]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - include/linux/perf_event.h
mod_devicetable: fix PHY module format
[mirror_ubuntu-bionic-kernel.git] / include / linux / perf_event.h
... / ...
CommitLineData
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33};
34
35#ifdef CONFIG_HAVE_HW_BREAKPOINT
36#include <asm/hw_breakpoint.h>
37#endif
38
39#include <linux/list.h>
40#include <linux/mutex.h>
41#include <linux/rculist.h>
42#include <linux/rcupdate.h>
43#include <linux/spinlock.h>
44#include <linux/hrtimer.h>
45#include <linux/fs.h>
46#include <linux/pid_namespace.h>
47#include <linux/workqueue.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/irq_work.h>
51#include <linux/static_key.h>
52#include <linux/jump_label_ratelimit.h>
53#include <linux/atomic.h>
54#include <linux/sysfs.h>
55#include <linux/perf_regs.h>
56#include <linux/workqueue.h>
57#include <linux/cgroup.h>
58#include <asm/local.h>
59
60struct perf_callchain_entry {
61 __u64 nr;
62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63};
64
65struct perf_callchain_entry_ctx {
66 struct perf_callchain_entry *entry;
67 u32 max_stack;
68 u32 nr;
69 short contexts;
70 bool contexts_maxed;
71};
72
73typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 unsigned long off, unsigned long len);
75
76struct perf_raw_frag {
77 union {
78 struct perf_raw_frag *next;
79 unsigned long pad;
80 };
81 perf_copy_f copy;
82 void *data;
83 u32 size;
84} __packed;
85
86struct perf_raw_record {
87 struct perf_raw_frag frag;
88 u32 size;
89};
90
91/*
92 * branch stack layout:
93 * nr: number of taken branches stored in entries[]
94 *
95 * Note that nr can vary from sample to sample
96 * branches (to, from) are stored from most recent
97 * to least recent, i.e., entries[0] contains the most
98 * recent branch.
99 */
100struct perf_branch_stack {
101 __u64 nr;
102 struct perf_branch_entry entries[0];
103};
104
105struct task_struct;
106
107/*
108 * extra PMU register associated with an event
109 */
110struct hw_perf_event_extra {
111 u64 config; /* register value */
112 unsigned int reg; /* register address or index */
113 int alloc; /* extra register already allocated */
114 int idx; /* index in shared_regs->regs[] */
115};
116
117/**
118 * struct hw_perf_event - performance event hardware details:
119 */
120struct hw_perf_event {
121#ifdef CONFIG_PERF_EVENTS
122 union {
123 struct { /* hardware */
124 u64 config;
125 u64 last_tag;
126 unsigned long config_base;
127 unsigned long event_base;
128 int event_base_rdpmc;
129 int idx;
130 int last_cpu;
131 int flags;
132
133 struct hw_perf_event_extra extra_reg;
134 struct hw_perf_event_extra branch_reg;
135 };
136 struct { /* software */
137 struct hrtimer hrtimer;
138 };
139 struct { /* tracepoint */
140 /* for tp_event->class */
141 struct list_head tp_list;
142 };
143 struct { /* amd_power */
144 u64 pwr_acc;
145 u64 ptsc;
146 };
147#ifdef CONFIG_HAVE_HW_BREAKPOINT
148 struct { /* breakpoint */
149 /*
150 * Crufty hack to avoid the chicken and egg
151 * problem hw_breakpoint has with context
152 * creation and event initalization.
153 */
154 struct arch_hw_breakpoint info;
155 struct list_head bp_list;
156 };
157#endif
158 struct { /* amd_iommu */
159 u8 iommu_bank;
160 u8 iommu_cntr;
161 u16 padding;
162 u64 conf;
163 u64 conf1;
164 };
165 };
166 /*
167 * If the event is a per task event, this will point to the task in
168 * question. See the comment in perf_event_alloc().
169 */
170 struct task_struct *target;
171
172 /*
173 * PMU would store hardware filter configuration
174 * here.
175 */
176 void *addr_filters;
177
178 /* Last sync'ed generation of filters */
179 unsigned long addr_filters_gen;
180
181/*
182 * hw_perf_event::state flags; used to track the PERF_EF_* state.
183 */
184#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
185#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
186#define PERF_HES_ARCH 0x04
187
188 int state;
189
190 /*
191 * The last observed hardware counter value, updated with a
192 * local64_cmpxchg() such that pmu::read() can be called nested.
193 */
194 local64_t prev_count;
195
196 /*
197 * The period to start the next sample with.
198 */
199 u64 sample_period;
200
201 /*
202 * The period we started this sample with.
203 */
204 u64 last_period;
205
206 /*
207 * However much is left of the current period; note that this is
208 * a full 64bit value and allows for generation of periods longer
209 * than hardware might allow.
210 */
211 local64_t period_left;
212
213 /*
214 * State for throttling the event, see __perf_event_overflow() and
215 * perf_adjust_freq_unthr_context().
216 */
217 u64 interrupts_seq;
218 u64 interrupts;
219
220 /*
221 * State for freq target events, see __perf_event_overflow() and
222 * perf_adjust_freq_unthr_context().
223 */
224 u64 freq_time_stamp;
225 u64 freq_count_stamp;
226#endif
227};
228
229struct perf_event;
230
231/*
232 * Common implementation detail of pmu::{start,commit,cancel}_txn
233 */
234#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
235#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
236
237/**
238 * pmu::capabilities flags
239 */
240#define PERF_PMU_CAP_NO_INTERRUPT 0x01
241#define PERF_PMU_CAP_NO_NMI 0x02
242#define PERF_PMU_CAP_AUX_NO_SG 0x04
243#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
244#define PERF_PMU_CAP_EXCLUSIVE 0x10
245#define PERF_PMU_CAP_ITRACE 0x20
246#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
247
248/**
249 * struct pmu - generic performance monitoring unit
250 */
251struct pmu {
252 struct list_head entry;
253
254 struct module *module;
255 struct device *dev;
256 const struct attribute_group **attr_groups;
257 const char *name;
258 int type;
259
260 /*
261 * various common per-pmu feature flags
262 */
263 int capabilities;
264
265 int * __percpu pmu_disable_count;
266 struct perf_cpu_context * __percpu pmu_cpu_context;
267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
268 int task_ctx_nr;
269 int hrtimer_interval_ms;
270
271 /* number of address filters this PMU can do */
272 unsigned int nr_addr_filters;
273
274 /*
275 * Fully disable/enable this PMU, can be used to protect from the PMI
276 * as well as for lazy/batch writing of the MSRs.
277 */
278 void (*pmu_enable) (struct pmu *pmu); /* optional */
279 void (*pmu_disable) (struct pmu *pmu); /* optional */
280
281 /*
282 * Try and initialize the event for this PMU.
283 *
284 * Returns:
285 * -ENOENT -- @event is not for this PMU
286 *
287 * -ENODEV -- @event is for this PMU but PMU not present
288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
289 * -EINVAL -- @event is for this PMU but @event is not valid
290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
292 *
293 * 0 -- @event is for this PMU and valid
294 *
295 * Other error return values are allowed.
296 */
297 int (*event_init) (struct perf_event *event);
298
299 /*
300 * Notification that the event was mapped or unmapped. Called
301 * in the context of the mapping task.
302 */
303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
305
306 /*
307 * Flags for ->add()/->del()/ ->start()/->stop(). There are
308 * matching hw_perf_event::state flags.
309 */
310#define PERF_EF_START 0x01 /* start the counter when adding */
311#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
312#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
313
314 /*
315 * Adds/Removes a counter to/from the PMU, can be done inside a
316 * transaction, see the ->*_txn() methods.
317 *
318 * The add/del callbacks will reserve all hardware resources required
319 * to service the event, this includes any counter constraint
320 * scheduling etc.
321 *
322 * Called with IRQs disabled and the PMU disabled on the CPU the event
323 * is on.
324 *
325 * ->add() called without PERF_EF_START should result in the same state
326 * as ->add() followed by ->stop().
327 *
328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
329 * ->stop() that must deal with already being stopped without
330 * PERF_EF_UPDATE.
331 */
332 int (*add) (struct perf_event *event, int flags);
333 void (*del) (struct perf_event *event, int flags);
334
335 /*
336 * Starts/Stops a counter present on the PMU.
337 *
338 * The PMI handler should stop the counter when perf_event_overflow()
339 * returns !0. ->start() will be used to continue.
340 *
341 * Also used to change the sample period.
342 *
343 * Called with IRQs disabled and the PMU disabled on the CPU the event
344 * is on -- will be called from NMI context with the PMU generates
345 * NMIs.
346 *
347 * ->stop() with PERF_EF_UPDATE will read the counter and update
348 * period/count values like ->read() would.
349 *
350 * ->start() with PERF_EF_RELOAD will reprogram the the counter
351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
352 */
353 void (*start) (struct perf_event *event, int flags);
354 void (*stop) (struct perf_event *event, int flags);
355
356 /*
357 * Updates the counter value of the event.
358 *
359 * For sampling capable PMUs this will also update the software period
360 * hw_perf_event::period_left field.
361 */
362 void (*read) (struct perf_event *event);
363
364 /*
365 * Group events scheduling is treated as a transaction, add
366 * group events as a whole and perform one schedulability test.
367 * If the test fails, roll back the whole group
368 *
369 * Start the transaction, after this ->add() doesn't need to
370 * do schedulability tests.
371 *
372 * Optional.
373 */
374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
375 /*
376 * If ->start_txn() disabled the ->add() schedulability test
377 * then ->commit_txn() is required to perform one. On success
378 * the transaction is closed. On error the transaction is kept
379 * open until ->cancel_txn() is called.
380 *
381 * Optional.
382 */
383 int (*commit_txn) (struct pmu *pmu);
384 /*
385 * Will cancel the transaction, assumes ->del() is called
386 * for each successful ->add() during the transaction.
387 *
388 * Optional.
389 */
390 void (*cancel_txn) (struct pmu *pmu);
391
392 /*
393 * Will return the value for perf_event_mmap_page::index for this event,
394 * if no implementation is provided it will default to: event->hw.idx + 1.
395 */
396 int (*event_idx) (struct perf_event *event); /*optional */
397
398 /*
399 * context-switches callback
400 */
401 void (*sched_task) (struct perf_event_context *ctx,
402 bool sched_in);
403 /*
404 * PMU specific data size
405 */
406 size_t task_ctx_size;
407
408
409 /*
410 * Set up pmu-private data structures for an AUX area
411 */
412 void *(*setup_aux) (struct perf_event *event, void **pages,
413 int nr_pages, bool overwrite);
414 /* optional */
415
416 /*
417 * Free pmu-private AUX data structures
418 */
419 void (*free_aux) (void *aux); /* optional */
420
421 /*
422 * Validate address range filters: make sure the HW supports the
423 * requested configuration and number of filters; return 0 if the
424 * supplied filters are valid, -errno otherwise.
425 *
426 * Runs in the context of the ioctl()ing process and is not serialized
427 * with the rest of the PMU callbacks.
428 */
429 int (*addr_filters_validate) (struct list_head *filters);
430 /* optional */
431
432 /*
433 * Synchronize address range filter configuration:
434 * translate hw-agnostic filters into hardware configuration in
435 * event::hw::addr_filters.
436 *
437 * Runs as a part of filter sync sequence that is done in ->start()
438 * callback by calling perf_event_addr_filters_sync().
439 *
440 * May (and should) traverse event::addr_filters::list, for which its
441 * caller provides necessary serialization.
442 */
443 void (*addr_filters_sync) (struct perf_event *event);
444 /* optional */
445
446 /*
447 * Filter events for PMU-specific reasons.
448 */
449 int (*filter_match) (struct perf_event *event); /* optional */
450
451 /*
452 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
453 */
454 int (*check_period) (struct perf_event *event, u64 value); /* optional */
455};
456
457/**
458 * struct perf_addr_filter - address range filter definition
459 * @entry: event's filter list linkage
460 * @inode: object file's inode for file-based filters
461 * @offset: filter range offset
462 * @size: filter range size
463 * @range: 1: range, 0: address
464 * @filter: 1: filter/start, 0: stop
465 *
466 * This is a hardware-agnostic filter configuration as specified by the user.
467 */
468struct perf_addr_filter {
469 struct list_head entry;
470 struct inode *inode;
471 unsigned long offset;
472 unsigned long size;
473 unsigned int range : 1,
474 filter : 1;
475};
476
477/**
478 * struct perf_addr_filters_head - container for address range filters
479 * @list: list of filters for this event
480 * @lock: spinlock that serializes accesses to the @list and event's
481 * (and its children's) filter generations.
482 * @nr_file_filters: number of file-based filters
483 *
484 * A child event will use parent's @list (and therefore @lock), so they are
485 * bundled together; see perf_event_addr_filters().
486 */
487struct perf_addr_filters_head {
488 struct list_head list;
489 raw_spinlock_t lock;
490 unsigned int nr_file_filters;
491};
492
493/**
494 * enum perf_event_state - the states of a event
495 */
496enum perf_event_state {
497 PERF_EVENT_STATE_DEAD = -4,
498 PERF_EVENT_STATE_EXIT = -3,
499 PERF_EVENT_STATE_ERROR = -2,
500 PERF_EVENT_STATE_OFF = -1,
501 PERF_EVENT_STATE_INACTIVE = 0,
502 PERF_EVENT_STATE_ACTIVE = 1,
503};
504
505struct file;
506struct perf_sample_data;
507
508typedef void (*perf_overflow_handler_t)(struct perf_event *,
509 struct perf_sample_data *,
510 struct pt_regs *regs);
511
512/*
513 * Event capabilities. For event_caps and groups caps.
514 *
515 * PERF_EV_CAP_SOFTWARE: Is a software event.
516 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
517 * from any CPU in the package where it is active.
518 */
519#define PERF_EV_CAP_SOFTWARE BIT(0)
520#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
521
522#define SWEVENT_HLIST_BITS 8
523#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
524
525struct swevent_hlist {
526 struct hlist_head heads[SWEVENT_HLIST_SIZE];
527 struct rcu_head rcu_head;
528};
529
530#define PERF_ATTACH_CONTEXT 0x01
531#define PERF_ATTACH_GROUP 0x02
532#define PERF_ATTACH_TASK 0x04
533#define PERF_ATTACH_TASK_DATA 0x08
534#define PERF_ATTACH_ITRACE 0x10
535
536struct perf_cgroup;
537struct ring_buffer;
538
539struct pmu_event_list {
540 raw_spinlock_t lock;
541 struct list_head list;
542};
543
544/**
545 * struct perf_event - performance event kernel representation:
546 */
547struct perf_event {
548#ifdef CONFIG_PERF_EVENTS
549 /*
550 * entry onto perf_event_context::event_list;
551 * modifications require ctx->lock
552 * RCU safe iterations.
553 */
554 struct list_head event_entry;
555
556 /*
557 * XXX: group_entry and sibling_list should be mutually exclusive;
558 * either you're a sibling on a group, or you're the group leader.
559 * Rework the code to always use the same list element.
560 *
561 * Locked for modification by both ctx->mutex and ctx->lock; holding
562 * either sufficies for read.
563 */
564 struct list_head group_entry;
565 struct list_head sibling_list;
566
567 /*
568 * We need storage to track the entries in perf_pmu_migrate_context; we
569 * cannot use the event_entry because of RCU and we want to keep the
570 * group in tact which avoids us using the other two entries.
571 */
572 struct list_head migrate_entry;
573
574 struct hlist_node hlist_entry;
575 struct list_head active_entry;
576 int nr_siblings;
577
578 /* Not serialized. Only written during event initialization. */
579 int event_caps;
580 /* The cumulative AND of all event_caps for events in this group. */
581 int group_caps;
582
583 struct perf_event *group_leader;
584 struct pmu *pmu;
585 void *pmu_private;
586
587 enum perf_event_state state;
588 unsigned int attach_state;
589 local64_t count;
590 atomic64_t child_count;
591
592 /*
593 * These are the total time in nanoseconds that the event
594 * has been enabled (i.e. eligible to run, and the task has
595 * been scheduled in, if this is a per-task event)
596 * and running (scheduled onto the CPU), respectively.
597 */
598 u64 total_time_enabled;
599 u64 total_time_running;
600 u64 tstamp;
601
602 /*
603 * timestamp shadows the actual context timing but it can
604 * be safely used in NMI interrupt context. It reflects the
605 * context time as it was when the event was last scheduled in.
606 *
607 * ctx_time already accounts for ctx->timestamp. Therefore to
608 * compute ctx_time for a sample, simply add perf_clock().
609 */
610 u64 shadow_ctx_time;
611
612 struct perf_event_attr attr;
613 u16 header_size;
614 u16 id_header_size;
615 u16 read_size;
616 struct hw_perf_event hw;
617
618 struct perf_event_context *ctx;
619 atomic_long_t refcount;
620
621 /*
622 * These accumulate total time (in nanoseconds) that children
623 * events have been enabled and running, respectively.
624 */
625 atomic64_t child_total_time_enabled;
626 atomic64_t child_total_time_running;
627
628 /*
629 * Protect attach/detach and child_list:
630 */
631 struct mutex child_mutex;
632 struct list_head child_list;
633 struct perf_event *parent;
634
635 int oncpu;
636 int cpu;
637
638 struct list_head owner_entry;
639 struct task_struct *owner;
640
641 /* mmap bits */
642 struct mutex mmap_mutex;
643 atomic_t mmap_count;
644
645 struct ring_buffer *rb;
646 struct list_head rb_entry;
647 unsigned long rcu_batches;
648 int rcu_pending;
649
650 /* poll related */
651 wait_queue_head_t waitq;
652 struct fasync_struct *fasync;
653
654 /* delayed work for NMIs and such */
655 int pending_wakeup;
656 int pending_kill;
657 int pending_disable;
658 struct irq_work pending;
659
660 atomic_t event_limit;
661
662 /* address range filters */
663 struct perf_addr_filters_head addr_filters;
664 /* vma address array for file-based filders */
665 unsigned long *addr_filters_offs;
666 unsigned long addr_filters_gen;
667
668 void (*destroy)(struct perf_event *);
669 struct rcu_head rcu_head;
670
671 struct pid_namespace *ns;
672 u64 id;
673
674 u64 (*clock)(void);
675 perf_overflow_handler_t overflow_handler;
676 void *overflow_handler_context;
677#ifdef CONFIG_BPF_SYSCALL
678 perf_overflow_handler_t orig_overflow_handler;
679 struct bpf_prog *prog;
680#endif
681
682#ifdef CONFIG_EVENT_TRACING
683 struct trace_event_call *tp_event;
684 struct event_filter *filter;
685#ifdef CONFIG_FUNCTION_TRACER
686 struct ftrace_ops ftrace_ops;
687#endif
688#endif
689
690#ifdef CONFIG_CGROUP_PERF
691 struct perf_cgroup *cgrp; /* cgroup event is attach to */
692#endif
693
694 struct list_head sb_list;
695#endif /* CONFIG_PERF_EVENTS */
696};
697
698/**
699 * struct perf_event_context - event context structure
700 *
701 * Used as a container for task events and CPU events as well:
702 */
703struct perf_event_context {
704 struct pmu *pmu;
705 /*
706 * Protect the states of the events in the list,
707 * nr_active, and the list:
708 */
709 raw_spinlock_t lock;
710 /*
711 * Protect the list of events. Locking either mutex or lock
712 * is sufficient to ensure the list doesn't change; to change
713 * the list you need to lock both the mutex and the spinlock.
714 */
715 struct mutex mutex;
716
717 struct list_head active_ctx_list;
718 struct list_head pinned_groups;
719 struct list_head flexible_groups;
720 struct list_head event_list;
721 int nr_events;
722 int nr_active;
723 int is_active;
724 int nr_stat;
725 int nr_freq;
726 int rotate_disable;
727 atomic_t refcount;
728 struct task_struct *task;
729
730 /*
731 * Context clock, runs when context enabled.
732 */
733 u64 time;
734 u64 timestamp;
735
736 /*
737 * These fields let us detect when two contexts have both
738 * been cloned (inherited) from a common ancestor.
739 */
740 struct perf_event_context *parent_ctx;
741 u64 parent_gen;
742 u64 generation;
743 int pin_count;
744#ifdef CONFIG_CGROUP_PERF
745 int nr_cgroups; /* cgroup evts */
746#endif
747 void *task_ctx_data; /* pmu specific data */
748 struct rcu_head rcu_head;
749};
750
751/*
752 * Number of contexts where an event can trigger:
753 * task, softirq, hardirq, nmi.
754 */
755#define PERF_NR_CONTEXTS 4
756
757/**
758 * struct perf_event_cpu_context - per cpu event context structure
759 */
760struct perf_cpu_context {
761 struct perf_event_context ctx;
762 struct perf_event_context *task_ctx;
763 int active_oncpu;
764 int exclusive;
765
766 raw_spinlock_t hrtimer_lock;
767 struct hrtimer hrtimer;
768 ktime_t hrtimer_interval;
769 unsigned int hrtimer_active;
770
771#ifdef CONFIG_CGROUP_PERF
772 struct perf_cgroup *cgrp;
773 struct list_head cgrp_cpuctx_entry;
774#endif
775
776 struct list_head sched_cb_entry;
777 int sched_cb_usage;
778
779 int online;
780};
781
782struct perf_output_handle {
783 struct perf_event *event;
784 struct ring_buffer *rb;
785 unsigned long wakeup;
786 unsigned long size;
787 u64 aux_flags;
788 union {
789 void *addr;
790 unsigned long head;
791 };
792 int page;
793};
794
795struct bpf_perf_event_data_kern {
796 bpf_user_pt_regs_t *regs;
797 struct perf_sample_data *data;
798 struct perf_event *event;
799};
800
801#ifdef CONFIG_CGROUP_PERF
802
803/*
804 * perf_cgroup_info keeps track of time_enabled for a cgroup.
805 * This is a per-cpu dynamically allocated data structure.
806 */
807struct perf_cgroup_info {
808 u64 time;
809 u64 timestamp;
810};
811
812struct perf_cgroup {
813 struct cgroup_subsys_state css;
814 struct perf_cgroup_info __percpu *info;
815};
816
817/*
818 * Must ensure cgroup is pinned (css_get) before calling
819 * this function. In other words, we cannot call this function
820 * if there is no cgroup event for the current CPU context.
821 */
822static inline struct perf_cgroup *
823perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
824{
825 return container_of(task_css_check(task, perf_event_cgrp_id,
826 ctx ? lockdep_is_held(&ctx->lock)
827 : true),
828 struct perf_cgroup, css);
829}
830#endif /* CONFIG_CGROUP_PERF */
831
832#ifdef CONFIG_PERF_EVENTS
833
834extern void *perf_aux_output_begin(struct perf_output_handle *handle,
835 struct perf_event *event);
836extern void perf_aux_output_end(struct perf_output_handle *handle,
837 unsigned long size);
838extern int perf_aux_output_skip(struct perf_output_handle *handle,
839 unsigned long size);
840extern void *perf_get_aux(struct perf_output_handle *handle);
841extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
842extern void perf_event_itrace_started(struct perf_event *event);
843
844extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
845extern void perf_pmu_unregister(struct pmu *pmu);
846
847extern int perf_num_counters(void);
848extern const char *perf_pmu_name(void);
849extern void __perf_event_task_sched_in(struct task_struct *prev,
850 struct task_struct *task);
851extern void __perf_event_task_sched_out(struct task_struct *prev,
852 struct task_struct *next);
853extern int perf_event_init_task(struct task_struct *child);
854extern void perf_event_exit_task(struct task_struct *child);
855extern void perf_event_free_task(struct task_struct *task);
856extern void perf_event_delayed_put(struct task_struct *task);
857extern struct file *perf_event_get(unsigned int fd);
858extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
859extern void perf_event_print_debug(void);
860extern void perf_pmu_disable(struct pmu *pmu);
861extern void perf_pmu_enable(struct pmu *pmu);
862extern void perf_sched_cb_dec(struct pmu *pmu);
863extern void perf_sched_cb_inc(struct pmu *pmu);
864extern int perf_event_task_disable(void);
865extern int perf_event_task_enable(void);
866extern int perf_event_refresh(struct perf_event *event, int refresh);
867extern void perf_event_update_userpage(struct perf_event *event);
868extern int perf_event_release_kernel(struct perf_event *event);
869extern struct perf_event *
870perf_event_create_kernel_counter(struct perf_event_attr *attr,
871 int cpu,
872 struct task_struct *task,
873 perf_overflow_handler_t callback,
874 void *context);
875extern void perf_pmu_migrate_context(struct pmu *pmu,
876 int src_cpu, int dst_cpu);
877int perf_event_read_local(struct perf_event *event, u64 *value,
878 u64 *enabled, u64 *running);
879extern u64 perf_event_read_value(struct perf_event *event,
880 u64 *enabled, u64 *running);
881
882
883struct perf_sample_data {
884 /*
885 * Fields set by perf_sample_data_init(), group so as to
886 * minimize the cachelines touched.
887 */
888 u64 addr;
889 struct perf_raw_record *raw;
890 struct perf_branch_stack *br_stack;
891 u64 period;
892 u64 weight;
893 u64 txn;
894 union perf_mem_data_src data_src;
895
896 /*
897 * The other fields, optionally {set,used} by
898 * perf_{prepare,output}_sample().
899 */
900 u64 type;
901 u64 ip;
902 struct {
903 u32 pid;
904 u32 tid;
905 } tid_entry;
906 u64 time;
907 u64 id;
908 u64 stream_id;
909 struct {
910 u32 cpu;
911 u32 reserved;
912 } cpu_entry;
913 struct perf_callchain_entry *callchain;
914
915 /*
916 * regs_user may point to task_pt_regs or to regs_user_copy, depending
917 * on arch details.
918 */
919 struct perf_regs regs_user;
920 struct pt_regs regs_user_copy;
921
922 struct perf_regs regs_intr;
923 u64 stack_user_size;
924
925 u64 phys_addr;
926} ____cacheline_aligned;
927
928/* default value for data source */
929#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
930 PERF_MEM_S(LVL, NA) |\
931 PERF_MEM_S(SNOOP, NA) |\
932 PERF_MEM_S(LOCK, NA) |\
933 PERF_MEM_S(TLB, NA))
934
935static inline void perf_sample_data_init(struct perf_sample_data *data,
936 u64 addr, u64 period)
937{
938 /* remaining struct members initialized in perf_prepare_sample() */
939 data->addr = addr;
940 data->raw = NULL;
941 data->br_stack = NULL;
942 data->period = period;
943 data->weight = 0;
944 data->data_src.val = PERF_MEM_NA;
945 data->txn = 0;
946}
947
948extern void perf_output_sample(struct perf_output_handle *handle,
949 struct perf_event_header *header,
950 struct perf_sample_data *data,
951 struct perf_event *event);
952extern void perf_prepare_sample(struct perf_event_header *header,
953 struct perf_sample_data *data,
954 struct perf_event *event,
955 struct pt_regs *regs);
956
957extern int perf_event_overflow(struct perf_event *event,
958 struct perf_sample_data *data,
959 struct pt_regs *regs);
960
961extern void perf_event_output_forward(struct perf_event *event,
962 struct perf_sample_data *data,
963 struct pt_regs *regs);
964extern void perf_event_output_backward(struct perf_event *event,
965 struct perf_sample_data *data,
966 struct pt_regs *regs);
967extern void perf_event_output(struct perf_event *event,
968 struct perf_sample_data *data,
969 struct pt_regs *regs);
970
971static inline bool
972is_default_overflow_handler(struct perf_event *event)
973{
974 if (likely(event->overflow_handler == perf_event_output_forward))
975 return true;
976 if (unlikely(event->overflow_handler == perf_event_output_backward))
977 return true;
978 return false;
979}
980
981extern void
982perf_event_header__init_id(struct perf_event_header *header,
983 struct perf_sample_data *data,
984 struct perf_event *event);
985extern void
986perf_event__output_id_sample(struct perf_event *event,
987 struct perf_output_handle *handle,
988 struct perf_sample_data *sample);
989
990extern void
991perf_log_lost_samples(struct perf_event *event, u64 lost);
992
993static inline bool is_sampling_event(struct perf_event *event)
994{
995 return event->attr.sample_period != 0;
996}
997
998/*
999 * Return 1 for a software event, 0 for a hardware event
1000 */
1001static inline int is_software_event(struct perf_event *event)
1002{
1003 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1004}
1005
1006extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1007
1008extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1009extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1010
1011#ifndef perf_arch_fetch_caller_regs
1012static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1013#endif
1014
1015/*
1016 * Take a snapshot of the regs. Skip ip and frame pointer to
1017 * the nth caller. We only need a few of the regs:
1018 * - ip for PERF_SAMPLE_IP
1019 * - cs for user_mode() tests
1020 * - bp for callchains
1021 * - eflags, for future purposes, just in case
1022 */
1023static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1024{
1025 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1026}
1027
1028static __always_inline void
1029perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1030{
1031 if (static_key_false(&perf_swevent_enabled[event_id]))
1032 __perf_sw_event(event_id, nr, regs, addr);
1033}
1034
1035DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1036
1037/*
1038 * 'Special' version for the scheduler, it hard assumes no recursion,
1039 * which is guaranteed by us not actually scheduling inside other swevents
1040 * because those disable preemption.
1041 */
1042static __always_inline void
1043perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1044{
1045 if (static_key_false(&perf_swevent_enabled[event_id])) {
1046 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1047
1048 perf_fetch_caller_regs(regs);
1049 ___perf_sw_event(event_id, nr, regs, addr);
1050 }
1051}
1052
1053extern struct static_key_false perf_sched_events;
1054
1055static __always_inline bool
1056perf_sw_migrate_enabled(void)
1057{
1058 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1059 return true;
1060 return false;
1061}
1062
1063static inline void perf_event_task_migrate(struct task_struct *task)
1064{
1065 if (perf_sw_migrate_enabled())
1066 task->sched_migrated = 1;
1067}
1068
1069static inline void perf_event_task_sched_in(struct task_struct *prev,
1070 struct task_struct *task)
1071{
1072 if (static_branch_unlikely(&perf_sched_events))
1073 __perf_event_task_sched_in(prev, task);
1074
1075 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1076 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1077
1078 perf_fetch_caller_regs(regs);
1079 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1080 task->sched_migrated = 0;
1081 }
1082}
1083
1084static inline void perf_event_task_sched_out(struct task_struct *prev,
1085 struct task_struct *next)
1086{
1087 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1088
1089 if (static_branch_unlikely(&perf_sched_events))
1090 __perf_event_task_sched_out(prev, next);
1091}
1092
1093extern void perf_event_mmap(struct vm_area_struct *vma);
1094extern struct perf_guest_info_callbacks *perf_guest_cbs;
1095extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1096extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1097
1098extern void perf_event_exec(void);
1099extern void perf_event_comm(struct task_struct *tsk, bool exec);
1100extern void perf_event_namespaces(struct task_struct *tsk);
1101extern void perf_event_fork(struct task_struct *tsk);
1102
1103/* Callchains */
1104DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1105
1106extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1107extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1108extern struct perf_callchain_entry *
1109get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1110 u32 max_stack, bool crosstask, bool add_mark);
1111extern int get_callchain_buffers(int max_stack);
1112extern void put_callchain_buffers(void);
1113
1114extern int sysctl_perf_event_max_stack;
1115extern int sysctl_perf_event_max_contexts_per_stack;
1116
1117static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1118{
1119 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1120 struct perf_callchain_entry *entry = ctx->entry;
1121 entry->ip[entry->nr++] = ip;
1122 ++ctx->contexts;
1123 return 0;
1124 } else {
1125 ctx->contexts_maxed = true;
1126 return -1; /* no more room, stop walking the stack */
1127 }
1128}
1129
1130static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1131{
1132 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1133 struct perf_callchain_entry *entry = ctx->entry;
1134 entry->ip[entry->nr++] = ip;
1135 ++ctx->nr;
1136 return 0;
1137 } else {
1138 return -1; /* no more room, stop walking the stack */
1139 }
1140}
1141
1142extern int sysctl_perf_event_paranoid;
1143extern int sysctl_perf_event_mlock;
1144extern int sysctl_perf_event_sample_rate;
1145extern int sysctl_perf_cpu_time_max_percent;
1146
1147extern void perf_sample_event_took(u64 sample_len_ns);
1148
1149extern int perf_proc_update_handler(struct ctl_table *table, int write,
1150 void __user *buffer, size_t *lenp,
1151 loff_t *ppos);
1152extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1153 void __user *buffer, size_t *lenp,
1154 loff_t *ppos);
1155
1156int perf_event_max_stack_handler(struct ctl_table *table, int write,
1157 void __user *buffer, size_t *lenp, loff_t *ppos);
1158
1159static inline bool perf_paranoid_any(void)
1160{
1161 return sysctl_perf_event_paranoid > 2;
1162}
1163
1164static inline bool perf_paranoid_tracepoint_raw(void)
1165{
1166 return sysctl_perf_event_paranoid > -1;
1167}
1168
1169static inline bool perf_paranoid_cpu(void)
1170{
1171 return sysctl_perf_event_paranoid > 0;
1172}
1173
1174static inline bool perf_paranoid_kernel(void)
1175{
1176 return sysctl_perf_event_paranoid > 1;
1177}
1178
1179extern void perf_event_init(void);
1180extern void perf_tp_event(u16 event_type, u64 count, void *record,
1181 int entry_size, struct pt_regs *regs,
1182 struct hlist_head *head, int rctx,
1183 struct task_struct *task);
1184extern void perf_bp_event(struct perf_event *event, void *data);
1185
1186#ifndef perf_misc_flags
1187# define perf_misc_flags(regs) \
1188 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1189# define perf_instruction_pointer(regs) instruction_pointer(regs)
1190#endif
1191#ifndef perf_arch_bpf_user_pt_regs
1192# define perf_arch_bpf_user_pt_regs(regs) regs
1193#endif
1194
1195static inline bool has_branch_stack(struct perf_event *event)
1196{
1197 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1198}
1199
1200static inline bool needs_branch_stack(struct perf_event *event)
1201{
1202 return event->attr.branch_sample_type != 0;
1203}
1204
1205static inline bool has_aux(struct perf_event *event)
1206{
1207 return event->pmu->setup_aux;
1208}
1209
1210static inline bool is_write_backward(struct perf_event *event)
1211{
1212 return !!event->attr.write_backward;
1213}
1214
1215static inline bool has_addr_filter(struct perf_event *event)
1216{
1217 return event->pmu->nr_addr_filters;
1218}
1219
1220/*
1221 * An inherited event uses parent's filters
1222 */
1223static inline struct perf_addr_filters_head *
1224perf_event_addr_filters(struct perf_event *event)
1225{
1226 struct perf_addr_filters_head *ifh = &event->addr_filters;
1227
1228 if (event->parent)
1229 ifh = &event->parent->addr_filters;
1230
1231 return ifh;
1232}
1233
1234extern void perf_event_addr_filters_sync(struct perf_event *event);
1235
1236extern int perf_output_begin(struct perf_output_handle *handle,
1237 struct perf_event *event, unsigned int size);
1238extern int perf_output_begin_forward(struct perf_output_handle *handle,
1239 struct perf_event *event,
1240 unsigned int size);
1241extern int perf_output_begin_backward(struct perf_output_handle *handle,
1242 struct perf_event *event,
1243 unsigned int size);
1244
1245extern void perf_output_end(struct perf_output_handle *handle);
1246extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1247 const void *buf, unsigned int len);
1248extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1249 unsigned int len);
1250extern int perf_swevent_get_recursion_context(void);
1251extern void perf_swevent_put_recursion_context(int rctx);
1252extern u64 perf_swevent_set_period(struct perf_event *event);
1253extern void perf_event_enable(struct perf_event *event);
1254extern void perf_event_disable(struct perf_event *event);
1255extern void perf_event_disable_local(struct perf_event *event);
1256extern void perf_event_disable_inatomic(struct perf_event *event);
1257extern void perf_event_task_tick(void);
1258extern int perf_event_account_interrupt(struct perf_event *event);
1259#else /* !CONFIG_PERF_EVENTS: */
1260static inline void *
1261perf_aux_output_begin(struct perf_output_handle *handle,
1262 struct perf_event *event) { return NULL; }
1263static inline void
1264perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1265 { }
1266static inline int
1267perf_aux_output_skip(struct perf_output_handle *handle,
1268 unsigned long size) { return -EINVAL; }
1269static inline void *
1270perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1271static inline void
1272perf_event_task_migrate(struct task_struct *task) { }
1273static inline void
1274perf_event_task_sched_in(struct task_struct *prev,
1275 struct task_struct *task) { }
1276static inline void
1277perf_event_task_sched_out(struct task_struct *prev,
1278 struct task_struct *next) { }
1279static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1280static inline void perf_event_exit_task(struct task_struct *child) { }
1281static inline void perf_event_free_task(struct task_struct *task) { }
1282static inline void perf_event_delayed_put(struct task_struct *task) { }
1283static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1284static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1285{
1286 return ERR_PTR(-EINVAL);
1287}
1288static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1289 u64 *enabled, u64 *running)
1290{
1291 return -EINVAL;
1292}
1293static inline void perf_event_print_debug(void) { }
1294static inline int perf_event_task_disable(void) { return -EINVAL; }
1295static inline int perf_event_task_enable(void) { return -EINVAL; }
1296static inline int perf_event_refresh(struct perf_event *event, int refresh)
1297{
1298 return -EINVAL;
1299}
1300
1301static inline void
1302perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1303static inline void
1304perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1305static inline void
1306perf_bp_event(struct perf_event *event, void *data) { }
1307
1308static inline int perf_register_guest_info_callbacks
1309(struct perf_guest_info_callbacks *callbacks) { return 0; }
1310static inline int perf_unregister_guest_info_callbacks
1311(struct perf_guest_info_callbacks *callbacks) { return 0; }
1312
1313static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1314static inline void perf_event_exec(void) { }
1315static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1316static inline void perf_event_namespaces(struct task_struct *tsk) { }
1317static inline void perf_event_fork(struct task_struct *tsk) { }
1318static inline void perf_event_init(void) { }
1319static inline int perf_swevent_get_recursion_context(void) { return -1; }
1320static inline void perf_swevent_put_recursion_context(int rctx) { }
1321static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1322static inline void perf_event_enable(struct perf_event *event) { }
1323static inline void perf_event_disable(struct perf_event *event) { }
1324static inline int __perf_event_disable(void *info) { return -1; }
1325static inline void perf_event_task_tick(void) { }
1326static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1327#endif
1328
1329#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1330extern void perf_restore_debug_store(void);
1331#else
1332static inline void perf_restore_debug_store(void) { }
1333#endif
1334
1335static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1336{
1337 return frag->pad < sizeof(u64);
1338}
1339
1340#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1341
1342struct perf_pmu_events_attr {
1343 struct device_attribute attr;
1344 u64 id;
1345 const char *event_str;
1346};
1347
1348struct perf_pmu_events_ht_attr {
1349 struct device_attribute attr;
1350 u64 id;
1351 const char *event_str_ht;
1352 const char *event_str_noht;
1353};
1354
1355ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1356 char *page);
1357
1358#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1359static struct perf_pmu_events_attr _var = { \
1360 .attr = __ATTR(_name, 0444, _show, NULL), \
1361 .id = _id, \
1362};
1363
1364#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1365static struct perf_pmu_events_attr _var = { \
1366 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1367 .id = 0, \
1368 .event_str = _str, \
1369};
1370
1371#define PMU_FORMAT_ATTR(_name, _format) \
1372static ssize_t \
1373_name##_show(struct device *dev, \
1374 struct device_attribute *attr, \
1375 char *page) \
1376{ \
1377 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1378 return sprintf(page, _format "\n"); \
1379} \
1380 \
1381static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1382
1383/* Performance counter hotplug functions */
1384#ifdef CONFIG_PERF_EVENTS
1385int perf_event_init_cpu(unsigned int cpu);
1386int perf_event_exit_cpu(unsigned int cpu);
1387#else
1388#define perf_event_init_cpu NULL
1389#define perf_event_exit_cpu NULL
1390#endif
1391
1392#endif /* _LINUX_PERF_EVENT_H */