]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - include/linux/netdevice.h
bridge: convert flags in fbd entry into bitfields
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <linux/prefetch.h>
34#include <asm/cache.h>
35#include <asm/byteorder.h>
36
37#include <linux/percpu.h>
38#include <linux/rculist.h>
39#include <linux/dmaengine.h>
40#include <linux/workqueue.h>
41#include <linux/dynamic_queue_limits.h>
42
43#include <linux/ethtool.h>
44#include <net/net_namespace.h>
45#include <net/dsa.h>
46#ifdef CONFIG_DCB
47#include <net/dcbnl.h>
48#endif
49#include <net/netprio_cgroup.h>
50
51#include <linux/netdev_features.h>
52#include <linux/neighbour.h>
53#include <uapi/linux/netdevice.h>
54
55struct netpoll_info;
56struct device;
57struct phy_device;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62
63void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66/* Backlog congestion levels */
67#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
68#define NET_RX_DROP 1 /* packet dropped */
69
70/*
71 * Transmit return codes: transmit return codes originate from three different
72 * namespaces:
73 *
74 * - qdisc return codes
75 * - driver transmit return codes
76 * - errno values
77 *
78 * Drivers are allowed to return any one of those in their hard_start_xmit()
79 * function. Real network devices commonly used with qdiscs should only return
80 * the driver transmit return codes though - when qdiscs are used, the actual
81 * transmission happens asynchronously, so the value is not propagated to
82 * higher layers. Virtual network devices transmit synchronously, in this case
83 * the driver transmit return codes are consumed by dev_queue_xmit(), all
84 * others are propagated to higher layers.
85 */
86
87/* qdisc ->enqueue() return codes. */
88#define NET_XMIT_SUCCESS 0x00
89#define NET_XMIT_DROP 0x01 /* skb dropped */
90#define NET_XMIT_CN 0x02 /* congestion notification */
91#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
92#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
93
94/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
95 * indicates that the device will soon be dropping packets, or already drops
96 * some packets of the same priority; prompting us to send less aggressively. */
97#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
98#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
99
100/* Driver transmit return codes */
101#define NETDEV_TX_MASK 0xf0
102
103enum netdev_tx {
104 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
105 NETDEV_TX_OK = 0x00, /* driver took care of packet */
106 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
107 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
108};
109typedef enum netdev_tx netdev_tx_t;
110
111/*
112 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114 */
115static inline bool dev_xmit_complete(int rc)
116{
117 /*
118 * Positive cases with an skb consumed by a driver:
119 * - successful transmission (rc == NETDEV_TX_OK)
120 * - error while transmitting (rc < 0)
121 * - error while queueing to a different device (rc & NET_XMIT_MASK)
122 */
123 if (likely(rc < NET_XMIT_MASK))
124 return true;
125
126 return false;
127}
128
129/*
130 * Compute the worst case header length according to the protocols
131 * used.
132 */
133
134#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135# if defined(CONFIG_MAC80211_MESH)
136# define LL_MAX_HEADER 128
137# else
138# define LL_MAX_HEADER 96
139# endif
140#else
141# define LL_MAX_HEADER 32
142#endif
143
144#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146#define MAX_HEADER LL_MAX_HEADER
147#else
148#define MAX_HEADER (LL_MAX_HEADER + 48)
149#endif
150
151/*
152 * Old network device statistics. Fields are native words
153 * (unsigned long) so they can be read and written atomically.
154 */
155
156struct net_device_stats {
157 unsigned long rx_packets;
158 unsigned long tx_packets;
159 unsigned long rx_bytes;
160 unsigned long tx_bytes;
161 unsigned long rx_errors;
162 unsigned long tx_errors;
163 unsigned long rx_dropped;
164 unsigned long tx_dropped;
165 unsigned long multicast;
166 unsigned long collisions;
167 unsigned long rx_length_errors;
168 unsigned long rx_over_errors;
169 unsigned long rx_crc_errors;
170 unsigned long rx_frame_errors;
171 unsigned long rx_fifo_errors;
172 unsigned long rx_missed_errors;
173 unsigned long tx_aborted_errors;
174 unsigned long tx_carrier_errors;
175 unsigned long tx_fifo_errors;
176 unsigned long tx_heartbeat_errors;
177 unsigned long tx_window_errors;
178 unsigned long rx_compressed;
179 unsigned long tx_compressed;
180};
181
182
183#include <linux/cache.h>
184#include <linux/skbuff.h>
185
186#ifdef CONFIG_RPS
187#include <linux/static_key.h>
188extern struct static_key rps_needed;
189#endif
190
191struct neighbour;
192struct neigh_parms;
193struct sk_buff;
194
195struct netdev_hw_addr {
196 struct list_head list;
197 unsigned char addr[MAX_ADDR_LEN];
198 unsigned char type;
199#define NETDEV_HW_ADDR_T_LAN 1
200#define NETDEV_HW_ADDR_T_SAN 2
201#define NETDEV_HW_ADDR_T_SLAVE 3
202#define NETDEV_HW_ADDR_T_UNICAST 4
203#define NETDEV_HW_ADDR_T_MULTICAST 5
204 bool global_use;
205 int sync_cnt;
206 int refcount;
207 int synced;
208 struct rcu_head rcu_head;
209};
210
211struct netdev_hw_addr_list {
212 struct list_head list;
213 int count;
214};
215
216#define netdev_hw_addr_list_count(l) ((l)->count)
217#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218#define netdev_hw_addr_list_for_each(ha, l) \
219 list_for_each_entry(ha, &(l)->list, list)
220
221#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223#define netdev_for_each_uc_addr(ha, dev) \
224 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225
226#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228#define netdev_for_each_mc_addr(ha, dev) \
229 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230
231struct hh_cache {
232 u16 hh_len;
233 u16 __pad;
234 seqlock_t hh_lock;
235
236 /* cached hardware header; allow for machine alignment needs. */
237#define HH_DATA_MOD 16
238#define HH_DATA_OFF(__len) \
239 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240#define HH_DATA_ALIGN(__len) \
241 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243};
244
245/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246 * Alternative is:
247 * dev->hard_header_len ? (dev->hard_header_len +
248 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249 *
250 * We could use other alignment values, but we must maintain the
251 * relationship HH alignment <= LL alignment.
252 */
253#define LL_RESERVED_SPACE(dev) \
254 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257
258struct header_ops {
259 int (*create) (struct sk_buff *skb, struct net_device *dev,
260 unsigned short type, const void *daddr,
261 const void *saddr, unsigned int len);
262 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
263 int (*rebuild)(struct sk_buff *skb);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268};
269
270/* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281};
282
283
284/*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291};
292#define NETDEV_BOOT_SETUP_MAX 8
293
294int __init netdev_boot_setup(char *str);
295
296/*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312#ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315#endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323};
324
325enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330};
331
332enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338};
339typedef enum gro_result gro_result_t;
340
341/*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387};
388typedef enum rx_handler_result rx_handler_result_t;
389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391void __napi_schedule(struct napi_struct *n);
392void __napi_schedule_irqoff(struct napi_struct *n);
393
394static inline bool napi_disable_pending(struct napi_struct *n)
395{
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397}
398
399/**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408static inline bool napi_schedule_prep(struct napi_struct *n)
409{
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412}
413
414/**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421static inline void napi_schedule(struct napi_struct *n)
422{
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425}
426
427/**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433static inline void napi_schedule_irqoff(struct napi_struct *n)
434{
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437}
438
439/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440static inline bool napi_reschedule(struct napi_struct *napi)
441{
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447}
448
449void __napi_complete(struct napi_struct *n);
450void napi_complete_done(struct napi_struct *n, int work_done);
451/**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458static inline void napi_complete(struct napi_struct *n)
459{
460 return napi_complete_done(n, 0);
461}
462
463/**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470struct napi_struct *napi_by_id(unsigned int napi_id);
471
472/**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478void napi_hash_add(struct napi_struct *napi);
479
480/**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487void napi_hash_del(struct napi_struct *napi);
488
489/**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496void napi_disable(struct napi_struct *n);
497
498/**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505static inline void napi_enable(struct napi_struct *n)
506{
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510}
511
512#ifdef CONFIG_SMP
513/**
514 * napi_synchronize - wait until NAPI is not running
515 * @n: napi context
516 *
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
520 */
521static inline void napi_synchronize(const struct napi_struct *n)
522{
523 while (test_bit(NAPI_STATE_SCHED, &n->state))
524 msleep(1);
525}
526#else
527# define napi_synchronize(n) barrier()
528#endif
529
530enum netdev_queue_state_t {
531 __QUEUE_STATE_DRV_XOFF,
532 __QUEUE_STATE_STACK_XOFF,
533 __QUEUE_STATE_FROZEN,
534};
535
536#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
537#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
538#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
539
540#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 QUEUE_STATE_FROZEN)
543#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 QUEUE_STATE_FROZEN)
545
546/*
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
548 * netif_tx_* functions below are used to manipulate this flag. The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently. The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state). Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
554 */
555
556struct netdev_queue {
557/*
558 * read mostly part
559 */
560 struct net_device *dev;
561 struct Qdisc __rcu *qdisc;
562 struct Qdisc *qdisc_sleeping;
563#ifdef CONFIG_SYSFS
564 struct kobject kobj;
565#endif
566#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 int numa_node;
568#endif
569/*
570 * write mostly part
571 */
572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
573 int xmit_lock_owner;
574 /*
575 * please use this field instead of dev->trans_start
576 */
577 unsigned long trans_start;
578
579 /*
580 * Number of TX timeouts for this queue
581 * (/sys/class/net/DEV/Q/trans_timeout)
582 */
583 unsigned long trans_timeout;
584
585 unsigned long state;
586
587#ifdef CONFIG_BQL
588 struct dql dql;
589#endif
590} ____cacheline_aligned_in_smp;
591
592static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
593{
594#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 return q->numa_node;
596#else
597 return NUMA_NO_NODE;
598#endif
599}
600
601static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
602{
603#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 q->numa_node = node;
605#endif
606}
607
608#ifdef CONFIG_RPS
609/*
610 * This structure holds an RPS map which can be of variable length. The
611 * map is an array of CPUs.
612 */
613struct rps_map {
614 unsigned int len;
615 struct rcu_head rcu;
616 u16 cpus[0];
617};
618#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
619
620/*
621 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
622 * tail pointer for that CPU's input queue at the time of last enqueue, and
623 * a hardware filter index.
624 */
625struct rps_dev_flow {
626 u16 cpu;
627 u16 filter;
628 unsigned int last_qtail;
629};
630#define RPS_NO_FILTER 0xffff
631
632/*
633 * The rps_dev_flow_table structure contains a table of flow mappings.
634 */
635struct rps_dev_flow_table {
636 unsigned int mask;
637 struct rcu_head rcu;
638 struct rps_dev_flow flows[0];
639};
640#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
641 ((_num) * sizeof(struct rps_dev_flow)))
642
643/*
644 * The rps_sock_flow_table contains mappings of flows to the last CPU
645 * on which they were processed by the application (set in recvmsg).
646 */
647struct rps_sock_flow_table {
648 unsigned int mask;
649 u16 ents[0];
650};
651#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
652 ((_num) * sizeof(u16)))
653
654#define RPS_NO_CPU 0xffff
655
656static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
657 u32 hash)
658{
659 if (table && hash) {
660 unsigned int cpu, index = hash & table->mask;
661
662 /* We only give a hint, preemption can change cpu under us */
663 cpu = raw_smp_processor_id();
664
665 if (table->ents[index] != cpu)
666 table->ents[index] = cpu;
667 }
668}
669
670static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672{
673 if (table && hash)
674 table->ents[hash & table->mask] = RPS_NO_CPU;
675}
676
677extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
678
679#ifdef CONFIG_RFS_ACCEL
680bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
681 u16 filter_id);
682#endif
683#endif /* CONFIG_RPS */
684
685/* This structure contains an instance of an RX queue. */
686struct netdev_rx_queue {
687#ifdef CONFIG_RPS
688 struct rps_map __rcu *rps_map;
689 struct rps_dev_flow_table __rcu *rps_flow_table;
690#endif
691 struct kobject kobj;
692 struct net_device *dev;
693} ____cacheline_aligned_in_smp;
694
695/*
696 * RX queue sysfs structures and functions.
697 */
698struct rx_queue_attribute {
699 struct attribute attr;
700 ssize_t (*show)(struct netdev_rx_queue *queue,
701 struct rx_queue_attribute *attr, char *buf);
702 ssize_t (*store)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, const char *buf, size_t len);
704};
705
706#ifdef CONFIG_XPS
707/*
708 * This structure holds an XPS map which can be of variable length. The
709 * map is an array of queues.
710 */
711struct xps_map {
712 unsigned int len;
713 unsigned int alloc_len;
714 struct rcu_head rcu;
715 u16 queues[0];
716};
717#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
718#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
719 / sizeof(u16))
720
721/*
722 * This structure holds all XPS maps for device. Maps are indexed by CPU.
723 */
724struct xps_dev_maps {
725 struct rcu_head rcu;
726 struct xps_map __rcu *cpu_map[0];
727};
728#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
729 (nr_cpu_ids * sizeof(struct xps_map *)))
730#endif /* CONFIG_XPS */
731
732#define TC_MAX_QUEUE 16
733#define TC_BITMASK 15
734/* HW offloaded queuing disciplines txq count and offset maps */
735struct netdev_tc_txq {
736 u16 count;
737 u16 offset;
738};
739
740#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
741/*
742 * This structure is to hold information about the device
743 * configured to run FCoE protocol stack.
744 */
745struct netdev_fcoe_hbainfo {
746 char manufacturer[64];
747 char serial_number[64];
748 char hardware_version[64];
749 char driver_version[64];
750 char optionrom_version[64];
751 char firmware_version[64];
752 char model[256];
753 char model_description[256];
754};
755#endif
756
757#define MAX_PHYS_PORT_ID_LEN 32
758
759/* This structure holds a unique identifier to identify the
760 * physical port used by a netdevice.
761 */
762struct netdev_phys_port_id {
763 unsigned char id[MAX_PHYS_PORT_ID_LEN];
764 unsigned char id_len;
765};
766
767typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
768 struct sk_buff *skb);
769
770/*
771 * This structure defines the management hooks for network devices.
772 * The following hooks can be defined; unless noted otherwise, they are
773 * optional and can be filled with a null pointer.
774 *
775 * int (*ndo_init)(struct net_device *dev);
776 * This function is called once when network device is registered.
777 * The network device can use this to any late stage initializaton
778 * or semantic validattion. It can fail with an error code which will
779 * be propogated back to register_netdev
780 *
781 * void (*ndo_uninit)(struct net_device *dev);
782 * This function is called when device is unregistered or when registration
783 * fails. It is not called if init fails.
784 *
785 * int (*ndo_open)(struct net_device *dev);
786 * This function is called when network device transistions to the up
787 * state.
788 *
789 * int (*ndo_stop)(struct net_device *dev);
790 * This function is called when network device transistions to the down
791 * state.
792 *
793 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
794 * struct net_device *dev);
795 * Called when a packet needs to be transmitted.
796 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
797 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
798 * Required can not be NULL.
799 *
800 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
801 * void *accel_priv, select_queue_fallback_t fallback);
802 * Called to decide which queue to when device supports multiple
803 * transmit queues.
804 *
805 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
806 * This function is called to allow device receiver to make
807 * changes to configuration when multicast or promiscious is enabled.
808 *
809 * void (*ndo_set_rx_mode)(struct net_device *dev);
810 * This function is called device changes address list filtering.
811 * If driver handles unicast address filtering, it should set
812 * IFF_UNICAST_FLT to its priv_flags.
813 *
814 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
815 * This function is called when the Media Access Control address
816 * needs to be changed. If this interface is not defined, the
817 * mac address can not be changed.
818 *
819 * int (*ndo_validate_addr)(struct net_device *dev);
820 * Test if Media Access Control address is valid for the device.
821 *
822 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
823 * Called when a user request an ioctl which can't be handled by
824 * the generic interface code. If not defined ioctl's return
825 * not supported error code.
826 *
827 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
828 * Used to set network devices bus interface parameters. This interface
829 * is retained for legacy reason, new devices should use the bus
830 * interface (PCI) for low level management.
831 *
832 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
833 * Called when a user wants to change the Maximum Transfer Unit
834 * of a device. If not defined, any request to change MTU will
835 * will return an error.
836 *
837 * void (*ndo_tx_timeout)(struct net_device *dev);
838 * Callback uses when the transmitter has not made any progress
839 * for dev->watchdog ticks.
840 *
841 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
842 * struct rtnl_link_stats64 *storage);
843 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
844 * Called when a user wants to get the network device usage
845 * statistics. Drivers must do one of the following:
846 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
847 * rtnl_link_stats64 structure passed by the caller.
848 * 2. Define @ndo_get_stats to update a net_device_stats structure
849 * (which should normally be dev->stats) and return a pointer to
850 * it. The structure may be changed asynchronously only if each
851 * field is written atomically.
852 * 3. Update dev->stats asynchronously and atomically, and define
853 * neither operation.
854 *
855 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
856 * If device support VLAN filtering this function is called when a
857 * VLAN id is registered.
858 *
859 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
860 * If device support VLAN filtering this function is called when a
861 * VLAN id is unregistered.
862 *
863 * void (*ndo_poll_controller)(struct net_device *dev);
864 *
865 * SR-IOV management functions.
866 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
867 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
868 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
869 * int max_tx_rate);
870 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
871 * int (*ndo_get_vf_config)(struct net_device *dev,
872 * int vf, struct ifla_vf_info *ivf);
873 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
874 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
875 * struct nlattr *port[]);
876 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
877 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
878 * Called to setup 'tc' number of traffic classes in the net device. This
879 * is always called from the stack with the rtnl lock held and netif tx
880 * queues stopped. This allows the netdevice to perform queue management
881 * safely.
882 *
883 * Fiber Channel over Ethernet (FCoE) offload functions.
884 * int (*ndo_fcoe_enable)(struct net_device *dev);
885 * Called when the FCoE protocol stack wants to start using LLD for FCoE
886 * so the underlying device can perform whatever needed configuration or
887 * initialization to support acceleration of FCoE traffic.
888 *
889 * int (*ndo_fcoe_disable)(struct net_device *dev);
890 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
891 * so the underlying device can perform whatever needed clean-ups to
892 * stop supporting acceleration of FCoE traffic.
893 *
894 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
895 * struct scatterlist *sgl, unsigned int sgc);
896 * Called when the FCoE Initiator wants to initialize an I/O that
897 * is a possible candidate for Direct Data Placement (DDP). The LLD can
898 * perform necessary setup and returns 1 to indicate the device is set up
899 * successfully to perform DDP on this I/O, otherwise this returns 0.
900 *
901 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
902 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
903 * indicated by the FC exchange id 'xid', so the underlying device can
904 * clean up and reuse resources for later DDP requests.
905 *
906 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
907 * struct scatterlist *sgl, unsigned int sgc);
908 * Called when the FCoE Target wants to initialize an I/O that
909 * is a possible candidate for Direct Data Placement (DDP). The LLD can
910 * perform necessary setup and returns 1 to indicate the device is set up
911 * successfully to perform DDP on this I/O, otherwise this returns 0.
912 *
913 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
914 * struct netdev_fcoe_hbainfo *hbainfo);
915 * Called when the FCoE Protocol stack wants information on the underlying
916 * device. This information is utilized by the FCoE protocol stack to
917 * register attributes with Fiber Channel management service as per the
918 * FC-GS Fabric Device Management Information(FDMI) specification.
919 *
920 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
921 * Called when the underlying device wants to override default World Wide
922 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
923 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
924 * protocol stack to use.
925 *
926 * RFS acceleration.
927 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
928 * u16 rxq_index, u32 flow_id);
929 * Set hardware filter for RFS. rxq_index is the target queue index;
930 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
931 * Return the filter ID on success, or a negative error code.
932 *
933 * Slave management functions (for bridge, bonding, etc).
934 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
935 * Called to make another netdev an underling.
936 *
937 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
938 * Called to release previously enslaved netdev.
939 *
940 * Feature/offload setting functions.
941 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
942 * netdev_features_t features);
943 * Adjusts the requested feature flags according to device-specific
944 * constraints, and returns the resulting flags. Must not modify
945 * the device state.
946 *
947 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
948 * Called to update device configuration to new features. Passed
949 * feature set might be less than what was returned by ndo_fix_features()).
950 * Must return >0 or -errno if it changed dev->features itself.
951 *
952 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
953 * struct net_device *dev,
954 * const unsigned char *addr, u16 flags)
955 * Adds an FDB entry to dev for addr.
956 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
957 * struct net_device *dev,
958 * const unsigned char *addr)
959 * Deletes the FDB entry from dev coresponding to addr.
960 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
961 * struct net_device *dev, struct net_device *filter_dev,
962 * int idx)
963 * Used to add FDB entries to dump requests. Implementers should add
964 * entries to skb and update idx with the number of entries.
965 *
966 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
967 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
968 * struct net_device *dev, u32 filter_mask)
969 *
970 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
971 * Called to change device carrier. Soft-devices (like dummy, team, etc)
972 * which do not represent real hardware may define this to allow their
973 * userspace components to manage their virtual carrier state. Devices
974 * that determine carrier state from physical hardware properties (eg
975 * network cables) or protocol-dependent mechanisms (eg
976 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
977 *
978 * int (*ndo_get_phys_port_id)(struct net_device *dev,
979 * struct netdev_phys_port_id *ppid);
980 * Called to get ID of physical port of this device. If driver does
981 * not implement this, it is assumed that the hw is not able to have
982 * multiple net devices on single physical port.
983 *
984 * void (*ndo_add_vxlan_port)(struct net_device *dev,
985 * sa_family_t sa_family, __be16 port);
986 * Called by vxlan to notiy a driver about the UDP port and socket
987 * address family that vxlan is listnening to. It is called only when
988 * a new port starts listening. The operation is protected by the
989 * vxlan_net->sock_lock.
990 *
991 * void (*ndo_del_vxlan_port)(struct net_device *dev,
992 * sa_family_t sa_family, __be16 port);
993 * Called by vxlan to notify the driver about a UDP port and socket
994 * address family that vxlan is not listening to anymore. The operation
995 * is protected by the vxlan_net->sock_lock.
996 *
997 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
998 * struct net_device *dev)
999 * Called by upper layer devices to accelerate switching or other
1000 * station functionality into hardware. 'pdev is the lowerdev
1001 * to use for the offload and 'dev' is the net device that will
1002 * back the offload. Returns a pointer to the private structure
1003 * the upper layer will maintain.
1004 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1005 * Called by upper layer device to delete the station created
1006 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1007 * the station and priv is the structure returned by the add
1008 * operation.
1009 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1010 * struct net_device *dev,
1011 * void *priv);
1012 * Callback to use for xmit over the accelerated station. This
1013 * is used in place of ndo_start_xmit on accelerated net
1014 * devices.
1015 * bool (*ndo_gso_check) (struct sk_buff *skb,
1016 * struct net_device *dev);
1017 * Called by core transmit path to determine if device is capable of
1018 * performing GSO on a packet. The device returns true if it is
1019 * able to GSO the packet, false otherwise. If the return value is
1020 * false the stack will do software GSO.
1021 */
1022struct net_device_ops {
1023 int (*ndo_init)(struct net_device *dev);
1024 void (*ndo_uninit)(struct net_device *dev);
1025 int (*ndo_open)(struct net_device *dev);
1026 int (*ndo_stop)(struct net_device *dev);
1027 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1028 struct net_device *dev);
1029 u16 (*ndo_select_queue)(struct net_device *dev,
1030 struct sk_buff *skb,
1031 void *accel_priv,
1032 select_queue_fallback_t fallback);
1033 void (*ndo_change_rx_flags)(struct net_device *dev,
1034 int flags);
1035 void (*ndo_set_rx_mode)(struct net_device *dev);
1036 int (*ndo_set_mac_address)(struct net_device *dev,
1037 void *addr);
1038 int (*ndo_validate_addr)(struct net_device *dev);
1039 int (*ndo_do_ioctl)(struct net_device *dev,
1040 struct ifreq *ifr, int cmd);
1041 int (*ndo_set_config)(struct net_device *dev,
1042 struct ifmap *map);
1043 int (*ndo_change_mtu)(struct net_device *dev,
1044 int new_mtu);
1045 int (*ndo_neigh_setup)(struct net_device *dev,
1046 struct neigh_parms *);
1047 void (*ndo_tx_timeout) (struct net_device *dev);
1048
1049 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1050 struct rtnl_link_stats64 *storage);
1051 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1052
1053 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1054 __be16 proto, u16 vid);
1055 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1056 __be16 proto, u16 vid);
1057#ifdef CONFIG_NET_POLL_CONTROLLER
1058 void (*ndo_poll_controller)(struct net_device *dev);
1059 int (*ndo_netpoll_setup)(struct net_device *dev,
1060 struct netpoll_info *info);
1061 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1062#endif
1063#ifdef CONFIG_NET_RX_BUSY_POLL
1064 int (*ndo_busy_poll)(struct napi_struct *dev);
1065#endif
1066 int (*ndo_set_vf_mac)(struct net_device *dev,
1067 int queue, u8 *mac);
1068 int (*ndo_set_vf_vlan)(struct net_device *dev,
1069 int queue, u16 vlan, u8 qos);
1070 int (*ndo_set_vf_rate)(struct net_device *dev,
1071 int vf, int min_tx_rate,
1072 int max_tx_rate);
1073 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1074 int vf, bool setting);
1075 int (*ndo_get_vf_config)(struct net_device *dev,
1076 int vf,
1077 struct ifla_vf_info *ivf);
1078 int (*ndo_set_vf_link_state)(struct net_device *dev,
1079 int vf, int link_state);
1080 int (*ndo_set_vf_port)(struct net_device *dev,
1081 int vf,
1082 struct nlattr *port[]);
1083 int (*ndo_get_vf_port)(struct net_device *dev,
1084 int vf, struct sk_buff *skb);
1085 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1086#if IS_ENABLED(CONFIG_FCOE)
1087 int (*ndo_fcoe_enable)(struct net_device *dev);
1088 int (*ndo_fcoe_disable)(struct net_device *dev);
1089 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1090 u16 xid,
1091 struct scatterlist *sgl,
1092 unsigned int sgc);
1093 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1094 u16 xid);
1095 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1096 u16 xid,
1097 struct scatterlist *sgl,
1098 unsigned int sgc);
1099 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1100 struct netdev_fcoe_hbainfo *hbainfo);
1101#endif
1102
1103#if IS_ENABLED(CONFIG_LIBFCOE)
1104#define NETDEV_FCOE_WWNN 0
1105#define NETDEV_FCOE_WWPN 1
1106 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1107 u64 *wwn, int type);
1108#endif
1109
1110#ifdef CONFIG_RFS_ACCEL
1111 int (*ndo_rx_flow_steer)(struct net_device *dev,
1112 const struct sk_buff *skb,
1113 u16 rxq_index,
1114 u32 flow_id);
1115#endif
1116 int (*ndo_add_slave)(struct net_device *dev,
1117 struct net_device *slave_dev);
1118 int (*ndo_del_slave)(struct net_device *dev,
1119 struct net_device *slave_dev);
1120 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1121 netdev_features_t features);
1122 int (*ndo_set_features)(struct net_device *dev,
1123 netdev_features_t features);
1124 int (*ndo_neigh_construct)(struct neighbour *n);
1125 void (*ndo_neigh_destroy)(struct neighbour *n);
1126
1127 int (*ndo_fdb_add)(struct ndmsg *ndm,
1128 struct nlattr *tb[],
1129 struct net_device *dev,
1130 const unsigned char *addr,
1131 u16 flags);
1132 int (*ndo_fdb_del)(struct ndmsg *ndm,
1133 struct nlattr *tb[],
1134 struct net_device *dev,
1135 const unsigned char *addr);
1136 int (*ndo_fdb_dump)(struct sk_buff *skb,
1137 struct netlink_callback *cb,
1138 struct net_device *dev,
1139 struct net_device *filter_dev,
1140 int idx);
1141
1142 int (*ndo_bridge_setlink)(struct net_device *dev,
1143 struct nlmsghdr *nlh);
1144 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1145 u32 pid, u32 seq,
1146 struct net_device *dev,
1147 u32 filter_mask);
1148 int (*ndo_bridge_dellink)(struct net_device *dev,
1149 struct nlmsghdr *nlh);
1150 int (*ndo_change_carrier)(struct net_device *dev,
1151 bool new_carrier);
1152 int (*ndo_get_phys_port_id)(struct net_device *dev,
1153 struct netdev_phys_port_id *ppid);
1154 void (*ndo_add_vxlan_port)(struct net_device *dev,
1155 sa_family_t sa_family,
1156 __be16 port);
1157 void (*ndo_del_vxlan_port)(struct net_device *dev,
1158 sa_family_t sa_family,
1159 __be16 port);
1160
1161 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1162 struct net_device *dev);
1163 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1164 void *priv);
1165
1166 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1167 struct net_device *dev,
1168 void *priv);
1169 int (*ndo_get_lock_subclass)(struct net_device *dev);
1170 bool (*ndo_gso_check) (struct sk_buff *skb,
1171 struct net_device *dev);
1172};
1173
1174/**
1175 * enum net_device_priv_flags - &struct net_device priv_flags
1176 *
1177 * These are the &struct net_device, they are only set internally
1178 * by drivers and used in the kernel. These flags are invisible to
1179 * userspace, this means that the order of these flags can change
1180 * during any kernel release.
1181 *
1182 * You should have a pretty good reason to be extending these flags.
1183 *
1184 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1185 * @IFF_EBRIDGE: Ethernet bridging device
1186 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1187 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1188 * @IFF_MASTER_ALB: bonding master, balance-alb
1189 * @IFF_BONDING: bonding master or slave
1190 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1191 * @IFF_ISATAP: ISATAP interface (RFC4214)
1192 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1193 * @IFF_WAN_HDLC: WAN HDLC device
1194 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1195 * release skb->dst
1196 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1197 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1198 * @IFF_MACVLAN_PORT: device used as macvlan port
1199 * @IFF_BRIDGE_PORT: device used as bridge port
1200 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1201 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1202 * @IFF_UNICAST_FLT: Supports unicast filtering
1203 * @IFF_TEAM_PORT: device used as team port
1204 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1205 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1206 * change when it's running
1207 * @IFF_MACVLAN: Macvlan device
1208 */
1209enum netdev_priv_flags {
1210 IFF_802_1Q_VLAN = 1<<0,
1211 IFF_EBRIDGE = 1<<1,
1212 IFF_SLAVE_INACTIVE = 1<<2,
1213 IFF_MASTER_8023AD = 1<<3,
1214 IFF_MASTER_ALB = 1<<4,
1215 IFF_BONDING = 1<<5,
1216 IFF_SLAVE_NEEDARP = 1<<6,
1217 IFF_ISATAP = 1<<7,
1218 IFF_MASTER_ARPMON = 1<<8,
1219 IFF_WAN_HDLC = 1<<9,
1220 IFF_XMIT_DST_RELEASE = 1<<10,
1221 IFF_DONT_BRIDGE = 1<<11,
1222 IFF_DISABLE_NETPOLL = 1<<12,
1223 IFF_MACVLAN_PORT = 1<<13,
1224 IFF_BRIDGE_PORT = 1<<14,
1225 IFF_OVS_DATAPATH = 1<<15,
1226 IFF_TX_SKB_SHARING = 1<<16,
1227 IFF_UNICAST_FLT = 1<<17,
1228 IFF_TEAM_PORT = 1<<18,
1229 IFF_SUPP_NOFCS = 1<<19,
1230 IFF_LIVE_ADDR_CHANGE = 1<<20,
1231 IFF_MACVLAN = 1<<21,
1232 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1233 IFF_IPVLAN_MASTER = 1<<23,
1234 IFF_IPVLAN_SLAVE = 1<<24,
1235};
1236
1237#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1238#define IFF_EBRIDGE IFF_EBRIDGE
1239#define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1240#define IFF_MASTER_8023AD IFF_MASTER_8023AD
1241#define IFF_MASTER_ALB IFF_MASTER_ALB
1242#define IFF_BONDING IFF_BONDING
1243#define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1244#define IFF_ISATAP IFF_ISATAP
1245#define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1246#define IFF_WAN_HDLC IFF_WAN_HDLC
1247#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1248#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1249#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1250#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1251#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1252#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1253#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1254#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1255#define IFF_TEAM_PORT IFF_TEAM_PORT
1256#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1257#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1258#define IFF_MACVLAN IFF_MACVLAN
1259#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1260#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1261#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1262
1263/**
1264 * struct net_device - The DEVICE structure.
1265 * Actually, this whole structure is a big mistake. It mixes I/O
1266 * data with strictly "high-level" data, and it has to know about
1267 * almost every data structure used in the INET module.
1268 *
1269 * @name: This is the first field of the "visible" part of this structure
1270 * (i.e. as seen by users in the "Space.c" file). It is the name
1271 * of the interface.
1272 *
1273 * @name_hlist: Device name hash chain, please keep it close to name[]
1274 * @ifalias: SNMP alias
1275 * @mem_end: Shared memory end
1276 * @mem_start: Shared memory start
1277 * @base_addr: Device I/O address
1278 * @irq: Device IRQ number
1279 *
1280 * @state: Generic network queuing layer state, see netdev_state_t
1281 * @dev_list: The global list of network devices
1282 * @napi_list: List entry, that is used for polling napi devices
1283 * @unreg_list: List entry, that is used, when we are unregistering the
1284 * device, see the function unregister_netdev
1285 * @close_list: List entry, that is used, when we are closing the device
1286 *
1287 * @adj_list: Directly linked devices, like slaves for bonding
1288 * @all_adj_list: All linked devices, *including* neighbours
1289 * @features: Currently active device features
1290 * @hw_features: User-changeable features
1291 *
1292 * @wanted_features: User-requested features
1293 * @vlan_features: Mask of features inheritable by VLAN devices
1294 *
1295 * @hw_enc_features: Mask of features inherited by encapsulating devices
1296 * This field indicates what encapsulation
1297 * offloads the hardware is capable of doing,
1298 * and drivers will need to set them appropriately.
1299 *
1300 * @mpls_features: Mask of features inheritable by MPLS
1301 *
1302 * @ifindex: interface index
1303 * @iflink: unique device identifier
1304 *
1305 * @stats: Statistics struct, which was left as a legacy, use
1306 * rtnl_link_stats64 instead
1307 *
1308 * @rx_dropped: Dropped packets by core network,
1309 * do not use this in drivers
1310 * @tx_dropped: Dropped packets by core network,
1311 * do not use this in drivers
1312 *
1313 * @carrier_changes: Stats to monitor carrier on<->off transitions
1314 *
1315 * @wireless_handlers: List of functions to handle Wireless Extensions,
1316 * instead of ioctl,
1317 * see <net/iw_handler.h> for details.
1318 * @wireless_data: Instance data managed by the core of wireless extensions
1319 *
1320 * @netdev_ops: Includes several pointers to callbacks,
1321 * if one wants to override the ndo_*() functions
1322 * @ethtool_ops: Management operations
1323 * @fwd_ops: Management operations
1324 * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc
1325 * of Layer 2 headers.
1326 *
1327 * @flags: Interface flags (a la BSD)
1328 * @priv_flags: Like 'flags' but invisible to userspace,
1329 * see if.h for the definitions
1330 * @gflags: Global flags ( kept as legacy )
1331 * @padded: How much padding added by alloc_netdev()
1332 * @operstate: RFC2863 operstate
1333 * @link_mode: Mapping policy to operstate
1334 * @if_port: Selectable AUI, TP, ...
1335 * @dma: DMA channel
1336 * @mtu: Interface MTU value
1337 * @type: Interface hardware type
1338 * @hard_header_len: Hardware header length
1339 *
1340 * @needed_headroom: Extra headroom the hardware may need, but not in all
1341 * cases can this be guaranteed
1342 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1343 * cases can this be guaranteed. Some cases also use
1344 * LL_MAX_HEADER instead to allocate the skb
1345 *
1346 * interface address info:
1347 *
1348 * @perm_addr: Permanent hw address
1349 * @addr_assign_type: Hw address assignment type
1350 * @addr_len: Hardware address length
1351 * @neigh_priv_len; Used in neigh_alloc(),
1352 * initialized only in atm/clip.c
1353 * @dev_id: Used to differentiate devices that share
1354 * the same link layer address
1355 * @dev_port: Used to differentiate devices that share
1356 * the same function
1357 * @addr_list_lock: XXX: need comments on this one
1358 * @uc: unicast mac addresses
1359 * @mc: multicast mac addresses
1360 * @dev_addrs: list of device hw addresses
1361 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1362 * @uc_promisc: Counter, that indicates, that promiscuous mode
1363 * has been enabled due to the need to listen to
1364 * additional unicast addresses in a device that
1365 * does not implement ndo_set_rx_mode()
1366 * @promiscuity: Number of times, the NIC is told to work in
1367 * Promiscuous mode, if it becomes 0 the NIC will
1368 * exit from working in Promiscuous mode
1369 * @allmulti: Counter, enables or disables allmulticast mode
1370 *
1371 * @vlan_info: VLAN info
1372 * @dsa_ptr: dsa specific data
1373 * @tipc_ptr: TIPC specific data
1374 * @atalk_ptr: AppleTalk link
1375 * @ip_ptr: IPv4 specific data
1376 * @dn_ptr: DECnet specific data
1377 * @ip6_ptr: IPv6 specific data
1378 * @ax25_ptr: AX.25 specific data
1379 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1380 *
1381 * @last_rx: Time of last Rx
1382 * @dev_addr: Hw address (before bcast,
1383 * because most packets are unicast)
1384 *
1385 * @_rx: Array of RX queues
1386 * @num_rx_queues: Number of RX queues
1387 * allocated at register_netdev() time
1388 * @real_num_rx_queues: Number of RX queues currently active in device
1389 *
1390 * @rx_handler: handler for received packets
1391 * @rx_handler_data: XXX: need comments on this one
1392 * @ingress_queue: XXX: need comments on this one
1393 * @broadcast: hw bcast address
1394 *
1395 * @_tx: Array of TX queues
1396 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1397 * @real_num_tx_queues: Number of TX queues currently active in device
1398 * @qdisc: Root qdisc from userspace point of view
1399 * @tx_queue_len: Max frames per queue allowed
1400 * @tx_global_lock: XXX: need comments on this one
1401 *
1402 * @xps_maps: XXX: need comments on this one
1403 *
1404 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1405 * indexed by RX queue number. Assigned by driver.
1406 * This must only be set if the ndo_rx_flow_steer
1407 * operation is defined
1408 *
1409 * @trans_start: Time (in jiffies) of last Tx
1410 * @watchdog_timeo: Represents the timeout that is used by
1411 * the watchdog ( see dev_watchdog() )
1412 * @watchdog_timer: List of timers
1413 *
1414 * @pcpu_refcnt: Number of references to this device
1415 * @todo_list: Delayed register/unregister
1416 * @index_hlist: Device index hash chain
1417 * @link_watch_list: XXX: need comments on this one
1418 *
1419 * @reg_state: Register/unregister state machine
1420 * @dismantle: Device is going to be freed
1421 * @rtnl_link_state: This enum represents the phases of creating
1422 * a new link
1423 *
1424 * @destructor: Called from unregister,
1425 * can be used to call free_netdev
1426 * @npinfo: XXX: need comments on this one
1427 * @nd_net: Network namespace this network device is inside
1428 *
1429 * @ml_priv: Mid-layer private
1430 * @lstats: Loopback statistics
1431 * @tstats: Tunnel statistics
1432 * @dstats: Dummy statistics
1433 * @vstats: Virtual ethernet statistics
1434 *
1435 * @garp_port: GARP
1436 * @mrp_port: MRP
1437 *
1438 * @dev: Class/net/name entry
1439 * @sysfs_groups: Space for optional device, statistics and wireless
1440 * sysfs groups
1441 *
1442 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1443 * @rtnl_link_ops: Rtnl_link_ops
1444 *
1445 * @gso_max_size: Maximum size of generic segmentation offload
1446 * @gso_max_segs: Maximum number of segments that can be passed to the
1447 * NIC for GSO
1448 * @gso_min_segs: Minimum number of segments that can be passed to the
1449 * NIC for GSO
1450 *
1451 * @dcbnl_ops: Data Center Bridging netlink ops
1452 * @num_tc: Number of traffic classes in the net device
1453 * @tc_to_txq: XXX: need comments on this one
1454 * @prio_tc_map XXX: need comments on this one
1455 *
1456 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1457 *
1458 * @priomap: XXX: need comments on this one
1459 * @phydev: Physical device may attach itself
1460 * for hardware timestamping
1461 *
1462 * @qdisc_tx_busylock: XXX: need comments on this one
1463 *
1464 * @group: The group, that the device belongs to
1465 * @pm_qos_req: Power Management QoS object
1466 *
1467 * FIXME: cleanup struct net_device such that network protocol info
1468 * moves out.
1469 */
1470
1471struct net_device {
1472 char name[IFNAMSIZ];
1473 struct hlist_node name_hlist;
1474 char *ifalias;
1475 /*
1476 * I/O specific fields
1477 * FIXME: Merge these and struct ifmap into one
1478 */
1479 unsigned long mem_end;
1480 unsigned long mem_start;
1481 unsigned long base_addr;
1482 int irq;
1483
1484 /*
1485 * Some hardware also needs these fields (state,dev_list,
1486 * napi_list,unreg_list,close_list) but they are not
1487 * part of the usual set specified in Space.c.
1488 */
1489
1490 unsigned long state;
1491
1492 struct list_head dev_list;
1493 struct list_head napi_list;
1494 struct list_head unreg_list;
1495 struct list_head close_list;
1496
1497 struct {
1498 struct list_head upper;
1499 struct list_head lower;
1500 } adj_list;
1501
1502 struct {
1503 struct list_head upper;
1504 struct list_head lower;
1505 } all_adj_list;
1506
1507 netdev_features_t features;
1508 netdev_features_t hw_features;
1509 netdev_features_t wanted_features;
1510 netdev_features_t vlan_features;
1511 netdev_features_t hw_enc_features;
1512 netdev_features_t mpls_features;
1513
1514 int ifindex;
1515 int iflink;
1516
1517 struct net_device_stats stats;
1518
1519 atomic_long_t rx_dropped;
1520 atomic_long_t tx_dropped;
1521
1522 atomic_t carrier_changes;
1523
1524#ifdef CONFIG_WIRELESS_EXT
1525 const struct iw_handler_def * wireless_handlers;
1526 struct iw_public_data * wireless_data;
1527#endif
1528 const struct net_device_ops *netdev_ops;
1529 const struct ethtool_ops *ethtool_ops;
1530 const struct forwarding_accel_ops *fwd_ops;
1531
1532 const struct header_ops *header_ops;
1533
1534 unsigned int flags;
1535 unsigned int priv_flags;
1536
1537 unsigned short gflags;
1538 unsigned short padded;
1539
1540 unsigned char operstate;
1541 unsigned char link_mode;
1542
1543 unsigned char if_port;
1544 unsigned char dma;
1545
1546 unsigned int mtu;
1547 unsigned short type;
1548 unsigned short hard_header_len;
1549
1550 unsigned short needed_headroom;
1551 unsigned short needed_tailroom;
1552
1553 /* Interface address info. */
1554 unsigned char perm_addr[MAX_ADDR_LEN];
1555 unsigned char addr_assign_type;
1556 unsigned char addr_len;
1557 unsigned short neigh_priv_len;
1558 unsigned short dev_id;
1559 unsigned short dev_port;
1560 spinlock_t addr_list_lock;
1561 struct netdev_hw_addr_list uc;
1562 struct netdev_hw_addr_list mc;
1563 struct netdev_hw_addr_list dev_addrs;
1564
1565#ifdef CONFIG_SYSFS
1566 struct kset *queues_kset;
1567#endif
1568
1569 unsigned char name_assign_type;
1570
1571 bool uc_promisc;
1572 unsigned int promiscuity;
1573 unsigned int allmulti;
1574
1575
1576 /* Protocol specific pointers */
1577
1578#if IS_ENABLED(CONFIG_VLAN_8021Q)
1579 struct vlan_info __rcu *vlan_info;
1580#endif
1581#if IS_ENABLED(CONFIG_NET_DSA)
1582 struct dsa_switch_tree *dsa_ptr;
1583#endif
1584#if IS_ENABLED(CONFIG_TIPC)
1585 struct tipc_bearer __rcu *tipc_ptr;
1586#endif
1587 void *atalk_ptr;
1588 struct in_device __rcu *ip_ptr;
1589 struct dn_dev __rcu *dn_ptr;
1590 struct inet6_dev __rcu *ip6_ptr;
1591 void *ax25_ptr;
1592 struct wireless_dev *ieee80211_ptr;
1593 struct wpan_dev *ieee802154_ptr;
1594
1595/*
1596 * Cache lines mostly used on receive path (including eth_type_trans())
1597 */
1598 unsigned long last_rx;
1599
1600 /* Interface address info used in eth_type_trans() */
1601 unsigned char *dev_addr;
1602
1603
1604#ifdef CONFIG_SYSFS
1605 struct netdev_rx_queue *_rx;
1606
1607 unsigned int num_rx_queues;
1608 unsigned int real_num_rx_queues;
1609
1610#endif
1611
1612 unsigned long gro_flush_timeout;
1613 rx_handler_func_t __rcu *rx_handler;
1614 void __rcu *rx_handler_data;
1615
1616 struct netdev_queue __rcu *ingress_queue;
1617 unsigned char broadcast[MAX_ADDR_LEN];
1618
1619
1620/*
1621 * Cache lines mostly used on transmit path
1622 */
1623 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1624 unsigned int num_tx_queues;
1625 unsigned int real_num_tx_queues;
1626 struct Qdisc *qdisc;
1627 unsigned long tx_queue_len;
1628 spinlock_t tx_global_lock;
1629
1630#ifdef CONFIG_XPS
1631 struct xps_dev_maps __rcu *xps_maps;
1632#endif
1633#ifdef CONFIG_RFS_ACCEL
1634 struct cpu_rmap *rx_cpu_rmap;
1635#endif
1636
1637 /* These may be needed for future network-power-down code. */
1638
1639 /*
1640 * trans_start here is expensive for high speed devices on SMP,
1641 * please use netdev_queue->trans_start instead.
1642 */
1643 unsigned long trans_start;
1644
1645 int watchdog_timeo;
1646 struct timer_list watchdog_timer;
1647
1648 int __percpu *pcpu_refcnt;
1649 struct list_head todo_list;
1650
1651 struct hlist_node index_hlist;
1652 struct list_head link_watch_list;
1653
1654 enum { NETREG_UNINITIALIZED=0,
1655 NETREG_REGISTERED, /* completed register_netdevice */
1656 NETREG_UNREGISTERING, /* called unregister_netdevice */
1657 NETREG_UNREGISTERED, /* completed unregister todo */
1658 NETREG_RELEASED, /* called free_netdev */
1659 NETREG_DUMMY, /* dummy device for NAPI poll */
1660 } reg_state:8;
1661
1662 bool dismantle;
1663
1664 enum {
1665 RTNL_LINK_INITIALIZED,
1666 RTNL_LINK_INITIALIZING,
1667 } rtnl_link_state:16;
1668
1669 void (*destructor)(struct net_device *dev);
1670
1671#ifdef CONFIG_NETPOLL
1672 struct netpoll_info __rcu *npinfo;
1673#endif
1674
1675#ifdef CONFIG_NET_NS
1676 struct net *nd_net;
1677#endif
1678
1679 /* mid-layer private */
1680 union {
1681 void *ml_priv;
1682 struct pcpu_lstats __percpu *lstats;
1683 struct pcpu_sw_netstats __percpu *tstats;
1684 struct pcpu_dstats __percpu *dstats;
1685 struct pcpu_vstats __percpu *vstats;
1686 };
1687
1688 struct garp_port __rcu *garp_port;
1689 struct mrp_port __rcu *mrp_port;
1690
1691 struct device dev;
1692 const struct attribute_group *sysfs_groups[4];
1693 const struct attribute_group *sysfs_rx_queue_group;
1694
1695 const struct rtnl_link_ops *rtnl_link_ops;
1696
1697 /* for setting kernel sock attribute on TCP connection setup */
1698#define GSO_MAX_SIZE 65536
1699 unsigned int gso_max_size;
1700#define GSO_MAX_SEGS 65535
1701 u16 gso_max_segs;
1702 u16 gso_min_segs;
1703#ifdef CONFIG_DCB
1704 const struct dcbnl_rtnl_ops *dcbnl_ops;
1705#endif
1706 u8 num_tc;
1707 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1708 u8 prio_tc_map[TC_BITMASK + 1];
1709
1710#if IS_ENABLED(CONFIG_FCOE)
1711 unsigned int fcoe_ddp_xid;
1712#endif
1713#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1714 struct netprio_map __rcu *priomap;
1715#endif
1716 struct phy_device *phydev;
1717 struct lock_class_key *qdisc_tx_busylock;
1718 int group;
1719 struct pm_qos_request pm_qos_req;
1720};
1721#define to_net_dev(d) container_of(d, struct net_device, dev)
1722
1723#define NETDEV_ALIGN 32
1724
1725static inline
1726int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1727{
1728 return dev->prio_tc_map[prio & TC_BITMASK];
1729}
1730
1731static inline
1732int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1733{
1734 if (tc >= dev->num_tc)
1735 return -EINVAL;
1736
1737 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1738 return 0;
1739}
1740
1741static inline
1742void netdev_reset_tc(struct net_device *dev)
1743{
1744 dev->num_tc = 0;
1745 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1746 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1747}
1748
1749static inline
1750int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1751{
1752 if (tc >= dev->num_tc)
1753 return -EINVAL;
1754
1755 dev->tc_to_txq[tc].count = count;
1756 dev->tc_to_txq[tc].offset = offset;
1757 return 0;
1758}
1759
1760static inline
1761int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1762{
1763 if (num_tc > TC_MAX_QUEUE)
1764 return -EINVAL;
1765
1766 dev->num_tc = num_tc;
1767 return 0;
1768}
1769
1770static inline
1771int netdev_get_num_tc(struct net_device *dev)
1772{
1773 return dev->num_tc;
1774}
1775
1776static inline
1777struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1778 unsigned int index)
1779{
1780 return &dev->_tx[index];
1781}
1782
1783static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1784 const struct sk_buff *skb)
1785{
1786 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1787}
1788
1789static inline void netdev_for_each_tx_queue(struct net_device *dev,
1790 void (*f)(struct net_device *,
1791 struct netdev_queue *,
1792 void *),
1793 void *arg)
1794{
1795 unsigned int i;
1796
1797 for (i = 0; i < dev->num_tx_queues; i++)
1798 f(dev, &dev->_tx[i], arg);
1799}
1800
1801struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1802 struct sk_buff *skb,
1803 void *accel_priv);
1804
1805/*
1806 * Net namespace inlines
1807 */
1808static inline
1809struct net *dev_net(const struct net_device *dev)
1810{
1811 return read_pnet(&dev->nd_net);
1812}
1813
1814static inline
1815void dev_net_set(struct net_device *dev, struct net *net)
1816{
1817#ifdef CONFIG_NET_NS
1818 release_net(dev->nd_net);
1819 dev->nd_net = hold_net(net);
1820#endif
1821}
1822
1823static inline bool netdev_uses_dsa(struct net_device *dev)
1824{
1825#if IS_ENABLED(CONFIG_NET_DSA)
1826 if (dev->dsa_ptr != NULL)
1827 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1828#endif
1829 return false;
1830}
1831
1832/**
1833 * netdev_priv - access network device private data
1834 * @dev: network device
1835 *
1836 * Get network device private data
1837 */
1838static inline void *netdev_priv(const struct net_device *dev)
1839{
1840 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1841}
1842
1843/* Set the sysfs physical device reference for the network logical device
1844 * if set prior to registration will cause a symlink during initialization.
1845 */
1846#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1847
1848/* Set the sysfs device type for the network logical device to allow
1849 * fine-grained identification of different network device types. For
1850 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1851 */
1852#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1853
1854/* Default NAPI poll() weight
1855 * Device drivers are strongly advised to not use bigger value
1856 */
1857#define NAPI_POLL_WEIGHT 64
1858
1859/**
1860 * netif_napi_add - initialize a napi context
1861 * @dev: network device
1862 * @napi: napi context
1863 * @poll: polling function
1864 * @weight: default weight
1865 *
1866 * netif_napi_add() must be used to initialize a napi context prior to calling
1867 * *any* of the other napi related functions.
1868 */
1869void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1870 int (*poll)(struct napi_struct *, int), int weight);
1871
1872/**
1873 * netif_napi_del - remove a napi context
1874 * @napi: napi context
1875 *
1876 * netif_napi_del() removes a napi context from the network device napi list
1877 */
1878void netif_napi_del(struct napi_struct *napi);
1879
1880struct napi_gro_cb {
1881 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1882 void *frag0;
1883
1884 /* Length of frag0. */
1885 unsigned int frag0_len;
1886
1887 /* This indicates where we are processing relative to skb->data. */
1888 int data_offset;
1889
1890 /* This is non-zero if the packet cannot be merged with the new skb. */
1891 u16 flush;
1892
1893 /* Save the IP ID here and check when we get to the transport layer */
1894 u16 flush_id;
1895
1896 /* Number of segments aggregated. */
1897 u16 count;
1898
1899 /* This is non-zero if the packet may be of the same flow. */
1900 u8 same_flow;
1901
1902 /* Free the skb? */
1903 u8 free;
1904#define NAPI_GRO_FREE 1
1905#define NAPI_GRO_FREE_STOLEN_HEAD 2
1906
1907 /* jiffies when first packet was created/queued */
1908 unsigned long age;
1909
1910 /* Used in ipv6_gro_receive() and foo-over-udp */
1911 u16 proto;
1912
1913 /* Used in udp_gro_receive */
1914 u8 udp_mark:1;
1915
1916 /* GRO checksum is valid */
1917 u8 csum_valid:1;
1918
1919 /* Number of checksums via CHECKSUM_UNNECESSARY */
1920 u8 csum_cnt:3;
1921
1922 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1923 u8 is_ipv6:1;
1924
1925 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1926 __wsum csum;
1927
1928 /* used in skb_gro_receive() slow path */
1929 struct sk_buff *last;
1930};
1931
1932#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1933
1934struct packet_type {
1935 __be16 type; /* This is really htons(ether_type). */
1936 struct net_device *dev; /* NULL is wildcarded here */
1937 int (*func) (struct sk_buff *,
1938 struct net_device *,
1939 struct packet_type *,
1940 struct net_device *);
1941 bool (*id_match)(struct packet_type *ptype,
1942 struct sock *sk);
1943 void *af_packet_priv;
1944 struct list_head list;
1945};
1946
1947struct offload_callbacks {
1948 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1949 netdev_features_t features);
1950 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1951 struct sk_buff *skb);
1952 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1953};
1954
1955struct packet_offload {
1956 __be16 type; /* This is really htons(ether_type). */
1957 struct offload_callbacks callbacks;
1958 struct list_head list;
1959};
1960
1961struct udp_offload {
1962 __be16 port;
1963 u8 ipproto;
1964 struct offload_callbacks callbacks;
1965};
1966
1967/* often modified stats are per cpu, other are shared (netdev->stats) */
1968struct pcpu_sw_netstats {
1969 u64 rx_packets;
1970 u64 rx_bytes;
1971 u64 tx_packets;
1972 u64 tx_bytes;
1973 struct u64_stats_sync syncp;
1974};
1975
1976#define netdev_alloc_pcpu_stats(type) \
1977({ \
1978 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1979 if (pcpu_stats) { \
1980 int i; \
1981 for_each_possible_cpu(i) { \
1982 typeof(type) *stat; \
1983 stat = per_cpu_ptr(pcpu_stats, i); \
1984 u64_stats_init(&stat->syncp); \
1985 } \
1986 } \
1987 pcpu_stats; \
1988})
1989
1990#include <linux/notifier.h>
1991
1992/* netdevice notifier chain. Please remember to update the rtnetlink
1993 * notification exclusion list in rtnetlink_event() when adding new
1994 * types.
1995 */
1996#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1997#define NETDEV_DOWN 0x0002
1998#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1999 detected a hardware crash and restarted
2000 - we can use this eg to kick tcp sessions
2001 once done */
2002#define NETDEV_CHANGE 0x0004 /* Notify device state change */
2003#define NETDEV_REGISTER 0x0005
2004#define NETDEV_UNREGISTER 0x0006
2005#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2006#define NETDEV_CHANGEADDR 0x0008
2007#define NETDEV_GOING_DOWN 0x0009
2008#define NETDEV_CHANGENAME 0x000A
2009#define NETDEV_FEAT_CHANGE 0x000B
2010#define NETDEV_BONDING_FAILOVER 0x000C
2011#define NETDEV_PRE_UP 0x000D
2012#define NETDEV_PRE_TYPE_CHANGE 0x000E
2013#define NETDEV_POST_TYPE_CHANGE 0x000F
2014#define NETDEV_POST_INIT 0x0010
2015#define NETDEV_UNREGISTER_FINAL 0x0011
2016#define NETDEV_RELEASE 0x0012
2017#define NETDEV_NOTIFY_PEERS 0x0013
2018#define NETDEV_JOIN 0x0014
2019#define NETDEV_CHANGEUPPER 0x0015
2020#define NETDEV_RESEND_IGMP 0x0016
2021#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2022#define NETDEV_CHANGEINFODATA 0x0018
2023
2024int register_netdevice_notifier(struct notifier_block *nb);
2025int unregister_netdevice_notifier(struct notifier_block *nb);
2026
2027struct netdev_notifier_info {
2028 struct net_device *dev;
2029};
2030
2031struct netdev_notifier_change_info {
2032 struct netdev_notifier_info info; /* must be first */
2033 unsigned int flags_changed;
2034};
2035
2036static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2037 struct net_device *dev)
2038{
2039 info->dev = dev;
2040}
2041
2042static inline struct net_device *
2043netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2044{
2045 return info->dev;
2046}
2047
2048int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2049
2050
2051extern rwlock_t dev_base_lock; /* Device list lock */
2052
2053#define for_each_netdev(net, d) \
2054 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2055#define for_each_netdev_reverse(net, d) \
2056 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2057#define for_each_netdev_rcu(net, d) \
2058 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2059#define for_each_netdev_safe(net, d, n) \
2060 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2061#define for_each_netdev_continue(net, d) \
2062 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2063#define for_each_netdev_continue_rcu(net, d) \
2064 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2065#define for_each_netdev_in_bond_rcu(bond, slave) \
2066 for_each_netdev_rcu(&init_net, slave) \
2067 if (netdev_master_upper_dev_get_rcu(slave) == bond)
2068#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2069
2070static inline struct net_device *next_net_device(struct net_device *dev)
2071{
2072 struct list_head *lh;
2073 struct net *net;
2074
2075 net = dev_net(dev);
2076 lh = dev->dev_list.next;
2077 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2078}
2079
2080static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2081{
2082 struct list_head *lh;
2083 struct net *net;
2084
2085 net = dev_net(dev);
2086 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2087 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2088}
2089
2090static inline struct net_device *first_net_device(struct net *net)
2091{
2092 return list_empty(&net->dev_base_head) ? NULL :
2093 net_device_entry(net->dev_base_head.next);
2094}
2095
2096static inline struct net_device *first_net_device_rcu(struct net *net)
2097{
2098 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2099
2100 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2101}
2102
2103int netdev_boot_setup_check(struct net_device *dev);
2104unsigned long netdev_boot_base(const char *prefix, int unit);
2105struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2106 const char *hwaddr);
2107struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2108struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2109void dev_add_pack(struct packet_type *pt);
2110void dev_remove_pack(struct packet_type *pt);
2111void __dev_remove_pack(struct packet_type *pt);
2112void dev_add_offload(struct packet_offload *po);
2113void dev_remove_offload(struct packet_offload *po);
2114
2115struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2116 unsigned short mask);
2117struct net_device *dev_get_by_name(struct net *net, const char *name);
2118struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2119struct net_device *__dev_get_by_name(struct net *net, const char *name);
2120int dev_alloc_name(struct net_device *dev, const char *name);
2121int dev_open(struct net_device *dev);
2122int dev_close(struct net_device *dev);
2123void dev_disable_lro(struct net_device *dev);
2124int dev_loopback_xmit(struct sk_buff *newskb);
2125int dev_queue_xmit(struct sk_buff *skb);
2126int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2127int register_netdevice(struct net_device *dev);
2128void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2129void unregister_netdevice_many(struct list_head *head);
2130static inline void unregister_netdevice(struct net_device *dev)
2131{
2132 unregister_netdevice_queue(dev, NULL);
2133}
2134
2135int netdev_refcnt_read(const struct net_device *dev);
2136void free_netdev(struct net_device *dev);
2137void netdev_freemem(struct net_device *dev);
2138void synchronize_net(void);
2139int init_dummy_netdev(struct net_device *dev);
2140
2141struct net_device *dev_get_by_index(struct net *net, int ifindex);
2142struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2143struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2144int netdev_get_name(struct net *net, char *name, int ifindex);
2145int dev_restart(struct net_device *dev);
2146int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2147
2148static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2149{
2150 return NAPI_GRO_CB(skb)->data_offset;
2151}
2152
2153static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2154{
2155 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2156}
2157
2158static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2159{
2160 NAPI_GRO_CB(skb)->data_offset += len;
2161}
2162
2163static inline void *skb_gro_header_fast(struct sk_buff *skb,
2164 unsigned int offset)
2165{
2166 return NAPI_GRO_CB(skb)->frag0 + offset;
2167}
2168
2169static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2170{
2171 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2172}
2173
2174static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2175 unsigned int offset)
2176{
2177 if (!pskb_may_pull(skb, hlen))
2178 return NULL;
2179
2180 NAPI_GRO_CB(skb)->frag0 = NULL;
2181 NAPI_GRO_CB(skb)->frag0_len = 0;
2182 return skb->data + offset;
2183}
2184
2185static inline void *skb_gro_network_header(struct sk_buff *skb)
2186{
2187 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2188 skb_network_offset(skb);
2189}
2190
2191static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2192 const void *start, unsigned int len)
2193{
2194 if (NAPI_GRO_CB(skb)->csum_valid)
2195 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2196 csum_partial(start, len, 0));
2197}
2198
2199/* GRO checksum functions. These are logical equivalents of the normal
2200 * checksum functions (in skbuff.h) except that they operate on the GRO
2201 * offsets and fields in sk_buff.
2202 */
2203
2204__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2205
2206static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2207 bool zero_okay,
2208 __sum16 check)
2209{
2210 return (skb->ip_summed != CHECKSUM_PARTIAL &&
2211 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2212 (!zero_okay || check));
2213}
2214
2215static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2216 __wsum psum)
2217{
2218 if (NAPI_GRO_CB(skb)->csum_valid &&
2219 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2220 return 0;
2221
2222 NAPI_GRO_CB(skb)->csum = psum;
2223
2224 return __skb_gro_checksum_complete(skb);
2225}
2226
2227static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2228{
2229 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2230 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2231 NAPI_GRO_CB(skb)->csum_cnt--;
2232 } else {
2233 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2234 * verified a new top level checksum or an encapsulated one
2235 * during GRO. This saves work if we fallback to normal path.
2236 */
2237 __skb_incr_checksum_unnecessary(skb);
2238 }
2239}
2240
2241#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2242 compute_pseudo) \
2243({ \
2244 __sum16 __ret = 0; \
2245 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2246 __ret = __skb_gro_checksum_validate_complete(skb, \
2247 compute_pseudo(skb, proto)); \
2248 if (__ret) \
2249 __skb_mark_checksum_bad(skb); \
2250 else \
2251 skb_gro_incr_csum_unnecessary(skb); \
2252 __ret; \
2253})
2254
2255#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2256 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2257
2258#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2259 compute_pseudo) \
2260 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2261
2262#define skb_gro_checksum_simple_validate(skb) \
2263 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2264
2265static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2266{
2267 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2268 !NAPI_GRO_CB(skb)->csum_valid);
2269}
2270
2271static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2272 __sum16 check, __wsum pseudo)
2273{
2274 NAPI_GRO_CB(skb)->csum = ~pseudo;
2275 NAPI_GRO_CB(skb)->csum_valid = 1;
2276}
2277
2278#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2279do { \
2280 if (__skb_gro_checksum_convert_check(skb)) \
2281 __skb_gro_checksum_convert(skb, check, \
2282 compute_pseudo(skb, proto)); \
2283} while (0)
2284
2285static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2286 unsigned short type,
2287 const void *daddr, const void *saddr,
2288 unsigned int len)
2289{
2290 if (!dev->header_ops || !dev->header_ops->create)
2291 return 0;
2292
2293 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2294}
2295
2296static inline int dev_parse_header(const struct sk_buff *skb,
2297 unsigned char *haddr)
2298{
2299 const struct net_device *dev = skb->dev;
2300
2301 if (!dev->header_ops || !dev->header_ops->parse)
2302 return 0;
2303 return dev->header_ops->parse(skb, haddr);
2304}
2305
2306static inline int dev_rebuild_header(struct sk_buff *skb)
2307{
2308 const struct net_device *dev = skb->dev;
2309
2310 if (!dev->header_ops || !dev->header_ops->rebuild)
2311 return 0;
2312 return dev->header_ops->rebuild(skb);
2313}
2314
2315typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2316int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2317static inline int unregister_gifconf(unsigned int family)
2318{
2319 return register_gifconf(family, NULL);
2320}
2321
2322#ifdef CONFIG_NET_FLOW_LIMIT
2323#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2324struct sd_flow_limit {
2325 u64 count;
2326 unsigned int num_buckets;
2327 unsigned int history_head;
2328 u16 history[FLOW_LIMIT_HISTORY];
2329 u8 buckets[];
2330};
2331
2332extern int netdev_flow_limit_table_len;
2333#endif /* CONFIG_NET_FLOW_LIMIT */
2334
2335/*
2336 * Incoming packets are placed on per-cpu queues
2337 */
2338struct softnet_data {
2339 struct list_head poll_list;
2340 struct sk_buff_head process_queue;
2341
2342 /* stats */
2343 unsigned int processed;
2344 unsigned int time_squeeze;
2345 unsigned int cpu_collision;
2346 unsigned int received_rps;
2347#ifdef CONFIG_RPS
2348 struct softnet_data *rps_ipi_list;
2349#endif
2350#ifdef CONFIG_NET_FLOW_LIMIT
2351 struct sd_flow_limit __rcu *flow_limit;
2352#endif
2353 struct Qdisc *output_queue;
2354 struct Qdisc **output_queue_tailp;
2355 struct sk_buff *completion_queue;
2356
2357#ifdef CONFIG_RPS
2358 /* Elements below can be accessed between CPUs for RPS */
2359 struct call_single_data csd ____cacheline_aligned_in_smp;
2360 struct softnet_data *rps_ipi_next;
2361 unsigned int cpu;
2362 unsigned int input_queue_head;
2363 unsigned int input_queue_tail;
2364#endif
2365 unsigned int dropped;
2366 struct sk_buff_head input_pkt_queue;
2367 struct napi_struct backlog;
2368
2369};
2370
2371static inline void input_queue_head_incr(struct softnet_data *sd)
2372{
2373#ifdef CONFIG_RPS
2374 sd->input_queue_head++;
2375#endif
2376}
2377
2378static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2379 unsigned int *qtail)
2380{
2381#ifdef CONFIG_RPS
2382 *qtail = ++sd->input_queue_tail;
2383#endif
2384}
2385
2386DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2387
2388void __netif_schedule(struct Qdisc *q);
2389void netif_schedule_queue(struct netdev_queue *txq);
2390
2391static inline void netif_tx_schedule_all(struct net_device *dev)
2392{
2393 unsigned int i;
2394
2395 for (i = 0; i < dev->num_tx_queues; i++)
2396 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2397}
2398
2399static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2400{
2401 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2402}
2403
2404/**
2405 * netif_start_queue - allow transmit
2406 * @dev: network device
2407 *
2408 * Allow upper layers to call the device hard_start_xmit routine.
2409 */
2410static inline void netif_start_queue(struct net_device *dev)
2411{
2412 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2413}
2414
2415static inline void netif_tx_start_all_queues(struct net_device *dev)
2416{
2417 unsigned int i;
2418
2419 for (i = 0; i < dev->num_tx_queues; i++) {
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2421 netif_tx_start_queue(txq);
2422 }
2423}
2424
2425void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2426
2427/**
2428 * netif_wake_queue - restart transmit
2429 * @dev: network device
2430 *
2431 * Allow upper layers to call the device hard_start_xmit routine.
2432 * Used for flow control when transmit resources are available.
2433 */
2434static inline void netif_wake_queue(struct net_device *dev)
2435{
2436 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2437}
2438
2439static inline void netif_tx_wake_all_queues(struct net_device *dev)
2440{
2441 unsigned int i;
2442
2443 for (i = 0; i < dev->num_tx_queues; i++) {
2444 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2445 netif_tx_wake_queue(txq);
2446 }
2447}
2448
2449static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2450{
2451 if (WARN_ON(!dev_queue)) {
2452 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2453 return;
2454 }
2455 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2456}
2457
2458/**
2459 * netif_stop_queue - stop transmitted packets
2460 * @dev: network device
2461 *
2462 * Stop upper layers calling the device hard_start_xmit routine.
2463 * Used for flow control when transmit resources are unavailable.
2464 */
2465static inline void netif_stop_queue(struct net_device *dev)
2466{
2467 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2468}
2469
2470static inline void netif_tx_stop_all_queues(struct net_device *dev)
2471{
2472 unsigned int i;
2473
2474 for (i = 0; i < dev->num_tx_queues; i++) {
2475 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2476 netif_tx_stop_queue(txq);
2477 }
2478}
2479
2480static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2481{
2482 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2483}
2484
2485/**
2486 * netif_queue_stopped - test if transmit queue is flowblocked
2487 * @dev: network device
2488 *
2489 * Test if transmit queue on device is currently unable to send.
2490 */
2491static inline bool netif_queue_stopped(const struct net_device *dev)
2492{
2493 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2494}
2495
2496static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2497{
2498 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2499}
2500
2501static inline bool
2502netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2503{
2504 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2505}
2506
2507static inline bool
2508netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2509{
2510 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2511}
2512
2513/**
2514 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2515 * @dev_queue: pointer to transmit queue
2516 *
2517 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2518 * to give appropriate hint to the cpu.
2519 */
2520static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2521{
2522#ifdef CONFIG_BQL
2523 prefetchw(&dev_queue->dql.num_queued);
2524#endif
2525}
2526
2527/**
2528 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2529 * @dev_queue: pointer to transmit queue
2530 *
2531 * BQL enabled drivers might use this helper in their TX completion path,
2532 * to give appropriate hint to the cpu.
2533 */
2534static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2535{
2536#ifdef CONFIG_BQL
2537 prefetchw(&dev_queue->dql.limit);
2538#endif
2539}
2540
2541static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2542 unsigned int bytes)
2543{
2544#ifdef CONFIG_BQL
2545 dql_queued(&dev_queue->dql, bytes);
2546
2547 if (likely(dql_avail(&dev_queue->dql) >= 0))
2548 return;
2549
2550 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2551
2552 /*
2553 * The XOFF flag must be set before checking the dql_avail below,
2554 * because in netdev_tx_completed_queue we update the dql_completed
2555 * before checking the XOFF flag.
2556 */
2557 smp_mb();
2558
2559 /* check again in case another CPU has just made room avail */
2560 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2561 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2562#endif
2563}
2564
2565/**
2566 * netdev_sent_queue - report the number of bytes queued to hardware
2567 * @dev: network device
2568 * @bytes: number of bytes queued to the hardware device queue
2569 *
2570 * Report the number of bytes queued for sending/completion to the network
2571 * device hardware queue. @bytes should be a good approximation and should
2572 * exactly match netdev_completed_queue() @bytes
2573 */
2574static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2575{
2576 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2577}
2578
2579static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2580 unsigned int pkts, unsigned int bytes)
2581{
2582#ifdef CONFIG_BQL
2583 if (unlikely(!bytes))
2584 return;
2585
2586 dql_completed(&dev_queue->dql, bytes);
2587
2588 /*
2589 * Without the memory barrier there is a small possiblity that
2590 * netdev_tx_sent_queue will miss the update and cause the queue to
2591 * be stopped forever
2592 */
2593 smp_mb();
2594
2595 if (dql_avail(&dev_queue->dql) < 0)
2596 return;
2597
2598 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2599 netif_schedule_queue(dev_queue);
2600#endif
2601}
2602
2603/**
2604 * netdev_completed_queue - report bytes and packets completed by device
2605 * @dev: network device
2606 * @pkts: actual number of packets sent over the medium
2607 * @bytes: actual number of bytes sent over the medium
2608 *
2609 * Report the number of bytes and packets transmitted by the network device
2610 * hardware queue over the physical medium, @bytes must exactly match the
2611 * @bytes amount passed to netdev_sent_queue()
2612 */
2613static inline void netdev_completed_queue(struct net_device *dev,
2614 unsigned int pkts, unsigned int bytes)
2615{
2616 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2617}
2618
2619static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2620{
2621#ifdef CONFIG_BQL
2622 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2623 dql_reset(&q->dql);
2624#endif
2625}
2626
2627/**
2628 * netdev_reset_queue - reset the packets and bytes count of a network device
2629 * @dev_queue: network device
2630 *
2631 * Reset the bytes and packet count of a network device and clear the
2632 * software flow control OFF bit for this network device
2633 */
2634static inline void netdev_reset_queue(struct net_device *dev_queue)
2635{
2636 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2637}
2638
2639/**
2640 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2641 * @dev: network device
2642 * @queue_index: given tx queue index
2643 *
2644 * Returns 0 if given tx queue index >= number of device tx queues,
2645 * otherwise returns the originally passed tx queue index.
2646 */
2647static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2648{
2649 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2650 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2651 dev->name, queue_index,
2652 dev->real_num_tx_queues);
2653 return 0;
2654 }
2655
2656 return queue_index;
2657}
2658
2659/**
2660 * netif_running - test if up
2661 * @dev: network device
2662 *
2663 * Test if the device has been brought up.
2664 */
2665static inline bool netif_running(const struct net_device *dev)
2666{
2667 return test_bit(__LINK_STATE_START, &dev->state);
2668}
2669
2670/*
2671 * Routines to manage the subqueues on a device. We only need start
2672 * stop, and a check if it's stopped. All other device management is
2673 * done at the overall netdevice level.
2674 * Also test the device if we're multiqueue.
2675 */
2676
2677/**
2678 * netif_start_subqueue - allow sending packets on subqueue
2679 * @dev: network device
2680 * @queue_index: sub queue index
2681 *
2682 * Start individual transmit queue of a device with multiple transmit queues.
2683 */
2684static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2685{
2686 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2687
2688 netif_tx_start_queue(txq);
2689}
2690
2691/**
2692 * netif_stop_subqueue - stop sending packets on subqueue
2693 * @dev: network device
2694 * @queue_index: sub queue index
2695 *
2696 * Stop individual transmit queue of a device with multiple transmit queues.
2697 */
2698static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2699{
2700 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2701 netif_tx_stop_queue(txq);
2702}
2703
2704/**
2705 * netif_subqueue_stopped - test status of subqueue
2706 * @dev: network device
2707 * @queue_index: sub queue index
2708 *
2709 * Check individual transmit queue of a device with multiple transmit queues.
2710 */
2711static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2712 u16 queue_index)
2713{
2714 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2715
2716 return netif_tx_queue_stopped(txq);
2717}
2718
2719static inline bool netif_subqueue_stopped(const struct net_device *dev,
2720 struct sk_buff *skb)
2721{
2722 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2723}
2724
2725void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2726
2727#ifdef CONFIG_XPS
2728int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2729 u16 index);
2730#else
2731static inline int netif_set_xps_queue(struct net_device *dev,
2732 const struct cpumask *mask,
2733 u16 index)
2734{
2735 return 0;
2736}
2737#endif
2738
2739/*
2740 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2741 * as a distribution range limit for the returned value.
2742 */
2743static inline u16 skb_tx_hash(const struct net_device *dev,
2744 struct sk_buff *skb)
2745{
2746 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2747}
2748
2749/**
2750 * netif_is_multiqueue - test if device has multiple transmit queues
2751 * @dev: network device
2752 *
2753 * Check if device has multiple transmit queues
2754 */
2755static inline bool netif_is_multiqueue(const struct net_device *dev)
2756{
2757 return dev->num_tx_queues > 1;
2758}
2759
2760int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2761
2762#ifdef CONFIG_SYSFS
2763int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2764#else
2765static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2766 unsigned int rxq)
2767{
2768 return 0;
2769}
2770#endif
2771
2772#ifdef CONFIG_SYSFS
2773static inline unsigned int get_netdev_rx_queue_index(
2774 struct netdev_rx_queue *queue)
2775{
2776 struct net_device *dev = queue->dev;
2777 int index = queue - dev->_rx;
2778
2779 BUG_ON(index >= dev->num_rx_queues);
2780 return index;
2781}
2782#endif
2783
2784#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2785int netif_get_num_default_rss_queues(void);
2786
2787enum skb_free_reason {
2788 SKB_REASON_CONSUMED,
2789 SKB_REASON_DROPPED,
2790};
2791
2792void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2793void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2794
2795/*
2796 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2797 * interrupt context or with hardware interrupts being disabled.
2798 * (in_irq() || irqs_disabled())
2799 *
2800 * We provide four helpers that can be used in following contexts :
2801 *
2802 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2803 * replacing kfree_skb(skb)
2804 *
2805 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2806 * Typically used in place of consume_skb(skb) in TX completion path
2807 *
2808 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2809 * replacing kfree_skb(skb)
2810 *
2811 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2812 * and consumed a packet. Used in place of consume_skb(skb)
2813 */
2814static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2815{
2816 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2817}
2818
2819static inline void dev_consume_skb_irq(struct sk_buff *skb)
2820{
2821 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2822}
2823
2824static inline void dev_kfree_skb_any(struct sk_buff *skb)
2825{
2826 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2827}
2828
2829static inline void dev_consume_skb_any(struct sk_buff *skb)
2830{
2831 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2832}
2833
2834int netif_rx(struct sk_buff *skb);
2835int netif_rx_ni(struct sk_buff *skb);
2836int netif_receive_skb(struct sk_buff *skb);
2837gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2838void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2839struct sk_buff *napi_get_frags(struct napi_struct *napi);
2840gro_result_t napi_gro_frags(struct napi_struct *napi);
2841struct packet_offload *gro_find_receive_by_type(__be16 type);
2842struct packet_offload *gro_find_complete_by_type(__be16 type);
2843
2844static inline void napi_free_frags(struct napi_struct *napi)
2845{
2846 kfree_skb(napi->skb);
2847 napi->skb = NULL;
2848}
2849
2850int netdev_rx_handler_register(struct net_device *dev,
2851 rx_handler_func_t *rx_handler,
2852 void *rx_handler_data);
2853void netdev_rx_handler_unregister(struct net_device *dev);
2854
2855bool dev_valid_name(const char *name);
2856int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2857int dev_ethtool(struct net *net, struct ifreq *);
2858unsigned int dev_get_flags(const struct net_device *);
2859int __dev_change_flags(struct net_device *, unsigned int flags);
2860int dev_change_flags(struct net_device *, unsigned int);
2861void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2862 unsigned int gchanges);
2863int dev_change_name(struct net_device *, const char *);
2864int dev_set_alias(struct net_device *, const char *, size_t);
2865int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2866int dev_set_mtu(struct net_device *, int);
2867void dev_set_group(struct net_device *, int);
2868int dev_set_mac_address(struct net_device *, struct sockaddr *);
2869int dev_change_carrier(struct net_device *, bool new_carrier);
2870int dev_get_phys_port_id(struct net_device *dev,
2871 struct netdev_phys_port_id *ppid);
2872struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2873struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2874 struct netdev_queue *txq, int *ret);
2875int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2876int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2877bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2878
2879extern int netdev_budget;
2880
2881/* Called by rtnetlink.c:rtnl_unlock() */
2882void netdev_run_todo(void);
2883
2884/**
2885 * dev_put - release reference to device
2886 * @dev: network device
2887 *
2888 * Release reference to device to allow it to be freed.
2889 */
2890static inline void dev_put(struct net_device *dev)
2891{
2892 this_cpu_dec(*dev->pcpu_refcnt);
2893}
2894
2895/**
2896 * dev_hold - get reference to device
2897 * @dev: network device
2898 *
2899 * Hold reference to device to keep it from being freed.
2900 */
2901static inline void dev_hold(struct net_device *dev)
2902{
2903 this_cpu_inc(*dev->pcpu_refcnt);
2904}
2905
2906/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2907 * and _off may be called from IRQ context, but it is caller
2908 * who is responsible for serialization of these calls.
2909 *
2910 * The name carrier is inappropriate, these functions should really be
2911 * called netif_lowerlayer_*() because they represent the state of any
2912 * kind of lower layer not just hardware media.
2913 */
2914
2915void linkwatch_init_dev(struct net_device *dev);
2916void linkwatch_fire_event(struct net_device *dev);
2917void linkwatch_forget_dev(struct net_device *dev);
2918
2919/**
2920 * netif_carrier_ok - test if carrier present
2921 * @dev: network device
2922 *
2923 * Check if carrier is present on device
2924 */
2925static inline bool netif_carrier_ok(const struct net_device *dev)
2926{
2927 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2928}
2929
2930unsigned long dev_trans_start(struct net_device *dev);
2931
2932void __netdev_watchdog_up(struct net_device *dev);
2933
2934void netif_carrier_on(struct net_device *dev);
2935
2936void netif_carrier_off(struct net_device *dev);
2937
2938/**
2939 * netif_dormant_on - mark device as dormant.
2940 * @dev: network device
2941 *
2942 * Mark device as dormant (as per RFC2863).
2943 *
2944 * The dormant state indicates that the relevant interface is not
2945 * actually in a condition to pass packets (i.e., it is not 'up') but is
2946 * in a "pending" state, waiting for some external event. For "on-
2947 * demand" interfaces, this new state identifies the situation where the
2948 * interface is waiting for events to place it in the up state.
2949 *
2950 */
2951static inline void netif_dormant_on(struct net_device *dev)
2952{
2953 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2954 linkwatch_fire_event(dev);
2955}
2956
2957/**
2958 * netif_dormant_off - set device as not dormant.
2959 * @dev: network device
2960 *
2961 * Device is not in dormant state.
2962 */
2963static inline void netif_dormant_off(struct net_device *dev)
2964{
2965 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2966 linkwatch_fire_event(dev);
2967}
2968
2969/**
2970 * netif_dormant - test if carrier present
2971 * @dev: network device
2972 *
2973 * Check if carrier is present on device
2974 */
2975static inline bool netif_dormant(const struct net_device *dev)
2976{
2977 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2978}
2979
2980
2981/**
2982 * netif_oper_up - test if device is operational
2983 * @dev: network device
2984 *
2985 * Check if carrier is operational
2986 */
2987static inline bool netif_oper_up(const struct net_device *dev)
2988{
2989 return (dev->operstate == IF_OPER_UP ||
2990 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2991}
2992
2993/**
2994 * netif_device_present - is device available or removed
2995 * @dev: network device
2996 *
2997 * Check if device has not been removed from system.
2998 */
2999static inline bool netif_device_present(struct net_device *dev)
3000{
3001 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3002}
3003
3004void netif_device_detach(struct net_device *dev);
3005
3006void netif_device_attach(struct net_device *dev);
3007
3008/*
3009 * Network interface message level settings
3010 */
3011
3012enum {
3013 NETIF_MSG_DRV = 0x0001,
3014 NETIF_MSG_PROBE = 0x0002,
3015 NETIF_MSG_LINK = 0x0004,
3016 NETIF_MSG_TIMER = 0x0008,
3017 NETIF_MSG_IFDOWN = 0x0010,
3018 NETIF_MSG_IFUP = 0x0020,
3019 NETIF_MSG_RX_ERR = 0x0040,
3020 NETIF_MSG_TX_ERR = 0x0080,
3021 NETIF_MSG_TX_QUEUED = 0x0100,
3022 NETIF_MSG_INTR = 0x0200,
3023 NETIF_MSG_TX_DONE = 0x0400,
3024 NETIF_MSG_RX_STATUS = 0x0800,
3025 NETIF_MSG_PKTDATA = 0x1000,
3026 NETIF_MSG_HW = 0x2000,
3027 NETIF_MSG_WOL = 0x4000,
3028};
3029
3030#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3031#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3032#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3033#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3034#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3035#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3036#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3037#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3038#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3039#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3040#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3041#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3042#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3043#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3044#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3045
3046static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3047{
3048 /* use default */
3049 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3050 return default_msg_enable_bits;
3051 if (debug_value == 0) /* no output */
3052 return 0;
3053 /* set low N bits */
3054 return (1 << debug_value) - 1;
3055}
3056
3057static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3058{
3059 spin_lock(&txq->_xmit_lock);
3060 txq->xmit_lock_owner = cpu;
3061}
3062
3063static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3064{
3065 spin_lock_bh(&txq->_xmit_lock);
3066 txq->xmit_lock_owner = smp_processor_id();
3067}
3068
3069static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3070{
3071 bool ok = spin_trylock(&txq->_xmit_lock);
3072 if (likely(ok))
3073 txq->xmit_lock_owner = smp_processor_id();
3074 return ok;
3075}
3076
3077static inline void __netif_tx_unlock(struct netdev_queue *txq)
3078{
3079 txq->xmit_lock_owner = -1;
3080 spin_unlock(&txq->_xmit_lock);
3081}
3082
3083static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3084{
3085 txq->xmit_lock_owner = -1;
3086 spin_unlock_bh(&txq->_xmit_lock);
3087}
3088
3089static inline void txq_trans_update(struct netdev_queue *txq)
3090{
3091 if (txq->xmit_lock_owner != -1)
3092 txq->trans_start = jiffies;
3093}
3094
3095/**
3096 * netif_tx_lock - grab network device transmit lock
3097 * @dev: network device
3098 *
3099 * Get network device transmit lock
3100 */
3101static inline void netif_tx_lock(struct net_device *dev)
3102{
3103 unsigned int i;
3104 int cpu;
3105
3106 spin_lock(&dev->tx_global_lock);
3107 cpu = smp_processor_id();
3108 for (i = 0; i < dev->num_tx_queues; i++) {
3109 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3110
3111 /* We are the only thread of execution doing a
3112 * freeze, but we have to grab the _xmit_lock in
3113 * order to synchronize with threads which are in
3114 * the ->hard_start_xmit() handler and already
3115 * checked the frozen bit.
3116 */
3117 __netif_tx_lock(txq, cpu);
3118 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3119 __netif_tx_unlock(txq);
3120 }
3121}
3122
3123static inline void netif_tx_lock_bh(struct net_device *dev)
3124{
3125 local_bh_disable();
3126 netif_tx_lock(dev);
3127}
3128
3129static inline void netif_tx_unlock(struct net_device *dev)
3130{
3131 unsigned int i;
3132
3133 for (i = 0; i < dev->num_tx_queues; i++) {
3134 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3135
3136 /* No need to grab the _xmit_lock here. If the
3137 * queue is not stopped for another reason, we
3138 * force a schedule.
3139 */
3140 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3141 netif_schedule_queue(txq);
3142 }
3143 spin_unlock(&dev->tx_global_lock);
3144}
3145
3146static inline void netif_tx_unlock_bh(struct net_device *dev)
3147{
3148 netif_tx_unlock(dev);
3149 local_bh_enable();
3150}
3151
3152#define HARD_TX_LOCK(dev, txq, cpu) { \
3153 if ((dev->features & NETIF_F_LLTX) == 0) { \
3154 __netif_tx_lock(txq, cpu); \
3155 } \
3156}
3157
3158#define HARD_TX_TRYLOCK(dev, txq) \
3159 (((dev->features & NETIF_F_LLTX) == 0) ? \
3160 __netif_tx_trylock(txq) : \
3161 true )
3162
3163#define HARD_TX_UNLOCK(dev, txq) { \
3164 if ((dev->features & NETIF_F_LLTX) == 0) { \
3165 __netif_tx_unlock(txq); \
3166 } \
3167}
3168
3169static inline void netif_tx_disable(struct net_device *dev)
3170{
3171 unsigned int i;
3172 int cpu;
3173
3174 local_bh_disable();
3175 cpu = smp_processor_id();
3176 for (i = 0; i < dev->num_tx_queues; i++) {
3177 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3178
3179 __netif_tx_lock(txq, cpu);
3180 netif_tx_stop_queue(txq);
3181 __netif_tx_unlock(txq);
3182 }
3183 local_bh_enable();
3184}
3185
3186static inline void netif_addr_lock(struct net_device *dev)
3187{
3188 spin_lock(&dev->addr_list_lock);
3189}
3190
3191static inline void netif_addr_lock_nested(struct net_device *dev)
3192{
3193 int subclass = SINGLE_DEPTH_NESTING;
3194
3195 if (dev->netdev_ops->ndo_get_lock_subclass)
3196 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3197
3198 spin_lock_nested(&dev->addr_list_lock, subclass);
3199}
3200
3201static inline void netif_addr_lock_bh(struct net_device *dev)
3202{
3203 spin_lock_bh(&dev->addr_list_lock);
3204}
3205
3206static inline void netif_addr_unlock(struct net_device *dev)
3207{
3208 spin_unlock(&dev->addr_list_lock);
3209}
3210
3211static inline void netif_addr_unlock_bh(struct net_device *dev)
3212{
3213 spin_unlock_bh(&dev->addr_list_lock);
3214}
3215
3216/*
3217 * dev_addrs walker. Should be used only for read access. Call with
3218 * rcu_read_lock held.
3219 */
3220#define for_each_dev_addr(dev, ha) \
3221 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3222
3223/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3224
3225void ether_setup(struct net_device *dev);
3226
3227/* Support for loadable net-drivers */
3228struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3229 unsigned char name_assign_type,
3230 void (*setup)(struct net_device *),
3231 unsigned int txqs, unsigned int rxqs);
3232#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3233 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3234
3235#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3236 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3237 count)
3238
3239int register_netdev(struct net_device *dev);
3240void unregister_netdev(struct net_device *dev);
3241
3242/* General hardware address lists handling functions */
3243int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3244 struct netdev_hw_addr_list *from_list, int addr_len);
3245void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3246 struct netdev_hw_addr_list *from_list, int addr_len);
3247int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3248 struct net_device *dev,
3249 int (*sync)(struct net_device *, const unsigned char *),
3250 int (*unsync)(struct net_device *,
3251 const unsigned char *));
3252void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3253 struct net_device *dev,
3254 int (*unsync)(struct net_device *,
3255 const unsigned char *));
3256void __hw_addr_init(struct netdev_hw_addr_list *list);
3257
3258/* Functions used for device addresses handling */
3259int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3260 unsigned char addr_type);
3261int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3262 unsigned char addr_type);
3263void dev_addr_flush(struct net_device *dev);
3264int dev_addr_init(struct net_device *dev);
3265
3266/* Functions used for unicast addresses handling */
3267int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3268int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3269int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3270int dev_uc_sync(struct net_device *to, struct net_device *from);
3271int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3272void dev_uc_unsync(struct net_device *to, struct net_device *from);
3273void dev_uc_flush(struct net_device *dev);
3274void dev_uc_init(struct net_device *dev);
3275
3276/**
3277 * __dev_uc_sync - Synchonize device's unicast list
3278 * @dev: device to sync
3279 * @sync: function to call if address should be added
3280 * @unsync: function to call if address should be removed
3281 *
3282 * Add newly added addresses to the interface, and release
3283 * addresses that have been deleted.
3284 **/
3285static inline int __dev_uc_sync(struct net_device *dev,
3286 int (*sync)(struct net_device *,
3287 const unsigned char *),
3288 int (*unsync)(struct net_device *,
3289 const unsigned char *))
3290{
3291 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3292}
3293
3294/**
3295 * __dev_uc_unsync - Remove synchronized addresses from device
3296 * @dev: device to sync
3297 * @unsync: function to call if address should be removed
3298 *
3299 * Remove all addresses that were added to the device by dev_uc_sync().
3300 **/
3301static inline void __dev_uc_unsync(struct net_device *dev,
3302 int (*unsync)(struct net_device *,
3303 const unsigned char *))
3304{
3305 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3306}
3307
3308/* Functions used for multicast addresses handling */
3309int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3310int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3311int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3312int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3313int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3314int dev_mc_sync(struct net_device *to, struct net_device *from);
3315int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3316void dev_mc_unsync(struct net_device *to, struct net_device *from);
3317void dev_mc_flush(struct net_device *dev);
3318void dev_mc_init(struct net_device *dev);
3319
3320/**
3321 * __dev_mc_sync - Synchonize device's multicast list
3322 * @dev: device to sync
3323 * @sync: function to call if address should be added
3324 * @unsync: function to call if address should be removed
3325 *
3326 * Add newly added addresses to the interface, and release
3327 * addresses that have been deleted.
3328 **/
3329static inline int __dev_mc_sync(struct net_device *dev,
3330 int (*sync)(struct net_device *,
3331 const unsigned char *),
3332 int (*unsync)(struct net_device *,
3333 const unsigned char *))
3334{
3335 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3336}
3337
3338/**
3339 * __dev_mc_unsync - Remove synchronized addresses from device
3340 * @dev: device to sync
3341 * @unsync: function to call if address should be removed
3342 *
3343 * Remove all addresses that were added to the device by dev_mc_sync().
3344 **/
3345static inline void __dev_mc_unsync(struct net_device *dev,
3346 int (*unsync)(struct net_device *,
3347 const unsigned char *))
3348{
3349 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3350}
3351
3352/* Functions used for secondary unicast and multicast support */
3353void dev_set_rx_mode(struct net_device *dev);
3354void __dev_set_rx_mode(struct net_device *dev);
3355int dev_set_promiscuity(struct net_device *dev, int inc);
3356int dev_set_allmulti(struct net_device *dev, int inc);
3357void netdev_state_change(struct net_device *dev);
3358void netdev_notify_peers(struct net_device *dev);
3359void netdev_features_change(struct net_device *dev);
3360/* Load a device via the kmod */
3361void dev_load(struct net *net, const char *name);
3362struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3363 struct rtnl_link_stats64 *storage);
3364void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3365 const struct net_device_stats *netdev_stats);
3366
3367extern int netdev_max_backlog;
3368extern int netdev_tstamp_prequeue;
3369extern int weight_p;
3370extern int bpf_jit_enable;
3371
3372bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3373struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3374 struct list_head **iter);
3375struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3376 struct list_head **iter);
3377
3378/* iterate through upper list, must be called under RCU read lock */
3379#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3380 for (iter = &(dev)->adj_list.upper, \
3381 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3382 updev; \
3383 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3384
3385/* iterate through upper list, must be called under RCU read lock */
3386#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3387 for (iter = &(dev)->all_adj_list.upper, \
3388 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3389 updev; \
3390 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3391
3392void *netdev_lower_get_next_private(struct net_device *dev,
3393 struct list_head **iter);
3394void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3395 struct list_head **iter);
3396
3397#define netdev_for_each_lower_private(dev, priv, iter) \
3398 for (iter = (dev)->adj_list.lower.next, \
3399 priv = netdev_lower_get_next_private(dev, &(iter)); \
3400 priv; \
3401 priv = netdev_lower_get_next_private(dev, &(iter)))
3402
3403#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3404 for (iter = &(dev)->adj_list.lower, \
3405 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3406 priv; \
3407 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3408
3409void *netdev_lower_get_next(struct net_device *dev,
3410 struct list_head **iter);
3411#define netdev_for_each_lower_dev(dev, ldev, iter) \
3412 for (iter = &(dev)->adj_list.lower, \
3413 ldev = netdev_lower_get_next(dev, &(iter)); \
3414 ldev; \
3415 ldev = netdev_lower_get_next(dev, &(iter)))
3416
3417void *netdev_adjacent_get_private(struct list_head *adj_list);
3418void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3419struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3420struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3421int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3422int netdev_master_upper_dev_link(struct net_device *dev,
3423 struct net_device *upper_dev);
3424int netdev_master_upper_dev_link_private(struct net_device *dev,
3425 struct net_device *upper_dev,
3426 void *private);
3427void netdev_upper_dev_unlink(struct net_device *dev,
3428 struct net_device *upper_dev);
3429void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3430void *netdev_lower_dev_get_private(struct net_device *dev,
3431 struct net_device *lower_dev);
3432
3433/* RSS keys are 40 or 52 bytes long */
3434#define NETDEV_RSS_KEY_LEN 52
3435extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3436void netdev_rss_key_fill(void *buffer, size_t len);
3437
3438int dev_get_nest_level(struct net_device *dev,
3439 bool (*type_check)(struct net_device *dev));
3440int skb_checksum_help(struct sk_buff *skb);
3441struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3442 netdev_features_t features, bool tx_path);
3443struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3444 netdev_features_t features);
3445
3446static inline
3447struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3448{
3449 return __skb_gso_segment(skb, features, true);
3450}
3451__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3452
3453static inline bool can_checksum_protocol(netdev_features_t features,
3454 __be16 protocol)
3455{
3456 return ((features & NETIF_F_GEN_CSUM) ||
3457 ((features & NETIF_F_V4_CSUM) &&
3458 protocol == htons(ETH_P_IP)) ||
3459 ((features & NETIF_F_V6_CSUM) &&
3460 protocol == htons(ETH_P_IPV6)) ||
3461 ((features & NETIF_F_FCOE_CRC) &&
3462 protocol == htons(ETH_P_FCOE)));
3463}
3464
3465#ifdef CONFIG_BUG
3466void netdev_rx_csum_fault(struct net_device *dev);
3467#else
3468static inline void netdev_rx_csum_fault(struct net_device *dev)
3469{
3470}
3471#endif
3472/* rx skb timestamps */
3473void net_enable_timestamp(void);
3474void net_disable_timestamp(void);
3475
3476#ifdef CONFIG_PROC_FS
3477int __init dev_proc_init(void);
3478#else
3479#define dev_proc_init() 0
3480#endif
3481
3482static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3483 struct sk_buff *skb, struct net_device *dev,
3484 bool more)
3485{
3486 skb->xmit_more = more ? 1 : 0;
3487 return ops->ndo_start_xmit(skb, dev);
3488}
3489
3490static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3491 struct netdev_queue *txq, bool more)
3492{
3493 const struct net_device_ops *ops = dev->netdev_ops;
3494 int rc;
3495
3496 rc = __netdev_start_xmit(ops, skb, dev, more);
3497 if (rc == NETDEV_TX_OK)
3498 txq_trans_update(txq);
3499
3500 return rc;
3501}
3502
3503int netdev_class_create_file_ns(struct class_attribute *class_attr,
3504 const void *ns);
3505void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3506 const void *ns);
3507
3508static inline int netdev_class_create_file(struct class_attribute *class_attr)
3509{
3510 return netdev_class_create_file_ns(class_attr, NULL);
3511}
3512
3513static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3514{
3515 netdev_class_remove_file_ns(class_attr, NULL);
3516}
3517
3518extern struct kobj_ns_type_operations net_ns_type_operations;
3519
3520const char *netdev_drivername(const struct net_device *dev);
3521
3522void linkwatch_run_queue(void);
3523
3524static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3525 netdev_features_t f2)
3526{
3527 if (f1 & NETIF_F_GEN_CSUM)
3528 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3529 if (f2 & NETIF_F_GEN_CSUM)
3530 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3531 f1 &= f2;
3532 if (f1 & NETIF_F_GEN_CSUM)
3533 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3534
3535 return f1;
3536}
3537
3538static inline netdev_features_t netdev_get_wanted_features(
3539 struct net_device *dev)
3540{
3541 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3542}
3543netdev_features_t netdev_increment_features(netdev_features_t all,
3544 netdev_features_t one, netdev_features_t mask);
3545
3546/* Allow TSO being used on stacked device :
3547 * Performing the GSO segmentation before last device
3548 * is a performance improvement.
3549 */
3550static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3551 netdev_features_t mask)
3552{
3553 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3554}
3555
3556int __netdev_update_features(struct net_device *dev);
3557void netdev_update_features(struct net_device *dev);
3558void netdev_change_features(struct net_device *dev);
3559
3560void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3561 struct net_device *dev);
3562
3563netdev_features_t netif_skb_features(struct sk_buff *skb);
3564
3565static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3566{
3567 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3568
3569 /* check flags correspondence */
3570 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3571 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3572 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3573 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3574 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3575 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3576 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3577 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3578 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3579 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3580 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3581 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3582 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3583
3584 return (features & feature) == feature;
3585}
3586
3587static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3588{
3589 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3590 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3591}
3592
3593static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3594 netdev_features_t features)
3595{
3596 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3597 (dev->netdev_ops->ndo_gso_check &&
3598 !dev->netdev_ops->ndo_gso_check(skb, dev)) ||
3599 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3600 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3601}
3602
3603static inline void netif_set_gso_max_size(struct net_device *dev,
3604 unsigned int size)
3605{
3606 dev->gso_max_size = size;
3607}
3608
3609static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3610 int pulled_hlen, u16 mac_offset,
3611 int mac_len)
3612{
3613 skb->protocol = protocol;
3614 skb->encapsulation = 1;
3615 skb_push(skb, pulled_hlen);
3616 skb_reset_transport_header(skb);
3617 skb->mac_header = mac_offset;
3618 skb->network_header = skb->mac_header + mac_len;
3619 skb->mac_len = mac_len;
3620}
3621
3622static inline bool netif_is_macvlan(struct net_device *dev)
3623{
3624 return dev->priv_flags & IFF_MACVLAN;
3625}
3626
3627static inline bool netif_is_bond_master(struct net_device *dev)
3628{
3629 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3630}
3631
3632static inline bool netif_is_bond_slave(struct net_device *dev)
3633{
3634 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3635}
3636
3637static inline bool netif_supports_nofcs(struct net_device *dev)
3638{
3639 return dev->priv_flags & IFF_SUPP_NOFCS;
3640}
3641
3642/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3643static inline void netif_keep_dst(struct net_device *dev)
3644{
3645 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3646}
3647
3648extern struct pernet_operations __net_initdata loopback_net_ops;
3649
3650/* Logging, debugging and troubleshooting/diagnostic helpers. */
3651
3652/* netdev_printk helpers, similar to dev_printk */
3653
3654static inline const char *netdev_name(const struct net_device *dev)
3655{
3656 if (!dev->name[0] || strchr(dev->name, '%'))
3657 return "(unnamed net_device)";
3658 return dev->name;
3659}
3660
3661static inline const char *netdev_reg_state(const struct net_device *dev)
3662{
3663 switch (dev->reg_state) {
3664 case NETREG_UNINITIALIZED: return " (uninitialized)";
3665 case NETREG_REGISTERED: return "";
3666 case NETREG_UNREGISTERING: return " (unregistering)";
3667 case NETREG_UNREGISTERED: return " (unregistered)";
3668 case NETREG_RELEASED: return " (released)";
3669 case NETREG_DUMMY: return " (dummy)";
3670 }
3671
3672 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3673 return " (unknown)";
3674}
3675
3676__printf(3, 4)
3677void netdev_printk(const char *level, const struct net_device *dev,
3678 const char *format, ...);
3679__printf(2, 3)
3680void netdev_emerg(const struct net_device *dev, const char *format, ...);
3681__printf(2, 3)
3682void netdev_alert(const struct net_device *dev, const char *format, ...);
3683__printf(2, 3)
3684void netdev_crit(const struct net_device *dev, const char *format, ...);
3685__printf(2, 3)
3686void netdev_err(const struct net_device *dev, const char *format, ...);
3687__printf(2, 3)
3688void netdev_warn(const struct net_device *dev, const char *format, ...);
3689__printf(2, 3)
3690void netdev_notice(const struct net_device *dev, const char *format, ...);
3691__printf(2, 3)
3692void netdev_info(const struct net_device *dev, const char *format, ...);
3693
3694#define MODULE_ALIAS_NETDEV(device) \
3695 MODULE_ALIAS("netdev-" device)
3696
3697#if defined(CONFIG_DYNAMIC_DEBUG)
3698#define netdev_dbg(__dev, format, args...) \
3699do { \
3700 dynamic_netdev_dbg(__dev, format, ##args); \
3701} while (0)
3702#elif defined(DEBUG)
3703#define netdev_dbg(__dev, format, args...) \
3704 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3705#else
3706#define netdev_dbg(__dev, format, args...) \
3707({ \
3708 if (0) \
3709 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3710})
3711#endif
3712
3713#if defined(VERBOSE_DEBUG)
3714#define netdev_vdbg netdev_dbg
3715#else
3716
3717#define netdev_vdbg(dev, format, args...) \
3718({ \
3719 if (0) \
3720 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3721 0; \
3722})
3723#endif
3724
3725/*
3726 * netdev_WARN() acts like dev_printk(), but with the key difference
3727 * of using a WARN/WARN_ON to get the message out, including the
3728 * file/line information and a backtrace.
3729 */
3730#define netdev_WARN(dev, format, args...) \
3731 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3732 netdev_reg_state(dev), ##args)
3733
3734/* netif printk helpers, similar to netdev_printk */
3735
3736#define netif_printk(priv, type, level, dev, fmt, args...) \
3737do { \
3738 if (netif_msg_##type(priv)) \
3739 netdev_printk(level, (dev), fmt, ##args); \
3740} while (0)
3741
3742#define netif_level(level, priv, type, dev, fmt, args...) \
3743do { \
3744 if (netif_msg_##type(priv)) \
3745 netdev_##level(dev, fmt, ##args); \
3746} while (0)
3747
3748#define netif_emerg(priv, type, dev, fmt, args...) \
3749 netif_level(emerg, priv, type, dev, fmt, ##args)
3750#define netif_alert(priv, type, dev, fmt, args...) \
3751 netif_level(alert, priv, type, dev, fmt, ##args)
3752#define netif_crit(priv, type, dev, fmt, args...) \
3753 netif_level(crit, priv, type, dev, fmt, ##args)
3754#define netif_err(priv, type, dev, fmt, args...) \
3755 netif_level(err, priv, type, dev, fmt, ##args)
3756#define netif_warn(priv, type, dev, fmt, args...) \
3757 netif_level(warn, priv, type, dev, fmt, ##args)
3758#define netif_notice(priv, type, dev, fmt, args...) \
3759 netif_level(notice, priv, type, dev, fmt, ##args)
3760#define netif_info(priv, type, dev, fmt, args...) \
3761 netif_level(info, priv, type, dev, fmt, ##args)
3762
3763#if defined(CONFIG_DYNAMIC_DEBUG)
3764#define netif_dbg(priv, type, netdev, format, args...) \
3765do { \
3766 if (netif_msg_##type(priv)) \
3767 dynamic_netdev_dbg(netdev, format, ##args); \
3768} while (0)
3769#elif defined(DEBUG)
3770#define netif_dbg(priv, type, dev, format, args...) \
3771 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3772#else
3773#define netif_dbg(priv, type, dev, format, args...) \
3774({ \
3775 if (0) \
3776 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3777 0; \
3778})
3779#endif
3780
3781#if defined(VERBOSE_DEBUG)
3782#define netif_vdbg netif_dbg
3783#else
3784#define netif_vdbg(priv, type, dev, format, args...) \
3785({ \
3786 if (0) \
3787 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3788 0; \
3789})
3790#endif
3791
3792/*
3793 * The list of packet types we will receive (as opposed to discard)
3794 * and the routines to invoke.
3795 *
3796 * Why 16. Because with 16 the only overlap we get on a hash of the
3797 * low nibble of the protocol value is RARP/SNAP/X.25.
3798 *
3799 * NOTE: That is no longer true with the addition of VLAN tags. Not
3800 * sure which should go first, but I bet it won't make much
3801 * difference if we are running VLANs. The good news is that
3802 * this protocol won't be in the list unless compiled in, so
3803 * the average user (w/out VLANs) will not be adversely affected.
3804 * --BLG
3805 *
3806 * 0800 IP
3807 * 8100 802.1Q VLAN
3808 * 0001 802.3
3809 * 0002 AX.25
3810 * 0004 802.2
3811 * 8035 RARP
3812 * 0005 SNAP
3813 * 0805 X.25
3814 * 0806 ARP
3815 * 8137 IPX
3816 * 0009 Localtalk
3817 * 86DD IPv6
3818 */
3819#define PTYPE_HASH_SIZE (16)
3820#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3821
3822#endif /* _LINUX_NETDEVICE_H */