]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - include/linux/netdevice.h
bridge: only provide proxy ARP when CONFIG_INET is enabled
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <linux/prefetch.h>
34#include <asm/cache.h>
35#include <asm/byteorder.h>
36
37#include <linux/percpu.h>
38#include <linux/rculist.h>
39#include <linux/dmaengine.h>
40#include <linux/workqueue.h>
41#include <linux/dynamic_queue_limits.h>
42
43#include <linux/ethtool.h>
44#include <net/net_namespace.h>
45#include <net/dsa.h>
46#ifdef CONFIG_DCB
47#include <net/dcbnl.h>
48#endif
49#include <net/netprio_cgroup.h>
50
51#include <linux/netdev_features.h>
52#include <linux/neighbour.h>
53#include <uapi/linux/netdevice.h>
54
55struct netpoll_info;
56struct device;
57struct phy_device;
58/* 802.11 specific */
59struct wireless_dev;
60/* 802.15.4 specific */
61struct wpan_dev;
62
63void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66/* Backlog congestion levels */
67#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
68#define NET_RX_DROP 1 /* packet dropped */
69
70/*
71 * Transmit return codes: transmit return codes originate from three different
72 * namespaces:
73 *
74 * - qdisc return codes
75 * - driver transmit return codes
76 * - errno values
77 *
78 * Drivers are allowed to return any one of those in their hard_start_xmit()
79 * function. Real network devices commonly used with qdiscs should only return
80 * the driver transmit return codes though - when qdiscs are used, the actual
81 * transmission happens asynchronously, so the value is not propagated to
82 * higher layers. Virtual network devices transmit synchronously, in this case
83 * the driver transmit return codes are consumed by dev_queue_xmit(), all
84 * others are propagated to higher layers.
85 */
86
87/* qdisc ->enqueue() return codes. */
88#define NET_XMIT_SUCCESS 0x00
89#define NET_XMIT_DROP 0x01 /* skb dropped */
90#define NET_XMIT_CN 0x02 /* congestion notification */
91#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
92#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
93
94/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
95 * indicates that the device will soon be dropping packets, or already drops
96 * some packets of the same priority; prompting us to send less aggressively. */
97#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
98#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
99
100/* Driver transmit return codes */
101#define NETDEV_TX_MASK 0xf0
102
103enum netdev_tx {
104 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
105 NETDEV_TX_OK = 0x00, /* driver took care of packet */
106 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
107 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
108};
109typedef enum netdev_tx netdev_tx_t;
110
111/*
112 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114 */
115static inline bool dev_xmit_complete(int rc)
116{
117 /*
118 * Positive cases with an skb consumed by a driver:
119 * - successful transmission (rc == NETDEV_TX_OK)
120 * - error while transmitting (rc < 0)
121 * - error while queueing to a different device (rc & NET_XMIT_MASK)
122 */
123 if (likely(rc < NET_XMIT_MASK))
124 return true;
125
126 return false;
127}
128
129/*
130 * Compute the worst case header length according to the protocols
131 * used.
132 */
133
134#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135# if defined(CONFIG_MAC80211_MESH)
136# define LL_MAX_HEADER 128
137# else
138# define LL_MAX_HEADER 96
139# endif
140#else
141# define LL_MAX_HEADER 32
142#endif
143
144#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146#define MAX_HEADER LL_MAX_HEADER
147#else
148#define MAX_HEADER (LL_MAX_HEADER + 48)
149#endif
150
151/*
152 * Old network device statistics. Fields are native words
153 * (unsigned long) so they can be read and written atomically.
154 */
155
156struct net_device_stats {
157 unsigned long rx_packets;
158 unsigned long tx_packets;
159 unsigned long rx_bytes;
160 unsigned long tx_bytes;
161 unsigned long rx_errors;
162 unsigned long tx_errors;
163 unsigned long rx_dropped;
164 unsigned long tx_dropped;
165 unsigned long multicast;
166 unsigned long collisions;
167 unsigned long rx_length_errors;
168 unsigned long rx_over_errors;
169 unsigned long rx_crc_errors;
170 unsigned long rx_frame_errors;
171 unsigned long rx_fifo_errors;
172 unsigned long rx_missed_errors;
173 unsigned long tx_aborted_errors;
174 unsigned long tx_carrier_errors;
175 unsigned long tx_fifo_errors;
176 unsigned long tx_heartbeat_errors;
177 unsigned long tx_window_errors;
178 unsigned long rx_compressed;
179 unsigned long tx_compressed;
180};
181
182
183#include <linux/cache.h>
184#include <linux/skbuff.h>
185
186#ifdef CONFIG_RPS
187#include <linux/static_key.h>
188extern struct static_key rps_needed;
189#endif
190
191struct neighbour;
192struct neigh_parms;
193struct sk_buff;
194
195struct netdev_hw_addr {
196 struct list_head list;
197 unsigned char addr[MAX_ADDR_LEN];
198 unsigned char type;
199#define NETDEV_HW_ADDR_T_LAN 1
200#define NETDEV_HW_ADDR_T_SAN 2
201#define NETDEV_HW_ADDR_T_SLAVE 3
202#define NETDEV_HW_ADDR_T_UNICAST 4
203#define NETDEV_HW_ADDR_T_MULTICAST 5
204 bool global_use;
205 int sync_cnt;
206 int refcount;
207 int synced;
208 struct rcu_head rcu_head;
209};
210
211struct netdev_hw_addr_list {
212 struct list_head list;
213 int count;
214};
215
216#define netdev_hw_addr_list_count(l) ((l)->count)
217#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218#define netdev_hw_addr_list_for_each(ha, l) \
219 list_for_each_entry(ha, &(l)->list, list)
220
221#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223#define netdev_for_each_uc_addr(ha, dev) \
224 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225
226#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228#define netdev_for_each_mc_addr(ha, dev) \
229 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230
231struct hh_cache {
232 u16 hh_len;
233 u16 __pad;
234 seqlock_t hh_lock;
235
236 /* cached hardware header; allow for machine alignment needs. */
237#define HH_DATA_MOD 16
238#define HH_DATA_OFF(__len) \
239 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240#define HH_DATA_ALIGN(__len) \
241 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243};
244
245/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246 * Alternative is:
247 * dev->hard_header_len ? (dev->hard_header_len +
248 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249 *
250 * We could use other alignment values, but we must maintain the
251 * relationship HH alignment <= LL alignment.
252 */
253#define LL_RESERVED_SPACE(dev) \
254 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257
258struct header_ops {
259 int (*create) (struct sk_buff *skb, struct net_device *dev,
260 unsigned short type, const void *daddr,
261 const void *saddr, unsigned int len);
262 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
263 int (*rebuild)(struct sk_buff *skb);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268};
269
270/* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281};
282
283
284/*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291};
292#define NETDEV_BOOT_SETUP_MAX 8
293
294int __init netdev_boot_setup(char *str);
295
296/*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312#ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315#endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323};
324
325enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330};
331
332enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338};
339typedef enum gro_result gro_result_t;
340
341/*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387};
388typedef enum rx_handler_result rx_handler_result_t;
389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391void __napi_schedule(struct napi_struct *n);
392void __napi_schedule_irqoff(struct napi_struct *n);
393
394static inline bool napi_disable_pending(struct napi_struct *n)
395{
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397}
398
399/**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408static inline bool napi_schedule_prep(struct napi_struct *n)
409{
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412}
413
414/**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421static inline void napi_schedule(struct napi_struct *n)
422{
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425}
426
427/**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433static inline void napi_schedule_irqoff(struct napi_struct *n)
434{
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437}
438
439/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440static inline bool napi_reschedule(struct napi_struct *napi)
441{
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447}
448
449void __napi_complete(struct napi_struct *n);
450void napi_complete_done(struct napi_struct *n, int work_done);
451/**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458static inline void napi_complete(struct napi_struct *n)
459{
460 return napi_complete_done(n, 0);
461}
462
463/**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470struct napi_struct *napi_by_id(unsigned int napi_id);
471
472/**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478void napi_hash_add(struct napi_struct *napi);
479
480/**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487void napi_hash_del(struct napi_struct *napi);
488
489/**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496void napi_disable(struct napi_struct *n);
497
498/**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505static inline void napi_enable(struct napi_struct *n)
506{
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510}
511
512#ifdef CONFIG_SMP
513/**
514 * napi_synchronize - wait until NAPI is not running
515 * @n: napi context
516 *
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
520 */
521static inline void napi_synchronize(const struct napi_struct *n)
522{
523 while (test_bit(NAPI_STATE_SCHED, &n->state))
524 msleep(1);
525}
526#else
527# define napi_synchronize(n) barrier()
528#endif
529
530enum netdev_queue_state_t {
531 __QUEUE_STATE_DRV_XOFF,
532 __QUEUE_STATE_STACK_XOFF,
533 __QUEUE_STATE_FROZEN,
534};
535
536#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
537#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
538#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
539
540#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 QUEUE_STATE_FROZEN)
543#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 QUEUE_STATE_FROZEN)
545
546/*
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
548 * netif_tx_* functions below are used to manipulate this flag. The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently. The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state). Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
554 */
555
556struct netdev_queue {
557/*
558 * read mostly part
559 */
560 struct net_device *dev;
561 struct Qdisc __rcu *qdisc;
562 struct Qdisc *qdisc_sleeping;
563#ifdef CONFIG_SYSFS
564 struct kobject kobj;
565#endif
566#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 int numa_node;
568#endif
569/*
570 * write mostly part
571 */
572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
573 int xmit_lock_owner;
574 /*
575 * please use this field instead of dev->trans_start
576 */
577 unsigned long trans_start;
578
579 /*
580 * Number of TX timeouts for this queue
581 * (/sys/class/net/DEV/Q/trans_timeout)
582 */
583 unsigned long trans_timeout;
584
585 unsigned long state;
586
587#ifdef CONFIG_BQL
588 struct dql dql;
589#endif
590} ____cacheline_aligned_in_smp;
591
592static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
593{
594#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 return q->numa_node;
596#else
597 return NUMA_NO_NODE;
598#endif
599}
600
601static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
602{
603#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 q->numa_node = node;
605#endif
606}
607
608#ifdef CONFIG_RPS
609/*
610 * This structure holds an RPS map which can be of variable length. The
611 * map is an array of CPUs.
612 */
613struct rps_map {
614 unsigned int len;
615 struct rcu_head rcu;
616 u16 cpus[0];
617};
618#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
619
620/*
621 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
622 * tail pointer for that CPU's input queue at the time of last enqueue, and
623 * a hardware filter index.
624 */
625struct rps_dev_flow {
626 u16 cpu;
627 u16 filter;
628 unsigned int last_qtail;
629};
630#define RPS_NO_FILTER 0xffff
631
632/*
633 * The rps_dev_flow_table structure contains a table of flow mappings.
634 */
635struct rps_dev_flow_table {
636 unsigned int mask;
637 struct rcu_head rcu;
638 struct rps_dev_flow flows[0];
639};
640#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
641 ((_num) * sizeof(struct rps_dev_flow)))
642
643/*
644 * The rps_sock_flow_table contains mappings of flows to the last CPU
645 * on which they were processed by the application (set in recvmsg).
646 */
647struct rps_sock_flow_table {
648 unsigned int mask;
649 u16 ents[0];
650};
651#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
652 ((_num) * sizeof(u16)))
653
654#define RPS_NO_CPU 0xffff
655
656static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
657 u32 hash)
658{
659 if (table && hash) {
660 unsigned int cpu, index = hash & table->mask;
661
662 /* We only give a hint, preemption can change cpu under us */
663 cpu = raw_smp_processor_id();
664
665 if (table->ents[index] != cpu)
666 table->ents[index] = cpu;
667 }
668}
669
670static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672{
673 if (table && hash)
674 table->ents[hash & table->mask] = RPS_NO_CPU;
675}
676
677extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
678
679#ifdef CONFIG_RFS_ACCEL
680bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
681 u16 filter_id);
682#endif
683#endif /* CONFIG_RPS */
684
685/* This structure contains an instance of an RX queue. */
686struct netdev_rx_queue {
687#ifdef CONFIG_RPS
688 struct rps_map __rcu *rps_map;
689 struct rps_dev_flow_table __rcu *rps_flow_table;
690#endif
691 struct kobject kobj;
692 struct net_device *dev;
693} ____cacheline_aligned_in_smp;
694
695/*
696 * RX queue sysfs structures and functions.
697 */
698struct rx_queue_attribute {
699 struct attribute attr;
700 ssize_t (*show)(struct netdev_rx_queue *queue,
701 struct rx_queue_attribute *attr, char *buf);
702 ssize_t (*store)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, const char *buf, size_t len);
704};
705
706#ifdef CONFIG_XPS
707/*
708 * This structure holds an XPS map which can be of variable length. The
709 * map is an array of queues.
710 */
711struct xps_map {
712 unsigned int len;
713 unsigned int alloc_len;
714 struct rcu_head rcu;
715 u16 queues[0];
716};
717#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
718#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
719 / sizeof(u16))
720
721/*
722 * This structure holds all XPS maps for device. Maps are indexed by CPU.
723 */
724struct xps_dev_maps {
725 struct rcu_head rcu;
726 struct xps_map __rcu *cpu_map[0];
727};
728#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
729 (nr_cpu_ids * sizeof(struct xps_map *)))
730#endif /* CONFIG_XPS */
731
732#define TC_MAX_QUEUE 16
733#define TC_BITMASK 15
734/* HW offloaded queuing disciplines txq count and offset maps */
735struct netdev_tc_txq {
736 u16 count;
737 u16 offset;
738};
739
740#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
741/*
742 * This structure is to hold information about the device
743 * configured to run FCoE protocol stack.
744 */
745struct netdev_fcoe_hbainfo {
746 char manufacturer[64];
747 char serial_number[64];
748 char hardware_version[64];
749 char driver_version[64];
750 char optionrom_version[64];
751 char firmware_version[64];
752 char model[256];
753 char model_description[256];
754};
755#endif
756
757#define MAX_PHYS_ITEM_ID_LEN 32
758
759/* This structure holds a unique identifier to identify some
760 * physical item (port for example) used by a netdevice.
761 */
762struct netdev_phys_item_id {
763 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
764 unsigned char id_len;
765};
766
767typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
768 struct sk_buff *skb);
769
770/*
771 * This structure defines the management hooks for network devices.
772 * The following hooks can be defined; unless noted otherwise, they are
773 * optional and can be filled with a null pointer.
774 *
775 * int (*ndo_init)(struct net_device *dev);
776 * This function is called once when network device is registered.
777 * The network device can use this to any late stage initializaton
778 * or semantic validattion. It can fail with an error code which will
779 * be propogated back to register_netdev
780 *
781 * void (*ndo_uninit)(struct net_device *dev);
782 * This function is called when device is unregistered or when registration
783 * fails. It is not called if init fails.
784 *
785 * int (*ndo_open)(struct net_device *dev);
786 * This function is called when network device transistions to the up
787 * state.
788 *
789 * int (*ndo_stop)(struct net_device *dev);
790 * This function is called when network device transistions to the down
791 * state.
792 *
793 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
794 * struct net_device *dev);
795 * Called when a packet needs to be transmitted.
796 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
797 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
798 * Required can not be NULL.
799 *
800 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
801 * void *accel_priv, select_queue_fallback_t fallback);
802 * Called to decide which queue to when device supports multiple
803 * transmit queues.
804 *
805 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
806 * This function is called to allow device receiver to make
807 * changes to configuration when multicast or promiscious is enabled.
808 *
809 * void (*ndo_set_rx_mode)(struct net_device *dev);
810 * This function is called device changes address list filtering.
811 * If driver handles unicast address filtering, it should set
812 * IFF_UNICAST_FLT to its priv_flags.
813 *
814 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
815 * This function is called when the Media Access Control address
816 * needs to be changed. If this interface is not defined, the
817 * mac address can not be changed.
818 *
819 * int (*ndo_validate_addr)(struct net_device *dev);
820 * Test if Media Access Control address is valid for the device.
821 *
822 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
823 * Called when a user request an ioctl which can't be handled by
824 * the generic interface code. If not defined ioctl's return
825 * not supported error code.
826 *
827 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
828 * Used to set network devices bus interface parameters. This interface
829 * is retained for legacy reason, new devices should use the bus
830 * interface (PCI) for low level management.
831 *
832 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
833 * Called when a user wants to change the Maximum Transfer Unit
834 * of a device. If not defined, any request to change MTU will
835 * will return an error.
836 *
837 * void (*ndo_tx_timeout)(struct net_device *dev);
838 * Callback uses when the transmitter has not made any progress
839 * for dev->watchdog ticks.
840 *
841 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
842 * struct rtnl_link_stats64 *storage);
843 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
844 * Called when a user wants to get the network device usage
845 * statistics. Drivers must do one of the following:
846 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
847 * rtnl_link_stats64 structure passed by the caller.
848 * 2. Define @ndo_get_stats to update a net_device_stats structure
849 * (which should normally be dev->stats) and return a pointer to
850 * it. The structure may be changed asynchronously only if each
851 * field is written atomically.
852 * 3. Update dev->stats asynchronously and atomically, and define
853 * neither operation.
854 *
855 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
856 * If device support VLAN filtering this function is called when a
857 * VLAN id is registered.
858 *
859 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
860 * If device support VLAN filtering this function is called when a
861 * VLAN id is unregistered.
862 *
863 * void (*ndo_poll_controller)(struct net_device *dev);
864 *
865 * SR-IOV management functions.
866 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
867 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
868 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
869 * int max_tx_rate);
870 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
871 * int (*ndo_get_vf_config)(struct net_device *dev,
872 * int vf, struct ifla_vf_info *ivf);
873 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
874 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
875 * struct nlattr *port[]);
876 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
877 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
878 * Called to setup 'tc' number of traffic classes in the net device. This
879 * is always called from the stack with the rtnl lock held and netif tx
880 * queues stopped. This allows the netdevice to perform queue management
881 * safely.
882 *
883 * Fiber Channel over Ethernet (FCoE) offload functions.
884 * int (*ndo_fcoe_enable)(struct net_device *dev);
885 * Called when the FCoE protocol stack wants to start using LLD for FCoE
886 * so the underlying device can perform whatever needed configuration or
887 * initialization to support acceleration of FCoE traffic.
888 *
889 * int (*ndo_fcoe_disable)(struct net_device *dev);
890 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
891 * so the underlying device can perform whatever needed clean-ups to
892 * stop supporting acceleration of FCoE traffic.
893 *
894 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
895 * struct scatterlist *sgl, unsigned int sgc);
896 * Called when the FCoE Initiator wants to initialize an I/O that
897 * is a possible candidate for Direct Data Placement (DDP). The LLD can
898 * perform necessary setup and returns 1 to indicate the device is set up
899 * successfully to perform DDP on this I/O, otherwise this returns 0.
900 *
901 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
902 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
903 * indicated by the FC exchange id 'xid', so the underlying device can
904 * clean up and reuse resources for later DDP requests.
905 *
906 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
907 * struct scatterlist *sgl, unsigned int sgc);
908 * Called when the FCoE Target wants to initialize an I/O that
909 * is a possible candidate for Direct Data Placement (DDP). The LLD can
910 * perform necessary setup and returns 1 to indicate the device is set up
911 * successfully to perform DDP on this I/O, otherwise this returns 0.
912 *
913 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
914 * struct netdev_fcoe_hbainfo *hbainfo);
915 * Called when the FCoE Protocol stack wants information on the underlying
916 * device. This information is utilized by the FCoE protocol stack to
917 * register attributes with Fiber Channel management service as per the
918 * FC-GS Fabric Device Management Information(FDMI) specification.
919 *
920 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
921 * Called when the underlying device wants to override default World Wide
922 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
923 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
924 * protocol stack to use.
925 *
926 * RFS acceleration.
927 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
928 * u16 rxq_index, u32 flow_id);
929 * Set hardware filter for RFS. rxq_index is the target queue index;
930 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
931 * Return the filter ID on success, or a negative error code.
932 *
933 * Slave management functions (for bridge, bonding, etc).
934 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
935 * Called to make another netdev an underling.
936 *
937 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
938 * Called to release previously enslaved netdev.
939 *
940 * Feature/offload setting functions.
941 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
942 * netdev_features_t features);
943 * Adjusts the requested feature flags according to device-specific
944 * constraints, and returns the resulting flags. Must not modify
945 * the device state.
946 *
947 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
948 * Called to update device configuration to new features. Passed
949 * feature set might be less than what was returned by ndo_fix_features()).
950 * Must return >0 or -errno if it changed dev->features itself.
951 *
952 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
953 * struct net_device *dev,
954 * const unsigned char *addr, u16 vid, u16 flags)
955 * Adds an FDB entry to dev for addr.
956 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
957 * struct net_device *dev,
958 * const unsigned char *addr, u16 vid)
959 * Deletes the FDB entry from dev coresponding to addr.
960 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
961 * struct net_device *dev, struct net_device *filter_dev,
962 * int idx)
963 * Used to add FDB entries to dump requests. Implementers should add
964 * entries to skb and update idx with the number of entries.
965 *
966 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
967 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
968 * struct net_device *dev, u32 filter_mask)
969 *
970 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
971 * Called to change device carrier. Soft-devices (like dummy, team, etc)
972 * which do not represent real hardware may define this to allow their
973 * userspace components to manage their virtual carrier state. Devices
974 * that determine carrier state from physical hardware properties (eg
975 * network cables) or protocol-dependent mechanisms (eg
976 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
977 *
978 * int (*ndo_get_phys_port_id)(struct net_device *dev,
979 * struct netdev_phys_item_id *ppid);
980 * Called to get ID of physical port of this device. If driver does
981 * not implement this, it is assumed that the hw is not able to have
982 * multiple net devices on single physical port.
983 *
984 * void (*ndo_add_vxlan_port)(struct net_device *dev,
985 * sa_family_t sa_family, __be16 port);
986 * Called by vxlan to notiy a driver about the UDP port and socket
987 * address family that vxlan is listnening to. It is called only when
988 * a new port starts listening. The operation is protected by the
989 * vxlan_net->sock_lock.
990 *
991 * void (*ndo_del_vxlan_port)(struct net_device *dev,
992 * sa_family_t sa_family, __be16 port);
993 * Called by vxlan to notify the driver about a UDP port and socket
994 * address family that vxlan is not listening to anymore. The operation
995 * is protected by the vxlan_net->sock_lock.
996 *
997 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
998 * struct net_device *dev)
999 * Called by upper layer devices to accelerate switching or other
1000 * station functionality into hardware. 'pdev is the lowerdev
1001 * to use for the offload and 'dev' is the net device that will
1002 * back the offload. Returns a pointer to the private structure
1003 * the upper layer will maintain.
1004 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1005 * Called by upper layer device to delete the station created
1006 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1007 * the station and priv is the structure returned by the add
1008 * operation.
1009 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1010 * struct net_device *dev,
1011 * void *priv);
1012 * Callback to use for xmit over the accelerated station. This
1013 * is used in place of ndo_start_xmit on accelerated net
1014 * devices.
1015 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1016 * struct net_device *dev
1017 * netdev_features_t features);
1018 * Called by core transmit path to determine if device is capable of
1019 * performing offload operations on a given packet. This is to give
1020 * the device an opportunity to implement any restrictions that cannot
1021 * be otherwise expressed by feature flags. The check is called with
1022 * the set of features that the stack has calculated and it returns
1023 * those the driver believes to be appropriate.
1024 *
1025 * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1026 * struct netdev_phys_item_id *psid);
1027 * Called to get an ID of the switch chip this port is part of.
1028 * If driver implements this, it indicates that it represents a port
1029 * of a switch chip.
1030 * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1031 * Called to notify switch device port of bridge port STP
1032 * state change.
1033 */
1034struct net_device_ops {
1035 int (*ndo_init)(struct net_device *dev);
1036 void (*ndo_uninit)(struct net_device *dev);
1037 int (*ndo_open)(struct net_device *dev);
1038 int (*ndo_stop)(struct net_device *dev);
1039 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1040 struct net_device *dev);
1041 u16 (*ndo_select_queue)(struct net_device *dev,
1042 struct sk_buff *skb,
1043 void *accel_priv,
1044 select_queue_fallback_t fallback);
1045 void (*ndo_change_rx_flags)(struct net_device *dev,
1046 int flags);
1047 void (*ndo_set_rx_mode)(struct net_device *dev);
1048 int (*ndo_set_mac_address)(struct net_device *dev,
1049 void *addr);
1050 int (*ndo_validate_addr)(struct net_device *dev);
1051 int (*ndo_do_ioctl)(struct net_device *dev,
1052 struct ifreq *ifr, int cmd);
1053 int (*ndo_set_config)(struct net_device *dev,
1054 struct ifmap *map);
1055 int (*ndo_change_mtu)(struct net_device *dev,
1056 int new_mtu);
1057 int (*ndo_neigh_setup)(struct net_device *dev,
1058 struct neigh_parms *);
1059 void (*ndo_tx_timeout) (struct net_device *dev);
1060
1061 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1062 struct rtnl_link_stats64 *storage);
1063 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1064
1065 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1066 __be16 proto, u16 vid);
1067 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1068 __be16 proto, u16 vid);
1069#ifdef CONFIG_NET_POLL_CONTROLLER
1070 void (*ndo_poll_controller)(struct net_device *dev);
1071 int (*ndo_netpoll_setup)(struct net_device *dev,
1072 struct netpoll_info *info);
1073 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1074#endif
1075#ifdef CONFIG_NET_RX_BUSY_POLL
1076 int (*ndo_busy_poll)(struct napi_struct *dev);
1077#endif
1078 int (*ndo_set_vf_mac)(struct net_device *dev,
1079 int queue, u8 *mac);
1080 int (*ndo_set_vf_vlan)(struct net_device *dev,
1081 int queue, u16 vlan, u8 qos);
1082 int (*ndo_set_vf_rate)(struct net_device *dev,
1083 int vf, int min_tx_rate,
1084 int max_tx_rate);
1085 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1086 int vf, bool setting);
1087 int (*ndo_get_vf_config)(struct net_device *dev,
1088 int vf,
1089 struct ifla_vf_info *ivf);
1090 int (*ndo_set_vf_link_state)(struct net_device *dev,
1091 int vf, int link_state);
1092 int (*ndo_set_vf_port)(struct net_device *dev,
1093 int vf,
1094 struct nlattr *port[]);
1095 int (*ndo_get_vf_port)(struct net_device *dev,
1096 int vf, struct sk_buff *skb);
1097 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1098#if IS_ENABLED(CONFIG_FCOE)
1099 int (*ndo_fcoe_enable)(struct net_device *dev);
1100 int (*ndo_fcoe_disable)(struct net_device *dev);
1101 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1102 u16 xid,
1103 struct scatterlist *sgl,
1104 unsigned int sgc);
1105 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1106 u16 xid);
1107 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1108 u16 xid,
1109 struct scatterlist *sgl,
1110 unsigned int sgc);
1111 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1112 struct netdev_fcoe_hbainfo *hbainfo);
1113#endif
1114
1115#if IS_ENABLED(CONFIG_LIBFCOE)
1116#define NETDEV_FCOE_WWNN 0
1117#define NETDEV_FCOE_WWPN 1
1118 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1119 u64 *wwn, int type);
1120#endif
1121
1122#ifdef CONFIG_RFS_ACCEL
1123 int (*ndo_rx_flow_steer)(struct net_device *dev,
1124 const struct sk_buff *skb,
1125 u16 rxq_index,
1126 u32 flow_id);
1127#endif
1128 int (*ndo_add_slave)(struct net_device *dev,
1129 struct net_device *slave_dev);
1130 int (*ndo_del_slave)(struct net_device *dev,
1131 struct net_device *slave_dev);
1132 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1133 netdev_features_t features);
1134 int (*ndo_set_features)(struct net_device *dev,
1135 netdev_features_t features);
1136 int (*ndo_neigh_construct)(struct neighbour *n);
1137 void (*ndo_neigh_destroy)(struct neighbour *n);
1138
1139 int (*ndo_fdb_add)(struct ndmsg *ndm,
1140 struct nlattr *tb[],
1141 struct net_device *dev,
1142 const unsigned char *addr,
1143 u16 vid,
1144 u16 flags);
1145 int (*ndo_fdb_del)(struct ndmsg *ndm,
1146 struct nlattr *tb[],
1147 struct net_device *dev,
1148 const unsigned char *addr,
1149 u16 vid);
1150 int (*ndo_fdb_dump)(struct sk_buff *skb,
1151 struct netlink_callback *cb,
1152 struct net_device *dev,
1153 struct net_device *filter_dev,
1154 int idx);
1155
1156 int (*ndo_bridge_setlink)(struct net_device *dev,
1157 struct nlmsghdr *nlh);
1158 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1159 u32 pid, u32 seq,
1160 struct net_device *dev,
1161 u32 filter_mask);
1162 int (*ndo_bridge_dellink)(struct net_device *dev,
1163 struct nlmsghdr *nlh);
1164 int (*ndo_change_carrier)(struct net_device *dev,
1165 bool new_carrier);
1166 int (*ndo_get_phys_port_id)(struct net_device *dev,
1167 struct netdev_phys_item_id *ppid);
1168 void (*ndo_add_vxlan_port)(struct net_device *dev,
1169 sa_family_t sa_family,
1170 __be16 port);
1171 void (*ndo_del_vxlan_port)(struct net_device *dev,
1172 sa_family_t sa_family,
1173 __be16 port);
1174
1175 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1176 struct net_device *dev);
1177 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1178 void *priv);
1179
1180 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1181 struct net_device *dev,
1182 void *priv);
1183 int (*ndo_get_lock_subclass)(struct net_device *dev);
1184 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1185 struct net_device *dev,
1186 netdev_features_t features);
1187#ifdef CONFIG_NET_SWITCHDEV
1188 int (*ndo_switch_parent_id_get)(struct net_device *dev,
1189 struct netdev_phys_item_id *psid);
1190 int (*ndo_switch_port_stp_update)(struct net_device *dev,
1191 u8 state);
1192#endif
1193};
1194
1195/**
1196 * enum net_device_priv_flags - &struct net_device priv_flags
1197 *
1198 * These are the &struct net_device, they are only set internally
1199 * by drivers and used in the kernel. These flags are invisible to
1200 * userspace, this means that the order of these flags can change
1201 * during any kernel release.
1202 *
1203 * You should have a pretty good reason to be extending these flags.
1204 *
1205 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1206 * @IFF_EBRIDGE: Ethernet bridging device
1207 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1208 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1209 * @IFF_MASTER_ALB: bonding master, balance-alb
1210 * @IFF_BONDING: bonding master or slave
1211 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1212 * @IFF_ISATAP: ISATAP interface (RFC4214)
1213 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1214 * @IFF_WAN_HDLC: WAN HDLC device
1215 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1216 * release skb->dst
1217 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1218 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1219 * @IFF_MACVLAN_PORT: device used as macvlan port
1220 * @IFF_BRIDGE_PORT: device used as bridge port
1221 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1222 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1223 * @IFF_UNICAST_FLT: Supports unicast filtering
1224 * @IFF_TEAM_PORT: device used as team port
1225 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1226 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1227 * change when it's running
1228 * @IFF_MACVLAN: Macvlan device
1229 */
1230enum netdev_priv_flags {
1231 IFF_802_1Q_VLAN = 1<<0,
1232 IFF_EBRIDGE = 1<<1,
1233 IFF_SLAVE_INACTIVE = 1<<2,
1234 IFF_MASTER_8023AD = 1<<3,
1235 IFF_MASTER_ALB = 1<<4,
1236 IFF_BONDING = 1<<5,
1237 IFF_SLAVE_NEEDARP = 1<<6,
1238 IFF_ISATAP = 1<<7,
1239 IFF_MASTER_ARPMON = 1<<8,
1240 IFF_WAN_HDLC = 1<<9,
1241 IFF_XMIT_DST_RELEASE = 1<<10,
1242 IFF_DONT_BRIDGE = 1<<11,
1243 IFF_DISABLE_NETPOLL = 1<<12,
1244 IFF_MACVLAN_PORT = 1<<13,
1245 IFF_BRIDGE_PORT = 1<<14,
1246 IFF_OVS_DATAPATH = 1<<15,
1247 IFF_TX_SKB_SHARING = 1<<16,
1248 IFF_UNICAST_FLT = 1<<17,
1249 IFF_TEAM_PORT = 1<<18,
1250 IFF_SUPP_NOFCS = 1<<19,
1251 IFF_LIVE_ADDR_CHANGE = 1<<20,
1252 IFF_MACVLAN = 1<<21,
1253 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1254 IFF_IPVLAN_MASTER = 1<<23,
1255 IFF_IPVLAN_SLAVE = 1<<24,
1256};
1257
1258#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1259#define IFF_EBRIDGE IFF_EBRIDGE
1260#define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1261#define IFF_MASTER_8023AD IFF_MASTER_8023AD
1262#define IFF_MASTER_ALB IFF_MASTER_ALB
1263#define IFF_BONDING IFF_BONDING
1264#define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1265#define IFF_ISATAP IFF_ISATAP
1266#define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1267#define IFF_WAN_HDLC IFF_WAN_HDLC
1268#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1269#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1270#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1271#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1272#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1273#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1274#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1275#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1276#define IFF_TEAM_PORT IFF_TEAM_PORT
1277#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1278#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1279#define IFF_MACVLAN IFF_MACVLAN
1280#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1281#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1282#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1283
1284/**
1285 * struct net_device - The DEVICE structure.
1286 * Actually, this whole structure is a big mistake. It mixes I/O
1287 * data with strictly "high-level" data, and it has to know about
1288 * almost every data structure used in the INET module.
1289 *
1290 * @name: This is the first field of the "visible" part of this structure
1291 * (i.e. as seen by users in the "Space.c" file). It is the name
1292 * of the interface.
1293 *
1294 * @name_hlist: Device name hash chain, please keep it close to name[]
1295 * @ifalias: SNMP alias
1296 * @mem_end: Shared memory end
1297 * @mem_start: Shared memory start
1298 * @base_addr: Device I/O address
1299 * @irq: Device IRQ number
1300 *
1301 * @state: Generic network queuing layer state, see netdev_state_t
1302 * @dev_list: The global list of network devices
1303 * @napi_list: List entry, that is used for polling napi devices
1304 * @unreg_list: List entry, that is used, when we are unregistering the
1305 * device, see the function unregister_netdev
1306 * @close_list: List entry, that is used, when we are closing the device
1307 *
1308 * @adj_list: Directly linked devices, like slaves for bonding
1309 * @all_adj_list: All linked devices, *including* neighbours
1310 * @features: Currently active device features
1311 * @hw_features: User-changeable features
1312 *
1313 * @wanted_features: User-requested features
1314 * @vlan_features: Mask of features inheritable by VLAN devices
1315 *
1316 * @hw_enc_features: Mask of features inherited by encapsulating devices
1317 * This field indicates what encapsulation
1318 * offloads the hardware is capable of doing,
1319 * and drivers will need to set them appropriately.
1320 *
1321 * @mpls_features: Mask of features inheritable by MPLS
1322 *
1323 * @ifindex: interface index
1324 * @iflink: unique device identifier
1325 *
1326 * @stats: Statistics struct, which was left as a legacy, use
1327 * rtnl_link_stats64 instead
1328 *
1329 * @rx_dropped: Dropped packets by core network,
1330 * do not use this in drivers
1331 * @tx_dropped: Dropped packets by core network,
1332 * do not use this in drivers
1333 *
1334 * @carrier_changes: Stats to monitor carrier on<->off transitions
1335 *
1336 * @wireless_handlers: List of functions to handle Wireless Extensions,
1337 * instead of ioctl,
1338 * see <net/iw_handler.h> for details.
1339 * @wireless_data: Instance data managed by the core of wireless extensions
1340 *
1341 * @netdev_ops: Includes several pointers to callbacks,
1342 * if one wants to override the ndo_*() functions
1343 * @ethtool_ops: Management operations
1344 * @fwd_ops: Management operations
1345 * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc
1346 * of Layer 2 headers.
1347 *
1348 * @flags: Interface flags (a la BSD)
1349 * @priv_flags: Like 'flags' but invisible to userspace,
1350 * see if.h for the definitions
1351 * @gflags: Global flags ( kept as legacy )
1352 * @padded: How much padding added by alloc_netdev()
1353 * @operstate: RFC2863 operstate
1354 * @link_mode: Mapping policy to operstate
1355 * @if_port: Selectable AUI, TP, ...
1356 * @dma: DMA channel
1357 * @mtu: Interface MTU value
1358 * @type: Interface hardware type
1359 * @hard_header_len: Hardware header length
1360 *
1361 * @needed_headroom: Extra headroom the hardware may need, but not in all
1362 * cases can this be guaranteed
1363 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1364 * cases can this be guaranteed. Some cases also use
1365 * LL_MAX_HEADER instead to allocate the skb
1366 *
1367 * interface address info:
1368 *
1369 * @perm_addr: Permanent hw address
1370 * @addr_assign_type: Hw address assignment type
1371 * @addr_len: Hardware address length
1372 * @neigh_priv_len; Used in neigh_alloc(),
1373 * initialized only in atm/clip.c
1374 * @dev_id: Used to differentiate devices that share
1375 * the same link layer address
1376 * @dev_port: Used to differentiate devices that share
1377 * the same function
1378 * @addr_list_lock: XXX: need comments on this one
1379 * @uc: unicast mac addresses
1380 * @mc: multicast mac addresses
1381 * @dev_addrs: list of device hw addresses
1382 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1383 * @uc_promisc: Counter, that indicates, that promiscuous mode
1384 * has been enabled due to the need to listen to
1385 * additional unicast addresses in a device that
1386 * does not implement ndo_set_rx_mode()
1387 * @promiscuity: Number of times, the NIC is told to work in
1388 * Promiscuous mode, if it becomes 0 the NIC will
1389 * exit from working in Promiscuous mode
1390 * @allmulti: Counter, enables or disables allmulticast mode
1391 *
1392 * @vlan_info: VLAN info
1393 * @dsa_ptr: dsa specific data
1394 * @tipc_ptr: TIPC specific data
1395 * @atalk_ptr: AppleTalk link
1396 * @ip_ptr: IPv4 specific data
1397 * @dn_ptr: DECnet specific data
1398 * @ip6_ptr: IPv6 specific data
1399 * @ax25_ptr: AX.25 specific data
1400 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1401 *
1402 * @last_rx: Time of last Rx
1403 * @dev_addr: Hw address (before bcast,
1404 * because most packets are unicast)
1405 *
1406 * @_rx: Array of RX queues
1407 * @num_rx_queues: Number of RX queues
1408 * allocated at register_netdev() time
1409 * @real_num_rx_queues: Number of RX queues currently active in device
1410 *
1411 * @rx_handler: handler for received packets
1412 * @rx_handler_data: XXX: need comments on this one
1413 * @ingress_queue: XXX: need comments on this one
1414 * @broadcast: hw bcast address
1415 *
1416 * @_tx: Array of TX queues
1417 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1418 * @real_num_tx_queues: Number of TX queues currently active in device
1419 * @qdisc: Root qdisc from userspace point of view
1420 * @tx_queue_len: Max frames per queue allowed
1421 * @tx_global_lock: XXX: need comments on this one
1422 *
1423 * @xps_maps: XXX: need comments on this one
1424 *
1425 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1426 * indexed by RX queue number. Assigned by driver.
1427 * This must only be set if the ndo_rx_flow_steer
1428 * operation is defined
1429 *
1430 * @trans_start: Time (in jiffies) of last Tx
1431 * @watchdog_timeo: Represents the timeout that is used by
1432 * the watchdog ( see dev_watchdog() )
1433 * @watchdog_timer: List of timers
1434 *
1435 * @pcpu_refcnt: Number of references to this device
1436 * @todo_list: Delayed register/unregister
1437 * @index_hlist: Device index hash chain
1438 * @link_watch_list: XXX: need comments on this one
1439 *
1440 * @reg_state: Register/unregister state machine
1441 * @dismantle: Device is going to be freed
1442 * @rtnl_link_state: This enum represents the phases of creating
1443 * a new link
1444 *
1445 * @destructor: Called from unregister,
1446 * can be used to call free_netdev
1447 * @npinfo: XXX: need comments on this one
1448 * @nd_net: Network namespace this network device is inside
1449 *
1450 * @ml_priv: Mid-layer private
1451 * @lstats: Loopback statistics
1452 * @tstats: Tunnel statistics
1453 * @dstats: Dummy statistics
1454 * @vstats: Virtual ethernet statistics
1455 *
1456 * @garp_port: GARP
1457 * @mrp_port: MRP
1458 *
1459 * @dev: Class/net/name entry
1460 * @sysfs_groups: Space for optional device, statistics and wireless
1461 * sysfs groups
1462 *
1463 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1464 * @rtnl_link_ops: Rtnl_link_ops
1465 *
1466 * @gso_max_size: Maximum size of generic segmentation offload
1467 * @gso_max_segs: Maximum number of segments that can be passed to the
1468 * NIC for GSO
1469 * @gso_min_segs: Minimum number of segments that can be passed to the
1470 * NIC for GSO
1471 *
1472 * @dcbnl_ops: Data Center Bridging netlink ops
1473 * @num_tc: Number of traffic classes in the net device
1474 * @tc_to_txq: XXX: need comments on this one
1475 * @prio_tc_map XXX: need comments on this one
1476 *
1477 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1478 *
1479 * @priomap: XXX: need comments on this one
1480 * @phydev: Physical device may attach itself
1481 * for hardware timestamping
1482 *
1483 * @qdisc_tx_busylock: XXX: need comments on this one
1484 *
1485 * @group: The group, that the device belongs to
1486 * @pm_qos_req: Power Management QoS object
1487 *
1488 * FIXME: cleanup struct net_device such that network protocol info
1489 * moves out.
1490 */
1491
1492struct net_device {
1493 char name[IFNAMSIZ];
1494 struct hlist_node name_hlist;
1495 char *ifalias;
1496 /*
1497 * I/O specific fields
1498 * FIXME: Merge these and struct ifmap into one
1499 */
1500 unsigned long mem_end;
1501 unsigned long mem_start;
1502 unsigned long base_addr;
1503 int irq;
1504
1505 /*
1506 * Some hardware also needs these fields (state,dev_list,
1507 * napi_list,unreg_list,close_list) but they are not
1508 * part of the usual set specified in Space.c.
1509 */
1510
1511 unsigned long state;
1512
1513 struct list_head dev_list;
1514 struct list_head napi_list;
1515 struct list_head unreg_list;
1516 struct list_head close_list;
1517
1518 struct {
1519 struct list_head upper;
1520 struct list_head lower;
1521 } adj_list;
1522
1523 struct {
1524 struct list_head upper;
1525 struct list_head lower;
1526 } all_adj_list;
1527
1528 netdev_features_t features;
1529 netdev_features_t hw_features;
1530 netdev_features_t wanted_features;
1531 netdev_features_t vlan_features;
1532 netdev_features_t hw_enc_features;
1533 netdev_features_t mpls_features;
1534
1535 int ifindex;
1536 int iflink;
1537
1538 struct net_device_stats stats;
1539
1540 atomic_long_t rx_dropped;
1541 atomic_long_t tx_dropped;
1542
1543 atomic_t carrier_changes;
1544
1545#ifdef CONFIG_WIRELESS_EXT
1546 const struct iw_handler_def * wireless_handlers;
1547 struct iw_public_data * wireless_data;
1548#endif
1549 const struct net_device_ops *netdev_ops;
1550 const struct ethtool_ops *ethtool_ops;
1551 const struct forwarding_accel_ops *fwd_ops;
1552
1553 const struct header_ops *header_ops;
1554
1555 unsigned int flags;
1556 unsigned int priv_flags;
1557
1558 unsigned short gflags;
1559 unsigned short padded;
1560
1561 unsigned char operstate;
1562 unsigned char link_mode;
1563
1564 unsigned char if_port;
1565 unsigned char dma;
1566
1567 unsigned int mtu;
1568 unsigned short type;
1569 unsigned short hard_header_len;
1570
1571 unsigned short needed_headroom;
1572 unsigned short needed_tailroom;
1573
1574 /* Interface address info. */
1575 unsigned char perm_addr[MAX_ADDR_LEN];
1576 unsigned char addr_assign_type;
1577 unsigned char addr_len;
1578 unsigned short neigh_priv_len;
1579 unsigned short dev_id;
1580 unsigned short dev_port;
1581 spinlock_t addr_list_lock;
1582 struct netdev_hw_addr_list uc;
1583 struct netdev_hw_addr_list mc;
1584 struct netdev_hw_addr_list dev_addrs;
1585
1586#ifdef CONFIG_SYSFS
1587 struct kset *queues_kset;
1588#endif
1589
1590 unsigned char name_assign_type;
1591
1592 bool uc_promisc;
1593 unsigned int promiscuity;
1594 unsigned int allmulti;
1595
1596
1597 /* Protocol specific pointers */
1598
1599#if IS_ENABLED(CONFIG_VLAN_8021Q)
1600 struct vlan_info __rcu *vlan_info;
1601#endif
1602#if IS_ENABLED(CONFIG_NET_DSA)
1603 struct dsa_switch_tree *dsa_ptr;
1604#endif
1605#if IS_ENABLED(CONFIG_TIPC)
1606 struct tipc_bearer __rcu *tipc_ptr;
1607#endif
1608 void *atalk_ptr;
1609 struct in_device __rcu *ip_ptr;
1610 struct dn_dev __rcu *dn_ptr;
1611 struct inet6_dev __rcu *ip6_ptr;
1612 void *ax25_ptr;
1613 struct wireless_dev *ieee80211_ptr;
1614 struct wpan_dev *ieee802154_ptr;
1615
1616/*
1617 * Cache lines mostly used on receive path (including eth_type_trans())
1618 */
1619 unsigned long last_rx;
1620
1621 /* Interface address info used in eth_type_trans() */
1622 unsigned char *dev_addr;
1623
1624
1625#ifdef CONFIG_SYSFS
1626 struct netdev_rx_queue *_rx;
1627
1628 unsigned int num_rx_queues;
1629 unsigned int real_num_rx_queues;
1630
1631#endif
1632
1633 unsigned long gro_flush_timeout;
1634 rx_handler_func_t __rcu *rx_handler;
1635 void __rcu *rx_handler_data;
1636
1637 struct netdev_queue __rcu *ingress_queue;
1638 unsigned char broadcast[MAX_ADDR_LEN];
1639
1640
1641/*
1642 * Cache lines mostly used on transmit path
1643 */
1644 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1645 unsigned int num_tx_queues;
1646 unsigned int real_num_tx_queues;
1647 struct Qdisc *qdisc;
1648 unsigned long tx_queue_len;
1649 spinlock_t tx_global_lock;
1650
1651#ifdef CONFIG_XPS
1652 struct xps_dev_maps __rcu *xps_maps;
1653#endif
1654#ifdef CONFIG_RFS_ACCEL
1655 struct cpu_rmap *rx_cpu_rmap;
1656#endif
1657
1658 /* These may be needed for future network-power-down code. */
1659
1660 /*
1661 * trans_start here is expensive for high speed devices on SMP,
1662 * please use netdev_queue->trans_start instead.
1663 */
1664 unsigned long trans_start;
1665
1666 int watchdog_timeo;
1667 struct timer_list watchdog_timer;
1668
1669 int __percpu *pcpu_refcnt;
1670 struct list_head todo_list;
1671
1672 struct hlist_node index_hlist;
1673 struct list_head link_watch_list;
1674
1675 enum { NETREG_UNINITIALIZED=0,
1676 NETREG_REGISTERED, /* completed register_netdevice */
1677 NETREG_UNREGISTERING, /* called unregister_netdevice */
1678 NETREG_UNREGISTERED, /* completed unregister todo */
1679 NETREG_RELEASED, /* called free_netdev */
1680 NETREG_DUMMY, /* dummy device for NAPI poll */
1681 } reg_state:8;
1682
1683 bool dismantle;
1684
1685 enum {
1686 RTNL_LINK_INITIALIZED,
1687 RTNL_LINK_INITIALIZING,
1688 } rtnl_link_state:16;
1689
1690 void (*destructor)(struct net_device *dev);
1691
1692#ifdef CONFIG_NETPOLL
1693 struct netpoll_info __rcu *npinfo;
1694#endif
1695
1696#ifdef CONFIG_NET_NS
1697 struct net *nd_net;
1698#endif
1699
1700 /* mid-layer private */
1701 union {
1702 void *ml_priv;
1703 struct pcpu_lstats __percpu *lstats;
1704 struct pcpu_sw_netstats __percpu *tstats;
1705 struct pcpu_dstats __percpu *dstats;
1706 struct pcpu_vstats __percpu *vstats;
1707 };
1708
1709 struct garp_port __rcu *garp_port;
1710 struct mrp_port __rcu *mrp_port;
1711
1712 struct device dev;
1713 const struct attribute_group *sysfs_groups[4];
1714 const struct attribute_group *sysfs_rx_queue_group;
1715
1716 const struct rtnl_link_ops *rtnl_link_ops;
1717
1718 /* for setting kernel sock attribute on TCP connection setup */
1719#define GSO_MAX_SIZE 65536
1720 unsigned int gso_max_size;
1721#define GSO_MAX_SEGS 65535
1722 u16 gso_max_segs;
1723 u16 gso_min_segs;
1724#ifdef CONFIG_DCB
1725 const struct dcbnl_rtnl_ops *dcbnl_ops;
1726#endif
1727 u8 num_tc;
1728 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1729 u8 prio_tc_map[TC_BITMASK + 1];
1730
1731#if IS_ENABLED(CONFIG_FCOE)
1732 unsigned int fcoe_ddp_xid;
1733#endif
1734#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1735 struct netprio_map __rcu *priomap;
1736#endif
1737 struct phy_device *phydev;
1738 struct lock_class_key *qdisc_tx_busylock;
1739 int group;
1740 struct pm_qos_request pm_qos_req;
1741};
1742#define to_net_dev(d) container_of(d, struct net_device, dev)
1743
1744#define NETDEV_ALIGN 32
1745
1746static inline
1747int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1748{
1749 return dev->prio_tc_map[prio & TC_BITMASK];
1750}
1751
1752static inline
1753int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1754{
1755 if (tc >= dev->num_tc)
1756 return -EINVAL;
1757
1758 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1759 return 0;
1760}
1761
1762static inline
1763void netdev_reset_tc(struct net_device *dev)
1764{
1765 dev->num_tc = 0;
1766 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1767 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1768}
1769
1770static inline
1771int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1772{
1773 if (tc >= dev->num_tc)
1774 return -EINVAL;
1775
1776 dev->tc_to_txq[tc].count = count;
1777 dev->tc_to_txq[tc].offset = offset;
1778 return 0;
1779}
1780
1781static inline
1782int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1783{
1784 if (num_tc > TC_MAX_QUEUE)
1785 return -EINVAL;
1786
1787 dev->num_tc = num_tc;
1788 return 0;
1789}
1790
1791static inline
1792int netdev_get_num_tc(struct net_device *dev)
1793{
1794 return dev->num_tc;
1795}
1796
1797static inline
1798struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1799 unsigned int index)
1800{
1801 return &dev->_tx[index];
1802}
1803
1804static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1805 const struct sk_buff *skb)
1806{
1807 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1808}
1809
1810static inline void netdev_for_each_tx_queue(struct net_device *dev,
1811 void (*f)(struct net_device *,
1812 struct netdev_queue *,
1813 void *),
1814 void *arg)
1815{
1816 unsigned int i;
1817
1818 for (i = 0; i < dev->num_tx_queues; i++)
1819 f(dev, &dev->_tx[i], arg);
1820}
1821
1822struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1823 struct sk_buff *skb,
1824 void *accel_priv);
1825
1826/*
1827 * Net namespace inlines
1828 */
1829static inline
1830struct net *dev_net(const struct net_device *dev)
1831{
1832 return read_pnet(&dev->nd_net);
1833}
1834
1835static inline
1836void dev_net_set(struct net_device *dev, struct net *net)
1837{
1838#ifdef CONFIG_NET_NS
1839 release_net(dev->nd_net);
1840 dev->nd_net = hold_net(net);
1841#endif
1842}
1843
1844static inline bool netdev_uses_dsa(struct net_device *dev)
1845{
1846#if IS_ENABLED(CONFIG_NET_DSA)
1847 if (dev->dsa_ptr != NULL)
1848 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1849#endif
1850 return false;
1851}
1852
1853/**
1854 * netdev_priv - access network device private data
1855 * @dev: network device
1856 *
1857 * Get network device private data
1858 */
1859static inline void *netdev_priv(const struct net_device *dev)
1860{
1861 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1862}
1863
1864/* Set the sysfs physical device reference for the network logical device
1865 * if set prior to registration will cause a symlink during initialization.
1866 */
1867#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1868
1869/* Set the sysfs device type for the network logical device to allow
1870 * fine-grained identification of different network device types. For
1871 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1872 */
1873#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1874
1875/* Default NAPI poll() weight
1876 * Device drivers are strongly advised to not use bigger value
1877 */
1878#define NAPI_POLL_WEIGHT 64
1879
1880/**
1881 * netif_napi_add - initialize a napi context
1882 * @dev: network device
1883 * @napi: napi context
1884 * @poll: polling function
1885 * @weight: default weight
1886 *
1887 * netif_napi_add() must be used to initialize a napi context prior to calling
1888 * *any* of the other napi related functions.
1889 */
1890void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1891 int (*poll)(struct napi_struct *, int), int weight);
1892
1893/**
1894 * netif_napi_del - remove a napi context
1895 * @napi: napi context
1896 *
1897 * netif_napi_del() removes a napi context from the network device napi list
1898 */
1899void netif_napi_del(struct napi_struct *napi);
1900
1901struct napi_gro_cb {
1902 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1903 void *frag0;
1904
1905 /* Length of frag0. */
1906 unsigned int frag0_len;
1907
1908 /* This indicates where we are processing relative to skb->data. */
1909 int data_offset;
1910
1911 /* This is non-zero if the packet cannot be merged with the new skb. */
1912 u16 flush;
1913
1914 /* Save the IP ID here and check when we get to the transport layer */
1915 u16 flush_id;
1916
1917 /* Number of segments aggregated. */
1918 u16 count;
1919
1920 /* This is non-zero if the packet may be of the same flow. */
1921 u8 same_flow;
1922
1923 /* Free the skb? */
1924 u8 free;
1925#define NAPI_GRO_FREE 1
1926#define NAPI_GRO_FREE_STOLEN_HEAD 2
1927
1928 /* jiffies when first packet was created/queued */
1929 unsigned long age;
1930
1931 /* Used in ipv6_gro_receive() and foo-over-udp */
1932 u16 proto;
1933
1934 /* Used in udp_gro_receive */
1935 u8 udp_mark:1;
1936
1937 /* GRO checksum is valid */
1938 u8 csum_valid:1;
1939
1940 /* Number of checksums via CHECKSUM_UNNECESSARY */
1941 u8 csum_cnt:3;
1942
1943 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1944 u8 is_ipv6:1;
1945
1946 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1947 __wsum csum;
1948
1949 /* used in skb_gro_receive() slow path */
1950 struct sk_buff *last;
1951};
1952
1953#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1954
1955struct packet_type {
1956 __be16 type; /* This is really htons(ether_type). */
1957 struct net_device *dev; /* NULL is wildcarded here */
1958 int (*func) (struct sk_buff *,
1959 struct net_device *,
1960 struct packet_type *,
1961 struct net_device *);
1962 bool (*id_match)(struct packet_type *ptype,
1963 struct sock *sk);
1964 void *af_packet_priv;
1965 struct list_head list;
1966};
1967
1968struct offload_callbacks {
1969 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1970 netdev_features_t features);
1971 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1972 struct sk_buff *skb);
1973 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1974};
1975
1976struct packet_offload {
1977 __be16 type; /* This is really htons(ether_type). */
1978 struct offload_callbacks callbacks;
1979 struct list_head list;
1980};
1981
1982struct udp_offload {
1983 __be16 port;
1984 u8 ipproto;
1985 struct offload_callbacks callbacks;
1986};
1987
1988/* often modified stats are per cpu, other are shared (netdev->stats) */
1989struct pcpu_sw_netstats {
1990 u64 rx_packets;
1991 u64 rx_bytes;
1992 u64 tx_packets;
1993 u64 tx_bytes;
1994 struct u64_stats_sync syncp;
1995};
1996
1997#define netdev_alloc_pcpu_stats(type) \
1998({ \
1999 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2000 if (pcpu_stats) { \
2001 int i; \
2002 for_each_possible_cpu(i) { \
2003 typeof(type) *stat; \
2004 stat = per_cpu_ptr(pcpu_stats, i); \
2005 u64_stats_init(&stat->syncp); \
2006 } \
2007 } \
2008 pcpu_stats; \
2009})
2010
2011#include <linux/notifier.h>
2012
2013/* netdevice notifier chain. Please remember to update the rtnetlink
2014 * notification exclusion list in rtnetlink_event() when adding new
2015 * types.
2016 */
2017#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2018#define NETDEV_DOWN 0x0002
2019#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2020 detected a hardware crash and restarted
2021 - we can use this eg to kick tcp sessions
2022 once done */
2023#define NETDEV_CHANGE 0x0004 /* Notify device state change */
2024#define NETDEV_REGISTER 0x0005
2025#define NETDEV_UNREGISTER 0x0006
2026#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2027#define NETDEV_CHANGEADDR 0x0008
2028#define NETDEV_GOING_DOWN 0x0009
2029#define NETDEV_CHANGENAME 0x000A
2030#define NETDEV_FEAT_CHANGE 0x000B
2031#define NETDEV_BONDING_FAILOVER 0x000C
2032#define NETDEV_PRE_UP 0x000D
2033#define NETDEV_PRE_TYPE_CHANGE 0x000E
2034#define NETDEV_POST_TYPE_CHANGE 0x000F
2035#define NETDEV_POST_INIT 0x0010
2036#define NETDEV_UNREGISTER_FINAL 0x0011
2037#define NETDEV_RELEASE 0x0012
2038#define NETDEV_NOTIFY_PEERS 0x0013
2039#define NETDEV_JOIN 0x0014
2040#define NETDEV_CHANGEUPPER 0x0015
2041#define NETDEV_RESEND_IGMP 0x0016
2042#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2043#define NETDEV_CHANGEINFODATA 0x0018
2044
2045int register_netdevice_notifier(struct notifier_block *nb);
2046int unregister_netdevice_notifier(struct notifier_block *nb);
2047
2048struct netdev_notifier_info {
2049 struct net_device *dev;
2050};
2051
2052struct netdev_notifier_change_info {
2053 struct netdev_notifier_info info; /* must be first */
2054 unsigned int flags_changed;
2055};
2056
2057static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2058 struct net_device *dev)
2059{
2060 info->dev = dev;
2061}
2062
2063static inline struct net_device *
2064netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2065{
2066 return info->dev;
2067}
2068
2069int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2070
2071
2072extern rwlock_t dev_base_lock; /* Device list lock */
2073
2074#define for_each_netdev(net, d) \
2075 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2076#define for_each_netdev_reverse(net, d) \
2077 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2078#define for_each_netdev_rcu(net, d) \
2079 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2080#define for_each_netdev_safe(net, d, n) \
2081 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2082#define for_each_netdev_continue(net, d) \
2083 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2084#define for_each_netdev_continue_rcu(net, d) \
2085 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2086#define for_each_netdev_in_bond_rcu(bond, slave) \
2087 for_each_netdev_rcu(&init_net, slave) \
2088 if (netdev_master_upper_dev_get_rcu(slave) == bond)
2089#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2090
2091static inline struct net_device *next_net_device(struct net_device *dev)
2092{
2093 struct list_head *lh;
2094 struct net *net;
2095
2096 net = dev_net(dev);
2097 lh = dev->dev_list.next;
2098 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2099}
2100
2101static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2102{
2103 struct list_head *lh;
2104 struct net *net;
2105
2106 net = dev_net(dev);
2107 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2108 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2109}
2110
2111static inline struct net_device *first_net_device(struct net *net)
2112{
2113 return list_empty(&net->dev_base_head) ? NULL :
2114 net_device_entry(net->dev_base_head.next);
2115}
2116
2117static inline struct net_device *first_net_device_rcu(struct net *net)
2118{
2119 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2120
2121 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2122}
2123
2124int netdev_boot_setup_check(struct net_device *dev);
2125unsigned long netdev_boot_base(const char *prefix, int unit);
2126struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2127 const char *hwaddr);
2128struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2129struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2130void dev_add_pack(struct packet_type *pt);
2131void dev_remove_pack(struct packet_type *pt);
2132void __dev_remove_pack(struct packet_type *pt);
2133void dev_add_offload(struct packet_offload *po);
2134void dev_remove_offload(struct packet_offload *po);
2135
2136struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2137 unsigned short mask);
2138struct net_device *dev_get_by_name(struct net *net, const char *name);
2139struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2140struct net_device *__dev_get_by_name(struct net *net, const char *name);
2141int dev_alloc_name(struct net_device *dev, const char *name);
2142int dev_open(struct net_device *dev);
2143int dev_close(struct net_device *dev);
2144void dev_disable_lro(struct net_device *dev);
2145int dev_loopback_xmit(struct sk_buff *newskb);
2146int dev_queue_xmit(struct sk_buff *skb);
2147int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2148int register_netdevice(struct net_device *dev);
2149void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2150void unregister_netdevice_many(struct list_head *head);
2151static inline void unregister_netdevice(struct net_device *dev)
2152{
2153 unregister_netdevice_queue(dev, NULL);
2154}
2155
2156int netdev_refcnt_read(const struct net_device *dev);
2157void free_netdev(struct net_device *dev);
2158void netdev_freemem(struct net_device *dev);
2159void synchronize_net(void);
2160int init_dummy_netdev(struct net_device *dev);
2161
2162struct net_device *dev_get_by_index(struct net *net, int ifindex);
2163struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2164struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2165int netdev_get_name(struct net *net, char *name, int ifindex);
2166int dev_restart(struct net_device *dev);
2167int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2168
2169static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2170{
2171 return NAPI_GRO_CB(skb)->data_offset;
2172}
2173
2174static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2175{
2176 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2177}
2178
2179static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2180{
2181 NAPI_GRO_CB(skb)->data_offset += len;
2182}
2183
2184static inline void *skb_gro_header_fast(struct sk_buff *skb,
2185 unsigned int offset)
2186{
2187 return NAPI_GRO_CB(skb)->frag0 + offset;
2188}
2189
2190static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2191{
2192 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2193}
2194
2195static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2196 unsigned int offset)
2197{
2198 if (!pskb_may_pull(skb, hlen))
2199 return NULL;
2200
2201 NAPI_GRO_CB(skb)->frag0 = NULL;
2202 NAPI_GRO_CB(skb)->frag0_len = 0;
2203 return skb->data + offset;
2204}
2205
2206static inline void *skb_gro_network_header(struct sk_buff *skb)
2207{
2208 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2209 skb_network_offset(skb);
2210}
2211
2212static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2213 const void *start, unsigned int len)
2214{
2215 if (NAPI_GRO_CB(skb)->csum_valid)
2216 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2217 csum_partial(start, len, 0));
2218}
2219
2220/* GRO checksum functions. These are logical equivalents of the normal
2221 * checksum functions (in skbuff.h) except that they operate on the GRO
2222 * offsets and fields in sk_buff.
2223 */
2224
2225__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2226
2227static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2228 bool zero_okay,
2229 __sum16 check)
2230{
2231 return (skb->ip_summed != CHECKSUM_PARTIAL &&
2232 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2233 (!zero_okay || check));
2234}
2235
2236static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2237 __wsum psum)
2238{
2239 if (NAPI_GRO_CB(skb)->csum_valid &&
2240 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2241 return 0;
2242
2243 NAPI_GRO_CB(skb)->csum = psum;
2244
2245 return __skb_gro_checksum_complete(skb);
2246}
2247
2248static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2249{
2250 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2251 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2252 NAPI_GRO_CB(skb)->csum_cnt--;
2253 } else {
2254 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2255 * verified a new top level checksum or an encapsulated one
2256 * during GRO. This saves work if we fallback to normal path.
2257 */
2258 __skb_incr_checksum_unnecessary(skb);
2259 }
2260}
2261
2262#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2263 compute_pseudo) \
2264({ \
2265 __sum16 __ret = 0; \
2266 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2267 __ret = __skb_gro_checksum_validate_complete(skb, \
2268 compute_pseudo(skb, proto)); \
2269 if (__ret) \
2270 __skb_mark_checksum_bad(skb); \
2271 else \
2272 skb_gro_incr_csum_unnecessary(skb); \
2273 __ret; \
2274})
2275
2276#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2277 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2278
2279#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2280 compute_pseudo) \
2281 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2282
2283#define skb_gro_checksum_simple_validate(skb) \
2284 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2285
2286static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2287{
2288 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2289 !NAPI_GRO_CB(skb)->csum_valid);
2290}
2291
2292static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2293 __sum16 check, __wsum pseudo)
2294{
2295 NAPI_GRO_CB(skb)->csum = ~pseudo;
2296 NAPI_GRO_CB(skb)->csum_valid = 1;
2297}
2298
2299#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2300do { \
2301 if (__skb_gro_checksum_convert_check(skb)) \
2302 __skb_gro_checksum_convert(skb, check, \
2303 compute_pseudo(skb, proto)); \
2304} while (0)
2305
2306static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2307 unsigned short type,
2308 const void *daddr, const void *saddr,
2309 unsigned int len)
2310{
2311 if (!dev->header_ops || !dev->header_ops->create)
2312 return 0;
2313
2314 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2315}
2316
2317static inline int dev_parse_header(const struct sk_buff *skb,
2318 unsigned char *haddr)
2319{
2320 const struct net_device *dev = skb->dev;
2321
2322 if (!dev->header_ops || !dev->header_ops->parse)
2323 return 0;
2324 return dev->header_ops->parse(skb, haddr);
2325}
2326
2327static inline int dev_rebuild_header(struct sk_buff *skb)
2328{
2329 const struct net_device *dev = skb->dev;
2330
2331 if (!dev->header_ops || !dev->header_ops->rebuild)
2332 return 0;
2333 return dev->header_ops->rebuild(skb);
2334}
2335
2336typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2337int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2338static inline int unregister_gifconf(unsigned int family)
2339{
2340 return register_gifconf(family, NULL);
2341}
2342
2343#ifdef CONFIG_NET_FLOW_LIMIT
2344#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2345struct sd_flow_limit {
2346 u64 count;
2347 unsigned int num_buckets;
2348 unsigned int history_head;
2349 u16 history[FLOW_LIMIT_HISTORY];
2350 u8 buckets[];
2351};
2352
2353extern int netdev_flow_limit_table_len;
2354#endif /* CONFIG_NET_FLOW_LIMIT */
2355
2356/*
2357 * Incoming packets are placed on per-cpu queues
2358 */
2359struct softnet_data {
2360 struct list_head poll_list;
2361 struct sk_buff_head process_queue;
2362
2363 /* stats */
2364 unsigned int processed;
2365 unsigned int time_squeeze;
2366 unsigned int cpu_collision;
2367 unsigned int received_rps;
2368#ifdef CONFIG_RPS
2369 struct softnet_data *rps_ipi_list;
2370#endif
2371#ifdef CONFIG_NET_FLOW_LIMIT
2372 struct sd_flow_limit __rcu *flow_limit;
2373#endif
2374 struct Qdisc *output_queue;
2375 struct Qdisc **output_queue_tailp;
2376 struct sk_buff *completion_queue;
2377
2378#ifdef CONFIG_RPS
2379 /* Elements below can be accessed between CPUs for RPS */
2380 struct call_single_data csd ____cacheline_aligned_in_smp;
2381 struct softnet_data *rps_ipi_next;
2382 unsigned int cpu;
2383 unsigned int input_queue_head;
2384 unsigned int input_queue_tail;
2385#endif
2386 unsigned int dropped;
2387 struct sk_buff_head input_pkt_queue;
2388 struct napi_struct backlog;
2389
2390};
2391
2392static inline void input_queue_head_incr(struct softnet_data *sd)
2393{
2394#ifdef CONFIG_RPS
2395 sd->input_queue_head++;
2396#endif
2397}
2398
2399static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2400 unsigned int *qtail)
2401{
2402#ifdef CONFIG_RPS
2403 *qtail = ++sd->input_queue_tail;
2404#endif
2405}
2406
2407DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2408
2409void __netif_schedule(struct Qdisc *q);
2410void netif_schedule_queue(struct netdev_queue *txq);
2411
2412static inline void netif_tx_schedule_all(struct net_device *dev)
2413{
2414 unsigned int i;
2415
2416 for (i = 0; i < dev->num_tx_queues; i++)
2417 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2418}
2419
2420static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2421{
2422 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2423}
2424
2425/**
2426 * netif_start_queue - allow transmit
2427 * @dev: network device
2428 *
2429 * Allow upper layers to call the device hard_start_xmit routine.
2430 */
2431static inline void netif_start_queue(struct net_device *dev)
2432{
2433 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2434}
2435
2436static inline void netif_tx_start_all_queues(struct net_device *dev)
2437{
2438 unsigned int i;
2439
2440 for (i = 0; i < dev->num_tx_queues; i++) {
2441 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2442 netif_tx_start_queue(txq);
2443 }
2444}
2445
2446void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2447
2448/**
2449 * netif_wake_queue - restart transmit
2450 * @dev: network device
2451 *
2452 * Allow upper layers to call the device hard_start_xmit routine.
2453 * Used for flow control when transmit resources are available.
2454 */
2455static inline void netif_wake_queue(struct net_device *dev)
2456{
2457 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2458}
2459
2460static inline void netif_tx_wake_all_queues(struct net_device *dev)
2461{
2462 unsigned int i;
2463
2464 for (i = 0; i < dev->num_tx_queues; i++) {
2465 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2466 netif_tx_wake_queue(txq);
2467 }
2468}
2469
2470static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2471{
2472 if (WARN_ON(!dev_queue)) {
2473 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2474 return;
2475 }
2476 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2477}
2478
2479/**
2480 * netif_stop_queue - stop transmitted packets
2481 * @dev: network device
2482 *
2483 * Stop upper layers calling the device hard_start_xmit routine.
2484 * Used for flow control when transmit resources are unavailable.
2485 */
2486static inline void netif_stop_queue(struct net_device *dev)
2487{
2488 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2489}
2490
2491static inline void netif_tx_stop_all_queues(struct net_device *dev)
2492{
2493 unsigned int i;
2494
2495 for (i = 0; i < dev->num_tx_queues; i++) {
2496 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2497 netif_tx_stop_queue(txq);
2498 }
2499}
2500
2501static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2502{
2503 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2504}
2505
2506/**
2507 * netif_queue_stopped - test if transmit queue is flowblocked
2508 * @dev: network device
2509 *
2510 * Test if transmit queue on device is currently unable to send.
2511 */
2512static inline bool netif_queue_stopped(const struct net_device *dev)
2513{
2514 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2515}
2516
2517static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2518{
2519 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2520}
2521
2522static inline bool
2523netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2524{
2525 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2526}
2527
2528static inline bool
2529netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2530{
2531 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2532}
2533
2534/**
2535 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2536 * @dev_queue: pointer to transmit queue
2537 *
2538 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2539 * to give appropriate hint to the cpu.
2540 */
2541static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2542{
2543#ifdef CONFIG_BQL
2544 prefetchw(&dev_queue->dql.num_queued);
2545#endif
2546}
2547
2548/**
2549 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2550 * @dev_queue: pointer to transmit queue
2551 *
2552 * BQL enabled drivers might use this helper in their TX completion path,
2553 * to give appropriate hint to the cpu.
2554 */
2555static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2556{
2557#ifdef CONFIG_BQL
2558 prefetchw(&dev_queue->dql.limit);
2559#endif
2560}
2561
2562static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2563 unsigned int bytes)
2564{
2565#ifdef CONFIG_BQL
2566 dql_queued(&dev_queue->dql, bytes);
2567
2568 if (likely(dql_avail(&dev_queue->dql) >= 0))
2569 return;
2570
2571 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2572
2573 /*
2574 * The XOFF flag must be set before checking the dql_avail below,
2575 * because in netdev_tx_completed_queue we update the dql_completed
2576 * before checking the XOFF flag.
2577 */
2578 smp_mb();
2579
2580 /* check again in case another CPU has just made room avail */
2581 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2582 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2583#endif
2584}
2585
2586/**
2587 * netdev_sent_queue - report the number of bytes queued to hardware
2588 * @dev: network device
2589 * @bytes: number of bytes queued to the hardware device queue
2590 *
2591 * Report the number of bytes queued for sending/completion to the network
2592 * device hardware queue. @bytes should be a good approximation and should
2593 * exactly match netdev_completed_queue() @bytes
2594 */
2595static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2596{
2597 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2598}
2599
2600static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2601 unsigned int pkts, unsigned int bytes)
2602{
2603#ifdef CONFIG_BQL
2604 if (unlikely(!bytes))
2605 return;
2606
2607 dql_completed(&dev_queue->dql, bytes);
2608
2609 /*
2610 * Without the memory barrier there is a small possiblity that
2611 * netdev_tx_sent_queue will miss the update and cause the queue to
2612 * be stopped forever
2613 */
2614 smp_mb();
2615
2616 if (dql_avail(&dev_queue->dql) < 0)
2617 return;
2618
2619 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2620 netif_schedule_queue(dev_queue);
2621#endif
2622}
2623
2624/**
2625 * netdev_completed_queue - report bytes and packets completed by device
2626 * @dev: network device
2627 * @pkts: actual number of packets sent over the medium
2628 * @bytes: actual number of bytes sent over the medium
2629 *
2630 * Report the number of bytes and packets transmitted by the network device
2631 * hardware queue over the physical medium, @bytes must exactly match the
2632 * @bytes amount passed to netdev_sent_queue()
2633 */
2634static inline void netdev_completed_queue(struct net_device *dev,
2635 unsigned int pkts, unsigned int bytes)
2636{
2637 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2638}
2639
2640static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2641{
2642#ifdef CONFIG_BQL
2643 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2644 dql_reset(&q->dql);
2645#endif
2646}
2647
2648/**
2649 * netdev_reset_queue - reset the packets and bytes count of a network device
2650 * @dev_queue: network device
2651 *
2652 * Reset the bytes and packet count of a network device and clear the
2653 * software flow control OFF bit for this network device
2654 */
2655static inline void netdev_reset_queue(struct net_device *dev_queue)
2656{
2657 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2658}
2659
2660/**
2661 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2662 * @dev: network device
2663 * @queue_index: given tx queue index
2664 *
2665 * Returns 0 if given tx queue index >= number of device tx queues,
2666 * otherwise returns the originally passed tx queue index.
2667 */
2668static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2669{
2670 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2671 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2672 dev->name, queue_index,
2673 dev->real_num_tx_queues);
2674 return 0;
2675 }
2676
2677 return queue_index;
2678}
2679
2680/**
2681 * netif_running - test if up
2682 * @dev: network device
2683 *
2684 * Test if the device has been brought up.
2685 */
2686static inline bool netif_running(const struct net_device *dev)
2687{
2688 return test_bit(__LINK_STATE_START, &dev->state);
2689}
2690
2691/*
2692 * Routines to manage the subqueues on a device. We only need start
2693 * stop, and a check if it's stopped. All other device management is
2694 * done at the overall netdevice level.
2695 * Also test the device if we're multiqueue.
2696 */
2697
2698/**
2699 * netif_start_subqueue - allow sending packets on subqueue
2700 * @dev: network device
2701 * @queue_index: sub queue index
2702 *
2703 * Start individual transmit queue of a device with multiple transmit queues.
2704 */
2705static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2706{
2707 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2708
2709 netif_tx_start_queue(txq);
2710}
2711
2712/**
2713 * netif_stop_subqueue - stop sending packets on subqueue
2714 * @dev: network device
2715 * @queue_index: sub queue index
2716 *
2717 * Stop individual transmit queue of a device with multiple transmit queues.
2718 */
2719static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2720{
2721 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2722 netif_tx_stop_queue(txq);
2723}
2724
2725/**
2726 * netif_subqueue_stopped - test status of subqueue
2727 * @dev: network device
2728 * @queue_index: sub queue index
2729 *
2730 * Check individual transmit queue of a device with multiple transmit queues.
2731 */
2732static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2733 u16 queue_index)
2734{
2735 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2736
2737 return netif_tx_queue_stopped(txq);
2738}
2739
2740static inline bool netif_subqueue_stopped(const struct net_device *dev,
2741 struct sk_buff *skb)
2742{
2743 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2744}
2745
2746void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2747
2748#ifdef CONFIG_XPS
2749int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2750 u16 index);
2751#else
2752static inline int netif_set_xps_queue(struct net_device *dev,
2753 const struct cpumask *mask,
2754 u16 index)
2755{
2756 return 0;
2757}
2758#endif
2759
2760/*
2761 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2762 * as a distribution range limit for the returned value.
2763 */
2764static inline u16 skb_tx_hash(const struct net_device *dev,
2765 struct sk_buff *skb)
2766{
2767 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2768}
2769
2770/**
2771 * netif_is_multiqueue - test if device has multiple transmit queues
2772 * @dev: network device
2773 *
2774 * Check if device has multiple transmit queues
2775 */
2776static inline bool netif_is_multiqueue(const struct net_device *dev)
2777{
2778 return dev->num_tx_queues > 1;
2779}
2780
2781int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2782
2783#ifdef CONFIG_SYSFS
2784int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2785#else
2786static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2787 unsigned int rxq)
2788{
2789 return 0;
2790}
2791#endif
2792
2793#ifdef CONFIG_SYSFS
2794static inline unsigned int get_netdev_rx_queue_index(
2795 struct netdev_rx_queue *queue)
2796{
2797 struct net_device *dev = queue->dev;
2798 int index = queue - dev->_rx;
2799
2800 BUG_ON(index >= dev->num_rx_queues);
2801 return index;
2802}
2803#endif
2804
2805#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2806int netif_get_num_default_rss_queues(void);
2807
2808enum skb_free_reason {
2809 SKB_REASON_CONSUMED,
2810 SKB_REASON_DROPPED,
2811};
2812
2813void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2814void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2815
2816/*
2817 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2818 * interrupt context or with hardware interrupts being disabled.
2819 * (in_irq() || irqs_disabled())
2820 *
2821 * We provide four helpers that can be used in following contexts :
2822 *
2823 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2824 * replacing kfree_skb(skb)
2825 *
2826 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2827 * Typically used in place of consume_skb(skb) in TX completion path
2828 *
2829 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2830 * replacing kfree_skb(skb)
2831 *
2832 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2833 * and consumed a packet. Used in place of consume_skb(skb)
2834 */
2835static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2836{
2837 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2838}
2839
2840static inline void dev_consume_skb_irq(struct sk_buff *skb)
2841{
2842 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2843}
2844
2845static inline void dev_kfree_skb_any(struct sk_buff *skb)
2846{
2847 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2848}
2849
2850static inline void dev_consume_skb_any(struct sk_buff *skb)
2851{
2852 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2853}
2854
2855int netif_rx(struct sk_buff *skb);
2856int netif_rx_ni(struct sk_buff *skb);
2857int netif_receive_skb(struct sk_buff *skb);
2858gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2859void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2860struct sk_buff *napi_get_frags(struct napi_struct *napi);
2861gro_result_t napi_gro_frags(struct napi_struct *napi);
2862struct packet_offload *gro_find_receive_by_type(__be16 type);
2863struct packet_offload *gro_find_complete_by_type(__be16 type);
2864
2865static inline void napi_free_frags(struct napi_struct *napi)
2866{
2867 kfree_skb(napi->skb);
2868 napi->skb = NULL;
2869}
2870
2871int netdev_rx_handler_register(struct net_device *dev,
2872 rx_handler_func_t *rx_handler,
2873 void *rx_handler_data);
2874void netdev_rx_handler_unregister(struct net_device *dev);
2875
2876bool dev_valid_name(const char *name);
2877int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2878int dev_ethtool(struct net *net, struct ifreq *);
2879unsigned int dev_get_flags(const struct net_device *);
2880int __dev_change_flags(struct net_device *, unsigned int flags);
2881int dev_change_flags(struct net_device *, unsigned int);
2882void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2883 unsigned int gchanges);
2884int dev_change_name(struct net_device *, const char *);
2885int dev_set_alias(struct net_device *, const char *, size_t);
2886int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2887int dev_set_mtu(struct net_device *, int);
2888void dev_set_group(struct net_device *, int);
2889int dev_set_mac_address(struct net_device *, struct sockaddr *);
2890int dev_change_carrier(struct net_device *, bool new_carrier);
2891int dev_get_phys_port_id(struct net_device *dev,
2892 struct netdev_phys_item_id *ppid);
2893struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2894struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2895 struct netdev_queue *txq, int *ret);
2896int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2897int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2898bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2899
2900extern int netdev_budget;
2901
2902/* Called by rtnetlink.c:rtnl_unlock() */
2903void netdev_run_todo(void);
2904
2905/**
2906 * dev_put - release reference to device
2907 * @dev: network device
2908 *
2909 * Release reference to device to allow it to be freed.
2910 */
2911static inline void dev_put(struct net_device *dev)
2912{
2913 this_cpu_dec(*dev->pcpu_refcnt);
2914}
2915
2916/**
2917 * dev_hold - get reference to device
2918 * @dev: network device
2919 *
2920 * Hold reference to device to keep it from being freed.
2921 */
2922static inline void dev_hold(struct net_device *dev)
2923{
2924 this_cpu_inc(*dev->pcpu_refcnt);
2925}
2926
2927/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2928 * and _off may be called from IRQ context, but it is caller
2929 * who is responsible for serialization of these calls.
2930 *
2931 * The name carrier is inappropriate, these functions should really be
2932 * called netif_lowerlayer_*() because they represent the state of any
2933 * kind of lower layer not just hardware media.
2934 */
2935
2936void linkwatch_init_dev(struct net_device *dev);
2937void linkwatch_fire_event(struct net_device *dev);
2938void linkwatch_forget_dev(struct net_device *dev);
2939
2940/**
2941 * netif_carrier_ok - test if carrier present
2942 * @dev: network device
2943 *
2944 * Check if carrier is present on device
2945 */
2946static inline bool netif_carrier_ok(const struct net_device *dev)
2947{
2948 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2949}
2950
2951unsigned long dev_trans_start(struct net_device *dev);
2952
2953void __netdev_watchdog_up(struct net_device *dev);
2954
2955void netif_carrier_on(struct net_device *dev);
2956
2957void netif_carrier_off(struct net_device *dev);
2958
2959/**
2960 * netif_dormant_on - mark device as dormant.
2961 * @dev: network device
2962 *
2963 * Mark device as dormant (as per RFC2863).
2964 *
2965 * The dormant state indicates that the relevant interface is not
2966 * actually in a condition to pass packets (i.e., it is not 'up') but is
2967 * in a "pending" state, waiting for some external event. For "on-
2968 * demand" interfaces, this new state identifies the situation where the
2969 * interface is waiting for events to place it in the up state.
2970 *
2971 */
2972static inline void netif_dormant_on(struct net_device *dev)
2973{
2974 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2975 linkwatch_fire_event(dev);
2976}
2977
2978/**
2979 * netif_dormant_off - set device as not dormant.
2980 * @dev: network device
2981 *
2982 * Device is not in dormant state.
2983 */
2984static inline void netif_dormant_off(struct net_device *dev)
2985{
2986 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2987 linkwatch_fire_event(dev);
2988}
2989
2990/**
2991 * netif_dormant - test if carrier present
2992 * @dev: network device
2993 *
2994 * Check if carrier is present on device
2995 */
2996static inline bool netif_dormant(const struct net_device *dev)
2997{
2998 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2999}
3000
3001
3002/**
3003 * netif_oper_up - test if device is operational
3004 * @dev: network device
3005 *
3006 * Check if carrier is operational
3007 */
3008static inline bool netif_oper_up(const struct net_device *dev)
3009{
3010 return (dev->operstate == IF_OPER_UP ||
3011 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3012}
3013
3014/**
3015 * netif_device_present - is device available or removed
3016 * @dev: network device
3017 *
3018 * Check if device has not been removed from system.
3019 */
3020static inline bool netif_device_present(struct net_device *dev)
3021{
3022 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3023}
3024
3025void netif_device_detach(struct net_device *dev);
3026
3027void netif_device_attach(struct net_device *dev);
3028
3029/*
3030 * Network interface message level settings
3031 */
3032
3033enum {
3034 NETIF_MSG_DRV = 0x0001,
3035 NETIF_MSG_PROBE = 0x0002,
3036 NETIF_MSG_LINK = 0x0004,
3037 NETIF_MSG_TIMER = 0x0008,
3038 NETIF_MSG_IFDOWN = 0x0010,
3039 NETIF_MSG_IFUP = 0x0020,
3040 NETIF_MSG_RX_ERR = 0x0040,
3041 NETIF_MSG_TX_ERR = 0x0080,
3042 NETIF_MSG_TX_QUEUED = 0x0100,
3043 NETIF_MSG_INTR = 0x0200,
3044 NETIF_MSG_TX_DONE = 0x0400,
3045 NETIF_MSG_RX_STATUS = 0x0800,
3046 NETIF_MSG_PKTDATA = 0x1000,
3047 NETIF_MSG_HW = 0x2000,
3048 NETIF_MSG_WOL = 0x4000,
3049};
3050
3051#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3052#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3053#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3054#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3055#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3056#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3057#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3058#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3059#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3060#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3061#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3062#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3063#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3064#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3065#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3066
3067static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3068{
3069 /* use default */
3070 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3071 return default_msg_enable_bits;
3072 if (debug_value == 0) /* no output */
3073 return 0;
3074 /* set low N bits */
3075 return (1 << debug_value) - 1;
3076}
3077
3078static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3079{
3080 spin_lock(&txq->_xmit_lock);
3081 txq->xmit_lock_owner = cpu;
3082}
3083
3084static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3085{
3086 spin_lock_bh(&txq->_xmit_lock);
3087 txq->xmit_lock_owner = smp_processor_id();
3088}
3089
3090static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3091{
3092 bool ok = spin_trylock(&txq->_xmit_lock);
3093 if (likely(ok))
3094 txq->xmit_lock_owner = smp_processor_id();
3095 return ok;
3096}
3097
3098static inline void __netif_tx_unlock(struct netdev_queue *txq)
3099{
3100 txq->xmit_lock_owner = -1;
3101 spin_unlock(&txq->_xmit_lock);
3102}
3103
3104static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3105{
3106 txq->xmit_lock_owner = -1;
3107 spin_unlock_bh(&txq->_xmit_lock);
3108}
3109
3110static inline void txq_trans_update(struct netdev_queue *txq)
3111{
3112 if (txq->xmit_lock_owner != -1)
3113 txq->trans_start = jiffies;
3114}
3115
3116/**
3117 * netif_tx_lock - grab network device transmit lock
3118 * @dev: network device
3119 *
3120 * Get network device transmit lock
3121 */
3122static inline void netif_tx_lock(struct net_device *dev)
3123{
3124 unsigned int i;
3125 int cpu;
3126
3127 spin_lock(&dev->tx_global_lock);
3128 cpu = smp_processor_id();
3129 for (i = 0; i < dev->num_tx_queues; i++) {
3130 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3131
3132 /* We are the only thread of execution doing a
3133 * freeze, but we have to grab the _xmit_lock in
3134 * order to synchronize with threads which are in
3135 * the ->hard_start_xmit() handler and already
3136 * checked the frozen bit.
3137 */
3138 __netif_tx_lock(txq, cpu);
3139 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3140 __netif_tx_unlock(txq);
3141 }
3142}
3143
3144static inline void netif_tx_lock_bh(struct net_device *dev)
3145{
3146 local_bh_disable();
3147 netif_tx_lock(dev);
3148}
3149
3150static inline void netif_tx_unlock(struct net_device *dev)
3151{
3152 unsigned int i;
3153
3154 for (i = 0; i < dev->num_tx_queues; i++) {
3155 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3156
3157 /* No need to grab the _xmit_lock here. If the
3158 * queue is not stopped for another reason, we
3159 * force a schedule.
3160 */
3161 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3162 netif_schedule_queue(txq);
3163 }
3164 spin_unlock(&dev->tx_global_lock);
3165}
3166
3167static inline void netif_tx_unlock_bh(struct net_device *dev)
3168{
3169 netif_tx_unlock(dev);
3170 local_bh_enable();
3171}
3172
3173#define HARD_TX_LOCK(dev, txq, cpu) { \
3174 if ((dev->features & NETIF_F_LLTX) == 0) { \
3175 __netif_tx_lock(txq, cpu); \
3176 } \
3177}
3178
3179#define HARD_TX_TRYLOCK(dev, txq) \
3180 (((dev->features & NETIF_F_LLTX) == 0) ? \
3181 __netif_tx_trylock(txq) : \
3182 true )
3183
3184#define HARD_TX_UNLOCK(dev, txq) { \
3185 if ((dev->features & NETIF_F_LLTX) == 0) { \
3186 __netif_tx_unlock(txq); \
3187 } \
3188}
3189
3190static inline void netif_tx_disable(struct net_device *dev)
3191{
3192 unsigned int i;
3193 int cpu;
3194
3195 local_bh_disable();
3196 cpu = smp_processor_id();
3197 for (i = 0; i < dev->num_tx_queues; i++) {
3198 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3199
3200 __netif_tx_lock(txq, cpu);
3201 netif_tx_stop_queue(txq);
3202 __netif_tx_unlock(txq);
3203 }
3204 local_bh_enable();
3205}
3206
3207static inline void netif_addr_lock(struct net_device *dev)
3208{
3209 spin_lock(&dev->addr_list_lock);
3210}
3211
3212static inline void netif_addr_lock_nested(struct net_device *dev)
3213{
3214 int subclass = SINGLE_DEPTH_NESTING;
3215
3216 if (dev->netdev_ops->ndo_get_lock_subclass)
3217 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3218
3219 spin_lock_nested(&dev->addr_list_lock, subclass);
3220}
3221
3222static inline void netif_addr_lock_bh(struct net_device *dev)
3223{
3224 spin_lock_bh(&dev->addr_list_lock);
3225}
3226
3227static inline void netif_addr_unlock(struct net_device *dev)
3228{
3229 spin_unlock(&dev->addr_list_lock);
3230}
3231
3232static inline void netif_addr_unlock_bh(struct net_device *dev)
3233{
3234 spin_unlock_bh(&dev->addr_list_lock);
3235}
3236
3237/*
3238 * dev_addrs walker. Should be used only for read access. Call with
3239 * rcu_read_lock held.
3240 */
3241#define for_each_dev_addr(dev, ha) \
3242 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3243
3244/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3245
3246void ether_setup(struct net_device *dev);
3247
3248/* Support for loadable net-drivers */
3249struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3250 unsigned char name_assign_type,
3251 void (*setup)(struct net_device *),
3252 unsigned int txqs, unsigned int rxqs);
3253#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3254 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3255
3256#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3257 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3258 count)
3259
3260int register_netdev(struct net_device *dev);
3261void unregister_netdev(struct net_device *dev);
3262
3263/* General hardware address lists handling functions */
3264int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3265 struct netdev_hw_addr_list *from_list, int addr_len);
3266void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3267 struct netdev_hw_addr_list *from_list, int addr_len);
3268int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3269 struct net_device *dev,
3270 int (*sync)(struct net_device *, const unsigned char *),
3271 int (*unsync)(struct net_device *,
3272 const unsigned char *));
3273void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3274 struct net_device *dev,
3275 int (*unsync)(struct net_device *,
3276 const unsigned char *));
3277void __hw_addr_init(struct netdev_hw_addr_list *list);
3278
3279/* Functions used for device addresses handling */
3280int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3281 unsigned char addr_type);
3282int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3283 unsigned char addr_type);
3284void dev_addr_flush(struct net_device *dev);
3285int dev_addr_init(struct net_device *dev);
3286
3287/* Functions used for unicast addresses handling */
3288int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3289int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3290int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3291int dev_uc_sync(struct net_device *to, struct net_device *from);
3292int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3293void dev_uc_unsync(struct net_device *to, struct net_device *from);
3294void dev_uc_flush(struct net_device *dev);
3295void dev_uc_init(struct net_device *dev);
3296
3297/**
3298 * __dev_uc_sync - Synchonize device's unicast list
3299 * @dev: device to sync
3300 * @sync: function to call if address should be added
3301 * @unsync: function to call if address should be removed
3302 *
3303 * Add newly added addresses to the interface, and release
3304 * addresses that have been deleted.
3305 **/
3306static inline int __dev_uc_sync(struct net_device *dev,
3307 int (*sync)(struct net_device *,
3308 const unsigned char *),
3309 int (*unsync)(struct net_device *,
3310 const unsigned char *))
3311{
3312 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3313}
3314
3315/**
3316 * __dev_uc_unsync - Remove synchronized addresses from device
3317 * @dev: device to sync
3318 * @unsync: function to call if address should be removed
3319 *
3320 * Remove all addresses that were added to the device by dev_uc_sync().
3321 **/
3322static inline void __dev_uc_unsync(struct net_device *dev,
3323 int (*unsync)(struct net_device *,
3324 const unsigned char *))
3325{
3326 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3327}
3328
3329/* Functions used for multicast addresses handling */
3330int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3331int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3332int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3333int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3334int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3335int dev_mc_sync(struct net_device *to, struct net_device *from);
3336int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3337void dev_mc_unsync(struct net_device *to, struct net_device *from);
3338void dev_mc_flush(struct net_device *dev);
3339void dev_mc_init(struct net_device *dev);
3340
3341/**
3342 * __dev_mc_sync - Synchonize device's multicast list
3343 * @dev: device to sync
3344 * @sync: function to call if address should be added
3345 * @unsync: function to call if address should be removed
3346 *
3347 * Add newly added addresses to the interface, and release
3348 * addresses that have been deleted.
3349 **/
3350static inline int __dev_mc_sync(struct net_device *dev,
3351 int (*sync)(struct net_device *,
3352 const unsigned char *),
3353 int (*unsync)(struct net_device *,
3354 const unsigned char *))
3355{
3356 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3357}
3358
3359/**
3360 * __dev_mc_unsync - Remove synchronized addresses from device
3361 * @dev: device to sync
3362 * @unsync: function to call if address should be removed
3363 *
3364 * Remove all addresses that were added to the device by dev_mc_sync().
3365 **/
3366static inline void __dev_mc_unsync(struct net_device *dev,
3367 int (*unsync)(struct net_device *,
3368 const unsigned char *))
3369{
3370 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3371}
3372
3373/* Functions used for secondary unicast and multicast support */
3374void dev_set_rx_mode(struct net_device *dev);
3375void __dev_set_rx_mode(struct net_device *dev);
3376int dev_set_promiscuity(struct net_device *dev, int inc);
3377int dev_set_allmulti(struct net_device *dev, int inc);
3378void netdev_state_change(struct net_device *dev);
3379void netdev_notify_peers(struct net_device *dev);
3380void netdev_features_change(struct net_device *dev);
3381/* Load a device via the kmod */
3382void dev_load(struct net *net, const char *name);
3383struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3384 struct rtnl_link_stats64 *storage);
3385void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3386 const struct net_device_stats *netdev_stats);
3387
3388extern int netdev_max_backlog;
3389extern int netdev_tstamp_prequeue;
3390extern int weight_p;
3391extern int bpf_jit_enable;
3392
3393bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3394struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3395 struct list_head **iter);
3396struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3397 struct list_head **iter);
3398
3399/* iterate through upper list, must be called under RCU read lock */
3400#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3401 for (iter = &(dev)->adj_list.upper, \
3402 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3403 updev; \
3404 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3405
3406/* iterate through upper list, must be called under RCU read lock */
3407#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3408 for (iter = &(dev)->all_adj_list.upper, \
3409 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3410 updev; \
3411 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3412
3413void *netdev_lower_get_next_private(struct net_device *dev,
3414 struct list_head **iter);
3415void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3416 struct list_head **iter);
3417
3418#define netdev_for_each_lower_private(dev, priv, iter) \
3419 for (iter = (dev)->adj_list.lower.next, \
3420 priv = netdev_lower_get_next_private(dev, &(iter)); \
3421 priv; \
3422 priv = netdev_lower_get_next_private(dev, &(iter)))
3423
3424#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3425 for (iter = &(dev)->adj_list.lower, \
3426 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3427 priv; \
3428 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3429
3430void *netdev_lower_get_next(struct net_device *dev,
3431 struct list_head **iter);
3432#define netdev_for_each_lower_dev(dev, ldev, iter) \
3433 for (iter = &(dev)->adj_list.lower, \
3434 ldev = netdev_lower_get_next(dev, &(iter)); \
3435 ldev; \
3436 ldev = netdev_lower_get_next(dev, &(iter)))
3437
3438void *netdev_adjacent_get_private(struct list_head *adj_list);
3439void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3440struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3441struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3442int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3443int netdev_master_upper_dev_link(struct net_device *dev,
3444 struct net_device *upper_dev);
3445int netdev_master_upper_dev_link_private(struct net_device *dev,
3446 struct net_device *upper_dev,
3447 void *private);
3448void netdev_upper_dev_unlink(struct net_device *dev,
3449 struct net_device *upper_dev);
3450void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3451void *netdev_lower_dev_get_private(struct net_device *dev,
3452 struct net_device *lower_dev);
3453
3454/* RSS keys are 40 or 52 bytes long */
3455#define NETDEV_RSS_KEY_LEN 52
3456extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3457void netdev_rss_key_fill(void *buffer, size_t len);
3458
3459int dev_get_nest_level(struct net_device *dev,
3460 bool (*type_check)(struct net_device *dev));
3461int skb_checksum_help(struct sk_buff *skb);
3462struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3463 netdev_features_t features, bool tx_path);
3464struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3465 netdev_features_t features);
3466
3467static inline
3468struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3469{
3470 return __skb_gso_segment(skb, features, true);
3471}
3472__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3473
3474static inline bool can_checksum_protocol(netdev_features_t features,
3475 __be16 protocol)
3476{
3477 return ((features & NETIF_F_GEN_CSUM) ||
3478 ((features & NETIF_F_V4_CSUM) &&
3479 protocol == htons(ETH_P_IP)) ||
3480 ((features & NETIF_F_V6_CSUM) &&
3481 protocol == htons(ETH_P_IPV6)) ||
3482 ((features & NETIF_F_FCOE_CRC) &&
3483 protocol == htons(ETH_P_FCOE)));
3484}
3485
3486#ifdef CONFIG_BUG
3487void netdev_rx_csum_fault(struct net_device *dev);
3488#else
3489static inline void netdev_rx_csum_fault(struct net_device *dev)
3490{
3491}
3492#endif
3493/* rx skb timestamps */
3494void net_enable_timestamp(void);
3495void net_disable_timestamp(void);
3496
3497#ifdef CONFIG_PROC_FS
3498int __init dev_proc_init(void);
3499#else
3500#define dev_proc_init() 0
3501#endif
3502
3503static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3504 struct sk_buff *skb, struct net_device *dev,
3505 bool more)
3506{
3507 skb->xmit_more = more ? 1 : 0;
3508 return ops->ndo_start_xmit(skb, dev);
3509}
3510
3511static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3512 struct netdev_queue *txq, bool more)
3513{
3514 const struct net_device_ops *ops = dev->netdev_ops;
3515 int rc;
3516
3517 rc = __netdev_start_xmit(ops, skb, dev, more);
3518 if (rc == NETDEV_TX_OK)
3519 txq_trans_update(txq);
3520
3521 return rc;
3522}
3523
3524int netdev_class_create_file_ns(struct class_attribute *class_attr,
3525 const void *ns);
3526void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3527 const void *ns);
3528
3529static inline int netdev_class_create_file(struct class_attribute *class_attr)
3530{
3531 return netdev_class_create_file_ns(class_attr, NULL);
3532}
3533
3534static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3535{
3536 netdev_class_remove_file_ns(class_attr, NULL);
3537}
3538
3539extern struct kobj_ns_type_operations net_ns_type_operations;
3540
3541const char *netdev_drivername(const struct net_device *dev);
3542
3543void linkwatch_run_queue(void);
3544
3545static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3546 netdev_features_t f2)
3547{
3548 if (f1 & NETIF_F_GEN_CSUM)
3549 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3550 if (f2 & NETIF_F_GEN_CSUM)
3551 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3552 f1 &= f2;
3553 if (f1 & NETIF_F_GEN_CSUM)
3554 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3555
3556 return f1;
3557}
3558
3559static inline netdev_features_t netdev_get_wanted_features(
3560 struct net_device *dev)
3561{
3562 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3563}
3564netdev_features_t netdev_increment_features(netdev_features_t all,
3565 netdev_features_t one, netdev_features_t mask);
3566
3567/* Allow TSO being used on stacked device :
3568 * Performing the GSO segmentation before last device
3569 * is a performance improvement.
3570 */
3571static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3572 netdev_features_t mask)
3573{
3574 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3575}
3576
3577int __netdev_update_features(struct net_device *dev);
3578void netdev_update_features(struct net_device *dev);
3579void netdev_change_features(struct net_device *dev);
3580
3581void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3582 struct net_device *dev);
3583
3584netdev_features_t netif_skb_features(struct sk_buff *skb);
3585
3586static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3587{
3588 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3589
3590 /* check flags correspondence */
3591 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3592 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3593 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3594 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3595 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3596 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3597 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3598 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3599 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3600 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3601 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3602 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3603 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3604
3605 return (features & feature) == feature;
3606}
3607
3608static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3609{
3610 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3611 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3612}
3613
3614static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3615 netdev_features_t features)
3616{
3617 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3618 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3619 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3620}
3621
3622static inline void netif_set_gso_max_size(struct net_device *dev,
3623 unsigned int size)
3624{
3625 dev->gso_max_size = size;
3626}
3627
3628static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3629 int pulled_hlen, u16 mac_offset,
3630 int mac_len)
3631{
3632 skb->protocol = protocol;
3633 skb->encapsulation = 1;
3634 skb_push(skb, pulled_hlen);
3635 skb_reset_transport_header(skb);
3636 skb->mac_header = mac_offset;
3637 skb->network_header = skb->mac_header + mac_len;
3638 skb->mac_len = mac_len;
3639}
3640
3641static inline bool netif_is_macvlan(struct net_device *dev)
3642{
3643 return dev->priv_flags & IFF_MACVLAN;
3644}
3645
3646static inline bool netif_is_macvlan_port(struct net_device *dev)
3647{
3648 return dev->priv_flags & IFF_MACVLAN_PORT;
3649}
3650
3651static inline bool netif_is_ipvlan(struct net_device *dev)
3652{
3653 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3654}
3655
3656static inline bool netif_is_ipvlan_port(struct net_device *dev)
3657{
3658 return dev->priv_flags & IFF_IPVLAN_MASTER;
3659}
3660
3661static inline bool netif_is_bond_master(struct net_device *dev)
3662{
3663 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3664}
3665
3666static inline bool netif_is_bond_slave(struct net_device *dev)
3667{
3668 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3669}
3670
3671static inline bool netif_supports_nofcs(struct net_device *dev)
3672{
3673 return dev->priv_flags & IFF_SUPP_NOFCS;
3674}
3675
3676/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3677static inline void netif_keep_dst(struct net_device *dev)
3678{
3679 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3680}
3681
3682extern struct pernet_operations __net_initdata loopback_net_ops;
3683
3684/* Logging, debugging and troubleshooting/diagnostic helpers. */
3685
3686/* netdev_printk helpers, similar to dev_printk */
3687
3688static inline const char *netdev_name(const struct net_device *dev)
3689{
3690 if (!dev->name[0] || strchr(dev->name, '%'))
3691 return "(unnamed net_device)";
3692 return dev->name;
3693}
3694
3695static inline const char *netdev_reg_state(const struct net_device *dev)
3696{
3697 switch (dev->reg_state) {
3698 case NETREG_UNINITIALIZED: return " (uninitialized)";
3699 case NETREG_REGISTERED: return "";
3700 case NETREG_UNREGISTERING: return " (unregistering)";
3701 case NETREG_UNREGISTERED: return " (unregistered)";
3702 case NETREG_RELEASED: return " (released)";
3703 case NETREG_DUMMY: return " (dummy)";
3704 }
3705
3706 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3707 return " (unknown)";
3708}
3709
3710__printf(3, 4)
3711void netdev_printk(const char *level, const struct net_device *dev,
3712 const char *format, ...);
3713__printf(2, 3)
3714void netdev_emerg(const struct net_device *dev, const char *format, ...);
3715__printf(2, 3)
3716void netdev_alert(const struct net_device *dev, const char *format, ...);
3717__printf(2, 3)
3718void netdev_crit(const struct net_device *dev, const char *format, ...);
3719__printf(2, 3)
3720void netdev_err(const struct net_device *dev, const char *format, ...);
3721__printf(2, 3)
3722void netdev_warn(const struct net_device *dev, const char *format, ...);
3723__printf(2, 3)
3724void netdev_notice(const struct net_device *dev, const char *format, ...);
3725__printf(2, 3)
3726void netdev_info(const struct net_device *dev, const char *format, ...);
3727
3728#define MODULE_ALIAS_NETDEV(device) \
3729 MODULE_ALIAS("netdev-" device)
3730
3731#if defined(CONFIG_DYNAMIC_DEBUG)
3732#define netdev_dbg(__dev, format, args...) \
3733do { \
3734 dynamic_netdev_dbg(__dev, format, ##args); \
3735} while (0)
3736#elif defined(DEBUG)
3737#define netdev_dbg(__dev, format, args...) \
3738 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3739#else
3740#define netdev_dbg(__dev, format, args...) \
3741({ \
3742 if (0) \
3743 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3744})
3745#endif
3746
3747#if defined(VERBOSE_DEBUG)
3748#define netdev_vdbg netdev_dbg
3749#else
3750
3751#define netdev_vdbg(dev, format, args...) \
3752({ \
3753 if (0) \
3754 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3755 0; \
3756})
3757#endif
3758
3759/*
3760 * netdev_WARN() acts like dev_printk(), but with the key difference
3761 * of using a WARN/WARN_ON to get the message out, including the
3762 * file/line information and a backtrace.
3763 */
3764#define netdev_WARN(dev, format, args...) \
3765 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3766 netdev_reg_state(dev), ##args)
3767
3768/* netif printk helpers, similar to netdev_printk */
3769
3770#define netif_printk(priv, type, level, dev, fmt, args...) \
3771do { \
3772 if (netif_msg_##type(priv)) \
3773 netdev_printk(level, (dev), fmt, ##args); \
3774} while (0)
3775
3776#define netif_level(level, priv, type, dev, fmt, args...) \
3777do { \
3778 if (netif_msg_##type(priv)) \
3779 netdev_##level(dev, fmt, ##args); \
3780} while (0)
3781
3782#define netif_emerg(priv, type, dev, fmt, args...) \
3783 netif_level(emerg, priv, type, dev, fmt, ##args)
3784#define netif_alert(priv, type, dev, fmt, args...) \
3785 netif_level(alert, priv, type, dev, fmt, ##args)
3786#define netif_crit(priv, type, dev, fmt, args...) \
3787 netif_level(crit, priv, type, dev, fmt, ##args)
3788#define netif_err(priv, type, dev, fmt, args...) \
3789 netif_level(err, priv, type, dev, fmt, ##args)
3790#define netif_warn(priv, type, dev, fmt, args...) \
3791 netif_level(warn, priv, type, dev, fmt, ##args)
3792#define netif_notice(priv, type, dev, fmt, args...) \
3793 netif_level(notice, priv, type, dev, fmt, ##args)
3794#define netif_info(priv, type, dev, fmt, args...) \
3795 netif_level(info, priv, type, dev, fmt, ##args)
3796
3797#if defined(CONFIG_DYNAMIC_DEBUG)
3798#define netif_dbg(priv, type, netdev, format, args...) \
3799do { \
3800 if (netif_msg_##type(priv)) \
3801 dynamic_netdev_dbg(netdev, format, ##args); \
3802} while (0)
3803#elif defined(DEBUG)
3804#define netif_dbg(priv, type, dev, format, args...) \
3805 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3806#else
3807#define netif_dbg(priv, type, dev, format, args...) \
3808({ \
3809 if (0) \
3810 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3811 0; \
3812})
3813#endif
3814
3815#if defined(VERBOSE_DEBUG)
3816#define netif_vdbg netif_dbg
3817#else
3818#define netif_vdbg(priv, type, dev, format, args...) \
3819({ \
3820 if (0) \
3821 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3822 0; \
3823})
3824#endif
3825
3826/*
3827 * The list of packet types we will receive (as opposed to discard)
3828 * and the routines to invoke.
3829 *
3830 * Why 16. Because with 16 the only overlap we get on a hash of the
3831 * low nibble of the protocol value is RARP/SNAP/X.25.
3832 *
3833 * NOTE: That is no longer true with the addition of VLAN tags. Not
3834 * sure which should go first, but I bet it won't make much
3835 * difference if we are running VLANs. The good news is that
3836 * this protocol won't be in the list unless compiled in, so
3837 * the average user (w/out VLANs) will not be adversely affected.
3838 * --BLG
3839 *
3840 * 0800 IP
3841 * 8100 802.1Q VLAN
3842 * 0001 802.3
3843 * 0002 AX.25
3844 * 0004 802.2
3845 * 8035 RARP
3846 * 0005 SNAP
3847 * 0805 X.25
3848 * 0806 ARP
3849 * 8137 IPX
3850 * 0009 Localtalk
3851 * 86DD IPv6
3852 */
3853#define PTYPE_HASH_SIZE (16)
3854#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3855
3856#endif /* _LINUX_NETDEVICE_H */