]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - include/linux/netdevice.h
Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/linville...
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53
54struct netpoll_info;
55struct device;
56struct phy_device;
57/* 802.11 specific */
58struct wireless_dev;
59 /* source back-compat hooks */
60#define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66/* hardware address assignment types */
67#define NET_ADDR_PERM 0 /* address is permanent (default) */
68#define NET_ADDR_RANDOM 1 /* address is generated randomly */
69#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70#define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73/* Backlog congestion levels */
74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75#define NET_RX_DROP 1 /* packet dropped */
76
77/*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94/* qdisc ->enqueue() return codes. */
95#define NET_XMIT_SUCCESS 0x00
96#define NET_XMIT_DROP 0x01 /* skb dropped */
97#define NET_XMIT_CN 0x02 /* congestion notification */
98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107/* Driver transmit return codes */
108#define NETDEV_TX_MASK 0xf0
109
110enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115};
116typedef enum netdev_tx netdev_tx_t;
117
118/*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122static inline bool dev_xmit_complete(int rc)
123{
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134}
135
136/*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142# if defined(CONFIG_MAC80211_MESH)
143# define LL_MAX_HEADER 128
144# else
145# define LL_MAX_HEADER 96
146# endif
147#elif IS_ENABLED(CONFIG_TR)
148# define LL_MAX_HEADER 48
149#else
150# define LL_MAX_HEADER 32
151#endif
152
153#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155#define MAX_HEADER LL_MAX_HEADER
156#else
157#define MAX_HEADER (LL_MAX_HEADER + 48)
158#endif
159
160/*
161 * Old network device statistics. Fields are native words
162 * (unsigned long) so they can be read and written atomically.
163 */
164
165struct net_device_stats {
166 unsigned long rx_packets;
167 unsigned long tx_packets;
168 unsigned long rx_bytes;
169 unsigned long tx_bytes;
170 unsigned long rx_errors;
171 unsigned long tx_errors;
172 unsigned long rx_dropped;
173 unsigned long tx_dropped;
174 unsigned long multicast;
175 unsigned long collisions;
176 unsigned long rx_length_errors;
177 unsigned long rx_over_errors;
178 unsigned long rx_crc_errors;
179 unsigned long rx_frame_errors;
180 unsigned long rx_fifo_errors;
181 unsigned long rx_missed_errors;
182 unsigned long tx_aborted_errors;
183 unsigned long tx_carrier_errors;
184 unsigned long tx_fifo_errors;
185 unsigned long tx_heartbeat_errors;
186 unsigned long tx_window_errors;
187 unsigned long rx_compressed;
188 unsigned long tx_compressed;
189};
190
191
192#include <linux/cache.h>
193#include <linux/skbuff.h>
194
195#ifdef CONFIG_RPS
196#include <linux/static_key.h>
197extern struct static_key rps_needed;
198#endif
199
200struct neighbour;
201struct neigh_parms;
202struct sk_buff;
203
204struct netdev_hw_addr {
205 struct list_head list;
206 unsigned char addr[MAX_ADDR_LEN];
207 unsigned char type;
208#define NETDEV_HW_ADDR_T_LAN 1
209#define NETDEV_HW_ADDR_T_SAN 2
210#define NETDEV_HW_ADDR_T_SLAVE 3
211#define NETDEV_HW_ADDR_T_UNICAST 4
212#define NETDEV_HW_ADDR_T_MULTICAST 5
213 bool synced;
214 bool global_use;
215 int refcount;
216 struct rcu_head rcu_head;
217};
218
219struct netdev_hw_addr_list {
220 struct list_head list;
221 int count;
222};
223
224#define netdev_hw_addr_list_count(l) ((l)->count)
225#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226#define netdev_hw_addr_list_for_each(ha, l) \
227 list_for_each_entry(ha, &(l)->list, list)
228
229#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231#define netdev_for_each_uc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236#define netdev_for_each_mc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239struct hh_cache {
240 u16 hh_len;
241 u16 __pad;
242 seqlock_t hh_lock;
243
244 /* cached hardware header; allow for machine alignment needs. */
245#define HH_DATA_MOD 16
246#define HH_DATA_OFF(__len) \
247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
248#define HH_DATA_ALIGN(__len) \
249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
251};
252
253/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
254 * Alternative is:
255 * dev->hard_header_len ? (dev->hard_header_len +
256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
257 *
258 * We could use other alignment values, but we must maintain the
259 * relationship HH alignment <= LL alignment.
260 */
261#define LL_RESERVED_SPACE(dev) \
262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265
266struct header_ops {
267 int (*create) (struct sk_buff *skb, struct net_device *dev,
268 unsigned short type, const void *daddr,
269 const void *saddr, unsigned int len);
270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
271 int (*rebuild)(struct sk_buff *skb);
272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 void (*cache_update)(struct hh_cache *hh,
274 const struct net_device *dev,
275 const unsigned char *haddr);
276};
277
278/* These flag bits are private to the generic network queueing
279 * layer, they may not be explicitly referenced by any other
280 * code.
281 */
282
283enum netdev_state_t {
284 __LINK_STATE_START,
285 __LINK_STATE_PRESENT,
286 __LINK_STATE_NOCARRIER,
287 __LINK_STATE_LINKWATCH_PENDING,
288 __LINK_STATE_DORMANT,
289};
290
291
292/*
293 * This structure holds at boot time configured netdevice settings. They
294 * are then used in the device probing.
295 */
296struct netdev_boot_setup {
297 char name[IFNAMSIZ];
298 struct ifmap map;
299};
300#define NETDEV_BOOT_SETUP_MAX 8
301
302extern int __init netdev_boot_setup(char *str);
303
304/*
305 * Structure for NAPI scheduling similar to tasklet but with weighting
306 */
307struct napi_struct {
308 /* The poll_list must only be managed by the entity which
309 * changes the state of the NAPI_STATE_SCHED bit. This means
310 * whoever atomically sets that bit can add this napi_struct
311 * to the per-cpu poll_list, and whoever clears that bit
312 * can remove from the list right before clearing the bit.
313 */
314 struct list_head poll_list;
315
316 unsigned long state;
317 int weight;
318 unsigned int gro_count;
319 int (*poll)(struct napi_struct *, int);
320#ifdef CONFIG_NETPOLL
321 spinlock_t poll_lock;
322 int poll_owner;
323#endif
324 struct net_device *dev;
325 struct sk_buff *gro_list;
326 struct sk_buff *skb;
327 struct list_head dev_list;
328};
329
330enum {
331 NAPI_STATE_SCHED, /* Poll is scheduled */
332 NAPI_STATE_DISABLE, /* Disable pending */
333 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
334};
335
336enum gro_result {
337 GRO_MERGED,
338 GRO_MERGED_FREE,
339 GRO_HELD,
340 GRO_NORMAL,
341 GRO_DROP,
342};
343typedef enum gro_result gro_result_t;
344
345/*
346 * enum rx_handler_result - Possible return values for rx_handlers.
347 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
348 * further.
349 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
350 * case skb->dev was changed by rx_handler.
351 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
352 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
353 *
354 * rx_handlers are functions called from inside __netif_receive_skb(), to do
355 * special processing of the skb, prior to delivery to protocol handlers.
356 *
357 * Currently, a net_device can only have a single rx_handler registered. Trying
358 * to register a second rx_handler will return -EBUSY.
359 *
360 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
361 * To unregister a rx_handler on a net_device, use
362 * netdev_rx_handler_unregister().
363 *
364 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
365 * do with the skb.
366 *
367 * If the rx_handler consumed to skb in some way, it should return
368 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
369 * the skb to be delivered in some other ways.
370 *
371 * If the rx_handler changed skb->dev, to divert the skb to another
372 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
373 * new device will be called if it exists.
374 *
375 * If the rx_handler consider the skb should be ignored, it should return
376 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
377 * are registered on exact device (ptype->dev == skb->dev).
378 *
379 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
380 * delivered, it should return RX_HANDLER_PASS.
381 *
382 * A device without a registered rx_handler will behave as if rx_handler
383 * returned RX_HANDLER_PASS.
384 */
385
386enum rx_handler_result {
387 RX_HANDLER_CONSUMED,
388 RX_HANDLER_ANOTHER,
389 RX_HANDLER_EXACT,
390 RX_HANDLER_PASS,
391};
392typedef enum rx_handler_result rx_handler_result_t;
393typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
394
395extern void __napi_schedule(struct napi_struct *n);
396
397static inline bool napi_disable_pending(struct napi_struct *n)
398{
399 return test_bit(NAPI_STATE_DISABLE, &n->state);
400}
401
402/**
403 * napi_schedule_prep - check if napi can be scheduled
404 * @n: napi context
405 *
406 * Test if NAPI routine is already running, and if not mark
407 * it as running. This is used as a condition variable
408 * insure only one NAPI poll instance runs. We also make
409 * sure there is no pending NAPI disable.
410 */
411static inline bool napi_schedule_prep(struct napi_struct *n)
412{
413 return !napi_disable_pending(n) &&
414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415}
416
417/**
418 * napi_schedule - schedule NAPI poll
419 * @n: napi context
420 *
421 * Schedule NAPI poll routine to be called if it is not already
422 * running.
423 */
424static inline void napi_schedule(struct napi_struct *n)
425{
426 if (napi_schedule_prep(n))
427 __napi_schedule(n);
428}
429
430/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
431static inline bool napi_reschedule(struct napi_struct *napi)
432{
433 if (napi_schedule_prep(napi)) {
434 __napi_schedule(napi);
435 return true;
436 }
437 return false;
438}
439
440/**
441 * napi_complete - NAPI processing complete
442 * @n: napi context
443 *
444 * Mark NAPI processing as complete.
445 */
446extern void __napi_complete(struct napi_struct *n);
447extern void napi_complete(struct napi_struct *n);
448
449/**
450 * napi_disable - prevent NAPI from scheduling
451 * @n: napi context
452 *
453 * Stop NAPI from being scheduled on this context.
454 * Waits till any outstanding processing completes.
455 */
456static inline void napi_disable(struct napi_struct *n)
457{
458 set_bit(NAPI_STATE_DISABLE, &n->state);
459 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
460 msleep(1);
461 clear_bit(NAPI_STATE_DISABLE, &n->state);
462}
463
464/**
465 * napi_enable - enable NAPI scheduling
466 * @n: napi context
467 *
468 * Resume NAPI from being scheduled on this context.
469 * Must be paired with napi_disable.
470 */
471static inline void napi_enable(struct napi_struct *n)
472{
473 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
474 smp_mb__before_clear_bit();
475 clear_bit(NAPI_STATE_SCHED, &n->state);
476}
477
478#ifdef CONFIG_SMP
479/**
480 * napi_synchronize - wait until NAPI is not running
481 * @n: napi context
482 *
483 * Wait until NAPI is done being scheduled on this context.
484 * Waits till any outstanding processing completes but
485 * does not disable future activations.
486 */
487static inline void napi_synchronize(const struct napi_struct *n)
488{
489 while (test_bit(NAPI_STATE_SCHED, &n->state))
490 msleep(1);
491}
492#else
493# define napi_synchronize(n) barrier()
494#endif
495
496enum netdev_queue_state_t {
497 __QUEUE_STATE_DRV_XOFF,
498 __QUEUE_STATE_STACK_XOFF,
499 __QUEUE_STATE_FROZEN,
500#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
501 (1 << __QUEUE_STATE_STACK_XOFF))
502#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
503 (1 << __QUEUE_STATE_FROZEN))
504};
505/*
506 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
507 * netif_tx_* functions below are used to manipulate this flag. The
508 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
509 * queue independently. The netif_xmit_*stopped functions below are called
510 * to check if the queue has been stopped by the driver or stack (either
511 * of the XOFF bits are set in the state). Drivers should not need to call
512 * netif_xmit*stopped functions, they should only be using netif_tx_*.
513 */
514
515struct netdev_queue {
516/*
517 * read mostly part
518 */
519 struct net_device *dev;
520 struct Qdisc *qdisc;
521 struct Qdisc *qdisc_sleeping;
522#ifdef CONFIG_SYSFS
523 struct kobject kobj;
524#endif
525#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
526 int numa_node;
527#endif
528/*
529 * write mostly part
530 */
531 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
532 int xmit_lock_owner;
533 /*
534 * please use this field instead of dev->trans_start
535 */
536 unsigned long trans_start;
537
538 /*
539 * Number of TX timeouts for this queue
540 * (/sys/class/net/DEV/Q/trans_timeout)
541 */
542 unsigned long trans_timeout;
543
544 unsigned long state;
545
546#ifdef CONFIG_BQL
547 struct dql dql;
548#endif
549} ____cacheline_aligned_in_smp;
550
551static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
552{
553#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 return q->numa_node;
555#else
556 return NUMA_NO_NODE;
557#endif
558}
559
560static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
561{
562#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 q->numa_node = node;
564#endif
565}
566
567#ifdef CONFIG_RPS
568/*
569 * This structure holds an RPS map which can be of variable length. The
570 * map is an array of CPUs.
571 */
572struct rps_map {
573 unsigned int len;
574 struct rcu_head rcu;
575 u16 cpus[0];
576};
577#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
578
579/*
580 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
581 * tail pointer for that CPU's input queue at the time of last enqueue, and
582 * a hardware filter index.
583 */
584struct rps_dev_flow {
585 u16 cpu;
586 u16 filter;
587 unsigned int last_qtail;
588};
589#define RPS_NO_FILTER 0xffff
590
591/*
592 * The rps_dev_flow_table structure contains a table of flow mappings.
593 */
594struct rps_dev_flow_table {
595 unsigned int mask;
596 struct rcu_head rcu;
597 struct work_struct free_work;
598 struct rps_dev_flow flows[0];
599};
600#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
601 ((_num) * sizeof(struct rps_dev_flow)))
602
603/*
604 * The rps_sock_flow_table contains mappings of flows to the last CPU
605 * on which they were processed by the application (set in recvmsg).
606 */
607struct rps_sock_flow_table {
608 unsigned int mask;
609 u16 ents[0];
610};
611#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
612 ((_num) * sizeof(u16)))
613
614#define RPS_NO_CPU 0xffff
615
616static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
617 u32 hash)
618{
619 if (table && hash) {
620 unsigned int cpu, index = hash & table->mask;
621
622 /* We only give a hint, preemption can change cpu under us */
623 cpu = raw_smp_processor_id();
624
625 if (table->ents[index] != cpu)
626 table->ents[index] = cpu;
627 }
628}
629
630static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
631 u32 hash)
632{
633 if (table && hash)
634 table->ents[hash & table->mask] = RPS_NO_CPU;
635}
636
637extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
638
639#ifdef CONFIG_RFS_ACCEL
640extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
641 u32 flow_id, u16 filter_id);
642#endif
643
644/* This structure contains an instance of an RX queue. */
645struct netdev_rx_queue {
646 struct rps_map __rcu *rps_map;
647 struct rps_dev_flow_table __rcu *rps_flow_table;
648 struct kobject kobj;
649 struct net_device *dev;
650} ____cacheline_aligned_in_smp;
651#endif /* CONFIG_RPS */
652
653#ifdef CONFIG_XPS
654/*
655 * This structure holds an XPS map which can be of variable length. The
656 * map is an array of queues.
657 */
658struct xps_map {
659 unsigned int len;
660 unsigned int alloc_len;
661 struct rcu_head rcu;
662 u16 queues[0];
663};
664#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
665#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
666 / sizeof(u16))
667
668/*
669 * This structure holds all XPS maps for device. Maps are indexed by CPU.
670 */
671struct xps_dev_maps {
672 struct rcu_head rcu;
673 struct xps_map __rcu *cpu_map[0];
674};
675#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
676 (nr_cpu_ids * sizeof(struct xps_map *)))
677#endif /* CONFIG_XPS */
678
679#define TC_MAX_QUEUE 16
680#define TC_BITMASK 15
681/* HW offloaded queuing disciplines txq count and offset maps */
682struct netdev_tc_txq {
683 u16 count;
684 u16 offset;
685};
686
687#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
688/*
689 * This structure is to hold information about the device
690 * configured to run FCoE protocol stack.
691 */
692struct netdev_fcoe_hbainfo {
693 char manufacturer[64];
694 char serial_number[64];
695 char hardware_version[64];
696 char driver_version[64];
697 char optionrom_version[64];
698 char firmware_version[64];
699 char model[256];
700 char model_description[256];
701};
702#endif
703
704/*
705 * This structure defines the management hooks for network devices.
706 * The following hooks can be defined; unless noted otherwise, they are
707 * optional and can be filled with a null pointer.
708 *
709 * int (*ndo_init)(struct net_device *dev);
710 * This function is called once when network device is registered.
711 * The network device can use this to any late stage initializaton
712 * or semantic validattion. It can fail with an error code which will
713 * be propogated back to register_netdev
714 *
715 * void (*ndo_uninit)(struct net_device *dev);
716 * This function is called when device is unregistered or when registration
717 * fails. It is not called if init fails.
718 *
719 * int (*ndo_open)(struct net_device *dev);
720 * This function is called when network device transistions to the up
721 * state.
722 *
723 * int (*ndo_stop)(struct net_device *dev);
724 * This function is called when network device transistions to the down
725 * state.
726 *
727 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
728 * struct net_device *dev);
729 * Called when a packet needs to be transmitted.
730 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
731 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
732 * Required can not be NULL.
733 *
734 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
735 * Called to decide which queue to when device supports multiple
736 * transmit queues.
737 *
738 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
739 * This function is called to allow device receiver to make
740 * changes to configuration when multicast or promiscious is enabled.
741 *
742 * void (*ndo_set_rx_mode)(struct net_device *dev);
743 * This function is called device changes address list filtering.
744 * If driver handles unicast address filtering, it should set
745 * IFF_UNICAST_FLT to its priv_flags.
746 *
747 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
748 * This function is called when the Media Access Control address
749 * needs to be changed. If this interface is not defined, the
750 * mac address can not be changed.
751 *
752 * int (*ndo_validate_addr)(struct net_device *dev);
753 * Test if Media Access Control address is valid for the device.
754 *
755 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
756 * Called when a user request an ioctl which can't be handled by
757 * the generic interface code. If not defined ioctl's return
758 * not supported error code.
759 *
760 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
761 * Used to set network devices bus interface parameters. This interface
762 * is retained for legacy reason, new devices should use the bus
763 * interface (PCI) for low level management.
764 *
765 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
766 * Called when a user wants to change the Maximum Transfer Unit
767 * of a device. If not defined, any request to change MTU will
768 * will return an error.
769 *
770 * void (*ndo_tx_timeout)(struct net_device *dev);
771 * Callback uses when the transmitter has not made any progress
772 * for dev->watchdog ticks.
773 *
774 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
775 * struct rtnl_link_stats64 *storage);
776 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
777 * Called when a user wants to get the network device usage
778 * statistics. Drivers must do one of the following:
779 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
780 * rtnl_link_stats64 structure passed by the caller.
781 * 2. Define @ndo_get_stats to update a net_device_stats structure
782 * (which should normally be dev->stats) and return a pointer to
783 * it. The structure may be changed asynchronously only if each
784 * field is written atomically.
785 * 3. Update dev->stats asynchronously and atomically, and define
786 * neither operation.
787 *
788 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
789 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
790 * this function is called when a VLAN id is registered.
791 *
792 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
793 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
794 * this function is called when a VLAN id is unregistered.
795 *
796 * void (*ndo_poll_controller)(struct net_device *dev);
797 *
798 * SR-IOV management functions.
799 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
800 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
801 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
802 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
803 * int (*ndo_get_vf_config)(struct net_device *dev,
804 * int vf, struct ifla_vf_info *ivf);
805 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
806 * struct nlattr *port[]);
807 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
808 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
809 * Called to setup 'tc' number of traffic classes in the net device. This
810 * is always called from the stack with the rtnl lock held and netif tx
811 * queues stopped. This allows the netdevice to perform queue management
812 * safely.
813 *
814 * Fiber Channel over Ethernet (FCoE) offload functions.
815 * int (*ndo_fcoe_enable)(struct net_device *dev);
816 * Called when the FCoE protocol stack wants to start using LLD for FCoE
817 * so the underlying device can perform whatever needed configuration or
818 * initialization to support acceleration of FCoE traffic.
819 *
820 * int (*ndo_fcoe_disable)(struct net_device *dev);
821 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
822 * so the underlying device can perform whatever needed clean-ups to
823 * stop supporting acceleration of FCoE traffic.
824 *
825 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
826 * struct scatterlist *sgl, unsigned int sgc);
827 * Called when the FCoE Initiator wants to initialize an I/O that
828 * is a possible candidate for Direct Data Placement (DDP). The LLD can
829 * perform necessary setup and returns 1 to indicate the device is set up
830 * successfully to perform DDP on this I/O, otherwise this returns 0.
831 *
832 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
833 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
834 * indicated by the FC exchange id 'xid', so the underlying device can
835 * clean up and reuse resources for later DDP requests.
836 *
837 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
838 * struct scatterlist *sgl, unsigned int sgc);
839 * Called when the FCoE Target wants to initialize an I/O that
840 * is a possible candidate for Direct Data Placement (DDP). The LLD can
841 * perform necessary setup and returns 1 to indicate the device is set up
842 * successfully to perform DDP on this I/O, otherwise this returns 0.
843 *
844 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
845 * struct netdev_fcoe_hbainfo *hbainfo);
846 * Called when the FCoE Protocol stack wants information on the underlying
847 * device. This information is utilized by the FCoE protocol stack to
848 * register attributes with Fiber Channel management service as per the
849 * FC-GS Fabric Device Management Information(FDMI) specification.
850 *
851 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
852 * Called when the underlying device wants to override default World Wide
853 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
854 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
855 * protocol stack to use.
856 *
857 * RFS acceleration.
858 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
859 * u16 rxq_index, u32 flow_id);
860 * Set hardware filter for RFS. rxq_index is the target queue index;
861 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
862 * Return the filter ID on success, or a negative error code.
863 *
864 * Slave management functions (for bridge, bonding, etc).
865 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
866 * Called to make another netdev an underling.
867 *
868 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
869 * Called to release previously enslaved netdev.
870 *
871 * Feature/offload setting functions.
872 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
873 * netdev_features_t features);
874 * Adjusts the requested feature flags according to device-specific
875 * constraints, and returns the resulting flags. Must not modify
876 * the device state.
877 *
878 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
879 * Called to update device configuration to new features. Passed
880 * feature set might be less than what was returned by ndo_fix_features()).
881 * Must return >0 or -errno if it changed dev->features itself.
882 *
883 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
884 * struct net_device *dev,
885 * const unsigned char *addr, u16 flags)
886 * Adds an FDB entry to dev for addr.
887 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
888 * const unsigned char *addr)
889 * Deletes the FDB entry from dev coresponding to addr.
890 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
891 * struct net_device *dev, int idx)
892 * Used to add FDB entries to dump requests. Implementers should add
893 * entries to skb and update idx with the number of entries.
894 *
895 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
896 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
897 * struct net_device *dev)
898 *
899 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
900 * Called to change device carrier. Soft-devices (like dummy, team, etc)
901 * which do not represent real hardware may define this to allow their
902 * userspace components to manage their virtual carrier state. Devices
903 * that determine carrier state from physical hardware properties (eg
904 * network cables) or protocol-dependent mechanisms (eg
905 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
906 */
907struct net_device_ops {
908 int (*ndo_init)(struct net_device *dev);
909 void (*ndo_uninit)(struct net_device *dev);
910 int (*ndo_open)(struct net_device *dev);
911 int (*ndo_stop)(struct net_device *dev);
912 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
913 struct net_device *dev);
914 u16 (*ndo_select_queue)(struct net_device *dev,
915 struct sk_buff *skb);
916 void (*ndo_change_rx_flags)(struct net_device *dev,
917 int flags);
918 void (*ndo_set_rx_mode)(struct net_device *dev);
919 int (*ndo_set_mac_address)(struct net_device *dev,
920 void *addr);
921 int (*ndo_validate_addr)(struct net_device *dev);
922 int (*ndo_do_ioctl)(struct net_device *dev,
923 struct ifreq *ifr, int cmd);
924 int (*ndo_set_config)(struct net_device *dev,
925 struct ifmap *map);
926 int (*ndo_change_mtu)(struct net_device *dev,
927 int new_mtu);
928 int (*ndo_neigh_setup)(struct net_device *dev,
929 struct neigh_parms *);
930 void (*ndo_tx_timeout) (struct net_device *dev);
931
932 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
933 struct rtnl_link_stats64 *storage);
934 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
935
936 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
937 unsigned short vid);
938 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
939 unsigned short vid);
940#ifdef CONFIG_NET_POLL_CONTROLLER
941 void (*ndo_poll_controller)(struct net_device *dev);
942 int (*ndo_netpoll_setup)(struct net_device *dev,
943 struct netpoll_info *info,
944 gfp_t gfp);
945 void (*ndo_netpoll_cleanup)(struct net_device *dev);
946#endif
947 int (*ndo_set_vf_mac)(struct net_device *dev,
948 int queue, u8 *mac);
949 int (*ndo_set_vf_vlan)(struct net_device *dev,
950 int queue, u16 vlan, u8 qos);
951 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
952 int vf, int rate);
953 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
954 int vf, bool setting);
955 int (*ndo_get_vf_config)(struct net_device *dev,
956 int vf,
957 struct ifla_vf_info *ivf);
958 int (*ndo_set_vf_port)(struct net_device *dev,
959 int vf,
960 struct nlattr *port[]);
961 int (*ndo_get_vf_port)(struct net_device *dev,
962 int vf, struct sk_buff *skb);
963 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
964#if IS_ENABLED(CONFIG_FCOE)
965 int (*ndo_fcoe_enable)(struct net_device *dev);
966 int (*ndo_fcoe_disable)(struct net_device *dev);
967 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
968 u16 xid,
969 struct scatterlist *sgl,
970 unsigned int sgc);
971 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
972 u16 xid);
973 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
974 u16 xid,
975 struct scatterlist *sgl,
976 unsigned int sgc);
977 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
978 struct netdev_fcoe_hbainfo *hbainfo);
979#endif
980
981#if IS_ENABLED(CONFIG_LIBFCOE)
982#define NETDEV_FCOE_WWNN 0
983#define NETDEV_FCOE_WWPN 1
984 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
985 u64 *wwn, int type);
986#endif
987
988#ifdef CONFIG_RFS_ACCEL
989 int (*ndo_rx_flow_steer)(struct net_device *dev,
990 const struct sk_buff *skb,
991 u16 rxq_index,
992 u32 flow_id);
993#endif
994 int (*ndo_add_slave)(struct net_device *dev,
995 struct net_device *slave_dev);
996 int (*ndo_del_slave)(struct net_device *dev,
997 struct net_device *slave_dev);
998 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
999 netdev_features_t features);
1000 int (*ndo_set_features)(struct net_device *dev,
1001 netdev_features_t features);
1002 int (*ndo_neigh_construct)(struct neighbour *n);
1003 void (*ndo_neigh_destroy)(struct neighbour *n);
1004
1005 int (*ndo_fdb_add)(struct ndmsg *ndm,
1006 struct nlattr *tb[],
1007 struct net_device *dev,
1008 const unsigned char *addr,
1009 u16 flags);
1010 int (*ndo_fdb_del)(struct ndmsg *ndm,
1011 struct net_device *dev,
1012 const unsigned char *addr);
1013 int (*ndo_fdb_dump)(struct sk_buff *skb,
1014 struct netlink_callback *cb,
1015 struct net_device *dev,
1016 int idx);
1017
1018 int (*ndo_bridge_setlink)(struct net_device *dev,
1019 struct nlmsghdr *nlh);
1020 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1021 u32 pid, u32 seq,
1022 struct net_device *dev);
1023 int (*ndo_change_carrier)(struct net_device *dev,
1024 bool new_carrier);
1025};
1026
1027/*
1028 * The DEVICE structure.
1029 * Actually, this whole structure is a big mistake. It mixes I/O
1030 * data with strictly "high-level" data, and it has to know about
1031 * almost every data structure used in the INET module.
1032 *
1033 * FIXME: cleanup struct net_device such that network protocol info
1034 * moves out.
1035 */
1036
1037struct net_device {
1038
1039 /*
1040 * This is the first field of the "visible" part of this structure
1041 * (i.e. as seen by users in the "Space.c" file). It is the name
1042 * of the interface.
1043 */
1044 char name[IFNAMSIZ];
1045
1046 /* device name hash chain, please keep it close to name[] */
1047 struct hlist_node name_hlist;
1048
1049 /* snmp alias */
1050 char *ifalias;
1051
1052 /*
1053 * I/O specific fields
1054 * FIXME: Merge these and struct ifmap into one
1055 */
1056 unsigned long mem_end; /* shared mem end */
1057 unsigned long mem_start; /* shared mem start */
1058 unsigned long base_addr; /* device I/O address */
1059 unsigned int irq; /* device IRQ number */
1060
1061 /*
1062 * Some hardware also needs these fields, but they are not
1063 * part of the usual set specified in Space.c.
1064 */
1065
1066 unsigned long state;
1067
1068 struct list_head dev_list;
1069 struct list_head napi_list;
1070 struct list_head unreg_list;
1071
1072 /* currently active device features */
1073 netdev_features_t features;
1074 /* user-changeable features */
1075 netdev_features_t hw_features;
1076 /* user-requested features */
1077 netdev_features_t wanted_features;
1078 /* mask of features inheritable by VLAN devices */
1079 netdev_features_t vlan_features;
1080 /* mask of features inherited by encapsulating devices
1081 * This field indicates what encapsulation offloads
1082 * the hardware is capable of doing, and drivers will
1083 * need to set them appropriately.
1084 */
1085 netdev_features_t hw_enc_features;
1086
1087 /* Interface index. Unique device identifier */
1088 int ifindex;
1089 int iflink;
1090
1091 struct net_device_stats stats;
1092 atomic_long_t rx_dropped; /* dropped packets by core network
1093 * Do not use this in drivers.
1094 */
1095
1096#ifdef CONFIG_WIRELESS_EXT
1097 /* List of functions to handle Wireless Extensions (instead of ioctl).
1098 * See <net/iw_handler.h> for details. Jean II */
1099 const struct iw_handler_def * wireless_handlers;
1100 /* Instance data managed by the core of Wireless Extensions. */
1101 struct iw_public_data * wireless_data;
1102#endif
1103 /* Management operations */
1104 const struct net_device_ops *netdev_ops;
1105 const struct ethtool_ops *ethtool_ops;
1106
1107 /* Hardware header description */
1108 const struct header_ops *header_ops;
1109
1110 unsigned int flags; /* interface flags (a la BSD) */
1111 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1112 * See if.h for definitions. */
1113 unsigned short gflags;
1114 unsigned short padded; /* How much padding added by alloc_netdev() */
1115
1116 unsigned char operstate; /* RFC2863 operstate */
1117 unsigned char link_mode; /* mapping policy to operstate */
1118
1119 unsigned char if_port; /* Selectable AUI, TP,..*/
1120 unsigned char dma; /* DMA channel */
1121
1122 unsigned int mtu; /* interface MTU value */
1123 unsigned short type; /* interface hardware type */
1124 unsigned short hard_header_len; /* hardware hdr length */
1125
1126 /* extra head- and tailroom the hardware may need, but not in all cases
1127 * can this be guaranteed, especially tailroom. Some cases also use
1128 * LL_MAX_HEADER instead to allocate the skb.
1129 */
1130 unsigned short needed_headroom;
1131 unsigned short needed_tailroom;
1132
1133 /* Interface address info. */
1134 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1135 unsigned char addr_assign_type; /* hw address assignment type */
1136 unsigned char addr_len; /* hardware address length */
1137 unsigned char neigh_priv_len;
1138 unsigned short dev_id; /* for shared network cards */
1139
1140 spinlock_t addr_list_lock;
1141 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1142 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1143 bool uc_promisc;
1144 unsigned int promiscuity;
1145 unsigned int allmulti;
1146
1147
1148 /* Protocol specific pointers */
1149
1150#if IS_ENABLED(CONFIG_VLAN_8021Q)
1151 struct vlan_info __rcu *vlan_info; /* VLAN info */
1152#endif
1153#if IS_ENABLED(CONFIG_NET_DSA)
1154 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1155#endif
1156 void *atalk_ptr; /* AppleTalk link */
1157 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1158 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1159 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1160 void *ax25_ptr; /* AX.25 specific data */
1161 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1162 assign before registering */
1163
1164/*
1165 * Cache lines mostly used on receive path (including eth_type_trans())
1166 */
1167 unsigned long last_rx; /* Time of last Rx
1168 * This should not be set in
1169 * drivers, unless really needed,
1170 * because network stack (bonding)
1171 * use it if/when necessary, to
1172 * avoid dirtying this cache line.
1173 */
1174
1175 struct list_head upper_dev_list; /* List of upper devices */
1176
1177 /* Interface address info used in eth_type_trans() */
1178 unsigned char *dev_addr; /* hw address, (before bcast
1179 because most packets are
1180 unicast) */
1181
1182 struct netdev_hw_addr_list dev_addrs; /* list of device
1183 hw addresses */
1184
1185 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1186
1187#ifdef CONFIG_SYSFS
1188 struct kset *queues_kset;
1189#endif
1190
1191#ifdef CONFIG_RPS
1192 struct netdev_rx_queue *_rx;
1193
1194 /* Number of RX queues allocated at register_netdev() time */
1195 unsigned int num_rx_queues;
1196
1197 /* Number of RX queues currently active in device */
1198 unsigned int real_num_rx_queues;
1199
1200#ifdef CONFIG_RFS_ACCEL
1201 /* CPU reverse-mapping for RX completion interrupts, indexed
1202 * by RX queue number. Assigned by driver. This must only be
1203 * set if the ndo_rx_flow_steer operation is defined. */
1204 struct cpu_rmap *rx_cpu_rmap;
1205#endif
1206#endif
1207
1208 rx_handler_func_t __rcu *rx_handler;
1209 void __rcu *rx_handler_data;
1210
1211 struct netdev_queue __rcu *ingress_queue;
1212
1213/*
1214 * Cache lines mostly used on transmit path
1215 */
1216 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1217
1218 /* Number of TX queues allocated at alloc_netdev_mq() time */
1219 unsigned int num_tx_queues;
1220
1221 /* Number of TX queues currently active in device */
1222 unsigned int real_num_tx_queues;
1223
1224 /* root qdisc from userspace point of view */
1225 struct Qdisc *qdisc;
1226
1227 unsigned long tx_queue_len; /* Max frames per queue allowed */
1228 spinlock_t tx_global_lock;
1229
1230#ifdef CONFIG_XPS
1231 struct xps_dev_maps __rcu *xps_maps;
1232#endif
1233
1234 /* These may be needed for future network-power-down code. */
1235
1236 /*
1237 * trans_start here is expensive for high speed devices on SMP,
1238 * please use netdev_queue->trans_start instead.
1239 */
1240 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1241
1242 int watchdog_timeo; /* used by dev_watchdog() */
1243 struct timer_list watchdog_timer;
1244
1245 /* Number of references to this device */
1246 int __percpu *pcpu_refcnt;
1247
1248 /* delayed register/unregister */
1249 struct list_head todo_list;
1250 /* device index hash chain */
1251 struct hlist_node index_hlist;
1252
1253 struct list_head link_watch_list;
1254
1255 /* register/unregister state machine */
1256 enum { NETREG_UNINITIALIZED=0,
1257 NETREG_REGISTERED, /* completed register_netdevice */
1258 NETREG_UNREGISTERING, /* called unregister_netdevice */
1259 NETREG_UNREGISTERED, /* completed unregister todo */
1260 NETREG_RELEASED, /* called free_netdev */
1261 NETREG_DUMMY, /* dummy device for NAPI poll */
1262 } reg_state:8;
1263
1264 bool dismantle; /* device is going do be freed */
1265
1266 enum {
1267 RTNL_LINK_INITIALIZED,
1268 RTNL_LINK_INITIALIZING,
1269 } rtnl_link_state:16;
1270
1271 /* Called from unregister, can be used to call free_netdev */
1272 void (*destructor)(struct net_device *dev);
1273
1274#ifdef CONFIG_NETPOLL
1275 struct netpoll_info *npinfo;
1276#endif
1277
1278#ifdef CONFIG_NET_NS
1279 /* Network namespace this network device is inside */
1280 struct net *nd_net;
1281#endif
1282
1283 /* mid-layer private */
1284 union {
1285 void *ml_priv;
1286 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1287 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1288 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1289 struct pcpu_vstats __percpu *vstats; /* veth stats */
1290 };
1291 /* GARP */
1292 struct garp_port __rcu *garp_port;
1293
1294 /* class/net/name entry */
1295 struct device dev;
1296 /* space for optional device, statistics, and wireless sysfs groups */
1297 const struct attribute_group *sysfs_groups[4];
1298
1299 /* rtnetlink link ops */
1300 const struct rtnl_link_ops *rtnl_link_ops;
1301
1302 /* for setting kernel sock attribute on TCP connection setup */
1303#define GSO_MAX_SIZE 65536
1304 unsigned int gso_max_size;
1305#define GSO_MAX_SEGS 65535
1306 u16 gso_max_segs;
1307
1308#ifdef CONFIG_DCB
1309 /* Data Center Bridging netlink ops */
1310 const struct dcbnl_rtnl_ops *dcbnl_ops;
1311#endif
1312 u8 num_tc;
1313 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1314 u8 prio_tc_map[TC_BITMASK + 1];
1315
1316#if IS_ENABLED(CONFIG_FCOE)
1317 /* max exchange id for FCoE LRO by ddp */
1318 unsigned int fcoe_ddp_xid;
1319#endif
1320#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1321 struct netprio_map __rcu *priomap;
1322#endif
1323 /* phy device may attach itself for hardware timestamping */
1324 struct phy_device *phydev;
1325
1326 struct lock_class_key *qdisc_tx_busylock;
1327
1328 /* group the device belongs to */
1329 int group;
1330
1331 struct pm_qos_request pm_qos_req;
1332};
1333#define to_net_dev(d) container_of(d, struct net_device, dev)
1334
1335#define NETDEV_ALIGN 32
1336
1337static inline
1338int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1339{
1340 return dev->prio_tc_map[prio & TC_BITMASK];
1341}
1342
1343static inline
1344int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1345{
1346 if (tc >= dev->num_tc)
1347 return -EINVAL;
1348
1349 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1350 return 0;
1351}
1352
1353static inline
1354void netdev_reset_tc(struct net_device *dev)
1355{
1356 dev->num_tc = 0;
1357 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1358 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1359}
1360
1361static inline
1362int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1363{
1364 if (tc >= dev->num_tc)
1365 return -EINVAL;
1366
1367 dev->tc_to_txq[tc].count = count;
1368 dev->tc_to_txq[tc].offset = offset;
1369 return 0;
1370}
1371
1372static inline
1373int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1374{
1375 if (num_tc > TC_MAX_QUEUE)
1376 return -EINVAL;
1377
1378 dev->num_tc = num_tc;
1379 return 0;
1380}
1381
1382static inline
1383int netdev_get_num_tc(struct net_device *dev)
1384{
1385 return dev->num_tc;
1386}
1387
1388static inline
1389struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1390 unsigned int index)
1391{
1392 return &dev->_tx[index];
1393}
1394
1395static inline void netdev_for_each_tx_queue(struct net_device *dev,
1396 void (*f)(struct net_device *,
1397 struct netdev_queue *,
1398 void *),
1399 void *arg)
1400{
1401 unsigned int i;
1402
1403 for (i = 0; i < dev->num_tx_queues; i++)
1404 f(dev, &dev->_tx[i], arg);
1405}
1406
1407extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1408 struct sk_buff *skb);
1409extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1410
1411/*
1412 * Net namespace inlines
1413 */
1414static inline
1415struct net *dev_net(const struct net_device *dev)
1416{
1417 return read_pnet(&dev->nd_net);
1418}
1419
1420static inline
1421void dev_net_set(struct net_device *dev, struct net *net)
1422{
1423#ifdef CONFIG_NET_NS
1424 release_net(dev->nd_net);
1425 dev->nd_net = hold_net(net);
1426#endif
1427}
1428
1429static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1430{
1431#ifdef CONFIG_NET_DSA_TAG_DSA
1432 if (dev->dsa_ptr != NULL)
1433 return dsa_uses_dsa_tags(dev->dsa_ptr);
1434#endif
1435
1436 return 0;
1437}
1438
1439static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1440{
1441#ifdef CONFIG_NET_DSA_TAG_TRAILER
1442 if (dev->dsa_ptr != NULL)
1443 return dsa_uses_trailer_tags(dev->dsa_ptr);
1444#endif
1445
1446 return 0;
1447}
1448
1449/**
1450 * netdev_priv - access network device private data
1451 * @dev: network device
1452 *
1453 * Get network device private data
1454 */
1455static inline void *netdev_priv(const struct net_device *dev)
1456{
1457 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1458}
1459
1460/* Set the sysfs physical device reference for the network logical device
1461 * if set prior to registration will cause a symlink during initialization.
1462 */
1463#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1464
1465/* Set the sysfs device type for the network logical device to allow
1466 * fin grained indentification of different network device types. For
1467 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1468 */
1469#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1470
1471/**
1472 * netif_napi_add - initialize a napi context
1473 * @dev: network device
1474 * @napi: napi context
1475 * @poll: polling function
1476 * @weight: default weight
1477 *
1478 * netif_napi_add() must be used to initialize a napi context prior to calling
1479 * *any* of the other napi related functions.
1480 */
1481void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1482 int (*poll)(struct napi_struct *, int), int weight);
1483
1484/**
1485 * netif_napi_del - remove a napi context
1486 * @napi: napi context
1487 *
1488 * netif_napi_del() removes a napi context from the network device napi list
1489 */
1490void netif_napi_del(struct napi_struct *napi);
1491
1492struct napi_gro_cb {
1493 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1494 void *frag0;
1495
1496 /* Length of frag0. */
1497 unsigned int frag0_len;
1498
1499 /* This indicates where we are processing relative to skb->data. */
1500 int data_offset;
1501
1502 /* This is non-zero if the packet cannot be merged with the new skb. */
1503 int flush;
1504
1505 /* Number of segments aggregated. */
1506 u16 count;
1507
1508 /* This is non-zero if the packet may be of the same flow. */
1509 u8 same_flow;
1510
1511 /* Free the skb? */
1512 u8 free;
1513#define NAPI_GRO_FREE 1
1514#define NAPI_GRO_FREE_STOLEN_HEAD 2
1515
1516 /* jiffies when first packet was created/queued */
1517 unsigned long age;
1518
1519 /* Used in ipv6_gro_receive() */
1520 int proto;
1521
1522 /* used in skb_gro_receive() slow path */
1523 struct sk_buff *last;
1524};
1525
1526#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1527
1528struct packet_type {
1529 __be16 type; /* This is really htons(ether_type). */
1530 struct net_device *dev; /* NULL is wildcarded here */
1531 int (*func) (struct sk_buff *,
1532 struct net_device *,
1533 struct packet_type *,
1534 struct net_device *);
1535 bool (*id_match)(struct packet_type *ptype,
1536 struct sock *sk);
1537 void *af_packet_priv;
1538 struct list_head list;
1539};
1540
1541struct offload_callbacks {
1542 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1543 netdev_features_t features);
1544 int (*gso_send_check)(struct sk_buff *skb);
1545 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1546 struct sk_buff *skb);
1547 int (*gro_complete)(struct sk_buff *skb);
1548};
1549
1550struct packet_offload {
1551 __be16 type; /* This is really htons(ether_type). */
1552 struct offload_callbacks callbacks;
1553 struct list_head list;
1554};
1555
1556#include <linux/notifier.h>
1557
1558/* netdevice notifier chain. Please remember to update the rtnetlink
1559 * notification exclusion list in rtnetlink_event() when adding new
1560 * types.
1561 */
1562#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1563#define NETDEV_DOWN 0x0002
1564#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1565 detected a hardware crash and restarted
1566 - we can use this eg to kick tcp sessions
1567 once done */
1568#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1569#define NETDEV_REGISTER 0x0005
1570#define NETDEV_UNREGISTER 0x0006
1571#define NETDEV_CHANGEMTU 0x0007
1572#define NETDEV_CHANGEADDR 0x0008
1573#define NETDEV_GOING_DOWN 0x0009
1574#define NETDEV_CHANGENAME 0x000A
1575#define NETDEV_FEAT_CHANGE 0x000B
1576#define NETDEV_BONDING_FAILOVER 0x000C
1577#define NETDEV_PRE_UP 0x000D
1578#define NETDEV_PRE_TYPE_CHANGE 0x000E
1579#define NETDEV_POST_TYPE_CHANGE 0x000F
1580#define NETDEV_POST_INIT 0x0010
1581#define NETDEV_UNREGISTER_FINAL 0x0011
1582#define NETDEV_RELEASE 0x0012
1583#define NETDEV_NOTIFY_PEERS 0x0013
1584#define NETDEV_JOIN 0x0014
1585
1586extern int register_netdevice_notifier(struct notifier_block *nb);
1587extern int unregister_netdevice_notifier(struct notifier_block *nb);
1588extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1589
1590
1591extern rwlock_t dev_base_lock; /* Device list lock */
1592
1593extern seqcount_t devnet_rename_seq; /* Device rename seq */
1594
1595
1596#define for_each_netdev(net, d) \
1597 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1598#define for_each_netdev_reverse(net, d) \
1599 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1600#define for_each_netdev_rcu(net, d) \
1601 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1602#define for_each_netdev_safe(net, d, n) \
1603 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1604#define for_each_netdev_continue(net, d) \
1605 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1606#define for_each_netdev_continue_rcu(net, d) \
1607 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1608#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1609
1610static inline struct net_device *next_net_device(struct net_device *dev)
1611{
1612 struct list_head *lh;
1613 struct net *net;
1614
1615 net = dev_net(dev);
1616 lh = dev->dev_list.next;
1617 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1618}
1619
1620static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1621{
1622 struct list_head *lh;
1623 struct net *net;
1624
1625 net = dev_net(dev);
1626 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1627 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1628}
1629
1630static inline struct net_device *first_net_device(struct net *net)
1631{
1632 return list_empty(&net->dev_base_head) ? NULL :
1633 net_device_entry(net->dev_base_head.next);
1634}
1635
1636static inline struct net_device *first_net_device_rcu(struct net *net)
1637{
1638 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1639
1640 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1641}
1642
1643extern int netdev_boot_setup_check(struct net_device *dev);
1644extern unsigned long netdev_boot_base(const char *prefix, int unit);
1645extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1646 const char *hwaddr);
1647extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1648extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1649extern void dev_add_pack(struct packet_type *pt);
1650extern void dev_remove_pack(struct packet_type *pt);
1651extern void __dev_remove_pack(struct packet_type *pt);
1652extern void dev_add_offload(struct packet_offload *po);
1653extern void dev_remove_offload(struct packet_offload *po);
1654extern void __dev_remove_offload(struct packet_offload *po);
1655
1656extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1657 unsigned short mask);
1658extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1659extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1660extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1661extern int dev_alloc_name(struct net_device *dev, const char *name);
1662extern int dev_open(struct net_device *dev);
1663extern int dev_close(struct net_device *dev);
1664extern void dev_disable_lro(struct net_device *dev);
1665extern int dev_loopback_xmit(struct sk_buff *newskb);
1666extern int dev_queue_xmit(struct sk_buff *skb);
1667extern int register_netdevice(struct net_device *dev);
1668extern void unregister_netdevice_queue(struct net_device *dev,
1669 struct list_head *head);
1670extern void unregister_netdevice_many(struct list_head *head);
1671static inline void unregister_netdevice(struct net_device *dev)
1672{
1673 unregister_netdevice_queue(dev, NULL);
1674}
1675
1676extern int netdev_refcnt_read(const struct net_device *dev);
1677extern void free_netdev(struct net_device *dev);
1678extern void synchronize_net(void);
1679extern int init_dummy_netdev(struct net_device *dev);
1680extern void netdev_resync_ops(struct net_device *dev);
1681
1682extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1683extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1684extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1685extern int dev_restart(struct net_device *dev);
1686#ifdef CONFIG_NETPOLL_TRAP
1687extern int netpoll_trap(void);
1688#endif
1689extern int skb_gro_receive(struct sk_buff **head,
1690 struct sk_buff *skb);
1691
1692static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1693{
1694 return NAPI_GRO_CB(skb)->data_offset;
1695}
1696
1697static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1698{
1699 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1700}
1701
1702static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1703{
1704 NAPI_GRO_CB(skb)->data_offset += len;
1705}
1706
1707static inline void *skb_gro_header_fast(struct sk_buff *skb,
1708 unsigned int offset)
1709{
1710 return NAPI_GRO_CB(skb)->frag0 + offset;
1711}
1712
1713static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1714{
1715 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1716}
1717
1718static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1719 unsigned int offset)
1720{
1721 if (!pskb_may_pull(skb, hlen))
1722 return NULL;
1723
1724 NAPI_GRO_CB(skb)->frag0 = NULL;
1725 NAPI_GRO_CB(skb)->frag0_len = 0;
1726 return skb->data + offset;
1727}
1728
1729static inline void *skb_gro_mac_header(struct sk_buff *skb)
1730{
1731 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1732}
1733
1734static inline void *skb_gro_network_header(struct sk_buff *skb)
1735{
1736 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1737 skb_network_offset(skb);
1738}
1739
1740static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1741 unsigned short type,
1742 const void *daddr, const void *saddr,
1743 unsigned int len)
1744{
1745 if (!dev->header_ops || !dev->header_ops->create)
1746 return 0;
1747
1748 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1749}
1750
1751static inline int dev_parse_header(const struct sk_buff *skb,
1752 unsigned char *haddr)
1753{
1754 const struct net_device *dev = skb->dev;
1755
1756 if (!dev->header_ops || !dev->header_ops->parse)
1757 return 0;
1758 return dev->header_ops->parse(skb, haddr);
1759}
1760
1761typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1762extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1763static inline int unregister_gifconf(unsigned int family)
1764{
1765 return register_gifconf(family, NULL);
1766}
1767
1768/*
1769 * Incoming packets are placed on per-cpu queues
1770 */
1771struct softnet_data {
1772 struct Qdisc *output_queue;
1773 struct Qdisc **output_queue_tailp;
1774 struct list_head poll_list;
1775 struct sk_buff *completion_queue;
1776 struct sk_buff_head process_queue;
1777
1778 /* stats */
1779 unsigned int processed;
1780 unsigned int time_squeeze;
1781 unsigned int cpu_collision;
1782 unsigned int received_rps;
1783
1784#ifdef CONFIG_RPS
1785 struct softnet_data *rps_ipi_list;
1786
1787 /* Elements below can be accessed between CPUs for RPS */
1788 struct call_single_data csd ____cacheline_aligned_in_smp;
1789 struct softnet_data *rps_ipi_next;
1790 unsigned int cpu;
1791 unsigned int input_queue_head;
1792 unsigned int input_queue_tail;
1793#endif
1794 unsigned int dropped;
1795 struct sk_buff_head input_pkt_queue;
1796 struct napi_struct backlog;
1797};
1798
1799static inline void input_queue_head_incr(struct softnet_data *sd)
1800{
1801#ifdef CONFIG_RPS
1802 sd->input_queue_head++;
1803#endif
1804}
1805
1806static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1807 unsigned int *qtail)
1808{
1809#ifdef CONFIG_RPS
1810 *qtail = ++sd->input_queue_tail;
1811#endif
1812}
1813
1814DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1815
1816extern void __netif_schedule(struct Qdisc *q);
1817
1818static inline void netif_schedule_queue(struct netdev_queue *txq)
1819{
1820 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1821 __netif_schedule(txq->qdisc);
1822}
1823
1824static inline void netif_tx_schedule_all(struct net_device *dev)
1825{
1826 unsigned int i;
1827
1828 for (i = 0; i < dev->num_tx_queues; i++)
1829 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1830}
1831
1832static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1833{
1834 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1835}
1836
1837/**
1838 * netif_start_queue - allow transmit
1839 * @dev: network device
1840 *
1841 * Allow upper layers to call the device hard_start_xmit routine.
1842 */
1843static inline void netif_start_queue(struct net_device *dev)
1844{
1845 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1846}
1847
1848static inline void netif_tx_start_all_queues(struct net_device *dev)
1849{
1850 unsigned int i;
1851
1852 for (i = 0; i < dev->num_tx_queues; i++) {
1853 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1854 netif_tx_start_queue(txq);
1855 }
1856}
1857
1858static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1859{
1860#ifdef CONFIG_NETPOLL_TRAP
1861 if (netpoll_trap()) {
1862 netif_tx_start_queue(dev_queue);
1863 return;
1864 }
1865#endif
1866 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1867 __netif_schedule(dev_queue->qdisc);
1868}
1869
1870/**
1871 * netif_wake_queue - restart transmit
1872 * @dev: network device
1873 *
1874 * Allow upper layers to call the device hard_start_xmit routine.
1875 * Used for flow control when transmit resources are available.
1876 */
1877static inline void netif_wake_queue(struct net_device *dev)
1878{
1879 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1880}
1881
1882static inline void netif_tx_wake_all_queues(struct net_device *dev)
1883{
1884 unsigned int i;
1885
1886 for (i = 0; i < dev->num_tx_queues; i++) {
1887 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1888 netif_tx_wake_queue(txq);
1889 }
1890}
1891
1892static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1893{
1894 if (WARN_ON(!dev_queue)) {
1895 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1896 return;
1897 }
1898 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1899}
1900
1901/**
1902 * netif_stop_queue - stop transmitted packets
1903 * @dev: network device
1904 *
1905 * Stop upper layers calling the device hard_start_xmit routine.
1906 * Used for flow control when transmit resources are unavailable.
1907 */
1908static inline void netif_stop_queue(struct net_device *dev)
1909{
1910 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1911}
1912
1913static inline void netif_tx_stop_all_queues(struct net_device *dev)
1914{
1915 unsigned int i;
1916
1917 for (i = 0; i < dev->num_tx_queues; i++) {
1918 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1919 netif_tx_stop_queue(txq);
1920 }
1921}
1922
1923static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1924{
1925 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1926}
1927
1928/**
1929 * netif_queue_stopped - test if transmit queue is flowblocked
1930 * @dev: network device
1931 *
1932 * Test if transmit queue on device is currently unable to send.
1933 */
1934static inline bool netif_queue_stopped(const struct net_device *dev)
1935{
1936 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1937}
1938
1939static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1940{
1941 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1942}
1943
1944static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1945{
1946 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1947}
1948
1949static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1950 unsigned int bytes)
1951{
1952#ifdef CONFIG_BQL
1953 dql_queued(&dev_queue->dql, bytes);
1954
1955 if (likely(dql_avail(&dev_queue->dql) >= 0))
1956 return;
1957
1958 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1959
1960 /*
1961 * The XOFF flag must be set before checking the dql_avail below,
1962 * because in netdev_tx_completed_queue we update the dql_completed
1963 * before checking the XOFF flag.
1964 */
1965 smp_mb();
1966
1967 /* check again in case another CPU has just made room avail */
1968 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1969 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1970#endif
1971}
1972
1973static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1974{
1975 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1976}
1977
1978static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1979 unsigned int pkts, unsigned int bytes)
1980{
1981#ifdef CONFIG_BQL
1982 if (unlikely(!bytes))
1983 return;
1984
1985 dql_completed(&dev_queue->dql, bytes);
1986
1987 /*
1988 * Without the memory barrier there is a small possiblity that
1989 * netdev_tx_sent_queue will miss the update and cause the queue to
1990 * be stopped forever
1991 */
1992 smp_mb();
1993
1994 if (dql_avail(&dev_queue->dql) < 0)
1995 return;
1996
1997 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1998 netif_schedule_queue(dev_queue);
1999#endif
2000}
2001
2002static inline void netdev_completed_queue(struct net_device *dev,
2003 unsigned int pkts, unsigned int bytes)
2004{
2005 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2006}
2007
2008static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2009{
2010#ifdef CONFIG_BQL
2011 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2012 dql_reset(&q->dql);
2013#endif
2014}
2015
2016static inline void netdev_reset_queue(struct net_device *dev_queue)
2017{
2018 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2019}
2020
2021/**
2022 * netif_running - test if up
2023 * @dev: network device
2024 *
2025 * Test if the device has been brought up.
2026 */
2027static inline bool netif_running(const struct net_device *dev)
2028{
2029 return test_bit(__LINK_STATE_START, &dev->state);
2030}
2031
2032/*
2033 * Routines to manage the subqueues on a device. We only need start
2034 * stop, and a check if it's stopped. All other device management is
2035 * done at the overall netdevice level.
2036 * Also test the device if we're multiqueue.
2037 */
2038
2039/**
2040 * netif_start_subqueue - allow sending packets on subqueue
2041 * @dev: network device
2042 * @queue_index: sub queue index
2043 *
2044 * Start individual transmit queue of a device with multiple transmit queues.
2045 */
2046static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2047{
2048 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2049
2050 netif_tx_start_queue(txq);
2051}
2052
2053/**
2054 * netif_stop_subqueue - stop sending packets on subqueue
2055 * @dev: network device
2056 * @queue_index: sub queue index
2057 *
2058 * Stop individual transmit queue of a device with multiple transmit queues.
2059 */
2060static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2061{
2062 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2063#ifdef CONFIG_NETPOLL_TRAP
2064 if (netpoll_trap())
2065 return;
2066#endif
2067 netif_tx_stop_queue(txq);
2068}
2069
2070/**
2071 * netif_subqueue_stopped - test status of subqueue
2072 * @dev: network device
2073 * @queue_index: sub queue index
2074 *
2075 * Check individual transmit queue of a device with multiple transmit queues.
2076 */
2077static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2078 u16 queue_index)
2079{
2080 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2081
2082 return netif_tx_queue_stopped(txq);
2083}
2084
2085static inline bool netif_subqueue_stopped(const struct net_device *dev,
2086 struct sk_buff *skb)
2087{
2088 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2089}
2090
2091/**
2092 * netif_wake_subqueue - allow sending packets on subqueue
2093 * @dev: network device
2094 * @queue_index: sub queue index
2095 *
2096 * Resume individual transmit queue of a device with multiple transmit queues.
2097 */
2098static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2099{
2100 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2101#ifdef CONFIG_NETPOLL_TRAP
2102 if (netpoll_trap())
2103 return;
2104#endif
2105 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2106 __netif_schedule(txq->qdisc);
2107}
2108
2109#ifdef CONFIG_XPS
2110extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2111 u16 index);
2112#else
2113static inline int netif_set_xps_queue(struct net_device *dev,
2114 struct cpumask *mask,
2115 u16 index)
2116{
2117 return 0;
2118}
2119#endif
2120
2121/*
2122 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2123 * as a distribution range limit for the returned value.
2124 */
2125static inline u16 skb_tx_hash(const struct net_device *dev,
2126 const struct sk_buff *skb)
2127{
2128 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2129}
2130
2131/**
2132 * netif_is_multiqueue - test if device has multiple transmit queues
2133 * @dev: network device
2134 *
2135 * Check if device has multiple transmit queues
2136 */
2137static inline bool netif_is_multiqueue(const struct net_device *dev)
2138{
2139 return dev->num_tx_queues > 1;
2140}
2141
2142extern int netif_set_real_num_tx_queues(struct net_device *dev,
2143 unsigned int txq);
2144
2145#ifdef CONFIG_RPS
2146extern int netif_set_real_num_rx_queues(struct net_device *dev,
2147 unsigned int rxq);
2148#else
2149static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2150 unsigned int rxq)
2151{
2152 return 0;
2153}
2154#endif
2155
2156static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2157 const struct net_device *from_dev)
2158{
2159 int err;
2160
2161 err = netif_set_real_num_tx_queues(to_dev,
2162 from_dev->real_num_tx_queues);
2163 if (err)
2164 return err;
2165#ifdef CONFIG_RPS
2166 return netif_set_real_num_rx_queues(to_dev,
2167 from_dev->real_num_rx_queues);
2168#else
2169 return 0;
2170#endif
2171}
2172
2173#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2174extern int netif_get_num_default_rss_queues(void);
2175
2176/* Use this variant when it is known for sure that it
2177 * is executing from hardware interrupt context or with hardware interrupts
2178 * disabled.
2179 */
2180extern void dev_kfree_skb_irq(struct sk_buff *skb);
2181
2182/* Use this variant in places where it could be invoked
2183 * from either hardware interrupt or other context, with hardware interrupts
2184 * either disabled or enabled.
2185 */
2186extern void dev_kfree_skb_any(struct sk_buff *skb);
2187
2188extern int netif_rx(struct sk_buff *skb);
2189extern int netif_rx_ni(struct sk_buff *skb);
2190extern int netif_receive_skb(struct sk_buff *skb);
2191extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2192 struct sk_buff *skb);
2193extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2194extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2195extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2196
2197static inline void napi_free_frags(struct napi_struct *napi)
2198{
2199 kfree_skb(napi->skb);
2200 napi->skb = NULL;
2201}
2202
2203extern int netdev_rx_handler_register(struct net_device *dev,
2204 rx_handler_func_t *rx_handler,
2205 void *rx_handler_data);
2206extern void netdev_rx_handler_unregister(struct net_device *dev);
2207
2208extern bool dev_valid_name(const char *name);
2209extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2210extern int dev_ethtool(struct net *net, struct ifreq *);
2211extern unsigned int dev_get_flags(const struct net_device *);
2212extern int __dev_change_flags(struct net_device *, unsigned int flags);
2213extern int dev_change_flags(struct net_device *, unsigned int);
2214extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2215extern int dev_change_name(struct net_device *, const char *);
2216extern int dev_set_alias(struct net_device *, const char *, size_t);
2217extern int dev_change_net_namespace(struct net_device *,
2218 struct net *, const char *);
2219extern int dev_set_mtu(struct net_device *, int);
2220extern void dev_set_group(struct net_device *, int);
2221extern int dev_set_mac_address(struct net_device *,
2222 struct sockaddr *);
2223extern int dev_change_carrier(struct net_device *,
2224 bool new_carrier);
2225extern int dev_hard_start_xmit(struct sk_buff *skb,
2226 struct net_device *dev,
2227 struct netdev_queue *txq);
2228extern int dev_forward_skb(struct net_device *dev,
2229 struct sk_buff *skb);
2230
2231extern int netdev_budget;
2232
2233/* Called by rtnetlink.c:rtnl_unlock() */
2234extern void netdev_run_todo(void);
2235
2236/**
2237 * dev_put - release reference to device
2238 * @dev: network device
2239 *
2240 * Release reference to device to allow it to be freed.
2241 */
2242static inline void dev_put(struct net_device *dev)
2243{
2244 this_cpu_dec(*dev->pcpu_refcnt);
2245}
2246
2247/**
2248 * dev_hold - get reference to device
2249 * @dev: network device
2250 *
2251 * Hold reference to device to keep it from being freed.
2252 */
2253static inline void dev_hold(struct net_device *dev)
2254{
2255 this_cpu_inc(*dev->pcpu_refcnt);
2256}
2257
2258/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2259 * and _off may be called from IRQ context, but it is caller
2260 * who is responsible for serialization of these calls.
2261 *
2262 * The name carrier is inappropriate, these functions should really be
2263 * called netif_lowerlayer_*() because they represent the state of any
2264 * kind of lower layer not just hardware media.
2265 */
2266
2267extern void linkwatch_init_dev(struct net_device *dev);
2268extern void linkwatch_fire_event(struct net_device *dev);
2269extern void linkwatch_forget_dev(struct net_device *dev);
2270
2271/**
2272 * netif_carrier_ok - test if carrier present
2273 * @dev: network device
2274 *
2275 * Check if carrier is present on device
2276 */
2277static inline bool netif_carrier_ok(const struct net_device *dev)
2278{
2279 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2280}
2281
2282extern unsigned long dev_trans_start(struct net_device *dev);
2283
2284extern void __netdev_watchdog_up(struct net_device *dev);
2285
2286extern void netif_carrier_on(struct net_device *dev);
2287
2288extern void netif_carrier_off(struct net_device *dev);
2289
2290/**
2291 * netif_dormant_on - mark device as dormant.
2292 * @dev: network device
2293 *
2294 * Mark device as dormant (as per RFC2863).
2295 *
2296 * The dormant state indicates that the relevant interface is not
2297 * actually in a condition to pass packets (i.e., it is not 'up') but is
2298 * in a "pending" state, waiting for some external event. For "on-
2299 * demand" interfaces, this new state identifies the situation where the
2300 * interface is waiting for events to place it in the up state.
2301 *
2302 */
2303static inline void netif_dormant_on(struct net_device *dev)
2304{
2305 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2306 linkwatch_fire_event(dev);
2307}
2308
2309/**
2310 * netif_dormant_off - set device as not dormant.
2311 * @dev: network device
2312 *
2313 * Device is not in dormant state.
2314 */
2315static inline void netif_dormant_off(struct net_device *dev)
2316{
2317 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2318 linkwatch_fire_event(dev);
2319}
2320
2321/**
2322 * netif_dormant - test if carrier present
2323 * @dev: network device
2324 *
2325 * Check if carrier is present on device
2326 */
2327static inline bool netif_dormant(const struct net_device *dev)
2328{
2329 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2330}
2331
2332
2333/**
2334 * netif_oper_up - test if device is operational
2335 * @dev: network device
2336 *
2337 * Check if carrier is operational
2338 */
2339static inline bool netif_oper_up(const struct net_device *dev)
2340{
2341 return (dev->operstate == IF_OPER_UP ||
2342 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2343}
2344
2345/**
2346 * netif_device_present - is device available or removed
2347 * @dev: network device
2348 *
2349 * Check if device has not been removed from system.
2350 */
2351static inline bool netif_device_present(struct net_device *dev)
2352{
2353 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2354}
2355
2356extern void netif_device_detach(struct net_device *dev);
2357
2358extern void netif_device_attach(struct net_device *dev);
2359
2360/*
2361 * Network interface message level settings
2362 */
2363
2364enum {
2365 NETIF_MSG_DRV = 0x0001,
2366 NETIF_MSG_PROBE = 0x0002,
2367 NETIF_MSG_LINK = 0x0004,
2368 NETIF_MSG_TIMER = 0x0008,
2369 NETIF_MSG_IFDOWN = 0x0010,
2370 NETIF_MSG_IFUP = 0x0020,
2371 NETIF_MSG_RX_ERR = 0x0040,
2372 NETIF_MSG_TX_ERR = 0x0080,
2373 NETIF_MSG_TX_QUEUED = 0x0100,
2374 NETIF_MSG_INTR = 0x0200,
2375 NETIF_MSG_TX_DONE = 0x0400,
2376 NETIF_MSG_RX_STATUS = 0x0800,
2377 NETIF_MSG_PKTDATA = 0x1000,
2378 NETIF_MSG_HW = 0x2000,
2379 NETIF_MSG_WOL = 0x4000,
2380};
2381
2382#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2383#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2384#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2385#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2386#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2387#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2388#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2389#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2390#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2391#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2392#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2393#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2394#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2395#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2396#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2397
2398static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2399{
2400 /* use default */
2401 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2402 return default_msg_enable_bits;
2403 if (debug_value == 0) /* no output */
2404 return 0;
2405 /* set low N bits */
2406 return (1 << debug_value) - 1;
2407}
2408
2409static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2410{
2411 spin_lock(&txq->_xmit_lock);
2412 txq->xmit_lock_owner = cpu;
2413}
2414
2415static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2416{
2417 spin_lock_bh(&txq->_xmit_lock);
2418 txq->xmit_lock_owner = smp_processor_id();
2419}
2420
2421static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2422{
2423 bool ok = spin_trylock(&txq->_xmit_lock);
2424 if (likely(ok))
2425 txq->xmit_lock_owner = smp_processor_id();
2426 return ok;
2427}
2428
2429static inline void __netif_tx_unlock(struct netdev_queue *txq)
2430{
2431 txq->xmit_lock_owner = -1;
2432 spin_unlock(&txq->_xmit_lock);
2433}
2434
2435static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2436{
2437 txq->xmit_lock_owner = -1;
2438 spin_unlock_bh(&txq->_xmit_lock);
2439}
2440
2441static inline void txq_trans_update(struct netdev_queue *txq)
2442{
2443 if (txq->xmit_lock_owner != -1)
2444 txq->trans_start = jiffies;
2445}
2446
2447/**
2448 * netif_tx_lock - grab network device transmit lock
2449 * @dev: network device
2450 *
2451 * Get network device transmit lock
2452 */
2453static inline void netif_tx_lock(struct net_device *dev)
2454{
2455 unsigned int i;
2456 int cpu;
2457
2458 spin_lock(&dev->tx_global_lock);
2459 cpu = smp_processor_id();
2460 for (i = 0; i < dev->num_tx_queues; i++) {
2461 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2462
2463 /* We are the only thread of execution doing a
2464 * freeze, but we have to grab the _xmit_lock in
2465 * order to synchronize with threads which are in
2466 * the ->hard_start_xmit() handler and already
2467 * checked the frozen bit.
2468 */
2469 __netif_tx_lock(txq, cpu);
2470 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2471 __netif_tx_unlock(txq);
2472 }
2473}
2474
2475static inline void netif_tx_lock_bh(struct net_device *dev)
2476{
2477 local_bh_disable();
2478 netif_tx_lock(dev);
2479}
2480
2481static inline void netif_tx_unlock(struct net_device *dev)
2482{
2483 unsigned int i;
2484
2485 for (i = 0; i < dev->num_tx_queues; i++) {
2486 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2487
2488 /* No need to grab the _xmit_lock here. If the
2489 * queue is not stopped for another reason, we
2490 * force a schedule.
2491 */
2492 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2493 netif_schedule_queue(txq);
2494 }
2495 spin_unlock(&dev->tx_global_lock);
2496}
2497
2498static inline void netif_tx_unlock_bh(struct net_device *dev)
2499{
2500 netif_tx_unlock(dev);
2501 local_bh_enable();
2502}
2503
2504#define HARD_TX_LOCK(dev, txq, cpu) { \
2505 if ((dev->features & NETIF_F_LLTX) == 0) { \
2506 __netif_tx_lock(txq, cpu); \
2507 } \
2508}
2509
2510#define HARD_TX_UNLOCK(dev, txq) { \
2511 if ((dev->features & NETIF_F_LLTX) == 0) { \
2512 __netif_tx_unlock(txq); \
2513 } \
2514}
2515
2516static inline void netif_tx_disable(struct net_device *dev)
2517{
2518 unsigned int i;
2519 int cpu;
2520
2521 local_bh_disable();
2522 cpu = smp_processor_id();
2523 for (i = 0; i < dev->num_tx_queues; i++) {
2524 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2525
2526 __netif_tx_lock(txq, cpu);
2527 netif_tx_stop_queue(txq);
2528 __netif_tx_unlock(txq);
2529 }
2530 local_bh_enable();
2531}
2532
2533static inline void netif_addr_lock(struct net_device *dev)
2534{
2535 spin_lock(&dev->addr_list_lock);
2536}
2537
2538static inline void netif_addr_lock_nested(struct net_device *dev)
2539{
2540 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2541}
2542
2543static inline void netif_addr_lock_bh(struct net_device *dev)
2544{
2545 spin_lock_bh(&dev->addr_list_lock);
2546}
2547
2548static inline void netif_addr_unlock(struct net_device *dev)
2549{
2550 spin_unlock(&dev->addr_list_lock);
2551}
2552
2553static inline void netif_addr_unlock_bh(struct net_device *dev)
2554{
2555 spin_unlock_bh(&dev->addr_list_lock);
2556}
2557
2558/*
2559 * dev_addrs walker. Should be used only for read access. Call with
2560 * rcu_read_lock held.
2561 */
2562#define for_each_dev_addr(dev, ha) \
2563 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2564
2565/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2566
2567extern void ether_setup(struct net_device *dev);
2568
2569/* Support for loadable net-drivers */
2570extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2571 void (*setup)(struct net_device *),
2572 unsigned int txqs, unsigned int rxqs);
2573#define alloc_netdev(sizeof_priv, name, setup) \
2574 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2575
2576#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2577 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2578
2579extern int register_netdev(struct net_device *dev);
2580extern void unregister_netdev(struct net_device *dev);
2581
2582/* General hardware address lists handling functions */
2583extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2584 struct netdev_hw_addr_list *from_list,
2585 int addr_len, unsigned char addr_type);
2586extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2587 struct netdev_hw_addr_list *from_list,
2588 int addr_len, unsigned char addr_type);
2589extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2590 struct netdev_hw_addr_list *from_list,
2591 int addr_len);
2592extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2593 struct netdev_hw_addr_list *from_list,
2594 int addr_len);
2595extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2596extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2597
2598/* Functions used for device addresses handling */
2599extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2600 unsigned char addr_type);
2601extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2602 unsigned char addr_type);
2603extern int dev_addr_add_multiple(struct net_device *to_dev,
2604 struct net_device *from_dev,
2605 unsigned char addr_type);
2606extern int dev_addr_del_multiple(struct net_device *to_dev,
2607 struct net_device *from_dev,
2608 unsigned char addr_type);
2609extern void dev_addr_flush(struct net_device *dev);
2610extern int dev_addr_init(struct net_device *dev);
2611
2612/* Functions used for unicast addresses handling */
2613extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2614extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2615extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2616extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2617extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2618extern void dev_uc_flush(struct net_device *dev);
2619extern void dev_uc_init(struct net_device *dev);
2620
2621/* Functions used for multicast addresses handling */
2622extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2623extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2624extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2625extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2626extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2627extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2628extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2629extern void dev_mc_flush(struct net_device *dev);
2630extern void dev_mc_init(struct net_device *dev);
2631
2632/* Functions used for secondary unicast and multicast support */
2633extern void dev_set_rx_mode(struct net_device *dev);
2634extern void __dev_set_rx_mode(struct net_device *dev);
2635extern int dev_set_promiscuity(struct net_device *dev, int inc);
2636extern int dev_set_allmulti(struct net_device *dev, int inc);
2637extern void netdev_state_change(struct net_device *dev);
2638extern void netdev_notify_peers(struct net_device *dev);
2639extern void netdev_features_change(struct net_device *dev);
2640/* Load a device via the kmod */
2641extern void dev_load(struct net *net, const char *name);
2642extern void dev_mcast_init(void);
2643extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2644 struct rtnl_link_stats64 *storage);
2645extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2646 const struct net_device_stats *netdev_stats);
2647
2648extern int netdev_max_backlog;
2649extern int netdev_tstamp_prequeue;
2650extern int weight_p;
2651extern int bpf_jit_enable;
2652
2653extern bool netdev_has_upper_dev(struct net_device *dev,
2654 struct net_device *upper_dev);
2655extern bool netdev_has_any_upper_dev(struct net_device *dev);
2656extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2657extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2658extern int netdev_upper_dev_link(struct net_device *dev,
2659 struct net_device *upper_dev);
2660extern int netdev_master_upper_dev_link(struct net_device *dev,
2661 struct net_device *upper_dev);
2662extern void netdev_upper_dev_unlink(struct net_device *dev,
2663 struct net_device *upper_dev);
2664extern int skb_checksum_help(struct sk_buff *skb);
2665extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2666 netdev_features_t features);
2667#ifdef CONFIG_BUG
2668extern void netdev_rx_csum_fault(struct net_device *dev);
2669#else
2670static inline void netdev_rx_csum_fault(struct net_device *dev)
2671{
2672}
2673#endif
2674/* rx skb timestamps */
2675extern void net_enable_timestamp(void);
2676extern void net_disable_timestamp(void);
2677
2678#ifdef CONFIG_PROC_FS
2679extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2680extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2681extern void dev_seq_stop(struct seq_file *seq, void *v);
2682#endif
2683
2684extern int netdev_class_create_file(struct class_attribute *class_attr);
2685extern void netdev_class_remove_file(struct class_attribute *class_attr);
2686
2687extern struct kobj_ns_type_operations net_ns_type_operations;
2688
2689extern const char *netdev_drivername(const struct net_device *dev);
2690
2691extern void linkwatch_run_queue(void);
2692
2693static inline netdev_features_t netdev_get_wanted_features(
2694 struct net_device *dev)
2695{
2696 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2697}
2698netdev_features_t netdev_increment_features(netdev_features_t all,
2699 netdev_features_t one, netdev_features_t mask);
2700int __netdev_update_features(struct net_device *dev);
2701void netdev_update_features(struct net_device *dev);
2702void netdev_change_features(struct net_device *dev);
2703
2704void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2705 struct net_device *dev);
2706
2707netdev_features_t netif_skb_features(struct sk_buff *skb);
2708
2709static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2710{
2711 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2712
2713 /* check flags correspondence */
2714 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2715 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2716 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2717 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2718 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2719 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2720
2721 return (features & feature) == feature;
2722}
2723
2724static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2725{
2726 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2727 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2728}
2729
2730static inline bool netif_needs_gso(struct sk_buff *skb,
2731 netdev_features_t features)
2732{
2733 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2734 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2735 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2736}
2737
2738static inline void netif_set_gso_max_size(struct net_device *dev,
2739 unsigned int size)
2740{
2741 dev->gso_max_size = size;
2742}
2743
2744static inline bool netif_is_bond_slave(struct net_device *dev)
2745{
2746 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2747}
2748
2749static inline bool netif_supports_nofcs(struct net_device *dev)
2750{
2751 return dev->priv_flags & IFF_SUPP_NOFCS;
2752}
2753
2754extern struct pernet_operations __net_initdata loopback_net_ops;
2755
2756/* Logging, debugging and troubleshooting/diagnostic helpers. */
2757
2758/* netdev_printk helpers, similar to dev_printk */
2759
2760static inline const char *netdev_name(const struct net_device *dev)
2761{
2762 if (dev->reg_state != NETREG_REGISTERED)
2763 return "(unregistered net_device)";
2764 return dev->name;
2765}
2766
2767extern __printf(3, 4)
2768int netdev_printk(const char *level, const struct net_device *dev,
2769 const char *format, ...);
2770extern __printf(2, 3)
2771int netdev_emerg(const struct net_device *dev, const char *format, ...);
2772extern __printf(2, 3)
2773int netdev_alert(const struct net_device *dev, const char *format, ...);
2774extern __printf(2, 3)
2775int netdev_crit(const struct net_device *dev, const char *format, ...);
2776extern __printf(2, 3)
2777int netdev_err(const struct net_device *dev, const char *format, ...);
2778extern __printf(2, 3)
2779int netdev_warn(const struct net_device *dev, const char *format, ...);
2780extern __printf(2, 3)
2781int netdev_notice(const struct net_device *dev, const char *format, ...);
2782extern __printf(2, 3)
2783int netdev_info(const struct net_device *dev, const char *format, ...);
2784
2785#define MODULE_ALIAS_NETDEV(device) \
2786 MODULE_ALIAS("netdev-" device)
2787
2788#if defined(CONFIG_DYNAMIC_DEBUG)
2789#define netdev_dbg(__dev, format, args...) \
2790do { \
2791 dynamic_netdev_dbg(__dev, format, ##args); \
2792} while (0)
2793#elif defined(DEBUG)
2794#define netdev_dbg(__dev, format, args...) \
2795 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2796#else
2797#define netdev_dbg(__dev, format, args...) \
2798({ \
2799 if (0) \
2800 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2801 0; \
2802})
2803#endif
2804
2805#if defined(VERBOSE_DEBUG)
2806#define netdev_vdbg netdev_dbg
2807#else
2808
2809#define netdev_vdbg(dev, format, args...) \
2810({ \
2811 if (0) \
2812 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2813 0; \
2814})
2815#endif
2816
2817/*
2818 * netdev_WARN() acts like dev_printk(), but with the key difference
2819 * of using a WARN/WARN_ON to get the message out, including the
2820 * file/line information and a backtrace.
2821 */
2822#define netdev_WARN(dev, format, args...) \
2823 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2824
2825/* netif printk helpers, similar to netdev_printk */
2826
2827#define netif_printk(priv, type, level, dev, fmt, args...) \
2828do { \
2829 if (netif_msg_##type(priv)) \
2830 netdev_printk(level, (dev), fmt, ##args); \
2831} while (0)
2832
2833#define netif_level(level, priv, type, dev, fmt, args...) \
2834do { \
2835 if (netif_msg_##type(priv)) \
2836 netdev_##level(dev, fmt, ##args); \
2837} while (0)
2838
2839#define netif_emerg(priv, type, dev, fmt, args...) \
2840 netif_level(emerg, priv, type, dev, fmt, ##args)
2841#define netif_alert(priv, type, dev, fmt, args...) \
2842 netif_level(alert, priv, type, dev, fmt, ##args)
2843#define netif_crit(priv, type, dev, fmt, args...) \
2844 netif_level(crit, priv, type, dev, fmt, ##args)
2845#define netif_err(priv, type, dev, fmt, args...) \
2846 netif_level(err, priv, type, dev, fmt, ##args)
2847#define netif_warn(priv, type, dev, fmt, args...) \
2848 netif_level(warn, priv, type, dev, fmt, ##args)
2849#define netif_notice(priv, type, dev, fmt, args...) \
2850 netif_level(notice, priv, type, dev, fmt, ##args)
2851#define netif_info(priv, type, dev, fmt, args...) \
2852 netif_level(info, priv, type, dev, fmt, ##args)
2853
2854#if defined(CONFIG_DYNAMIC_DEBUG)
2855#define netif_dbg(priv, type, netdev, format, args...) \
2856do { \
2857 if (netif_msg_##type(priv)) \
2858 dynamic_netdev_dbg(netdev, format, ##args); \
2859} while (0)
2860#elif defined(DEBUG)
2861#define netif_dbg(priv, type, dev, format, args...) \
2862 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2863#else
2864#define netif_dbg(priv, type, dev, format, args...) \
2865({ \
2866 if (0) \
2867 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2868 0; \
2869})
2870#endif
2871
2872#if defined(VERBOSE_DEBUG)
2873#define netif_vdbg netif_dbg
2874#else
2875#define netif_vdbg(priv, type, dev, format, args...) \
2876({ \
2877 if (0) \
2878 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2879 0; \
2880})
2881#endif
2882
2883#endif /* _LINUX_NETDEVICE_H */