(int cpupid)
835{
836 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
837}
838
839static inline bool cpupid_cpu_unset(int cpupid)
840{
841 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
842}
843
844static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
845{
846 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
847}
848
849#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
850#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
851static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
852{
853 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
854}
855
856static inline int page_cpupid_last(struct page *page)
857{
858 return page->_last_cpupid;
859}
860static inline void page_cpupid_reset_last(struct page *page)
861{
862 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
863}
864#else
865static inline int page_cpupid_last(struct page *page)
866{
867 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
868}
869
870extern int page_cpupid_xchg_last(struct page *page, int cpupid);
871
872static inline void page_cpupid_reset_last(struct page *page)
873{
874 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
875}
876#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
877#else /* !CONFIG_NUMA_BALANCING */
878static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
879{
880 return page_to_nid(page); /* XXX */
881}
882
883static inline int page_cpupid_last(struct page *page)
884{
885 return page_to_nid(page); /* XXX */
886}
887
888static inline int cpupid_to_nid(int cpupid)
889{
890 return -1;
891}
892
893static inline int cpupid_to_pid(int cpupid)
894{
895 return -1;
896}
897
898static inline int cpupid_to_cpu(int cpupid)
899{
900 return -1;
901}
902
903static inline int cpu_pid_to_cpupid(int nid, int pid)
904{
905 return -1;
906}
907
908static inline bool cpupid_pid_unset(int cpupid)
909{
910 return 1;
911}
912
913static inline void page_cpupid_reset_last(struct page *page)
914{
915}
916
917static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
918{
919 return false;
920}
921#endif /* CONFIG_NUMA_BALANCING */
922
923static inline struct zone *page_zone(const struct page *page)
924{
925 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
926}
927
928static inline pg_data_t *page_pgdat(const struct page *page)
929{
930 return NODE_DATA(page_to_nid(page));
931}
932
933#ifdef SECTION_IN_PAGE_FLAGS
934static inline void set_page_section(struct page *page, unsigned long section)
935{
936 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
937 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
938}
939
940static inline unsigned long page_to_section(const struct page *page)
941{
942 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
943}
944#endif
945
946static inline void set_page_zone(struct page *page, enum zone_type zone)
947{
948 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
949 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
950}
951
952static inline void set_page_node(struct page *page, unsigned long node)
953{
954 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
955 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
956}
957
958static inline void set_page_links(struct page *page, enum zone_type zone,
959 unsigned long node, unsigned long pfn)
960{
961 set_page_zone(page, zone);
962 set_page_node(page, node);
963#ifdef SECTION_IN_PAGE_FLAGS
964 set_page_section(page, pfn_to_section_nr(pfn));
965#endif
966}
967
968#ifdef CONFIG_MEMCG
969static inline struct mem_cgroup *page_memcg(struct page *page)
970{
971 return page->mem_cgroup;
972}
973static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
974{
975 WARN_ON_ONCE(!rcu_read_lock_held());
976 return READ_ONCE(page->mem_cgroup);
977}
978#else
979static inline struct mem_cgroup *page_memcg(struct page *page)
980{
981 return NULL;
982}
983static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
984{
985 WARN_ON_ONCE(!rcu_read_lock_held());
986 return NULL;
987}
988#endif
989
990/*
991 * Some inline functions in vmstat.h depend on page_zone()
992 */
993#include <linux/vmstat.h>
994
995static __always_inline void *lowmem_page_address(const struct page *page)
996{
997 return page_to_virt(page);
998}
999
1000#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1001#define HASHED_PAGE_VIRTUAL
1002#endif
1003
1004#if defined(WANT_PAGE_VIRTUAL)
1005static inline void *page_address(const struct page *page)
1006{
1007 return page->virtual;
1008}
1009static inline void set_page_address(struct page *page, void *address)
1010{
1011 page->virtual = address;
1012}
1013#define page_address_init() do { } while(0)
1014#endif
1015
1016#if defined(HASHED_PAGE_VIRTUAL)
1017void *page_address(const struct page *page);
1018void set_page_address(struct page *page, void *virtual);
1019void page_address_init(void);
1020#endif
1021
1022#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1023#define page_address(page) lowmem_page_address(page)
1024#define set_page_address(page, address) do { } while(0)
1025#define page_address_init() do { } while(0)
1026#endif
1027
1028extern void *page_rmapping(struct page *page);
1029extern struct anon_vma *page_anon_vma(struct page *page);
1030extern struct address_space *page_mapping(struct page *page);
1031
1032extern struct address_space *__page_file_mapping(struct page *);
1033
1034static inline
1035struct address_space *page_file_mapping(struct page *page)
1036{
1037 if (unlikely(PageSwapCache(page)))
1038 return __page_file_mapping(page);
1039
1040 return page->mapping;
1041}
1042
1043extern pgoff_t __page_file_index(struct page *page);
1044
1045/*
1046 * Return the pagecache index of the passed page. Regular pagecache pages
1047 * use ->index whereas swapcache pages use swp_offset(->private)
1048 */
1049static inline pgoff_t page_index(struct page *page)
1050{
1051 if (unlikely(PageSwapCache(page)))
1052 return __page_file_index(page);
1053 return page->index;
1054}
1055
1056bool page_mapped(struct page *page);
1057struct address_space *page_mapping(struct page *page);
1058
1059/*
1060 * Return true only if the page has been allocated with
1061 * ALLOC_NO_WATERMARKS and the low watermark was not
1062 * met implying that the system is under some pressure.
1063 */
1064static inline bool page_is_pfmemalloc(struct page *page)
1065{
1066 /*
1067 * Page index cannot be this large so this must be
1068 * a pfmemalloc page.
1069 */
1070 return page->index == -1UL;
1071}
1072
1073/*
1074 * Only to be called by the page allocator on a freshly allocated
1075 * page.
1076 */
1077static inline void set_page_pfmemalloc(struct page *page)
1078{
1079 page->index = -1UL;
1080}
1081
1082static inline void clear_page_pfmemalloc(struct page *page)
1083{
1084 page->index = 0;
1085}
1086
1087/*
1088 * Different kinds of faults, as returned by handle_mm_fault().
1089 * Used to decide whether a process gets delivered SIGBUS or
1090 * just gets major/minor fault counters bumped up.
1091 */
1092
1093#define VM_FAULT_OOM 0x0001
1094#define VM_FAULT_SIGBUS 0x0002
1095#define VM_FAULT_MAJOR 0x0004
1096#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1097#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1098#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1099#define VM_FAULT_SIGSEGV 0x0040
1100
1101#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1102#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1103#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1104#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1105#define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1106
1107#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1108
1109#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1110 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1111 VM_FAULT_FALLBACK)
1112
1113/* Encode hstate index for a hwpoisoned large page */
1114#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1115#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1116
1117/*
1118 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1119 */
1120extern void pagefault_out_of_memory(void);
1121
1122#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1123
1124/*
1125 * Flags passed to show_mem() and show_free_areas() to suppress output in
1126 * various contexts.
1127 */
1128#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1129
1130extern void show_free_areas(unsigned int flags);
1131extern bool skip_free_areas_node(unsigned int flags, int nid);
1132
1133int shmem_zero_setup(struct vm_area_struct *);
1134#ifdef CONFIG_SHMEM
1135bool shmem_mapping(struct address_space *mapping);
1136#else
1137static inline bool shmem_mapping(struct address_space *mapping)
1138{
1139 return false;
1140}
1141#endif
1142
1143extern bool can_do_mlock(void);
1144extern int user_shm_lock(size_t, struct user_struct *);
1145extern void user_shm_unlock(size_t, struct user_struct *);
1146
1147/*
1148 * Parameter block passed down to zap_pte_range in exceptional cases.
1149 */
1150struct zap_details {
1151 struct address_space *check_mapping; /* Check page->mapping if set */
1152 pgoff_t first_index; /* Lowest page->index to unmap */
1153 pgoff_t last_index; /* Highest page->index to unmap */
1154 bool ignore_dirty; /* Ignore dirty pages */
1155 bool check_swap_entries; /* Check also swap entries */
1156};
1157
1158struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1159 pte_t pte);
1160struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1161 pmd_t pmd);
1162
1163int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1164 unsigned long size);
1165void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1166 unsigned long size, struct zap_details *);
1167void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1168 unsigned long start, unsigned long end);
1169
1170/**
1171 * mm_walk - callbacks for walk_page_range
1172 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1173 * this handler is required to be able to handle
1174 * pmd_trans_huge() pmds. They may simply choose to
1175 * split_huge_page() instead of handling it explicitly.
1176 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1177 * @pte_hole: if set, called for each hole at all levels
1178 * @hugetlb_entry: if set, called for each hugetlb entry
1179 * @test_walk: caller specific callback function to determine whether
1180 * we walk over the current vma or not. Returning 0
1181 * value means "do page table walk over the current vma,"
1182 * and a negative one means "abort current page table walk
1183 * right now." 1 means "skip the current vma."
1184 * @mm: mm_struct representing the target process of page table walk
1185 * @vma: vma currently walked (NULL if walking outside vmas)
1186 * @private: private data for callbacks' usage
1187 *
1188 * (see the comment on walk_page_range() for more details)
1189 */
1190struct mm_walk {
1191 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1192 unsigned long next, struct mm_walk *walk);
1193 int (*pte_entry)(pte_t *pte, unsigned long addr,
1194 unsigned long next, struct mm_walk *walk);
1195 int (*pte_hole)(unsigned long addr, unsigned long next,
1196 struct mm_walk *walk);
1197 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1198 unsigned long addr, unsigned long next,
1199 struct mm_walk *walk);
1200 int (*test_walk)(unsigned long addr, unsigned long next,
1201 struct mm_walk *walk);
1202 struct mm_struct *mm;
1203 struct vm_area_struct *vma;
1204 void *private;
1205};
1206
1207int walk_page_range(unsigned long addr, unsigned long end,
1208 struct mm_walk *walk);
1209int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1210void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1211 unsigned long end, unsigned long floor, unsigned long ceiling);
1212int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1213 struct vm_area_struct *vma);
1214void unmap_mapping_range(struct address_space *mapping,
1215 loff_t const holebegin, loff_t const holelen, int even_cows);
1216int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1217 unsigned long *pfn);
1218int follow_phys(struct vm_area_struct *vma, unsigned long address,
1219 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1220int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1221 void *buf, int len, int write);
1222
1223static inline void unmap_shared_mapping_range(struct address_space *mapping,
1224 loff_t const holebegin, loff_t const holelen)
1225{
1226 unmap_mapping_range(mapping, holebegin, holelen, 0);
1227}
1228
1229extern void truncate_pagecache(struct inode *inode, loff_t new);
1230extern void truncate_setsize(struct inode *inode, loff_t newsize);
1231void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1232void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1233int truncate_inode_page(struct address_space *mapping, struct page *page);
1234int generic_error_remove_page(struct address_space *mapping, struct page *page);
1235int invalidate_inode_page(struct page *page);
1236
1237#ifdef CONFIG_MMU
1238extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1239 unsigned int flags);
1240extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1241 unsigned long address, unsigned int fault_flags,
1242 bool *unlocked);
1243#else
1244static inline int handle_mm_fault(struct vm_area_struct *vma,
1245 unsigned long address, unsigned int flags)
1246{
1247 /* should never happen if there's no MMU */
1248 BUG();
1249 return VM_FAULT_SIGBUS;
1250}
1251static inline int fixup_user_fault(struct task_struct *tsk,
1252 struct mm_struct *mm, unsigned long address,
1253 unsigned int fault_flags, bool *unlocked)
1254{
1255 /* should never happen if there's no MMU */
1256 BUG();
1257 return -EFAULT;
1258}
1259#endif
1260
1261extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1262 unsigned int gup_flags);
1263extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1264 void *buf, int len, unsigned int gup_flags);
1265
1266long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1267 unsigned long start, unsigned long nr_pages,
1268 unsigned int gup_flags, struct page **pages,
1269 struct vm_area_struct **vmas, int *locked);
1270long get_user_pages(unsigned long start, unsigned long nr_pages,
1271 unsigned int gup_flags, struct page **pages,
1272 struct vm_area_struct **vmas);
1273long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1274 unsigned int gup_flags, struct page **pages, int *locked);
1275long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1276 struct page **pages, unsigned int gup_flags);
1277int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1278 struct page **pages);
1279
1280/* Container for pinned pfns / pages */
1281struct frame_vector {
1282 unsigned int nr_allocated; /* Number of frames we have space for */
1283 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1284 bool got_ref; /* Did we pin pages by getting page ref? */
1285 bool is_pfns; /* Does array contain pages or pfns? */
1286 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1287 * pfns_vector_pages() or pfns_vector_pfns()
1288 * for access */
1289};
1290
1291struct frame_vector *frame_vector_create(unsigned int nr_frames);
1292void frame_vector_destroy(struct frame_vector *vec);
1293int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1294 unsigned int gup_flags, struct frame_vector *vec);
1295void put_vaddr_frames(struct frame_vector *vec);
1296int frame_vector_to_pages(struct frame_vector *vec);
1297void frame_vector_to_pfns(struct frame_vector *vec);
1298
1299static inline unsigned int frame_vector_count(struct frame_vector *vec)
1300{
1301 return vec->nr_frames;
1302}
1303
1304static inline struct page **frame_vector_pages(struct frame_vector *vec)
1305{
1306 if (vec->is_pfns) {
1307 int err = frame_vector_to_pages(vec);
1308
1309 if (err)
1310 return ERR_PTR(err);
1311 }
1312 return (struct page **)(vec->ptrs);
1313}
1314
1315static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1316{
1317 if (!vec->is_pfns)
1318 frame_vector_to_pfns(vec);
1319 return (unsigned long *)(vec->ptrs);
1320}
1321
1322struct kvec;
1323int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1324 struct page **pages);
1325int get_kernel_page(unsigned long start, int write, struct page **pages);
1326struct page *get_dump_page(unsigned long addr);
1327
1328extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1329extern void do_invalidatepage(struct page *page, unsigned int offset,
1330 unsigned int length);
1331
1332int __set_page_dirty_nobuffers(struct page *page);
1333int __set_page_dirty_no_writeback(struct page *page);
1334int redirty_page_for_writepage(struct writeback_control *wbc,
1335 struct page *page);
1336void account_page_dirtied(struct page *page, struct address_space *mapping);
1337void account_page_cleaned(struct page *page, struct address_space *mapping,
1338 struct bdi_writeback *wb);
1339int set_page_dirty(struct page *page);
1340int set_page_dirty_lock(struct page *page);
1341void cancel_dirty_page(struct page *page);
1342int clear_page_dirty_for_io(struct page *page);
1343
1344int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1345
1346/* Is the vma a continuation of the stack vma above it? */
1347static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1348{
1349 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1350}
1351
1352static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1353{
1354 return !vma->vm_ops;
1355}
1356
1357static inline int stack_guard_page_start(struct vm_area_struct *vma,
1358 unsigned long addr)
1359{
1360 return (vma->vm_flags & VM_GROWSDOWN) &&
1361 (vma->vm_start == addr) &&
1362 !vma_growsdown(vma->vm_prev, addr);
1363}
1364
1365/* Is the vma a continuation of the stack vma below it? */
1366static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1367{
1368 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1369}
1370
1371static inline int stack_guard_page_end(struct vm_area_struct *vma,
1372 unsigned long addr)
1373{
1374 return (vma->vm_flags & VM_GROWSUP) &&
1375 (vma->vm_end == addr) &&
1376 !vma_growsup(vma->vm_next, addr);
1377}
1378
1379int vma_is_stack_for_current(struct vm_area_struct *vma);
1380
1381extern unsigned long move_page_tables(struct vm_area_struct *vma,
1382 unsigned long old_addr, struct vm_area_struct *new_vma,
1383 unsigned long new_addr, unsigned long len,
1384 bool need_rmap_locks);
1385extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1386 unsigned long end, pgprot_t newprot,
1387 int dirty_accountable, int prot_numa);
1388extern int mprotect_fixup(struct vm_area_struct *vma,
1389 struct vm_area_struct **pprev, unsigned long start,
1390 unsigned long end, unsigned long newflags);
1391
1392/*
1393 * doesn't attempt to fault and will return short.
1394 */
1395int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1396 struct page **pages);
1397/*
1398 * per-process(per-mm_struct) statistics.
1399 */
1400static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1401{
1402 long val = atomic_long_read(&mm->rss_stat.count[member]);
1403
1404#ifdef SPLIT_RSS_COUNTING
1405 /*
1406 * counter is updated in asynchronous manner and may go to minus.
1407 * But it's never be expected number for users.
1408 */
1409 if (val < 0)
1410 val = 0;
1411#endif
1412 return (unsigned long)val;
1413}
1414
1415static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1416{
1417 atomic_long_add(value, &mm->rss_stat.count[member]);
1418}
1419
1420static inline void inc_mm_counter(struct mm_struct *mm, int member)
1421{
1422 atomic_long_inc(&mm->rss_stat.count[member]);
1423}
1424
1425static inline void dec_mm_counter(struct mm_struct *mm, int member)
1426{
1427 atomic_long_dec(&mm->rss_stat.count[member]);
1428}
1429
1430/* Optimized variant when page is already known not to be PageAnon */
1431static inline int mm_counter_file(struct page *page)
1432{
1433 if (PageSwapBacked(page))
1434 return MM_SHMEMPAGES;
1435 return MM_FILEPAGES;
1436}
1437
1438static inline int mm_counter(struct page *page)
1439{
1440 if (PageAnon(page))
1441 return MM_ANONPAGES;
1442 return mm_counter_file(page);
1443}
1444
1445static inline unsigned long get_mm_rss(struct mm_struct *mm)
1446{
1447 return get_mm_counter(mm, MM_FILEPAGES) +
1448 get_mm_counter(mm, MM_ANONPAGES) +
1449 get_mm_counter(mm, MM_SHMEMPAGES);
1450}
1451
1452static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1453{
1454 return max(mm->hiwater_rss, get_mm_rss(mm));
1455}
1456
1457static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1458{
1459 return max(mm->hiwater_vm, mm->total_vm);
1460}
1461
1462static inline void update_hiwater_rss(struct mm_struct *mm)
1463{
1464 unsigned long _rss = get_mm_rss(mm);
1465
1466 if ((mm)->hiwater_rss < _rss)
1467 (mm)->hiwater_rss = _rss;
1468}
1469
1470static inline void update_hiwater_vm(struct mm_struct *mm)
1471{
1472 if (mm->hiwater_vm < mm->total_vm)
1473 mm->hiwater_vm = mm->total_vm;
1474}
1475
1476static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1477{
1478 mm->hiwater_rss = get_mm_rss(mm);
1479}
1480
1481static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1482 struct mm_struct *mm)
1483{
1484 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1485
1486 if (*maxrss < hiwater_rss)
1487 *maxrss = hiwater_rss;
1488}
1489
1490#if defined(SPLIT_RSS_COUNTING)
1491void sync_mm_rss(struct mm_struct *mm);
1492#else
1493static inline void sync_mm_rss(struct mm_struct *mm)
1494{
1495}
1496#endif
1497
1498#ifndef __HAVE_ARCH_PTE_DEVMAP
1499static inline int pte_devmap(pte_t pte)
1500{
1501 return 0;
1502}
1503#endif
1504
1505int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1506
1507extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1508 spinlock_t **ptl);
1509static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1510 spinlock_t **ptl)
1511{
1512 pte_t *ptep;
1513 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1514 return ptep;
1515}
1516
1517#ifdef __PAGETABLE_PUD_FOLDED
1518static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1519 unsigned long address)
1520{
1521 return 0;
1522}
1523#else
1524int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1525#endif
1526
1527#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1528static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1529 unsigned long address)
1530{
1531 return 0;
1532}
1533
1534static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1535
1536static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1537{
1538 return 0;
1539}
1540
1541static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1542static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1543
1544#else
1545int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1546
1547static inline void mm_nr_pmds_init(struct mm_struct *mm)
1548{
1549 atomic_long_set(&mm->nr_pmds, 0);
1550}
1551
1552static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1553{
1554 return atomic_long_read(&mm->nr_pmds);
1555}
1556
1557static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1558{
1559 atomic_long_inc(&mm->nr_pmds);
1560}
1561
1562static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1563{
1564 atomic_long_dec(&mm->nr_pmds);
1565}
1566#endif
1567
1568int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1569int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1570
1571/*
1572 * The following ifdef needed to get the 4level-fixup.h header to work.
1573 * Remove it when 4level-fixup.h has been removed.
1574 */
1575#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1576static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1577{
1578 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1579 NULL: pud_offset(pgd, address);
1580}
1581
1582static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1583{
1584 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1585 NULL: pmd_offset(pud, address);
1586}
1587#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1588
1589#if USE_SPLIT_PTE_PTLOCKS
1590#if ALLOC_SPLIT_PTLOCKS
1591void __init ptlock_cache_init(void);
1592extern bool ptlock_alloc(struct page *page);
1593extern void ptlock_free(struct page *page);
1594
1595static inline spinlock_t *ptlock_ptr(struct page *page)
1596{
1597 return page->ptl;
1598}
1599#else /* ALLOC_SPLIT_PTLOCKS */
1600static inline void ptlock_cache_init(void)
1601{
1602}
1603
1604static inline bool ptlock_alloc(struct page *page)
1605{
1606 return true;
1607}
1608
1609static inline void ptlock_free(struct page *page)
1610{
1611}
1612
1613static inline spinlock_t *ptlock_ptr(struct page *page)
1614{
1615 return &page->ptl;
1616}
1617#endif /* ALLOC_SPLIT_PTLOCKS */
1618
1619static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1620{
1621 return ptlock_ptr(pmd_page(*pmd));
1622}
1623
1624static inline bool ptlock_init(struct page *page)
1625{
1626 /*
1627 * prep_new_page() initialize page->private (and therefore page->ptl)
1628 * with 0. Make sure nobody took it in use in between.
1629 *
1630 * It can happen if arch try to use slab for page table allocation:
1631 * slab code uses page->slab_cache, which share storage with page->ptl.
1632 */
1633 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1634 if (!ptlock_alloc(page))
1635 return false;
1636 spin_lock_init(ptlock_ptr(page));
1637 return true;
1638}
1639
1640/* Reset page->mapping so free_pages_check won't complain. */
1641static inline void pte_lock_deinit(struct page *page)
1642{
1643 page->mapping = NULL;
1644 ptlock_free(page);
1645}
1646
1647#else /* !USE_SPLIT_PTE_PTLOCKS */
1648/*
1649 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1650 */
1651static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1652{
1653 return &mm->page_table_lock;
1654}
1655static inline void ptlock_cache_init(void) {}
1656static inline bool ptlock_init(struct page *page) { return true; }
1657static inline void pte_lock_deinit(struct page *page) {}
1658#endif /* USE_SPLIT_PTE_PTLOCKS */
1659
1660static inline void pgtable_init(void)
1661{
1662 ptlock_cache_init();
1663 pgtable_cache_init();
1664}
1665
1666static inline bool pgtable_page_ctor(struct page *page)
1667{
1668 if (!ptlock_init(page))
1669 return false;
1670 inc_zone_page_state(page, NR_PAGETABLE);
1671 return true;
1672}
1673
1674static inline void pgtable_page_dtor(struct page *page)
1675{
1676 pte_lock_deinit(page);
1677 dec_zone_page_state(page, NR_PAGETABLE);
1678}
1679
1680#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1681({ \
1682 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1683 pte_t *__pte = pte_offset_map(pmd, address); \
1684 *(ptlp) = __ptl; \
1685 spin_lock(__ptl); \
1686 __pte; \
1687})
1688
1689#define pte_unmap_unlock(pte, ptl) do { \
1690 spin_unlock(ptl); \
1691 pte_unmap(pte); \
1692} while (0)
1693
1694#define pte_alloc(mm, pmd, address) \
1695 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1696
1697#define pte_alloc_map(mm, pmd, address) \
1698 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1699
1700#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1701 (pte_alloc(mm, pmd, address) ? \
1702 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1703
1704#define pte_alloc_kernel(pmd, address) \
1705 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1706 NULL: pte_offset_kernel(pmd, address))
1707
1708#if USE_SPLIT_PMD_PTLOCKS
1709
1710static struct page *pmd_to_page(pmd_t *pmd)
1711{
1712 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1713 return virt_to_page((void *)((unsigned long) pmd & mask));
1714}
1715
1716static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1717{
1718 return ptlock_ptr(pmd_to_page(pmd));
1719}
1720
1721static inline bool pgtable_pmd_page_ctor(struct page *page)
1722{
1723#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1724 page->pmd_huge_pte = NULL;
1725#endif
1726 return ptlock_init(page);
1727}
1728
1729static inline void pgtable_pmd_page_dtor(struct page *page)
1730{
1731#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1732 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1733#endif
1734 ptlock_free(page);
1735}
1736
1737#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1738
1739#else
1740
1741static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1742{
1743 return &mm->page_table_lock;
1744}
1745
1746static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1747static inline void pgtable_pmd_page_dtor(struct page *page) {}
1748
1749#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1750
1751#endif
1752
1753static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1754{
1755 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1756 spin_lock(ptl);
1757 return ptl;
1758}
1759
1760extern void free_area_init(unsigned long * zones_size);
1761extern void free_area_init_node(int nid, unsigned long * zones_size,
1762 unsigned long zone_start_pfn, unsigned long *zholes_size);
1763extern void free_initmem(void);
1764
1765/*
1766 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1767 * into the buddy system. The freed pages will be poisoned with pattern
1768 * "poison" if it's within range [0, UCHAR_MAX].
1769 * Return pages freed into the buddy system.
1770 */
1771extern unsigned long free_reserved_area(void *start, void *end,
1772 int poison, char *s);
1773
1774#ifdef CONFIG_HIGHMEM
1775/*
1776 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1777 * and totalram_pages.
1778 */
1779extern void free_highmem_page(struct page *page);
1780#endif
1781
1782extern void adjust_managed_page_count(struct page *page, long count);
1783extern void mem_init_print_info(const char *str);
1784
1785extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1786
1787/* Free the reserved page into the buddy system, so it gets managed. */
1788static inline void __free_reserved_page(struct page *page)
1789{
1790 ClearPageReserved(page);
1791 init_page_count(page);
1792 __free_page(page);
1793}
1794
1795static inline void free_reserved_page(struct page *page)
1796{
1797 __free_reserved_page(page);
1798 adjust_managed_page_count(page, 1);
1799}
1800
1801static inline void mark_page_reserved(struct page *page)
1802{
1803 SetPageReserved(page);
1804 adjust_managed_page_count(page, -1);
1805}
1806
1807/*
1808 * Default method to free all the __init memory into the buddy system.
1809 * The freed pages will be poisoned with pattern "poison" if it's within
1810 * range [0, UCHAR_MAX].
1811 * Return pages freed into the buddy system.
1812 */
1813static inline unsigned long free_initmem_default(int poison)
1814{
1815 extern char __init_begin[], __init_end[];
1816
1817 return free_reserved_area(&__init_begin, &__init_end,
1818 poison, "unused kernel");
1819}
1820
1821static inline unsigned long get_num_physpages(void)
1822{
1823 int nid;
1824 unsigned long phys_pages = 0;
1825
1826 for_each_online_node(nid)
1827 phys_pages += node_present_pages(nid);
1828
1829 return phys_pages;
1830}
1831
1832#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1833/*
1834 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1835 * zones, allocate the backing mem_map and account for memory holes in a more
1836 * architecture independent manner. This is a substitute for creating the
1837 * zone_sizes[] and zholes_size[] arrays and passing them to
1838 * free_area_init_node()
1839 *
1840 * An architecture is expected to register range of page frames backed by
1841 * physical memory with memblock_add[_node]() before calling
1842 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1843 * usage, an architecture is expected to do something like
1844 *
1845 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1846 * max_highmem_pfn};
1847 * for_each_valid_physical_page_range()
1848 * memblock_add_node(base, size, nid)
1849 * free_area_init_nodes(max_zone_pfns);
1850 *
1851 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1852 * registered physical page range. Similarly
1853 * sparse_memory_present_with_active_regions() calls memory_present() for
1854 * each range when SPARSEMEM is enabled.
1855 *
1856 * See mm/page_alloc.c for more information on each function exposed by
1857 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1858 */
1859extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1860unsigned long node_map_pfn_alignment(void);
1861unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1862 unsigned long end_pfn);
1863extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1864 unsigned long end_pfn);
1865extern void get_pfn_range_for_nid(unsigned int nid,
1866 unsigned long *start_pfn, unsigned long *end_pfn);
1867extern unsigned long find_min_pfn_with_active_regions(void);
1868extern void free_bootmem_with_active_regions(int nid,
1869 unsigned long max_low_pfn);
1870extern void sparse_memory_present_with_active_regions(int nid);
1871
1872#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1873
1874#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1875 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1876static inline int __early_pfn_to_nid(unsigned long pfn,
1877 struct mminit_pfnnid_cache *state)
1878{
1879 return 0;
1880}
1881#else
1882/* please see mm/page_alloc.c */
1883extern int __meminit early_pfn_to_nid(unsigned long pfn);
1884/* there is a per-arch backend function. */
1885extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1886 struct mminit_pfnnid_cache *state);
1887#endif
1888
1889extern void set_dma_reserve(unsigned long new_dma_reserve);
1890extern void memmap_init_zone(unsigned long, int, unsigned long,
1891 unsigned long, enum memmap_context);
1892extern void setup_per_zone_wmarks(void);
1893extern int __meminit init_per_zone_wmark_min(void);
1894extern void mem_init(void);
1895extern void __init mmap_init(void);
1896extern void show_mem(unsigned int flags);
1897extern long si_mem_available(void);
1898extern void si_meminfo(struct sysinfo * val);
1899extern void si_meminfo_node(struct sysinfo *val, int nid);
1900#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1901extern unsigned long arch_reserved_kernel_pages(void);
1902#endif
1903
1904extern __printf(2, 3)
1905void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
1906
1907extern void setup_per_cpu_pageset(void);
1908
1909extern void zone_pcp_update(struct zone *zone);
1910extern void zone_pcp_reset(struct zone *zone);
1911
1912/* page_alloc.c */
1913extern int min_free_kbytes;
1914extern int watermark_scale_factor;
1915
1916/* nommu.c */
1917extern atomic_long_t mmap_pages_allocated;
1918extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1919
1920/* interval_tree.c */
1921void vma_interval_tree_insert(struct vm_area_struct *node,
1922 struct rb_root *root);
1923void vma_interval_tree_insert_after(struct vm_area_struct *node,
1924 struct vm_area_struct *prev,
1925 struct rb_root *root);
1926void vma_interval_tree_remove(struct vm_area_struct *node,
1927 struct rb_root *root);
1928struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1929 unsigned long start, unsigned long last);
1930struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1931 unsigned long start, unsigned long last);
1932
1933#define vma_interval_tree_foreach(vma, root, start, last) \
1934 for (vma = vma_interval_tree_iter_first(root, start, last); \
1935 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1936
1937void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1938 struct rb_root *root);
1939void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1940 struct rb_root *root);
1941struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1942 struct rb_root *root, unsigned long start, unsigned long last);
1943struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1944 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1945#ifdef CONFIG_DEBUG_VM_RB
1946void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1947#endif
1948
1949#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1950 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1951 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1952
1953/* mmap.c */
1954extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1955extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1956 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1957 struct vm_area_struct *expand);
1958static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1959 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1960{
1961 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
1962}
1963extern struct vm_area_struct *vma_merge(struct mm_struct *,
1964 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1965 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1966 struct mempolicy *, struct vm_userfaultfd_ctx);
1967extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1968extern int split_vma(struct mm_struct *,
1969 struct vm_area_struct *, unsigned long addr, int new_below);
1970extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1971extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1972 struct rb_node **, struct rb_node *);
1973extern void unlink_file_vma(struct vm_area_struct *);
1974extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1975 unsigned long addr, unsigned long len, pgoff_t pgoff,
1976 bool *need_rmap_locks);
1977extern void exit_mmap(struct mm_struct *);
1978
1979static inline int check_data_rlimit(unsigned long rlim,
1980 unsigned long new,
1981 unsigned long start,
1982 unsigned long end_data,
1983 unsigned long start_data)
1984{
1985 if (rlim < RLIM_INFINITY) {
1986 if (((new - start) + (end_data - start_data)) > rlim)
1987 return -ENOSPC;
1988 }
1989
1990 return 0;
1991}
1992
1993extern int mm_take_all_locks(struct mm_struct *mm);
1994extern void mm_drop_all_locks(struct mm_struct *mm);
1995
1996extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1997extern struct file *get_mm_exe_file(struct mm_struct *mm);
1998extern struct file *get_task_exe_file(struct task_struct *task);
1999
2000extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2001extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2002
2003extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2004 const struct vm_special_mapping *sm);
2005extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2006 unsigned long addr, unsigned long len,
2007 unsigned long flags,
2008 const struct vm_special_mapping *spec);
2009/* This is an obsolete alternative to _install_special_mapping. */
2010extern int install_special_mapping(struct mm_struct *mm,
2011 unsigned long addr, unsigned long len,
2012 unsigned long flags, struct page **pages);
2013
2014extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2015
2016extern unsigned long mmap_region(struct file *file, unsigned long addr,
2017 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2018extern unsigned long do_mmap(struct file *file, unsigned long addr,
2019 unsigned long len, unsigned long prot, unsigned long flags,
2020 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2021extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2022
2023static inline unsigned long
2024do_mmap_pgoff(struct file *file, unsigned long addr,
2025 unsigned long len, unsigned long prot, unsigned long flags,
2026 unsigned long pgoff, unsigned long *populate)
2027{
2028 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2029}
2030
2031#ifdef CONFIG_MMU
2032extern int __mm_populate(unsigned long addr, unsigned long len,
2033 int ignore_errors);
2034static inline void mm_populate(unsigned long addr, unsigned long len)
2035{
2036 /* Ignore errors */
2037 (void) __mm_populate(addr, len, 1);
2038}
2039#else
2040static inline void mm_populate(unsigned long addr, unsigned long len) {}
2041#endif
2042
2043/* These take the mm semaphore themselves */
2044extern int __must_check vm_brk(unsigned long, unsigned long);
2045extern int vm_munmap(unsigned long, size_t);
2046extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2047 unsigned long, unsigned long,
2048 unsigned long, unsigned long);
2049
2050struct vm_unmapped_area_info {
2051#define VM_UNMAPPED_AREA_TOPDOWN 1
2052 unsigned long flags;
2053 unsigned long length;
2054 unsigned long low_limit;
2055 unsigned long high_limit;
2056 unsigned long align_mask;
2057 unsigned long align_offset;
2058};
2059
2060extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2061extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2062
2063/*
2064 * Search for an unmapped address range.
2065 *
2066 * We are looking for a range that:
2067 * - does not intersect with any VMA;
2068 * - is contained within the [low_limit, high_limit) interval;
2069 * - is at least the desired size.
2070 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2071 */
2072static inline unsigned long
2073vm_unmapped_area(struct vm_unmapped_area_info *info)
2074{
2075 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2076 return unmapped_area_topdown(info);
2077 else
2078 return unmapped_area(info);
2079}
2080
2081/* truncate.c */
2082extern void truncate_inode_pages(struct address_space *, loff_t);
2083extern void truncate_inode_pages_range(struct address_space *,
2084 loff_t lstart, loff_t lend);
2085extern void truncate_inode_pages_final(struct address_space *);
2086
2087/* generic vm_area_ops exported for stackable file systems */
2088extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2089extern void filemap_map_pages(struct vm_fault *vmf,
2090 pgoff_t start_pgoff, pgoff_t end_pgoff);
2091extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2092
2093/* mm/page-writeback.c */
2094int write_one_page(struct page *page, int wait);
2095void task_dirty_inc(struct task_struct *tsk);
2096
2097/* readahead.c */
2098#define VM_MAX_READAHEAD 128 /* kbytes */
2099#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2100
2101int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2102 pgoff_t offset, unsigned long nr_to_read);
2103
2104void page_cache_sync_readahead(struct address_space *mapping,
2105 struct file_ra_state *ra,
2106 struct file *filp,
2107 pgoff_t offset,
2108 unsigned long size);
2109
2110void page_cache_async_readahead(struct address_space *mapping,
2111 struct file_ra_state *ra,
2112 struct file *filp,
2113 struct page *pg,
2114 pgoff_t offset,
2115 unsigned long size);
2116
2117/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2118extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2119
2120/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2121extern int expand_downwards(struct vm_area_struct *vma,
2122 unsigned long address);
2123#if VM_GROWSUP
2124extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2125#else
2126 #define expand_upwards(vma, address) (0)
2127#endif
2128
2129/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2130extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2131extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2132 struct vm_area_struct **pprev);
2133
2134/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2135 NULL if none. Assume start_addr < end_addr. */
2136static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2137{
2138 struct vm_area_struct * vma = find_vma(mm,start_addr);
2139
2140 if (vma && end_addr <= vma->vm_start)
2141 vma = NULL;
2142 return vma;
2143}
2144
2145static inline unsigned long vma_pages(struct vm_area_struct *vma)
2146{
2147 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2148}
2149
2150/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2151static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2152 unsigned long vm_start, unsigned long vm_end)
2153{
2154 struct vm_area_struct *vma = find_vma(mm, vm_start);
2155
2156 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2157 vma = NULL;
2158
2159 return vma;
2160}
2161
2162#ifdef CONFIG_MMU
2163pgprot_t vm_get_page_prot(unsigned long vm_flags);
2164void vma_set_page_prot(struct vm_area_struct *vma);
2165#else
2166static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2167{
2168 return __pgprot(0);
2169}
2170static inline void vma_set_page_prot(struct vm_area_struct *vma)
2171{
2172 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2173}
2174#endif
2175
2176#ifdef CONFIG_NUMA_BALANCING
2177unsigned long change_prot_numa(struct vm_area_struct *vma,
2178 unsigned long start, unsigned long end);
2179#endif
2180
2181struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2182int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2183 unsigned long pfn, unsigned long size, pgprot_t);
2184int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2185int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2186 unsigned long pfn);
2187int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2188 unsigned long pfn, pgprot_t pgprot);
2189int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2190 pfn_t pfn);
2191int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2192
2193
2194struct page *follow_page_mask(struct vm_area_struct *vma,
2195 unsigned long address, unsigned int foll_flags,
2196 unsigned int *page_mask);
2197
2198static inline struct page *follow_page(struct vm_area_struct *vma,
2199 unsigned long address, unsigned int foll_flags)
2200{
2201 unsigned int unused_page_mask;
2202 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2203}
2204
2205#define FOLL_WRITE 0x01 /* check pte is writable */
2206#define FOLL_TOUCH 0x02 /* mark page accessed */
2207#define FOLL_GET 0x04 /* do get_page on page */
2208#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2209#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2210#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2211 * and return without waiting upon it */
2212#define FOLL_POPULATE 0x40 /* fault in page */
2213#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2214#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2215#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2216#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2217#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2218#define FOLL_MLOCK 0x1000 /* lock present pages */
2219#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2220#define FOLL_COW 0x4000 /* internal GUP flag */
2221
2222typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2223 void *data);
2224extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2225 unsigned long size, pte_fn_t fn, void *data);
2226
2227
2228#ifdef CONFIG_PAGE_POISONING
2229extern bool page_poisoning_enabled(void);
2230extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2231extern bool page_is_poisoned(struct page *page);
2232#else
2233static inline bool page_poisoning_enabled(void) { return false; }
2234static inline void kernel_poison_pages(struct page *page, int numpages,
2235 int enable) { }
2236static inline bool page_is_poisoned(struct page *page) { return false; }
2237#endif
2238
2239#ifdef CONFIG_DEBUG_PAGEALLOC
2240extern bool _debug_pagealloc_enabled;
2241extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2242
2243static inline bool debug_pagealloc_enabled(void)
2244{
2245 return _debug_pagealloc_enabled;
2246}
2247
2248static inline void
2249kernel_map_pages(struct page *page, int numpages, int enable)
2250{
2251 if (!debug_pagealloc_enabled())
2252 return;
2253
2254 __kernel_map_pages(page, numpages, enable);
2255}
2256#ifdef CONFIG_HIBERNATION
2257extern bool kernel_page_present(struct page *page);
2258#endif /* CONFIG_HIBERNATION */
2259#else /* CONFIG_DEBUG_PAGEALLOC */
2260static inline void
2261kernel_map_pages(struct page *page, int numpages, int enable) {}
2262#ifdef CONFIG_HIBERNATION
2263static inline bool kernel_page_present(struct page *page) { return true; }
2264#endif /* CONFIG_HIBERNATION */
2265static inline bool debug_pagealloc_enabled(void)
2266{
2267 return false;
2268}
2269#endif /* CONFIG_DEBUG_PAGEALLOC */
2270
2271#ifdef __HAVE_ARCH_GATE_AREA
2272extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2273extern int in_gate_area_no_mm(unsigned long addr);
2274extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2275#else
2276static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2277{
2278 return NULL;
2279}
2280static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2281static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2282{
2283 return 0;
2284}
2285#endif /* __HAVE_ARCH_GATE_AREA */
2286
2287extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2288
2289#ifdef CONFIG_SYSCTL
2290extern int sysctl_drop_caches;
2291int drop_caches_sysctl_handler(struct ctl_table *, int,
2292 void __user *, size_t *, loff_t *);
2293#endif
2294
2295void drop_slab(void);
2296void drop_slab_node(int nid);
2297
2298#ifndef CONFIG_MMU
2299#define randomize_va_space 0
2300#else
2301extern int randomize_va_space;
2302#endif
2303
2304const char * arch_vma_name(struct vm_area_struct *vma);
2305void print_vma_addr(char *prefix, unsigned long rip);
2306
2307void sparse_mem_maps_populate_node(struct page **map_map,
2308 unsigned long pnum_begin,
2309 unsigned long pnum_end,
2310 unsigned long map_count,
2311 int nodeid);
2312
2313struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2314pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2315pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2316pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2317pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2318void *vmemmap_alloc_block(unsigned long size, int node);
2319struct vmem_altmap;
2320void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2321 struct vmem_altmap *altmap);
2322static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2323{
2324 return __vmemmap_alloc_block_buf(size, node, NULL);
2325}
2326
2327void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2328int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2329 int node);
2330int vmemmap_populate(unsigned long start, unsigned long end, int node);
2331void vmemmap_populate_print_last(void);
2332#ifdef CONFIG_MEMORY_HOTPLUG
2333void vmemmap_free(unsigned long start, unsigned long end);
2334#endif
2335void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2336 unsigned long size);
2337
2338enum mf_flags {
2339 MF_COUNT_INCREASED = 1 << 0,
2340 MF_ACTION_REQUIRED = 1 << 1,
2341 MF_MUST_KILL = 1 << 2,
2342 MF_SOFT_OFFLINE = 1 << 3,
2343};
2344extern int memory_failure(unsigned long pfn, int trapno, int flags);
2345extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2346extern int unpoison_memory(unsigned long pfn);
2347extern int get_hwpoison_page(struct page *page);
2348#define put_hwpoison_page(page) put_page(page)
2349extern int sysctl_memory_failure_early_kill;
2350extern int sysctl_memory_failure_recovery;
2351extern void shake_page(struct page *p, int access);
2352extern atomic_long_t num_poisoned_pages;
2353extern int soft_offline_page(struct page *page, int flags);
2354
2355
2356/*
2357 * Error handlers for various types of pages.
2358 */
2359enum mf_result {
2360 MF_IGNORED, /* Error: cannot be handled */
2361 MF_FAILED, /* Error: handling failed */
2362 MF_DELAYED, /* Will be handled later */
2363 MF_RECOVERED, /* Successfully recovered */
2364};
2365
2366enum mf_action_page_type {
2367 MF_MSG_KERNEL,
2368 MF_MSG_KERNEL_HIGH_ORDER,
2369 MF_MSG_SLAB,
2370 MF_MSG_DIFFERENT_COMPOUND,
2371 MF_MSG_POISONED_HUGE,
2372 MF_MSG_HUGE,
2373 MF_MSG_FREE_HUGE,
2374 MF_MSG_UNMAP_FAILED,
2375 MF_MSG_DIRTY_SWAPCACHE,
2376 MF_MSG_CLEAN_SWAPCACHE,
2377 MF_MSG_DIRTY_MLOCKED_LRU,
2378 MF_MSG_CLEAN_MLOCKED_LRU,
2379 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2380 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2381 MF_MSG_DIRTY_LRU,
2382 MF_MSG_CLEAN_LRU,
2383 MF_MSG_TRUNCATED_LRU,
2384 MF_MSG_BUDDY,
2385 MF_MSG_BUDDY_2ND,
2386 MF_MSG_UNKNOWN,
2387};
2388
2389#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2390extern void clear_huge_page(struct page *page,
2391 unsigned long addr,
2392 unsigned int pages_per_huge_page);
2393extern void copy_user_huge_page(struct page *dst, struct page *src,
2394 unsigned long addr, struct vm_area_struct *vma,
2395 unsigned int pages_per_huge_page);
2396#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2397
2398extern struct page_ext_operations debug_guardpage_ops;
2399extern struct page_ext_operations page_poisoning_ops;
2400
2401#ifdef CONFIG_DEBUG_PAGEALLOC
2402extern unsigned int _debug_guardpage_minorder;
2403extern bool _debug_guardpage_enabled;
2404
2405static inline unsigned int debug_guardpage_minorder(void)
2406{
2407 return _debug_guardpage_minorder;
2408}
2409
2410static inline bool debug_guardpage_enabled(void)
2411{
2412 return _debug_guardpage_enabled;
2413}
2414
2415static inline bool page_is_guard(struct page *page)
2416{
2417 struct page_ext *page_ext;
2418
2419 if (!debug_guardpage_enabled())
2420 return false;
2421
2422 page_ext = lookup_page_ext(page);
2423 if (unlikely(!page_ext))
2424 return false;
2425
2426 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2427}
2428#else
2429static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2430static inline bool debug_guardpage_enabled(void) { return false; }
2431static inline bool page_is_guard(struct page *page) { return false; }
2432#endif /* CONFIG_DEBUG_PAGEALLOC */
2433
2434#if MAX_NUMNODES > 1
2435void __init setup_nr_node_ids(void);
2436#else
2437static inline void setup_nr_node_ids(void) {}
2438#endif
2439
2440#endif /* __KERNEL__ */
2441#endif /* _LINUX_MM_H */