]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - kernel/auditsc.c
audit: enable filename recording via getname_kernel()
[mirror_ubuntu-artful-kernel.git] / kernel / auditsc.c
... / ...
CommitLineData
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/tty.h>
67#include <linux/binfmts.h>
68#include <linux/highmem.h>
69#include <linux/syscalls.h>
70#include <asm/syscall.h>
71#include <linux/capability.h>
72#include <linux/fs_struct.h>
73#include <linux/compat.h>
74#include <linux/ctype.h>
75#include <linux/string.h>
76#include <uapi/linux/limits.h>
77
78#include "audit.h"
79
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
85/* no execve audit message should be longer than this (userspace limits) */
86#define MAX_EXECVE_AUDIT_LEN 7500
87
88/* max length to print of cmdline/proctitle value during audit */
89#define MAX_PROCTITLE_AUDIT_LEN 128
90
91/* number of audit rules */
92int audit_n_rules;
93
94/* determines whether we collect data for signals sent */
95int audit_signals;
96
97struct audit_aux_data {
98 struct audit_aux_data *next;
99 int type;
100};
101
102#define AUDIT_AUX_IPCPERM 0
103
104/* Number of target pids per aux struct. */
105#define AUDIT_AUX_PIDS 16
106
107struct audit_aux_data_pids {
108 struct audit_aux_data d;
109 pid_t target_pid[AUDIT_AUX_PIDS];
110 kuid_t target_auid[AUDIT_AUX_PIDS];
111 kuid_t target_uid[AUDIT_AUX_PIDS];
112 unsigned int target_sessionid[AUDIT_AUX_PIDS];
113 u32 target_sid[AUDIT_AUX_PIDS];
114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
115 int pid_count;
116};
117
118struct audit_aux_data_bprm_fcaps {
119 struct audit_aux_data d;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 struct audit_cap_data old_pcap;
123 struct audit_cap_data new_pcap;
124};
125
126struct audit_tree_refs {
127 struct audit_tree_refs *next;
128 struct audit_chunk *c[31];
129};
130
131static int audit_match_perm(struct audit_context *ctx, int mask)
132{
133 unsigned n;
134 if (unlikely(!ctx))
135 return 0;
136 n = ctx->major;
137
138 switch (audit_classify_syscall(ctx->arch, n)) {
139 case 0: /* native */
140 if ((mask & AUDIT_PERM_WRITE) &&
141 audit_match_class(AUDIT_CLASS_WRITE, n))
142 return 1;
143 if ((mask & AUDIT_PERM_READ) &&
144 audit_match_class(AUDIT_CLASS_READ, n))
145 return 1;
146 if ((mask & AUDIT_PERM_ATTR) &&
147 audit_match_class(AUDIT_CLASS_CHATTR, n))
148 return 1;
149 return 0;
150 case 1: /* 32bit on biarch */
151 if ((mask & AUDIT_PERM_WRITE) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 return 1;
154 if ((mask & AUDIT_PERM_READ) &&
155 audit_match_class(AUDIT_CLASS_READ_32, n))
156 return 1;
157 if ((mask & AUDIT_PERM_ATTR) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 return 1;
160 return 0;
161 case 2: /* open */
162 return mask & ACC_MODE(ctx->argv[1]);
163 case 3: /* openat */
164 return mask & ACC_MODE(ctx->argv[2]);
165 case 4: /* socketcall */
166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 case 5: /* execve */
168 return mask & AUDIT_PERM_EXEC;
169 default:
170 return 0;
171 }
172}
173
174static int audit_match_filetype(struct audit_context *ctx, int val)
175{
176 struct audit_names *n;
177 umode_t mode = (umode_t)val;
178
179 if (unlikely(!ctx))
180 return 0;
181
182 list_for_each_entry(n, &ctx->names_list, list) {
183 if ((n->ino != -1) &&
184 ((n->mode & S_IFMT) == mode))
185 return 1;
186 }
187
188 return 0;
189}
190
191/*
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
199 */
200
201#ifdef CONFIG_AUDIT_TREE
202static void audit_set_auditable(struct audit_context *ctx)
203{
204 if (!ctx->prio) {
205 ctx->prio = 1;
206 ctx->current_state = AUDIT_RECORD_CONTEXT;
207 }
208}
209
210static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211{
212 struct audit_tree_refs *p = ctx->trees;
213 int left = ctx->tree_count;
214 if (likely(left)) {
215 p->c[--left] = chunk;
216 ctx->tree_count = left;
217 return 1;
218 }
219 if (!p)
220 return 0;
221 p = p->next;
222 if (p) {
223 p->c[30] = chunk;
224 ctx->trees = p;
225 ctx->tree_count = 30;
226 return 1;
227 }
228 return 0;
229}
230
231static int grow_tree_refs(struct audit_context *ctx)
232{
233 struct audit_tree_refs *p = ctx->trees;
234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 if (!ctx->trees) {
236 ctx->trees = p;
237 return 0;
238 }
239 if (p)
240 p->next = ctx->trees;
241 else
242 ctx->first_trees = ctx->trees;
243 ctx->tree_count = 31;
244 return 1;
245}
246#endif
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
251#ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs *q;
253 int n;
254 if (!p) {
255 /* we started with empty chain */
256 p = ctx->first_trees;
257 count = 31;
258 /* if the very first allocation has failed, nothing to do */
259 if (!p)
260 return;
261 }
262 n = count;
263 for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 while (n--) {
265 audit_put_chunk(q->c[n]);
266 q->c[n] = NULL;
267 }
268 }
269 while (n-- > ctx->tree_count) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 ctx->trees = p;
274 ctx->tree_count = count;
275#endif
276}
277
278static void free_tree_refs(struct audit_context *ctx)
279{
280 struct audit_tree_refs *p, *q;
281 for (p = ctx->first_trees; p; p = q) {
282 q = p->next;
283 kfree(p);
284 }
285}
286
287static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288{
289#ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs *p;
291 int n;
292 if (!tree)
293 return 0;
294 /* full ones */
295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 for (n = 0; n < 31; n++)
297 if (audit_tree_match(p->c[n], tree))
298 return 1;
299 }
300 /* partial */
301 if (p) {
302 for (n = ctx->tree_count; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
305 }
306#endif
307 return 0;
308}
309
310static int audit_compare_uid(kuid_t uid,
311 struct audit_names *name,
312 struct audit_field *f,
313 struct audit_context *ctx)
314{
315 struct audit_names *n;
316 int rc;
317
318 if (name) {
319 rc = audit_uid_comparator(uid, f->op, name->uid);
320 if (rc)
321 return rc;
322 }
323
324 if (ctx) {
325 list_for_each_entry(n, &ctx->names_list, list) {
326 rc = audit_uid_comparator(uid, f->op, n->uid);
327 if (rc)
328 return rc;
329 }
330 }
331 return 0;
332}
333
334static int audit_compare_gid(kgid_t gid,
335 struct audit_names *name,
336 struct audit_field *f,
337 struct audit_context *ctx)
338{
339 struct audit_names *n;
340 int rc;
341
342 if (name) {
343 rc = audit_gid_comparator(gid, f->op, name->gid);
344 if (rc)
345 return rc;
346 }
347
348 if (ctx) {
349 list_for_each_entry(n, &ctx->names_list, list) {
350 rc = audit_gid_comparator(gid, f->op, n->gid);
351 if (rc)
352 return rc;
353 }
354 }
355 return 0;
356}
357
358static int audit_field_compare(struct task_struct *tsk,
359 const struct cred *cred,
360 struct audit_field *f,
361 struct audit_context *ctx,
362 struct audit_names *name)
363{
364 switch (f->val) {
365 /* process to file object comparisons */
366 case AUDIT_COMPARE_UID_TO_OBJ_UID:
367 return audit_compare_uid(cred->uid, name, f, ctx);
368 case AUDIT_COMPARE_GID_TO_OBJ_GID:
369 return audit_compare_gid(cred->gid, name, f, ctx);
370 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371 return audit_compare_uid(cred->euid, name, f, ctx);
372 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373 return audit_compare_gid(cred->egid, name, f, ctx);
374 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375 return audit_compare_uid(tsk->loginuid, name, f, ctx);
376 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->suid, name, f, ctx);
378 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->sgid, name, f, ctx);
380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381 return audit_compare_uid(cred->fsuid, name, f, ctx);
382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383 return audit_compare_gid(cred->fsgid, name, f, ctx);
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID:
386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387 case AUDIT_COMPARE_UID_TO_EUID:
388 return audit_uid_comparator(cred->uid, f->op, cred->euid);
389 case AUDIT_COMPARE_UID_TO_SUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->suid);
391 case AUDIT_COMPARE_UID_TO_FSUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID:
395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396 case AUDIT_COMPARE_AUID_TO_SUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398 case AUDIT_COMPARE_AUID_TO_FSUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
430/* Determine if any context name data matches a rule's watch data */
431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444{
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448
449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450
451 for (i = 0; i < rule->field_count; i++) {
452 struct audit_field *f = &rule->fields[i];
453 struct audit_names *n;
454 int result = 0;
455 pid_t pid;
456
457 switch (f->type) {
458 case AUDIT_PID:
459 pid = task_pid_nr(tsk);
460 result = audit_comparator(pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = task_ppid_nr(tsk);
466 result = audit_comparator(ctx->ppid, f->op, f->val);
467 }
468 break;
469 case AUDIT_UID:
470 result = audit_uid_comparator(cred->uid, f->op, f->uid);
471 break;
472 case AUDIT_EUID:
473 result = audit_uid_comparator(cred->euid, f->op, f->uid);
474 break;
475 case AUDIT_SUID:
476 result = audit_uid_comparator(cred->suid, f->op, f->uid);
477 break;
478 case AUDIT_FSUID:
479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480 break;
481 case AUDIT_GID:
482 result = audit_gid_comparator(cred->gid, f->op, f->gid);
483 if (f->op == Audit_equal) {
484 if (!result)
485 result = in_group_p(f->gid);
486 } else if (f->op == Audit_not_equal) {
487 if (result)
488 result = !in_group_p(f->gid);
489 }
490 break;
491 case AUDIT_EGID:
492 result = audit_gid_comparator(cred->egid, f->op, f->gid);
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_egroup_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_egroup_p(f->gid);
499 }
500 break;
501 case AUDIT_SGID:
502 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503 break;
504 case AUDIT_FSGID:
505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506 break;
507 case AUDIT_PERS:
508 result = audit_comparator(tsk->personality, f->op, f->val);
509 break;
510 case AUDIT_ARCH:
511 if (ctx)
512 result = audit_comparator(ctx->arch, f->op, f->val);
513 break;
514
515 case AUDIT_EXIT:
516 if (ctx && ctx->return_valid)
517 result = audit_comparator(ctx->return_code, f->op, f->val);
518 break;
519 case AUDIT_SUCCESS:
520 if (ctx && ctx->return_valid) {
521 if (f->val)
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
523 else
524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
525 }
526 break;
527 case AUDIT_DEVMAJOR:
528 if (name) {
529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 ++result;
532 } else if (ctx) {
533 list_for_each_entry(n, &ctx->names_list, list) {
534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
536 ++result;
537 break;
538 }
539 }
540 }
541 break;
542 case AUDIT_DEVMINOR:
543 if (name) {
544 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 audit_comparator(MINOR(name->rdev), f->op, f->val))
546 ++result;
547 } else if (ctx) {
548 list_for_each_entry(n, &ctx->names_list, list) {
549 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
551 ++result;
552 break;
553 }
554 }
555 }
556 break;
557 case AUDIT_INODE:
558 if (name)
559 result = audit_comparator(name->ino, f->op, f->val);
560 else if (ctx) {
561 list_for_each_entry(n, &ctx->names_list, list) {
562 if (audit_comparator(n->ino, f->op, f->val)) {
563 ++result;
564 break;
565 }
566 }
567 }
568 break;
569 case AUDIT_OBJ_UID:
570 if (name) {
571 result = audit_uid_comparator(name->uid, f->op, f->uid);
572 } else if (ctx) {
573 list_for_each_entry(n, &ctx->names_list, list) {
574 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_OBJ_GID:
582 if (name) {
583 result = audit_gid_comparator(name->gid, f->op, f->gid);
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_WATCH:
594 if (name)
595 result = audit_watch_compare(rule->watch, name->ino, name->dev);
596 break;
597 case AUDIT_DIR:
598 if (ctx)
599 result = match_tree_refs(ctx, rule->tree);
600 break;
601 case AUDIT_LOGINUID:
602 result = 0;
603 if (ctx)
604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
605 break;
606 case AUDIT_LOGINUID_SET:
607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
608 break;
609 case AUDIT_SUBJ_USER:
610 case AUDIT_SUBJ_ROLE:
611 case AUDIT_SUBJ_TYPE:
612 case AUDIT_SUBJ_SEN:
613 case AUDIT_SUBJ_CLR:
614 /* NOTE: this may return negative values indicating
615 a temporary error. We simply treat this as a
616 match for now to avoid losing information that
617 may be wanted. An error message will also be
618 logged upon error */
619 if (f->lsm_rule) {
620 if (need_sid) {
621 security_task_getsecid(tsk, &sid);
622 need_sid = 0;
623 }
624 result = security_audit_rule_match(sid, f->type,
625 f->op,
626 f->lsm_rule,
627 ctx);
628 }
629 break;
630 case AUDIT_OBJ_USER:
631 case AUDIT_OBJ_ROLE:
632 case AUDIT_OBJ_TYPE:
633 case AUDIT_OBJ_LEV_LOW:
634 case AUDIT_OBJ_LEV_HIGH:
635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636 also applies here */
637 if (f->lsm_rule) {
638 /* Find files that match */
639 if (name) {
640 result = security_audit_rule_match(
641 name->osid, f->type, f->op,
642 f->lsm_rule, ctx);
643 } else if (ctx) {
644 list_for_each_entry(n, &ctx->names_list, list) {
645 if (security_audit_rule_match(n->osid, f->type,
646 f->op, f->lsm_rule,
647 ctx)) {
648 ++result;
649 break;
650 }
651 }
652 }
653 /* Find ipc objects that match */
654 if (!ctx || ctx->type != AUDIT_IPC)
655 break;
656 if (security_audit_rule_match(ctx->ipc.osid,
657 f->type, f->op,
658 f->lsm_rule, ctx))
659 ++result;
660 }
661 break;
662 case AUDIT_ARG0:
663 case AUDIT_ARG1:
664 case AUDIT_ARG2:
665 case AUDIT_ARG3:
666 if (ctx)
667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
668 break;
669 case AUDIT_FILTERKEY:
670 /* ignore this field for filtering */
671 result = 1;
672 break;
673 case AUDIT_PERM:
674 result = audit_match_perm(ctx, f->val);
675 break;
676 case AUDIT_FILETYPE:
677 result = audit_match_filetype(ctx, f->val);
678 break;
679 case AUDIT_FIELD_COMPARE:
680 result = audit_field_compare(tsk, cred, f, ctx, name);
681 break;
682 }
683 if (!result)
684 return 0;
685 }
686
687 if (ctx) {
688 if (rule->prio <= ctx->prio)
689 return 0;
690 if (rule->filterkey) {
691 kfree(ctx->filterkey);
692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
693 }
694 ctx->prio = rule->prio;
695 }
696 switch (rule->action) {
697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
699 }
700 return 1;
701}
702
703/* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task. Since we only have the task
705 * structure at this point, we can only check uid and gid.
706 */
707static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
708{
709 struct audit_entry *e;
710 enum audit_state state;
711
712 rcu_read_lock();
713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
715 &state, true)) {
716 if (state == AUDIT_RECORD_CONTEXT)
717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
718 rcu_read_unlock();
719 return state;
720 }
721 }
722 rcu_read_unlock();
723 return AUDIT_BUILD_CONTEXT;
724}
725
726static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
727{
728 int word, bit;
729
730 if (val > 0xffffffff)
731 return false;
732
733 word = AUDIT_WORD(val);
734 if (word >= AUDIT_BITMASK_SIZE)
735 return false;
736
737 bit = AUDIT_BIT(val);
738
739 return rule->mask[word] & bit;
740}
741
742/* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
744 * also not high enough that we already know we have to write an audit
745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
746 */
747static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748 struct audit_context *ctx,
749 struct list_head *list)
750{
751 struct audit_entry *e;
752 enum audit_state state;
753
754 if (audit_pid && tsk->tgid == audit_pid)
755 return AUDIT_DISABLED;
756
757 rcu_read_lock();
758 if (!list_empty(list)) {
759 list_for_each_entry_rcu(e, list, list) {
760 if (audit_in_mask(&e->rule, ctx->major) &&
761 audit_filter_rules(tsk, &e->rule, ctx, NULL,
762 &state, false)) {
763 rcu_read_unlock();
764 ctx->current_state = state;
765 return state;
766 }
767 }
768 }
769 rcu_read_unlock();
770 return AUDIT_BUILD_CONTEXT;
771}
772
773/*
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
776 */
777static int audit_filter_inode_name(struct task_struct *tsk,
778 struct audit_names *n,
779 struct audit_context *ctx) {
780 int h = audit_hash_ino((u32)n->ino);
781 struct list_head *list = &audit_inode_hash[h];
782 struct audit_entry *e;
783 enum audit_state state;
784
785 if (list_empty(list))
786 return 0;
787
788 list_for_each_entry_rcu(e, list, list) {
789 if (audit_in_mask(&e->rule, ctx->major) &&
790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791 ctx->current_state = state;
792 return 1;
793 }
794 }
795
796 return 0;
797}
798
799/* At syscall exit time, this filter is called if any audit_names have been
800 * collected during syscall processing. We only check rules in sublists at hash
801 * buckets applicable to the inode numbers in audit_names.
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
803 */
804void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
805{
806 struct audit_names *n;
807
808 if (audit_pid && tsk->tgid == audit_pid)
809 return;
810
811 rcu_read_lock();
812
813 list_for_each_entry(n, &ctx->names_list, list) {
814 if (audit_filter_inode_name(tsk, n, ctx))
815 break;
816 }
817 rcu_read_unlock();
818}
819
820/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821static inline struct audit_context *audit_take_context(struct task_struct *tsk,
822 int return_valid,
823 long return_code)
824{
825 struct audit_context *context = tsk->audit_context;
826
827 if (!context)
828 return NULL;
829 context->return_valid = return_valid;
830
831 /*
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
834 * signal handlers
835 *
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839 *
840 * but is faster than a bunch of ||
841 */
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
846 else
847 context->return_code = return_code;
848
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
852 }
853
854 tsk->audit_context = NULL;
855 return context;
856}
857
858static inline void audit_proctitle_free(struct audit_context *context)
859{
860 kfree(context->proctitle.value);
861 context->proctitle.value = NULL;
862 context->proctitle.len = 0;
863}
864
865static inline void audit_free_names(struct audit_context *context)
866{
867 struct audit_names *n, *next;
868
869#if AUDIT_DEBUG == 2
870 if (context->put_count + context->ino_count != context->name_count) {
871 int i = 0;
872
873 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
874 " name_count=%d put_count=%d ino_count=%d"
875 " [NOT freeing]\n", __FILE__, __LINE__,
876 context->serial, context->major, context->in_syscall,
877 context->name_count, context->put_count,
878 context->ino_count);
879 list_for_each_entry(n, &context->names_list, list) {
880 pr_err("names[%d] = %p = %s\n", i++, n->name,
881 n->name->name ?: "(null)");
882 }
883 dump_stack();
884 return;
885 }
886#endif
887#if AUDIT_DEBUG
888 context->put_count = 0;
889 context->ino_count = 0;
890#endif
891
892 list_for_each_entry_safe(n, next, &context->names_list, list) {
893 list_del(&n->list);
894 if (n->name && n->name_put)
895 final_putname(n->name);
896 if (n->should_free)
897 kfree(n);
898 }
899 context->name_count = 0;
900 path_put(&context->pwd);
901 context->pwd.dentry = NULL;
902 context->pwd.mnt = NULL;
903}
904
905static inline void audit_free_aux(struct audit_context *context)
906{
907 struct audit_aux_data *aux;
908
909 while ((aux = context->aux)) {
910 context->aux = aux->next;
911 kfree(aux);
912 }
913 while ((aux = context->aux_pids)) {
914 context->aux_pids = aux->next;
915 kfree(aux);
916 }
917}
918
919static inline struct audit_context *audit_alloc_context(enum audit_state state)
920{
921 struct audit_context *context;
922
923 context = kzalloc(sizeof(*context), GFP_KERNEL);
924 if (!context)
925 return NULL;
926 context->state = state;
927 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
928 INIT_LIST_HEAD(&context->killed_trees);
929 INIT_LIST_HEAD(&context->names_list);
930 return context;
931}
932
933/**
934 * audit_alloc - allocate an audit context block for a task
935 * @tsk: task
936 *
937 * Filter on the task information and allocate a per-task audit context
938 * if necessary. Doing so turns on system call auditing for the
939 * specified task. This is called from copy_process, so no lock is
940 * needed.
941 */
942int audit_alloc(struct task_struct *tsk)
943{
944 struct audit_context *context;
945 enum audit_state state;
946 char *key = NULL;
947
948 if (likely(!audit_ever_enabled))
949 return 0; /* Return if not auditing. */
950
951 state = audit_filter_task(tsk, &key);
952 if (state == AUDIT_DISABLED) {
953 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
954 return 0;
955 }
956
957 if (!(context = audit_alloc_context(state))) {
958 kfree(key);
959 audit_log_lost("out of memory in audit_alloc");
960 return -ENOMEM;
961 }
962 context->filterkey = key;
963
964 tsk->audit_context = context;
965 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
966 return 0;
967}
968
969static inline void audit_free_context(struct audit_context *context)
970{
971 audit_free_names(context);
972 unroll_tree_refs(context, NULL, 0);
973 free_tree_refs(context);
974 audit_free_aux(context);
975 kfree(context->filterkey);
976 kfree(context->sockaddr);
977 audit_proctitle_free(context);
978 kfree(context);
979}
980
981static int audit_log_pid_context(struct audit_context *context, pid_t pid,
982 kuid_t auid, kuid_t uid, unsigned int sessionid,
983 u32 sid, char *comm)
984{
985 struct audit_buffer *ab;
986 char *ctx = NULL;
987 u32 len;
988 int rc = 0;
989
990 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
991 if (!ab)
992 return rc;
993
994 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
995 from_kuid(&init_user_ns, auid),
996 from_kuid(&init_user_ns, uid), sessionid);
997 if (sid) {
998 if (security_secid_to_secctx(sid, &ctx, &len)) {
999 audit_log_format(ab, " obj=(none)");
1000 rc = 1;
1001 } else {
1002 audit_log_format(ab, " obj=%s", ctx);
1003 security_release_secctx(ctx, len);
1004 }
1005 }
1006 audit_log_format(ab, " ocomm=");
1007 audit_log_untrustedstring(ab, comm);
1008 audit_log_end(ab);
1009
1010 return rc;
1011}
1012
1013/*
1014 * to_send and len_sent accounting are very loose estimates. We aren't
1015 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1016 * within about 500 bytes (next page boundary)
1017 *
1018 * why snprintf? an int is up to 12 digits long. if we just assumed when
1019 * logging that a[%d]= was going to be 16 characters long we would be wasting
1020 * space in every audit message. In one 7500 byte message we can log up to
1021 * about 1000 min size arguments. That comes down to about 50% waste of space
1022 * if we didn't do the snprintf to find out how long arg_num_len was.
1023 */
1024static int audit_log_single_execve_arg(struct audit_context *context,
1025 struct audit_buffer **ab,
1026 int arg_num,
1027 size_t *len_sent,
1028 const char __user *p,
1029 char *buf)
1030{
1031 char arg_num_len_buf[12];
1032 const char __user *tmp_p = p;
1033 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1034 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1035 size_t len, len_left, to_send;
1036 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1037 unsigned int i, has_cntl = 0, too_long = 0;
1038 int ret;
1039
1040 /* strnlen_user includes the null we don't want to send */
1041 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1042
1043 /*
1044 * We just created this mm, if we can't find the strings
1045 * we just copied into it something is _very_ wrong. Similar
1046 * for strings that are too long, we should not have created
1047 * any.
1048 */
1049 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1050 WARN_ON(1);
1051 send_sig(SIGKILL, current, 0);
1052 return -1;
1053 }
1054
1055 /* walk the whole argument looking for non-ascii chars */
1056 do {
1057 if (len_left > MAX_EXECVE_AUDIT_LEN)
1058 to_send = MAX_EXECVE_AUDIT_LEN;
1059 else
1060 to_send = len_left;
1061 ret = copy_from_user(buf, tmp_p, to_send);
1062 /*
1063 * There is no reason for this copy to be short. We just
1064 * copied them here, and the mm hasn't been exposed to user-
1065 * space yet.
1066 */
1067 if (ret) {
1068 WARN_ON(1);
1069 send_sig(SIGKILL, current, 0);
1070 return -1;
1071 }
1072 buf[to_send] = '\0';
1073 has_cntl = audit_string_contains_control(buf, to_send);
1074 if (has_cntl) {
1075 /*
1076 * hex messages get logged as 2 bytes, so we can only
1077 * send half as much in each message
1078 */
1079 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1080 break;
1081 }
1082 len_left -= to_send;
1083 tmp_p += to_send;
1084 } while (len_left > 0);
1085
1086 len_left = len;
1087
1088 if (len > max_execve_audit_len)
1089 too_long = 1;
1090
1091 /* rewalk the argument actually logging the message */
1092 for (i = 0; len_left > 0; i++) {
1093 int room_left;
1094
1095 if (len_left > max_execve_audit_len)
1096 to_send = max_execve_audit_len;
1097 else
1098 to_send = len_left;
1099
1100 /* do we have space left to send this argument in this ab? */
1101 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1102 if (has_cntl)
1103 room_left -= (to_send * 2);
1104 else
1105 room_left -= to_send;
1106 if (room_left < 0) {
1107 *len_sent = 0;
1108 audit_log_end(*ab);
1109 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1110 if (!*ab)
1111 return 0;
1112 }
1113
1114 /*
1115 * first record needs to say how long the original string was
1116 * so we can be sure nothing was lost.
1117 */
1118 if ((i == 0) && (too_long))
1119 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1120 has_cntl ? 2*len : len);
1121
1122 /*
1123 * normally arguments are small enough to fit and we already
1124 * filled buf above when we checked for control characters
1125 * so don't bother with another copy_from_user
1126 */
1127 if (len >= max_execve_audit_len)
1128 ret = copy_from_user(buf, p, to_send);
1129 else
1130 ret = 0;
1131 if (ret) {
1132 WARN_ON(1);
1133 send_sig(SIGKILL, current, 0);
1134 return -1;
1135 }
1136 buf[to_send] = '\0';
1137
1138 /* actually log it */
1139 audit_log_format(*ab, " a%d", arg_num);
1140 if (too_long)
1141 audit_log_format(*ab, "[%d]", i);
1142 audit_log_format(*ab, "=");
1143 if (has_cntl)
1144 audit_log_n_hex(*ab, buf, to_send);
1145 else
1146 audit_log_string(*ab, buf);
1147
1148 p += to_send;
1149 len_left -= to_send;
1150 *len_sent += arg_num_len;
1151 if (has_cntl)
1152 *len_sent += to_send * 2;
1153 else
1154 *len_sent += to_send;
1155 }
1156 /* include the null we didn't log */
1157 return len + 1;
1158}
1159
1160static void audit_log_execve_info(struct audit_context *context,
1161 struct audit_buffer **ab)
1162{
1163 int i, len;
1164 size_t len_sent = 0;
1165 const char __user *p;
1166 char *buf;
1167
1168 p = (const char __user *)current->mm->arg_start;
1169
1170 audit_log_format(*ab, "argc=%d", context->execve.argc);
1171
1172 /*
1173 * we need some kernel buffer to hold the userspace args. Just
1174 * allocate one big one rather than allocating one of the right size
1175 * for every single argument inside audit_log_single_execve_arg()
1176 * should be <8k allocation so should be pretty safe.
1177 */
1178 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1179 if (!buf) {
1180 audit_panic("out of memory for argv string");
1181 return;
1182 }
1183
1184 for (i = 0; i < context->execve.argc; i++) {
1185 len = audit_log_single_execve_arg(context, ab, i,
1186 &len_sent, p, buf);
1187 if (len <= 0)
1188 break;
1189 p += len;
1190 }
1191 kfree(buf);
1192}
1193
1194static void show_special(struct audit_context *context, int *call_panic)
1195{
1196 struct audit_buffer *ab;
1197 int i;
1198
1199 ab = audit_log_start(context, GFP_KERNEL, context->type);
1200 if (!ab)
1201 return;
1202
1203 switch (context->type) {
1204 case AUDIT_SOCKETCALL: {
1205 int nargs = context->socketcall.nargs;
1206 audit_log_format(ab, "nargs=%d", nargs);
1207 for (i = 0; i < nargs; i++)
1208 audit_log_format(ab, " a%d=%lx", i,
1209 context->socketcall.args[i]);
1210 break; }
1211 case AUDIT_IPC: {
1212 u32 osid = context->ipc.osid;
1213
1214 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1215 from_kuid(&init_user_ns, context->ipc.uid),
1216 from_kgid(&init_user_ns, context->ipc.gid),
1217 context->ipc.mode);
1218 if (osid) {
1219 char *ctx = NULL;
1220 u32 len;
1221 if (security_secid_to_secctx(osid, &ctx, &len)) {
1222 audit_log_format(ab, " osid=%u", osid);
1223 *call_panic = 1;
1224 } else {
1225 audit_log_format(ab, " obj=%s", ctx);
1226 security_release_secctx(ctx, len);
1227 }
1228 }
1229 if (context->ipc.has_perm) {
1230 audit_log_end(ab);
1231 ab = audit_log_start(context, GFP_KERNEL,
1232 AUDIT_IPC_SET_PERM);
1233 if (unlikely(!ab))
1234 return;
1235 audit_log_format(ab,
1236 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1237 context->ipc.qbytes,
1238 context->ipc.perm_uid,
1239 context->ipc.perm_gid,
1240 context->ipc.perm_mode);
1241 }
1242 break; }
1243 case AUDIT_MQ_OPEN: {
1244 audit_log_format(ab,
1245 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1246 "mq_msgsize=%ld mq_curmsgs=%ld",
1247 context->mq_open.oflag, context->mq_open.mode,
1248 context->mq_open.attr.mq_flags,
1249 context->mq_open.attr.mq_maxmsg,
1250 context->mq_open.attr.mq_msgsize,
1251 context->mq_open.attr.mq_curmsgs);
1252 break; }
1253 case AUDIT_MQ_SENDRECV: {
1254 audit_log_format(ab,
1255 "mqdes=%d msg_len=%zd msg_prio=%u "
1256 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1257 context->mq_sendrecv.mqdes,
1258 context->mq_sendrecv.msg_len,
1259 context->mq_sendrecv.msg_prio,
1260 context->mq_sendrecv.abs_timeout.tv_sec,
1261 context->mq_sendrecv.abs_timeout.tv_nsec);
1262 break; }
1263 case AUDIT_MQ_NOTIFY: {
1264 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1265 context->mq_notify.mqdes,
1266 context->mq_notify.sigev_signo);
1267 break; }
1268 case AUDIT_MQ_GETSETATTR: {
1269 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1270 audit_log_format(ab,
1271 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1272 "mq_curmsgs=%ld ",
1273 context->mq_getsetattr.mqdes,
1274 attr->mq_flags, attr->mq_maxmsg,
1275 attr->mq_msgsize, attr->mq_curmsgs);
1276 break; }
1277 case AUDIT_CAPSET: {
1278 audit_log_format(ab, "pid=%d", context->capset.pid);
1279 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1280 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1281 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1282 break; }
1283 case AUDIT_MMAP: {
1284 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1285 context->mmap.flags);
1286 break; }
1287 case AUDIT_EXECVE: {
1288 audit_log_execve_info(context, &ab);
1289 break; }
1290 }
1291 audit_log_end(ab);
1292}
1293
1294static inline int audit_proctitle_rtrim(char *proctitle, int len)
1295{
1296 char *end = proctitle + len - 1;
1297 while (end > proctitle && !isprint(*end))
1298 end--;
1299
1300 /* catch the case where proctitle is only 1 non-print character */
1301 len = end - proctitle + 1;
1302 len -= isprint(proctitle[len-1]) == 0;
1303 return len;
1304}
1305
1306static void audit_log_proctitle(struct task_struct *tsk,
1307 struct audit_context *context)
1308{
1309 int res;
1310 char *buf;
1311 char *msg = "(null)";
1312 int len = strlen(msg);
1313 struct audit_buffer *ab;
1314
1315 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1316 if (!ab)
1317 return; /* audit_panic or being filtered */
1318
1319 audit_log_format(ab, "proctitle=");
1320
1321 /* Not cached */
1322 if (!context->proctitle.value) {
1323 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1324 if (!buf)
1325 goto out;
1326 /* Historically called this from procfs naming */
1327 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1328 if (res == 0) {
1329 kfree(buf);
1330 goto out;
1331 }
1332 res = audit_proctitle_rtrim(buf, res);
1333 if (res == 0) {
1334 kfree(buf);
1335 goto out;
1336 }
1337 context->proctitle.value = buf;
1338 context->proctitle.len = res;
1339 }
1340 msg = context->proctitle.value;
1341 len = context->proctitle.len;
1342out:
1343 audit_log_n_untrustedstring(ab, msg, len);
1344 audit_log_end(ab);
1345}
1346
1347static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1348{
1349 int i, call_panic = 0;
1350 struct audit_buffer *ab;
1351 struct audit_aux_data *aux;
1352 struct audit_names *n;
1353
1354 /* tsk == current */
1355 context->personality = tsk->personality;
1356
1357 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1358 if (!ab)
1359 return; /* audit_panic has been called */
1360 audit_log_format(ab, "arch=%x syscall=%d",
1361 context->arch, context->major);
1362 if (context->personality != PER_LINUX)
1363 audit_log_format(ab, " per=%lx", context->personality);
1364 if (context->return_valid)
1365 audit_log_format(ab, " success=%s exit=%ld",
1366 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1367 context->return_code);
1368
1369 audit_log_format(ab,
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1371 context->argv[0],
1372 context->argv[1],
1373 context->argv[2],
1374 context->argv[3],
1375 context->name_count);
1376
1377 audit_log_task_info(ab, tsk);
1378 audit_log_key(ab, context->filterkey);
1379 audit_log_end(ab);
1380
1381 for (aux = context->aux; aux; aux = aux->next) {
1382
1383 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1384 if (!ab)
1385 continue; /* audit_panic has been called */
1386
1387 switch (aux->type) {
1388
1389 case AUDIT_BPRM_FCAPS: {
1390 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1391 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1392 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1393 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1394 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1395 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1396 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1397 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1398 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1399 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1400 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1401 break; }
1402
1403 }
1404 audit_log_end(ab);
1405 }
1406
1407 if (context->type)
1408 show_special(context, &call_panic);
1409
1410 if (context->fds[0] >= 0) {
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1412 if (ab) {
1413 audit_log_format(ab, "fd0=%d fd1=%d",
1414 context->fds[0], context->fds[1]);
1415 audit_log_end(ab);
1416 }
1417 }
1418
1419 if (context->sockaddr_len) {
1420 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1421 if (ab) {
1422 audit_log_format(ab, "saddr=");
1423 audit_log_n_hex(ab, (void *)context->sockaddr,
1424 context->sockaddr_len);
1425 audit_log_end(ab);
1426 }
1427 }
1428
1429 for (aux = context->aux_pids; aux; aux = aux->next) {
1430 struct audit_aux_data_pids *axs = (void *)aux;
1431
1432 for (i = 0; i < axs->pid_count; i++)
1433 if (audit_log_pid_context(context, axs->target_pid[i],
1434 axs->target_auid[i],
1435 axs->target_uid[i],
1436 axs->target_sessionid[i],
1437 axs->target_sid[i],
1438 axs->target_comm[i]))
1439 call_panic = 1;
1440 }
1441
1442 if (context->target_pid &&
1443 audit_log_pid_context(context, context->target_pid,
1444 context->target_auid, context->target_uid,
1445 context->target_sessionid,
1446 context->target_sid, context->target_comm))
1447 call_panic = 1;
1448
1449 if (context->pwd.dentry && context->pwd.mnt) {
1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1451 if (ab) {
1452 audit_log_d_path(ab, " cwd=", &context->pwd);
1453 audit_log_end(ab);
1454 }
1455 }
1456
1457 i = 0;
1458 list_for_each_entry(n, &context->names_list, list) {
1459 if (n->hidden)
1460 continue;
1461 audit_log_name(context, n, NULL, i++, &call_panic);
1462 }
1463
1464 audit_log_proctitle(tsk, context);
1465
1466 /* Send end of event record to help user space know we are finished */
1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1468 if (ab)
1469 audit_log_end(ab);
1470 if (call_panic)
1471 audit_panic("error converting sid to string");
1472}
1473
1474/**
1475 * audit_free - free a per-task audit context
1476 * @tsk: task whose audit context block to free
1477 *
1478 * Called from copy_process and do_exit
1479 */
1480void __audit_free(struct task_struct *tsk)
1481{
1482 struct audit_context *context;
1483
1484 context = audit_take_context(tsk, 0, 0);
1485 if (!context)
1486 return;
1487
1488 /* Check for system calls that do not go through the exit
1489 * function (e.g., exit_group), then free context block.
1490 * We use GFP_ATOMIC here because we might be doing this
1491 * in the context of the idle thread */
1492 /* that can happen only if we are called from do_exit() */
1493 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1494 audit_log_exit(context, tsk);
1495 if (!list_empty(&context->killed_trees))
1496 audit_kill_trees(&context->killed_trees);
1497
1498 audit_free_context(context);
1499}
1500
1501/**
1502 * audit_syscall_entry - fill in an audit record at syscall entry
1503 * @major: major syscall type (function)
1504 * @a1: additional syscall register 1
1505 * @a2: additional syscall register 2
1506 * @a3: additional syscall register 3
1507 * @a4: additional syscall register 4
1508 *
1509 * Fill in audit context at syscall entry. This only happens if the
1510 * audit context was created when the task was created and the state or
1511 * filters demand the audit context be built. If the state from the
1512 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1513 * then the record will be written at syscall exit time (otherwise, it
1514 * will only be written if another part of the kernel requests that it
1515 * be written).
1516 */
1517void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1518 unsigned long a3, unsigned long a4)
1519{
1520 struct task_struct *tsk = current;
1521 struct audit_context *context = tsk->audit_context;
1522 enum audit_state state;
1523
1524 if (!context)
1525 return;
1526
1527 BUG_ON(context->in_syscall || context->name_count);
1528
1529 if (!audit_enabled)
1530 return;
1531
1532 context->arch = syscall_get_arch();
1533 context->major = major;
1534 context->argv[0] = a1;
1535 context->argv[1] = a2;
1536 context->argv[2] = a3;
1537 context->argv[3] = a4;
1538
1539 state = context->state;
1540 context->dummy = !audit_n_rules;
1541 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1542 context->prio = 0;
1543 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1544 }
1545 if (state == AUDIT_DISABLED)
1546 return;
1547
1548 context->serial = 0;
1549 context->ctime = CURRENT_TIME;
1550 context->in_syscall = 1;
1551 context->current_state = state;
1552 context->ppid = 0;
1553}
1554
1555/**
1556 * audit_syscall_exit - deallocate audit context after a system call
1557 * @success: success value of the syscall
1558 * @return_code: return value of the syscall
1559 *
1560 * Tear down after system call. If the audit context has been marked as
1561 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1562 * filtering, or because some other part of the kernel wrote an audit
1563 * message), then write out the syscall information. In call cases,
1564 * free the names stored from getname().
1565 */
1566void __audit_syscall_exit(int success, long return_code)
1567{
1568 struct task_struct *tsk = current;
1569 struct audit_context *context;
1570
1571 if (success)
1572 success = AUDITSC_SUCCESS;
1573 else
1574 success = AUDITSC_FAILURE;
1575
1576 context = audit_take_context(tsk, success, return_code);
1577 if (!context)
1578 return;
1579
1580 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1581 audit_log_exit(context, tsk);
1582
1583 context->in_syscall = 0;
1584 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1585
1586 if (!list_empty(&context->killed_trees))
1587 audit_kill_trees(&context->killed_trees);
1588
1589 audit_free_names(context);
1590 unroll_tree_refs(context, NULL, 0);
1591 audit_free_aux(context);
1592 context->aux = NULL;
1593 context->aux_pids = NULL;
1594 context->target_pid = 0;
1595 context->target_sid = 0;
1596 context->sockaddr_len = 0;
1597 context->type = 0;
1598 context->fds[0] = -1;
1599 if (context->state != AUDIT_RECORD_CONTEXT) {
1600 kfree(context->filterkey);
1601 context->filterkey = NULL;
1602 }
1603 tsk->audit_context = context;
1604}
1605
1606static inline void handle_one(const struct inode *inode)
1607{
1608#ifdef CONFIG_AUDIT_TREE
1609 struct audit_context *context;
1610 struct audit_tree_refs *p;
1611 struct audit_chunk *chunk;
1612 int count;
1613 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1614 return;
1615 context = current->audit_context;
1616 p = context->trees;
1617 count = context->tree_count;
1618 rcu_read_lock();
1619 chunk = audit_tree_lookup(inode);
1620 rcu_read_unlock();
1621 if (!chunk)
1622 return;
1623 if (likely(put_tree_ref(context, chunk)))
1624 return;
1625 if (unlikely(!grow_tree_refs(context))) {
1626 pr_warn("out of memory, audit has lost a tree reference\n");
1627 audit_set_auditable(context);
1628 audit_put_chunk(chunk);
1629 unroll_tree_refs(context, p, count);
1630 return;
1631 }
1632 put_tree_ref(context, chunk);
1633#endif
1634}
1635
1636static void handle_path(const struct dentry *dentry)
1637{
1638#ifdef CONFIG_AUDIT_TREE
1639 struct audit_context *context;
1640 struct audit_tree_refs *p;
1641 const struct dentry *d, *parent;
1642 struct audit_chunk *drop;
1643 unsigned long seq;
1644 int count;
1645
1646 context = current->audit_context;
1647 p = context->trees;
1648 count = context->tree_count;
1649retry:
1650 drop = NULL;
1651 d = dentry;
1652 rcu_read_lock();
1653 seq = read_seqbegin(&rename_lock);
1654 for(;;) {
1655 struct inode *inode = d->d_inode;
1656 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1657 struct audit_chunk *chunk;
1658 chunk = audit_tree_lookup(inode);
1659 if (chunk) {
1660 if (unlikely(!put_tree_ref(context, chunk))) {
1661 drop = chunk;
1662 break;
1663 }
1664 }
1665 }
1666 parent = d->d_parent;
1667 if (parent == d)
1668 break;
1669 d = parent;
1670 }
1671 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1672 rcu_read_unlock();
1673 if (!drop) {
1674 /* just a race with rename */
1675 unroll_tree_refs(context, p, count);
1676 goto retry;
1677 }
1678 audit_put_chunk(drop);
1679 if (grow_tree_refs(context)) {
1680 /* OK, got more space */
1681 unroll_tree_refs(context, p, count);
1682 goto retry;
1683 }
1684 /* too bad */
1685 pr_warn("out of memory, audit has lost a tree reference\n");
1686 unroll_tree_refs(context, p, count);
1687 audit_set_auditable(context);
1688 return;
1689 }
1690 rcu_read_unlock();
1691#endif
1692}
1693
1694static struct audit_names *audit_alloc_name(struct audit_context *context,
1695 unsigned char type)
1696{
1697 struct audit_names *aname;
1698
1699 if (context->name_count < AUDIT_NAMES) {
1700 aname = &context->preallocated_names[context->name_count];
1701 memset(aname, 0, sizeof(*aname));
1702 } else {
1703 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1704 if (!aname)
1705 return NULL;
1706 aname->should_free = true;
1707 }
1708
1709 aname->ino = (unsigned long)-1;
1710 aname->type = type;
1711 list_add_tail(&aname->list, &context->names_list);
1712
1713 context->name_count++;
1714#if AUDIT_DEBUG
1715 context->ino_count++;
1716#endif
1717 return aname;
1718}
1719
1720/**
1721 * audit_reusename - fill out filename with info from existing entry
1722 * @uptr: userland ptr to pathname
1723 *
1724 * Search the audit_names list for the current audit context. If there is an
1725 * existing entry with a matching "uptr" then return the filename
1726 * associated with that audit_name. If not, return NULL.
1727 */
1728struct filename *
1729__audit_reusename(const __user char *uptr)
1730{
1731 struct audit_context *context = current->audit_context;
1732 struct audit_names *n;
1733
1734 list_for_each_entry(n, &context->names_list, list) {
1735 if (!n->name)
1736 continue;
1737 if (n->name->uptr == uptr)
1738 return n->name;
1739 }
1740 return NULL;
1741}
1742
1743/**
1744 * audit_getname - add a name to the list
1745 * @name: name to add
1746 *
1747 * Add a name to the list of audit names for this context.
1748 * Called from fs/namei.c:getname().
1749 */
1750void __audit_getname(struct filename *name)
1751{
1752 struct audit_context *context = current->audit_context;
1753 struct audit_names *n;
1754
1755 if (!context->in_syscall) {
1756#if AUDIT_DEBUG == 2
1757 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1758 __FILE__, __LINE__, context->serial, name);
1759 dump_stack();
1760#endif
1761 return;
1762 }
1763
1764#if AUDIT_DEBUG
1765 /* The filename _must_ have a populated ->name */
1766 BUG_ON(!name->name);
1767#endif
1768
1769 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1770 if (!n)
1771 return;
1772
1773 n->name = name;
1774 n->name_len = AUDIT_NAME_FULL;
1775 n->name_put = true;
1776 name->aname = n;
1777
1778 if (!context->pwd.dentry)
1779 get_fs_pwd(current->fs, &context->pwd);
1780}
1781
1782/* audit_putname - intercept a putname request
1783 * @name: name to intercept and delay for putname
1784 *
1785 * If we have stored the name from getname in the audit context,
1786 * then we delay the putname until syscall exit.
1787 * Called from include/linux/fs.h:putname().
1788 */
1789void audit_putname(struct filename *name)
1790{
1791 struct audit_context *context = current->audit_context;
1792
1793 BUG_ON(!context);
1794 if (!name->aname || !context->in_syscall) {
1795#if AUDIT_DEBUG == 2
1796 pr_err("%s:%d(:%d): final_putname(%p)\n",
1797 __FILE__, __LINE__, context->serial, name);
1798 if (context->name_count) {
1799 struct audit_names *n;
1800 int i = 0;
1801
1802 list_for_each_entry(n, &context->names_list, list)
1803 pr_err("name[%d] = %p = %s\n", i++, n->name,
1804 n->name->name ?: "(null)");
1805 }
1806#endif
1807 final_putname(name);
1808 }
1809#if AUDIT_DEBUG
1810 else {
1811 ++context->put_count;
1812 if (context->put_count > context->name_count) {
1813 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1814 " name_count=%d put_count=%d\n",
1815 __FILE__, __LINE__,
1816 context->serial, context->major,
1817 context->in_syscall, name->name,
1818 context->name_count, context->put_count);
1819 dump_stack();
1820 }
1821 }
1822#endif
1823}
1824
1825/**
1826 * __audit_inode - store the inode and device from a lookup
1827 * @name: name being audited
1828 * @dentry: dentry being audited
1829 * @flags: attributes for this particular entry
1830 */
1831void __audit_inode(struct filename *name, const struct dentry *dentry,
1832 unsigned int flags)
1833{
1834 struct audit_context *context = current->audit_context;
1835 const struct inode *inode = dentry->d_inode;
1836 struct audit_names *n;
1837 bool parent = flags & AUDIT_INODE_PARENT;
1838
1839 if (!context->in_syscall)
1840 return;
1841
1842 if (!name)
1843 goto out_alloc;
1844
1845#if AUDIT_DEBUG
1846 /* The struct filename _must_ have a populated ->name */
1847 BUG_ON(!name->name);
1848#endif
1849 /*
1850 * If we have a pointer to an audit_names entry already, then we can
1851 * just use it directly if the type is correct.
1852 */
1853 n = name->aname;
1854 if (n) {
1855 if (parent) {
1856 if (n->type == AUDIT_TYPE_PARENT ||
1857 n->type == AUDIT_TYPE_UNKNOWN)
1858 goto out;
1859 } else {
1860 if (n->type != AUDIT_TYPE_PARENT)
1861 goto out;
1862 }
1863 }
1864
1865 list_for_each_entry_reverse(n, &context->names_list, list) {
1866 if (!n->name || strcmp(n->name->name, name->name))
1867 continue;
1868
1869 /* match the correct record type */
1870 if (parent) {
1871 if (n->type == AUDIT_TYPE_PARENT ||
1872 n->type == AUDIT_TYPE_UNKNOWN)
1873 goto out;
1874 } else {
1875 if (n->type != AUDIT_TYPE_PARENT)
1876 goto out;
1877 }
1878 }
1879
1880out_alloc:
1881 /* unable to find an entry with both a matching name and type */
1882 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1883 if (!n)
1884 return;
1885 if (name)
1886 /* no need to set ->name_put as the original will cleanup */
1887 n->name = name;
1888
1889out:
1890 if (parent) {
1891 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1892 n->type = AUDIT_TYPE_PARENT;
1893 if (flags & AUDIT_INODE_HIDDEN)
1894 n->hidden = true;
1895 } else {
1896 n->name_len = AUDIT_NAME_FULL;
1897 n->type = AUDIT_TYPE_NORMAL;
1898 }
1899 handle_path(dentry);
1900 audit_copy_inode(n, dentry, inode);
1901}
1902
1903void __audit_file(const struct file *file)
1904{
1905 __audit_inode(NULL, file->f_path.dentry, 0);
1906}
1907
1908/**
1909 * __audit_inode_child - collect inode info for created/removed objects
1910 * @parent: inode of dentry parent
1911 * @dentry: dentry being audited
1912 * @type: AUDIT_TYPE_* value that we're looking for
1913 *
1914 * For syscalls that create or remove filesystem objects, audit_inode
1915 * can only collect information for the filesystem object's parent.
1916 * This call updates the audit context with the child's information.
1917 * Syscalls that create a new filesystem object must be hooked after
1918 * the object is created. Syscalls that remove a filesystem object
1919 * must be hooked prior, in order to capture the target inode during
1920 * unsuccessful attempts.
1921 */
1922void __audit_inode_child(const struct inode *parent,
1923 const struct dentry *dentry,
1924 const unsigned char type)
1925{
1926 struct audit_context *context = current->audit_context;
1927 const struct inode *inode = dentry->d_inode;
1928 const char *dname = dentry->d_name.name;
1929 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1930
1931 if (!context->in_syscall)
1932 return;
1933
1934 if (inode)
1935 handle_one(inode);
1936
1937 /* look for a parent entry first */
1938 list_for_each_entry(n, &context->names_list, list) {
1939 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1940 continue;
1941
1942 if (n->ino == parent->i_ino &&
1943 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1944 found_parent = n;
1945 break;
1946 }
1947 }
1948
1949 /* is there a matching child entry? */
1950 list_for_each_entry(n, &context->names_list, list) {
1951 /* can only match entries that have a name */
1952 if (!n->name || n->type != type)
1953 continue;
1954
1955 /* if we found a parent, make sure this one is a child of it */
1956 if (found_parent && (n->name != found_parent->name))
1957 continue;
1958
1959 if (!strcmp(dname, n->name->name) ||
1960 !audit_compare_dname_path(dname, n->name->name,
1961 found_parent ?
1962 found_parent->name_len :
1963 AUDIT_NAME_FULL)) {
1964 found_child = n;
1965 break;
1966 }
1967 }
1968
1969 if (!found_parent) {
1970 /* create a new, "anonymous" parent record */
1971 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1972 if (!n)
1973 return;
1974 audit_copy_inode(n, NULL, parent);
1975 }
1976
1977 if (!found_child) {
1978 found_child = audit_alloc_name(context, type);
1979 if (!found_child)
1980 return;
1981
1982 /* Re-use the name belonging to the slot for a matching parent
1983 * directory. All names for this context are relinquished in
1984 * audit_free_names() */
1985 if (found_parent) {
1986 found_child->name = found_parent->name;
1987 found_child->name_len = AUDIT_NAME_FULL;
1988 /* don't call __putname() */
1989 found_child->name_put = false;
1990 }
1991 }
1992 if (inode)
1993 audit_copy_inode(found_child, dentry, inode);
1994 else
1995 found_child->ino = (unsigned long)-1;
1996}
1997EXPORT_SYMBOL_GPL(__audit_inode_child);
1998
1999/**
2000 * auditsc_get_stamp - get local copies of audit_context values
2001 * @ctx: audit_context for the task
2002 * @t: timespec to store time recorded in the audit_context
2003 * @serial: serial value that is recorded in the audit_context
2004 *
2005 * Also sets the context as auditable.
2006 */
2007int auditsc_get_stamp(struct audit_context *ctx,
2008 struct timespec *t, unsigned int *serial)
2009{
2010 if (!ctx->in_syscall)
2011 return 0;
2012 if (!ctx->serial)
2013 ctx->serial = audit_serial();
2014 t->tv_sec = ctx->ctime.tv_sec;
2015 t->tv_nsec = ctx->ctime.tv_nsec;
2016 *serial = ctx->serial;
2017 if (!ctx->prio) {
2018 ctx->prio = 1;
2019 ctx->current_state = AUDIT_RECORD_CONTEXT;
2020 }
2021 return 1;
2022}
2023
2024/* global counter which is incremented every time something logs in */
2025static atomic_t session_id = ATOMIC_INIT(0);
2026
2027static int audit_set_loginuid_perm(kuid_t loginuid)
2028{
2029 /* if we are unset, we don't need privs */
2030 if (!audit_loginuid_set(current))
2031 return 0;
2032 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2033 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2034 return -EPERM;
2035 /* it is set, you need permission */
2036 if (!capable(CAP_AUDIT_CONTROL))
2037 return -EPERM;
2038 /* reject if this is not an unset and we don't allow that */
2039 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2040 return -EPERM;
2041 return 0;
2042}
2043
2044static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2045 unsigned int oldsessionid, unsigned int sessionid,
2046 int rc)
2047{
2048 struct audit_buffer *ab;
2049 uid_t uid, oldloginuid, loginuid;
2050
2051 if (!audit_enabled)
2052 return;
2053
2054 uid = from_kuid(&init_user_ns, task_uid(current));
2055 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2056 loginuid = from_kuid(&init_user_ns, kloginuid),
2057
2058 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2059 if (!ab)
2060 return;
2061 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2062 audit_log_task_context(ab);
2063 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2064 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2065 audit_log_end(ab);
2066}
2067
2068/**
2069 * audit_set_loginuid - set current task's audit_context loginuid
2070 * @loginuid: loginuid value
2071 *
2072 * Returns 0.
2073 *
2074 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2075 */
2076int audit_set_loginuid(kuid_t loginuid)
2077{
2078 struct task_struct *task = current;
2079 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2080 kuid_t oldloginuid;
2081 int rc;
2082
2083 oldloginuid = audit_get_loginuid(current);
2084 oldsessionid = audit_get_sessionid(current);
2085
2086 rc = audit_set_loginuid_perm(loginuid);
2087 if (rc)
2088 goto out;
2089
2090 /* are we setting or clearing? */
2091 if (uid_valid(loginuid))
2092 sessionid = (unsigned int)atomic_inc_return(&session_id);
2093
2094 task->sessionid = sessionid;
2095 task->loginuid = loginuid;
2096out:
2097 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2098 return rc;
2099}
2100
2101/**
2102 * __audit_mq_open - record audit data for a POSIX MQ open
2103 * @oflag: open flag
2104 * @mode: mode bits
2105 * @attr: queue attributes
2106 *
2107 */
2108void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2109{
2110 struct audit_context *context = current->audit_context;
2111
2112 if (attr)
2113 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2114 else
2115 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2116
2117 context->mq_open.oflag = oflag;
2118 context->mq_open.mode = mode;
2119
2120 context->type = AUDIT_MQ_OPEN;
2121}
2122
2123/**
2124 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2125 * @mqdes: MQ descriptor
2126 * @msg_len: Message length
2127 * @msg_prio: Message priority
2128 * @abs_timeout: Message timeout in absolute time
2129 *
2130 */
2131void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2132 const struct timespec *abs_timeout)
2133{
2134 struct audit_context *context = current->audit_context;
2135 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2136
2137 if (abs_timeout)
2138 memcpy(p, abs_timeout, sizeof(struct timespec));
2139 else
2140 memset(p, 0, sizeof(struct timespec));
2141
2142 context->mq_sendrecv.mqdes = mqdes;
2143 context->mq_sendrecv.msg_len = msg_len;
2144 context->mq_sendrecv.msg_prio = msg_prio;
2145
2146 context->type = AUDIT_MQ_SENDRECV;
2147}
2148
2149/**
2150 * __audit_mq_notify - record audit data for a POSIX MQ notify
2151 * @mqdes: MQ descriptor
2152 * @notification: Notification event
2153 *
2154 */
2155
2156void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2157{
2158 struct audit_context *context = current->audit_context;
2159
2160 if (notification)
2161 context->mq_notify.sigev_signo = notification->sigev_signo;
2162 else
2163 context->mq_notify.sigev_signo = 0;
2164
2165 context->mq_notify.mqdes = mqdes;
2166 context->type = AUDIT_MQ_NOTIFY;
2167}
2168
2169/**
2170 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2171 * @mqdes: MQ descriptor
2172 * @mqstat: MQ flags
2173 *
2174 */
2175void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2176{
2177 struct audit_context *context = current->audit_context;
2178 context->mq_getsetattr.mqdes = mqdes;
2179 context->mq_getsetattr.mqstat = *mqstat;
2180 context->type = AUDIT_MQ_GETSETATTR;
2181}
2182
2183/**
2184 * audit_ipc_obj - record audit data for ipc object
2185 * @ipcp: ipc permissions
2186 *
2187 */
2188void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2189{
2190 struct audit_context *context = current->audit_context;
2191 context->ipc.uid = ipcp->uid;
2192 context->ipc.gid = ipcp->gid;
2193 context->ipc.mode = ipcp->mode;
2194 context->ipc.has_perm = 0;
2195 security_ipc_getsecid(ipcp, &context->ipc.osid);
2196 context->type = AUDIT_IPC;
2197}
2198
2199/**
2200 * audit_ipc_set_perm - record audit data for new ipc permissions
2201 * @qbytes: msgq bytes
2202 * @uid: msgq user id
2203 * @gid: msgq group id
2204 * @mode: msgq mode (permissions)
2205 *
2206 * Called only after audit_ipc_obj().
2207 */
2208void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2209{
2210 struct audit_context *context = current->audit_context;
2211
2212 context->ipc.qbytes = qbytes;
2213 context->ipc.perm_uid = uid;
2214 context->ipc.perm_gid = gid;
2215 context->ipc.perm_mode = mode;
2216 context->ipc.has_perm = 1;
2217}
2218
2219void __audit_bprm(struct linux_binprm *bprm)
2220{
2221 struct audit_context *context = current->audit_context;
2222
2223 context->type = AUDIT_EXECVE;
2224 context->execve.argc = bprm->argc;
2225}
2226
2227
2228/**
2229 * audit_socketcall - record audit data for sys_socketcall
2230 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2231 * @args: args array
2232 *
2233 */
2234int __audit_socketcall(int nargs, unsigned long *args)
2235{
2236 struct audit_context *context = current->audit_context;
2237
2238 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2239 return -EINVAL;
2240 context->type = AUDIT_SOCKETCALL;
2241 context->socketcall.nargs = nargs;
2242 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2243 return 0;
2244}
2245
2246/**
2247 * __audit_fd_pair - record audit data for pipe and socketpair
2248 * @fd1: the first file descriptor
2249 * @fd2: the second file descriptor
2250 *
2251 */
2252void __audit_fd_pair(int fd1, int fd2)
2253{
2254 struct audit_context *context = current->audit_context;
2255 context->fds[0] = fd1;
2256 context->fds[1] = fd2;
2257}
2258
2259/**
2260 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2261 * @len: data length in user space
2262 * @a: data address in kernel space
2263 *
2264 * Returns 0 for success or NULL context or < 0 on error.
2265 */
2266int __audit_sockaddr(int len, void *a)
2267{
2268 struct audit_context *context = current->audit_context;
2269
2270 if (!context->sockaddr) {
2271 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2272 if (!p)
2273 return -ENOMEM;
2274 context->sockaddr = p;
2275 }
2276
2277 context->sockaddr_len = len;
2278 memcpy(context->sockaddr, a, len);
2279 return 0;
2280}
2281
2282void __audit_ptrace(struct task_struct *t)
2283{
2284 struct audit_context *context = current->audit_context;
2285
2286 context->target_pid = task_pid_nr(t);
2287 context->target_auid = audit_get_loginuid(t);
2288 context->target_uid = task_uid(t);
2289 context->target_sessionid = audit_get_sessionid(t);
2290 security_task_getsecid(t, &context->target_sid);
2291 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2292}
2293
2294/**
2295 * audit_signal_info - record signal info for shutting down audit subsystem
2296 * @sig: signal value
2297 * @t: task being signaled
2298 *
2299 * If the audit subsystem is being terminated, record the task (pid)
2300 * and uid that is doing that.
2301 */
2302int __audit_signal_info(int sig, struct task_struct *t)
2303{
2304 struct audit_aux_data_pids *axp;
2305 struct task_struct *tsk = current;
2306 struct audit_context *ctx = tsk->audit_context;
2307 kuid_t uid = current_uid(), t_uid = task_uid(t);
2308
2309 if (audit_pid && t->tgid == audit_pid) {
2310 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2311 audit_sig_pid = task_pid_nr(tsk);
2312 if (uid_valid(tsk->loginuid))
2313 audit_sig_uid = tsk->loginuid;
2314 else
2315 audit_sig_uid = uid;
2316 security_task_getsecid(tsk, &audit_sig_sid);
2317 }
2318 if (!audit_signals || audit_dummy_context())
2319 return 0;
2320 }
2321
2322 /* optimize the common case by putting first signal recipient directly
2323 * in audit_context */
2324 if (!ctx->target_pid) {
2325 ctx->target_pid = task_tgid_nr(t);
2326 ctx->target_auid = audit_get_loginuid(t);
2327 ctx->target_uid = t_uid;
2328 ctx->target_sessionid = audit_get_sessionid(t);
2329 security_task_getsecid(t, &ctx->target_sid);
2330 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2331 return 0;
2332 }
2333
2334 axp = (void *)ctx->aux_pids;
2335 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2336 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2337 if (!axp)
2338 return -ENOMEM;
2339
2340 axp->d.type = AUDIT_OBJ_PID;
2341 axp->d.next = ctx->aux_pids;
2342 ctx->aux_pids = (void *)axp;
2343 }
2344 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2345
2346 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2347 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2348 axp->target_uid[axp->pid_count] = t_uid;
2349 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2350 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2351 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2352 axp->pid_count++;
2353
2354 return 0;
2355}
2356
2357/**
2358 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2359 * @bprm: pointer to the bprm being processed
2360 * @new: the proposed new credentials
2361 * @old: the old credentials
2362 *
2363 * Simply check if the proc already has the caps given by the file and if not
2364 * store the priv escalation info for later auditing at the end of the syscall
2365 *
2366 * -Eric
2367 */
2368int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2369 const struct cred *new, const struct cred *old)
2370{
2371 struct audit_aux_data_bprm_fcaps *ax;
2372 struct audit_context *context = current->audit_context;
2373 struct cpu_vfs_cap_data vcaps;
2374 struct dentry *dentry;
2375
2376 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2377 if (!ax)
2378 return -ENOMEM;
2379
2380 ax->d.type = AUDIT_BPRM_FCAPS;
2381 ax->d.next = context->aux;
2382 context->aux = (void *)ax;
2383
2384 dentry = dget(bprm->file->f_path.dentry);
2385 get_vfs_caps_from_disk(dentry, &vcaps);
2386 dput(dentry);
2387
2388 ax->fcap.permitted = vcaps.permitted;
2389 ax->fcap.inheritable = vcaps.inheritable;
2390 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2391 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2392
2393 ax->old_pcap.permitted = old->cap_permitted;
2394 ax->old_pcap.inheritable = old->cap_inheritable;
2395 ax->old_pcap.effective = old->cap_effective;
2396
2397 ax->new_pcap.permitted = new->cap_permitted;
2398 ax->new_pcap.inheritable = new->cap_inheritable;
2399 ax->new_pcap.effective = new->cap_effective;
2400 return 0;
2401}
2402
2403/**
2404 * __audit_log_capset - store information about the arguments to the capset syscall
2405 * @new: the new credentials
2406 * @old: the old (current) credentials
2407 *
2408 * Record the arguments userspace sent to sys_capset for later printing by the
2409 * audit system if applicable
2410 */
2411void __audit_log_capset(const struct cred *new, const struct cred *old)
2412{
2413 struct audit_context *context = current->audit_context;
2414 context->capset.pid = task_pid_nr(current);
2415 context->capset.cap.effective = new->cap_effective;
2416 context->capset.cap.inheritable = new->cap_effective;
2417 context->capset.cap.permitted = new->cap_permitted;
2418 context->type = AUDIT_CAPSET;
2419}
2420
2421void __audit_mmap_fd(int fd, int flags)
2422{
2423 struct audit_context *context = current->audit_context;
2424 context->mmap.fd = fd;
2425 context->mmap.flags = flags;
2426 context->type = AUDIT_MMAP;
2427}
2428
2429static void audit_log_task(struct audit_buffer *ab)
2430{
2431 kuid_t auid, uid;
2432 kgid_t gid;
2433 unsigned int sessionid;
2434 struct mm_struct *mm = current->mm;
2435 char comm[sizeof(current->comm)];
2436
2437 auid = audit_get_loginuid(current);
2438 sessionid = audit_get_sessionid(current);
2439 current_uid_gid(&uid, &gid);
2440
2441 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2442 from_kuid(&init_user_ns, auid),
2443 from_kuid(&init_user_ns, uid),
2444 from_kgid(&init_user_ns, gid),
2445 sessionid);
2446 audit_log_task_context(ab);
2447 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2448 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2449 if (mm) {
2450 down_read(&mm->mmap_sem);
2451 if (mm->exe_file)
2452 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2453 up_read(&mm->mmap_sem);
2454 } else
2455 audit_log_format(ab, " exe=(null)");
2456}
2457
2458/**
2459 * audit_core_dumps - record information about processes that end abnormally
2460 * @signr: signal value
2461 *
2462 * If a process ends with a core dump, something fishy is going on and we
2463 * should record the event for investigation.
2464 */
2465void audit_core_dumps(long signr)
2466{
2467 struct audit_buffer *ab;
2468
2469 if (!audit_enabled)
2470 return;
2471
2472 if (signr == SIGQUIT) /* don't care for those */
2473 return;
2474
2475 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2476 if (unlikely(!ab))
2477 return;
2478 audit_log_task(ab);
2479 audit_log_format(ab, " sig=%ld", signr);
2480 audit_log_end(ab);
2481}
2482
2483void __audit_seccomp(unsigned long syscall, long signr, int code)
2484{
2485 struct audit_buffer *ab;
2486
2487 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2488 if (unlikely(!ab))
2489 return;
2490 audit_log_task(ab);
2491 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2492 signr, syscall_get_arch(), syscall, is_compat_task(),
2493 KSTK_EIP(current), code);
2494 audit_log_end(ab);
2495}
2496
2497struct list_head *audit_killed_trees(void)
2498{
2499 struct audit_context *ctx = current->audit_context;
2500 if (likely(!ctx || !ctx->in_syscall))
2501 return NULL;
2502 return &ctx->killed_trees;
2503}