]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - include/linux/netdevice.h
bonding: add 802.3ad support for 100G speeds
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/timer.h>
29#include <linux/bug.h>
30#include <linux/delay.h>
31#include <linux/atomic.h>
32#include <linux/prefetch.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53#include <uapi/linux/if_bonding.h>
54
55struct netpoll_info;
56struct device;
57struct phy_device;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62struct mpls_dev;
63
64void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67/* Backlog congestion levels */
68#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69#define NET_RX_DROP 1 /* packet dropped */
70
71/*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88/* qdisc ->enqueue() return codes. */
89#define NET_XMIT_SUCCESS 0x00
90#define NET_XMIT_DROP 0x01 /* skb dropped */
91#define NET_XMIT_CN 0x02 /* congestion notification */
92#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101/* Driver transmit return codes */
102#define NETDEV_TX_MASK 0xf0
103
104enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109};
110typedef enum netdev_tx netdev_tx_t;
111
112/*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116static inline bool dev_xmit_complete(int rc)
117{
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128}
129
130/*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135#if defined(CONFIG_HYPERV_NET)
136# define LL_MAX_HEADER 128
137#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
138# if defined(CONFIG_MAC80211_MESH)
139# define LL_MAX_HEADER 128
140# else
141# define LL_MAX_HEADER 96
142# endif
143#else
144# define LL_MAX_HEADER 32
145#endif
146
147#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
149#define MAX_HEADER LL_MAX_HEADER
150#else
151#define MAX_HEADER (LL_MAX_HEADER + 48)
152#endif
153
154/*
155 * Old network device statistics. Fields are native words
156 * (unsigned long) so they can be read and written atomically.
157 */
158
159struct net_device_stats {
160 unsigned long rx_packets;
161 unsigned long tx_packets;
162 unsigned long rx_bytes;
163 unsigned long tx_bytes;
164 unsigned long rx_errors;
165 unsigned long tx_errors;
166 unsigned long rx_dropped;
167 unsigned long tx_dropped;
168 unsigned long multicast;
169 unsigned long collisions;
170 unsigned long rx_length_errors;
171 unsigned long rx_over_errors;
172 unsigned long rx_crc_errors;
173 unsigned long rx_frame_errors;
174 unsigned long rx_fifo_errors;
175 unsigned long rx_missed_errors;
176 unsigned long tx_aborted_errors;
177 unsigned long tx_carrier_errors;
178 unsigned long tx_fifo_errors;
179 unsigned long tx_heartbeat_errors;
180 unsigned long tx_window_errors;
181 unsigned long rx_compressed;
182 unsigned long tx_compressed;
183};
184
185
186#include <linux/cache.h>
187#include <linux/skbuff.h>
188
189#ifdef CONFIG_RPS
190#include <linux/static_key.h>
191extern struct static_key rps_needed;
192#endif
193
194struct neighbour;
195struct neigh_parms;
196struct sk_buff;
197
198struct netdev_hw_addr {
199 struct list_head list;
200 unsigned char addr[MAX_ADDR_LEN];
201 unsigned char type;
202#define NETDEV_HW_ADDR_T_LAN 1
203#define NETDEV_HW_ADDR_T_SAN 2
204#define NETDEV_HW_ADDR_T_SLAVE 3
205#define NETDEV_HW_ADDR_T_UNICAST 4
206#define NETDEV_HW_ADDR_T_MULTICAST 5
207 bool global_use;
208 int sync_cnt;
209 int refcount;
210 int synced;
211 struct rcu_head rcu_head;
212};
213
214struct netdev_hw_addr_list {
215 struct list_head list;
216 int count;
217};
218
219#define netdev_hw_addr_list_count(l) ((l)->count)
220#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221#define netdev_hw_addr_list_for_each(ha, l) \
222 list_for_each_entry(ha, &(l)->list, list)
223
224#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226#define netdev_for_each_uc_addr(ha, dev) \
227 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228
229#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231#define netdev_for_each_mc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233
234struct hh_cache {
235 u16 hh_len;
236 u16 __pad;
237 seqlock_t hh_lock;
238
239 /* cached hardware header; allow for machine alignment needs. */
240#define HH_DATA_MOD 16
241#define HH_DATA_OFF(__len) \
242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243#define HH_DATA_ALIGN(__len) \
244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246};
247
248/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249 * Alternative is:
250 * dev->hard_header_len ? (dev->hard_header_len +
251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252 *
253 * We could use other alignment values, but we must maintain the
254 * relationship HH alignment <= LL alignment.
255 */
256#define LL_RESERVED_SPACE(dev) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260
261struct header_ops {
262 int (*create) (struct sk_buff *skb, struct net_device *dev,
263 unsigned short type, const void *daddr,
264 const void *saddr, unsigned int len);
265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
267 void (*cache_update)(struct hh_cache *hh,
268 const struct net_device *dev,
269 const unsigned char *haddr);
270};
271
272/* These flag bits are private to the generic network queueing
273 * layer, they may not be explicitly referenced by any other
274 * code.
275 */
276
277enum netdev_state_t {
278 __LINK_STATE_START,
279 __LINK_STATE_PRESENT,
280 __LINK_STATE_NOCARRIER,
281 __LINK_STATE_LINKWATCH_PENDING,
282 __LINK_STATE_DORMANT,
283};
284
285
286/*
287 * This structure holds at boot time configured netdevice settings. They
288 * are then used in the device probing.
289 */
290struct netdev_boot_setup {
291 char name[IFNAMSIZ];
292 struct ifmap map;
293};
294#define NETDEV_BOOT_SETUP_MAX 8
295
296int __init netdev_boot_setup(char *str);
297
298/*
299 * Structure for NAPI scheduling similar to tasklet but with weighting
300 */
301struct napi_struct {
302 /* The poll_list must only be managed by the entity which
303 * changes the state of the NAPI_STATE_SCHED bit. This means
304 * whoever atomically sets that bit can add this napi_struct
305 * to the per-cpu poll_list, and whoever clears that bit
306 * can remove from the list right before clearing the bit.
307 */
308 struct list_head poll_list;
309
310 unsigned long state;
311 int weight;
312 unsigned int gro_count;
313 int (*poll)(struct napi_struct *, int);
314#ifdef CONFIG_NETPOLL
315 spinlock_t poll_lock;
316 int poll_owner;
317#endif
318 struct net_device *dev;
319 struct sk_buff *gro_list;
320 struct sk_buff *skb;
321 struct hrtimer timer;
322 struct list_head dev_list;
323 struct hlist_node napi_hash_node;
324 unsigned int napi_id;
325};
326
327enum {
328 NAPI_STATE_SCHED, /* Poll is scheduled */
329 NAPI_STATE_DISABLE, /* Disable pending */
330 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
331 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
332 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
333};
334
335enum gro_result {
336 GRO_MERGED,
337 GRO_MERGED_FREE,
338 GRO_HELD,
339 GRO_NORMAL,
340 GRO_DROP,
341};
342typedef enum gro_result gro_result_t;
343
344/*
345 * enum rx_handler_result - Possible return values for rx_handlers.
346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347 * further.
348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349 * case skb->dev was changed by rx_handler.
350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352 *
353 * rx_handlers are functions called from inside __netif_receive_skb(), to do
354 * special processing of the skb, prior to delivery to protocol handlers.
355 *
356 * Currently, a net_device can only have a single rx_handler registered. Trying
357 * to register a second rx_handler will return -EBUSY.
358 *
359 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360 * To unregister a rx_handler on a net_device, use
361 * netdev_rx_handler_unregister().
362 *
363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364 * do with the skb.
365 *
366 * If the rx_handler consumed to skb in some way, it should return
367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368 * the skb to be delivered in some other ways.
369 *
370 * If the rx_handler changed skb->dev, to divert the skb to another
371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372 * new device will be called if it exists.
373 *
374 * If the rx_handler consider the skb should be ignored, it should return
375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376 * are registered on exact device (ptype->dev == skb->dev).
377 *
378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379 * delivered, it should return RX_HANDLER_PASS.
380 *
381 * A device without a registered rx_handler will behave as if rx_handler
382 * returned RX_HANDLER_PASS.
383 */
384
385enum rx_handler_result {
386 RX_HANDLER_CONSUMED,
387 RX_HANDLER_ANOTHER,
388 RX_HANDLER_EXACT,
389 RX_HANDLER_PASS,
390};
391typedef enum rx_handler_result rx_handler_result_t;
392typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393
394void __napi_schedule(struct napi_struct *n);
395void __napi_schedule_irqoff(struct napi_struct *n);
396
397static inline bool napi_disable_pending(struct napi_struct *n)
398{
399 return test_bit(NAPI_STATE_DISABLE, &n->state);
400}
401
402/**
403 * napi_schedule_prep - check if napi can be scheduled
404 * @n: napi context
405 *
406 * Test if NAPI routine is already running, and if not mark
407 * it as running. This is used as a condition variable
408 * insure only one NAPI poll instance runs. We also make
409 * sure there is no pending NAPI disable.
410 */
411static inline bool napi_schedule_prep(struct napi_struct *n)
412{
413 return !napi_disable_pending(n) &&
414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415}
416
417/**
418 * napi_schedule - schedule NAPI poll
419 * @n: napi context
420 *
421 * Schedule NAPI poll routine to be called if it is not already
422 * running.
423 */
424static inline void napi_schedule(struct napi_struct *n)
425{
426 if (napi_schedule_prep(n))
427 __napi_schedule(n);
428}
429
430/**
431 * napi_schedule_irqoff - schedule NAPI poll
432 * @n: napi context
433 *
434 * Variant of napi_schedule(), assuming hard irqs are masked.
435 */
436static inline void napi_schedule_irqoff(struct napi_struct *n)
437{
438 if (napi_schedule_prep(n))
439 __napi_schedule_irqoff(n);
440}
441
442/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
443static inline bool napi_reschedule(struct napi_struct *napi)
444{
445 if (napi_schedule_prep(napi)) {
446 __napi_schedule(napi);
447 return true;
448 }
449 return false;
450}
451
452void __napi_complete(struct napi_struct *n);
453void napi_complete_done(struct napi_struct *n, int work_done);
454/**
455 * napi_complete - NAPI processing complete
456 * @n: napi context
457 *
458 * Mark NAPI processing as complete.
459 * Consider using napi_complete_done() instead.
460 */
461static inline void napi_complete(struct napi_struct *n)
462{
463 return napi_complete_done(n, 0);
464}
465
466/**
467 * napi_hash_add - add a NAPI to global hashtable
468 * @napi: napi context
469 *
470 * generate a new napi_id and store a @napi under it in napi_hash
471 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
472 * Note: This is normally automatically done from netif_napi_add(),
473 * so might disappear in a future linux version.
474 */
475void napi_hash_add(struct napi_struct *napi);
476
477/**
478 * napi_hash_del - remove a NAPI from global table
479 * @napi: napi context
480 *
481 * Warning: caller must observe rcu grace period
482 * before freeing memory containing @napi, if
483 * this function returns true.
484 * Note: core networking stack automatically calls it
485 * from netif_napi_del()
486 * Drivers might want to call this helper to combine all
487 * the needed rcu grace periods into a single one.
488 */
489bool napi_hash_del(struct napi_struct *napi);
490
491/**
492 * napi_disable - prevent NAPI from scheduling
493 * @n: napi context
494 *
495 * Stop NAPI from being scheduled on this context.
496 * Waits till any outstanding processing completes.
497 */
498void napi_disable(struct napi_struct *n);
499
500/**
501 * napi_enable - enable NAPI scheduling
502 * @n: napi context
503 *
504 * Resume NAPI from being scheduled on this context.
505 * Must be paired with napi_disable.
506 */
507static inline void napi_enable(struct napi_struct *n)
508{
509 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 smp_mb__before_atomic();
511 clear_bit(NAPI_STATE_SCHED, &n->state);
512 clear_bit(NAPI_STATE_NPSVC, &n->state);
513}
514
515#ifdef CONFIG_SMP
516/**
517 * napi_synchronize - wait until NAPI is not running
518 * @n: napi context
519 *
520 * Wait until NAPI is done being scheduled on this context.
521 * Waits till any outstanding processing completes but
522 * does not disable future activations.
523 */
524static inline void napi_synchronize(const struct napi_struct *n)
525{
526 while (test_bit(NAPI_STATE_SCHED, &n->state))
527 msleep(1);
528}
529#else
530# define napi_synchronize(n) barrier()
531#endif
532
533enum netdev_queue_state_t {
534 __QUEUE_STATE_DRV_XOFF,
535 __QUEUE_STATE_STACK_XOFF,
536 __QUEUE_STATE_FROZEN,
537};
538
539#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
540#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
541#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
542
543#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
544#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
545 QUEUE_STATE_FROZEN)
546#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
547 QUEUE_STATE_FROZEN)
548
549/*
550 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
551 * netif_tx_* functions below are used to manipulate this flag. The
552 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
553 * queue independently. The netif_xmit_*stopped functions below are called
554 * to check if the queue has been stopped by the driver or stack (either
555 * of the XOFF bits are set in the state). Drivers should not need to call
556 * netif_xmit*stopped functions, they should only be using netif_tx_*.
557 */
558
559struct netdev_queue {
560/*
561 * read mostly part
562 */
563 struct net_device *dev;
564 struct Qdisc __rcu *qdisc;
565 struct Qdisc *qdisc_sleeping;
566#ifdef CONFIG_SYSFS
567 struct kobject kobj;
568#endif
569#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570 int numa_node;
571#endif
572/*
573 * write mostly part
574 */
575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
576 int xmit_lock_owner;
577 /*
578 * please use this field instead of dev->trans_start
579 */
580 unsigned long trans_start;
581
582 /*
583 * Number of TX timeouts for this queue
584 * (/sys/class/net/DEV/Q/trans_timeout)
585 */
586 unsigned long trans_timeout;
587
588 unsigned long state;
589
590#ifdef CONFIG_BQL
591 struct dql dql;
592#endif
593 unsigned long tx_maxrate;
594} ____cacheline_aligned_in_smp;
595
596static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
597{
598#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 return q->numa_node;
600#else
601 return NUMA_NO_NODE;
602#endif
603}
604
605static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
606{
607#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 q->numa_node = node;
609#endif
610}
611
612#ifdef CONFIG_RPS
613/*
614 * This structure holds an RPS map which can be of variable length. The
615 * map is an array of CPUs.
616 */
617struct rps_map {
618 unsigned int len;
619 struct rcu_head rcu;
620 u16 cpus[0];
621};
622#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
623
624/*
625 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
626 * tail pointer for that CPU's input queue at the time of last enqueue, and
627 * a hardware filter index.
628 */
629struct rps_dev_flow {
630 u16 cpu;
631 u16 filter;
632 unsigned int last_qtail;
633};
634#define RPS_NO_FILTER 0xffff
635
636/*
637 * The rps_dev_flow_table structure contains a table of flow mappings.
638 */
639struct rps_dev_flow_table {
640 unsigned int mask;
641 struct rcu_head rcu;
642 struct rps_dev_flow flows[0];
643};
644#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
645 ((_num) * sizeof(struct rps_dev_flow)))
646
647/*
648 * The rps_sock_flow_table contains mappings of flows to the last CPU
649 * on which they were processed by the application (set in recvmsg).
650 * Each entry is a 32bit value. Upper part is the high order bits
651 * of flow hash, lower part is cpu number.
652 * rps_cpu_mask is used to partition the space, depending on number of
653 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
654 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
655 * meaning we use 32-6=26 bits for the hash.
656 */
657struct rps_sock_flow_table {
658 u32 mask;
659
660 u32 ents[0] ____cacheline_aligned_in_smp;
661};
662#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
663
664#define RPS_NO_CPU 0xffff
665
666extern u32 rps_cpu_mask;
667extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
668
669static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
670 u32 hash)
671{
672 if (table && hash) {
673 unsigned int index = hash & table->mask;
674 u32 val = hash & ~rps_cpu_mask;
675
676 /* We only give a hint, preemption can change cpu under us */
677 val |= raw_smp_processor_id();
678
679 if (table->ents[index] != val)
680 table->ents[index] = val;
681 }
682}
683
684#ifdef CONFIG_RFS_ACCEL
685bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
686 u16 filter_id);
687#endif
688#endif /* CONFIG_RPS */
689
690/* This structure contains an instance of an RX queue. */
691struct netdev_rx_queue {
692#ifdef CONFIG_RPS
693 struct rps_map __rcu *rps_map;
694 struct rps_dev_flow_table __rcu *rps_flow_table;
695#endif
696 struct kobject kobj;
697 struct net_device *dev;
698} ____cacheline_aligned_in_smp;
699
700/*
701 * RX queue sysfs structures and functions.
702 */
703struct rx_queue_attribute {
704 struct attribute attr;
705 ssize_t (*show)(struct netdev_rx_queue *queue,
706 struct rx_queue_attribute *attr, char *buf);
707 ssize_t (*store)(struct netdev_rx_queue *queue,
708 struct rx_queue_attribute *attr, const char *buf, size_t len);
709};
710
711#ifdef CONFIG_XPS
712/*
713 * This structure holds an XPS map which can be of variable length. The
714 * map is an array of queues.
715 */
716struct xps_map {
717 unsigned int len;
718 unsigned int alloc_len;
719 struct rcu_head rcu;
720 u16 queues[0];
721};
722#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
723#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
724 - sizeof(struct xps_map)) / sizeof(u16))
725
726/*
727 * This structure holds all XPS maps for device. Maps are indexed by CPU.
728 */
729struct xps_dev_maps {
730 struct rcu_head rcu;
731 struct xps_map __rcu *cpu_map[0];
732};
733#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
734 (nr_cpu_ids * sizeof(struct xps_map *)))
735#endif /* CONFIG_XPS */
736
737#define TC_MAX_QUEUE 16
738#define TC_BITMASK 15
739/* HW offloaded queuing disciplines txq count and offset maps */
740struct netdev_tc_txq {
741 u16 count;
742 u16 offset;
743};
744
745#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
746/*
747 * This structure is to hold information about the device
748 * configured to run FCoE protocol stack.
749 */
750struct netdev_fcoe_hbainfo {
751 char manufacturer[64];
752 char serial_number[64];
753 char hardware_version[64];
754 char driver_version[64];
755 char optionrom_version[64];
756 char firmware_version[64];
757 char model[256];
758 char model_description[256];
759};
760#endif
761
762#define MAX_PHYS_ITEM_ID_LEN 32
763
764/* This structure holds a unique identifier to identify some
765 * physical item (port for example) used by a netdevice.
766 */
767struct netdev_phys_item_id {
768 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
769 unsigned char id_len;
770};
771
772static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
773 struct netdev_phys_item_id *b)
774{
775 return a->id_len == b->id_len &&
776 memcmp(a->id, b->id, a->id_len) == 0;
777}
778
779typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
780 struct sk_buff *skb);
781
782/*
783 * This structure defines the management hooks for network devices.
784 * The following hooks can be defined; unless noted otherwise, they are
785 * optional and can be filled with a null pointer.
786 *
787 * int (*ndo_init)(struct net_device *dev);
788 * This function is called once when network device is registered.
789 * The network device can use this to any late stage initializaton
790 * or semantic validattion. It can fail with an error code which will
791 * be propogated back to register_netdev
792 *
793 * void (*ndo_uninit)(struct net_device *dev);
794 * This function is called when device is unregistered or when registration
795 * fails. It is not called if init fails.
796 *
797 * int (*ndo_open)(struct net_device *dev);
798 * This function is called when network device transistions to the up
799 * state.
800 *
801 * int (*ndo_stop)(struct net_device *dev);
802 * This function is called when network device transistions to the down
803 * state.
804 *
805 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
806 * struct net_device *dev);
807 * Called when a packet needs to be transmitted.
808 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
809 * the queue before that can happen; it's for obsolete devices and weird
810 * corner cases, but the stack really does a non-trivial amount
811 * of useless work if you return NETDEV_TX_BUSY.
812 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
813 * Required can not be NULL.
814 *
815 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
816 * void *accel_priv, select_queue_fallback_t fallback);
817 * Called to decide which queue to when device supports multiple
818 * transmit queues.
819 *
820 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
821 * This function is called to allow device receiver to make
822 * changes to configuration when multicast or promiscious is enabled.
823 *
824 * void (*ndo_set_rx_mode)(struct net_device *dev);
825 * This function is called device changes address list filtering.
826 * If driver handles unicast address filtering, it should set
827 * IFF_UNICAST_FLT to its priv_flags.
828 *
829 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
830 * This function is called when the Media Access Control address
831 * needs to be changed. If this interface is not defined, the
832 * mac address can not be changed.
833 *
834 * int (*ndo_validate_addr)(struct net_device *dev);
835 * Test if Media Access Control address is valid for the device.
836 *
837 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
838 * Called when a user request an ioctl which can't be handled by
839 * the generic interface code. If not defined ioctl's return
840 * not supported error code.
841 *
842 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
843 * Used to set network devices bus interface parameters. This interface
844 * is retained for legacy reason, new devices should use the bus
845 * interface (PCI) for low level management.
846 *
847 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
848 * Called when a user wants to change the Maximum Transfer Unit
849 * of a device. If not defined, any request to change MTU will
850 * will return an error.
851 *
852 * void (*ndo_tx_timeout)(struct net_device *dev);
853 * Callback uses when the transmitter has not made any progress
854 * for dev->watchdog ticks.
855 *
856 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
857 * struct rtnl_link_stats64 *storage);
858 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
859 * Called when a user wants to get the network device usage
860 * statistics. Drivers must do one of the following:
861 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
862 * rtnl_link_stats64 structure passed by the caller.
863 * 2. Define @ndo_get_stats to update a net_device_stats structure
864 * (which should normally be dev->stats) and return a pointer to
865 * it. The structure may be changed asynchronously only if each
866 * field is written atomically.
867 * 3. Update dev->stats asynchronously and atomically, and define
868 * neither operation.
869 *
870 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
871 * If device support VLAN filtering this function is called when a
872 * VLAN id is registered.
873 *
874 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
875 * If device support VLAN filtering this function is called when a
876 * VLAN id is unregistered.
877 *
878 * void (*ndo_poll_controller)(struct net_device *dev);
879 *
880 * SR-IOV management functions.
881 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
882 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
883 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
884 * int max_tx_rate);
885 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
886 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
887 * int (*ndo_get_vf_config)(struct net_device *dev,
888 * int vf, struct ifla_vf_info *ivf);
889 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
890 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
891 * struct nlattr *port[]);
892 *
893 * Enable or disable the VF ability to query its RSS Redirection Table and
894 * Hash Key. This is needed since on some devices VF share this information
895 * with PF and querying it may adduce a theoretical security risk.
896 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
897 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
898 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
899 * Called to setup 'tc' number of traffic classes in the net device. This
900 * is always called from the stack with the rtnl lock held and netif tx
901 * queues stopped. This allows the netdevice to perform queue management
902 * safely.
903 *
904 * Fiber Channel over Ethernet (FCoE) offload functions.
905 * int (*ndo_fcoe_enable)(struct net_device *dev);
906 * Called when the FCoE protocol stack wants to start using LLD for FCoE
907 * so the underlying device can perform whatever needed configuration or
908 * initialization to support acceleration of FCoE traffic.
909 *
910 * int (*ndo_fcoe_disable)(struct net_device *dev);
911 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
912 * so the underlying device can perform whatever needed clean-ups to
913 * stop supporting acceleration of FCoE traffic.
914 *
915 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
916 * struct scatterlist *sgl, unsigned int sgc);
917 * Called when the FCoE Initiator wants to initialize an I/O that
918 * is a possible candidate for Direct Data Placement (DDP). The LLD can
919 * perform necessary setup and returns 1 to indicate the device is set up
920 * successfully to perform DDP on this I/O, otherwise this returns 0.
921 *
922 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
923 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
924 * indicated by the FC exchange id 'xid', so the underlying device can
925 * clean up and reuse resources for later DDP requests.
926 *
927 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
928 * struct scatterlist *sgl, unsigned int sgc);
929 * Called when the FCoE Target wants to initialize an I/O that
930 * is a possible candidate for Direct Data Placement (DDP). The LLD can
931 * perform necessary setup and returns 1 to indicate the device is set up
932 * successfully to perform DDP on this I/O, otherwise this returns 0.
933 *
934 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
935 * struct netdev_fcoe_hbainfo *hbainfo);
936 * Called when the FCoE Protocol stack wants information on the underlying
937 * device. This information is utilized by the FCoE protocol stack to
938 * register attributes with Fiber Channel management service as per the
939 * FC-GS Fabric Device Management Information(FDMI) specification.
940 *
941 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
942 * Called when the underlying device wants to override default World Wide
943 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
944 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
945 * protocol stack to use.
946 *
947 * RFS acceleration.
948 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
949 * u16 rxq_index, u32 flow_id);
950 * Set hardware filter for RFS. rxq_index is the target queue index;
951 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
952 * Return the filter ID on success, or a negative error code.
953 *
954 * Slave management functions (for bridge, bonding, etc).
955 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
956 * Called to make another netdev an underling.
957 *
958 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
959 * Called to release previously enslaved netdev.
960 *
961 * Feature/offload setting functions.
962 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
963 * netdev_features_t features);
964 * Adjusts the requested feature flags according to device-specific
965 * constraints, and returns the resulting flags. Must not modify
966 * the device state.
967 *
968 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
969 * Called to update device configuration to new features. Passed
970 * feature set might be less than what was returned by ndo_fix_features()).
971 * Must return >0 or -errno if it changed dev->features itself.
972 *
973 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
974 * struct net_device *dev,
975 * const unsigned char *addr, u16 vid, u16 flags)
976 * Adds an FDB entry to dev for addr.
977 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
978 * struct net_device *dev,
979 * const unsigned char *addr, u16 vid)
980 * Deletes the FDB entry from dev coresponding to addr.
981 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
982 * struct net_device *dev, struct net_device *filter_dev,
983 * int idx)
984 * Used to add FDB entries to dump requests. Implementers should add
985 * entries to skb and update idx with the number of entries.
986 *
987 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
988 * u16 flags)
989 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
990 * struct net_device *dev, u32 filter_mask,
991 * int nlflags)
992 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
993 * u16 flags);
994 *
995 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
996 * Called to change device carrier. Soft-devices (like dummy, team, etc)
997 * which do not represent real hardware may define this to allow their
998 * userspace components to manage their virtual carrier state. Devices
999 * that determine carrier state from physical hardware properties (eg
1000 * network cables) or protocol-dependent mechanisms (eg
1001 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1002 *
1003 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1004 * struct netdev_phys_item_id *ppid);
1005 * Called to get ID of physical port of this device. If driver does
1006 * not implement this, it is assumed that the hw is not able to have
1007 * multiple net devices on single physical port.
1008 *
1009 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1010 * sa_family_t sa_family, __be16 port);
1011 * Called by vxlan to notiy a driver about the UDP port and socket
1012 * address family that vxlan is listnening to. It is called only when
1013 * a new port starts listening. The operation is protected by the
1014 * vxlan_net->sock_lock.
1015 *
1016 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1017 * sa_family_t sa_family, __be16 port);
1018 * Called by vxlan to notify the driver about a UDP port and socket
1019 * address family that vxlan is not listening to anymore. The operation
1020 * is protected by the vxlan_net->sock_lock.
1021 *
1022 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1023 * struct net_device *dev)
1024 * Called by upper layer devices to accelerate switching or other
1025 * station functionality into hardware. 'pdev is the lowerdev
1026 * to use for the offload and 'dev' is the net device that will
1027 * back the offload. Returns a pointer to the private structure
1028 * the upper layer will maintain.
1029 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1030 * Called by upper layer device to delete the station created
1031 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1032 * the station and priv is the structure returned by the add
1033 * operation.
1034 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1035 * struct net_device *dev,
1036 * void *priv);
1037 * Callback to use for xmit over the accelerated station. This
1038 * is used in place of ndo_start_xmit on accelerated net
1039 * devices.
1040 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1041 * struct net_device *dev
1042 * netdev_features_t features);
1043 * Called by core transmit path to determine if device is capable of
1044 * performing offload operations on a given packet. This is to give
1045 * the device an opportunity to implement any restrictions that cannot
1046 * be otherwise expressed by feature flags. The check is called with
1047 * the set of features that the stack has calculated and it returns
1048 * those the driver believes to be appropriate.
1049 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1050 * int queue_index, u32 maxrate);
1051 * Called when a user wants to set a max-rate limitation of specific
1052 * TX queue.
1053 * int (*ndo_get_iflink)(const struct net_device *dev);
1054 * Called to get the iflink value of this device.
1055 * void (*ndo_change_proto_down)(struct net_device *dev,
1056 * bool proto_down);
1057 * This function is used to pass protocol port error state information
1058 * to the switch driver. The switch driver can react to the proto_down
1059 * by doing a phys down on the associated switch port.
1060 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1061 * This function is used to get egress tunnel information for given skb.
1062 * This is useful for retrieving outer tunnel header parameters while
1063 * sampling packet.
1064 *
1065 */
1066struct net_device_ops {
1067 int (*ndo_init)(struct net_device *dev);
1068 void (*ndo_uninit)(struct net_device *dev);
1069 int (*ndo_open)(struct net_device *dev);
1070 int (*ndo_stop)(struct net_device *dev);
1071 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1072 struct net_device *dev);
1073 u16 (*ndo_select_queue)(struct net_device *dev,
1074 struct sk_buff *skb,
1075 void *accel_priv,
1076 select_queue_fallback_t fallback);
1077 void (*ndo_change_rx_flags)(struct net_device *dev,
1078 int flags);
1079 void (*ndo_set_rx_mode)(struct net_device *dev);
1080 int (*ndo_set_mac_address)(struct net_device *dev,
1081 void *addr);
1082 int (*ndo_validate_addr)(struct net_device *dev);
1083 int (*ndo_do_ioctl)(struct net_device *dev,
1084 struct ifreq *ifr, int cmd);
1085 int (*ndo_set_config)(struct net_device *dev,
1086 struct ifmap *map);
1087 int (*ndo_change_mtu)(struct net_device *dev,
1088 int new_mtu);
1089 int (*ndo_neigh_setup)(struct net_device *dev,
1090 struct neigh_parms *);
1091 void (*ndo_tx_timeout) (struct net_device *dev);
1092
1093 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1094 struct rtnl_link_stats64 *storage);
1095 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1096
1097 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1098 __be16 proto, u16 vid);
1099 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1100 __be16 proto, u16 vid);
1101#ifdef CONFIG_NET_POLL_CONTROLLER
1102 void (*ndo_poll_controller)(struct net_device *dev);
1103 int (*ndo_netpoll_setup)(struct net_device *dev,
1104 struct netpoll_info *info);
1105 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1106#endif
1107#ifdef CONFIG_NET_RX_BUSY_POLL
1108 int (*ndo_busy_poll)(struct napi_struct *dev);
1109#endif
1110 int (*ndo_set_vf_mac)(struct net_device *dev,
1111 int queue, u8 *mac);
1112 int (*ndo_set_vf_vlan)(struct net_device *dev,
1113 int queue, u16 vlan, u8 qos);
1114 int (*ndo_set_vf_rate)(struct net_device *dev,
1115 int vf, int min_tx_rate,
1116 int max_tx_rate);
1117 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1118 int vf, bool setting);
1119 int (*ndo_set_vf_trust)(struct net_device *dev,
1120 int vf, bool setting);
1121 int (*ndo_get_vf_config)(struct net_device *dev,
1122 int vf,
1123 struct ifla_vf_info *ivf);
1124 int (*ndo_set_vf_link_state)(struct net_device *dev,
1125 int vf, int link_state);
1126 int (*ndo_get_vf_stats)(struct net_device *dev,
1127 int vf,
1128 struct ifla_vf_stats
1129 *vf_stats);
1130 int (*ndo_set_vf_port)(struct net_device *dev,
1131 int vf,
1132 struct nlattr *port[]);
1133 int (*ndo_get_vf_port)(struct net_device *dev,
1134 int vf, struct sk_buff *skb);
1135 int (*ndo_set_vf_rss_query_en)(
1136 struct net_device *dev,
1137 int vf, bool setting);
1138 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1139#if IS_ENABLED(CONFIG_FCOE)
1140 int (*ndo_fcoe_enable)(struct net_device *dev);
1141 int (*ndo_fcoe_disable)(struct net_device *dev);
1142 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1143 u16 xid,
1144 struct scatterlist *sgl,
1145 unsigned int sgc);
1146 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1147 u16 xid);
1148 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1149 u16 xid,
1150 struct scatterlist *sgl,
1151 unsigned int sgc);
1152 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1153 struct netdev_fcoe_hbainfo *hbainfo);
1154#endif
1155
1156#if IS_ENABLED(CONFIG_LIBFCOE)
1157#define NETDEV_FCOE_WWNN 0
1158#define NETDEV_FCOE_WWPN 1
1159 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1160 u64 *wwn, int type);
1161#endif
1162
1163#ifdef CONFIG_RFS_ACCEL
1164 int (*ndo_rx_flow_steer)(struct net_device *dev,
1165 const struct sk_buff *skb,
1166 u16 rxq_index,
1167 u32 flow_id);
1168#endif
1169 int (*ndo_add_slave)(struct net_device *dev,
1170 struct net_device *slave_dev);
1171 int (*ndo_del_slave)(struct net_device *dev,
1172 struct net_device *slave_dev);
1173 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1174 netdev_features_t features);
1175 int (*ndo_set_features)(struct net_device *dev,
1176 netdev_features_t features);
1177 int (*ndo_neigh_construct)(struct neighbour *n);
1178 void (*ndo_neigh_destroy)(struct neighbour *n);
1179
1180 int (*ndo_fdb_add)(struct ndmsg *ndm,
1181 struct nlattr *tb[],
1182 struct net_device *dev,
1183 const unsigned char *addr,
1184 u16 vid,
1185 u16 flags);
1186 int (*ndo_fdb_del)(struct ndmsg *ndm,
1187 struct nlattr *tb[],
1188 struct net_device *dev,
1189 const unsigned char *addr,
1190 u16 vid);
1191 int (*ndo_fdb_dump)(struct sk_buff *skb,
1192 struct netlink_callback *cb,
1193 struct net_device *dev,
1194 struct net_device *filter_dev,
1195 int idx);
1196
1197 int (*ndo_bridge_setlink)(struct net_device *dev,
1198 struct nlmsghdr *nlh,
1199 u16 flags);
1200 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1201 u32 pid, u32 seq,
1202 struct net_device *dev,
1203 u32 filter_mask,
1204 int nlflags);
1205 int (*ndo_bridge_dellink)(struct net_device *dev,
1206 struct nlmsghdr *nlh,
1207 u16 flags);
1208 int (*ndo_change_carrier)(struct net_device *dev,
1209 bool new_carrier);
1210 int (*ndo_get_phys_port_id)(struct net_device *dev,
1211 struct netdev_phys_item_id *ppid);
1212 int (*ndo_get_phys_port_name)(struct net_device *dev,
1213 char *name, size_t len);
1214 void (*ndo_add_vxlan_port)(struct net_device *dev,
1215 sa_family_t sa_family,
1216 __be16 port);
1217 void (*ndo_del_vxlan_port)(struct net_device *dev,
1218 sa_family_t sa_family,
1219 __be16 port);
1220
1221 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1222 struct net_device *dev);
1223 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1224 void *priv);
1225
1226 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1227 struct net_device *dev,
1228 void *priv);
1229 int (*ndo_get_lock_subclass)(struct net_device *dev);
1230 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1231 struct net_device *dev,
1232 netdev_features_t features);
1233 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1234 int queue_index,
1235 u32 maxrate);
1236 int (*ndo_get_iflink)(const struct net_device *dev);
1237 int (*ndo_change_proto_down)(struct net_device *dev,
1238 bool proto_down);
1239 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1240 struct sk_buff *skb);
1241};
1242
1243/**
1244 * enum net_device_priv_flags - &struct net_device priv_flags
1245 *
1246 * These are the &struct net_device, they are only set internally
1247 * by drivers and used in the kernel. These flags are invisible to
1248 * userspace, this means that the order of these flags can change
1249 * during any kernel release.
1250 *
1251 * You should have a pretty good reason to be extending these flags.
1252 *
1253 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1254 * @IFF_EBRIDGE: Ethernet bridging device
1255 * @IFF_BONDING: bonding master or slave
1256 * @IFF_ISATAP: ISATAP interface (RFC4214)
1257 * @IFF_WAN_HDLC: WAN HDLC device
1258 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1259 * release skb->dst
1260 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1261 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1262 * @IFF_MACVLAN_PORT: device used as macvlan port
1263 * @IFF_BRIDGE_PORT: device used as bridge port
1264 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1265 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1266 * @IFF_UNICAST_FLT: Supports unicast filtering
1267 * @IFF_TEAM_PORT: device used as team port
1268 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1269 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1270 * change when it's running
1271 * @IFF_MACVLAN: Macvlan device
1272 * @IFF_L3MDEV_MASTER: device is an L3 master device
1273 * @IFF_NO_QUEUE: device can run without qdisc attached
1274 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1275 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1276 */
1277enum netdev_priv_flags {
1278 IFF_802_1Q_VLAN = 1<<0,
1279 IFF_EBRIDGE = 1<<1,
1280 IFF_BONDING = 1<<2,
1281 IFF_ISATAP = 1<<3,
1282 IFF_WAN_HDLC = 1<<4,
1283 IFF_XMIT_DST_RELEASE = 1<<5,
1284 IFF_DONT_BRIDGE = 1<<6,
1285 IFF_DISABLE_NETPOLL = 1<<7,
1286 IFF_MACVLAN_PORT = 1<<8,
1287 IFF_BRIDGE_PORT = 1<<9,
1288 IFF_OVS_DATAPATH = 1<<10,
1289 IFF_TX_SKB_SHARING = 1<<11,
1290 IFF_UNICAST_FLT = 1<<12,
1291 IFF_TEAM_PORT = 1<<13,
1292 IFF_SUPP_NOFCS = 1<<14,
1293 IFF_LIVE_ADDR_CHANGE = 1<<15,
1294 IFF_MACVLAN = 1<<16,
1295 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1296 IFF_IPVLAN_MASTER = 1<<18,
1297 IFF_IPVLAN_SLAVE = 1<<19,
1298 IFF_L3MDEV_MASTER = 1<<20,
1299 IFF_NO_QUEUE = 1<<21,
1300 IFF_OPENVSWITCH = 1<<22,
1301 IFF_L3MDEV_SLAVE = 1<<23,
1302};
1303
1304#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1305#define IFF_EBRIDGE IFF_EBRIDGE
1306#define IFF_BONDING IFF_BONDING
1307#define IFF_ISATAP IFF_ISATAP
1308#define IFF_WAN_HDLC IFF_WAN_HDLC
1309#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1310#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1311#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1312#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1313#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1314#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1315#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1316#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1317#define IFF_TEAM_PORT IFF_TEAM_PORT
1318#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1319#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1320#define IFF_MACVLAN IFF_MACVLAN
1321#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1322#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1323#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1324#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1325#define IFF_NO_QUEUE IFF_NO_QUEUE
1326#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1327#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1328
1329/**
1330 * struct net_device - The DEVICE structure.
1331 * Actually, this whole structure is a big mistake. It mixes I/O
1332 * data with strictly "high-level" data, and it has to know about
1333 * almost every data structure used in the INET module.
1334 *
1335 * @name: This is the first field of the "visible" part of this structure
1336 * (i.e. as seen by users in the "Space.c" file). It is the name
1337 * of the interface.
1338 *
1339 * @name_hlist: Device name hash chain, please keep it close to name[]
1340 * @ifalias: SNMP alias
1341 * @mem_end: Shared memory end
1342 * @mem_start: Shared memory start
1343 * @base_addr: Device I/O address
1344 * @irq: Device IRQ number
1345 *
1346 * @carrier_changes: Stats to monitor carrier on<->off transitions
1347 *
1348 * @state: Generic network queuing layer state, see netdev_state_t
1349 * @dev_list: The global list of network devices
1350 * @napi_list: List entry, that is used for polling napi devices
1351 * @unreg_list: List entry, that is used, when we are unregistering the
1352 * device, see the function unregister_netdev
1353 * @close_list: List entry, that is used, when we are closing the device
1354 *
1355 * @adj_list: Directly linked devices, like slaves for bonding
1356 * @all_adj_list: All linked devices, *including* neighbours
1357 * @features: Currently active device features
1358 * @hw_features: User-changeable features
1359 *
1360 * @wanted_features: User-requested features
1361 * @vlan_features: Mask of features inheritable by VLAN devices
1362 *
1363 * @hw_enc_features: Mask of features inherited by encapsulating devices
1364 * This field indicates what encapsulation
1365 * offloads the hardware is capable of doing,
1366 * and drivers will need to set them appropriately.
1367 *
1368 * @mpls_features: Mask of features inheritable by MPLS
1369 *
1370 * @ifindex: interface index
1371 * @group: The group, that the device belongs to
1372 *
1373 * @stats: Statistics struct, which was left as a legacy, use
1374 * rtnl_link_stats64 instead
1375 *
1376 * @rx_dropped: Dropped packets by core network,
1377 * do not use this in drivers
1378 * @tx_dropped: Dropped packets by core network,
1379 * do not use this in drivers
1380 *
1381 * @wireless_handlers: List of functions to handle Wireless Extensions,
1382 * instead of ioctl,
1383 * see <net/iw_handler.h> for details.
1384 * @wireless_data: Instance data managed by the core of wireless extensions
1385 *
1386 * @netdev_ops: Includes several pointers to callbacks,
1387 * if one wants to override the ndo_*() functions
1388 * @ethtool_ops: Management operations
1389 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1390 * of Layer 2 headers.
1391 *
1392 * @flags: Interface flags (a la BSD)
1393 * @priv_flags: Like 'flags' but invisible to userspace,
1394 * see if.h for the definitions
1395 * @gflags: Global flags ( kept as legacy )
1396 * @padded: How much padding added by alloc_netdev()
1397 * @operstate: RFC2863 operstate
1398 * @link_mode: Mapping policy to operstate
1399 * @if_port: Selectable AUI, TP, ...
1400 * @dma: DMA channel
1401 * @mtu: Interface MTU value
1402 * @type: Interface hardware type
1403 * @hard_header_len: Hardware header length
1404 *
1405 * @needed_headroom: Extra headroom the hardware may need, but not in all
1406 * cases can this be guaranteed
1407 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1408 * cases can this be guaranteed. Some cases also use
1409 * LL_MAX_HEADER instead to allocate the skb
1410 *
1411 * interface address info:
1412 *
1413 * @perm_addr: Permanent hw address
1414 * @addr_assign_type: Hw address assignment type
1415 * @addr_len: Hardware address length
1416 * @neigh_priv_len; Used in neigh_alloc(),
1417 * initialized only in atm/clip.c
1418 * @dev_id: Used to differentiate devices that share
1419 * the same link layer address
1420 * @dev_port: Used to differentiate devices that share
1421 * the same function
1422 * @addr_list_lock: XXX: need comments on this one
1423 * @uc_promisc: Counter, that indicates, that promiscuous mode
1424 * has been enabled due to the need to listen to
1425 * additional unicast addresses in a device that
1426 * does not implement ndo_set_rx_mode()
1427 * @uc: unicast mac addresses
1428 * @mc: multicast mac addresses
1429 * @dev_addrs: list of device hw addresses
1430 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1431 * @promiscuity: Number of times, the NIC is told to work in
1432 * Promiscuous mode, if it becomes 0 the NIC will
1433 * exit from working in Promiscuous mode
1434 * @allmulti: Counter, enables or disables allmulticast mode
1435 *
1436 * @vlan_info: VLAN info
1437 * @dsa_ptr: dsa specific data
1438 * @tipc_ptr: TIPC specific data
1439 * @atalk_ptr: AppleTalk link
1440 * @ip_ptr: IPv4 specific data
1441 * @dn_ptr: DECnet specific data
1442 * @ip6_ptr: IPv6 specific data
1443 * @ax25_ptr: AX.25 specific data
1444 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1445 *
1446 * @last_rx: Time of last Rx
1447 * @dev_addr: Hw address (before bcast,
1448 * because most packets are unicast)
1449 *
1450 * @_rx: Array of RX queues
1451 * @num_rx_queues: Number of RX queues
1452 * allocated at register_netdev() time
1453 * @real_num_rx_queues: Number of RX queues currently active in device
1454 *
1455 * @rx_handler: handler for received packets
1456 * @rx_handler_data: XXX: need comments on this one
1457 * @ingress_queue: XXX: need comments on this one
1458 * @broadcast: hw bcast address
1459 *
1460 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1461 * indexed by RX queue number. Assigned by driver.
1462 * This must only be set if the ndo_rx_flow_steer
1463 * operation is defined
1464 * @index_hlist: Device index hash chain
1465 *
1466 * @_tx: Array of TX queues
1467 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1468 * @real_num_tx_queues: Number of TX queues currently active in device
1469 * @qdisc: Root qdisc from userspace point of view
1470 * @tx_queue_len: Max frames per queue allowed
1471 * @tx_global_lock: XXX: need comments on this one
1472 *
1473 * @xps_maps: XXX: need comments on this one
1474 *
1475 * @offload_fwd_mark: Offload device fwding mark
1476 *
1477 * @trans_start: Time (in jiffies) of last Tx
1478 * @watchdog_timeo: Represents the timeout that is used by
1479 * the watchdog ( see dev_watchdog() )
1480 * @watchdog_timer: List of timers
1481 *
1482 * @pcpu_refcnt: Number of references to this device
1483 * @todo_list: Delayed register/unregister
1484 * @link_watch_list: XXX: need comments on this one
1485 *
1486 * @reg_state: Register/unregister state machine
1487 * @dismantle: Device is going to be freed
1488 * @rtnl_link_state: This enum represents the phases of creating
1489 * a new link
1490 *
1491 * @destructor: Called from unregister,
1492 * can be used to call free_netdev
1493 * @npinfo: XXX: need comments on this one
1494 * @nd_net: Network namespace this network device is inside
1495 *
1496 * @ml_priv: Mid-layer private
1497 * @lstats: Loopback statistics
1498 * @tstats: Tunnel statistics
1499 * @dstats: Dummy statistics
1500 * @vstats: Virtual ethernet statistics
1501 *
1502 * @garp_port: GARP
1503 * @mrp_port: MRP
1504 *
1505 * @dev: Class/net/name entry
1506 * @sysfs_groups: Space for optional device, statistics and wireless
1507 * sysfs groups
1508 *
1509 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1510 * @rtnl_link_ops: Rtnl_link_ops
1511 *
1512 * @gso_max_size: Maximum size of generic segmentation offload
1513 * @gso_max_segs: Maximum number of segments that can be passed to the
1514 * NIC for GSO
1515 * @gso_min_segs: Minimum number of segments that can be passed to the
1516 * NIC for GSO
1517 *
1518 * @dcbnl_ops: Data Center Bridging netlink ops
1519 * @num_tc: Number of traffic classes in the net device
1520 * @tc_to_txq: XXX: need comments on this one
1521 * @prio_tc_map XXX: need comments on this one
1522 *
1523 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1524 *
1525 * @priomap: XXX: need comments on this one
1526 * @phydev: Physical device may attach itself
1527 * for hardware timestamping
1528 *
1529 * @qdisc_tx_busylock: XXX: need comments on this one
1530 *
1531 * @proto_down: protocol port state information can be sent to the
1532 * switch driver and used to set the phys state of the
1533 * switch port.
1534 *
1535 * FIXME: cleanup struct net_device such that network protocol info
1536 * moves out.
1537 */
1538
1539struct net_device {
1540 char name[IFNAMSIZ];
1541 struct hlist_node name_hlist;
1542 char *ifalias;
1543 /*
1544 * I/O specific fields
1545 * FIXME: Merge these and struct ifmap into one
1546 */
1547 unsigned long mem_end;
1548 unsigned long mem_start;
1549 unsigned long base_addr;
1550 int irq;
1551
1552 atomic_t carrier_changes;
1553
1554 /*
1555 * Some hardware also needs these fields (state,dev_list,
1556 * napi_list,unreg_list,close_list) but they are not
1557 * part of the usual set specified in Space.c.
1558 */
1559
1560 unsigned long state;
1561
1562 struct list_head dev_list;
1563 struct list_head napi_list;
1564 struct list_head unreg_list;
1565 struct list_head close_list;
1566 struct list_head ptype_all;
1567 struct list_head ptype_specific;
1568
1569 struct {
1570 struct list_head upper;
1571 struct list_head lower;
1572 } adj_list;
1573
1574 struct {
1575 struct list_head upper;
1576 struct list_head lower;
1577 } all_adj_list;
1578
1579 netdev_features_t features;
1580 netdev_features_t hw_features;
1581 netdev_features_t wanted_features;
1582 netdev_features_t vlan_features;
1583 netdev_features_t hw_enc_features;
1584 netdev_features_t mpls_features;
1585
1586 int ifindex;
1587 int group;
1588
1589 struct net_device_stats stats;
1590
1591 atomic_long_t rx_dropped;
1592 atomic_long_t tx_dropped;
1593
1594#ifdef CONFIG_WIRELESS_EXT
1595 const struct iw_handler_def * wireless_handlers;
1596 struct iw_public_data * wireless_data;
1597#endif
1598 const struct net_device_ops *netdev_ops;
1599 const struct ethtool_ops *ethtool_ops;
1600#ifdef CONFIG_NET_SWITCHDEV
1601 const struct switchdev_ops *switchdev_ops;
1602#endif
1603#ifdef CONFIG_NET_L3_MASTER_DEV
1604 const struct l3mdev_ops *l3mdev_ops;
1605#endif
1606
1607 const struct header_ops *header_ops;
1608
1609 unsigned int flags;
1610 unsigned int priv_flags;
1611
1612 unsigned short gflags;
1613 unsigned short padded;
1614
1615 unsigned char operstate;
1616 unsigned char link_mode;
1617
1618 unsigned char if_port;
1619 unsigned char dma;
1620
1621 unsigned int mtu;
1622 unsigned short type;
1623 unsigned short hard_header_len;
1624
1625 unsigned short needed_headroom;
1626 unsigned short needed_tailroom;
1627
1628 /* Interface address info. */
1629 unsigned char perm_addr[MAX_ADDR_LEN];
1630 unsigned char addr_assign_type;
1631 unsigned char addr_len;
1632 unsigned short neigh_priv_len;
1633 unsigned short dev_id;
1634 unsigned short dev_port;
1635 spinlock_t addr_list_lock;
1636 unsigned char name_assign_type;
1637 bool uc_promisc;
1638 struct netdev_hw_addr_list uc;
1639 struct netdev_hw_addr_list mc;
1640 struct netdev_hw_addr_list dev_addrs;
1641
1642#ifdef CONFIG_SYSFS
1643 struct kset *queues_kset;
1644#endif
1645 unsigned int promiscuity;
1646 unsigned int allmulti;
1647
1648
1649 /* Protocol specific pointers */
1650
1651#if IS_ENABLED(CONFIG_VLAN_8021Q)
1652 struct vlan_info __rcu *vlan_info;
1653#endif
1654#if IS_ENABLED(CONFIG_NET_DSA)
1655 struct dsa_switch_tree *dsa_ptr;
1656#endif
1657#if IS_ENABLED(CONFIG_TIPC)
1658 struct tipc_bearer __rcu *tipc_ptr;
1659#endif
1660 void *atalk_ptr;
1661 struct in_device __rcu *ip_ptr;
1662 struct dn_dev __rcu *dn_ptr;
1663 struct inet6_dev __rcu *ip6_ptr;
1664 void *ax25_ptr;
1665 struct wireless_dev *ieee80211_ptr;
1666 struct wpan_dev *ieee802154_ptr;
1667#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1668 struct mpls_dev __rcu *mpls_ptr;
1669#endif
1670
1671/*
1672 * Cache lines mostly used on receive path (including eth_type_trans())
1673 */
1674 unsigned long last_rx;
1675
1676 /* Interface address info used in eth_type_trans() */
1677 unsigned char *dev_addr;
1678
1679
1680#ifdef CONFIG_SYSFS
1681 struct netdev_rx_queue *_rx;
1682
1683 unsigned int num_rx_queues;
1684 unsigned int real_num_rx_queues;
1685
1686#endif
1687
1688 unsigned long gro_flush_timeout;
1689 rx_handler_func_t __rcu *rx_handler;
1690 void __rcu *rx_handler_data;
1691
1692#ifdef CONFIG_NET_CLS_ACT
1693 struct tcf_proto __rcu *ingress_cl_list;
1694#endif
1695 struct netdev_queue __rcu *ingress_queue;
1696#ifdef CONFIG_NETFILTER_INGRESS
1697 struct list_head nf_hooks_ingress;
1698#endif
1699
1700 unsigned char broadcast[MAX_ADDR_LEN];
1701#ifdef CONFIG_RFS_ACCEL
1702 struct cpu_rmap *rx_cpu_rmap;
1703#endif
1704 struct hlist_node index_hlist;
1705
1706/*
1707 * Cache lines mostly used on transmit path
1708 */
1709 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1710 unsigned int num_tx_queues;
1711 unsigned int real_num_tx_queues;
1712 struct Qdisc *qdisc;
1713 unsigned long tx_queue_len;
1714 spinlock_t tx_global_lock;
1715 int watchdog_timeo;
1716
1717#ifdef CONFIG_XPS
1718 struct xps_dev_maps __rcu *xps_maps;
1719#endif
1720
1721#ifdef CONFIG_NET_SWITCHDEV
1722 u32 offload_fwd_mark;
1723#endif
1724
1725 /* These may be needed for future network-power-down code. */
1726
1727 /*
1728 * trans_start here is expensive for high speed devices on SMP,
1729 * please use netdev_queue->trans_start instead.
1730 */
1731 unsigned long trans_start;
1732
1733 struct timer_list watchdog_timer;
1734
1735 int __percpu *pcpu_refcnt;
1736 struct list_head todo_list;
1737
1738 struct list_head link_watch_list;
1739
1740 enum { NETREG_UNINITIALIZED=0,
1741 NETREG_REGISTERED, /* completed register_netdevice */
1742 NETREG_UNREGISTERING, /* called unregister_netdevice */
1743 NETREG_UNREGISTERED, /* completed unregister todo */
1744 NETREG_RELEASED, /* called free_netdev */
1745 NETREG_DUMMY, /* dummy device for NAPI poll */
1746 } reg_state:8;
1747
1748 bool dismantle;
1749
1750 enum {
1751 RTNL_LINK_INITIALIZED,
1752 RTNL_LINK_INITIALIZING,
1753 } rtnl_link_state:16;
1754
1755 void (*destructor)(struct net_device *dev);
1756
1757#ifdef CONFIG_NETPOLL
1758 struct netpoll_info __rcu *npinfo;
1759#endif
1760
1761 possible_net_t nd_net;
1762
1763 /* mid-layer private */
1764 union {
1765 void *ml_priv;
1766 struct pcpu_lstats __percpu *lstats;
1767 struct pcpu_sw_netstats __percpu *tstats;
1768 struct pcpu_dstats __percpu *dstats;
1769 struct pcpu_vstats __percpu *vstats;
1770 };
1771
1772 struct garp_port __rcu *garp_port;
1773 struct mrp_port __rcu *mrp_port;
1774
1775 struct device dev;
1776 const struct attribute_group *sysfs_groups[4];
1777 const struct attribute_group *sysfs_rx_queue_group;
1778
1779 const struct rtnl_link_ops *rtnl_link_ops;
1780
1781 /* for setting kernel sock attribute on TCP connection setup */
1782#define GSO_MAX_SIZE 65536
1783 unsigned int gso_max_size;
1784#define GSO_MAX_SEGS 65535
1785 u16 gso_max_segs;
1786 u16 gso_min_segs;
1787#ifdef CONFIG_DCB
1788 const struct dcbnl_rtnl_ops *dcbnl_ops;
1789#endif
1790 u8 num_tc;
1791 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1792 u8 prio_tc_map[TC_BITMASK + 1];
1793
1794#if IS_ENABLED(CONFIG_FCOE)
1795 unsigned int fcoe_ddp_xid;
1796#endif
1797#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1798 struct netprio_map __rcu *priomap;
1799#endif
1800 struct phy_device *phydev;
1801 struct lock_class_key *qdisc_tx_busylock;
1802 bool proto_down;
1803};
1804#define to_net_dev(d) container_of(d, struct net_device, dev)
1805
1806#define NETDEV_ALIGN 32
1807
1808static inline
1809int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1810{
1811 return dev->prio_tc_map[prio & TC_BITMASK];
1812}
1813
1814static inline
1815int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1816{
1817 if (tc >= dev->num_tc)
1818 return -EINVAL;
1819
1820 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1821 return 0;
1822}
1823
1824static inline
1825void netdev_reset_tc(struct net_device *dev)
1826{
1827 dev->num_tc = 0;
1828 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1829 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1830}
1831
1832static inline
1833int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1834{
1835 if (tc >= dev->num_tc)
1836 return -EINVAL;
1837
1838 dev->tc_to_txq[tc].count = count;
1839 dev->tc_to_txq[tc].offset = offset;
1840 return 0;
1841}
1842
1843static inline
1844int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1845{
1846 if (num_tc > TC_MAX_QUEUE)
1847 return -EINVAL;
1848
1849 dev->num_tc = num_tc;
1850 return 0;
1851}
1852
1853static inline
1854int netdev_get_num_tc(struct net_device *dev)
1855{
1856 return dev->num_tc;
1857}
1858
1859static inline
1860struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1861 unsigned int index)
1862{
1863 return &dev->_tx[index];
1864}
1865
1866static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1867 const struct sk_buff *skb)
1868{
1869 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1870}
1871
1872static inline void netdev_for_each_tx_queue(struct net_device *dev,
1873 void (*f)(struct net_device *,
1874 struct netdev_queue *,
1875 void *),
1876 void *arg)
1877{
1878 unsigned int i;
1879
1880 for (i = 0; i < dev->num_tx_queues; i++)
1881 f(dev, &dev->_tx[i], arg);
1882}
1883
1884struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1885 struct sk_buff *skb,
1886 void *accel_priv);
1887
1888/*
1889 * Net namespace inlines
1890 */
1891static inline
1892struct net *dev_net(const struct net_device *dev)
1893{
1894 return read_pnet(&dev->nd_net);
1895}
1896
1897static inline
1898void dev_net_set(struct net_device *dev, struct net *net)
1899{
1900 write_pnet(&dev->nd_net, net);
1901}
1902
1903static inline bool netdev_uses_dsa(struct net_device *dev)
1904{
1905#if IS_ENABLED(CONFIG_NET_DSA)
1906 if (dev->dsa_ptr != NULL)
1907 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1908#endif
1909 return false;
1910}
1911
1912/**
1913 * netdev_priv - access network device private data
1914 * @dev: network device
1915 *
1916 * Get network device private data
1917 */
1918static inline void *netdev_priv(const struct net_device *dev)
1919{
1920 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1921}
1922
1923/* Set the sysfs physical device reference for the network logical device
1924 * if set prior to registration will cause a symlink during initialization.
1925 */
1926#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1927
1928/* Set the sysfs device type for the network logical device to allow
1929 * fine-grained identification of different network device types. For
1930 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1931 */
1932#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1933
1934/* Default NAPI poll() weight
1935 * Device drivers are strongly advised to not use bigger value
1936 */
1937#define NAPI_POLL_WEIGHT 64
1938
1939/**
1940 * netif_napi_add - initialize a napi context
1941 * @dev: network device
1942 * @napi: napi context
1943 * @poll: polling function
1944 * @weight: default weight
1945 *
1946 * netif_napi_add() must be used to initialize a napi context prior to calling
1947 * *any* of the other napi related functions.
1948 */
1949void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1950 int (*poll)(struct napi_struct *, int), int weight);
1951
1952/**
1953 * netif_tx_napi_add - initialize a napi context
1954 * @dev: network device
1955 * @napi: napi context
1956 * @poll: polling function
1957 * @weight: default weight
1958 *
1959 * This variant of netif_napi_add() should be used from drivers using NAPI
1960 * to exclusively poll a TX queue.
1961 * This will avoid we add it into napi_hash[], thus polluting this hash table.
1962 */
1963static inline void netif_tx_napi_add(struct net_device *dev,
1964 struct napi_struct *napi,
1965 int (*poll)(struct napi_struct *, int),
1966 int weight)
1967{
1968 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
1969 netif_napi_add(dev, napi, poll, weight);
1970}
1971
1972/**
1973 * netif_napi_del - remove a napi context
1974 * @napi: napi context
1975 *
1976 * netif_napi_del() removes a napi context from the network device napi list
1977 */
1978void netif_napi_del(struct napi_struct *napi);
1979
1980struct napi_gro_cb {
1981 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1982 void *frag0;
1983
1984 /* Length of frag0. */
1985 unsigned int frag0_len;
1986
1987 /* This indicates where we are processing relative to skb->data. */
1988 int data_offset;
1989
1990 /* This is non-zero if the packet cannot be merged with the new skb. */
1991 u16 flush;
1992
1993 /* Save the IP ID here and check when we get to the transport layer */
1994 u16 flush_id;
1995
1996 /* Number of segments aggregated. */
1997 u16 count;
1998
1999 /* Start offset for remote checksum offload */
2000 u16 gro_remcsum_start;
2001
2002 /* jiffies when first packet was created/queued */
2003 unsigned long age;
2004
2005 /* Used in ipv6_gro_receive() and foo-over-udp */
2006 u16 proto;
2007
2008 /* This is non-zero if the packet may be of the same flow. */
2009 u8 same_flow:1;
2010
2011 /* Used in udp_gro_receive */
2012 u8 udp_mark:1;
2013
2014 /* GRO checksum is valid */
2015 u8 csum_valid:1;
2016
2017 /* Number of checksums via CHECKSUM_UNNECESSARY */
2018 u8 csum_cnt:3;
2019
2020 /* Free the skb? */
2021 u8 free:2;
2022#define NAPI_GRO_FREE 1
2023#define NAPI_GRO_FREE_STOLEN_HEAD 2
2024
2025 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2026 u8 is_ipv6:1;
2027
2028 /* 7 bit hole */
2029
2030 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2031 __wsum csum;
2032
2033 /* used in skb_gro_receive() slow path */
2034 struct sk_buff *last;
2035};
2036
2037#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2038
2039struct packet_type {
2040 __be16 type; /* This is really htons(ether_type). */
2041 struct net_device *dev; /* NULL is wildcarded here */
2042 int (*func) (struct sk_buff *,
2043 struct net_device *,
2044 struct packet_type *,
2045 struct net_device *);
2046 bool (*id_match)(struct packet_type *ptype,
2047 struct sock *sk);
2048 void *af_packet_priv;
2049 struct list_head list;
2050};
2051
2052struct offload_callbacks {
2053 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2054 netdev_features_t features);
2055 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2056 struct sk_buff *skb);
2057 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2058};
2059
2060struct packet_offload {
2061 __be16 type; /* This is really htons(ether_type). */
2062 u16 priority;
2063 struct offload_callbacks callbacks;
2064 struct list_head list;
2065};
2066
2067struct udp_offload;
2068
2069struct udp_offload_callbacks {
2070 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2071 struct sk_buff *skb,
2072 struct udp_offload *uoff);
2073 int (*gro_complete)(struct sk_buff *skb,
2074 int nhoff,
2075 struct udp_offload *uoff);
2076};
2077
2078struct udp_offload {
2079 __be16 port;
2080 u8 ipproto;
2081 struct udp_offload_callbacks callbacks;
2082};
2083
2084/* often modified stats are per cpu, other are shared (netdev->stats) */
2085struct pcpu_sw_netstats {
2086 u64 rx_packets;
2087 u64 rx_bytes;
2088 u64 tx_packets;
2089 u64 tx_bytes;
2090 struct u64_stats_sync syncp;
2091};
2092
2093#define __netdev_alloc_pcpu_stats(type, gfp) \
2094({ \
2095 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2096 if (pcpu_stats) { \
2097 int __cpu; \
2098 for_each_possible_cpu(__cpu) { \
2099 typeof(type) *stat; \
2100 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2101 u64_stats_init(&stat->syncp); \
2102 } \
2103 } \
2104 pcpu_stats; \
2105})
2106
2107#define netdev_alloc_pcpu_stats(type) \
2108 __netdev_alloc_pcpu_stats(type, GFP_KERNEL);
2109
2110#include <linux/notifier.h>
2111
2112/* netdevice notifier chain. Please remember to update the rtnetlink
2113 * notification exclusion list in rtnetlink_event() when adding new
2114 * types.
2115 */
2116#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2117#define NETDEV_DOWN 0x0002
2118#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2119 detected a hardware crash and restarted
2120 - we can use this eg to kick tcp sessions
2121 once done */
2122#define NETDEV_CHANGE 0x0004 /* Notify device state change */
2123#define NETDEV_REGISTER 0x0005
2124#define NETDEV_UNREGISTER 0x0006
2125#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2126#define NETDEV_CHANGEADDR 0x0008
2127#define NETDEV_GOING_DOWN 0x0009
2128#define NETDEV_CHANGENAME 0x000A
2129#define NETDEV_FEAT_CHANGE 0x000B
2130#define NETDEV_BONDING_FAILOVER 0x000C
2131#define NETDEV_PRE_UP 0x000D
2132#define NETDEV_PRE_TYPE_CHANGE 0x000E
2133#define NETDEV_POST_TYPE_CHANGE 0x000F
2134#define NETDEV_POST_INIT 0x0010
2135#define NETDEV_UNREGISTER_FINAL 0x0011
2136#define NETDEV_RELEASE 0x0012
2137#define NETDEV_NOTIFY_PEERS 0x0013
2138#define NETDEV_JOIN 0x0014
2139#define NETDEV_CHANGEUPPER 0x0015
2140#define NETDEV_RESEND_IGMP 0x0016
2141#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2142#define NETDEV_CHANGEINFODATA 0x0018
2143#define NETDEV_BONDING_INFO 0x0019
2144#define NETDEV_PRECHANGEUPPER 0x001A
2145
2146int register_netdevice_notifier(struct notifier_block *nb);
2147int unregister_netdevice_notifier(struct notifier_block *nb);
2148
2149struct netdev_notifier_info {
2150 struct net_device *dev;
2151};
2152
2153struct netdev_notifier_change_info {
2154 struct netdev_notifier_info info; /* must be first */
2155 unsigned int flags_changed;
2156};
2157
2158struct netdev_notifier_changeupper_info {
2159 struct netdev_notifier_info info; /* must be first */
2160 struct net_device *upper_dev; /* new upper dev */
2161 bool master; /* is upper dev master */
2162 bool linking; /* is the nofication for link or unlink */
2163};
2164
2165static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2166 struct net_device *dev)
2167{
2168 info->dev = dev;
2169}
2170
2171static inline struct net_device *
2172netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2173{
2174 return info->dev;
2175}
2176
2177int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2178
2179
2180extern rwlock_t dev_base_lock; /* Device list lock */
2181
2182#define for_each_netdev(net, d) \
2183 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2184#define for_each_netdev_reverse(net, d) \
2185 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2186#define for_each_netdev_rcu(net, d) \
2187 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2188#define for_each_netdev_safe(net, d, n) \
2189 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2190#define for_each_netdev_continue(net, d) \
2191 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2192#define for_each_netdev_continue_rcu(net, d) \
2193 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2194#define for_each_netdev_in_bond_rcu(bond, slave) \
2195 for_each_netdev_rcu(&init_net, slave) \
2196 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2197#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2198
2199static inline struct net_device *next_net_device(struct net_device *dev)
2200{
2201 struct list_head *lh;
2202 struct net *net;
2203
2204 net = dev_net(dev);
2205 lh = dev->dev_list.next;
2206 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2207}
2208
2209static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2210{
2211 struct list_head *lh;
2212 struct net *net;
2213
2214 net = dev_net(dev);
2215 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2216 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2217}
2218
2219static inline struct net_device *first_net_device(struct net *net)
2220{
2221 return list_empty(&net->dev_base_head) ? NULL :
2222 net_device_entry(net->dev_base_head.next);
2223}
2224
2225static inline struct net_device *first_net_device_rcu(struct net *net)
2226{
2227 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2228
2229 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2230}
2231
2232int netdev_boot_setup_check(struct net_device *dev);
2233unsigned long netdev_boot_base(const char *prefix, int unit);
2234struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2235 const char *hwaddr);
2236struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2237struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2238void dev_add_pack(struct packet_type *pt);
2239void dev_remove_pack(struct packet_type *pt);
2240void __dev_remove_pack(struct packet_type *pt);
2241void dev_add_offload(struct packet_offload *po);
2242void dev_remove_offload(struct packet_offload *po);
2243
2244int dev_get_iflink(const struct net_device *dev);
2245int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2246struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2247 unsigned short mask);
2248struct net_device *dev_get_by_name(struct net *net, const char *name);
2249struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2250struct net_device *__dev_get_by_name(struct net *net, const char *name);
2251int dev_alloc_name(struct net_device *dev, const char *name);
2252int dev_open(struct net_device *dev);
2253int dev_close(struct net_device *dev);
2254int dev_close_many(struct list_head *head, bool unlink);
2255void dev_disable_lro(struct net_device *dev);
2256int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2257int dev_queue_xmit(struct sk_buff *skb);
2258int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2259int register_netdevice(struct net_device *dev);
2260void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2261void unregister_netdevice_many(struct list_head *head);
2262static inline void unregister_netdevice(struct net_device *dev)
2263{
2264 unregister_netdevice_queue(dev, NULL);
2265}
2266
2267int netdev_refcnt_read(const struct net_device *dev);
2268void free_netdev(struct net_device *dev);
2269void netdev_freemem(struct net_device *dev);
2270void synchronize_net(void);
2271int init_dummy_netdev(struct net_device *dev);
2272
2273DECLARE_PER_CPU(int, xmit_recursion);
2274static inline int dev_recursion_level(void)
2275{
2276 return this_cpu_read(xmit_recursion);
2277}
2278
2279struct net_device *dev_get_by_index(struct net *net, int ifindex);
2280struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2281struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2282int netdev_get_name(struct net *net, char *name, int ifindex);
2283int dev_restart(struct net_device *dev);
2284int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2285
2286static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2287{
2288 return NAPI_GRO_CB(skb)->data_offset;
2289}
2290
2291static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2292{
2293 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2294}
2295
2296static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2297{
2298 NAPI_GRO_CB(skb)->data_offset += len;
2299}
2300
2301static inline void *skb_gro_header_fast(struct sk_buff *skb,
2302 unsigned int offset)
2303{
2304 return NAPI_GRO_CB(skb)->frag0 + offset;
2305}
2306
2307static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2308{
2309 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2310}
2311
2312static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2313 unsigned int offset)
2314{
2315 if (!pskb_may_pull(skb, hlen))
2316 return NULL;
2317
2318 NAPI_GRO_CB(skb)->frag0 = NULL;
2319 NAPI_GRO_CB(skb)->frag0_len = 0;
2320 return skb->data + offset;
2321}
2322
2323static inline void *skb_gro_network_header(struct sk_buff *skb)
2324{
2325 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2326 skb_network_offset(skb);
2327}
2328
2329static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2330 const void *start, unsigned int len)
2331{
2332 if (NAPI_GRO_CB(skb)->csum_valid)
2333 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2334 csum_partial(start, len, 0));
2335}
2336
2337/* GRO checksum functions. These are logical equivalents of the normal
2338 * checksum functions (in skbuff.h) except that they operate on the GRO
2339 * offsets and fields in sk_buff.
2340 */
2341
2342__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2343
2344static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2345{
2346 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2347}
2348
2349static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2350 bool zero_okay,
2351 __sum16 check)
2352{
2353 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2354 skb_checksum_start_offset(skb) <
2355 skb_gro_offset(skb)) &&
2356 !skb_at_gro_remcsum_start(skb) &&
2357 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2358 (!zero_okay || check));
2359}
2360
2361static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2362 __wsum psum)
2363{
2364 if (NAPI_GRO_CB(skb)->csum_valid &&
2365 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2366 return 0;
2367
2368 NAPI_GRO_CB(skb)->csum = psum;
2369
2370 return __skb_gro_checksum_complete(skb);
2371}
2372
2373static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2374{
2375 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2376 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2377 NAPI_GRO_CB(skb)->csum_cnt--;
2378 } else {
2379 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2380 * verified a new top level checksum or an encapsulated one
2381 * during GRO. This saves work if we fallback to normal path.
2382 */
2383 __skb_incr_checksum_unnecessary(skb);
2384 }
2385}
2386
2387#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2388 compute_pseudo) \
2389({ \
2390 __sum16 __ret = 0; \
2391 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2392 __ret = __skb_gro_checksum_validate_complete(skb, \
2393 compute_pseudo(skb, proto)); \
2394 if (__ret) \
2395 __skb_mark_checksum_bad(skb); \
2396 else \
2397 skb_gro_incr_csum_unnecessary(skb); \
2398 __ret; \
2399})
2400
2401#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2402 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2403
2404#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2405 compute_pseudo) \
2406 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2407
2408#define skb_gro_checksum_simple_validate(skb) \
2409 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2410
2411static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2412{
2413 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2414 !NAPI_GRO_CB(skb)->csum_valid);
2415}
2416
2417static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2418 __sum16 check, __wsum pseudo)
2419{
2420 NAPI_GRO_CB(skb)->csum = ~pseudo;
2421 NAPI_GRO_CB(skb)->csum_valid = 1;
2422}
2423
2424#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2425do { \
2426 if (__skb_gro_checksum_convert_check(skb)) \
2427 __skb_gro_checksum_convert(skb, check, \
2428 compute_pseudo(skb, proto)); \
2429} while (0)
2430
2431struct gro_remcsum {
2432 int offset;
2433 __wsum delta;
2434};
2435
2436static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2437{
2438 grc->offset = 0;
2439 grc->delta = 0;
2440}
2441
2442static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2443 unsigned int off, size_t hdrlen,
2444 int start, int offset,
2445 struct gro_remcsum *grc,
2446 bool nopartial)
2447{
2448 __wsum delta;
2449 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2450
2451 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2452
2453 if (!nopartial) {
2454 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2455 return ptr;
2456 }
2457
2458 ptr = skb_gro_header_fast(skb, off);
2459 if (skb_gro_header_hard(skb, off + plen)) {
2460 ptr = skb_gro_header_slow(skb, off + plen, off);
2461 if (!ptr)
2462 return NULL;
2463 }
2464
2465 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2466 start, offset);
2467
2468 /* Adjust skb->csum since we changed the packet */
2469 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2470
2471 grc->offset = off + hdrlen + offset;
2472 grc->delta = delta;
2473
2474 return ptr;
2475}
2476
2477static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2478 struct gro_remcsum *grc)
2479{
2480 void *ptr;
2481 size_t plen = grc->offset + sizeof(u16);
2482
2483 if (!grc->delta)
2484 return;
2485
2486 ptr = skb_gro_header_fast(skb, grc->offset);
2487 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2488 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2489 if (!ptr)
2490 return;
2491 }
2492
2493 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2494}
2495
2496static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2497 unsigned short type,
2498 const void *daddr, const void *saddr,
2499 unsigned int len)
2500{
2501 if (!dev->header_ops || !dev->header_ops->create)
2502 return 0;
2503
2504 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2505}
2506
2507static inline int dev_parse_header(const struct sk_buff *skb,
2508 unsigned char *haddr)
2509{
2510 const struct net_device *dev = skb->dev;
2511
2512 if (!dev->header_ops || !dev->header_ops->parse)
2513 return 0;
2514 return dev->header_ops->parse(skb, haddr);
2515}
2516
2517typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2518int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2519static inline int unregister_gifconf(unsigned int family)
2520{
2521 return register_gifconf(family, NULL);
2522}
2523
2524#ifdef CONFIG_NET_FLOW_LIMIT
2525#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2526struct sd_flow_limit {
2527 u64 count;
2528 unsigned int num_buckets;
2529 unsigned int history_head;
2530 u16 history[FLOW_LIMIT_HISTORY];
2531 u8 buckets[];
2532};
2533
2534extern int netdev_flow_limit_table_len;
2535#endif /* CONFIG_NET_FLOW_LIMIT */
2536
2537/*
2538 * Incoming packets are placed on per-cpu queues
2539 */
2540struct softnet_data {
2541 struct list_head poll_list;
2542 struct sk_buff_head process_queue;
2543
2544 /* stats */
2545 unsigned int processed;
2546 unsigned int time_squeeze;
2547 unsigned int cpu_collision;
2548 unsigned int received_rps;
2549#ifdef CONFIG_RPS
2550 struct softnet_data *rps_ipi_list;
2551#endif
2552#ifdef CONFIG_NET_FLOW_LIMIT
2553 struct sd_flow_limit __rcu *flow_limit;
2554#endif
2555 struct Qdisc *output_queue;
2556 struct Qdisc **output_queue_tailp;
2557 struct sk_buff *completion_queue;
2558
2559#ifdef CONFIG_RPS
2560 /* Elements below can be accessed between CPUs for RPS */
2561 struct call_single_data csd ____cacheline_aligned_in_smp;
2562 struct softnet_data *rps_ipi_next;
2563 unsigned int cpu;
2564 unsigned int input_queue_head;
2565 unsigned int input_queue_tail;
2566#endif
2567 unsigned int dropped;
2568 struct sk_buff_head input_pkt_queue;
2569 struct napi_struct backlog;
2570
2571};
2572
2573static inline void input_queue_head_incr(struct softnet_data *sd)
2574{
2575#ifdef CONFIG_RPS
2576 sd->input_queue_head++;
2577#endif
2578}
2579
2580static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2581 unsigned int *qtail)
2582{
2583#ifdef CONFIG_RPS
2584 *qtail = ++sd->input_queue_tail;
2585#endif
2586}
2587
2588DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2589
2590void __netif_schedule(struct Qdisc *q);
2591void netif_schedule_queue(struct netdev_queue *txq);
2592
2593static inline void netif_tx_schedule_all(struct net_device *dev)
2594{
2595 unsigned int i;
2596
2597 for (i = 0; i < dev->num_tx_queues; i++)
2598 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2599}
2600
2601static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2602{
2603 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2604}
2605
2606/**
2607 * netif_start_queue - allow transmit
2608 * @dev: network device
2609 *
2610 * Allow upper layers to call the device hard_start_xmit routine.
2611 */
2612static inline void netif_start_queue(struct net_device *dev)
2613{
2614 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2615}
2616
2617static inline void netif_tx_start_all_queues(struct net_device *dev)
2618{
2619 unsigned int i;
2620
2621 for (i = 0; i < dev->num_tx_queues; i++) {
2622 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2623 netif_tx_start_queue(txq);
2624 }
2625}
2626
2627void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2628
2629/**
2630 * netif_wake_queue - restart transmit
2631 * @dev: network device
2632 *
2633 * Allow upper layers to call the device hard_start_xmit routine.
2634 * Used for flow control when transmit resources are available.
2635 */
2636static inline void netif_wake_queue(struct net_device *dev)
2637{
2638 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2639}
2640
2641static inline void netif_tx_wake_all_queues(struct net_device *dev)
2642{
2643 unsigned int i;
2644
2645 for (i = 0; i < dev->num_tx_queues; i++) {
2646 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2647 netif_tx_wake_queue(txq);
2648 }
2649}
2650
2651static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2652{
2653 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2654}
2655
2656/**
2657 * netif_stop_queue - stop transmitted packets
2658 * @dev: network device
2659 *
2660 * Stop upper layers calling the device hard_start_xmit routine.
2661 * Used for flow control when transmit resources are unavailable.
2662 */
2663static inline void netif_stop_queue(struct net_device *dev)
2664{
2665 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2666}
2667
2668void netif_tx_stop_all_queues(struct net_device *dev);
2669
2670static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2671{
2672 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2673}
2674
2675/**
2676 * netif_queue_stopped - test if transmit queue is flowblocked
2677 * @dev: network device
2678 *
2679 * Test if transmit queue on device is currently unable to send.
2680 */
2681static inline bool netif_queue_stopped(const struct net_device *dev)
2682{
2683 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2684}
2685
2686static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2687{
2688 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2689}
2690
2691static inline bool
2692netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2693{
2694 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2695}
2696
2697static inline bool
2698netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2699{
2700 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2701}
2702
2703/**
2704 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2705 * @dev_queue: pointer to transmit queue
2706 *
2707 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2708 * to give appropriate hint to the cpu.
2709 */
2710static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2711{
2712#ifdef CONFIG_BQL
2713 prefetchw(&dev_queue->dql.num_queued);
2714#endif
2715}
2716
2717/**
2718 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2719 * @dev_queue: pointer to transmit queue
2720 *
2721 * BQL enabled drivers might use this helper in their TX completion path,
2722 * to give appropriate hint to the cpu.
2723 */
2724static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2725{
2726#ifdef CONFIG_BQL
2727 prefetchw(&dev_queue->dql.limit);
2728#endif
2729}
2730
2731static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2732 unsigned int bytes)
2733{
2734#ifdef CONFIG_BQL
2735 dql_queued(&dev_queue->dql, bytes);
2736
2737 if (likely(dql_avail(&dev_queue->dql) >= 0))
2738 return;
2739
2740 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2741
2742 /*
2743 * The XOFF flag must be set before checking the dql_avail below,
2744 * because in netdev_tx_completed_queue we update the dql_completed
2745 * before checking the XOFF flag.
2746 */
2747 smp_mb();
2748
2749 /* check again in case another CPU has just made room avail */
2750 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2751 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2752#endif
2753}
2754
2755/**
2756 * netdev_sent_queue - report the number of bytes queued to hardware
2757 * @dev: network device
2758 * @bytes: number of bytes queued to the hardware device queue
2759 *
2760 * Report the number of bytes queued for sending/completion to the network
2761 * device hardware queue. @bytes should be a good approximation and should
2762 * exactly match netdev_completed_queue() @bytes
2763 */
2764static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2765{
2766 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2767}
2768
2769static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2770 unsigned int pkts, unsigned int bytes)
2771{
2772#ifdef CONFIG_BQL
2773 if (unlikely(!bytes))
2774 return;
2775
2776 dql_completed(&dev_queue->dql, bytes);
2777
2778 /*
2779 * Without the memory barrier there is a small possiblity that
2780 * netdev_tx_sent_queue will miss the update and cause the queue to
2781 * be stopped forever
2782 */
2783 smp_mb();
2784
2785 if (dql_avail(&dev_queue->dql) < 0)
2786 return;
2787
2788 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2789 netif_schedule_queue(dev_queue);
2790#endif
2791}
2792
2793/**
2794 * netdev_completed_queue - report bytes and packets completed by device
2795 * @dev: network device
2796 * @pkts: actual number of packets sent over the medium
2797 * @bytes: actual number of bytes sent over the medium
2798 *
2799 * Report the number of bytes and packets transmitted by the network device
2800 * hardware queue over the physical medium, @bytes must exactly match the
2801 * @bytes amount passed to netdev_sent_queue()
2802 */
2803static inline void netdev_completed_queue(struct net_device *dev,
2804 unsigned int pkts, unsigned int bytes)
2805{
2806 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2807}
2808
2809static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2810{
2811#ifdef CONFIG_BQL
2812 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2813 dql_reset(&q->dql);
2814#endif
2815}
2816
2817/**
2818 * netdev_reset_queue - reset the packets and bytes count of a network device
2819 * @dev_queue: network device
2820 *
2821 * Reset the bytes and packet count of a network device and clear the
2822 * software flow control OFF bit for this network device
2823 */
2824static inline void netdev_reset_queue(struct net_device *dev_queue)
2825{
2826 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2827}
2828
2829/**
2830 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2831 * @dev: network device
2832 * @queue_index: given tx queue index
2833 *
2834 * Returns 0 if given tx queue index >= number of device tx queues,
2835 * otherwise returns the originally passed tx queue index.
2836 */
2837static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2838{
2839 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2840 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2841 dev->name, queue_index,
2842 dev->real_num_tx_queues);
2843 return 0;
2844 }
2845
2846 return queue_index;
2847}
2848
2849/**
2850 * netif_running - test if up
2851 * @dev: network device
2852 *
2853 * Test if the device has been brought up.
2854 */
2855static inline bool netif_running(const struct net_device *dev)
2856{
2857 return test_bit(__LINK_STATE_START, &dev->state);
2858}
2859
2860/*
2861 * Routines to manage the subqueues on a device. We only need start
2862 * stop, and a check if it's stopped. All other device management is
2863 * done at the overall netdevice level.
2864 * Also test the device if we're multiqueue.
2865 */
2866
2867/**
2868 * netif_start_subqueue - allow sending packets on subqueue
2869 * @dev: network device
2870 * @queue_index: sub queue index
2871 *
2872 * Start individual transmit queue of a device with multiple transmit queues.
2873 */
2874static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2875{
2876 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2877
2878 netif_tx_start_queue(txq);
2879}
2880
2881/**
2882 * netif_stop_subqueue - stop sending packets on subqueue
2883 * @dev: network device
2884 * @queue_index: sub queue index
2885 *
2886 * Stop individual transmit queue of a device with multiple transmit queues.
2887 */
2888static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2889{
2890 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2891 netif_tx_stop_queue(txq);
2892}
2893
2894/**
2895 * netif_subqueue_stopped - test status of subqueue
2896 * @dev: network device
2897 * @queue_index: sub queue index
2898 *
2899 * Check individual transmit queue of a device with multiple transmit queues.
2900 */
2901static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2902 u16 queue_index)
2903{
2904 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2905
2906 return netif_tx_queue_stopped(txq);
2907}
2908
2909static inline bool netif_subqueue_stopped(const struct net_device *dev,
2910 struct sk_buff *skb)
2911{
2912 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2913}
2914
2915void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2916
2917#ifdef CONFIG_XPS
2918int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2919 u16 index);
2920#else
2921static inline int netif_set_xps_queue(struct net_device *dev,
2922 const struct cpumask *mask,
2923 u16 index)
2924{
2925 return 0;
2926}
2927#endif
2928
2929u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2930 unsigned int num_tx_queues);
2931
2932/*
2933 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2934 * as a distribution range limit for the returned value.
2935 */
2936static inline u16 skb_tx_hash(const struct net_device *dev,
2937 struct sk_buff *skb)
2938{
2939 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2940}
2941
2942/**
2943 * netif_is_multiqueue - test if device has multiple transmit queues
2944 * @dev: network device
2945 *
2946 * Check if device has multiple transmit queues
2947 */
2948static inline bool netif_is_multiqueue(const struct net_device *dev)
2949{
2950 return dev->num_tx_queues > 1;
2951}
2952
2953int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2954
2955#ifdef CONFIG_SYSFS
2956int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2957#else
2958static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2959 unsigned int rxq)
2960{
2961 return 0;
2962}
2963#endif
2964
2965#ifdef CONFIG_SYSFS
2966static inline unsigned int get_netdev_rx_queue_index(
2967 struct netdev_rx_queue *queue)
2968{
2969 struct net_device *dev = queue->dev;
2970 int index = queue - dev->_rx;
2971
2972 BUG_ON(index >= dev->num_rx_queues);
2973 return index;
2974}
2975#endif
2976
2977#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2978int netif_get_num_default_rss_queues(void);
2979
2980enum skb_free_reason {
2981 SKB_REASON_CONSUMED,
2982 SKB_REASON_DROPPED,
2983};
2984
2985void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2986void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2987
2988/*
2989 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2990 * interrupt context or with hardware interrupts being disabled.
2991 * (in_irq() || irqs_disabled())
2992 *
2993 * We provide four helpers that can be used in following contexts :
2994 *
2995 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2996 * replacing kfree_skb(skb)
2997 *
2998 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2999 * Typically used in place of consume_skb(skb) in TX completion path
3000 *
3001 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3002 * replacing kfree_skb(skb)
3003 *
3004 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3005 * and consumed a packet. Used in place of consume_skb(skb)
3006 */
3007static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3008{
3009 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3010}
3011
3012static inline void dev_consume_skb_irq(struct sk_buff *skb)
3013{
3014 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3015}
3016
3017static inline void dev_kfree_skb_any(struct sk_buff *skb)
3018{
3019 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3020}
3021
3022static inline void dev_consume_skb_any(struct sk_buff *skb)
3023{
3024 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3025}
3026
3027int netif_rx(struct sk_buff *skb);
3028int netif_rx_ni(struct sk_buff *skb);
3029int netif_receive_skb(struct sk_buff *skb);
3030gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3031void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3032struct sk_buff *napi_get_frags(struct napi_struct *napi);
3033gro_result_t napi_gro_frags(struct napi_struct *napi);
3034struct packet_offload *gro_find_receive_by_type(__be16 type);
3035struct packet_offload *gro_find_complete_by_type(__be16 type);
3036
3037static inline void napi_free_frags(struct napi_struct *napi)
3038{
3039 kfree_skb(napi->skb);
3040 napi->skb = NULL;
3041}
3042
3043int netdev_rx_handler_register(struct net_device *dev,
3044 rx_handler_func_t *rx_handler,
3045 void *rx_handler_data);
3046void netdev_rx_handler_unregister(struct net_device *dev);
3047
3048bool dev_valid_name(const char *name);
3049int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3050int dev_ethtool(struct net *net, struct ifreq *);
3051unsigned int dev_get_flags(const struct net_device *);
3052int __dev_change_flags(struct net_device *, unsigned int flags);
3053int dev_change_flags(struct net_device *, unsigned int);
3054void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3055 unsigned int gchanges);
3056int dev_change_name(struct net_device *, const char *);
3057int dev_set_alias(struct net_device *, const char *, size_t);
3058int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3059int dev_set_mtu(struct net_device *, int);
3060void dev_set_group(struct net_device *, int);
3061int dev_set_mac_address(struct net_device *, struct sockaddr *);
3062int dev_change_carrier(struct net_device *, bool new_carrier);
3063int dev_get_phys_port_id(struct net_device *dev,
3064 struct netdev_phys_item_id *ppid);
3065int dev_get_phys_port_name(struct net_device *dev,
3066 char *name, size_t len);
3067int dev_change_proto_down(struct net_device *dev, bool proto_down);
3068struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3069struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3070 struct netdev_queue *txq, int *ret);
3071int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3072int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3073bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3074
3075extern int netdev_budget;
3076
3077/* Called by rtnetlink.c:rtnl_unlock() */
3078void netdev_run_todo(void);
3079
3080/**
3081 * dev_put - release reference to device
3082 * @dev: network device
3083 *
3084 * Release reference to device to allow it to be freed.
3085 */
3086static inline void dev_put(struct net_device *dev)
3087{
3088 this_cpu_dec(*dev->pcpu_refcnt);
3089}
3090
3091/**
3092 * dev_hold - get reference to device
3093 * @dev: network device
3094 *
3095 * Hold reference to device to keep it from being freed.
3096 */
3097static inline void dev_hold(struct net_device *dev)
3098{
3099 this_cpu_inc(*dev->pcpu_refcnt);
3100}
3101
3102/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3103 * and _off may be called from IRQ context, but it is caller
3104 * who is responsible for serialization of these calls.
3105 *
3106 * The name carrier is inappropriate, these functions should really be
3107 * called netif_lowerlayer_*() because they represent the state of any
3108 * kind of lower layer not just hardware media.
3109 */
3110
3111void linkwatch_init_dev(struct net_device *dev);
3112void linkwatch_fire_event(struct net_device *dev);
3113void linkwatch_forget_dev(struct net_device *dev);
3114
3115/**
3116 * netif_carrier_ok - test if carrier present
3117 * @dev: network device
3118 *
3119 * Check if carrier is present on device
3120 */
3121static inline bool netif_carrier_ok(const struct net_device *dev)
3122{
3123 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3124}
3125
3126unsigned long dev_trans_start(struct net_device *dev);
3127
3128void __netdev_watchdog_up(struct net_device *dev);
3129
3130void netif_carrier_on(struct net_device *dev);
3131
3132void netif_carrier_off(struct net_device *dev);
3133
3134/**
3135 * netif_dormant_on - mark device as dormant.
3136 * @dev: network device
3137 *
3138 * Mark device as dormant (as per RFC2863).
3139 *
3140 * The dormant state indicates that the relevant interface is not
3141 * actually in a condition to pass packets (i.e., it is not 'up') but is
3142 * in a "pending" state, waiting for some external event. For "on-
3143 * demand" interfaces, this new state identifies the situation where the
3144 * interface is waiting for events to place it in the up state.
3145 *
3146 */
3147static inline void netif_dormant_on(struct net_device *dev)
3148{
3149 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3150 linkwatch_fire_event(dev);
3151}
3152
3153/**
3154 * netif_dormant_off - set device as not dormant.
3155 * @dev: network device
3156 *
3157 * Device is not in dormant state.
3158 */
3159static inline void netif_dormant_off(struct net_device *dev)
3160{
3161 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3162 linkwatch_fire_event(dev);
3163}
3164
3165/**
3166 * netif_dormant - test if carrier present
3167 * @dev: network device
3168 *
3169 * Check if carrier is present on device
3170 */
3171static inline bool netif_dormant(const struct net_device *dev)
3172{
3173 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3174}
3175
3176
3177/**
3178 * netif_oper_up - test if device is operational
3179 * @dev: network device
3180 *
3181 * Check if carrier is operational
3182 */
3183static inline bool netif_oper_up(const struct net_device *dev)
3184{
3185 return (dev->operstate == IF_OPER_UP ||
3186 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3187}
3188
3189/**
3190 * netif_device_present - is device available or removed
3191 * @dev: network device
3192 *
3193 * Check if device has not been removed from system.
3194 */
3195static inline bool netif_device_present(struct net_device *dev)
3196{
3197 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3198}
3199
3200void netif_device_detach(struct net_device *dev);
3201
3202void netif_device_attach(struct net_device *dev);
3203
3204/*
3205 * Network interface message level settings
3206 */
3207
3208enum {
3209 NETIF_MSG_DRV = 0x0001,
3210 NETIF_MSG_PROBE = 0x0002,
3211 NETIF_MSG_LINK = 0x0004,
3212 NETIF_MSG_TIMER = 0x0008,
3213 NETIF_MSG_IFDOWN = 0x0010,
3214 NETIF_MSG_IFUP = 0x0020,
3215 NETIF_MSG_RX_ERR = 0x0040,
3216 NETIF_MSG_TX_ERR = 0x0080,
3217 NETIF_MSG_TX_QUEUED = 0x0100,
3218 NETIF_MSG_INTR = 0x0200,
3219 NETIF_MSG_TX_DONE = 0x0400,
3220 NETIF_MSG_RX_STATUS = 0x0800,
3221 NETIF_MSG_PKTDATA = 0x1000,
3222 NETIF_MSG_HW = 0x2000,
3223 NETIF_MSG_WOL = 0x4000,
3224};
3225
3226#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3227#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3228#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3229#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3230#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3231#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3232#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3233#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3234#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3235#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3236#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3237#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3238#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3239#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3240#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3241
3242static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3243{
3244 /* use default */
3245 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3246 return default_msg_enable_bits;
3247 if (debug_value == 0) /* no output */
3248 return 0;
3249 /* set low N bits */
3250 return (1 << debug_value) - 1;
3251}
3252
3253static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3254{
3255 spin_lock(&txq->_xmit_lock);
3256 txq->xmit_lock_owner = cpu;
3257}
3258
3259static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3260{
3261 spin_lock_bh(&txq->_xmit_lock);
3262 txq->xmit_lock_owner = smp_processor_id();
3263}
3264
3265static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3266{
3267 bool ok = spin_trylock(&txq->_xmit_lock);
3268 if (likely(ok))
3269 txq->xmit_lock_owner = smp_processor_id();
3270 return ok;
3271}
3272
3273static inline void __netif_tx_unlock(struct netdev_queue *txq)
3274{
3275 txq->xmit_lock_owner = -1;
3276 spin_unlock(&txq->_xmit_lock);
3277}
3278
3279static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3280{
3281 txq->xmit_lock_owner = -1;
3282 spin_unlock_bh(&txq->_xmit_lock);
3283}
3284
3285static inline void txq_trans_update(struct netdev_queue *txq)
3286{
3287 if (txq->xmit_lock_owner != -1)
3288 txq->trans_start = jiffies;
3289}
3290
3291/**
3292 * netif_tx_lock - grab network device transmit lock
3293 * @dev: network device
3294 *
3295 * Get network device transmit lock
3296 */
3297static inline void netif_tx_lock(struct net_device *dev)
3298{
3299 unsigned int i;
3300 int cpu;
3301
3302 spin_lock(&dev->tx_global_lock);
3303 cpu = smp_processor_id();
3304 for (i = 0; i < dev->num_tx_queues; i++) {
3305 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3306
3307 /* We are the only thread of execution doing a
3308 * freeze, but we have to grab the _xmit_lock in
3309 * order to synchronize with threads which are in
3310 * the ->hard_start_xmit() handler and already
3311 * checked the frozen bit.
3312 */
3313 __netif_tx_lock(txq, cpu);
3314 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3315 __netif_tx_unlock(txq);
3316 }
3317}
3318
3319static inline void netif_tx_lock_bh(struct net_device *dev)
3320{
3321 local_bh_disable();
3322 netif_tx_lock(dev);
3323}
3324
3325static inline void netif_tx_unlock(struct net_device *dev)
3326{
3327 unsigned int i;
3328
3329 for (i = 0; i < dev->num_tx_queues; i++) {
3330 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3331
3332 /* No need to grab the _xmit_lock here. If the
3333 * queue is not stopped for another reason, we
3334 * force a schedule.
3335 */
3336 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3337 netif_schedule_queue(txq);
3338 }
3339 spin_unlock(&dev->tx_global_lock);
3340}
3341
3342static inline void netif_tx_unlock_bh(struct net_device *dev)
3343{
3344 netif_tx_unlock(dev);
3345 local_bh_enable();
3346}
3347
3348#define HARD_TX_LOCK(dev, txq, cpu) { \
3349 if ((dev->features & NETIF_F_LLTX) == 0) { \
3350 __netif_tx_lock(txq, cpu); \
3351 } \
3352}
3353
3354#define HARD_TX_TRYLOCK(dev, txq) \
3355 (((dev->features & NETIF_F_LLTX) == 0) ? \
3356 __netif_tx_trylock(txq) : \
3357 true )
3358
3359#define HARD_TX_UNLOCK(dev, txq) { \
3360 if ((dev->features & NETIF_F_LLTX) == 0) { \
3361 __netif_tx_unlock(txq); \
3362 } \
3363}
3364
3365static inline void netif_tx_disable(struct net_device *dev)
3366{
3367 unsigned int i;
3368 int cpu;
3369
3370 local_bh_disable();
3371 cpu = smp_processor_id();
3372 for (i = 0; i < dev->num_tx_queues; i++) {
3373 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3374
3375 __netif_tx_lock(txq, cpu);
3376 netif_tx_stop_queue(txq);
3377 __netif_tx_unlock(txq);
3378 }
3379 local_bh_enable();
3380}
3381
3382static inline void netif_addr_lock(struct net_device *dev)
3383{
3384 spin_lock(&dev->addr_list_lock);
3385}
3386
3387static inline void netif_addr_lock_nested(struct net_device *dev)
3388{
3389 int subclass = SINGLE_DEPTH_NESTING;
3390
3391 if (dev->netdev_ops->ndo_get_lock_subclass)
3392 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3393
3394 spin_lock_nested(&dev->addr_list_lock, subclass);
3395}
3396
3397static inline void netif_addr_lock_bh(struct net_device *dev)
3398{
3399 spin_lock_bh(&dev->addr_list_lock);
3400}
3401
3402static inline void netif_addr_unlock(struct net_device *dev)
3403{
3404 spin_unlock(&dev->addr_list_lock);
3405}
3406
3407static inline void netif_addr_unlock_bh(struct net_device *dev)
3408{
3409 spin_unlock_bh(&dev->addr_list_lock);
3410}
3411
3412/*
3413 * dev_addrs walker. Should be used only for read access. Call with
3414 * rcu_read_lock held.
3415 */
3416#define for_each_dev_addr(dev, ha) \
3417 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3418
3419/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3420
3421void ether_setup(struct net_device *dev);
3422
3423/* Support for loadable net-drivers */
3424struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3425 unsigned char name_assign_type,
3426 void (*setup)(struct net_device *),
3427 unsigned int txqs, unsigned int rxqs);
3428#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3429 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3430
3431#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3432 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3433 count)
3434
3435int register_netdev(struct net_device *dev);
3436void unregister_netdev(struct net_device *dev);
3437
3438/* General hardware address lists handling functions */
3439int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3440 struct netdev_hw_addr_list *from_list, int addr_len);
3441void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3442 struct netdev_hw_addr_list *from_list, int addr_len);
3443int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3444 struct net_device *dev,
3445 int (*sync)(struct net_device *, const unsigned char *),
3446 int (*unsync)(struct net_device *,
3447 const unsigned char *));
3448void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3449 struct net_device *dev,
3450 int (*unsync)(struct net_device *,
3451 const unsigned char *));
3452void __hw_addr_init(struct netdev_hw_addr_list *list);
3453
3454/* Functions used for device addresses handling */
3455int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3456 unsigned char addr_type);
3457int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3458 unsigned char addr_type);
3459void dev_addr_flush(struct net_device *dev);
3460int dev_addr_init(struct net_device *dev);
3461
3462/* Functions used for unicast addresses handling */
3463int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3464int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3465int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3466int dev_uc_sync(struct net_device *to, struct net_device *from);
3467int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3468void dev_uc_unsync(struct net_device *to, struct net_device *from);
3469void dev_uc_flush(struct net_device *dev);
3470void dev_uc_init(struct net_device *dev);
3471
3472/**
3473 * __dev_uc_sync - Synchonize device's unicast list
3474 * @dev: device to sync
3475 * @sync: function to call if address should be added
3476 * @unsync: function to call if address should be removed
3477 *
3478 * Add newly added addresses to the interface, and release
3479 * addresses that have been deleted.
3480 **/
3481static inline int __dev_uc_sync(struct net_device *dev,
3482 int (*sync)(struct net_device *,
3483 const unsigned char *),
3484 int (*unsync)(struct net_device *,
3485 const unsigned char *))
3486{
3487 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3488}
3489
3490/**
3491 * __dev_uc_unsync - Remove synchronized addresses from device
3492 * @dev: device to sync
3493 * @unsync: function to call if address should be removed
3494 *
3495 * Remove all addresses that were added to the device by dev_uc_sync().
3496 **/
3497static inline void __dev_uc_unsync(struct net_device *dev,
3498 int (*unsync)(struct net_device *,
3499 const unsigned char *))
3500{
3501 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3502}
3503
3504/* Functions used for multicast addresses handling */
3505int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3506int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3507int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3508int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3509int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3510int dev_mc_sync(struct net_device *to, struct net_device *from);
3511int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3512void dev_mc_unsync(struct net_device *to, struct net_device *from);
3513void dev_mc_flush(struct net_device *dev);
3514void dev_mc_init(struct net_device *dev);
3515
3516/**
3517 * __dev_mc_sync - Synchonize device's multicast list
3518 * @dev: device to sync
3519 * @sync: function to call if address should be added
3520 * @unsync: function to call if address should be removed
3521 *
3522 * Add newly added addresses to the interface, and release
3523 * addresses that have been deleted.
3524 **/
3525static inline int __dev_mc_sync(struct net_device *dev,
3526 int (*sync)(struct net_device *,
3527 const unsigned char *),
3528 int (*unsync)(struct net_device *,
3529 const unsigned char *))
3530{
3531 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3532}
3533
3534/**
3535 * __dev_mc_unsync - Remove synchronized addresses from device
3536 * @dev: device to sync
3537 * @unsync: function to call if address should be removed
3538 *
3539 * Remove all addresses that were added to the device by dev_mc_sync().
3540 **/
3541static inline void __dev_mc_unsync(struct net_device *dev,
3542 int (*unsync)(struct net_device *,
3543 const unsigned char *))
3544{
3545 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3546}
3547
3548/* Functions used for secondary unicast and multicast support */
3549void dev_set_rx_mode(struct net_device *dev);
3550void __dev_set_rx_mode(struct net_device *dev);
3551int dev_set_promiscuity(struct net_device *dev, int inc);
3552int dev_set_allmulti(struct net_device *dev, int inc);
3553void netdev_state_change(struct net_device *dev);
3554void netdev_notify_peers(struct net_device *dev);
3555void netdev_features_change(struct net_device *dev);
3556/* Load a device via the kmod */
3557void dev_load(struct net *net, const char *name);
3558struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3559 struct rtnl_link_stats64 *storage);
3560void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3561 const struct net_device_stats *netdev_stats);
3562
3563extern int netdev_max_backlog;
3564extern int netdev_tstamp_prequeue;
3565extern int weight_p;
3566extern int bpf_jit_enable;
3567
3568bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3569struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3570 struct list_head **iter);
3571struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3572 struct list_head **iter);
3573
3574/* iterate through upper list, must be called under RCU read lock */
3575#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3576 for (iter = &(dev)->adj_list.upper, \
3577 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3578 updev; \
3579 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3580
3581/* iterate through upper list, must be called under RCU read lock */
3582#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3583 for (iter = &(dev)->all_adj_list.upper, \
3584 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3585 updev; \
3586 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3587
3588void *netdev_lower_get_next_private(struct net_device *dev,
3589 struct list_head **iter);
3590void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3591 struct list_head **iter);
3592
3593#define netdev_for_each_lower_private(dev, priv, iter) \
3594 for (iter = (dev)->adj_list.lower.next, \
3595 priv = netdev_lower_get_next_private(dev, &(iter)); \
3596 priv; \
3597 priv = netdev_lower_get_next_private(dev, &(iter)))
3598
3599#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3600 for (iter = &(dev)->adj_list.lower, \
3601 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3602 priv; \
3603 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3604
3605void *netdev_lower_get_next(struct net_device *dev,
3606 struct list_head **iter);
3607#define netdev_for_each_lower_dev(dev, ldev, iter) \
3608 for (iter = &(dev)->adj_list.lower, \
3609 ldev = netdev_lower_get_next(dev, &(iter)); \
3610 ldev; \
3611 ldev = netdev_lower_get_next(dev, &(iter)))
3612
3613void *netdev_adjacent_get_private(struct list_head *adj_list);
3614void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3615struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3616struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3617int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3618int netdev_master_upper_dev_link(struct net_device *dev,
3619 struct net_device *upper_dev);
3620int netdev_master_upper_dev_link_private(struct net_device *dev,
3621 struct net_device *upper_dev,
3622 void *private);
3623void netdev_upper_dev_unlink(struct net_device *dev,
3624 struct net_device *upper_dev);
3625void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3626void *netdev_lower_dev_get_private(struct net_device *dev,
3627 struct net_device *lower_dev);
3628
3629/* RSS keys are 40 or 52 bytes long */
3630#define NETDEV_RSS_KEY_LEN 52
3631extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3632void netdev_rss_key_fill(void *buffer, size_t len);
3633
3634int dev_get_nest_level(struct net_device *dev,
3635 bool (*type_check)(struct net_device *dev));
3636int skb_checksum_help(struct sk_buff *skb);
3637struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3638 netdev_features_t features, bool tx_path);
3639struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3640 netdev_features_t features);
3641
3642struct netdev_bonding_info {
3643 ifslave slave;
3644 ifbond master;
3645};
3646
3647struct netdev_notifier_bonding_info {
3648 struct netdev_notifier_info info; /* must be first */
3649 struct netdev_bonding_info bonding_info;
3650};
3651
3652void netdev_bonding_info_change(struct net_device *dev,
3653 struct netdev_bonding_info *bonding_info);
3654
3655static inline
3656struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3657{
3658 return __skb_gso_segment(skb, features, true);
3659}
3660__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3661
3662static inline bool can_checksum_protocol(netdev_features_t features,
3663 __be16 protocol)
3664{
3665 return ((features & NETIF_F_GEN_CSUM) ||
3666 ((features & NETIF_F_V4_CSUM) &&
3667 protocol == htons(ETH_P_IP)) ||
3668 ((features & NETIF_F_V6_CSUM) &&
3669 protocol == htons(ETH_P_IPV6)) ||
3670 ((features & NETIF_F_FCOE_CRC) &&
3671 protocol == htons(ETH_P_FCOE)));
3672}
3673
3674#ifdef CONFIG_BUG
3675void netdev_rx_csum_fault(struct net_device *dev);
3676#else
3677static inline void netdev_rx_csum_fault(struct net_device *dev)
3678{
3679}
3680#endif
3681/* rx skb timestamps */
3682void net_enable_timestamp(void);
3683void net_disable_timestamp(void);
3684
3685#ifdef CONFIG_PROC_FS
3686int __init dev_proc_init(void);
3687#else
3688#define dev_proc_init() 0
3689#endif
3690
3691static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3692 struct sk_buff *skb, struct net_device *dev,
3693 bool more)
3694{
3695 skb->xmit_more = more ? 1 : 0;
3696 return ops->ndo_start_xmit(skb, dev);
3697}
3698
3699static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3700 struct netdev_queue *txq, bool more)
3701{
3702 const struct net_device_ops *ops = dev->netdev_ops;
3703 int rc;
3704
3705 rc = __netdev_start_xmit(ops, skb, dev, more);
3706 if (rc == NETDEV_TX_OK)
3707 txq_trans_update(txq);
3708
3709 return rc;
3710}
3711
3712int netdev_class_create_file_ns(struct class_attribute *class_attr,
3713 const void *ns);
3714void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3715 const void *ns);
3716
3717static inline int netdev_class_create_file(struct class_attribute *class_attr)
3718{
3719 return netdev_class_create_file_ns(class_attr, NULL);
3720}
3721
3722static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3723{
3724 netdev_class_remove_file_ns(class_attr, NULL);
3725}
3726
3727extern struct kobj_ns_type_operations net_ns_type_operations;
3728
3729const char *netdev_drivername(const struct net_device *dev);
3730
3731void linkwatch_run_queue(void);
3732
3733static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3734 netdev_features_t f2)
3735{
3736 if (f1 & NETIF_F_GEN_CSUM)
3737 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3738 if (f2 & NETIF_F_GEN_CSUM)
3739 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3740 f1 &= f2;
3741 if (f1 & NETIF_F_GEN_CSUM)
3742 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3743
3744 return f1;
3745}
3746
3747static inline netdev_features_t netdev_get_wanted_features(
3748 struct net_device *dev)
3749{
3750 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3751}
3752netdev_features_t netdev_increment_features(netdev_features_t all,
3753 netdev_features_t one, netdev_features_t mask);
3754
3755/* Allow TSO being used on stacked device :
3756 * Performing the GSO segmentation before last device
3757 * is a performance improvement.
3758 */
3759static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3760 netdev_features_t mask)
3761{
3762 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3763}
3764
3765int __netdev_update_features(struct net_device *dev);
3766void netdev_update_features(struct net_device *dev);
3767void netdev_change_features(struct net_device *dev);
3768
3769void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3770 struct net_device *dev);
3771
3772netdev_features_t passthru_features_check(struct sk_buff *skb,
3773 struct net_device *dev,
3774 netdev_features_t features);
3775netdev_features_t netif_skb_features(struct sk_buff *skb);
3776
3777static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3778{
3779 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3780
3781 /* check flags correspondence */
3782 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3783 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3784 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3785 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3786 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3787 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3788 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3789 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3790 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3791 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3792 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3793 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3794 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3795
3796 return (features & feature) == feature;
3797}
3798
3799static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3800{
3801 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3802 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3803}
3804
3805static inline bool netif_needs_gso(struct sk_buff *skb,
3806 netdev_features_t features)
3807{
3808 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3809 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3810 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3811}
3812
3813static inline void netif_set_gso_max_size(struct net_device *dev,
3814 unsigned int size)
3815{
3816 dev->gso_max_size = size;
3817}
3818
3819static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3820 int pulled_hlen, u16 mac_offset,
3821 int mac_len)
3822{
3823 skb->protocol = protocol;
3824 skb->encapsulation = 1;
3825 skb_push(skb, pulled_hlen);
3826 skb_reset_transport_header(skb);
3827 skb->mac_header = mac_offset;
3828 skb->network_header = skb->mac_header + mac_len;
3829 skb->mac_len = mac_len;
3830}
3831
3832static inline bool netif_is_macvlan(struct net_device *dev)
3833{
3834 return dev->priv_flags & IFF_MACVLAN;
3835}
3836
3837static inline bool netif_is_macvlan_port(struct net_device *dev)
3838{
3839 return dev->priv_flags & IFF_MACVLAN_PORT;
3840}
3841
3842static inline bool netif_is_ipvlan(struct net_device *dev)
3843{
3844 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3845}
3846
3847static inline bool netif_is_ipvlan_port(struct net_device *dev)
3848{
3849 return dev->priv_flags & IFF_IPVLAN_MASTER;
3850}
3851
3852static inline bool netif_is_bond_master(struct net_device *dev)
3853{
3854 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3855}
3856
3857static inline bool netif_is_bond_slave(struct net_device *dev)
3858{
3859 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3860}
3861
3862static inline bool netif_supports_nofcs(struct net_device *dev)
3863{
3864 return dev->priv_flags & IFF_SUPP_NOFCS;
3865}
3866
3867static inline bool netif_is_l3_master(const struct net_device *dev)
3868{
3869 return dev->priv_flags & IFF_L3MDEV_MASTER;
3870}
3871
3872static inline bool netif_is_l3_slave(const struct net_device *dev)
3873{
3874 return dev->priv_flags & IFF_L3MDEV_SLAVE;
3875}
3876
3877static inline bool netif_is_bridge_master(const struct net_device *dev)
3878{
3879 return dev->priv_flags & IFF_EBRIDGE;
3880}
3881
3882static inline bool netif_is_bridge_port(const struct net_device *dev)
3883{
3884 return dev->priv_flags & IFF_BRIDGE_PORT;
3885}
3886
3887static inline bool netif_is_ovs_master(const struct net_device *dev)
3888{
3889 return dev->priv_flags & IFF_OPENVSWITCH;
3890}
3891
3892/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3893static inline void netif_keep_dst(struct net_device *dev)
3894{
3895 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3896}
3897
3898extern struct pernet_operations __net_initdata loopback_net_ops;
3899
3900/* Logging, debugging and troubleshooting/diagnostic helpers. */
3901
3902/* netdev_printk helpers, similar to dev_printk */
3903
3904static inline const char *netdev_name(const struct net_device *dev)
3905{
3906 if (!dev->name[0] || strchr(dev->name, '%'))
3907 return "(unnamed net_device)";
3908 return dev->name;
3909}
3910
3911static inline const char *netdev_reg_state(const struct net_device *dev)
3912{
3913 switch (dev->reg_state) {
3914 case NETREG_UNINITIALIZED: return " (uninitialized)";
3915 case NETREG_REGISTERED: return "";
3916 case NETREG_UNREGISTERING: return " (unregistering)";
3917 case NETREG_UNREGISTERED: return " (unregistered)";
3918 case NETREG_RELEASED: return " (released)";
3919 case NETREG_DUMMY: return " (dummy)";
3920 }
3921
3922 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3923 return " (unknown)";
3924}
3925
3926__printf(3, 4)
3927void netdev_printk(const char *level, const struct net_device *dev,
3928 const char *format, ...);
3929__printf(2, 3)
3930void netdev_emerg(const struct net_device *dev, const char *format, ...);
3931__printf(2, 3)
3932void netdev_alert(const struct net_device *dev, const char *format, ...);
3933__printf(2, 3)
3934void netdev_crit(const struct net_device *dev, const char *format, ...);
3935__printf(2, 3)
3936void netdev_err(const struct net_device *dev, const char *format, ...);
3937__printf(2, 3)
3938void netdev_warn(const struct net_device *dev, const char *format, ...);
3939__printf(2, 3)
3940void netdev_notice(const struct net_device *dev, const char *format, ...);
3941__printf(2, 3)
3942void netdev_info(const struct net_device *dev, const char *format, ...);
3943
3944#define MODULE_ALIAS_NETDEV(device) \
3945 MODULE_ALIAS("netdev-" device)
3946
3947#if defined(CONFIG_DYNAMIC_DEBUG)
3948#define netdev_dbg(__dev, format, args...) \
3949do { \
3950 dynamic_netdev_dbg(__dev, format, ##args); \
3951} while (0)
3952#elif defined(DEBUG)
3953#define netdev_dbg(__dev, format, args...) \
3954 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3955#else
3956#define netdev_dbg(__dev, format, args...) \
3957({ \
3958 if (0) \
3959 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3960})
3961#endif
3962
3963#if defined(VERBOSE_DEBUG)
3964#define netdev_vdbg netdev_dbg
3965#else
3966
3967#define netdev_vdbg(dev, format, args...) \
3968({ \
3969 if (0) \
3970 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3971 0; \
3972})
3973#endif
3974
3975/*
3976 * netdev_WARN() acts like dev_printk(), but with the key difference
3977 * of using a WARN/WARN_ON to get the message out, including the
3978 * file/line information and a backtrace.
3979 */
3980#define netdev_WARN(dev, format, args...) \
3981 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3982 netdev_reg_state(dev), ##args)
3983
3984/* netif printk helpers, similar to netdev_printk */
3985
3986#define netif_printk(priv, type, level, dev, fmt, args...) \
3987do { \
3988 if (netif_msg_##type(priv)) \
3989 netdev_printk(level, (dev), fmt, ##args); \
3990} while (0)
3991
3992#define netif_level(level, priv, type, dev, fmt, args...) \
3993do { \
3994 if (netif_msg_##type(priv)) \
3995 netdev_##level(dev, fmt, ##args); \
3996} while (0)
3997
3998#define netif_emerg(priv, type, dev, fmt, args...) \
3999 netif_level(emerg, priv, type, dev, fmt, ##args)
4000#define netif_alert(priv, type, dev, fmt, args...) \
4001 netif_level(alert, priv, type, dev, fmt, ##args)
4002#define netif_crit(priv, type, dev, fmt, args...) \
4003 netif_level(crit, priv, type, dev, fmt, ##args)
4004#define netif_err(priv, type, dev, fmt, args...) \
4005 netif_level(err, priv, type, dev, fmt, ##args)
4006#define netif_warn(priv, type, dev, fmt, args...) \
4007 netif_level(warn, priv, type, dev, fmt, ##args)
4008#define netif_notice(priv, type, dev, fmt, args...) \
4009 netif_level(notice, priv, type, dev, fmt, ##args)
4010#define netif_info(priv, type, dev, fmt, args...) \
4011 netif_level(info, priv, type, dev, fmt, ##args)
4012
4013#if defined(CONFIG_DYNAMIC_DEBUG)
4014#define netif_dbg(priv, type, netdev, format, args...) \
4015do { \
4016 if (netif_msg_##type(priv)) \
4017 dynamic_netdev_dbg(netdev, format, ##args); \
4018} while (0)
4019#elif defined(DEBUG)
4020#define netif_dbg(priv, type, dev, format, args...) \
4021 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4022#else
4023#define netif_dbg(priv, type, dev, format, args...) \
4024({ \
4025 if (0) \
4026 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4027 0; \
4028})
4029#endif
4030
4031#if defined(VERBOSE_DEBUG)
4032#define netif_vdbg netif_dbg
4033#else
4034#define netif_vdbg(priv, type, dev, format, args...) \
4035({ \
4036 if (0) \
4037 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4038 0; \
4039})
4040#endif
4041
4042/*
4043 * The list of packet types we will receive (as opposed to discard)
4044 * and the routines to invoke.
4045 *
4046 * Why 16. Because with 16 the only overlap we get on a hash of the
4047 * low nibble of the protocol value is RARP/SNAP/X.25.
4048 *
4049 * NOTE: That is no longer true with the addition of VLAN tags. Not
4050 * sure which should go first, but I bet it won't make much
4051 * difference if we are running VLANs. The good news is that
4052 * this protocol won't be in the list unless compiled in, so
4053 * the average user (w/out VLANs) will not be adversely affected.
4054 * --BLG
4055 *
4056 * 0800 IP
4057 * 8100 802.1Q VLAN
4058 * 0001 802.3
4059 * 0002 AX.25
4060 * 0004 802.2
4061 * 8035 RARP
4062 * 0005 SNAP
4063 * 0805 X.25
4064 * 0806 ARP
4065 * 8137 IPX
4066 * 0009 Localtalk
4067 * 86DD IPv6
4068 */
4069#define PTYPE_HASH_SIZE (16)
4070#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4071
4072#endif /* _LINUX_NETDEVICE_H */