]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - include/linux/netdevice.h
__page_to_pfn: Fix typo in comment
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53
54struct netpoll_info;
55struct device;
56struct phy_device;
57/* 802.11 specific */
58struct wireless_dev;
59 /* source back-compat hooks */
60#define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66/* hardware address assignment types */
67#define NET_ADDR_PERM 0 /* address is permanent (default) */
68#define NET_ADDR_RANDOM 1 /* address is generated randomly */
69#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70#define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73/* Backlog congestion levels */
74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75#define NET_RX_DROP 1 /* packet dropped */
76
77/*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94/* qdisc ->enqueue() return codes. */
95#define NET_XMIT_SUCCESS 0x00
96#define NET_XMIT_DROP 0x01 /* skb dropped */
97#define NET_XMIT_CN 0x02 /* congestion notification */
98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107/* Driver transmit return codes */
108#define NETDEV_TX_MASK 0xf0
109
110enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115};
116typedef enum netdev_tx netdev_tx_t;
117
118/*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122static inline bool dev_xmit_complete(int rc)
123{
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134}
135
136/*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142# if defined(CONFIG_MAC80211_MESH)
143# define LL_MAX_HEADER 128
144# else
145# define LL_MAX_HEADER 96
146# endif
147#else
148# define LL_MAX_HEADER 32
149#endif
150
151#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153#define MAX_HEADER LL_MAX_HEADER
154#else
155#define MAX_HEADER (LL_MAX_HEADER + 48)
156#endif
157
158/*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187};
188
189
190#include <linux/cache.h>
191#include <linux/skbuff.h>
192
193#ifdef CONFIG_RPS
194#include <linux/static_key.h>
195extern struct static_key rps_needed;
196#endif
197
198struct neighbour;
199struct neigh_parms;
200struct sk_buff;
201
202struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206#define NETDEV_HW_ADDR_T_LAN 1
207#define NETDEV_HW_ADDR_T_SAN 2
208#define NETDEV_HW_ADDR_T_SLAVE 3
209#define NETDEV_HW_ADDR_T_UNICAST 4
210#define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216};
217
218struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221};
222
223#define netdev_hw_addr_list_count(l) ((l)->count)
224#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225#define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230#define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235#define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244#define HH_DATA_MOD 16
245#define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247#define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250};
251
252/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260#define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275};
276
277/* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288};
289
290
291/*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298};
299#define NETDEV_BOOT_SETUP_MAX 8
300
301extern int __init netdev_boot_setup(char *str);
302
303/*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319#ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322#endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329};
330
331enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash */
336};
337
338enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344};
345typedef enum gro_result gro_result_t;
346
347/*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed to skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other ways.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler consider the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393};
394typedef enum rx_handler_result rx_handler_result_t;
395typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397extern void __napi_schedule(struct napi_struct *n);
398
399static inline bool napi_disable_pending(struct napi_struct *n)
400{
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402}
403
404/**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413static inline bool napi_schedule_prep(struct napi_struct *n)
414{
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417}
418
419/**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426static inline void napi_schedule(struct napi_struct *n)
427{
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430}
431
432/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
433static inline bool napi_reschedule(struct napi_struct *napi)
434{
435 if (napi_schedule_prep(napi)) {
436 __napi_schedule(napi);
437 return true;
438 }
439 return false;
440}
441
442/**
443 * napi_complete - NAPI processing complete
444 * @n: napi context
445 *
446 * Mark NAPI processing as complete.
447 */
448extern void __napi_complete(struct napi_struct *n);
449extern void napi_complete(struct napi_struct *n);
450
451/**
452 * napi_by_id - lookup a NAPI by napi_id
453 * @napi_id: hashed napi_id
454 *
455 * lookup @napi_id in napi_hash table
456 * must be called under rcu_read_lock()
457 */
458extern struct napi_struct *napi_by_id(unsigned int napi_id);
459
460/**
461 * napi_hash_add - add a NAPI to global hashtable
462 * @napi: napi context
463 *
464 * generate a new napi_id and store a @napi under it in napi_hash
465 */
466extern void napi_hash_add(struct napi_struct *napi);
467
468/**
469 * napi_hash_del - remove a NAPI from global table
470 * @napi: napi context
471 *
472 * Warning: caller must observe rcu grace period
473 * before freeing memory containing @napi
474 */
475extern void napi_hash_del(struct napi_struct *napi);
476
477/**
478 * napi_disable - prevent NAPI from scheduling
479 * @n: napi context
480 *
481 * Stop NAPI from being scheduled on this context.
482 * Waits till any outstanding processing completes.
483 */
484static inline void napi_disable(struct napi_struct *n)
485{
486 set_bit(NAPI_STATE_DISABLE, &n->state);
487 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
488 msleep(1);
489 clear_bit(NAPI_STATE_DISABLE, &n->state);
490}
491
492/**
493 * napi_enable - enable NAPI scheduling
494 * @n: napi context
495 *
496 * Resume NAPI from being scheduled on this context.
497 * Must be paired with napi_disable.
498 */
499static inline void napi_enable(struct napi_struct *n)
500{
501 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
502 smp_mb__before_clear_bit();
503 clear_bit(NAPI_STATE_SCHED, &n->state);
504}
505
506#ifdef CONFIG_SMP
507/**
508 * napi_synchronize - wait until NAPI is not running
509 * @n: napi context
510 *
511 * Wait until NAPI is done being scheduled on this context.
512 * Waits till any outstanding processing completes but
513 * does not disable future activations.
514 */
515static inline void napi_synchronize(const struct napi_struct *n)
516{
517 while (test_bit(NAPI_STATE_SCHED, &n->state))
518 msleep(1);
519}
520#else
521# define napi_synchronize(n) barrier()
522#endif
523
524enum netdev_queue_state_t {
525 __QUEUE_STATE_DRV_XOFF,
526 __QUEUE_STATE_STACK_XOFF,
527 __QUEUE_STATE_FROZEN,
528#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
529 (1 << __QUEUE_STATE_STACK_XOFF))
530#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
531 (1 << __QUEUE_STATE_FROZEN))
532};
533/*
534 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
535 * netif_tx_* functions below are used to manipulate this flag. The
536 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
537 * queue independently. The netif_xmit_*stopped functions below are called
538 * to check if the queue has been stopped by the driver or stack (either
539 * of the XOFF bits are set in the state). Drivers should not need to call
540 * netif_xmit*stopped functions, they should only be using netif_tx_*.
541 */
542
543struct netdev_queue {
544/*
545 * read mostly part
546 */
547 struct net_device *dev;
548 struct Qdisc *qdisc;
549 struct Qdisc *qdisc_sleeping;
550#ifdef CONFIG_SYSFS
551 struct kobject kobj;
552#endif
553#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 int numa_node;
555#endif
556/*
557 * write mostly part
558 */
559 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
560 int xmit_lock_owner;
561 /*
562 * please use this field instead of dev->trans_start
563 */
564 unsigned long trans_start;
565
566 /*
567 * Number of TX timeouts for this queue
568 * (/sys/class/net/DEV/Q/trans_timeout)
569 */
570 unsigned long trans_timeout;
571
572 unsigned long state;
573
574#ifdef CONFIG_BQL
575 struct dql dql;
576#endif
577} ____cacheline_aligned_in_smp;
578
579static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
580{
581#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
582 return q->numa_node;
583#else
584 return NUMA_NO_NODE;
585#endif
586}
587
588static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
589{
590#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 q->numa_node = node;
592#endif
593}
594
595#ifdef CONFIG_RPS
596/*
597 * This structure holds an RPS map which can be of variable length. The
598 * map is an array of CPUs.
599 */
600struct rps_map {
601 unsigned int len;
602 struct rcu_head rcu;
603 u16 cpus[0];
604};
605#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
606
607/*
608 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
609 * tail pointer for that CPU's input queue at the time of last enqueue, and
610 * a hardware filter index.
611 */
612struct rps_dev_flow {
613 u16 cpu;
614 u16 filter;
615 unsigned int last_qtail;
616};
617#define RPS_NO_FILTER 0xffff
618
619/*
620 * The rps_dev_flow_table structure contains a table of flow mappings.
621 */
622struct rps_dev_flow_table {
623 unsigned int mask;
624 struct rcu_head rcu;
625 struct rps_dev_flow flows[0];
626};
627#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
628 ((_num) * sizeof(struct rps_dev_flow)))
629
630/*
631 * The rps_sock_flow_table contains mappings of flows to the last CPU
632 * on which they were processed by the application (set in recvmsg).
633 */
634struct rps_sock_flow_table {
635 unsigned int mask;
636 u16 ents[0];
637};
638#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
639 ((_num) * sizeof(u16)))
640
641#define RPS_NO_CPU 0xffff
642
643static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
644 u32 hash)
645{
646 if (table && hash) {
647 unsigned int cpu, index = hash & table->mask;
648
649 /* We only give a hint, preemption can change cpu under us */
650 cpu = raw_smp_processor_id();
651
652 if (table->ents[index] != cpu)
653 table->ents[index] = cpu;
654 }
655}
656
657static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
658 u32 hash)
659{
660 if (table && hash)
661 table->ents[hash & table->mask] = RPS_NO_CPU;
662}
663
664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666#ifdef CONFIG_RFS_ACCEL
667extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
668 u32 flow_id, u16 filter_id);
669#endif
670
671/* This structure contains an instance of an RX queue. */
672struct netdev_rx_queue {
673 struct rps_map __rcu *rps_map;
674 struct rps_dev_flow_table __rcu *rps_flow_table;
675 struct kobject kobj;
676 struct net_device *dev;
677} ____cacheline_aligned_in_smp;
678#endif /* CONFIG_RPS */
679
680#ifdef CONFIG_XPS
681/*
682 * This structure holds an XPS map which can be of variable length. The
683 * map is an array of queues.
684 */
685struct xps_map {
686 unsigned int len;
687 unsigned int alloc_len;
688 struct rcu_head rcu;
689 u16 queues[0];
690};
691#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
692#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
693 / sizeof(u16))
694
695/*
696 * This structure holds all XPS maps for device. Maps are indexed by CPU.
697 */
698struct xps_dev_maps {
699 struct rcu_head rcu;
700 struct xps_map __rcu *cpu_map[0];
701};
702#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
703 (nr_cpu_ids * sizeof(struct xps_map *)))
704#endif /* CONFIG_XPS */
705
706#define TC_MAX_QUEUE 16
707#define TC_BITMASK 15
708/* HW offloaded queuing disciplines txq count and offset maps */
709struct netdev_tc_txq {
710 u16 count;
711 u16 offset;
712};
713
714#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
715/*
716 * This structure is to hold information about the device
717 * configured to run FCoE protocol stack.
718 */
719struct netdev_fcoe_hbainfo {
720 char manufacturer[64];
721 char serial_number[64];
722 char hardware_version[64];
723 char driver_version[64];
724 char optionrom_version[64];
725 char firmware_version[64];
726 char model[256];
727 char model_description[256];
728};
729#endif
730
731#define MAX_PHYS_PORT_ID_LEN 32
732
733/* This structure holds a unique identifier to identify the
734 * physical port used by a netdevice.
735 */
736struct netdev_phys_port_id {
737 unsigned char id[MAX_PHYS_PORT_ID_LEN];
738 unsigned char id_len;
739};
740
741/*
742 * This structure defines the management hooks for network devices.
743 * The following hooks can be defined; unless noted otherwise, they are
744 * optional and can be filled with a null pointer.
745 *
746 * int (*ndo_init)(struct net_device *dev);
747 * This function is called once when network device is registered.
748 * The network device can use this to any late stage initializaton
749 * or semantic validattion. It can fail with an error code which will
750 * be propogated back to register_netdev
751 *
752 * void (*ndo_uninit)(struct net_device *dev);
753 * This function is called when device is unregistered or when registration
754 * fails. It is not called if init fails.
755 *
756 * int (*ndo_open)(struct net_device *dev);
757 * This function is called when network device transistions to the up
758 * state.
759 *
760 * int (*ndo_stop)(struct net_device *dev);
761 * This function is called when network device transistions to the down
762 * state.
763 *
764 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
765 * struct net_device *dev);
766 * Called when a packet needs to be transmitted.
767 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
768 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
769 * Required can not be NULL.
770 *
771 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
772 * Called to decide which queue to when device supports multiple
773 * transmit queues.
774 *
775 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
776 * This function is called to allow device receiver to make
777 * changes to configuration when multicast or promiscious is enabled.
778 *
779 * void (*ndo_set_rx_mode)(struct net_device *dev);
780 * This function is called device changes address list filtering.
781 * If driver handles unicast address filtering, it should set
782 * IFF_UNICAST_FLT to its priv_flags.
783 *
784 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
785 * This function is called when the Media Access Control address
786 * needs to be changed. If this interface is not defined, the
787 * mac address can not be changed.
788 *
789 * int (*ndo_validate_addr)(struct net_device *dev);
790 * Test if Media Access Control address is valid for the device.
791 *
792 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
793 * Called when a user request an ioctl which can't be handled by
794 * the generic interface code. If not defined ioctl's return
795 * not supported error code.
796 *
797 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
798 * Used to set network devices bus interface parameters. This interface
799 * is retained for legacy reason, new devices should use the bus
800 * interface (PCI) for low level management.
801 *
802 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
803 * Called when a user wants to change the Maximum Transfer Unit
804 * of a device. If not defined, any request to change MTU will
805 * will return an error.
806 *
807 * void (*ndo_tx_timeout)(struct net_device *dev);
808 * Callback uses when the transmitter has not made any progress
809 * for dev->watchdog ticks.
810 *
811 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
812 * struct rtnl_link_stats64 *storage);
813 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
814 * Called when a user wants to get the network device usage
815 * statistics. Drivers must do one of the following:
816 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
817 * rtnl_link_stats64 structure passed by the caller.
818 * 2. Define @ndo_get_stats to update a net_device_stats structure
819 * (which should normally be dev->stats) and return a pointer to
820 * it. The structure may be changed asynchronously only if each
821 * field is written atomically.
822 * 3. Update dev->stats asynchronously and atomically, and define
823 * neither operation.
824 *
825 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
826 * If device support VLAN filtering this function is called when a
827 * VLAN id is registered.
828 *
829 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
830 * If device support VLAN filtering this function is called when a
831 * VLAN id is unregistered.
832 *
833 * void (*ndo_poll_controller)(struct net_device *dev);
834 *
835 * SR-IOV management functions.
836 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
837 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
838 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
839 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
840 * int (*ndo_get_vf_config)(struct net_device *dev,
841 * int vf, struct ifla_vf_info *ivf);
842 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
843 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
844 * struct nlattr *port[]);
845 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
846 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
847 * Called to setup 'tc' number of traffic classes in the net device. This
848 * is always called from the stack with the rtnl lock held and netif tx
849 * queues stopped. This allows the netdevice to perform queue management
850 * safely.
851 *
852 * Fiber Channel over Ethernet (FCoE) offload functions.
853 * int (*ndo_fcoe_enable)(struct net_device *dev);
854 * Called when the FCoE protocol stack wants to start using LLD for FCoE
855 * so the underlying device can perform whatever needed configuration or
856 * initialization to support acceleration of FCoE traffic.
857 *
858 * int (*ndo_fcoe_disable)(struct net_device *dev);
859 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
860 * so the underlying device can perform whatever needed clean-ups to
861 * stop supporting acceleration of FCoE traffic.
862 *
863 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
864 * struct scatterlist *sgl, unsigned int sgc);
865 * Called when the FCoE Initiator wants to initialize an I/O that
866 * is a possible candidate for Direct Data Placement (DDP). The LLD can
867 * perform necessary setup and returns 1 to indicate the device is set up
868 * successfully to perform DDP on this I/O, otherwise this returns 0.
869 *
870 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
871 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
872 * indicated by the FC exchange id 'xid', so the underlying device can
873 * clean up and reuse resources for later DDP requests.
874 *
875 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
876 * struct scatterlist *sgl, unsigned int sgc);
877 * Called when the FCoE Target wants to initialize an I/O that
878 * is a possible candidate for Direct Data Placement (DDP). The LLD can
879 * perform necessary setup and returns 1 to indicate the device is set up
880 * successfully to perform DDP on this I/O, otherwise this returns 0.
881 *
882 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
883 * struct netdev_fcoe_hbainfo *hbainfo);
884 * Called when the FCoE Protocol stack wants information on the underlying
885 * device. This information is utilized by the FCoE protocol stack to
886 * register attributes with Fiber Channel management service as per the
887 * FC-GS Fabric Device Management Information(FDMI) specification.
888 *
889 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
890 * Called when the underlying device wants to override default World Wide
891 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
892 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
893 * protocol stack to use.
894 *
895 * RFS acceleration.
896 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
897 * u16 rxq_index, u32 flow_id);
898 * Set hardware filter for RFS. rxq_index is the target queue index;
899 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
900 * Return the filter ID on success, or a negative error code.
901 *
902 * Slave management functions (for bridge, bonding, etc).
903 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
904 * Called to make another netdev an underling.
905 *
906 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
907 * Called to release previously enslaved netdev.
908 *
909 * Feature/offload setting functions.
910 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
911 * netdev_features_t features);
912 * Adjusts the requested feature flags according to device-specific
913 * constraints, and returns the resulting flags. Must not modify
914 * the device state.
915 *
916 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
917 * Called to update device configuration to new features. Passed
918 * feature set might be less than what was returned by ndo_fix_features()).
919 * Must return >0 or -errno if it changed dev->features itself.
920 *
921 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
922 * struct net_device *dev,
923 * const unsigned char *addr, u16 flags)
924 * Adds an FDB entry to dev for addr.
925 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
926 * struct net_device *dev,
927 * const unsigned char *addr)
928 * Deletes the FDB entry from dev coresponding to addr.
929 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
930 * struct net_device *dev, int idx)
931 * Used to add FDB entries to dump requests. Implementers should add
932 * entries to skb and update idx with the number of entries.
933 *
934 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
935 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
936 * struct net_device *dev, u32 filter_mask)
937 *
938 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
939 * Called to change device carrier. Soft-devices (like dummy, team, etc)
940 * which do not represent real hardware may define this to allow their
941 * userspace components to manage their virtual carrier state. Devices
942 * that determine carrier state from physical hardware properties (eg
943 * network cables) or protocol-dependent mechanisms (eg
944 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
945 *
946 * int (*ndo_get_phys_port_id)(struct net_device *dev,
947 * struct netdev_phys_port_id *ppid);
948 * Called to get ID of physical port of this device. If driver does
949 * not implement this, it is assumed that the hw is not able to have
950 * multiple net devices on single physical port.
951 *
952 * void (*ndo_add_vxlan_port)(struct net_device *dev,
953 * sa_family_t sa_family, __u16 port);
954 * Called by vxlan to notiy a driver about the UDP port and socket
955 * address family that vxlan is listnening to. It is called only when
956 * a new port starts listening. The operation is protected by the
957 * vxlan_net->sock_lock.
958 *
959 * void (*ndo_del_vxlan_port)(struct net_device *dev,
960 * sa_family_t sa_family, __u16 port);
961 * Called by vxlan to notify the driver about a UDP port and socket
962 * address family that vxlan is not listening to anymore. The operation
963 * is protected by the vxlan_net->sock_lock.
964 */
965struct net_device_ops {
966 int (*ndo_init)(struct net_device *dev);
967 void (*ndo_uninit)(struct net_device *dev);
968 int (*ndo_open)(struct net_device *dev);
969 int (*ndo_stop)(struct net_device *dev);
970 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
971 struct net_device *dev);
972 u16 (*ndo_select_queue)(struct net_device *dev,
973 struct sk_buff *skb);
974 void (*ndo_change_rx_flags)(struct net_device *dev,
975 int flags);
976 void (*ndo_set_rx_mode)(struct net_device *dev);
977 int (*ndo_set_mac_address)(struct net_device *dev,
978 void *addr);
979 int (*ndo_validate_addr)(struct net_device *dev);
980 int (*ndo_do_ioctl)(struct net_device *dev,
981 struct ifreq *ifr, int cmd);
982 int (*ndo_set_config)(struct net_device *dev,
983 struct ifmap *map);
984 int (*ndo_change_mtu)(struct net_device *dev,
985 int new_mtu);
986 int (*ndo_neigh_setup)(struct net_device *dev,
987 struct neigh_parms *);
988 void (*ndo_tx_timeout) (struct net_device *dev);
989
990 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
991 struct rtnl_link_stats64 *storage);
992 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
993
994 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
995 __be16 proto, u16 vid);
996 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
997 __be16 proto, u16 vid);
998#ifdef CONFIG_NET_POLL_CONTROLLER
999 void (*ndo_poll_controller)(struct net_device *dev);
1000 int (*ndo_netpoll_setup)(struct net_device *dev,
1001 struct netpoll_info *info,
1002 gfp_t gfp);
1003 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1004#endif
1005#ifdef CONFIG_NET_RX_BUSY_POLL
1006 int (*ndo_busy_poll)(struct napi_struct *dev);
1007#endif
1008 int (*ndo_set_vf_mac)(struct net_device *dev,
1009 int queue, u8 *mac);
1010 int (*ndo_set_vf_vlan)(struct net_device *dev,
1011 int queue, u16 vlan, u8 qos);
1012 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
1013 int vf, int rate);
1014 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1015 int vf, bool setting);
1016 int (*ndo_get_vf_config)(struct net_device *dev,
1017 int vf,
1018 struct ifla_vf_info *ivf);
1019 int (*ndo_set_vf_link_state)(struct net_device *dev,
1020 int vf, int link_state);
1021 int (*ndo_set_vf_port)(struct net_device *dev,
1022 int vf,
1023 struct nlattr *port[]);
1024 int (*ndo_get_vf_port)(struct net_device *dev,
1025 int vf, struct sk_buff *skb);
1026 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1027#if IS_ENABLED(CONFIG_FCOE)
1028 int (*ndo_fcoe_enable)(struct net_device *dev);
1029 int (*ndo_fcoe_disable)(struct net_device *dev);
1030 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1031 u16 xid,
1032 struct scatterlist *sgl,
1033 unsigned int sgc);
1034 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1035 u16 xid);
1036 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1037 u16 xid,
1038 struct scatterlist *sgl,
1039 unsigned int sgc);
1040 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1041 struct netdev_fcoe_hbainfo *hbainfo);
1042#endif
1043
1044#if IS_ENABLED(CONFIG_LIBFCOE)
1045#define NETDEV_FCOE_WWNN 0
1046#define NETDEV_FCOE_WWPN 1
1047 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1048 u64 *wwn, int type);
1049#endif
1050
1051#ifdef CONFIG_RFS_ACCEL
1052 int (*ndo_rx_flow_steer)(struct net_device *dev,
1053 const struct sk_buff *skb,
1054 u16 rxq_index,
1055 u32 flow_id);
1056#endif
1057 int (*ndo_add_slave)(struct net_device *dev,
1058 struct net_device *slave_dev);
1059 int (*ndo_del_slave)(struct net_device *dev,
1060 struct net_device *slave_dev);
1061 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1062 netdev_features_t features);
1063 int (*ndo_set_features)(struct net_device *dev,
1064 netdev_features_t features);
1065 int (*ndo_neigh_construct)(struct neighbour *n);
1066 void (*ndo_neigh_destroy)(struct neighbour *n);
1067
1068 int (*ndo_fdb_add)(struct ndmsg *ndm,
1069 struct nlattr *tb[],
1070 struct net_device *dev,
1071 const unsigned char *addr,
1072 u16 flags);
1073 int (*ndo_fdb_del)(struct ndmsg *ndm,
1074 struct nlattr *tb[],
1075 struct net_device *dev,
1076 const unsigned char *addr);
1077 int (*ndo_fdb_dump)(struct sk_buff *skb,
1078 struct netlink_callback *cb,
1079 struct net_device *dev,
1080 int idx);
1081
1082 int (*ndo_bridge_setlink)(struct net_device *dev,
1083 struct nlmsghdr *nlh);
1084 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1085 u32 pid, u32 seq,
1086 struct net_device *dev,
1087 u32 filter_mask);
1088 int (*ndo_bridge_dellink)(struct net_device *dev,
1089 struct nlmsghdr *nlh);
1090 int (*ndo_change_carrier)(struct net_device *dev,
1091 bool new_carrier);
1092 int (*ndo_get_phys_port_id)(struct net_device *dev,
1093 struct netdev_phys_port_id *ppid);
1094 void (*ndo_add_vxlan_port)(struct net_device *dev,
1095 sa_family_t sa_family,
1096 __u16 port);
1097 void (*ndo_del_vxlan_port)(struct net_device *dev,
1098 sa_family_t sa_family,
1099 __u16 port);
1100};
1101
1102/*
1103 * The DEVICE structure.
1104 * Actually, this whole structure is a big mistake. It mixes I/O
1105 * data with strictly "high-level" data, and it has to know about
1106 * almost every data structure used in the INET module.
1107 *
1108 * FIXME: cleanup struct net_device such that network protocol info
1109 * moves out.
1110 */
1111
1112struct net_device {
1113
1114 /*
1115 * This is the first field of the "visible" part of this structure
1116 * (i.e. as seen by users in the "Space.c" file). It is the name
1117 * of the interface.
1118 */
1119 char name[IFNAMSIZ];
1120
1121 /* device name hash chain, please keep it close to name[] */
1122 struct hlist_node name_hlist;
1123
1124 /* snmp alias */
1125 char *ifalias;
1126
1127 /*
1128 * I/O specific fields
1129 * FIXME: Merge these and struct ifmap into one
1130 */
1131 unsigned long mem_end; /* shared mem end */
1132 unsigned long mem_start; /* shared mem start */
1133 unsigned long base_addr; /* device I/O address */
1134 unsigned int irq; /* device IRQ number */
1135
1136 /*
1137 * Some hardware also needs these fields, but they are not
1138 * part of the usual set specified in Space.c.
1139 */
1140
1141 unsigned long state;
1142
1143 struct list_head dev_list;
1144 struct list_head napi_list;
1145 struct list_head unreg_list;
1146 struct list_head upper_dev_list; /* List of upper devices */
1147 struct list_head lower_dev_list;
1148
1149
1150 /* currently active device features */
1151 netdev_features_t features;
1152 /* user-changeable features */
1153 netdev_features_t hw_features;
1154 /* user-requested features */
1155 netdev_features_t wanted_features;
1156 /* mask of features inheritable by VLAN devices */
1157 netdev_features_t vlan_features;
1158 /* mask of features inherited by encapsulating devices
1159 * This field indicates what encapsulation offloads
1160 * the hardware is capable of doing, and drivers will
1161 * need to set them appropriately.
1162 */
1163 netdev_features_t hw_enc_features;
1164 /* mask of fetures inheritable by MPLS */
1165 netdev_features_t mpls_features;
1166
1167 /* Interface index. Unique device identifier */
1168 int ifindex;
1169 int iflink;
1170
1171 struct net_device_stats stats;
1172 atomic_long_t rx_dropped; /* dropped packets by core network
1173 * Do not use this in drivers.
1174 */
1175
1176#ifdef CONFIG_WIRELESS_EXT
1177 /* List of functions to handle Wireless Extensions (instead of ioctl).
1178 * See <net/iw_handler.h> for details. Jean II */
1179 const struct iw_handler_def * wireless_handlers;
1180 /* Instance data managed by the core of Wireless Extensions. */
1181 struct iw_public_data * wireless_data;
1182#endif
1183 /* Management operations */
1184 const struct net_device_ops *netdev_ops;
1185 const struct ethtool_ops *ethtool_ops;
1186
1187 /* Hardware header description */
1188 const struct header_ops *header_ops;
1189
1190 unsigned int flags; /* interface flags (a la BSD) */
1191 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1192 * See if.h for definitions. */
1193 unsigned short gflags;
1194 unsigned short padded; /* How much padding added by alloc_netdev() */
1195
1196 unsigned char operstate; /* RFC2863 operstate */
1197 unsigned char link_mode; /* mapping policy to operstate */
1198
1199 unsigned char if_port; /* Selectable AUI, TP,..*/
1200 unsigned char dma; /* DMA channel */
1201
1202 unsigned int mtu; /* interface MTU value */
1203 unsigned short type; /* interface hardware type */
1204 unsigned short hard_header_len; /* hardware hdr length */
1205
1206 /* extra head- and tailroom the hardware may need, but not in all cases
1207 * can this be guaranteed, especially tailroom. Some cases also use
1208 * LL_MAX_HEADER instead to allocate the skb.
1209 */
1210 unsigned short needed_headroom;
1211 unsigned short needed_tailroom;
1212
1213 /* Interface address info. */
1214 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1215 unsigned char addr_assign_type; /* hw address assignment type */
1216 unsigned char addr_len; /* hardware address length */
1217 unsigned char neigh_priv_len;
1218 unsigned short dev_id; /* Used to differentiate devices
1219 * that share the same link
1220 * layer address
1221 */
1222 spinlock_t addr_list_lock;
1223 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1224 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1225 struct netdev_hw_addr_list dev_addrs; /* list of device
1226 * hw addresses
1227 */
1228#ifdef CONFIG_SYSFS
1229 struct kset *queues_kset;
1230#endif
1231
1232 bool uc_promisc;
1233 unsigned int promiscuity;
1234 unsigned int allmulti;
1235
1236
1237 /* Protocol specific pointers */
1238
1239#if IS_ENABLED(CONFIG_VLAN_8021Q)
1240 struct vlan_info __rcu *vlan_info; /* VLAN info */
1241#endif
1242#if IS_ENABLED(CONFIG_NET_DSA)
1243 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1244#endif
1245 void *atalk_ptr; /* AppleTalk link */
1246 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1247 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1248 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1249 void *ax25_ptr; /* AX.25 specific data */
1250 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1251 assign before registering */
1252
1253/*
1254 * Cache lines mostly used on receive path (including eth_type_trans())
1255 */
1256 unsigned long last_rx; /* Time of last Rx
1257 * This should not be set in
1258 * drivers, unless really needed,
1259 * because network stack (bonding)
1260 * use it if/when necessary, to
1261 * avoid dirtying this cache line.
1262 */
1263
1264 /* Interface address info used in eth_type_trans() */
1265 unsigned char *dev_addr; /* hw address, (before bcast
1266 because most packets are
1267 unicast) */
1268
1269
1270#ifdef CONFIG_RPS
1271 struct netdev_rx_queue *_rx;
1272
1273 /* Number of RX queues allocated at register_netdev() time */
1274 unsigned int num_rx_queues;
1275
1276 /* Number of RX queues currently active in device */
1277 unsigned int real_num_rx_queues;
1278
1279#endif
1280
1281 rx_handler_func_t __rcu *rx_handler;
1282 void __rcu *rx_handler_data;
1283
1284 struct netdev_queue __rcu *ingress_queue;
1285 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1286
1287
1288/*
1289 * Cache lines mostly used on transmit path
1290 */
1291 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1292
1293 /* Number of TX queues allocated at alloc_netdev_mq() time */
1294 unsigned int num_tx_queues;
1295
1296 /* Number of TX queues currently active in device */
1297 unsigned int real_num_tx_queues;
1298
1299 /* root qdisc from userspace point of view */
1300 struct Qdisc *qdisc;
1301
1302 unsigned long tx_queue_len; /* Max frames per queue allowed */
1303 spinlock_t tx_global_lock;
1304
1305#ifdef CONFIG_XPS
1306 struct xps_dev_maps __rcu *xps_maps;
1307#endif
1308#ifdef CONFIG_RFS_ACCEL
1309 /* CPU reverse-mapping for RX completion interrupts, indexed
1310 * by RX queue number. Assigned by driver. This must only be
1311 * set if the ndo_rx_flow_steer operation is defined. */
1312 struct cpu_rmap *rx_cpu_rmap;
1313#endif
1314
1315 /* These may be needed for future network-power-down code. */
1316
1317 /*
1318 * trans_start here is expensive for high speed devices on SMP,
1319 * please use netdev_queue->trans_start instead.
1320 */
1321 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1322
1323 int watchdog_timeo; /* used by dev_watchdog() */
1324 struct timer_list watchdog_timer;
1325
1326 /* Number of references to this device */
1327 int __percpu *pcpu_refcnt;
1328
1329 /* delayed register/unregister */
1330 struct list_head todo_list;
1331 /* device index hash chain */
1332 struct hlist_node index_hlist;
1333
1334 struct list_head link_watch_list;
1335
1336 /* register/unregister state machine */
1337 enum { NETREG_UNINITIALIZED=0,
1338 NETREG_REGISTERED, /* completed register_netdevice */
1339 NETREG_UNREGISTERING, /* called unregister_netdevice */
1340 NETREG_UNREGISTERED, /* completed unregister todo */
1341 NETREG_RELEASED, /* called free_netdev */
1342 NETREG_DUMMY, /* dummy device for NAPI poll */
1343 } reg_state:8;
1344
1345 bool dismantle; /* device is going do be freed */
1346
1347 enum {
1348 RTNL_LINK_INITIALIZED,
1349 RTNL_LINK_INITIALIZING,
1350 } rtnl_link_state:16;
1351
1352 /* Called from unregister, can be used to call free_netdev */
1353 void (*destructor)(struct net_device *dev);
1354
1355#ifdef CONFIG_NETPOLL
1356 struct netpoll_info __rcu *npinfo;
1357#endif
1358
1359#ifdef CONFIG_NET_NS
1360 /* Network namespace this network device is inside */
1361 struct net *nd_net;
1362#endif
1363
1364 /* mid-layer private */
1365 union {
1366 void *ml_priv;
1367 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1368 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1369 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1370 struct pcpu_vstats __percpu *vstats; /* veth stats */
1371 };
1372 /* GARP */
1373 struct garp_port __rcu *garp_port;
1374 /* MRP */
1375 struct mrp_port __rcu *mrp_port;
1376
1377 /* class/net/name entry */
1378 struct device dev;
1379 /* space for optional device, statistics, and wireless sysfs groups */
1380 const struct attribute_group *sysfs_groups[4];
1381
1382 /* rtnetlink link ops */
1383 const struct rtnl_link_ops *rtnl_link_ops;
1384
1385 /* for setting kernel sock attribute on TCP connection setup */
1386#define GSO_MAX_SIZE 65536
1387 unsigned int gso_max_size;
1388#define GSO_MAX_SEGS 65535
1389 u16 gso_max_segs;
1390
1391#ifdef CONFIG_DCB
1392 /* Data Center Bridging netlink ops */
1393 const struct dcbnl_rtnl_ops *dcbnl_ops;
1394#endif
1395 u8 num_tc;
1396 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1397 u8 prio_tc_map[TC_BITMASK + 1];
1398
1399#if IS_ENABLED(CONFIG_FCOE)
1400 /* max exchange id for FCoE LRO by ddp */
1401 unsigned int fcoe_ddp_xid;
1402#endif
1403#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1404 struct netprio_map __rcu *priomap;
1405#endif
1406 /* phy device may attach itself for hardware timestamping */
1407 struct phy_device *phydev;
1408
1409 struct lock_class_key *qdisc_tx_busylock;
1410
1411 /* group the device belongs to */
1412 int group;
1413
1414 struct pm_qos_request pm_qos_req;
1415};
1416#define to_net_dev(d) container_of(d, struct net_device, dev)
1417
1418#define NETDEV_ALIGN 32
1419
1420static inline
1421int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1422{
1423 return dev->prio_tc_map[prio & TC_BITMASK];
1424}
1425
1426static inline
1427int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1428{
1429 if (tc >= dev->num_tc)
1430 return -EINVAL;
1431
1432 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1433 return 0;
1434}
1435
1436static inline
1437void netdev_reset_tc(struct net_device *dev)
1438{
1439 dev->num_tc = 0;
1440 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1441 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1442}
1443
1444static inline
1445int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1446{
1447 if (tc >= dev->num_tc)
1448 return -EINVAL;
1449
1450 dev->tc_to_txq[tc].count = count;
1451 dev->tc_to_txq[tc].offset = offset;
1452 return 0;
1453}
1454
1455static inline
1456int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1457{
1458 if (num_tc > TC_MAX_QUEUE)
1459 return -EINVAL;
1460
1461 dev->num_tc = num_tc;
1462 return 0;
1463}
1464
1465static inline
1466int netdev_get_num_tc(struct net_device *dev)
1467{
1468 return dev->num_tc;
1469}
1470
1471static inline
1472struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1473 unsigned int index)
1474{
1475 return &dev->_tx[index];
1476}
1477
1478static inline void netdev_for_each_tx_queue(struct net_device *dev,
1479 void (*f)(struct net_device *,
1480 struct netdev_queue *,
1481 void *),
1482 void *arg)
1483{
1484 unsigned int i;
1485
1486 for (i = 0; i < dev->num_tx_queues; i++)
1487 f(dev, &dev->_tx[i], arg);
1488}
1489
1490extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1491 struct sk_buff *skb);
1492extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1493
1494/*
1495 * Net namespace inlines
1496 */
1497static inline
1498struct net *dev_net(const struct net_device *dev)
1499{
1500 return read_pnet(&dev->nd_net);
1501}
1502
1503static inline
1504void dev_net_set(struct net_device *dev, struct net *net)
1505{
1506#ifdef CONFIG_NET_NS
1507 release_net(dev->nd_net);
1508 dev->nd_net = hold_net(net);
1509#endif
1510}
1511
1512static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1513{
1514#ifdef CONFIG_NET_DSA_TAG_DSA
1515 if (dev->dsa_ptr != NULL)
1516 return dsa_uses_dsa_tags(dev->dsa_ptr);
1517#endif
1518
1519 return 0;
1520}
1521
1522static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1523{
1524#ifdef CONFIG_NET_DSA_TAG_TRAILER
1525 if (dev->dsa_ptr != NULL)
1526 return dsa_uses_trailer_tags(dev->dsa_ptr);
1527#endif
1528
1529 return 0;
1530}
1531
1532/**
1533 * netdev_priv - access network device private data
1534 * @dev: network device
1535 *
1536 * Get network device private data
1537 */
1538static inline void *netdev_priv(const struct net_device *dev)
1539{
1540 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1541}
1542
1543/* Set the sysfs physical device reference for the network logical device
1544 * if set prior to registration will cause a symlink during initialization.
1545 */
1546#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1547
1548/* Set the sysfs device type for the network logical device to allow
1549 * fin grained indentification of different network device types. For
1550 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1551 */
1552#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1553
1554/* Default NAPI poll() weight
1555 * Device drivers are strongly advised to not use bigger value
1556 */
1557#define NAPI_POLL_WEIGHT 64
1558
1559/**
1560 * netif_napi_add - initialize a napi context
1561 * @dev: network device
1562 * @napi: napi context
1563 * @poll: polling function
1564 * @weight: default weight
1565 *
1566 * netif_napi_add() must be used to initialize a napi context prior to calling
1567 * *any* of the other napi related functions.
1568 */
1569void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1570 int (*poll)(struct napi_struct *, int), int weight);
1571
1572/**
1573 * netif_napi_del - remove a napi context
1574 * @napi: napi context
1575 *
1576 * netif_napi_del() removes a napi context from the network device napi list
1577 */
1578void netif_napi_del(struct napi_struct *napi);
1579
1580struct napi_gro_cb {
1581 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1582 void *frag0;
1583
1584 /* Length of frag0. */
1585 unsigned int frag0_len;
1586
1587 /* This indicates where we are processing relative to skb->data. */
1588 int data_offset;
1589
1590 /* This is non-zero if the packet cannot be merged with the new skb. */
1591 int flush;
1592
1593 /* Number of segments aggregated. */
1594 u16 count;
1595
1596 /* This is non-zero if the packet may be of the same flow. */
1597 u8 same_flow;
1598
1599 /* Free the skb? */
1600 u8 free;
1601#define NAPI_GRO_FREE 1
1602#define NAPI_GRO_FREE_STOLEN_HEAD 2
1603
1604 /* jiffies when first packet was created/queued */
1605 unsigned long age;
1606
1607 /* Used in ipv6_gro_receive() */
1608 int proto;
1609
1610 /* used in skb_gro_receive() slow path */
1611 struct sk_buff *last;
1612};
1613
1614#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1615
1616struct packet_type {
1617 __be16 type; /* This is really htons(ether_type). */
1618 struct net_device *dev; /* NULL is wildcarded here */
1619 int (*func) (struct sk_buff *,
1620 struct net_device *,
1621 struct packet_type *,
1622 struct net_device *);
1623 bool (*id_match)(struct packet_type *ptype,
1624 struct sock *sk);
1625 void *af_packet_priv;
1626 struct list_head list;
1627};
1628
1629struct offload_callbacks {
1630 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1631 netdev_features_t features);
1632 int (*gso_send_check)(struct sk_buff *skb);
1633 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1634 struct sk_buff *skb);
1635 int (*gro_complete)(struct sk_buff *skb);
1636};
1637
1638struct packet_offload {
1639 __be16 type; /* This is really htons(ether_type). */
1640 struct offload_callbacks callbacks;
1641 struct list_head list;
1642};
1643
1644#include <linux/notifier.h>
1645
1646/* netdevice notifier chain. Please remember to update the rtnetlink
1647 * notification exclusion list in rtnetlink_event() when adding new
1648 * types.
1649 */
1650#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1651#define NETDEV_DOWN 0x0002
1652#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1653 detected a hardware crash and restarted
1654 - we can use this eg to kick tcp sessions
1655 once done */
1656#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1657#define NETDEV_REGISTER 0x0005
1658#define NETDEV_UNREGISTER 0x0006
1659#define NETDEV_CHANGEMTU 0x0007
1660#define NETDEV_CHANGEADDR 0x0008
1661#define NETDEV_GOING_DOWN 0x0009
1662#define NETDEV_CHANGENAME 0x000A
1663#define NETDEV_FEAT_CHANGE 0x000B
1664#define NETDEV_BONDING_FAILOVER 0x000C
1665#define NETDEV_PRE_UP 0x000D
1666#define NETDEV_PRE_TYPE_CHANGE 0x000E
1667#define NETDEV_POST_TYPE_CHANGE 0x000F
1668#define NETDEV_POST_INIT 0x0010
1669#define NETDEV_UNREGISTER_FINAL 0x0011
1670#define NETDEV_RELEASE 0x0012
1671#define NETDEV_NOTIFY_PEERS 0x0013
1672#define NETDEV_JOIN 0x0014
1673#define NETDEV_CHANGEUPPER 0x0015
1674#define NETDEV_RESEND_IGMP 0x0016
1675
1676extern int register_netdevice_notifier(struct notifier_block *nb);
1677extern int unregister_netdevice_notifier(struct notifier_block *nb);
1678
1679struct netdev_notifier_info {
1680 struct net_device *dev;
1681};
1682
1683struct netdev_notifier_change_info {
1684 struct netdev_notifier_info info; /* must be first */
1685 unsigned int flags_changed;
1686};
1687
1688static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1689 struct net_device *dev)
1690{
1691 info->dev = dev;
1692}
1693
1694static inline struct net_device *
1695netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1696{
1697 return info->dev;
1698}
1699
1700extern int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1701 struct netdev_notifier_info *info);
1702extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1703
1704
1705extern rwlock_t dev_base_lock; /* Device list lock */
1706
1707#define for_each_netdev(net, d) \
1708 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1709#define for_each_netdev_reverse(net, d) \
1710 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1711#define for_each_netdev_rcu(net, d) \
1712 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1713#define for_each_netdev_safe(net, d, n) \
1714 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1715#define for_each_netdev_continue(net, d) \
1716 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1717#define for_each_netdev_continue_rcu(net, d) \
1718 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1719#define for_each_netdev_in_bond_rcu(bond, slave) \
1720 for_each_netdev_rcu(&init_net, slave) \
1721 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1722#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1723
1724static inline struct net_device *next_net_device(struct net_device *dev)
1725{
1726 struct list_head *lh;
1727 struct net *net;
1728
1729 net = dev_net(dev);
1730 lh = dev->dev_list.next;
1731 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1732}
1733
1734static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1735{
1736 struct list_head *lh;
1737 struct net *net;
1738
1739 net = dev_net(dev);
1740 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1741 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1742}
1743
1744static inline struct net_device *first_net_device(struct net *net)
1745{
1746 return list_empty(&net->dev_base_head) ? NULL :
1747 net_device_entry(net->dev_base_head.next);
1748}
1749
1750static inline struct net_device *first_net_device_rcu(struct net *net)
1751{
1752 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1753
1754 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1755}
1756
1757extern int netdev_boot_setup_check(struct net_device *dev);
1758extern unsigned long netdev_boot_base(const char *prefix, int unit);
1759extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1760 const char *hwaddr);
1761extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1762extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1763extern void dev_add_pack(struct packet_type *pt);
1764extern void dev_remove_pack(struct packet_type *pt);
1765extern void __dev_remove_pack(struct packet_type *pt);
1766extern void dev_add_offload(struct packet_offload *po);
1767extern void dev_remove_offload(struct packet_offload *po);
1768extern void __dev_remove_offload(struct packet_offload *po);
1769
1770extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1771 unsigned short mask);
1772extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1773extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1774extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1775extern int dev_alloc_name(struct net_device *dev, const char *name);
1776extern int dev_open(struct net_device *dev);
1777extern int dev_close(struct net_device *dev);
1778extern void dev_disable_lro(struct net_device *dev);
1779extern int dev_loopback_xmit(struct sk_buff *newskb);
1780extern int dev_queue_xmit(struct sk_buff *skb);
1781extern int register_netdevice(struct net_device *dev);
1782extern void unregister_netdevice_queue(struct net_device *dev,
1783 struct list_head *head);
1784extern void unregister_netdevice_many(struct list_head *head);
1785static inline void unregister_netdevice(struct net_device *dev)
1786{
1787 unregister_netdevice_queue(dev, NULL);
1788}
1789
1790extern int netdev_refcnt_read(const struct net_device *dev);
1791extern void free_netdev(struct net_device *dev);
1792extern void synchronize_net(void);
1793extern int init_dummy_netdev(struct net_device *dev);
1794
1795extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1796extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1797extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1798extern int netdev_get_name(struct net *net, char *name, int ifindex);
1799extern int dev_restart(struct net_device *dev);
1800#ifdef CONFIG_NETPOLL_TRAP
1801extern int netpoll_trap(void);
1802#endif
1803extern int skb_gro_receive(struct sk_buff **head,
1804 struct sk_buff *skb);
1805
1806static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1807{
1808 return NAPI_GRO_CB(skb)->data_offset;
1809}
1810
1811static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1812{
1813 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1814}
1815
1816static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1817{
1818 NAPI_GRO_CB(skb)->data_offset += len;
1819}
1820
1821static inline void *skb_gro_header_fast(struct sk_buff *skb,
1822 unsigned int offset)
1823{
1824 return NAPI_GRO_CB(skb)->frag0 + offset;
1825}
1826
1827static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1828{
1829 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1830}
1831
1832static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1833 unsigned int offset)
1834{
1835 if (!pskb_may_pull(skb, hlen))
1836 return NULL;
1837
1838 NAPI_GRO_CB(skb)->frag0 = NULL;
1839 NAPI_GRO_CB(skb)->frag0_len = 0;
1840 return skb->data + offset;
1841}
1842
1843static inline void *skb_gro_mac_header(struct sk_buff *skb)
1844{
1845 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1846}
1847
1848static inline void *skb_gro_network_header(struct sk_buff *skb)
1849{
1850 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1851 skb_network_offset(skb);
1852}
1853
1854static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1855 unsigned short type,
1856 const void *daddr, const void *saddr,
1857 unsigned int len)
1858{
1859 if (!dev->header_ops || !dev->header_ops->create)
1860 return 0;
1861
1862 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1863}
1864
1865static inline int dev_parse_header(const struct sk_buff *skb,
1866 unsigned char *haddr)
1867{
1868 const struct net_device *dev = skb->dev;
1869
1870 if (!dev->header_ops || !dev->header_ops->parse)
1871 return 0;
1872 return dev->header_ops->parse(skb, haddr);
1873}
1874
1875typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1876extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1877static inline int unregister_gifconf(unsigned int family)
1878{
1879 return register_gifconf(family, NULL);
1880}
1881
1882#ifdef CONFIG_NET_FLOW_LIMIT
1883#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
1884struct sd_flow_limit {
1885 u64 count;
1886 unsigned int num_buckets;
1887 unsigned int history_head;
1888 u16 history[FLOW_LIMIT_HISTORY];
1889 u8 buckets[];
1890};
1891
1892extern int netdev_flow_limit_table_len;
1893#endif /* CONFIG_NET_FLOW_LIMIT */
1894
1895/*
1896 * Incoming packets are placed on per-cpu queues
1897 */
1898struct softnet_data {
1899 struct Qdisc *output_queue;
1900 struct Qdisc **output_queue_tailp;
1901 struct list_head poll_list;
1902 struct sk_buff *completion_queue;
1903 struct sk_buff_head process_queue;
1904
1905 /* stats */
1906 unsigned int processed;
1907 unsigned int time_squeeze;
1908 unsigned int cpu_collision;
1909 unsigned int received_rps;
1910
1911#ifdef CONFIG_RPS
1912 struct softnet_data *rps_ipi_list;
1913
1914 /* Elements below can be accessed between CPUs for RPS */
1915 struct call_single_data csd ____cacheline_aligned_in_smp;
1916 struct softnet_data *rps_ipi_next;
1917 unsigned int cpu;
1918 unsigned int input_queue_head;
1919 unsigned int input_queue_tail;
1920#endif
1921 unsigned int dropped;
1922 struct sk_buff_head input_pkt_queue;
1923 struct napi_struct backlog;
1924
1925#ifdef CONFIG_NET_FLOW_LIMIT
1926 struct sd_flow_limit __rcu *flow_limit;
1927#endif
1928};
1929
1930static inline void input_queue_head_incr(struct softnet_data *sd)
1931{
1932#ifdef CONFIG_RPS
1933 sd->input_queue_head++;
1934#endif
1935}
1936
1937static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1938 unsigned int *qtail)
1939{
1940#ifdef CONFIG_RPS
1941 *qtail = ++sd->input_queue_tail;
1942#endif
1943}
1944
1945DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1946
1947extern void __netif_schedule(struct Qdisc *q);
1948
1949static inline void netif_schedule_queue(struct netdev_queue *txq)
1950{
1951 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1952 __netif_schedule(txq->qdisc);
1953}
1954
1955static inline void netif_tx_schedule_all(struct net_device *dev)
1956{
1957 unsigned int i;
1958
1959 for (i = 0; i < dev->num_tx_queues; i++)
1960 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1961}
1962
1963static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1964{
1965 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1966}
1967
1968/**
1969 * netif_start_queue - allow transmit
1970 * @dev: network device
1971 *
1972 * Allow upper layers to call the device hard_start_xmit routine.
1973 */
1974static inline void netif_start_queue(struct net_device *dev)
1975{
1976 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1977}
1978
1979static inline void netif_tx_start_all_queues(struct net_device *dev)
1980{
1981 unsigned int i;
1982
1983 for (i = 0; i < dev->num_tx_queues; i++) {
1984 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1985 netif_tx_start_queue(txq);
1986 }
1987}
1988
1989static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1990{
1991#ifdef CONFIG_NETPOLL_TRAP
1992 if (netpoll_trap()) {
1993 netif_tx_start_queue(dev_queue);
1994 return;
1995 }
1996#endif
1997 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1998 __netif_schedule(dev_queue->qdisc);
1999}
2000
2001/**
2002 * netif_wake_queue - restart transmit
2003 * @dev: network device
2004 *
2005 * Allow upper layers to call the device hard_start_xmit routine.
2006 * Used for flow control when transmit resources are available.
2007 */
2008static inline void netif_wake_queue(struct net_device *dev)
2009{
2010 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2011}
2012
2013static inline void netif_tx_wake_all_queues(struct net_device *dev)
2014{
2015 unsigned int i;
2016
2017 for (i = 0; i < dev->num_tx_queues; i++) {
2018 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2019 netif_tx_wake_queue(txq);
2020 }
2021}
2022
2023static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2024{
2025 if (WARN_ON(!dev_queue)) {
2026 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2027 return;
2028 }
2029 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2030}
2031
2032/**
2033 * netif_stop_queue - stop transmitted packets
2034 * @dev: network device
2035 *
2036 * Stop upper layers calling the device hard_start_xmit routine.
2037 * Used for flow control when transmit resources are unavailable.
2038 */
2039static inline void netif_stop_queue(struct net_device *dev)
2040{
2041 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2042}
2043
2044static inline void netif_tx_stop_all_queues(struct net_device *dev)
2045{
2046 unsigned int i;
2047
2048 for (i = 0; i < dev->num_tx_queues; i++) {
2049 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2050 netif_tx_stop_queue(txq);
2051 }
2052}
2053
2054static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2055{
2056 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2057}
2058
2059/**
2060 * netif_queue_stopped - test if transmit queue is flowblocked
2061 * @dev: network device
2062 *
2063 * Test if transmit queue on device is currently unable to send.
2064 */
2065static inline bool netif_queue_stopped(const struct net_device *dev)
2066{
2067 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2068}
2069
2070static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2071{
2072 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2073}
2074
2075static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2076{
2077 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2078}
2079
2080static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2081 unsigned int bytes)
2082{
2083#ifdef CONFIG_BQL
2084 dql_queued(&dev_queue->dql, bytes);
2085
2086 if (likely(dql_avail(&dev_queue->dql) >= 0))
2087 return;
2088
2089 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2090
2091 /*
2092 * The XOFF flag must be set before checking the dql_avail below,
2093 * because in netdev_tx_completed_queue we update the dql_completed
2094 * before checking the XOFF flag.
2095 */
2096 smp_mb();
2097
2098 /* check again in case another CPU has just made room avail */
2099 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2100 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2101#endif
2102}
2103
2104static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2105{
2106 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2107}
2108
2109static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2110 unsigned int pkts, unsigned int bytes)
2111{
2112#ifdef CONFIG_BQL
2113 if (unlikely(!bytes))
2114 return;
2115
2116 dql_completed(&dev_queue->dql, bytes);
2117
2118 /*
2119 * Without the memory barrier there is a small possiblity that
2120 * netdev_tx_sent_queue will miss the update and cause the queue to
2121 * be stopped forever
2122 */
2123 smp_mb();
2124
2125 if (dql_avail(&dev_queue->dql) < 0)
2126 return;
2127
2128 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2129 netif_schedule_queue(dev_queue);
2130#endif
2131}
2132
2133static inline void netdev_completed_queue(struct net_device *dev,
2134 unsigned int pkts, unsigned int bytes)
2135{
2136 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2137}
2138
2139static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2140{
2141#ifdef CONFIG_BQL
2142 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2143 dql_reset(&q->dql);
2144#endif
2145}
2146
2147static inline void netdev_reset_queue(struct net_device *dev_queue)
2148{
2149 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2150}
2151
2152/**
2153 * netif_running - test if up
2154 * @dev: network device
2155 *
2156 * Test if the device has been brought up.
2157 */
2158static inline bool netif_running(const struct net_device *dev)
2159{
2160 return test_bit(__LINK_STATE_START, &dev->state);
2161}
2162
2163/*
2164 * Routines to manage the subqueues on a device. We only need start
2165 * stop, and a check if it's stopped. All other device management is
2166 * done at the overall netdevice level.
2167 * Also test the device if we're multiqueue.
2168 */
2169
2170/**
2171 * netif_start_subqueue - allow sending packets on subqueue
2172 * @dev: network device
2173 * @queue_index: sub queue index
2174 *
2175 * Start individual transmit queue of a device with multiple transmit queues.
2176 */
2177static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2178{
2179 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2180
2181 netif_tx_start_queue(txq);
2182}
2183
2184/**
2185 * netif_stop_subqueue - stop sending packets on subqueue
2186 * @dev: network device
2187 * @queue_index: sub queue index
2188 *
2189 * Stop individual transmit queue of a device with multiple transmit queues.
2190 */
2191static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2192{
2193 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2194#ifdef CONFIG_NETPOLL_TRAP
2195 if (netpoll_trap())
2196 return;
2197#endif
2198 netif_tx_stop_queue(txq);
2199}
2200
2201/**
2202 * netif_subqueue_stopped - test status of subqueue
2203 * @dev: network device
2204 * @queue_index: sub queue index
2205 *
2206 * Check individual transmit queue of a device with multiple transmit queues.
2207 */
2208static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2209 u16 queue_index)
2210{
2211 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2212
2213 return netif_tx_queue_stopped(txq);
2214}
2215
2216static inline bool netif_subqueue_stopped(const struct net_device *dev,
2217 struct sk_buff *skb)
2218{
2219 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2220}
2221
2222/**
2223 * netif_wake_subqueue - allow sending packets on subqueue
2224 * @dev: network device
2225 * @queue_index: sub queue index
2226 *
2227 * Resume individual transmit queue of a device with multiple transmit queues.
2228 */
2229static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2230{
2231 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2232#ifdef CONFIG_NETPOLL_TRAP
2233 if (netpoll_trap())
2234 return;
2235#endif
2236 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2237 __netif_schedule(txq->qdisc);
2238}
2239
2240#ifdef CONFIG_XPS
2241extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2242 u16 index);
2243#else
2244static inline int netif_set_xps_queue(struct net_device *dev,
2245 struct cpumask *mask,
2246 u16 index)
2247{
2248 return 0;
2249}
2250#endif
2251
2252/*
2253 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2254 * as a distribution range limit for the returned value.
2255 */
2256static inline u16 skb_tx_hash(const struct net_device *dev,
2257 const struct sk_buff *skb)
2258{
2259 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2260}
2261
2262/**
2263 * netif_is_multiqueue - test if device has multiple transmit queues
2264 * @dev: network device
2265 *
2266 * Check if device has multiple transmit queues
2267 */
2268static inline bool netif_is_multiqueue(const struct net_device *dev)
2269{
2270 return dev->num_tx_queues > 1;
2271}
2272
2273extern int netif_set_real_num_tx_queues(struct net_device *dev,
2274 unsigned int txq);
2275
2276#ifdef CONFIG_RPS
2277extern int netif_set_real_num_rx_queues(struct net_device *dev,
2278 unsigned int rxq);
2279#else
2280static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2281 unsigned int rxq)
2282{
2283 return 0;
2284}
2285#endif
2286
2287static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2288 const struct net_device *from_dev)
2289{
2290 int err;
2291
2292 err = netif_set_real_num_tx_queues(to_dev,
2293 from_dev->real_num_tx_queues);
2294 if (err)
2295 return err;
2296#ifdef CONFIG_RPS
2297 return netif_set_real_num_rx_queues(to_dev,
2298 from_dev->real_num_rx_queues);
2299#else
2300 return 0;
2301#endif
2302}
2303
2304#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2305extern int netif_get_num_default_rss_queues(void);
2306
2307/* Use this variant when it is known for sure that it
2308 * is executing from hardware interrupt context or with hardware interrupts
2309 * disabled.
2310 */
2311extern void dev_kfree_skb_irq(struct sk_buff *skb);
2312
2313/* Use this variant in places where it could be invoked
2314 * from either hardware interrupt or other context, with hardware interrupts
2315 * either disabled or enabled.
2316 */
2317extern void dev_kfree_skb_any(struct sk_buff *skb);
2318
2319extern int netif_rx(struct sk_buff *skb);
2320extern int netif_rx_ni(struct sk_buff *skb);
2321extern int netif_receive_skb(struct sk_buff *skb);
2322extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2323 struct sk_buff *skb);
2324extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2325extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2326extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2327
2328static inline void napi_free_frags(struct napi_struct *napi)
2329{
2330 kfree_skb(napi->skb);
2331 napi->skb = NULL;
2332}
2333
2334extern int netdev_rx_handler_register(struct net_device *dev,
2335 rx_handler_func_t *rx_handler,
2336 void *rx_handler_data);
2337extern void netdev_rx_handler_unregister(struct net_device *dev);
2338
2339extern bool dev_valid_name(const char *name);
2340extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2341extern int dev_ethtool(struct net *net, struct ifreq *);
2342extern unsigned int dev_get_flags(const struct net_device *);
2343extern int __dev_change_flags(struct net_device *, unsigned int flags);
2344extern int dev_change_flags(struct net_device *, unsigned int);
2345extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2346extern int dev_change_name(struct net_device *, const char *);
2347extern int dev_set_alias(struct net_device *, const char *, size_t);
2348extern int dev_change_net_namespace(struct net_device *,
2349 struct net *, const char *);
2350extern int dev_set_mtu(struct net_device *, int);
2351extern void dev_set_group(struct net_device *, int);
2352extern int dev_set_mac_address(struct net_device *,
2353 struct sockaddr *);
2354extern int dev_change_carrier(struct net_device *,
2355 bool new_carrier);
2356extern int dev_get_phys_port_id(struct net_device *dev,
2357 struct netdev_phys_port_id *ppid);
2358extern int dev_hard_start_xmit(struct sk_buff *skb,
2359 struct net_device *dev,
2360 struct netdev_queue *txq);
2361extern int dev_forward_skb(struct net_device *dev,
2362 struct sk_buff *skb);
2363
2364extern int netdev_budget;
2365
2366/* Called by rtnetlink.c:rtnl_unlock() */
2367extern void netdev_run_todo(void);
2368
2369/**
2370 * dev_put - release reference to device
2371 * @dev: network device
2372 *
2373 * Release reference to device to allow it to be freed.
2374 */
2375static inline void dev_put(struct net_device *dev)
2376{
2377 this_cpu_dec(*dev->pcpu_refcnt);
2378}
2379
2380/**
2381 * dev_hold - get reference to device
2382 * @dev: network device
2383 *
2384 * Hold reference to device to keep it from being freed.
2385 */
2386static inline void dev_hold(struct net_device *dev)
2387{
2388 this_cpu_inc(*dev->pcpu_refcnt);
2389}
2390
2391/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2392 * and _off may be called from IRQ context, but it is caller
2393 * who is responsible for serialization of these calls.
2394 *
2395 * The name carrier is inappropriate, these functions should really be
2396 * called netif_lowerlayer_*() because they represent the state of any
2397 * kind of lower layer not just hardware media.
2398 */
2399
2400extern void linkwatch_init_dev(struct net_device *dev);
2401extern void linkwatch_fire_event(struct net_device *dev);
2402extern void linkwatch_forget_dev(struct net_device *dev);
2403
2404/**
2405 * netif_carrier_ok - test if carrier present
2406 * @dev: network device
2407 *
2408 * Check if carrier is present on device
2409 */
2410static inline bool netif_carrier_ok(const struct net_device *dev)
2411{
2412 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2413}
2414
2415extern unsigned long dev_trans_start(struct net_device *dev);
2416
2417extern void __netdev_watchdog_up(struct net_device *dev);
2418
2419extern void netif_carrier_on(struct net_device *dev);
2420
2421extern void netif_carrier_off(struct net_device *dev);
2422
2423/**
2424 * netif_dormant_on - mark device as dormant.
2425 * @dev: network device
2426 *
2427 * Mark device as dormant (as per RFC2863).
2428 *
2429 * The dormant state indicates that the relevant interface is not
2430 * actually in a condition to pass packets (i.e., it is not 'up') but is
2431 * in a "pending" state, waiting for some external event. For "on-
2432 * demand" interfaces, this new state identifies the situation where the
2433 * interface is waiting for events to place it in the up state.
2434 *
2435 */
2436static inline void netif_dormant_on(struct net_device *dev)
2437{
2438 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2439 linkwatch_fire_event(dev);
2440}
2441
2442/**
2443 * netif_dormant_off - set device as not dormant.
2444 * @dev: network device
2445 *
2446 * Device is not in dormant state.
2447 */
2448static inline void netif_dormant_off(struct net_device *dev)
2449{
2450 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2451 linkwatch_fire_event(dev);
2452}
2453
2454/**
2455 * netif_dormant - test if carrier present
2456 * @dev: network device
2457 *
2458 * Check if carrier is present on device
2459 */
2460static inline bool netif_dormant(const struct net_device *dev)
2461{
2462 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2463}
2464
2465
2466/**
2467 * netif_oper_up - test if device is operational
2468 * @dev: network device
2469 *
2470 * Check if carrier is operational
2471 */
2472static inline bool netif_oper_up(const struct net_device *dev)
2473{
2474 return (dev->operstate == IF_OPER_UP ||
2475 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2476}
2477
2478/**
2479 * netif_device_present - is device available or removed
2480 * @dev: network device
2481 *
2482 * Check if device has not been removed from system.
2483 */
2484static inline bool netif_device_present(struct net_device *dev)
2485{
2486 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2487}
2488
2489extern void netif_device_detach(struct net_device *dev);
2490
2491extern void netif_device_attach(struct net_device *dev);
2492
2493/*
2494 * Network interface message level settings
2495 */
2496
2497enum {
2498 NETIF_MSG_DRV = 0x0001,
2499 NETIF_MSG_PROBE = 0x0002,
2500 NETIF_MSG_LINK = 0x0004,
2501 NETIF_MSG_TIMER = 0x0008,
2502 NETIF_MSG_IFDOWN = 0x0010,
2503 NETIF_MSG_IFUP = 0x0020,
2504 NETIF_MSG_RX_ERR = 0x0040,
2505 NETIF_MSG_TX_ERR = 0x0080,
2506 NETIF_MSG_TX_QUEUED = 0x0100,
2507 NETIF_MSG_INTR = 0x0200,
2508 NETIF_MSG_TX_DONE = 0x0400,
2509 NETIF_MSG_RX_STATUS = 0x0800,
2510 NETIF_MSG_PKTDATA = 0x1000,
2511 NETIF_MSG_HW = 0x2000,
2512 NETIF_MSG_WOL = 0x4000,
2513};
2514
2515#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2516#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2517#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2518#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2519#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2520#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2521#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2522#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2523#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2524#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2525#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2526#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2527#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2528#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2529#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2530
2531static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2532{
2533 /* use default */
2534 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2535 return default_msg_enable_bits;
2536 if (debug_value == 0) /* no output */
2537 return 0;
2538 /* set low N bits */
2539 return (1 << debug_value) - 1;
2540}
2541
2542static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2543{
2544 spin_lock(&txq->_xmit_lock);
2545 txq->xmit_lock_owner = cpu;
2546}
2547
2548static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2549{
2550 spin_lock_bh(&txq->_xmit_lock);
2551 txq->xmit_lock_owner = smp_processor_id();
2552}
2553
2554static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2555{
2556 bool ok = spin_trylock(&txq->_xmit_lock);
2557 if (likely(ok))
2558 txq->xmit_lock_owner = smp_processor_id();
2559 return ok;
2560}
2561
2562static inline void __netif_tx_unlock(struct netdev_queue *txq)
2563{
2564 txq->xmit_lock_owner = -1;
2565 spin_unlock(&txq->_xmit_lock);
2566}
2567
2568static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2569{
2570 txq->xmit_lock_owner = -1;
2571 spin_unlock_bh(&txq->_xmit_lock);
2572}
2573
2574static inline void txq_trans_update(struct netdev_queue *txq)
2575{
2576 if (txq->xmit_lock_owner != -1)
2577 txq->trans_start = jiffies;
2578}
2579
2580/**
2581 * netif_tx_lock - grab network device transmit lock
2582 * @dev: network device
2583 *
2584 * Get network device transmit lock
2585 */
2586static inline void netif_tx_lock(struct net_device *dev)
2587{
2588 unsigned int i;
2589 int cpu;
2590
2591 spin_lock(&dev->tx_global_lock);
2592 cpu = smp_processor_id();
2593 for (i = 0; i < dev->num_tx_queues; i++) {
2594 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2595
2596 /* We are the only thread of execution doing a
2597 * freeze, but we have to grab the _xmit_lock in
2598 * order to synchronize with threads which are in
2599 * the ->hard_start_xmit() handler and already
2600 * checked the frozen bit.
2601 */
2602 __netif_tx_lock(txq, cpu);
2603 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2604 __netif_tx_unlock(txq);
2605 }
2606}
2607
2608static inline void netif_tx_lock_bh(struct net_device *dev)
2609{
2610 local_bh_disable();
2611 netif_tx_lock(dev);
2612}
2613
2614static inline void netif_tx_unlock(struct net_device *dev)
2615{
2616 unsigned int i;
2617
2618 for (i = 0; i < dev->num_tx_queues; i++) {
2619 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2620
2621 /* No need to grab the _xmit_lock here. If the
2622 * queue is not stopped for another reason, we
2623 * force a schedule.
2624 */
2625 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2626 netif_schedule_queue(txq);
2627 }
2628 spin_unlock(&dev->tx_global_lock);
2629}
2630
2631static inline void netif_tx_unlock_bh(struct net_device *dev)
2632{
2633 netif_tx_unlock(dev);
2634 local_bh_enable();
2635}
2636
2637#define HARD_TX_LOCK(dev, txq, cpu) { \
2638 if ((dev->features & NETIF_F_LLTX) == 0) { \
2639 __netif_tx_lock(txq, cpu); \
2640 } \
2641}
2642
2643#define HARD_TX_UNLOCK(dev, txq) { \
2644 if ((dev->features & NETIF_F_LLTX) == 0) { \
2645 __netif_tx_unlock(txq); \
2646 } \
2647}
2648
2649static inline void netif_tx_disable(struct net_device *dev)
2650{
2651 unsigned int i;
2652 int cpu;
2653
2654 local_bh_disable();
2655 cpu = smp_processor_id();
2656 for (i = 0; i < dev->num_tx_queues; i++) {
2657 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2658
2659 __netif_tx_lock(txq, cpu);
2660 netif_tx_stop_queue(txq);
2661 __netif_tx_unlock(txq);
2662 }
2663 local_bh_enable();
2664}
2665
2666static inline void netif_addr_lock(struct net_device *dev)
2667{
2668 spin_lock(&dev->addr_list_lock);
2669}
2670
2671static inline void netif_addr_lock_nested(struct net_device *dev)
2672{
2673 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2674}
2675
2676static inline void netif_addr_lock_bh(struct net_device *dev)
2677{
2678 spin_lock_bh(&dev->addr_list_lock);
2679}
2680
2681static inline void netif_addr_unlock(struct net_device *dev)
2682{
2683 spin_unlock(&dev->addr_list_lock);
2684}
2685
2686static inline void netif_addr_unlock_bh(struct net_device *dev)
2687{
2688 spin_unlock_bh(&dev->addr_list_lock);
2689}
2690
2691/*
2692 * dev_addrs walker. Should be used only for read access. Call with
2693 * rcu_read_lock held.
2694 */
2695#define for_each_dev_addr(dev, ha) \
2696 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2697
2698/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2699
2700extern void ether_setup(struct net_device *dev);
2701
2702/* Support for loadable net-drivers */
2703extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2704 void (*setup)(struct net_device *),
2705 unsigned int txqs, unsigned int rxqs);
2706#define alloc_netdev(sizeof_priv, name, setup) \
2707 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2708
2709#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2710 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2711
2712extern int register_netdev(struct net_device *dev);
2713extern void unregister_netdev(struct net_device *dev);
2714
2715/* General hardware address lists handling functions */
2716extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2717 struct netdev_hw_addr_list *from_list,
2718 int addr_len, unsigned char addr_type);
2719extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2720 struct netdev_hw_addr_list *from_list,
2721 int addr_len, unsigned char addr_type);
2722extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2723 struct netdev_hw_addr_list *from_list,
2724 int addr_len);
2725extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2726 struct netdev_hw_addr_list *from_list,
2727 int addr_len);
2728extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2729extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2730
2731/* Functions used for device addresses handling */
2732extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2733 unsigned char addr_type);
2734extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2735 unsigned char addr_type);
2736extern int dev_addr_add_multiple(struct net_device *to_dev,
2737 struct net_device *from_dev,
2738 unsigned char addr_type);
2739extern int dev_addr_del_multiple(struct net_device *to_dev,
2740 struct net_device *from_dev,
2741 unsigned char addr_type);
2742extern void dev_addr_flush(struct net_device *dev);
2743extern int dev_addr_init(struct net_device *dev);
2744
2745/* Functions used for unicast addresses handling */
2746extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2747extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2748extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2749extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2750extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2751extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2752extern void dev_uc_flush(struct net_device *dev);
2753extern void dev_uc_init(struct net_device *dev);
2754
2755/* Functions used for multicast addresses handling */
2756extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2757extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2758extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2759extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2760extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2761extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2762extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2763extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2764extern void dev_mc_flush(struct net_device *dev);
2765extern void dev_mc_init(struct net_device *dev);
2766
2767/* Functions used for secondary unicast and multicast support */
2768extern void dev_set_rx_mode(struct net_device *dev);
2769extern void __dev_set_rx_mode(struct net_device *dev);
2770extern int dev_set_promiscuity(struct net_device *dev, int inc);
2771extern int dev_set_allmulti(struct net_device *dev, int inc);
2772extern void netdev_state_change(struct net_device *dev);
2773extern void netdev_notify_peers(struct net_device *dev);
2774extern void netdev_features_change(struct net_device *dev);
2775/* Load a device via the kmod */
2776extern void dev_load(struct net *net, const char *name);
2777extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2778 struct rtnl_link_stats64 *storage);
2779extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2780 const struct net_device_stats *netdev_stats);
2781
2782extern int netdev_max_backlog;
2783extern int netdev_tstamp_prequeue;
2784extern int weight_p;
2785extern int bpf_jit_enable;
2786
2787extern bool netdev_has_upper_dev(struct net_device *dev,
2788 struct net_device *upper_dev);
2789extern bool netdev_has_any_upper_dev(struct net_device *dev);
2790extern struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
2791 struct list_head **iter);
2792
2793/* iterate through upper list, must be called under RCU read lock */
2794#define netdev_for_each_upper_dev_rcu(dev, upper, iter) \
2795 for (iter = &(dev)->upper_dev_list, \
2796 upper = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
2797 upper; \
2798 upper = netdev_upper_get_next_dev_rcu(dev, &(iter)))
2799
2800extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2801extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2802extern int netdev_upper_dev_link(struct net_device *dev,
2803 struct net_device *upper_dev);
2804extern int netdev_master_upper_dev_link(struct net_device *dev,
2805 struct net_device *upper_dev);
2806extern void netdev_upper_dev_unlink(struct net_device *dev,
2807 struct net_device *upper_dev);
2808extern int skb_checksum_help(struct sk_buff *skb);
2809extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2810 netdev_features_t features, bool tx_path);
2811extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2812 netdev_features_t features);
2813
2814static inline
2815struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2816{
2817 return __skb_gso_segment(skb, features, true);
2818}
2819__be16 skb_network_protocol(struct sk_buff *skb);
2820
2821static inline bool can_checksum_protocol(netdev_features_t features,
2822 __be16 protocol)
2823{
2824 return ((features & NETIF_F_GEN_CSUM) ||
2825 ((features & NETIF_F_V4_CSUM) &&
2826 protocol == htons(ETH_P_IP)) ||
2827 ((features & NETIF_F_V6_CSUM) &&
2828 protocol == htons(ETH_P_IPV6)) ||
2829 ((features & NETIF_F_FCOE_CRC) &&
2830 protocol == htons(ETH_P_FCOE)));
2831}
2832
2833#ifdef CONFIG_BUG
2834extern void netdev_rx_csum_fault(struct net_device *dev);
2835#else
2836static inline void netdev_rx_csum_fault(struct net_device *dev)
2837{
2838}
2839#endif
2840/* rx skb timestamps */
2841extern void net_enable_timestamp(void);
2842extern void net_disable_timestamp(void);
2843
2844#ifdef CONFIG_PROC_FS
2845extern int __init dev_proc_init(void);
2846#else
2847#define dev_proc_init() 0
2848#endif
2849
2850extern int netdev_class_create_file(struct class_attribute *class_attr);
2851extern void netdev_class_remove_file(struct class_attribute *class_attr);
2852
2853extern struct kobj_ns_type_operations net_ns_type_operations;
2854
2855extern const char *netdev_drivername(const struct net_device *dev);
2856
2857extern void linkwatch_run_queue(void);
2858
2859static inline netdev_features_t netdev_get_wanted_features(
2860 struct net_device *dev)
2861{
2862 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2863}
2864netdev_features_t netdev_increment_features(netdev_features_t all,
2865 netdev_features_t one, netdev_features_t mask);
2866
2867/* Allow TSO being used on stacked device :
2868 * Performing the GSO segmentation before last device
2869 * is a performance improvement.
2870 */
2871static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2872 netdev_features_t mask)
2873{
2874 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2875}
2876
2877int __netdev_update_features(struct net_device *dev);
2878void netdev_update_features(struct net_device *dev);
2879void netdev_change_features(struct net_device *dev);
2880
2881void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2882 struct net_device *dev);
2883
2884netdev_features_t netif_skb_features(struct sk_buff *skb);
2885
2886static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2887{
2888 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2889
2890 /* check flags correspondence */
2891 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2892 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2893 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2894 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2895 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2896 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2897
2898 return (features & feature) == feature;
2899}
2900
2901static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2902{
2903 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2904 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2905}
2906
2907static inline bool netif_needs_gso(struct sk_buff *skb,
2908 netdev_features_t features)
2909{
2910 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2911 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2912 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2913}
2914
2915static inline void netif_set_gso_max_size(struct net_device *dev,
2916 unsigned int size)
2917{
2918 dev->gso_max_size = size;
2919}
2920
2921static inline bool netif_is_bond_master(struct net_device *dev)
2922{
2923 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2924}
2925
2926static inline bool netif_is_bond_slave(struct net_device *dev)
2927{
2928 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2929}
2930
2931static inline bool netif_supports_nofcs(struct net_device *dev)
2932{
2933 return dev->priv_flags & IFF_SUPP_NOFCS;
2934}
2935
2936extern struct pernet_operations __net_initdata loopback_net_ops;
2937
2938/* Logging, debugging and troubleshooting/diagnostic helpers. */
2939
2940/* netdev_printk helpers, similar to dev_printk */
2941
2942static inline const char *netdev_name(const struct net_device *dev)
2943{
2944 if (dev->reg_state != NETREG_REGISTERED)
2945 return "(unregistered net_device)";
2946 return dev->name;
2947}
2948
2949extern __printf(3, 4)
2950int netdev_printk(const char *level, const struct net_device *dev,
2951 const char *format, ...);
2952extern __printf(2, 3)
2953int netdev_emerg(const struct net_device *dev, const char *format, ...);
2954extern __printf(2, 3)
2955int netdev_alert(const struct net_device *dev, const char *format, ...);
2956extern __printf(2, 3)
2957int netdev_crit(const struct net_device *dev, const char *format, ...);
2958extern __printf(2, 3)
2959int netdev_err(const struct net_device *dev, const char *format, ...);
2960extern __printf(2, 3)
2961int netdev_warn(const struct net_device *dev, const char *format, ...);
2962extern __printf(2, 3)
2963int netdev_notice(const struct net_device *dev, const char *format, ...);
2964extern __printf(2, 3)
2965int netdev_info(const struct net_device *dev, const char *format, ...);
2966
2967#define MODULE_ALIAS_NETDEV(device) \
2968 MODULE_ALIAS("netdev-" device)
2969
2970#if defined(CONFIG_DYNAMIC_DEBUG)
2971#define netdev_dbg(__dev, format, args...) \
2972do { \
2973 dynamic_netdev_dbg(__dev, format, ##args); \
2974} while (0)
2975#elif defined(DEBUG)
2976#define netdev_dbg(__dev, format, args...) \
2977 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2978#else
2979#define netdev_dbg(__dev, format, args...) \
2980({ \
2981 if (0) \
2982 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2983 0; \
2984})
2985#endif
2986
2987#if defined(VERBOSE_DEBUG)
2988#define netdev_vdbg netdev_dbg
2989#else
2990
2991#define netdev_vdbg(dev, format, args...) \
2992({ \
2993 if (0) \
2994 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2995 0; \
2996})
2997#endif
2998
2999/*
3000 * netdev_WARN() acts like dev_printk(), but with the key difference
3001 * of using a WARN/WARN_ON to get the message out, including the
3002 * file/line information and a backtrace.
3003 */
3004#define netdev_WARN(dev, format, args...) \
3005 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
3006
3007/* netif printk helpers, similar to netdev_printk */
3008
3009#define netif_printk(priv, type, level, dev, fmt, args...) \
3010do { \
3011 if (netif_msg_##type(priv)) \
3012 netdev_printk(level, (dev), fmt, ##args); \
3013} while (0)
3014
3015#define netif_level(level, priv, type, dev, fmt, args...) \
3016do { \
3017 if (netif_msg_##type(priv)) \
3018 netdev_##level(dev, fmt, ##args); \
3019} while (0)
3020
3021#define netif_emerg(priv, type, dev, fmt, args...) \
3022 netif_level(emerg, priv, type, dev, fmt, ##args)
3023#define netif_alert(priv, type, dev, fmt, args...) \
3024 netif_level(alert, priv, type, dev, fmt, ##args)
3025#define netif_crit(priv, type, dev, fmt, args...) \
3026 netif_level(crit, priv, type, dev, fmt, ##args)
3027#define netif_err(priv, type, dev, fmt, args...) \
3028 netif_level(err, priv, type, dev, fmt, ##args)
3029#define netif_warn(priv, type, dev, fmt, args...) \
3030 netif_level(warn, priv, type, dev, fmt, ##args)
3031#define netif_notice(priv, type, dev, fmt, args...) \
3032 netif_level(notice, priv, type, dev, fmt, ##args)
3033#define netif_info(priv, type, dev, fmt, args...) \
3034 netif_level(info, priv, type, dev, fmt, ##args)
3035
3036#if defined(CONFIG_DYNAMIC_DEBUG)
3037#define netif_dbg(priv, type, netdev, format, args...) \
3038do { \
3039 if (netif_msg_##type(priv)) \
3040 dynamic_netdev_dbg(netdev, format, ##args); \
3041} while (0)
3042#elif defined(DEBUG)
3043#define netif_dbg(priv, type, dev, format, args...) \
3044 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3045#else
3046#define netif_dbg(priv, type, dev, format, args...) \
3047({ \
3048 if (0) \
3049 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3050 0; \
3051})
3052#endif
3053
3054#if defined(VERBOSE_DEBUG)
3055#define netif_vdbg netif_dbg
3056#else
3057#define netif_vdbg(priv, type, dev, format, args...) \
3058({ \
3059 if (0) \
3060 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3061 0; \
3062})
3063#endif
3064
3065/*
3066 * The list of packet types we will receive (as opposed to discard)
3067 * and the routines to invoke.
3068 *
3069 * Why 16. Because with 16 the only overlap we get on a hash of the
3070 * low nibble of the protocol value is RARP/SNAP/X.25.
3071 *
3072 * NOTE: That is no longer true with the addition of VLAN tags. Not
3073 * sure which should go first, but I bet it won't make much
3074 * difference if we are running VLANs. The good news is that
3075 * this protocol won't be in the list unless compiled in, so
3076 * the average user (w/out VLANs) will not be adversely affected.
3077 * --BLG
3078 *
3079 * 0800 IP
3080 * 8100 802.1Q VLAN
3081 * 0001 802.3
3082 * 0002 AX.25
3083 * 0004 802.2
3084 * 8035 RARP
3085 * 0005 SNAP
3086 * 0805 X.25
3087 * 0806 ARP
3088 * 8137 IPX
3089 * 0009 Localtalk
3090 * 86DD IPv6
3091 */
3092#define PTYPE_HASH_SIZE (16)
3093#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3094
3095#endif /* _LINUX_NETDEVICE_H */