]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - kernel/cgroup.c
cgroup: explicitly track whether a cgroup_subsys_state is visible to userland
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
... / ...
CommitLineData
1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/cgroup.h>
32#include <linux/cred.h>
33#include <linux/ctype.h>
34#include <linux/errno.h>
35#include <linux/init_task.h>
36#include <linux/kernel.h>
37#include <linux/list.h>
38#include <linux/magic.h>
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
43#include <linux/proc_fs.h>
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
46#include <linux/slab.h>
47#include <linux/spinlock.h>
48#include <linux/percpu-rwsem.h>
49#include <linux/string.h>
50#include <linux/sort.h>
51#include <linux/kmod.h>
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
54#include <linux/hashtable.h>
55#include <linux/pid_namespace.h>
56#include <linux/idr.h>
57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58#include <linux/kthread.h>
59#include <linux/delay.h>
60#include <linux/atomic.h>
61#include <linux/cpuset.h>
62#include <net/sock.h>
63
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_lock protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
87DEFINE_SPINLOCK(css_set_lock);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_lock);
90#else
91static DEFINE_MUTEX(cgroup_mutex);
92static DEFINE_SPINLOCK(css_set_lock);
93#endif
94
95/*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
112
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
115#define cgroup_assert_mutex_or_rcu_locked() \
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
118 "cgroup_mutex or RCU read lock required");
119
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
134/* generate an array of cgroup subsystem pointers */
135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
136static struct cgroup_subsys *cgroup_subsys[] = {
137#include <linux/cgroup_subsys.h>
138};
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
144#include <linux/cgroup_subsys.h>
145};
146#undef SUBSYS
147
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
169/*
170 * The default hierarchy, reserved for the subsystems that are otherwise
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
173 */
174struct cgroup_root cgrp_dfl_root;
175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
176
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
181static bool cgrp_dfl_visible;
182
183/* Controllers blocked by the commandline in v1 */
184static u16 cgroup_no_v1_mask;
185
186/* some controllers are not supported in the default hierarchy */
187static u16 cgrp_dfl_inhibit_ss_mask;
188
189/* The list of hierarchy roots */
190
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
193
194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
195static DEFINE_IDR(cgroup_hierarchy_idr);
196
197/*
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
203 */
204static u64 css_serial_nr_next = 1;
205
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
210 */
211static u16 have_fork_callback __read_mostly;
212static u16 have_exit_callback __read_mostly;
213static u16 have_free_callback __read_mostly;
214
215/* Ditto for the can_fork callback. */
216static u16 have_canfork_callback __read_mostly;
217
218static struct file_system_type cgroup2_fs_type;
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
221
222static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
223static void css_task_iter_advance(struct css_task_iter *it);
224static int cgroup_destroy_locked(struct cgroup *cgrp);
225static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
226 struct cgroup_subsys *ss);
227static void css_release(struct percpu_ref *ref);
228static void kill_css(struct cgroup_subsys_state *css);
229static int cgroup_addrm_files(struct cgroup_subsys_state *css,
230 struct cgroup *cgrp, struct cftype cfts[],
231 bool is_add);
232
233/**
234 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
235 * @ssid: subsys ID of interest
236 *
237 * cgroup_subsys_enabled() can only be used with literal subsys names which
238 * is fine for individual subsystems but unsuitable for cgroup core. This
239 * is slower static_key_enabled() based test indexed by @ssid.
240 */
241static bool cgroup_ssid_enabled(int ssid)
242{
243 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
244}
245
246static bool cgroup_ssid_no_v1(int ssid)
247{
248 return cgroup_no_v1_mask & (1 << ssid);
249}
250
251/**
252 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
253 * @cgrp: the cgroup of interest
254 *
255 * The default hierarchy is the v2 interface of cgroup and this function
256 * can be used to test whether a cgroup is on the default hierarchy for
257 * cases where a subsystem should behave differnetly depending on the
258 * interface version.
259 *
260 * The set of behaviors which change on the default hierarchy are still
261 * being determined and the mount option is prefixed with __DEVEL__.
262 *
263 * List of changed behaviors:
264 *
265 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
266 * and "name" are disallowed.
267 *
268 * - When mounting an existing superblock, mount options should match.
269 *
270 * - Remount is disallowed.
271 *
272 * - rename(2) is disallowed.
273 *
274 * - "tasks" is removed. Everything should be at process granularity. Use
275 * "cgroup.procs" instead.
276 *
277 * - "cgroup.procs" is not sorted. pids will be unique unless they got
278 * recycled inbetween reads.
279 *
280 * - "release_agent" and "notify_on_release" are removed. Replacement
281 * notification mechanism will be implemented.
282 *
283 * - "cgroup.clone_children" is removed.
284 *
285 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
286 * and its descendants contain no task; otherwise, 1. The file also
287 * generates kernfs notification which can be monitored through poll and
288 * [di]notify when the value of the file changes.
289 *
290 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
291 * take masks of ancestors with non-empty cpus/mems, instead of being
292 * moved to an ancestor.
293 *
294 * - cpuset: a task can be moved into an empty cpuset, and again it takes
295 * masks of ancestors.
296 *
297 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
298 * is not created.
299 *
300 * - blkcg: blk-throttle becomes properly hierarchical.
301 *
302 * - debug: disallowed on the default hierarchy.
303 */
304static bool cgroup_on_dfl(const struct cgroup *cgrp)
305{
306 return cgrp->root == &cgrp_dfl_root;
307}
308
309/* IDR wrappers which synchronize using cgroup_idr_lock */
310static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
311 gfp_t gfp_mask)
312{
313 int ret;
314
315 idr_preload(gfp_mask);
316 spin_lock_bh(&cgroup_idr_lock);
317 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
318 spin_unlock_bh(&cgroup_idr_lock);
319 idr_preload_end();
320 return ret;
321}
322
323static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
324{
325 void *ret;
326
327 spin_lock_bh(&cgroup_idr_lock);
328 ret = idr_replace(idr, ptr, id);
329 spin_unlock_bh(&cgroup_idr_lock);
330 return ret;
331}
332
333static void cgroup_idr_remove(struct idr *idr, int id)
334{
335 spin_lock_bh(&cgroup_idr_lock);
336 idr_remove(idr, id);
337 spin_unlock_bh(&cgroup_idr_lock);
338}
339
340static struct cgroup *cgroup_parent(struct cgroup *cgrp)
341{
342 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
343
344 if (parent_css)
345 return container_of(parent_css, struct cgroup, self);
346 return NULL;
347}
348
349/**
350 * cgroup_css - obtain a cgroup's css for the specified subsystem
351 * @cgrp: the cgroup of interest
352 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
353 *
354 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
355 * function must be called either under cgroup_mutex or rcu_read_lock() and
356 * the caller is responsible for pinning the returned css if it wants to
357 * keep accessing it outside the said locks. This function may return
358 * %NULL if @cgrp doesn't have @subsys_id enabled.
359 */
360static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
361 struct cgroup_subsys *ss)
362{
363 if (ss)
364 return rcu_dereference_check(cgrp->subsys[ss->id],
365 lockdep_is_held(&cgroup_mutex));
366 else
367 return &cgrp->self;
368}
369
370/**
371 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
372 * @cgrp: the cgroup of interest
373 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
374 *
375 * Similar to cgroup_css() but returns the effective css, which is defined
376 * as the matching css of the nearest ancestor including self which has @ss
377 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
378 * function is guaranteed to return non-NULL css.
379 */
380static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
381 struct cgroup_subsys *ss)
382{
383 lockdep_assert_held(&cgroup_mutex);
384
385 if (!ss)
386 return &cgrp->self;
387
388 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
389 return NULL;
390
391 /*
392 * This function is used while updating css associations and thus
393 * can't test the csses directly. Use ->subtree_ss_mask.
394 */
395 while (cgroup_parent(cgrp) &&
396 !(cgroup_parent(cgrp)->subtree_ss_mask & (1 << ss->id)))
397 cgrp = cgroup_parent(cgrp);
398
399 return cgroup_css(cgrp, ss);
400}
401
402/**
403 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
404 * @cgrp: the cgroup of interest
405 * @ss: the subsystem of interest
406 *
407 * Find and get the effective css of @cgrp for @ss. The effective css is
408 * defined as the matching css of the nearest ancestor including self which
409 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
410 * the root css is returned, so this function always returns a valid css.
411 * The returned css must be put using css_put().
412 */
413struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
414 struct cgroup_subsys *ss)
415{
416 struct cgroup_subsys_state *css;
417
418 rcu_read_lock();
419
420 do {
421 css = cgroup_css(cgrp, ss);
422
423 if (css && css_tryget_online(css))
424 goto out_unlock;
425 cgrp = cgroup_parent(cgrp);
426 } while (cgrp);
427
428 css = init_css_set.subsys[ss->id];
429 css_get(css);
430out_unlock:
431 rcu_read_unlock();
432 return css;
433}
434
435/* convenient tests for these bits */
436static inline bool cgroup_is_dead(const struct cgroup *cgrp)
437{
438 return !(cgrp->self.flags & CSS_ONLINE);
439}
440
441static void cgroup_get(struct cgroup *cgrp)
442{
443 WARN_ON_ONCE(cgroup_is_dead(cgrp));
444 css_get(&cgrp->self);
445}
446
447static bool cgroup_tryget(struct cgroup *cgrp)
448{
449 return css_tryget(&cgrp->self);
450}
451
452struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
453{
454 struct cgroup *cgrp = of->kn->parent->priv;
455 struct cftype *cft = of_cft(of);
456
457 /*
458 * This is open and unprotected implementation of cgroup_css().
459 * seq_css() is only called from a kernfs file operation which has
460 * an active reference on the file. Because all the subsystem
461 * files are drained before a css is disassociated with a cgroup,
462 * the matching css from the cgroup's subsys table is guaranteed to
463 * be and stay valid until the enclosing operation is complete.
464 */
465 if (cft->ss)
466 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
467 else
468 return &cgrp->self;
469}
470EXPORT_SYMBOL_GPL(of_css);
471
472static int notify_on_release(const struct cgroup *cgrp)
473{
474 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
475}
476
477/**
478 * for_each_css - iterate all css's of a cgroup
479 * @css: the iteration cursor
480 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
481 * @cgrp: the target cgroup to iterate css's of
482 *
483 * Should be called under cgroup_[tree_]mutex.
484 */
485#define for_each_css(css, ssid, cgrp) \
486 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
487 if (!((css) = rcu_dereference_check( \
488 (cgrp)->subsys[(ssid)], \
489 lockdep_is_held(&cgroup_mutex)))) { } \
490 else
491
492/**
493 * for_each_e_css - iterate all effective css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
498 * Should be called under cgroup_[tree_]mutex.
499 */
500#define for_each_e_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
503 ; \
504 else
505
506/**
507 * for_each_subsys - iterate all enabled cgroup subsystems
508 * @ss: the iteration cursor
509 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
510 */
511#define for_each_subsys(ss, ssid) \
512 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
513 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
514
515/**
516 * do_each_subsys_mask - filter for_each_subsys with a bitmask
517 * @ss: the iteration cursor
518 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
519 * @ss_mask: the bitmask
520 *
521 * The block will only run for cases where the ssid-th bit (1 << ssid) of
522 * @ss_mask is set.
523 */
524#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
525 unsigned long __ss_mask = (ss_mask); \
526 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
527 (ssid) = 0; \
528 break; \
529 } \
530 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
531 (ss) = cgroup_subsys[ssid]; \
532 {
533
534#define while_each_subsys_mask() \
535 } \
536 } \
537} while (false)
538
539/* iterate across the hierarchies */
540#define for_each_root(root) \
541 list_for_each_entry((root), &cgroup_roots, root_list)
542
543/* iterate over child cgrps, lock should be held throughout iteration */
544#define cgroup_for_each_live_child(child, cgrp) \
545 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
546 if (({ lockdep_assert_held(&cgroup_mutex); \
547 cgroup_is_dead(child); })) \
548 ; \
549 else
550
551static void cgroup_release_agent(struct work_struct *work);
552static void check_for_release(struct cgroup *cgrp);
553
554/*
555 * A cgroup can be associated with multiple css_sets as different tasks may
556 * belong to different cgroups on different hierarchies. In the other
557 * direction, a css_set is naturally associated with multiple cgroups.
558 * This M:N relationship is represented by the following link structure
559 * which exists for each association and allows traversing the associations
560 * from both sides.
561 */
562struct cgrp_cset_link {
563 /* the cgroup and css_set this link associates */
564 struct cgroup *cgrp;
565 struct css_set *cset;
566
567 /* list of cgrp_cset_links anchored at cgrp->cset_links */
568 struct list_head cset_link;
569
570 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
571 struct list_head cgrp_link;
572};
573
574/*
575 * The default css_set - used by init and its children prior to any
576 * hierarchies being mounted. It contains a pointer to the root state
577 * for each subsystem. Also used to anchor the list of css_sets. Not
578 * reference-counted, to improve performance when child cgroups
579 * haven't been created.
580 */
581struct css_set init_css_set = {
582 .refcount = ATOMIC_INIT(1),
583 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
584 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
585 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
586 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
587 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
588 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
589};
590
591static int css_set_count = 1; /* 1 for init_css_set */
592
593/**
594 * css_set_populated - does a css_set contain any tasks?
595 * @cset: target css_set
596 */
597static bool css_set_populated(struct css_set *cset)
598{
599 lockdep_assert_held(&css_set_lock);
600
601 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
602}
603
604/**
605 * cgroup_update_populated - updated populated count of a cgroup
606 * @cgrp: the target cgroup
607 * @populated: inc or dec populated count
608 *
609 * One of the css_sets associated with @cgrp is either getting its first
610 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
611 * count is propagated towards root so that a given cgroup's populated_cnt
612 * is zero iff the cgroup and all its descendants don't contain any tasks.
613 *
614 * @cgrp's interface file "cgroup.populated" is zero if
615 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
616 * changes from or to zero, userland is notified that the content of the
617 * interface file has changed. This can be used to detect when @cgrp and
618 * its descendants become populated or empty.
619 */
620static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
621{
622 lockdep_assert_held(&css_set_lock);
623
624 do {
625 bool trigger;
626
627 if (populated)
628 trigger = !cgrp->populated_cnt++;
629 else
630 trigger = !--cgrp->populated_cnt;
631
632 if (!trigger)
633 break;
634
635 check_for_release(cgrp);
636 cgroup_file_notify(&cgrp->events_file);
637
638 cgrp = cgroup_parent(cgrp);
639 } while (cgrp);
640}
641
642/**
643 * css_set_update_populated - update populated state of a css_set
644 * @cset: target css_set
645 * @populated: whether @cset is populated or depopulated
646 *
647 * @cset is either getting the first task or losing the last. Update the
648 * ->populated_cnt of all associated cgroups accordingly.
649 */
650static void css_set_update_populated(struct css_set *cset, bool populated)
651{
652 struct cgrp_cset_link *link;
653
654 lockdep_assert_held(&css_set_lock);
655
656 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
657 cgroup_update_populated(link->cgrp, populated);
658}
659
660/**
661 * css_set_move_task - move a task from one css_set to another
662 * @task: task being moved
663 * @from_cset: css_set @task currently belongs to (may be NULL)
664 * @to_cset: new css_set @task is being moved to (may be NULL)
665 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
666 *
667 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
668 * css_set, @from_cset can be NULL. If @task is being disassociated
669 * instead of moved, @to_cset can be NULL.
670 *
671 * This function automatically handles populated_cnt updates and
672 * css_task_iter adjustments but the caller is responsible for managing
673 * @from_cset and @to_cset's reference counts.
674 */
675static void css_set_move_task(struct task_struct *task,
676 struct css_set *from_cset, struct css_set *to_cset,
677 bool use_mg_tasks)
678{
679 lockdep_assert_held(&css_set_lock);
680
681 if (to_cset && !css_set_populated(to_cset))
682 css_set_update_populated(to_cset, true);
683
684 if (from_cset) {
685 struct css_task_iter *it, *pos;
686
687 WARN_ON_ONCE(list_empty(&task->cg_list));
688
689 /*
690 * @task is leaving, advance task iterators which are
691 * pointing to it so that they can resume at the next
692 * position. Advancing an iterator might remove it from
693 * the list, use safe walk. See css_task_iter_advance*()
694 * for details.
695 */
696 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
697 iters_node)
698 if (it->task_pos == &task->cg_list)
699 css_task_iter_advance(it);
700
701 list_del_init(&task->cg_list);
702 if (!css_set_populated(from_cset))
703 css_set_update_populated(from_cset, false);
704 } else {
705 WARN_ON_ONCE(!list_empty(&task->cg_list));
706 }
707
708 if (to_cset) {
709 /*
710 * We are synchronized through cgroup_threadgroup_rwsem
711 * against PF_EXITING setting such that we can't race
712 * against cgroup_exit() changing the css_set to
713 * init_css_set and dropping the old one.
714 */
715 WARN_ON_ONCE(task->flags & PF_EXITING);
716
717 rcu_assign_pointer(task->cgroups, to_cset);
718 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
719 &to_cset->tasks);
720 }
721}
722
723/*
724 * hash table for cgroup groups. This improves the performance to find
725 * an existing css_set. This hash doesn't (currently) take into
726 * account cgroups in empty hierarchies.
727 */
728#define CSS_SET_HASH_BITS 7
729static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
730
731static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
732{
733 unsigned long key = 0UL;
734 struct cgroup_subsys *ss;
735 int i;
736
737 for_each_subsys(ss, i)
738 key += (unsigned long)css[i];
739 key = (key >> 16) ^ key;
740
741 return key;
742}
743
744static void put_css_set_locked(struct css_set *cset)
745{
746 struct cgrp_cset_link *link, *tmp_link;
747 struct cgroup_subsys *ss;
748 int ssid;
749
750 lockdep_assert_held(&css_set_lock);
751
752 if (!atomic_dec_and_test(&cset->refcount))
753 return;
754
755 /* This css_set is dead. unlink it and release cgroup and css refs */
756 for_each_subsys(ss, ssid) {
757 list_del(&cset->e_cset_node[ssid]);
758 css_put(cset->subsys[ssid]);
759 }
760 hash_del(&cset->hlist);
761 css_set_count--;
762
763 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
764 list_del(&link->cset_link);
765 list_del(&link->cgrp_link);
766 if (cgroup_parent(link->cgrp))
767 cgroup_put(link->cgrp);
768 kfree(link);
769 }
770
771 kfree_rcu(cset, rcu_head);
772}
773
774static void put_css_set(struct css_set *cset)
775{
776 /*
777 * Ensure that the refcount doesn't hit zero while any readers
778 * can see it. Similar to atomic_dec_and_lock(), but for an
779 * rwlock
780 */
781 if (atomic_add_unless(&cset->refcount, -1, 1))
782 return;
783
784 spin_lock_bh(&css_set_lock);
785 put_css_set_locked(cset);
786 spin_unlock_bh(&css_set_lock);
787}
788
789/*
790 * refcounted get/put for css_set objects
791 */
792static inline void get_css_set(struct css_set *cset)
793{
794 atomic_inc(&cset->refcount);
795}
796
797/**
798 * compare_css_sets - helper function for find_existing_css_set().
799 * @cset: candidate css_set being tested
800 * @old_cset: existing css_set for a task
801 * @new_cgrp: cgroup that's being entered by the task
802 * @template: desired set of css pointers in css_set (pre-calculated)
803 *
804 * Returns true if "cset" matches "old_cset" except for the hierarchy
805 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
806 */
807static bool compare_css_sets(struct css_set *cset,
808 struct css_set *old_cset,
809 struct cgroup *new_cgrp,
810 struct cgroup_subsys_state *template[])
811{
812 struct list_head *l1, *l2;
813
814 /*
815 * On the default hierarchy, there can be csets which are
816 * associated with the same set of cgroups but different csses.
817 * Let's first ensure that csses match.
818 */
819 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
820 return false;
821
822 /*
823 * Compare cgroup pointers in order to distinguish between
824 * different cgroups in hierarchies. As different cgroups may
825 * share the same effective css, this comparison is always
826 * necessary.
827 */
828 l1 = &cset->cgrp_links;
829 l2 = &old_cset->cgrp_links;
830 while (1) {
831 struct cgrp_cset_link *link1, *link2;
832 struct cgroup *cgrp1, *cgrp2;
833
834 l1 = l1->next;
835 l2 = l2->next;
836 /* See if we reached the end - both lists are equal length. */
837 if (l1 == &cset->cgrp_links) {
838 BUG_ON(l2 != &old_cset->cgrp_links);
839 break;
840 } else {
841 BUG_ON(l2 == &old_cset->cgrp_links);
842 }
843 /* Locate the cgroups associated with these links. */
844 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
845 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
846 cgrp1 = link1->cgrp;
847 cgrp2 = link2->cgrp;
848 /* Hierarchies should be linked in the same order. */
849 BUG_ON(cgrp1->root != cgrp2->root);
850
851 /*
852 * If this hierarchy is the hierarchy of the cgroup
853 * that's changing, then we need to check that this
854 * css_set points to the new cgroup; if it's any other
855 * hierarchy, then this css_set should point to the
856 * same cgroup as the old css_set.
857 */
858 if (cgrp1->root == new_cgrp->root) {
859 if (cgrp1 != new_cgrp)
860 return false;
861 } else {
862 if (cgrp1 != cgrp2)
863 return false;
864 }
865 }
866 return true;
867}
868
869/**
870 * find_existing_css_set - init css array and find the matching css_set
871 * @old_cset: the css_set that we're using before the cgroup transition
872 * @cgrp: the cgroup that we're moving into
873 * @template: out param for the new set of csses, should be clear on entry
874 */
875static struct css_set *find_existing_css_set(struct css_set *old_cset,
876 struct cgroup *cgrp,
877 struct cgroup_subsys_state *template[])
878{
879 struct cgroup_root *root = cgrp->root;
880 struct cgroup_subsys *ss;
881 struct css_set *cset;
882 unsigned long key;
883 int i;
884
885 /*
886 * Build the set of subsystem state objects that we want to see in the
887 * new css_set. while subsystems can change globally, the entries here
888 * won't change, so no need for locking.
889 */
890 for_each_subsys(ss, i) {
891 if (root->subsys_mask & (1UL << i)) {
892 /*
893 * @ss is in this hierarchy, so we want the
894 * effective css from @cgrp.
895 */
896 template[i] = cgroup_e_css(cgrp, ss);
897 } else {
898 /*
899 * @ss is not in this hierarchy, so we don't want
900 * to change the css.
901 */
902 template[i] = old_cset->subsys[i];
903 }
904 }
905
906 key = css_set_hash(template);
907 hash_for_each_possible(css_set_table, cset, hlist, key) {
908 if (!compare_css_sets(cset, old_cset, cgrp, template))
909 continue;
910
911 /* This css_set matches what we need */
912 return cset;
913 }
914
915 /* No existing cgroup group matched */
916 return NULL;
917}
918
919static void free_cgrp_cset_links(struct list_head *links_to_free)
920{
921 struct cgrp_cset_link *link, *tmp_link;
922
923 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
924 list_del(&link->cset_link);
925 kfree(link);
926 }
927}
928
929/**
930 * allocate_cgrp_cset_links - allocate cgrp_cset_links
931 * @count: the number of links to allocate
932 * @tmp_links: list_head the allocated links are put on
933 *
934 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
935 * through ->cset_link. Returns 0 on success or -errno.
936 */
937static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
938{
939 struct cgrp_cset_link *link;
940 int i;
941
942 INIT_LIST_HEAD(tmp_links);
943
944 for (i = 0; i < count; i++) {
945 link = kzalloc(sizeof(*link), GFP_KERNEL);
946 if (!link) {
947 free_cgrp_cset_links(tmp_links);
948 return -ENOMEM;
949 }
950 list_add(&link->cset_link, tmp_links);
951 }
952 return 0;
953}
954
955/**
956 * link_css_set - a helper function to link a css_set to a cgroup
957 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
958 * @cset: the css_set to be linked
959 * @cgrp: the destination cgroup
960 */
961static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
962 struct cgroup *cgrp)
963{
964 struct cgrp_cset_link *link;
965
966 BUG_ON(list_empty(tmp_links));
967
968 if (cgroup_on_dfl(cgrp))
969 cset->dfl_cgrp = cgrp;
970
971 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
972 link->cset = cset;
973 link->cgrp = cgrp;
974
975 /*
976 * Always add links to the tail of the lists so that the lists are
977 * in choronological order.
978 */
979 list_move_tail(&link->cset_link, &cgrp->cset_links);
980 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
981
982 if (cgroup_parent(cgrp))
983 cgroup_get(cgrp);
984}
985
986/**
987 * find_css_set - return a new css_set with one cgroup updated
988 * @old_cset: the baseline css_set
989 * @cgrp: the cgroup to be updated
990 *
991 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
992 * substituted into the appropriate hierarchy.
993 */
994static struct css_set *find_css_set(struct css_set *old_cset,
995 struct cgroup *cgrp)
996{
997 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
998 struct css_set *cset;
999 struct list_head tmp_links;
1000 struct cgrp_cset_link *link;
1001 struct cgroup_subsys *ss;
1002 unsigned long key;
1003 int ssid;
1004
1005 lockdep_assert_held(&cgroup_mutex);
1006
1007 /* First see if we already have a cgroup group that matches
1008 * the desired set */
1009 spin_lock_bh(&css_set_lock);
1010 cset = find_existing_css_set(old_cset, cgrp, template);
1011 if (cset)
1012 get_css_set(cset);
1013 spin_unlock_bh(&css_set_lock);
1014
1015 if (cset)
1016 return cset;
1017
1018 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1019 if (!cset)
1020 return NULL;
1021
1022 /* Allocate all the cgrp_cset_link objects that we'll need */
1023 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1024 kfree(cset);
1025 return NULL;
1026 }
1027
1028 atomic_set(&cset->refcount, 1);
1029 INIT_LIST_HEAD(&cset->cgrp_links);
1030 INIT_LIST_HEAD(&cset->tasks);
1031 INIT_LIST_HEAD(&cset->mg_tasks);
1032 INIT_LIST_HEAD(&cset->mg_preload_node);
1033 INIT_LIST_HEAD(&cset->mg_node);
1034 INIT_LIST_HEAD(&cset->task_iters);
1035 INIT_HLIST_NODE(&cset->hlist);
1036
1037 /* Copy the set of subsystem state objects generated in
1038 * find_existing_css_set() */
1039 memcpy(cset->subsys, template, sizeof(cset->subsys));
1040
1041 spin_lock_bh(&css_set_lock);
1042 /* Add reference counts and links from the new css_set. */
1043 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1044 struct cgroup *c = link->cgrp;
1045
1046 if (c->root == cgrp->root)
1047 c = cgrp;
1048 link_css_set(&tmp_links, cset, c);
1049 }
1050
1051 BUG_ON(!list_empty(&tmp_links));
1052
1053 css_set_count++;
1054
1055 /* Add @cset to the hash table */
1056 key = css_set_hash(cset->subsys);
1057 hash_add(css_set_table, &cset->hlist, key);
1058
1059 for_each_subsys(ss, ssid) {
1060 struct cgroup_subsys_state *css = cset->subsys[ssid];
1061
1062 list_add_tail(&cset->e_cset_node[ssid],
1063 &css->cgroup->e_csets[ssid]);
1064 css_get(css);
1065 }
1066
1067 spin_unlock_bh(&css_set_lock);
1068
1069 return cset;
1070}
1071
1072static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1073{
1074 struct cgroup *root_cgrp = kf_root->kn->priv;
1075
1076 return root_cgrp->root;
1077}
1078
1079static int cgroup_init_root_id(struct cgroup_root *root)
1080{
1081 int id;
1082
1083 lockdep_assert_held(&cgroup_mutex);
1084
1085 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1086 if (id < 0)
1087 return id;
1088
1089 root->hierarchy_id = id;
1090 return 0;
1091}
1092
1093static void cgroup_exit_root_id(struct cgroup_root *root)
1094{
1095 lockdep_assert_held(&cgroup_mutex);
1096
1097 if (root->hierarchy_id) {
1098 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1099 root->hierarchy_id = 0;
1100 }
1101}
1102
1103static void cgroup_free_root(struct cgroup_root *root)
1104{
1105 if (root) {
1106 /* hierarchy ID should already have been released */
1107 WARN_ON_ONCE(root->hierarchy_id);
1108
1109 idr_destroy(&root->cgroup_idr);
1110 kfree(root);
1111 }
1112}
1113
1114static void cgroup_destroy_root(struct cgroup_root *root)
1115{
1116 struct cgroup *cgrp = &root->cgrp;
1117 struct cgrp_cset_link *link, *tmp_link;
1118
1119 mutex_lock(&cgroup_mutex);
1120
1121 BUG_ON(atomic_read(&root->nr_cgrps));
1122 BUG_ON(!list_empty(&cgrp->self.children));
1123
1124 /* Rebind all subsystems back to the default hierarchy */
1125 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1126
1127 /*
1128 * Release all the links from cset_links to this hierarchy's
1129 * root cgroup
1130 */
1131 spin_lock_bh(&css_set_lock);
1132
1133 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1134 list_del(&link->cset_link);
1135 list_del(&link->cgrp_link);
1136 kfree(link);
1137 }
1138
1139 spin_unlock_bh(&css_set_lock);
1140
1141 if (!list_empty(&root->root_list)) {
1142 list_del(&root->root_list);
1143 cgroup_root_count--;
1144 }
1145
1146 cgroup_exit_root_id(root);
1147
1148 mutex_unlock(&cgroup_mutex);
1149
1150 kernfs_destroy_root(root->kf_root);
1151 cgroup_free_root(root);
1152}
1153
1154/* look up cgroup associated with given css_set on the specified hierarchy */
1155static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1156 struct cgroup_root *root)
1157{
1158 struct cgroup *res = NULL;
1159
1160 lockdep_assert_held(&cgroup_mutex);
1161 lockdep_assert_held(&css_set_lock);
1162
1163 if (cset == &init_css_set) {
1164 res = &root->cgrp;
1165 } else {
1166 struct cgrp_cset_link *link;
1167
1168 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1169 struct cgroup *c = link->cgrp;
1170
1171 if (c->root == root) {
1172 res = c;
1173 break;
1174 }
1175 }
1176 }
1177
1178 BUG_ON(!res);
1179 return res;
1180}
1181
1182/*
1183 * Return the cgroup for "task" from the given hierarchy. Must be
1184 * called with cgroup_mutex and css_set_lock held.
1185 */
1186static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1187 struct cgroup_root *root)
1188{
1189 /*
1190 * No need to lock the task - since we hold cgroup_mutex the
1191 * task can't change groups, so the only thing that can happen
1192 * is that it exits and its css is set back to init_css_set.
1193 */
1194 return cset_cgroup_from_root(task_css_set(task), root);
1195}
1196
1197/*
1198 * A task must hold cgroup_mutex to modify cgroups.
1199 *
1200 * Any task can increment and decrement the count field without lock.
1201 * So in general, code holding cgroup_mutex can't rely on the count
1202 * field not changing. However, if the count goes to zero, then only
1203 * cgroup_attach_task() can increment it again. Because a count of zero
1204 * means that no tasks are currently attached, therefore there is no
1205 * way a task attached to that cgroup can fork (the other way to
1206 * increment the count). So code holding cgroup_mutex can safely
1207 * assume that if the count is zero, it will stay zero. Similarly, if
1208 * a task holds cgroup_mutex on a cgroup with zero count, it
1209 * knows that the cgroup won't be removed, as cgroup_rmdir()
1210 * needs that mutex.
1211 *
1212 * A cgroup can only be deleted if both its 'count' of using tasks
1213 * is zero, and its list of 'children' cgroups is empty. Since all
1214 * tasks in the system use _some_ cgroup, and since there is always at
1215 * least one task in the system (init, pid == 1), therefore, root cgroup
1216 * always has either children cgroups and/or using tasks. So we don't
1217 * need a special hack to ensure that root cgroup cannot be deleted.
1218 *
1219 * P.S. One more locking exception. RCU is used to guard the
1220 * update of a tasks cgroup pointer by cgroup_attach_task()
1221 */
1222
1223static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1224static const struct file_operations proc_cgroupstats_operations;
1225
1226static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1227 char *buf)
1228{
1229 struct cgroup_subsys *ss = cft->ss;
1230
1231 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1232 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1233 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1234 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1235 cft->name);
1236 else
1237 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1238 return buf;
1239}
1240
1241/**
1242 * cgroup_file_mode - deduce file mode of a control file
1243 * @cft: the control file in question
1244 *
1245 * S_IRUGO for read, S_IWUSR for write.
1246 */
1247static umode_t cgroup_file_mode(const struct cftype *cft)
1248{
1249 umode_t mode = 0;
1250
1251 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1252 mode |= S_IRUGO;
1253
1254 if (cft->write_u64 || cft->write_s64 || cft->write) {
1255 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1256 mode |= S_IWUGO;
1257 else
1258 mode |= S_IWUSR;
1259 }
1260
1261 return mode;
1262}
1263
1264/**
1265 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1266 * @cgrp: the target cgroup
1267 * @subtree_control: the new subtree_control mask to consider
1268 *
1269 * On the default hierarchy, a subsystem may request other subsystems to be
1270 * enabled together through its ->depends_on mask. In such cases, more
1271 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1272 *
1273 * This function calculates which subsystems need to be enabled if
1274 * @subtree_control is to be applied to @cgrp. The returned mask is always
1275 * a superset of @subtree_control and follows the usual hierarchy rules.
1276 */
1277static u16 cgroup_calc_subtree_ss_mask(struct cgroup *cgrp, u16 subtree_control)
1278{
1279 struct cgroup *parent = cgroup_parent(cgrp);
1280 u16 cur_ss_mask = subtree_control;
1281 struct cgroup_subsys *ss;
1282 int ssid;
1283
1284 lockdep_assert_held(&cgroup_mutex);
1285
1286 if (!cgroup_on_dfl(cgrp))
1287 return cur_ss_mask;
1288
1289 while (true) {
1290 u16 new_ss_mask = cur_ss_mask;
1291
1292 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1293 new_ss_mask |= ss->depends_on;
1294 } while_each_subsys_mask();
1295
1296 /*
1297 * Mask out subsystems which aren't available. This can
1298 * happen only if some depended-upon subsystems were bound
1299 * to non-default hierarchies.
1300 */
1301 if (parent)
1302 new_ss_mask &= parent->subtree_ss_mask;
1303 else
1304 new_ss_mask &= cgrp->root->subsys_mask;
1305
1306 if (new_ss_mask == cur_ss_mask)
1307 break;
1308 cur_ss_mask = new_ss_mask;
1309 }
1310
1311 return cur_ss_mask;
1312}
1313
1314/**
1315 * cgroup_refresh_subtree_ss_mask - update subtree_ss_mask
1316 * @cgrp: the target cgroup
1317 *
1318 * Update @cgrp->subtree_ss_mask according to the current
1319 * @cgrp->subtree_control using cgroup_calc_subtree_ss_mask().
1320 */
1321static void cgroup_refresh_subtree_ss_mask(struct cgroup *cgrp)
1322{
1323 cgrp->subtree_ss_mask =
1324 cgroup_calc_subtree_ss_mask(cgrp, cgrp->subtree_control);
1325}
1326
1327/**
1328 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1329 * @kn: the kernfs_node being serviced
1330 *
1331 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1332 * the method finishes if locking succeeded. Note that once this function
1333 * returns the cgroup returned by cgroup_kn_lock_live() may become
1334 * inaccessible any time. If the caller intends to continue to access the
1335 * cgroup, it should pin it before invoking this function.
1336 */
1337static void cgroup_kn_unlock(struct kernfs_node *kn)
1338{
1339 struct cgroup *cgrp;
1340
1341 if (kernfs_type(kn) == KERNFS_DIR)
1342 cgrp = kn->priv;
1343 else
1344 cgrp = kn->parent->priv;
1345
1346 mutex_unlock(&cgroup_mutex);
1347
1348 kernfs_unbreak_active_protection(kn);
1349 cgroup_put(cgrp);
1350}
1351
1352/**
1353 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1354 * @kn: the kernfs_node being serviced
1355 *
1356 * This helper is to be used by a cgroup kernfs method currently servicing
1357 * @kn. It breaks the active protection, performs cgroup locking and
1358 * verifies that the associated cgroup is alive. Returns the cgroup if
1359 * alive; otherwise, %NULL. A successful return should be undone by a
1360 * matching cgroup_kn_unlock() invocation.
1361 *
1362 * Any cgroup kernfs method implementation which requires locking the
1363 * associated cgroup should use this helper. It avoids nesting cgroup
1364 * locking under kernfs active protection and allows all kernfs operations
1365 * including self-removal.
1366 */
1367static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1368{
1369 struct cgroup *cgrp;
1370
1371 if (kernfs_type(kn) == KERNFS_DIR)
1372 cgrp = kn->priv;
1373 else
1374 cgrp = kn->parent->priv;
1375
1376 /*
1377 * We're gonna grab cgroup_mutex which nests outside kernfs
1378 * active_ref. cgroup liveliness check alone provides enough
1379 * protection against removal. Ensure @cgrp stays accessible and
1380 * break the active_ref protection.
1381 */
1382 if (!cgroup_tryget(cgrp))
1383 return NULL;
1384 kernfs_break_active_protection(kn);
1385
1386 mutex_lock(&cgroup_mutex);
1387
1388 if (!cgroup_is_dead(cgrp))
1389 return cgrp;
1390
1391 cgroup_kn_unlock(kn);
1392 return NULL;
1393}
1394
1395static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1396{
1397 char name[CGROUP_FILE_NAME_MAX];
1398
1399 lockdep_assert_held(&cgroup_mutex);
1400
1401 if (cft->file_offset) {
1402 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1403 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1404
1405 spin_lock_irq(&cgroup_file_kn_lock);
1406 cfile->kn = NULL;
1407 spin_unlock_irq(&cgroup_file_kn_lock);
1408 }
1409
1410 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1411}
1412
1413/**
1414 * css_clear_dir - remove subsys files in a cgroup directory
1415 * @css: taget css
1416 * @cgrp_override: specify if target cgroup is different from css->cgroup
1417 */
1418static void css_clear_dir(struct cgroup_subsys_state *css,
1419 struct cgroup *cgrp_override)
1420{
1421 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1422 struct cftype *cfts;
1423
1424 if (!(css->flags & CSS_VISIBLE))
1425 return;
1426
1427 css->flags &= ~CSS_VISIBLE;
1428
1429 list_for_each_entry(cfts, &css->ss->cfts, node)
1430 cgroup_addrm_files(css, cgrp, cfts, false);
1431}
1432
1433/**
1434 * css_populate_dir - create subsys files in a cgroup directory
1435 * @css: target css
1436 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1437 *
1438 * On failure, no file is added.
1439 */
1440static int css_populate_dir(struct cgroup_subsys_state *css,
1441 struct cgroup *cgrp_override)
1442{
1443 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1444 struct cftype *cfts, *failed_cfts;
1445 int ret;
1446
1447 if (css->flags & CSS_VISIBLE)
1448 return 0;
1449
1450 if (!css->ss) {
1451 if (cgroup_on_dfl(cgrp))
1452 cfts = cgroup_dfl_base_files;
1453 else
1454 cfts = cgroup_legacy_base_files;
1455
1456 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1457 }
1458
1459 list_for_each_entry(cfts, &css->ss->cfts, node) {
1460 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1461 if (ret < 0) {
1462 failed_cfts = cfts;
1463 goto err;
1464 }
1465 }
1466
1467 css->flags |= CSS_VISIBLE;
1468
1469 return 0;
1470err:
1471 list_for_each_entry(cfts, &css->ss->cfts, node) {
1472 if (cfts == failed_cfts)
1473 break;
1474 cgroup_addrm_files(css, cgrp, cfts, false);
1475 }
1476 return ret;
1477}
1478
1479static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1480{
1481 struct cgroup *dcgrp = &dst_root->cgrp;
1482 struct cgroup_subsys *ss;
1483 u16 tmp_ss_mask;
1484 int ssid, i, ret;
1485
1486 lockdep_assert_held(&cgroup_mutex);
1487
1488 do_each_subsys_mask(ss, ssid, ss_mask) {
1489 /* if @ss has non-root csses attached to it, can't move */
1490 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1491 return -EBUSY;
1492
1493 /* can't move between two non-dummy roots either */
1494 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1495 return -EBUSY;
1496 } while_each_subsys_mask();
1497
1498 /* skip creating root files on dfl_root for inhibited subsystems */
1499 tmp_ss_mask = ss_mask;
1500 if (dst_root == &cgrp_dfl_root)
1501 tmp_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
1502
1503 do_each_subsys_mask(ss, ssid, tmp_ss_mask) {
1504 struct cgroup *scgrp = &ss->root->cgrp;
1505 int tssid;
1506
1507 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1508 if (!ret)
1509 continue;
1510
1511 /*
1512 * Rebinding back to the default root is not allowed to
1513 * fail. Using both default and non-default roots should
1514 * be rare. Moving subsystems back and forth even more so.
1515 * Just warn about it and continue.
1516 */
1517 if (dst_root == &cgrp_dfl_root) {
1518 if (cgrp_dfl_visible) {
1519 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1520 ret, ss_mask);
1521 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1522 }
1523 continue;
1524 }
1525
1526 do_each_subsys_mask(ss, tssid, tmp_ss_mask) {
1527 if (tssid == ssid)
1528 break;
1529 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1530 } while_each_subsys_mask();
1531 return ret;
1532 } while_each_subsys_mask();
1533
1534 /*
1535 * Nothing can fail from this point on. Remove files for the
1536 * removed subsystems and rebind each subsystem.
1537 */
1538 do_each_subsys_mask(ss, ssid, ss_mask) {
1539 struct cgroup_root *src_root = ss->root;
1540 struct cgroup *scgrp = &src_root->cgrp;
1541 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1542 struct css_set *cset;
1543
1544 WARN_ON(!css || cgroup_css(dcgrp, ss));
1545
1546 css_clear_dir(css, NULL);
1547
1548 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1549 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1550 ss->root = dst_root;
1551 css->cgroup = dcgrp;
1552
1553 spin_lock_bh(&css_set_lock);
1554 hash_for_each(css_set_table, i, cset, hlist)
1555 list_move_tail(&cset->e_cset_node[ss->id],
1556 &dcgrp->e_csets[ss->id]);
1557 spin_unlock_bh(&css_set_lock);
1558
1559 src_root->subsys_mask &= ~(1 << ssid);
1560 scgrp->subtree_control &= ~(1 << ssid);
1561 cgroup_refresh_subtree_ss_mask(scgrp);
1562
1563 /* default hierarchy doesn't enable controllers by default */
1564 dst_root->subsys_mask |= 1 << ssid;
1565 if (dst_root == &cgrp_dfl_root) {
1566 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1567 } else {
1568 dcgrp->subtree_control |= 1 << ssid;
1569 cgroup_refresh_subtree_ss_mask(dcgrp);
1570 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1571 }
1572
1573 if (ss->bind)
1574 ss->bind(css);
1575 } while_each_subsys_mask();
1576
1577 kernfs_activate(dcgrp->kn);
1578 return 0;
1579}
1580
1581static int cgroup_show_options(struct seq_file *seq,
1582 struct kernfs_root *kf_root)
1583{
1584 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1585 struct cgroup_subsys *ss;
1586 int ssid;
1587
1588 if (root != &cgrp_dfl_root)
1589 for_each_subsys(ss, ssid)
1590 if (root->subsys_mask & (1 << ssid))
1591 seq_show_option(seq, ss->legacy_name, NULL);
1592 if (root->flags & CGRP_ROOT_NOPREFIX)
1593 seq_puts(seq, ",noprefix");
1594 if (root->flags & CGRP_ROOT_XATTR)
1595 seq_puts(seq, ",xattr");
1596
1597 spin_lock(&release_agent_path_lock);
1598 if (strlen(root->release_agent_path))
1599 seq_show_option(seq, "release_agent",
1600 root->release_agent_path);
1601 spin_unlock(&release_agent_path_lock);
1602
1603 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1604 seq_puts(seq, ",clone_children");
1605 if (strlen(root->name))
1606 seq_show_option(seq, "name", root->name);
1607 return 0;
1608}
1609
1610struct cgroup_sb_opts {
1611 u16 subsys_mask;
1612 unsigned int flags;
1613 char *release_agent;
1614 bool cpuset_clone_children;
1615 char *name;
1616 /* User explicitly requested empty subsystem */
1617 bool none;
1618};
1619
1620static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1621{
1622 char *token, *o = data;
1623 bool all_ss = false, one_ss = false;
1624 u16 mask = U16_MAX;
1625 struct cgroup_subsys *ss;
1626 int nr_opts = 0;
1627 int i;
1628
1629#ifdef CONFIG_CPUSETS
1630 mask = ~((u16)1 << cpuset_cgrp_id);
1631#endif
1632
1633 memset(opts, 0, sizeof(*opts));
1634
1635 while ((token = strsep(&o, ",")) != NULL) {
1636 nr_opts++;
1637
1638 if (!*token)
1639 return -EINVAL;
1640 if (!strcmp(token, "none")) {
1641 /* Explicitly have no subsystems */
1642 opts->none = true;
1643 continue;
1644 }
1645 if (!strcmp(token, "all")) {
1646 /* Mutually exclusive option 'all' + subsystem name */
1647 if (one_ss)
1648 return -EINVAL;
1649 all_ss = true;
1650 continue;
1651 }
1652 if (!strcmp(token, "noprefix")) {
1653 opts->flags |= CGRP_ROOT_NOPREFIX;
1654 continue;
1655 }
1656 if (!strcmp(token, "clone_children")) {
1657 opts->cpuset_clone_children = true;
1658 continue;
1659 }
1660 if (!strcmp(token, "xattr")) {
1661 opts->flags |= CGRP_ROOT_XATTR;
1662 continue;
1663 }
1664 if (!strncmp(token, "release_agent=", 14)) {
1665 /* Specifying two release agents is forbidden */
1666 if (opts->release_agent)
1667 return -EINVAL;
1668 opts->release_agent =
1669 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1670 if (!opts->release_agent)
1671 return -ENOMEM;
1672 continue;
1673 }
1674 if (!strncmp(token, "name=", 5)) {
1675 const char *name = token + 5;
1676 /* Can't specify an empty name */
1677 if (!strlen(name))
1678 return -EINVAL;
1679 /* Must match [\w.-]+ */
1680 for (i = 0; i < strlen(name); i++) {
1681 char c = name[i];
1682 if (isalnum(c))
1683 continue;
1684 if ((c == '.') || (c == '-') || (c == '_'))
1685 continue;
1686 return -EINVAL;
1687 }
1688 /* Specifying two names is forbidden */
1689 if (opts->name)
1690 return -EINVAL;
1691 opts->name = kstrndup(name,
1692 MAX_CGROUP_ROOT_NAMELEN - 1,
1693 GFP_KERNEL);
1694 if (!opts->name)
1695 return -ENOMEM;
1696
1697 continue;
1698 }
1699
1700 for_each_subsys(ss, i) {
1701 if (strcmp(token, ss->legacy_name))
1702 continue;
1703 if (!cgroup_ssid_enabled(i))
1704 continue;
1705 if (cgroup_ssid_no_v1(i))
1706 continue;
1707
1708 /* Mutually exclusive option 'all' + subsystem name */
1709 if (all_ss)
1710 return -EINVAL;
1711 opts->subsys_mask |= (1 << i);
1712 one_ss = true;
1713
1714 break;
1715 }
1716 if (i == CGROUP_SUBSYS_COUNT)
1717 return -ENOENT;
1718 }
1719
1720 /*
1721 * If the 'all' option was specified select all the subsystems,
1722 * otherwise if 'none', 'name=' and a subsystem name options were
1723 * not specified, let's default to 'all'
1724 */
1725 if (all_ss || (!one_ss && !opts->none && !opts->name))
1726 for_each_subsys(ss, i)
1727 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1728 opts->subsys_mask |= (1 << i);
1729
1730 /*
1731 * We either have to specify by name or by subsystems. (So all
1732 * empty hierarchies must have a name).
1733 */
1734 if (!opts->subsys_mask && !opts->name)
1735 return -EINVAL;
1736
1737 /*
1738 * Option noprefix was introduced just for backward compatibility
1739 * with the old cpuset, so we allow noprefix only if mounting just
1740 * the cpuset subsystem.
1741 */
1742 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1743 return -EINVAL;
1744
1745 /* Can't specify "none" and some subsystems */
1746 if (opts->subsys_mask && opts->none)
1747 return -EINVAL;
1748
1749 return 0;
1750}
1751
1752static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1753{
1754 int ret = 0;
1755 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1756 struct cgroup_sb_opts opts;
1757 u16 added_mask, removed_mask;
1758
1759 if (root == &cgrp_dfl_root) {
1760 pr_err("remount is not allowed\n");
1761 return -EINVAL;
1762 }
1763
1764 mutex_lock(&cgroup_mutex);
1765
1766 /* See what subsystems are wanted */
1767 ret = parse_cgroupfs_options(data, &opts);
1768 if (ret)
1769 goto out_unlock;
1770
1771 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1772 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1773 task_tgid_nr(current), current->comm);
1774
1775 added_mask = opts.subsys_mask & ~root->subsys_mask;
1776 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1777
1778 /* Don't allow flags or name to change at remount */
1779 if ((opts.flags ^ root->flags) ||
1780 (opts.name && strcmp(opts.name, root->name))) {
1781 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1782 opts.flags, opts.name ?: "", root->flags, root->name);
1783 ret = -EINVAL;
1784 goto out_unlock;
1785 }
1786
1787 /* remounting is not allowed for populated hierarchies */
1788 if (!list_empty(&root->cgrp.self.children)) {
1789 ret = -EBUSY;
1790 goto out_unlock;
1791 }
1792
1793 ret = rebind_subsystems(root, added_mask);
1794 if (ret)
1795 goto out_unlock;
1796
1797 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1798
1799 if (opts.release_agent) {
1800 spin_lock(&release_agent_path_lock);
1801 strcpy(root->release_agent_path, opts.release_agent);
1802 spin_unlock(&release_agent_path_lock);
1803 }
1804 out_unlock:
1805 kfree(opts.release_agent);
1806 kfree(opts.name);
1807 mutex_unlock(&cgroup_mutex);
1808 return ret;
1809}
1810
1811/*
1812 * To reduce the fork() overhead for systems that are not actually using
1813 * their cgroups capability, we don't maintain the lists running through
1814 * each css_set to its tasks until we see the list actually used - in other
1815 * words after the first mount.
1816 */
1817static bool use_task_css_set_links __read_mostly;
1818
1819static void cgroup_enable_task_cg_lists(void)
1820{
1821 struct task_struct *p, *g;
1822
1823 spin_lock_bh(&css_set_lock);
1824
1825 if (use_task_css_set_links)
1826 goto out_unlock;
1827
1828 use_task_css_set_links = true;
1829
1830 /*
1831 * We need tasklist_lock because RCU is not safe against
1832 * while_each_thread(). Besides, a forking task that has passed
1833 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1834 * is not guaranteed to have its child immediately visible in the
1835 * tasklist if we walk through it with RCU.
1836 */
1837 read_lock(&tasklist_lock);
1838 do_each_thread(g, p) {
1839 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1840 task_css_set(p) != &init_css_set);
1841
1842 /*
1843 * We should check if the process is exiting, otherwise
1844 * it will race with cgroup_exit() in that the list
1845 * entry won't be deleted though the process has exited.
1846 * Do it while holding siglock so that we don't end up
1847 * racing against cgroup_exit().
1848 */
1849 spin_lock_irq(&p->sighand->siglock);
1850 if (!(p->flags & PF_EXITING)) {
1851 struct css_set *cset = task_css_set(p);
1852
1853 if (!css_set_populated(cset))
1854 css_set_update_populated(cset, true);
1855 list_add_tail(&p->cg_list, &cset->tasks);
1856 get_css_set(cset);
1857 }
1858 spin_unlock_irq(&p->sighand->siglock);
1859 } while_each_thread(g, p);
1860 read_unlock(&tasklist_lock);
1861out_unlock:
1862 spin_unlock_bh(&css_set_lock);
1863}
1864
1865static void init_cgroup_housekeeping(struct cgroup *cgrp)
1866{
1867 struct cgroup_subsys *ss;
1868 int ssid;
1869
1870 INIT_LIST_HEAD(&cgrp->self.sibling);
1871 INIT_LIST_HEAD(&cgrp->self.children);
1872 INIT_LIST_HEAD(&cgrp->cset_links);
1873 INIT_LIST_HEAD(&cgrp->pidlists);
1874 mutex_init(&cgrp->pidlist_mutex);
1875 cgrp->self.cgroup = cgrp;
1876 cgrp->self.flags |= CSS_ONLINE;
1877
1878 for_each_subsys(ss, ssid)
1879 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1880
1881 init_waitqueue_head(&cgrp->offline_waitq);
1882 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1883}
1884
1885static void init_cgroup_root(struct cgroup_root *root,
1886 struct cgroup_sb_opts *opts)
1887{
1888 struct cgroup *cgrp = &root->cgrp;
1889
1890 INIT_LIST_HEAD(&root->root_list);
1891 atomic_set(&root->nr_cgrps, 1);
1892 cgrp->root = root;
1893 init_cgroup_housekeeping(cgrp);
1894 idr_init(&root->cgroup_idr);
1895
1896 root->flags = opts->flags;
1897 if (opts->release_agent)
1898 strcpy(root->release_agent_path, opts->release_agent);
1899 if (opts->name)
1900 strcpy(root->name, opts->name);
1901 if (opts->cpuset_clone_children)
1902 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1903}
1904
1905static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1906{
1907 LIST_HEAD(tmp_links);
1908 struct cgroup *root_cgrp = &root->cgrp;
1909 struct css_set *cset;
1910 int i, ret;
1911
1912 lockdep_assert_held(&cgroup_mutex);
1913
1914 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1915 if (ret < 0)
1916 goto out;
1917 root_cgrp->id = ret;
1918 root_cgrp->ancestor_ids[0] = ret;
1919
1920 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1921 GFP_KERNEL);
1922 if (ret)
1923 goto out;
1924
1925 /*
1926 * We're accessing css_set_count without locking css_set_lock here,
1927 * but that's OK - it can only be increased by someone holding
1928 * cgroup_lock, and that's us. The worst that can happen is that we
1929 * have some link structures left over
1930 */
1931 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1932 if (ret)
1933 goto cancel_ref;
1934
1935 ret = cgroup_init_root_id(root);
1936 if (ret)
1937 goto cancel_ref;
1938
1939 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1940 KERNFS_ROOT_CREATE_DEACTIVATED,
1941 root_cgrp);
1942 if (IS_ERR(root->kf_root)) {
1943 ret = PTR_ERR(root->kf_root);
1944 goto exit_root_id;
1945 }
1946 root_cgrp->kn = root->kf_root->kn;
1947
1948 ret = css_populate_dir(&root_cgrp->self, NULL);
1949 if (ret)
1950 goto destroy_root;
1951
1952 ret = rebind_subsystems(root, ss_mask);
1953 if (ret)
1954 goto destroy_root;
1955
1956 /*
1957 * There must be no failure case after here, since rebinding takes
1958 * care of subsystems' refcounts, which are explicitly dropped in
1959 * the failure exit path.
1960 */
1961 list_add(&root->root_list, &cgroup_roots);
1962 cgroup_root_count++;
1963
1964 /*
1965 * Link the root cgroup in this hierarchy into all the css_set
1966 * objects.
1967 */
1968 spin_lock_bh(&css_set_lock);
1969 hash_for_each(css_set_table, i, cset, hlist) {
1970 link_css_set(&tmp_links, cset, root_cgrp);
1971 if (css_set_populated(cset))
1972 cgroup_update_populated(root_cgrp, true);
1973 }
1974 spin_unlock_bh(&css_set_lock);
1975
1976 BUG_ON(!list_empty(&root_cgrp->self.children));
1977 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1978
1979 kernfs_activate(root_cgrp->kn);
1980 ret = 0;
1981 goto out;
1982
1983destroy_root:
1984 kernfs_destroy_root(root->kf_root);
1985 root->kf_root = NULL;
1986exit_root_id:
1987 cgroup_exit_root_id(root);
1988cancel_ref:
1989 percpu_ref_exit(&root_cgrp->self.refcnt);
1990out:
1991 free_cgrp_cset_links(&tmp_links);
1992 return ret;
1993}
1994
1995static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1996 int flags, const char *unused_dev_name,
1997 void *data)
1998{
1999 bool is_v2 = fs_type == &cgroup2_fs_type;
2000 struct super_block *pinned_sb = NULL;
2001 struct cgroup_subsys *ss;
2002 struct cgroup_root *root;
2003 struct cgroup_sb_opts opts;
2004 struct dentry *dentry;
2005 int ret;
2006 int i;
2007 bool new_sb;
2008
2009 /*
2010 * The first time anyone tries to mount a cgroup, enable the list
2011 * linking each css_set to its tasks and fix up all existing tasks.
2012 */
2013 if (!use_task_css_set_links)
2014 cgroup_enable_task_cg_lists();
2015
2016 if (is_v2) {
2017 if (data) {
2018 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2019 return ERR_PTR(-EINVAL);
2020 }
2021 cgrp_dfl_visible = true;
2022 root = &cgrp_dfl_root;
2023 cgroup_get(&root->cgrp);
2024 goto out_mount;
2025 }
2026
2027 mutex_lock(&cgroup_mutex);
2028
2029 /* First find the desired set of subsystems */
2030 ret = parse_cgroupfs_options(data, &opts);
2031 if (ret)
2032 goto out_unlock;
2033
2034 /*
2035 * Destruction of cgroup root is asynchronous, so subsystems may
2036 * still be dying after the previous unmount. Let's drain the
2037 * dying subsystems. We just need to ensure that the ones
2038 * unmounted previously finish dying and don't care about new ones
2039 * starting. Testing ref liveliness is good enough.
2040 */
2041 for_each_subsys(ss, i) {
2042 if (!(opts.subsys_mask & (1 << i)) ||
2043 ss->root == &cgrp_dfl_root)
2044 continue;
2045
2046 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2047 mutex_unlock(&cgroup_mutex);
2048 msleep(10);
2049 ret = restart_syscall();
2050 goto out_free;
2051 }
2052 cgroup_put(&ss->root->cgrp);
2053 }
2054
2055 for_each_root(root) {
2056 bool name_match = false;
2057
2058 if (root == &cgrp_dfl_root)
2059 continue;
2060
2061 /*
2062 * If we asked for a name then it must match. Also, if
2063 * name matches but sybsys_mask doesn't, we should fail.
2064 * Remember whether name matched.
2065 */
2066 if (opts.name) {
2067 if (strcmp(opts.name, root->name))
2068 continue;
2069 name_match = true;
2070 }
2071
2072 /*
2073 * If we asked for subsystems (or explicitly for no
2074 * subsystems) then they must match.
2075 */
2076 if ((opts.subsys_mask || opts.none) &&
2077 (opts.subsys_mask != root->subsys_mask)) {
2078 if (!name_match)
2079 continue;
2080 ret = -EBUSY;
2081 goto out_unlock;
2082 }
2083
2084 if (root->flags ^ opts.flags)
2085 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2086
2087 /*
2088 * We want to reuse @root whose lifetime is governed by its
2089 * ->cgrp. Let's check whether @root is alive and keep it
2090 * that way. As cgroup_kill_sb() can happen anytime, we
2091 * want to block it by pinning the sb so that @root doesn't
2092 * get killed before mount is complete.
2093 *
2094 * With the sb pinned, tryget_live can reliably indicate
2095 * whether @root can be reused. If it's being killed,
2096 * drain it. We can use wait_queue for the wait but this
2097 * path is super cold. Let's just sleep a bit and retry.
2098 */
2099 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2100 if (IS_ERR(pinned_sb) ||
2101 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2102 mutex_unlock(&cgroup_mutex);
2103 if (!IS_ERR_OR_NULL(pinned_sb))
2104 deactivate_super(pinned_sb);
2105 msleep(10);
2106 ret = restart_syscall();
2107 goto out_free;
2108 }
2109
2110 ret = 0;
2111 goto out_unlock;
2112 }
2113
2114 /*
2115 * No such thing, create a new one. name= matching without subsys
2116 * specification is allowed for already existing hierarchies but we
2117 * can't create new one without subsys specification.
2118 */
2119 if (!opts.subsys_mask && !opts.none) {
2120 ret = -EINVAL;
2121 goto out_unlock;
2122 }
2123
2124 root = kzalloc(sizeof(*root), GFP_KERNEL);
2125 if (!root) {
2126 ret = -ENOMEM;
2127 goto out_unlock;
2128 }
2129
2130 init_cgroup_root(root, &opts);
2131
2132 ret = cgroup_setup_root(root, opts.subsys_mask);
2133 if (ret)
2134 cgroup_free_root(root);
2135
2136out_unlock:
2137 mutex_unlock(&cgroup_mutex);
2138out_free:
2139 kfree(opts.release_agent);
2140 kfree(opts.name);
2141
2142 if (ret)
2143 return ERR_PTR(ret);
2144out_mount:
2145 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2146 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2147 &new_sb);
2148 if (IS_ERR(dentry) || !new_sb)
2149 cgroup_put(&root->cgrp);
2150
2151 /*
2152 * If @pinned_sb, we're reusing an existing root and holding an
2153 * extra ref on its sb. Mount is complete. Put the extra ref.
2154 */
2155 if (pinned_sb) {
2156 WARN_ON(new_sb);
2157 deactivate_super(pinned_sb);
2158 }
2159
2160 return dentry;
2161}
2162
2163static void cgroup_kill_sb(struct super_block *sb)
2164{
2165 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2166 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2167
2168 /*
2169 * If @root doesn't have any mounts or children, start killing it.
2170 * This prevents new mounts by disabling percpu_ref_tryget_live().
2171 * cgroup_mount() may wait for @root's release.
2172 *
2173 * And don't kill the default root.
2174 */
2175 if (!list_empty(&root->cgrp.self.children) ||
2176 root == &cgrp_dfl_root)
2177 cgroup_put(&root->cgrp);
2178 else
2179 percpu_ref_kill(&root->cgrp.self.refcnt);
2180
2181 kernfs_kill_sb(sb);
2182}
2183
2184static struct file_system_type cgroup_fs_type = {
2185 .name = "cgroup",
2186 .mount = cgroup_mount,
2187 .kill_sb = cgroup_kill_sb,
2188};
2189
2190static struct file_system_type cgroup2_fs_type = {
2191 .name = "cgroup2",
2192 .mount = cgroup_mount,
2193 .kill_sb = cgroup_kill_sb,
2194};
2195
2196/**
2197 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2198 * @task: target task
2199 * @buf: the buffer to write the path into
2200 * @buflen: the length of the buffer
2201 *
2202 * Determine @task's cgroup on the first (the one with the lowest non-zero
2203 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2204 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2205 * cgroup controller callbacks.
2206 *
2207 * Return value is the same as kernfs_path().
2208 */
2209char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2210{
2211 struct cgroup_root *root;
2212 struct cgroup *cgrp;
2213 int hierarchy_id = 1;
2214 char *path = NULL;
2215
2216 mutex_lock(&cgroup_mutex);
2217 spin_lock_bh(&css_set_lock);
2218
2219 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2220
2221 if (root) {
2222 cgrp = task_cgroup_from_root(task, root);
2223 path = cgroup_path(cgrp, buf, buflen);
2224 } else {
2225 /* if no hierarchy exists, everyone is in "/" */
2226 if (strlcpy(buf, "/", buflen) < buflen)
2227 path = buf;
2228 }
2229
2230 spin_unlock_bh(&css_set_lock);
2231 mutex_unlock(&cgroup_mutex);
2232 return path;
2233}
2234EXPORT_SYMBOL_GPL(task_cgroup_path);
2235
2236/* used to track tasks and other necessary states during migration */
2237struct cgroup_taskset {
2238 /* the src and dst cset list running through cset->mg_node */
2239 struct list_head src_csets;
2240 struct list_head dst_csets;
2241
2242 /* the subsys currently being processed */
2243 int ssid;
2244
2245 /*
2246 * Fields for cgroup_taskset_*() iteration.
2247 *
2248 * Before migration is committed, the target migration tasks are on
2249 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2250 * the csets on ->dst_csets. ->csets point to either ->src_csets
2251 * or ->dst_csets depending on whether migration is committed.
2252 *
2253 * ->cur_csets and ->cur_task point to the current task position
2254 * during iteration.
2255 */
2256 struct list_head *csets;
2257 struct css_set *cur_cset;
2258 struct task_struct *cur_task;
2259};
2260
2261#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2262 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2263 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2264 .csets = &tset.src_csets, \
2265}
2266
2267/**
2268 * cgroup_taskset_add - try to add a migration target task to a taskset
2269 * @task: target task
2270 * @tset: target taskset
2271 *
2272 * Add @task, which is a migration target, to @tset. This function becomes
2273 * noop if @task doesn't need to be migrated. @task's css_set should have
2274 * been added as a migration source and @task->cg_list will be moved from
2275 * the css_set's tasks list to mg_tasks one.
2276 */
2277static void cgroup_taskset_add(struct task_struct *task,
2278 struct cgroup_taskset *tset)
2279{
2280 struct css_set *cset;
2281
2282 lockdep_assert_held(&css_set_lock);
2283
2284 /* @task either already exited or can't exit until the end */
2285 if (task->flags & PF_EXITING)
2286 return;
2287
2288 /* leave @task alone if post_fork() hasn't linked it yet */
2289 if (list_empty(&task->cg_list))
2290 return;
2291
2292 cset = task_css_set(task);
2293 if (!cset->mg_src_cgrp)
2294 return;
2295
2296 list_move_tail(&task->cg_list, &cset->mg_tasks);
2297 if (list_empty(&cset->mg_node))
2298 list_add_tail(&cset->mg_node, &tset->src_csets);
2299 if (list_empty(&cset->mg_dst_cset->mg_node))
2300 list_move_tail(&cset->mg_dst_cset->mg_node,
2301 &tset->dst_csets);
2302}
2303
2304/**
2305 * cgroup_taskset_first - reset taskset and return the first task
2306 * @tset: taskset of interest
2307 * @dst_cssp: output variable for the destination css
2308 *
2309 * @tset iteration is initialized and the first task is returned.
2310 */
2311struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2312 struct cgroup_subsys_state **dst_cssp)
2313{
2314 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2315 tset->cur_task = NULL;
2316
2317 return cgroup_taskset_next(tset, dst_cssp);
2318}
2319
2320/**
2321 * cgroup_taskset_next - iterate to the next task in taskset
2322 * @tset: taskset of interest
2323 * @dst_cssp: output variable for the destination css
2324 *
2325 * Return the next task in @tset. Iteration must have been initialized
2326 * with cgroup_taskset_first().
2327 */
2328struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2329 struct cgroup_subsys_state **dst_cssp)
2330{
2331 struct css_set *cset = tset->cur_cset;
2332 struct task_struct *task = tset->cur_task;
2333
2334 while (&cset->mg_node != tset->csets) {
2335 if (!task)
2336 task = list_first_entry(&cset->mg_tasks,
2337 struct task_struct, cg_list);
2338 else
2339 task = list_next_entry(task, cg_list);
2340
2341 if (&task->cg_list != &cset->mg_tasks) {
2342 tset->cur_cset = cset;
2343 tset->cur_task = task;
2344
2345 /*
2346 * This function may be called both before and
2347 * after cgroup_taskset_migrate(). The two cases
2348 * can be distinguished by looking at whether @cset
2349 * has its ->mg_dst_cset set.
2350 */
2351 if (cset->mg_dst_cset)
2352 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2353 else
2354 *dst_cssp = cset->subsys[tset->ssid];
2355
2356 return task;
2357 }
2358
2359 cset = list_next_entry(cset, mg_node);
2360 task = NULL;
2361 }
2362
2363 return NULL;
2364}
2365
2366/**
2367 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2368 * @tset: taget taskset
2369 * @dst_cgrp: destination cgroup
2370 *
2371 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2372 * ->can_attach callbacks fails and guarantees that either all or none of
2373 * the tasks in @tset are migrated. @tset is consumed regardless of
2374 * success.
2375 */
2376static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2377 struct cgroup *dst_cgrp)
2378{
2379 struct cgroup_subsys_state *css, *failed_css = NULL;
2380 struct task_struct *task, *tmp_task;
2381 struct css_set *cset, *tmp_cset;
2382 int i, ret;
2383
2384 /* methods shouldn't be called if no task is actually migrating */
2385 if (list_empty(&tset->src_csets))
2386 return 0;
2387
2388 /* check that we can legitimately attach to the cgroup */
2389 for_each_e_css(css, i, dst_cgrp) {
2390 if (css->ss->can_attach) {
2391 tset->ssid = i;
2392 ret = css->ss->can_attach(tset);
2393 if (ret) {
2394 failed_css = css;
2395 goto out_cancel_attach;
2396 }
2397 }
2398 }
2399
2400 /*
2401 * Now that we're guaranteed success, proceed to move all tasks to
2402 * the new cgroup. There are no failure cases after here, so this
2403 * is the commit point.
2404 */
2405 spin_lock_bh(&css_set_lock);
2406 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2407 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2408 struct css_set *from_cset = task_css_set(task);
2409 struct css_set *to_cset = cset->mg_dst_cset;
2410
2411 get_css_set(to_cset);
2412 css_set_move_task(task, from_cset, to_cset, true);
2413 put_css_set_locked(from_cset);
2414 }
2415 }
2416 spin_unlock_bh(&css_set_lock);
2417
2418 /*
2419 * Migration is committed, all target tasks are now on dst_csets.
2420 * Nothing is sensitive to fork() after this point. Notify
2421 * controllers that migration is complete.
2422 */
2423 tset->csets = &tset->dst_csets;
2424
2425 for_each_e_css(css, i, dst_cgrp) {
2426 if (css->ss->attach) {
2427 tset->ssid = i;
2428 css->ss->attach(tset);
2429 }
2430 }
2431
2432 ret = 0;
2433 goto out_release_tset;
2434
2435out_cancel_attach:
2436 for_each_e_css(css, i, dst_cgrp) {
2437 if (css == failed_css)
2438 break;
2439 if (css->ss->cancel_attach) {
2440 tset->ssid = i;
2441 css->ss->cancel_attach(tset);
2442 }
2443 }
2444out_release_tset:
2445 spin_lock_bh(&css_set_lock);
2446 list_splice_init(&tset->dst_csets, &tset->src_csets);
2447 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2448 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2449 list_del_init(&cset->mg_node);
2450 }
2451 spin_unlock_bh(&css_set_lock);
2452 return ret;
2453}
2454
2455/**
2456 * cgroup_migrate_finish - cleanup after attach
2457 * @preloaded_csets: list of preloaded css_sets
2458 *
2459 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2460 * those functions for details.
2461 */
2462static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2463{
2464 struct css_set *cset, *tmp_cset;
2465
2466 lockdep_assert_held(&cgroup_mutex);
2467
2468 spin_lock_bh(&css_set_lock);
2469 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2470 cset->mg_src_cgrp = NULL;
2471 cset->mg_dst_cset = NULL;
2472 list_del_init(&cset->mg_preload_node);
2473 put_css_set_locked(cset);
2474 }
2475 spin_unlock_bh(&css_set_lock);
2476}
2477
2478/**
2479 * cgroup_migrate_add_src - add a migration source css_set
2480 * @src_cset: the source css_set to add
2481 * @dst_cgrp: the destination cgroup
2482 * @preloaded_csets: list of preloaded css_sets
2483 *
2484 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2485 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2486 * up by cgroup_migrate_finish().
2487 *
2488 * This function may be called without holding cgroup_threadgroup_rwsem
2489 * even if the target is a process. Threads may be created and destroyed
2490 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2491 * into play and the preloaded css_sets are guaranteed to cover all
2492 * migrations.
2493 */
2494static void cgroup_migrate_add_src(struct css_set *src_cset,
2495 struct cgroup *dst_cgrp,
2496 struct list_head *preloaded_csets)
2497{
2498 struct cgroup *src_cgrp;
2499
2500 lockdep_assert_held(&cgroup_mutex);
2501 lockdep_assert_held(&css_set_lock);
2502
2503 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2504
2505 if (!list_empty(&src_cset->mg_preload_node))
2506 return;
2507
2508 WARN_ON(src_cset->mg_src_cgrp);
2509 WARN_ON(!list_empty(&src_cset->mg_tasks));
2510 WARN_ON(!list_empty(&src_cset->mg_node));
2511
2512 src_cset->mg_src_cgrp = src_cgrp;
2513 get_css_set(src_cset);
2514 list_add(&src_cset->mg_preload_node, preloaded_csets);
2515}
2516
2517/**
2518 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2519 * @dst_cgrp: the destination cgroup (may be %NULL)
2520 * @preloaded_csets: list of preloaded source css_sets
2521 *
2522 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2523 * have been preloaded to @preloaded_csets. This function looks up and
2524 * pins all destination css_sets, links each to its source, and append them
2525 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2526 * source css_set is assumed to be its cgroup on the default hierarchy.
2527 *
2528 * This function must be called after cgroup_migrate_add_src() has been
2529 * called on each migration source css_set. After migration is performed
2530 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2531 * @preloaded_csets.
2532 */
2533static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2534 struct list_head *preloaded_csets)
2535{
2536 LIST_HEAD(csets);
2537 struct css_set *src_cset, *tmp_cset;
2538
2539 lockdep_assert_held(&cgroup_mutex);
2540
2541 /*
2542 * Except for the root, subtree_control must be zero for a cgroup
2543 * with tasks so that child cgroups don't compete against tasks.
2544 */
2545 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2546 dst_cgrp->subtree_control)
2547 return -EBUSY;
2548
2549 /* look up the dst cset for each src cset and link it to src */
2550 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2551 struct css_set *dst_cset;
2552
2553 dst_cset = find_css_set(src_cset,
2554 dst_cgrp ?: src_cset->dfl_cgrp);
2555 if (!dst_cset)
2556 goto err;
2557
2558 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2559
2560 /*
2561 * If src cset equals dst, it's noop. Drop the src.
2562 * cgroup_migrate() will skip the cset too. Note that we
2563 * can't handle src == dst as some nodes are used by both.
2564 */
2565 if (src_cset == dst_cset) {
2566 src_cset->mg_src_cgrp = NULL;
2567 list_del_init(&src_cset->mg_preload_node);
2568 put_css_set(src_cset);
2569 put_css_set(dst_cset);
2570 continue;
2571 }
2572
2573 src_cset->mg_dst_cset = dst_cset;
2574
2575 if (list_empty(&dst_cset->mg_preload_node))
2576 list_add(&dst_cset->mg_preload_node, &csets);
2577 else
2578 put_css_set(dst_cset);
2579 }
2580
2581 list_splice_tail(&csets, preloaded_csets);
2582 return 0;
2583err:
2584 cgroup_migrate_finish(&csets);
2585 return -ENOMEM;
2586}
2587
2588/**
2589 * cgroup_migrate - migrate a process or task to a cgroup
2590 * @leader: the leader of the process or the task to migrate
2591 * @threadgroup: whether @leader points to the whole process or a single task
2592 * @cgrp: the destination cgroup
2593 *
2594 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2595 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2596 * caller is also responsible for invoking cgroup_migrate_add_src() and
2597 * cgroup_migrate_prepare_dst() on the targets before invoking this
2598 * function and following up with cgroup_migrate_finish().
2599 *
2600 * As long as a controller's ->can_attach() doesn't fail, this function is
2601 * guaranteed to succeed. This means that, excluding ->can_attach()
2602 * failure, when migrating multiple targets, the success or failure can be
2603 * decided for all targets by invoking group_migrate_prepare_dst() before
2604 * actually starting migrating.
2605 */
2606static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2607 struct cgroup *cgrp)
2608{
2609 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2610 struct task_struct *task;
2611
2612 /*
2613 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2614 * already PF_EXITING could be freed from underneath us unless we
2615 * take an rcu_read_lock.
2616 */
2617 spin_lock_bh(&css_set_lock);
2618 rcu_read_lock();
2619 task = leader;
2620 do {
2621 cgroup_taskset_add(task, &tset);
2622 if (!threadgroup)
2623 break;
2624 } while_each_thread(leader, task);
2625 rcu_read_unlock();
2626 spin_unlock_bh(&css_set_lock);
2627
2628 return cgroup_taskset_migrate(&tset, cgrp);
2629}
2630
2631/**
2632 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2633 * @dst_cgrp: the cgroup to attach to
2634 * @leader: the task or the leader of the threadgroup to be attached
2635 * @threadgroup: attach the whole threadgroup?
2636 *
2637 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2638 */
2639static int cgroup_attach_task(struct cgroup *dst_cgrp,
2640 struct task_struct *leader, bool threadgroup)
2641{
2642 LIST_HEAD(preloaded_csets);
2643 struct task_struct *task;
2644 int ret;
2645
2646 /* look up all src csets */
2647 spin_lock_bh(&css_set_lock);
2648 rcu_read_lock();
2649 task = leader;
2650 do {
2651 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2652 &preloaded_csets);
2653 if (!threadgroup)
2654 break;
2655 } while_each_thread(leader, task);
2656 rcu_read_unlock();
2657 spin_unlock_bh(&css_set_lock);
2658
2659 /* prepare dst csets and commit */
2660 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2661 if (!ret)
2662 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2663
2664 cgroup_migrate_finish(&preloaded_csets);
2665 return ret;
2666}
2667
2668static int cgroup_procs_write_permission(struct task_struct *task,
2669 struct cgroup *dst_cgrp,
2670 struct kernfs_open_file *of)
2671{
2672 const struct cred *cred = current_cred();
2673 const struct cred *tcred = get_task_cred(task);
2674 int ret = 0;
2675
2676 /*
2677 * even if we're attaching all tasks in the thread group, we only
2678 * need to check permissions on one of them.
2679 */
2680 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2681 !uid_eq(cred->euid, tcred->uid) &&
2682 !uid_eq(cred->euid, tcred->suid))
2683 ret = -EACCES;
2684
2685 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2686 struct super_block *sb = of->file->f_path.dentry->d_sb;
2687 struct cgroup *cgrp;
2688 struct inode *inode;
2689
2690 spin_lock_bh(&css_set_lock);
2691 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2692 spin_unlock_bh(&css_set_lock);
2693
2694 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2695 cgrp = cgroup_parent(cgrp);
2696
2697 ret = -ENOMEM;
2698 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2699 if (inode) {
2700 ret = inode_permission(inode, MAY_WRITE);
2701 iput(inode);
2702 }
2703 }
2704
2705 put_cred(tcred);
2706 return ret;
2707}
2708
2709/*
2710 * Find the task_struct of the task to attach by vpid and pass it along to the
2711 * function to attach either it or all tasks in its threadgroup. Will lock
2712 * cgroup_mutex and threadgroup.
2713 */
2714static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2715 size_t nbytes, loff_t off, bool threadgroup)
2716{
2717 struct task_struct *tsk;
2718 struct cgroup *cgrp;
2719 pid_t pid;
2720 int ret;
2721
2722 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2723 return -EINVAL;
2724
2725 cgrp = cgroup_kn_lock_live(of->kn);
2726 if (!cgrp)
2727 return -ENODEV;
2728
2729 percpu_down_write(&cgroup_threadgroup_rwsem);
2730 rcu_read_lock();
2731 if (pid) {
2732 tsk = find_task_by_vpid(pid);
2733 if (!tsk) {
2734 ret = -ESRCH;
2735 goto out_unlock_rcu;
2736 }
2737 } else {
2738 tsk = current;
2739 }
2740
2741 if (threadgroup)
2742 tsk = tsk->group_leader;
2743
2744 /*
2745 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2746 * trapped in a cpuset, or RT worker may be born in a cgroup
2747 * with no rt_runtime allocated. Just say no.
2748 */
2749 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2750 ret = -EINVAL;
2751 goto out_unlock_rcu;
2752 }
2753
2754 get_task_struct(tsk);
2755 rcu_read_unlock();
2756
2757 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2758 if (!ret)
2759 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2760
2761 put_task_struct(tsk);
2762 goto out_unlock_threadgroup;
2763
2764out_unlock_rcu:
2765 rcu_read_unlock();
2766out_unlock_threadgroup:
2767 percpu_up_write(&cgroup_threadgroup_rwsem);
2768 cgroup_kn_unlock(of->kn);
2769 cpuset_post_attach_flush();
2770 return ret ?: nbytes;
2771}
2772
2773/**
2774 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2775 * @from: attach to all cgroups of a given task
2776 * @tsk: the task to be attached
2777 */
2778int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2779{
2780 struct cgroup_root *root;
2781 int retval = 0;
2782
2783 mutex_lock(&cgroup_mutex);
2784 for_each_root(root) {
2785 struct cgroup *from_cgrp;
2786
2787 if (root == &cgrp_dfl_root)
2788 continue;
2789
2790 spin_lock_bh(&css_set_lock);
2791 from_cgrp = task_cgroup_from_root(from, root);
2792 spin_unlock_bh(&css_set_lock);
2793
2794 retval = cgroup_attach_task(from_cgrp, tsk, false);
2795 if (retval)
2796 break;
2797 }
2798 mutex_unlock(&cgroup_mutex);
2799
2800 return retval;
2801}
2802EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2803
2804static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2805 char *buf, size_t nbytes, loff_t off)
2806{
2807 return __cgroup_procs_write(of, buf, nbytes, off, false);
2808}
2809
2810static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2811 char *buf, size_t nbytes, loff_t off)
2812{
2813 return __cgroup_procs_write(of, buf, nbytes, off, true);
2814}
2815
2816static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2817 char *buf, size_t nbytes, loff_t off)
2818{
2819 struct cgroup *cgrp;
2820
2821 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2822
2823 cgrp = cgroup_kn_lock_live(of->kn);
2824 if (!cgrp)
2825 return -ENODEV;
2826 spin_lock(&release_agent_path_lock);
2827 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2828 sizeof(cgrp->root->release_agent_path));
2829 spin_unlock(&release_agent_path_lock);
2830 cgroup_kn_unlock(of->kn);
2831 return nbytes;
2832}
2833
2834static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2835{
2836 struct cgroup *cgrp = seq_css(seq)->cgroup;
2837
2838 spin_lock(&release_agent_path_lock);
2839 seq_puts(seq, cgrp->root->release_agent_path);
2840 spin_unlock(&release_agent_path_lock);
2841 seq_putc(seq, '\n');
2842 return 0;
2843}
2844
2845static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2846{
2847 seq_puts(seq, "0\n");
2848 return 0;
2849}
2850
2851static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2852{
2853 struct cgroup_subsys *ss;
2854 bool printed = false;
2855 int ssid;
2856
2857 do_each_subsys_mask(ss, ssid, ss_mask) {
2858 if (printed)
2859 seq_putc(seq, ' ');
2860 seq_printf(seq, "%s", ss->name);
2861 printed = true;
2862 } while_each_subsys_mask();
2863 if (printed)
2864 seq_putc(seq, '\n');
2865}
2866
2867/* show controllers which are currently attached to the default hierarchy */
2868static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2869{
2870 struct cgroup *cgrp = seq_css(seq)->cgroup;
2871
2872 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2873 ~cgrp_dfl_inhibit_ss_mask);
2874 return 0;
2875}
2876
2877/* show controllers which are enabled from the parent */
2878static int cgroup_controllers_show(struct seq_file *seq, void *v)
2879{
2880 struct cgroup *cgrp = seq_css(seq)->cgroup;
2881
2882 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2883 return 0;
2884}
2885
2886/* show controllers which are enabled for a given cgroup's children */
2887static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2888{
2889 struct cgroup *cgrp = seq_css(seq)->cgroup;
2890
2891 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2892 return 0;
2893}
2894
2895/**
2896 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2897 * @cgrp: root of the subtree to update csses for
2898 *
2899 * @cgrp's subtree_ss_mask has changed and its subtree's (self excluded)
2900 * css associations need to be updated accordingly. This function looks up
2901 * all css_sets which are attached to the subtree, creates the matching
2902 * updated css_sets and migrates the tasks to the new ones.
2903 */
2904static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2905{
2906 LIST_HEAD(preloaded_csets);
2907 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2908 struct cgroup_subsys_state *css;
2909 struct css_set *src_cset;
2910 int ret;
2911
2912 lockdep_assert_held(&cgroup_mutex);
2913
2914 percpu_down_write(&cgroup_threadgroup_rwsem);
2915
2916 /* look up all csses currently attached to @cgrp's subtree */
2917 spin_lock_bh(&css_set_lock);
2918 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2919 struct cgrp_cset_link *link;
2920
2921 /* self is not affected by subtree_ss_mask change */
2922 if (css->cgroup == cgrp)
2923 continue;
2924
2925 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2926 cgroup_migrate_add_src(link->cset, cgrp,
2927 &preloaded_csets);
2928 }
2929 spin_unlock_bh(&css_set_lock);
2930
2931 /* NULL dst indicates self on default hierarchy */
2932 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2933 if (ret)
2934 goto out_finish;
2935
2936 spin_lock_bh(&css_set_lock);
2937 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2938 struct task_struct *task, *ntask;
2939
2940 /* src_csets precede dst_csets, break on the first dst_cset */
2941 if (!src_cset->mg_src_cgrp)
2942 break;
2943
2944 /* all tasks in src_csets need to be migrated */
2945 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2946 cgroup_taskset_add(task, &tset);
2947 }
2948 spin_unlock_bh(&css_set_lock);
2949
2950 ret = cgroup_taskset_migrate(&tset, cgrp);
2951out_finish:
2952 cgroup_migrate_finish(&preloaded_csets);
2953 percpu_up_write(&cgroup_threadgroup_rwsem);
2954 return ret;
2955}
2956
2957/* change the enabled child controllers for a cgroup in the default hierarchy */
2958static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2959 char *buf, size_t nbytes,
2960 loff_t off)
2961{
2962 u16 enable = 0, disable = 0;
2963 u16 css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2964 struct cgroup *cgrp, *child;
2965 struct cgroup_subsys *ss;
2966 char *tok;
2967 int ssid, ret;
2968
2969 /*
2970 * Parse input - space separated list of subsystem names prefixed
2971 * with either + or -.
2972 */
2973 buf = strstrip(buf);
2974 while ((tok = strsep(&buf, " "))) {
2975 if (tok[0] == '\0')
2976 continue;
2977 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
2978 if (!cgroup_ssid_enabled(ssid) ||
2979 strcmp(tok + 1, ss->name))
2980 continue;
2981
2982 if (*tok == '+') {
2983 enable |= 1 << ssid;
2984 disable &= ~(1 << ssid);
2985 } else if (*tok == '-') {
2986 disable |= 1 << ssid;
2987 enable &= ~(1 << ssid);
2988 } else {
2989 return -EINVAL;
2990 }
2991 break;
2992 } while_each_subsys_mask();
2993 if (ssid == CGROUP_SUBSYS_COUNT)
2994 return -EINVAL;
2995 }
2996
2997 cgrp = cgroup_kn_lock_live(of->kn);
2998 if (!cgrp)
2999 return -ENODEV;
3000
3001 for_each_subsys(ss, ssid) {
3002 if (enable & (1 << ssid)) {
3003 if (cgrp->subtree_control & (1 << ssid)) {
3004 enable &= ~(1 << ssid);
3005 continue;
3006 }
3007
3008 /* unavailable or not enabled on the parent? */
3009 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3010 (cgroup_parent(cgrp) &&
3011 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3012 ret = -ENOENT;
3013 goto out_unlock;
3014 }
3015 } else if (disable & (1 << ssid)) {
3016 if (!(cgrp->subtree_control & (1 << ssid))) {
3017 disable &= ~(1 << ssid);
3018 continue;
3019 }
3020
3021 /* a child has it enabled? */
3022 cgroup_for_each_live_child(child, cgrp) {
3023 if (child->subtree_control & (1 << ssid)) {
3024 ret = -EBUSY;
3025 goto out_unlock;
3026 }
3027 }
3028 }
3029 }
3030
3031 if (!enable && !disable) {
3032 ret = 0;
3033 goto out_unlock;
3034 }
3035
3036 /*
3037 * Except for the root, subtree_control must be zero for a cgroup
3038 * with tasks so that child cgroups don't compete against tasks.
3039 */
3040 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3041 ret = -EBUSY;
3042 goto out_unlock;
3043 }
3044
3045 /*
3046 * Update subsys masks and calculate what needs to be done. More
3047 * subsystems than specified may need to be enabled or disabled
3048 * depending on subsystem dependencies.
3049 */
3050 old_sc = cgrp->subtree_control;
3051 old_ss = cgrp->subtree_ss_mask;
3052 new_sc = (old_sc | enable) & ~disable;
3053 new_ss = cgroup_calc_subtree_ss_mask(cgrp, new_sc);
3054
3055 css_enable = ~old_ss & new_ss;
3056 css_disable = old_ss & ~new_ss;
3057 enable |= css_enable;
3058 disable |= css_disable;
3059
3060 /*
3061 * Because css offlining is asynchronous, userland might try to
3062 * re-enable the same controller while the previous instance is
3063 * still around. In such cases, wait till it's gone using
3064 * offline_waitq.
3065 */
3066 do_each_subsys_mask(ss, ssid, css_enable) {
3067 cgroup_for_each_live_child(child, cgrp) {
3068 DEFINE_WAIT(wait);
3069
3070 if (!cgroup_css(child, ss))
3071 continue;
3072
3073 cgroup_get(child);
3074 prepare_to_wait(&child->offline_waitq, &wait,
3075 TASK_UNINTERRUPTIBLE);
3076 cgroup_kn_unlock(of->kn);
3077 schedule();
3078 finish_wait(&child->offline_waitq, &wait);
3079 cgroup_put(child);
3080
3081 return restart_syscall();
3082 }
3083 } while_each_subsys_mask();
3084
3085 cgrp->subtree_control = new_sc;
3086 cgrp->subtree_ss_mask = new_ss;
3087
3088 /*
3089 * Create new csses or make the existing ones visible. A css is
3090 * created invisible if it's being implicitly enabled through
3091 * dependency. An invisible css is made visible when the userland
3092 * explicitly enables it.
3093 */
3094 do_each_subsys_mask(ss, ssid, enable) {
3095 cgroup_for_each_live_child(child, cgrp) {
3096 if (css_enable & (1 << ssid)) {
3097 struct cgroup_subsys_state *css;
3098
3099 css = css_create(child, ss);
3100 if (IS_ERR(css)) {
3101 ret = PTR_ERR(css);
3102 goto err_undo_css;
3103 }
3104
3105 if (cgrp->subtree_control & (1 << ssid)) {
3106 ret = css_populate_dir(css, NULL);
3107 if (ret)
3108 goto err_undo_css;
3109 }
3110 } else {
3111 ret = css_populate_dir(cgroup_css(child, ss),
3112 NULL);
3113 if (ret)
3114 goto err_undo_css;
3115 }
3116 }
3117 } while_each_subsys_mask();
3118
3119 /*
3120 * At this point, cgroup_e_css() results reflect the new csses
3121 * making the following cgroup_update_dfl_csses() properly update
3122 * css associations of all tasks in the subtree.
3123 */
3124 ret = cgroup_update_dfl_csses(cgrp);
3125 if (ret)
3126 goto err_undo_css;
3127
3128 /*
3129 * All tasks are migrated out of disabled csses. Kill or hide
3130 * them. A css is hidden when the userland requests it to be
3131 * disabled while other subsystems are still depending on it. The
3132 * css must not actively control resources and be in the vanilla
3133 * state if it's made visible again later. Controllers which may
3134 * be depended upon should provide ->css_reset() for this purpose.
3135 */
3136 do_each_subsys_mask(ss, ssid, disable) {
3137 cgroup_for_each_live_child(child, cgrp) {
3138 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3139
3140 if (css_disable & (1 << ssid)) {
3141 kill_css(css);
3142 } else {
3143 css_clear_dir(css, NULL);
3144 if (ss->css_reset)
3145 ss->css_reset(css);
3146 }
3147 }
3148 } while_each_subsys_mask();
3149
3150 kernfs_activate(cgrp->kn);
3151 ret = 0;
3152out_unlock:
3153 cgroup_kn_unlock(of->kn);
3154 return ret ?: nbytes;
3155
3156err_undo_css:
3157 cgrp->subtree_control = old_sc;
3158 cgrp->subtree_ss_mask = old_ss;
3159
3160 do_each_subsys_mask(ss, ssid, enable) {
3161 cgroup_for_each_live_child(child, cgrp) {
3162 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3163
3164 if (!css)
3165 continue;
3166
3167 if (css_enable & (1 << ssid))
3168 kill_css(css);
3169 else
3170 css_clear_dir(css, NULL);
3171 }
3172 } while_each_subsys_mask();
3173 goto out_unlock;
3174}
3175
3176static int cgroup_events_show(struct seq_file *seq, void *v)
3177{
3178 seq_printf(seq, "populated %d\n",
3179 cgroup_is_populated(seq_css(seq)->cgroup));
3180 return 0;
3181}
3182
3183static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3184 size_t nbytes, loff_t off)
3185{
3186 struct cgroup *cgrp = of->kn->parent->priv;
3187 struct cftype *cft = of->kn->priv;
3188 struct cgroup_subsys_state *css;
3189 int ret;
3190
3191 if (cft->write)
3192 return cft->write(of, buf, nbytes, off);
3193
3194 /*
3195 * kernfs guarantees that a file isn't deleted with operations in
3196 * flight, which means that the matching css is and stays alive and
3197 * doesn't need to be pinned. The RCU locking is not necessary
3198 * either. It's just for the convenience of using cgroup_css().
3199 */
3200 rcu_read_lock();
3201 css = cgroup_css(cgrp, cft->ss);
3202 rcu_read_unlock();
3203
3204 if (cft->write_u64) {
3205 unsigned long long v;
3206 ret = kstrtoull(buf, 0, &v);
3207 if (!ret)
3208 ret = cft->write_u64(css, cft, v);
3209 } else if (cft->write_s64) {
3210 long long v;
3211 ret = kstrtoll(buf, 0, &v);
3212 if (!ret)
3213 ret = cft->write_s64(css, cft, v);
3214 } else {
3215 ret = -EINVAL;
3216 }
3217
3218 return ret ?: nbytes;
3219}
3220
3221static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3222{
3223 return seq_cft(seq)->seq_start(seq, ppos);
3224}
3225
3226static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3227{
3228 return seq_cft(seq)->seq_next(seq, v, ppos);
3229}
3230
3231static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3232{
3233 seq_cft(seq)->seq_stop(seq, v);
3234}
3235
3236static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3237{
3238 struct cftype *cft = seq_cft(m);
3239 struct cgroup_subsys_state *css = seq_css(m);
3240
3241 if (cft->seq_show)
3242 return cft->seq_show(m, arg);
3243
3244 if (cft->read_u64)
3245 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3246 else if (cft->read_s64)
3247 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3248 else
3249 return -EINVAL;
3250 return 0;
3251}
3252
3253static struct kernfs_ops cgroup_kf_single_ops = {
3254 .atomic_write_len = PAGE_SIZE,
3255 .write = cgroup_file_write,
3256 .seq_show = cgroup_seqfile_show,
3257};
3258
3259static struct kernfs_ops cgroup_kf_ops = {
3260 .atomic_write_len = PAGE_SIZE,
3261 .write = cgroup_file_write,
3262 .seq_start = cgroup_seqfile_start,
3263 .seq_next = cgroup_seqfile_next,
3264 .seq_stop = cgroup_seqfile_stop,
3265 .seq_show = cgroup_seqfile_show,
3266};
3267
3268/*
3269 * cgroup_rename - Only allow simple rename of directories in place.
3270 */
3271static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3272 const char *new_name_str)
3273{
3274 struct cgroup *cgrp = kn->priv;
3275 int ret;
3276
3277 if (kernfs_type(kn) != KERNFS_DIR)
3278 return -ENOTDIR;
3279 if (kn->parent != new_parent)
3280 return -EIO;
3281
3282 /*
3283 * This isn't a proper migration and its usefulness is very
3284 * limited. Disallow on the default hierarchy.
3285 */
3286 if (cgroup_on_dfl(cgrp))
3287 return -EPERM;
3288
3289 /*
3290 * We're gonna grab cgroup_mutex which nests outside kernfs
3291 * active_ref. kernfs_rename() doesn't require active_ref
3292 * protection. Break them before grabbing cgroup_mutex.
3293 */
3294 kernfs_break_active_protection(new_parent);
3295 kernfs_break_active_protection(kn);
3296
3297 mutex_lock(&cgroup_mutex);
3298
3299 ret = kernfs_rename(kn, new_parent, new_name_str);
3300
3301 mutex_unlock(&cgroup_mutex);
3302
3303 kernfs_unbreak_active_protection(kn);
3304 kernfs_unbreak_active_protection(new_parent);
3305 return ret;
3306}
3307
3308/* set uid and gid of cgroup dirs and files to that of the creator */
3309static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3310{
3311 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3312 .ia_uid = current_fsuid(),
3313 .ia_gid = current_fsgid(), };
3314
3315 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3316 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3317 return 0;
3318
3319 return kernfs_setattr(kn, &iattr);
3320}
3321
3322static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3323 struct cftype *cft)
3324{
3325 char name[CGROUP_FILE_NAME_MAX];
3326 struct kernfs_node *kn;
3327 struct lock_class_key *key = NULL;
3328 int ret;
3329
3330#ifdef CONFIG_DEBUG_LOCK_ALLOC
3331 key = &cft->lockdep_key;
3332#endif
3333 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3334 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3335 NULL, key);
3336 if (IS_ERR(kn))
3337 return PTR_ERR(kn);
3338
3339 ret = cgroup_kn_set_ugid(kn);
3340 if (ret) {
3341 kernfs_remove(kn);
3342 return ret;
3343 }
3344
3345 if (cft->file_offset) {
3346 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3347
3348 spin_lock_irq(&cgroup_file_kn_lock);
3349 cfile->kn = kn;
3350 spin_unlock_irq(&cgroup_file_kn_lock);
3351 }
3352
3353 return 0;
3354}
3355
3356/**
3357 * cgroup_addrm_files - add or remove files to a cgroup directory
3358 * @css: the target css
3359 * @cgrp: the target cgroup (usually css->cgroup)
3360 * @cfts: array of cftypes to be added
3361 * @is_add: whether to add or remove
3362 *
3363 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3364 * For removals, this function never fails.
3365 */
3366static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3367 struct cgroup *cgrp, struct cftype cfts[],
3368 bool is_add)
3369{
3370 struct cftype *cft, *cft_end = NULL;
3371 int ret = 0;
3372
3373 lockdep_assert_held(&cgroup_mutex);
3374
3375restart:
3376 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3377 /* does cft->flags tell us to skip this file on @cgrp? */
3378 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3379 continue;
3380 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3381 continue;
3382 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3383 continue;
3384 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3385 continue;
3386
3387 if (is_add) {
3388 ret = cgroup_add_file(css, cgrp, cft);
3389 if (ret) {
3390 pr_warn("%s: failed to add %s, err=%d\n",
3391 __func__, cft->name, ret);
3392 cft_end = cft;
3393 is_add = false;
3394 goto restart;
3395 }
3396 } else {
3397 cgroup_rm_file(cgrp, cft);
3398 }
3399 }
3400 return ret;
3401}
3402
3403static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3404{
3405 LIST_HEAD(pending);
3406 struct cgroup_subsys *ss = cfts[0].ss;
3407 struct cgroup *root = &ss->root->cgrp;
3408 struct cgroup_subsys_state *css;
3409 int ret = 0;
3410
3411 lockdep_assert_held(&cgroup_mutex);
3412
3413 /* add/rm files for all cgroups created before */
3414 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3415 struct cgroup *cgrp = css->cgroup;
3416
3417 if (!(css->flags & CSS_VISIBLE))
3418 continue;
3419
3420 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3421 if (ret)
3422 break;
3423 }
3424
3425 if (is_add && !ret)
3426 kernfs_activate(root->kn);
3427 return ret;
3428}
3429
3430static void cgroup_exit_cftypes(struct cftype *cfts)
3431{
3432 struct cftype *cft;
3433
3434 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3435 /* free copy for custom atomic_write_len, see init_cftypes() */
3436 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3437 kfree(cft->kf_ops);
3438 cft->kf_ops = NULL;
3439 cft->ss = NULL;
3440
3441 /* revert flags set by cgroup core while adding @cfts */
3442 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3443 }
3444}
3445
3446static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3447{
3448 struct cftype *cft;
3449
3450 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3451 struct kernfs_ops *kf_ops;
3452
3453 WARN_ON(cft->ss || cft->kf_ops);
3454
3455 if (cft->seq_start)
3456 kf_ops = &cgroup_kf_ops;
3457 else
3458 kf_ops = &cgroup_kf_single_ops;
3459
3460 /*
3461 * Ugh... if @cft wants a custom max_write_len, we need to
3462 * make a copy of kf_ops to set its atomic_write_len.
3463 */
3464 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3465 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3466 if (!kf_ops) {
3467 cgroup_exit_cftypes(cfts);
3468 return -ENOMEM;
3469 }
3470 kf_ops->atomic_write_len = cft->max_write_len;
3471 }
3472
3473 cft->kf_ops = kf_ops;
3474 cft->ss = ss;
3475 }
3476
3477 return 0;
3478}
3479
3480static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3481{
3482 lockdep_assert_held(&cgroup_mutex);
3483
3484 if (!cfts || !cfts[0].ss)
3485 return -ENOENT;
3486
3487 list_del(&cfts->node);
3488 cgroup_apply_cftypes(cfts, false);
3489 cgroup_exit_cftypes(cfts);
3490 return 0;
3491}
3492
3493/**
3494 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3495 * @cfts: zero-length name terminated array of cftypes
3496 *
3497 * Unregister @cfts. Files described by @cfts are removed from all
3498 * existing cgroups and all future cgroups won't have them either. This
3499 * function can be called anytime whether @cfts' subsys is attached or not.
3500 *
3501 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3502 * registered.
3503 */
3504int cgroup_rm_cftypes(struct cftype *cfts)
3505{
3506 int ret;
3507
3508 mutex_lock(&cgroup_mutex);
3509 ret = cgroup_rm_cftypes_locked(cfts);
3510 mutex_unlock(&cgroup_mutex);
3511 return ret;
3512}
3513
3514/**
3515 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3516 * @ss: target cgroup subsystem
3517 * @cfts: zero-length name terminated array of cftypes
3518 *
3519 * Register @cfts to @ss. Files described by @cfts are created for all
3520 * existing cgroups to which @ss is attached and all future cgroups will
3521 * have them too. This function can be called anytime whether @ss is
3522 * attached or not.
3523 *
3524 * Returns 0 on successful registration, -errno on failure. Note that this
3525 * function currently returns 0 as long as @cfts registration is successful
3526 * even if some file creation attempts on existing cgroups fail.
3527 */
3528static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3529{
3530 int ret;
3531
3532 if (!cgroup_ssid_enabled(ss->id))
3533 return 0;
3534
3535 if (!cfts || cfts[0].name[0] == '\0')
3536 return 0;
3537
3538 ret = cgroup_init_cftypes(ss, cfts);
3539 if (ret)
3540 return ret;
3541
3542 mutex_lock(&cgroup_mutex);
3543
3544 list_add_tail(&cfts->node, &ss->cfts);
3545 ret = cgroup_apply_cftypes(cfts, true);
3546 if (ret)
3547 cgroup_rm_cftypes_locked(cfts);
3548
3549 mutex_unlock(&cgroup_mutex);
3550 return ret;
3551}
3552
3553/**
3554 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3555 * @ss: target cgroup subsystem
3556 * @cfts: zero-length name terminated array of cftypes
3557 *
3558 * Similar to cgroup_add_cftypes() but the added files are only used for
3559 * the default hierarchy.
3560 */
3561int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3562{
3563 struct cftype *cft;
3564
3565 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3566 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3567 return cgroup_add_cftypes(ss, cfts);
3568}
3569
3570/**
3571 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3572 * @ss: target cgroup subsystem
3573 * @cfts: zero-length name terminated array of cftypes
3574 *
3575 * Similar to cgroup_add_cftypes() but the added files are only used for
3576 * the legacy hierarchies.
3577 */
3578int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3579{
3580 struct cftype *cft;
3581
3582 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3583 cft->flags |= __CFTYPE_NOT_ON_DFL;
3584 return cgroup_add_cftypes(ss, cfts);
3585}
3586
3587/**
3588 * cgroup_file_notify - generate a file modified event for a cgroup_file
3589 * @cfile: target cgroup_file
3590 *
3591 * @cfile must have been obtained by setting cftype->file_offset.
3592 */
3593void cgroup_file_notify(struct cgroup_file *cfile)
3594{
3595 unsigned long flags;
3596
3597 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3598 if (cfile->kn)
3599 kernfs_notify(cfile->kn);
3600 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3601}
3602
3603/**
3604 * cgroup_task_count - count the number of tasks in a cgroup.
3605 * @cgrp: the cgroup in question
3606 *
3607 * Return the number of tasks in the cgroup.
3608 */
3609static int cgroup_task_count(const struct cgroup *cgrp)
3610{
3611 int count = 0;
3612 struct cgrp_cset_link *link;
3613
3614 spin_lock_bh(&css_set_lock);
3615 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3616 count += atomic_read(&link->cset->refcount);
3617 spin_unlock_bh(&css_set_lock);
3618 return count;
3619}
3620
3621/**
3622 * css_next_child - find the next child of a given css
3623 * @pos: the current position (%NULL to initiate traversal)
3624 * @parent: css whose children to walk
3625 *
3626 * This function returns the next child of @parent and should be called
3627 * under either cgroup_mutex or RCU read lock. The only requirement is
3628 * that @parent and @pos are accessible. The next sibling is guaranteed to
3629 * be returned regardless of their states.
3630 *
3631 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3632 * css which finished ->css_online() is guaranteed to be visible in the
3633 * future iterations and will stay visible until the last reference is put.
3634 * A css which hasn't finished ->css_online() or already finished
3635 * ->css_offline() may show up during traversal. It's each subsystem's
3636 * responsibility to synchronize against on/offlining.
3637 */
3638struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3639 struct cgroup_subsys_state *parent)
3640{
3641 struct cgroup_subsys_state *next;
3642
3643 cgroup_assert_mutex_or_rcu_locked();
3644
3645 /*
3646 * @pos could already have been unlinked from the sibling list.
3647 * Once a cgroup is removed, its ->sibling.next is no longer
3648 * updated when its next sibling changes. CSS_RELEASED is set when
3649 * @pos is taken off list, at which time its next pointer is valid,
3650 * and, as releases are serialized, the one pointed to by the next
3651 * pointer is guaranteed to not have started release yet. This
3652 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3653 * critical section, the one pointed to by its next pointer is
3654 * guaranteed to not have finished its RCU grace period even if we
3655 * have dropped rcu_read_lock() inbetween iterations.
3656 *
3657 * If @pos has CSS_RELEASED set, its next pointer can't be
3658 * dereferenced; however, as each css is given a monotonically
3659 * increasing unique serial number and always appended to the
3660 * sibling list, the next one can be found by walking the parent's
3661 * children until the first css with higher serial number than
3662 * @pos's. While this path can be slower, it happens iff iteration
3663 * races against release and the race window is very small.
3664 */
3665 if (!pos) {
3666 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3667 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3668 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3669 } else {
3670 list_for_each_entry_rcu(next, &parent->children, sibling)
3671 if (next->serial_nr > pos->serial_nr)
3672 break;
3673 }
3674
3675 /*
3676 * @next, if not pointing to the head, can be dereferenced and is
3677 * the next sibling.
3678 */
3679 if (&next->sibling != &parent->children)
3680 return next;
3681 return NULL;
3682}
3683
3684/**
3685 * css_next_descendant_pre - find the next descendant for pre-order walk
3686 * @pos: the current position (%NULL to initiate traversal)
3687 * @root: css whose descendants to walk
3688 *
3689 * To be used by css_for_each_descendant_pre(). Find the next descendant
3690 * to visit for pre-order traversal of @root's descendants. @root is
3691 * included in the iteration and the first node to be visited.
3692 *
3693 * While this function requires cgroup_mutex or RCU read locking, it
3694 * doesn't require the whole traversal to be contained in a single critical
3695 * section. This function will return the correct next descendant as long
3696 * as both @pos and @root are accessible and @pos is a descendant of @root.
3697 *
3698 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3699 * css which finished ->css_online() is guaranteed to be visible in the
3700 * future iterations and will stay visible until the last reference is put.
3701 * A css which hasn't finished ->css_online() or already finished
3702 * ->css_offline() may show up during traversal. It's each subsystem's
3703 * responsibility to synchronize against on/offlining.
3704 */
3705struct cgroup_subsys_state *
3706css_next_descendant_pre(struct cgroup_subsys_state *pos,
3707 struct cgroup_subsys_state *root)
3708{
3709 struct cgroup_subsys_state *next;
3710
3711 cgroup_assert_mutex_or_rcu_locked();
3712
3713 /* if first iteration, visit @root */
3714 if (!pos)
3715 return root;
3716
3717 /* visit the first child if exists */
3718 next = css_next_child(NULL, pos);
3719 if (next)
3720 return next;
3721
3722 /* no child, visit my or the closest ancestor's next sibling */
3723 while (pos != root) {
3724 next = css_next_child(pos, pos->parent);
3725 if (next)
3726 return next;
3727 pos = pos->parent;
3728 }
3729
3730 return NULL;
3731}
3732
3733/**
3734 * css_rightmost_descendant - return the rightmost descendant of a css
3735 * @pos: css of interest
3736 *
3737 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3738 * is returned. This can be used during pre-order traversal to skip
3739 * subtree of @pos.
3740 *
3741 * While this function requires cgroup_mutex or RCU read locking, it
3742 * doesn't require the whole traversal to be contained in a single critical
3743 * section. This function will return the correct rightmost descendant as
3744 * long as @pos is accessible.
3745 */
3746struct cgroup_subsys_state *
3747css_rightmost_descendant(struct cgroup_subsys_state *pos)
3748{
3749 struct cgroup_subsys_state *last, *tmp;
3750
3751 cgroup_assert_mutex_or_rcu_locked();
3752
3753 do {
3754 last = pos;
3755 /* ->prev isn't RCU safe, walk ->next till the end */
3756 pos = NULL;
3757 css_for_each_child(tmp, last)
3758 pos = tmp;
3759 } while (pos);
3760
3761 return last;
3762}
3763
3764static struct cgroup_subsys_state *
3765css_leftmost_descendant(struct cgroup_subsys_state *pos)
3766{
3767 struct cgroup_subsys_state *last;
3768
3769 do {
3770 last = pos;
3771 pos = css_next_child(NULL, pos);
3772 } while (pos);
3773
3774 return last;
3775}
3776
3777/**
3778 * css_next_descendant_post - find the next descendant for post-order walk
3779 * @pos: the current position (%NULL to initiate traversal)
3780 * @root: css whose descendants to walk
3781 *
3782 * To be used by css_for_each_descendant_post(). Find the next descendant
3783 * to visit for post-order traversal of @root's descendants. @root is
3784 * included in the iteration and the last node to be visited.
3785 *
3786 * While this function requires cgroup_mutex or RCU read locking, it
3787 * doesn't require the whole traversal to be contained in a single critical
3788 * section. This function will return the correct next descendant as long
3789 * as both @pos and @cgroup are accessible and @pos is a descendant of
3790 * @cgroup.
3791 *
3792 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3793 * css which finished ->css_online() is guaranteed to be visible in the
3794 * future iterations and will stay visible until the last reference is put.
3795 * A css which hasn't finished ->css_online() or already finished
3796 * ->css_offline() may show up during traversal. It's each subsystem's
3797 * responsibility to synchronize against on/offlining.
3798 */
3799struct cgroup_subsys_state *
3800css_next_descendant_post(struct cgroup_subsys_state *pos,
3801 struct cgroup_subsys_state *root)
3802{
3803 struct cgroup_subsys_state *next;
3804
3805 cgroup_assert_mutex_or_rcu_locked();
3806
3807 /* if first iteration, visit leftmost descendant which may be @root */
3808 if (!pos)
3809 return css_leftmost_descendant(root);
3810
3811 /* if we visited @root, we're done */
3812 if (pos == root)
3813 return NULL;
3814
3815 /* if there's an unvisited sibling, visit its leftmost descendant */
3816 next = css_next_child(pos, pos->parent);
3817 if (next)
3818 return css_leftmost_descendant(next);
3819
3820 /* no sibling left, visit parent */
3821 return pos->parent;
3822}
3823
3824/**
3825 * css_has_online_children - does a css have online children
3826 * @css: the target css
3827 *
3828 * Returns %true if @css has any online children; otherwise, %false. This
3829 * function can be called from any context but the caller is responsible
3830 * for synchronizing against on/offlining as necessary.
3831 */
3832bool css_has_online_children(struct cgroup_subsys_state *css)
3833{
3834 struct cgroup_subsys_state *child;
3835 bool ret = false;
3836
3837 rcu_read_lock();
3838 css_for_each_child(child, css) {
3839 if (child->flags & CSS_ONLINE) {
3840 ret = true;
3841 break;
3842 }
3843 }
3844 rcu_read_unlock();
3845 return ret;
3846}
3847
3848/**
3849 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3850 * @it: the iterator to advance
3851 *
3852 * Advance @it to the next css_set to walk.
3853 */
3854static void css_task_iter_advance_css_set(struct css_task_iter *it)
3855{
3856 struct list_head *l = it->cset_pos;
3857 struct cgrp_cset_link *link;
3858 struct css_set *cset;
3859
3860 lockdep_assert_held(&css_set_lock);
3861
3862 /* Advance to the next non-empty css_set */
3863 do {
3864 l = l->next;
3865 if (l == it->cset_head) {
3866 it->cset_pos = NULL;
3867 it->task_pos = NULL;
3868 return;
3869 }
3870
3871 if (it->ss) {
3872 cset = container_of(l, struct css_set,
3873 e_cset_node[it->ss->id]);
3874 } else {
3875 link = list_entry(l, struct cgrp_cset_link, cset_link);
3876 cset = link->cset;
3877 }
3878 } while (!css_set_populated(cset));
3879
3880 it->cset_pos = l;
3881
3882 if (!list_empty(&cset->tasks))
3883 it->task_pos = cset->tasks.next;
3884 else
3885 it->task_pos = cset->mg_tasks.next;
3886
3887 it->tasks_head = &cset->tasks;
3888 it->mg_tasks_head = &cset->mg_tasks;
3889
3890 /*
3891 * We don't keep css_sets locked across iteration steps and thus
3892 * need to take steps to ensure that iteration can be resumed after
3893 * the lock is re-acquired. Iteration is performed at two levels -
3894 * css_sets and tasks in them.
3895 *
3896 * Once created, a css_set never leaves its cgroup lists, so a
3897 * pinned css_set is guaranteed to stay put and we can resume
3898 * iteration afterwards.
3899 *
3900 * Tasks may leave @cset across iteration steps. This is resolved
3901 * by registering each iterator with the css_set currently being
3902 * walked and making css_set_move_task() advance iterators whose
3903 * next task is leaving.
3904 */
3905 if (it->cur_cset) {
3906 list_del(&it->iters_node);
3907 put_css_set_locked(it->cur_cset);
3908 }
3909 get_css_set(cset);
3910 it->cur_cset = cset;
3911 list_add(&it->iters_node, &cset->task_iters);
3912}
3913
3914static void css_task_iter_advance(struct css_task_iter *it)
3915{
3916 struct list_head *l = it->task_pos;
3917
3918 lockdep_assert_held(&css_set_lock);
3919 WARN_ON_ONCE(!l);
3920
3921 /*
3922 * Advance iterator to find next entry. cset->tasks is consumed
3923 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3924 * next cset.
3925 */
3926 l = l->next;
3927
3928 if (l == it->tasks_head)
3929 l = it->mg_tasks_head->next;
3930
3931 if (l == it->mg_tasks_head)
3932 css_task_iter_advance_css_set(it);
3933 else
3934 it->task_pos = l;
3935}
3936
3937/**
3938 * css_task_iter_start - initiate task iteration
3939 * @css: the css to walk tasks of
3940 * @it: the task iterator to use
3941 *
3942 * Initiate iteration through the tasks of @css. The caller can call
3943 * css_task_iter_next() to walk through the tasks until the function
3944 * returns NULL. On completion of iteration, css_task_iter_end() must be
3945 * called.
3946 */
3947void css_task_iter_start(struct cgroup_subsys_state *css,
3948 struct css_task_iter *it)
3949{
3950 /* no one should try to iterate before mounting cgroups */
3951 WARN_ON_ONCE(!use_task_css_set_links);
3952
3953 memset(it, 0, sizeof(*it));
3954
3955 spin_lock_bh(&css_set_lock);
3956
3957 it->ss = css->ss;
3958
3959 if (it->ss)
3960 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3961 else
3962 it->cset_pos = &css->cgroup->cset_links;
3963
3964 it->cset_head = it->cset_pos;
3965
3966 css_task_iter_advance_css_set(it);
3967
3968 spin_unlock_bh(&css_set_lock);
3969}
3970
3971/**
3972 * css_task_iter_next - return the next task for the iterator
3973 * @it: the task iterator being iterated
3974 *
3975 * The "next" function for task iteration. @it should have been
3976 * initialized via css_task_iter_start(). Returns NULL when the iteration
3977 * reaches the end.
3978 */
3979struct task_struct *css_task_iter_next(struct css_task_iter *it)
3980{
3981 if (it->cur_task) {
3982 put_task_struct(it->cur_task);
3983 it->cur_task = NULL;
3984 }
3985
3986 spin_lock_bh(&css_set_lock);
3987
3988 if (it->task_pos) {
3989 it->cur_task = list_entry(it->task_pos, struct task_struct,
3990 cg_list);
3991 get_task_struct(it->cur_task);
3992 css_task_iter_advance(it);
3993 }
3994
3995 spin_unlock_bh(&css_set_lock);
3996
3997 return it->cur_task;
3998}
3999
4000/**
4001 * css_task_iter_end - finish task iteration
4002 * @it: the task iterator to finish
4003 *
4004 * Finish task iteration started by css_task_iter_start().
4005 */
4006void css_task_iter_end(struct css_task_iter *it)
4007{
4008 if (it->cur_cset) {
4009 spin_lock_bh(&css_set_lock);
4010 list_del(&it->iters_node);
4011 put_css_set_locked(it->cur_cset);
4012 spin_unlock_bh(&css_set_lock);
4013 }
4014
4015 if (it->cur_task)
4016 put_task_struct(it->cur_task);
4017}
4018
4019/**
4020 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4021 * @to: cgroup to which the tasks will be moved
4022 * @from: cgroup in which the tasks currently reside
4023 *
4024 * Locking rules between cgroup_post_fork() and the migration path
4025 * guarantee that, if a task is forking while being migrated, the new child
4026 * is guaranteed to be either visible in the source cgroup after the
4027 * parent's migration is complete or put into the target cgroup. No task
4028 * can slip out of migration through forking.
4029 */
4030int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4031{
4032 LIST_HEAD(preloaded_csets);
4033 struct cgrp_cset_link *link;
4034 struct css_task_iter it;
4035 struct task_struct *task;
4036 int ret;
4037
4038 mutex_lock(&cgroup_mutex);
4039
4040 /* all tasks in @from are being moved, all csets are source */
4041 spin_lock_bh(&css_set_lock);
4042 list_for_each_entry(link, &from->cset_links, cset_link)
4043 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4044 spin_unlock_bh(&css_set_lock);
4045
4046 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4047 if (ret)
4048 goto out_err;
4049
4050 /*
4051 * Migrate tasks one-by-one until @from is empty. This fails iff
4052 * ->can_attach() fails.
4053 */
4054 do {
4055 css_task_iter_start(&from->self, &it);
4056 task = css_task_iter_next(&it);
4057 if (task)
4058 get_task_struct(task);
4059 css_task_iter_end(&it);
4060
4061 if (task) {
4062 ret = cgroup_migrate(task, false, to);
4063 put_task_struct(task);
4064 }
4065 } while (task && !ret);
4066out_err:
4067 cgroup_migrate_finish(&preloaded_csets);
4068 mutex_unlock(&cgroup_mutex);
4069 return ret;
4070}
4071
4072/*
4073 * Stuff for reading the 'tasks'/'procs' files.
4074 *
4075 * Reading this file can return large amounts of data if a cgroup has
4076 * *lots* of attached tasks. So it may need several calls to read(),
4077 * but we cannot guarantee that the information we produce is correct
4078 * unless we produce it entirely atomically.
4079 *
4080 */
4081
4082/* which pidlist file are we talking about? */
4083enum cgroup_filetype {
4084 CGROUP_FILE_PROCS,
4085 CGROUP_FILE_TASKS,
4086};
4087
4088/*
4089 * A pidlist is a list of pids that virtually represents the contents of one
4090 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4091 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4092 * to the cgroup.
4093 */
4094struct cgroup_pidlist {
4095 /*
4096 * used to find which pidlist is wanted. doesn't change as long as
4097 * this particular list stays in the list.
4098 */
4099 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4100 /* array of xids */
4101 pid_t *list;
4102 /* how many elements the above list has */
4103 int length;
4104 /* each of these stored in a list by its cgroup */
4105 struct list_head links;
4106 /* pointer to the cgroup we belong to, for list removal purposes */
4107 struct cgroup *owner;
4108 /* for delayed destruction */
4109 struct delayed_work destroy_dwork;
4110};
4111
4112/*
4113 * The following two functions "fix" the issue where there are more pids
4114 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4115 * TODO: replace with a kernel-wide solution to this problem
4116 */
4117#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4118static void *pidlist_allocate(int count)
4119{
4120 if (PIDLIST_TOO_LARGE(count))
4121 return vmalloc(count * sizeof(pid_t));
4122 else
4123 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4124}
4125
4126static void pidlist_free(void *p)
4127{
4128 kvfree(p);
4129}
4130
4131/*
4132 * Used to destroy all pidlists lingering waiting for destroy timer. None
4133 * should be left afterwards.
4134 */
4135static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4136{
4137 struct cgroup_pidlist *l, *tmp_l;
4138
4139 mutex_lock(&cgrp->pidlist_mutex);
4140 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4141 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4142 mutex_unlock(&cgrp->pidlist_mutex);
4143
4144 flush_workqueue(cgroup_pidlist_destroy_wq);
4145 BUG_ON(!list_empty(&cgrp->pidlists));
4146}
4147
4148static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4149{
4150 struct delayed_work *dwork = to_delayed_work(work);
4151 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4152 destroy_dwork);
4153 struct cgroup_pidlist *tofree = NULL;
4154
4155 mutex_lock(&l->owner->pidlist_mutex);
4156
4157 /*
4158 * Destroy iff we didn't get queued again. The state won't change
4159 * as destroy_dwork can only be queued while locked.
4160 */
4161 if (!delayed_work_pending(dwork)) {
4162 list_del(&l->links);
4163 pidlist_free(l->list);
4164 put_pid_ns(l->key.ns);
4165 tofree = l;
4166 }
4167
4168 mutex_unlock(&l->owner->pidlist_mutex);
4169 kfree(tofree);
4170}
4171
4172/*
4173 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4174 * Returns the number of unique elements.
4175 */
4176static int pidlist_uniq(pid_t *list, int length)
4177{
4178 int src, dest = 1;
4179
4180 /*
4181 * we presume the 0th element is unique, so i starts at 1. trivial
4182 * edge cases first; no work needs to be done for either
4183 */
4184 if (length == 0 || length == 1)
4185 return length;
4186 /* src and dest walk down the list; dest counts unique elements */
4187 for (src = 1; src < length; src++) {
4188 /* find next unique element */
4189 while (list[src] == list[src-1]) {
4190 src++;
4191 if (src == length)
4192 goto after;
4193 }
4194 /* dest always points to where the next unique element goes */
4195 list[dest] = list[src];
4196 dest++;
4197 }
4198after:
4199 return dest;
4200}
4201
4202/*
4203 * The two pid files - task and cgroup.procs - guaranteed that the result
4204 * is sorted, which forced this whole pidlist fiasco. As pid order is
4205 * different per namespace, each namespace needs differently sorted list,
4206 * making it impossible to use, for example, single rbtree of member tasks
4207 * sorted by task pointer. As pidlists can be fairly large, allocating one
4208 * per open file is dangerous, so cgroup had to implement shared pool of
4209 * pidlists keyed by cgroup and namespace.
4210 *
4211 * All this extra complexity was caused by the original implementation
4212 * committing to an entirely unnecessary property. In the long term, we
4213 * want to do away with it. Explicitly scramble sort order if on the
4214 * default hierarchy so that no such expectation exists in the new
4215 * interface.
4216 *
4217 * Scrambling is done by swapping every two consecutive bits, which is
4218 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4219 */
4220static pid_t pid_fry(pid_t pid)
4221{
4222 unsigned a = pid & 0x55555555;
4223 unsigned b = pid & 0xAAAAAAAA;
4224
4225 return (a << 1) | (b >> 1);
4226}
4227
4228static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4229{
4230 if (cgroup_on_dfl(cgrp))
4231 return pid_fry(pid);
4232 else
4233 return pid;
4234}
4235
4236static int cmppid(const void *a, const void *b)
4237{
4238 return *(pid_t *)a - *(pid_t *)b;
4239}
4240
4241static int fried_cmppid(const void *a, const void *b)
4242{
4243 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4244}
4245
4246static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4247 enum cgroup_filetype type)
4248{
4249 struct cgroup_pidlist *l;
4250 /* don't need task_nsproxy() if we're looking at ourself */
4251 struct pid_namespace *ns = task_active_pid_ns(current);
4252
4253 lockdep_assert_held(&cgrp->pidlist_mutex);
4254
4255 list_for_each_entry(l, &cgrp->pidlists, links)
4256 if (l->key.type == type && l->key.ns == ns)
4257 return l;
4258 return NULL;
4259}
4260
4261/*
4262 * find the appropriate pidlist for our purpose (given procs vs tasks)
4263 * returns with the lock on that pidlist already held, and takes care
4264 * of the use count, or returns NULL with no locks held if we're out of
4265 * memory.
4266 */
4267static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4268 enum cgroup_filetype type)
4269{
4270 struct cgroup_pidlist *l;
4271
4272 lockdep_assert_held(&cgrp->pidlist_mutex);
4273
4274 l = cgroup_pidlist_find(cgrp, type);
4275 if (l)
4276 return l;
4277
4278 /* entry not found; create a new one */
4279 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4280 if (!l)
4281 return l;
4282
4283 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4284 l->key.type = type;
4285 /* don't need task_nsproxy() if we're looking at ourself */
4286 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4287 l->owner = cgrp;
4288 list_add(&l->links, &cgrp->pidlists);
4289 return l;
4290}
4291
4292/*
4293 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4294 */
4295static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4296 struct cgroup_pidlist **lp)
4297{
4298 pid_t *array;
4299 int length;
4300 int pid, n = 0; /* used for populating the array */
4301 struct css_task_iter it;
4302 struct task_struct *tsk;
4303 struct cgroup_pidlist *l;
4304
4305 lockdep_assert_held(&cgrp->pidlist_mutex);
4306
4307 /*
4308 * If cgroup gets more users after we read count, we won't have
4309 * enough space - tough. This race is indistinguishable to the
4310 * caller from the case that the additional cgroup users didn't
4311 * show up until sometime later on.
4312 */
4313 length = cgroup_task_count(cgrp);
4314 array = pidlist_allocate(length);
4315 if (!array)
4316 return -ENOMEM;
4317 /* now, populate the array */
4318 css_task_iter_start(&cgrp->self, &it);
4319 while ((tsk = css_task_iter_next(&it))) {
4320 if (unlikely(n == length))
4321 break;
4322 /* get tgid or pid for procs or tasks file respectively */
4323 if (type == CGROUP_FILE_PROCS)
4324 pid = task_tgid_vnr(tsk);
4325 else
4326 pid = task_pid_vnr(tsk);
4327 if (pid > 0) /* make sure to only use valid results */
4328 array[n++] = pid;
4329 }
4330 css_task_iter_end(&it);
4331 length = n;
4332 /* now sort & (if procs) strip out duplicates */
4333 if (cgroup_on_dfl(cgrp))
4334 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4335 else
4336 sort(array, length, sizeof(pid_t), cmppid, NULL);
4337 if (type == CGROUP_FILE_PROCS)
4338 length = pidlist_uniq(array, length);
4339
4340 l = cgroup_pidlist_find_create(cgrp, type);
4341 if (!l) {
4342 pidlist_free(array);
4343 return -ENOMEM;
4344 }
4345
4346 /* store array, freeing old if necessary */
4347 pidlist_free(l->list);
4348 l->list = array;
4349 l->length = length;
4350 *lp = l;
4351 return 0;
4352}
4353
4354/**
4355 * cgroupstats_build - build and fill cgroupstats
4356 * @stats: cgroupstats to fill information into
4357 * @dentry: A dentry entry belonging to the cgroup for which stats have
4358 * been requested.
4359 *
4360 * Build and fill cgroupstats so that taskstats can export it to user
4361 * space.
4362 */
4363int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4364{
4365 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4366 struct cgroup *cgrp;
4367 struct css_task_iter it;
4368 struct task_struct *tsk;
4369
4370 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4371 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4372 kernfs_type(kn) != KERNFS_DIR)
4373 return -EINVAL;
4374
4375 mutex_lock(&cgroup_mutex);
4376
4377 /*
4378 * We aren't being called from kernfs and there's no guarantee on
4379 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4380 * @kn->priv is RCU safe. Let's do the RCU dancing.
4381 */
4382 rcu_read_lock();
4383 cgrp = rcu_dereference(kn->priv);
4384 if (!cgrp || cgroup_is_dead(cgrp)) {
4385 rcu_read_unlock();
4386 mutex_unlock(&cgroup_mutex);
4387 return -ENOENT;
4388 }
4389 rcu_read_unlock();
4390
4391 css_task_iter_start(&cgrp->self, &it);
4392 while ((tsk = css_task_iter_next(&it))) {
4393 switch (tsk->state) {
4394 case TASK_RUNNING:
4395 stats->nr_running++;
4396 break;
4397 case TASK_INTERRUPTIBLE:
4398 stats->nr_sleeping++;
4399 break;
4400 case TASK_UNINTERRUPTIBLE:
4401 stats->nr_uninterruptible++;
4402 break;
4403 case TASK_STOPPED:
4404 stats->nr_stopped++;
4405 break;
4406 default:
4407 if (delayacct_is_task_waiting_on_io(tsk))
4408 stats->nr_io_wait++;
4409 break;
4410 }
4411 }
4412 css_task_iter_end(&it);
4413
4414 mutex_unlock(&cgroup_mutex);
4415 return 0;
4416}
4417
4418
4419/*
4420 * seq_file methods for the tasks/procs files. The seq_file position is the
4421 * next pid to display; the seq_file iterator is a pointer to the pid
4422 * in the cgroup->l->list array.
4423 */
4424
4425static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4426{
4427 /*
4428 * Initially we receive a position value that corresponds to
4429 * one more than the last pid shown (or 0 on the first call or
4430 * after a seek to the start). Use a binary-search to find the
4431 * next pid to display, if any
4432 */
4433 struct kernfs_open_file *of = s->private;
4434 struct cgroup *cgrp = seq_css(s)->cgroup;
4435 struct cgroup_pidlist *l;
4436 enum cgroup_filetype type = seq_cft(s)->private;
4437 int index = 0, pid = *pos;
4438 int *iter, ret;
4439
4440 mutex_lock(&cgrp->pidlist_mutex);
4441
4442 /*
4443 * !NULL @of->priv indicates that this isn't the first start()
4444 * after open. If the matching pidlist is around, we can use that.
4445 * Look for it. Note that @of->priv can't be used directly. It
4446 * could already have been destroyed.
4447 */
4448 if (of->priv)
4449 of->priv = cgroup_pidlist_find(cgrp, type);
4450
4451 /*
4452 * Either this is the first start() after open or the matching
4453 * pidlist has been destroyed inbetween. Create a new one.
4454 */
4455 if (!of->priv) {
4456 ret = pidlist_array_load(cgrp, type,
4457 (struct cgroup_pidlist **)&of->priv);
4458 if (ret)
4459 return ERR_PTR(ret);
4460 }
4461 l = of->priv;
4462
4463 if (pid) {
4464 int end = l->length;
4465
4466 while (index < end) {
4467 int mid = (index + end) / 2;
4468 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4469 index = mid;
4470 break;
4471 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4472 index = mid + 1;
4473 else
4474 end = mid;
4475 }
4476 }
4477 /* If we're off the end of the array, we're done */
4478 if (index >= l->length)
4479 return NULL;
4480 /* Update the abstract position to be the actual pid that we found */
4481 iter = l->list + index;
4482 *pos = cgroup_pid_fry(cgrp, *iter);
4483 return iter;
4484}
4485
4486static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4487{
4488 struct kernfs_open_file *of = s->private;
4489 struct cgroup_pidlist *l = of->priv;
4490
4491 if (l)
4492 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4493 CGROUP_PIDLIST_DESTROY_DELAY);
4494 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4495}
4496
4497static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4498{
4499 struct kernfs_open_file *of = s->private;
4500 struct cgroup_pidlist *l = of->priv;
4501 pid_t *p = v;
4502 pid_t *end = l->list + l->length;
4503 /*
4504 * Advance to the next pid in the array. If this goes off the
4505 * end, we're done
4506 */
4507 p++;
4508 if (p >= end) {
4509 return NULL;
4510 } else {
4511 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4512 return p;
4513 }
4514}
4515
4516static int cgroup_pidlist_show(struct seq_file *s, void *v)
4517{
4518 seq_printf(s, "%d\n", *(int *)v);
4519
4520 return 0;
4521}
4522
4523static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4524 struct cftype *cft)
4525{
4526 return notify_on_release(css->cgroup);
4527}
4528
4529static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4530 struct cftype *cft, u64 val)
4531{
4532 if (val)
4533 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4534 else
4535 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4536 return 0;
4537}
4538
4539static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4540 struct cftype *cft)
4541{
4542 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4543}
4544
4545static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4546 struct cftype *cft, u64 val)
4547{
4548 if (val)
4549 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4550 else
4551 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4552 return 0;
4553}
4554
4555/* cgroup core interface files for the default hierarchy */
4556static struct cftype cgroup_dfl_base_files[] = {
4557 {
4558 .name = "cgroup.procs",
4559 .file_offset = offsetof(struct cgroup, procs_file),
4560 .seq_start = cgroup_pidlist_start,
4561 .seq_next = cgroup_pidlist_next,
4562 .seq_stop = cgroup_pidlist_stop,
4563 .seq_show = cgroup_pidlist_show,
4564 .private = CGROUP_FILE_PROCS,
4565 .write = cgroup_procs_write,
4566 },
4567 {
4568 .name = "cgroup.controllers",
4569 .flags = CFTYPE_ONLY_ON_ROOT,
4570 .seq_show = cgroup_root_controllers_show,
4571 },
4572 {
4573 .name = "cgroup.controllers",
4574 .flags = CFTYPE_NOT_ON_ROOT,
4575 .seq_show = cgroup_controllers_show,
4576 },
4577 {
4578 .name = "cgroup.subtree_control",
4579 .seq_show = cgroup_subtree_control_show,
4580 .write = cgroup_subtree_control_write,
4581 },
4582 {
4583 .name = "cgroup.events",
4584 .flags = CFTYPE_NOT_ON_ROOT,
4585 .file_offset = offsetof(struct cgroup, events_file),
4586 .seq_show = cgroup_events_show,
4587 },
4588 { } /* terminate */
4589};
4590
4591/* cgroup core interface files for the legacy hierarchies */
4592static struct cftype cgroup_legacy_base_files[] = {
4593 {
4594 .name = "cgroup.procs",
4595 .seq_start = cgroup_pidlist_start,
4596 .seq_next = cgroup_pidlist_next,
4597 .seq_stop = cgroup_pidlist_stop,
4598 .seq_show = cgroup_pidlist_show,
4599 .private = CGROUP_FILE_PROCS,
4600 .write = cgroup_procs_write,
4601 },
4602 {
4603 .name = "cgroup.clone_children",
4604 .read_u64 = cgroup_clone_children_read,
4605 .write_u64 = cgroup_clone_children_write,
4606 },
4607 {
4608 .name = "cgroup.sane_behavior",
4609 .flags = CFTYPE_ONLY_ON_ROOT,
4610 .seq_show = cgroup_sane_behavior_show,
4611 },
4612 {
4613 .name = "tasks",
4614 .seq_start = cgroup_pidlist_start,
4615 .seq_next = cgroup_pidlist_next,
4616 .seq_stop = cgroup_pidlist_stop,
4617 .seq_show = cgroup_pidlist_show,
4618 .private = CGROUP_FILE_TASKS,
4619 .write = cgroup_tasks_write,
4620 },
4621 {
4622 .name = "notify_on_release",
4623 .read_u64 = cgroup_read_notify_on_release,
4624 .write_u64 = cgroup_write_notify_on_release,
4625 },
4626 {
4627 .name = "release_agent",
4628 .flags = CFTYPE_ONLY_ON_ROOT,
4629 .seq_show = cgroup_release_agent_show,
4630 .write = cgroup_release_agent_write,
4631 .max_write_len = PATH_MAX - 1,
4632 },
4633 { } /* terminate */
4634};
4635
4636/*
4637 * css destruction is four-stage process.
4638 *
4639 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4640 * Implemented in kill_css().
4641 *
4642 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4643 * and thus css_tryget_online() is guaranteed to fail, the css can be
4644 * offlined by invoking offline_css(). After offlining, the base ref is
4645 * put. Implemented in css_killed_work_fn().
4646 *
4647 * 3. When the percpu_ref reaches zero, the only possible remaining
4648 * accessors are inside RCU read sections. css_release() schedules the
4649 * RCU callback.
4650 *
4651 * 4. After the grace period, the css can be freed. Implemented in
4652 * css_free_work_fn().
4653 *
4654 * It is actually hairier because both step 2 and 4 require process context
4655 * and thus involve punting to css->destroy_work adding two additional
4656 * steps to the already complex sequence.
4657 */
4658static void css_free_work_fn(struct work_struct *work)
4659{
4660 struct cgroup_subsys_state *css =
4661 container_of(work, struct cgroup_subsys_state, destroy_work);
4662 struct cgroup_subsys *ss = css->ss;
4663 struct cgroup *cgrp = css->cgroup;
4664
4665 percpu_ref_exit(&css->refcnt);
4666
4667 if (ss) {
4668 /* css free path */
4669 struct cgroup_subsys_state *parent = css->parent;
4670 int id = css->id;
4671
4672 ss->css_free(css);
4673 cgroup_idr_remove(&ss->css_idr, id);
4674 cgroup_put(cgrp);
4675
4676 if (parent)
4677 css_put(parent);
4678 } else {
4679 /* cgroup free path */
4680 atomic_dec(&cgrp->root->nr_cgrps);
4681 cgroup_pidlist_destroy_all(cgrp);
4682 cancel_work_sync(&cgrp->release_agent_work);
4683
4684 if (cgroup_parent(cgrp)) {
4685 /*
4686 * We get a ref to the parent, and put the ref when
4687 * this cgroup is being freed, so it's guaranteed
4688 * that the parent won't be destroyed before its
4689 * children.
4690 */
4691 cgroup_put(cgroup_parent(cgrp));
4692 kernfs_put(cgrp->kn);
4693 kfree(cgrp);
4694 } else {
4695 /*
4696 * This is root cgroup's refcnt reaching zero,
4697 * which indicates that the root should be
4698 * released.
4699 */
4700 cgroup_destroy_root(cgrp->root);
4701 }
4702 }
4703}
4704
4705static void css_free_rcu_fn(struct rcu_head *rcu_head)
4706{
4707 struct cgroup_subsys_state *css =
4708 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4709
4710 INIT_WORK(&css->destroy_work, css_free_work_fn);
4711 queue_work(cgroup_destroy_wq, &css->destroy_work);
4712}
4713
4714static void css_release_work_fn(struct work_struct *work)
4715{
4716 struct cgroup_subsys_state *css =
4717 container_of(work, struct cgroup_subsys_state, destroy_work);
4718 struct cgroup_subsys *ss = css->ss;
4719 struct cgroup *cgrp = css->cgroup;
4720
4721 mutex_lock(&cgroup_mutex);
4722
4723 css->flags |= CSS_RELEASED;
4724 list_del_rcu(&css->sibling);
4725
4726 if (ss) {
4727 /* css release path */
4728 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4729 if (ss->css_released)
4730 ss->css_released(css);
4731 } else {
4732 /* cgroup release path */
4733 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4734 cgrp->id = -1;
4735
4736 /*
4737 * There are two control paths which try to determine
4738 * cgroup from dentry without going through kernfs -
4739 * cgroupstats_build() and css_tryget_online_from_dir().
4740 * Those are supported by RCU protecting clearing of
4741 * cgrp->kn->priv backpointer.
4742 */
4743 if (cgrp->kn)
4744 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4745 NULL);
4746 }
4747
4748 mutex_unlock(&cgroup_mutex);
4749
4750 call_rcu(&css->rcu_head, css_free_rcu_fn);
4751}
4752
4753static void css_release(struct percpu_ref *ref)
4754{
4755 struct cgroup_subsys_state *css =
4756 container_of(ref, struct cgroup_subsys_state, refcnt);
4757
4758 INIT_WORK(&css->destroy_work, css_release_work_fn);
4759 queue_work(cgroup_destroy_wq, &css->destroy_work);
4760}
4761
4762static void init_and_link_css(struct cgroup_subsys_state *css,
4763 struct cgroup_subsys *ss, struct cgroup *cgrp)
4764{
4765 lockdep_assert_held(&cgroup_mutex);
4766
4767 cgroup_get(cgrp);
4768
4769 memset(css, 0, sizeof(*css));
4770 css->cgroup = cgrp;
4771 css->ss = ss;
4772 INIT_LIST_HEAD(&css->sibling);
4773 INIT_LIST_HEAD(&css->children);
4774 css->serial_nr = css_serial_nr_next++;
4775 atomic_set(&css->online_cnt, 0);
4776
4777 if (cgroup_parent(cgrp)) {
4778 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4779 css_get(css->parent);
4780 }
4781
4782 BUG_ON(cgroup_css(cgrp, ss));
4783}
4784
4785/* invoke ->css_online() on a new CSS and mark it online if successful */
4786static int online_css(struct cgroup_subsys_state *css)
4787{
4788 struct cgroup_subsys *ss = css->ss;
4789 int ret = 0;
4790
4791 lockdep_assert_held(&cgroup_mutex);
4792
4793 if (ss->css_online)
4794 ret = ss->css_online(css);
4795 if (!ret) {
4796 css->flags |= CSS_ONLINE;
4797 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4798
4799 atomic_inc(&css->online_cnt);
4800 if (css->parent)
4801 atomic_inc(&css->parent->online_cnt);
4802 }
4803 return ret;
4804}
4805
4806/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4807static void offline_css(struct cgroup_subsys_state *css)
4808{
4809 struct cgroup_subsys *ss = css->ss;
4810
4811 lockdep_assert_held(&cgroup_mutex);
4812
4813 if (!(css->flags & CSS_ONLINE))
4814 return;
4815
4816 if (ss->css_reset)
4817 ss->css_reset(css);
4818
4819 if (ss->css_offline)
4820 ss->css_offline(css);
4821
4822 css->flags &= ~CSS_ONLINE;
4823 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4824
4825 wake_up_all(&css->cgroup->offline_waitq);
4826}
4827
4828/**
4829 * css_create - create a cgroup_subsys_state
4830 * @cgrp: the cgroup new css will be associated with
4831 * @ss: the subsys of new css
4832 *
4833 * Create a new css associated with @cgrp - @ss pair. On success, the new
4834 * css is online and installed in @cgrp. This function doesn't create the
4835 * interface files. Returns 0 on success, -errno on failure.
4836 */
4837static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4838 struct cgroup_subsys *ss)
4839{
4840 struct cgroup *parent = cgroup_parent(cgrp);
4841 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4842 struct cgroup_subsys_state *css;
4843 int err;
4844
4845 lockdep_assert_held(&cgroup_mutex);
4846
4847 css = ss->css_alloc(parent_css);
4848 if (IS_ERR(css))
4849 return css;
4850
4851 init_and_link_css(css, ss, cgrp);
4852
4853 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4854 if (err)
4855 goto err_free_css;
4856
4857 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4858 if (err < 0)
4859 goto err_free_percpu_ref;
4860 css->id = err;
4861
4862 /* @css is ready to be brought online now, make it visible */
4863 list_add_tail_rcu(&css->sibling, &parent_css->children);
4864 cgroup_idr_replace(&ss->css_idr, css, css->id);
4865
4866 err = online_css(css);
4867 if (err)
4868 goto err_list_del;
4869
4870 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4871 cgroup_parent(parent)) {
4872 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4873 current->comm, current->pid, ss->name);
4874 if (!strcmp(ss->name, "memory"))
4875 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4876 ss->warned_broken_hierarchy = true;
4877 }
4878
4879 return css;
4880
4881err_list_del:
4882 list_del_rcu(&css->sibling);
4883 cgroup_idr_remove(&ss->css_idr, css->id);
4884err_free_percpu_ref:
4885 percpu_ref_exit(&css->refcnt);
4886err_free_css:
4887 call_rcu(&css->rcu_head, css_free_rcu_fn);
4888 return ERR_PTR(err);
4889}
4890
4891static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4892 umode_t mode)
4893{
4894 struct cgroup *parent, *cgrp, *tcgrp;
4895 struct cgroup_root *root;
4896 struct cgroup_subsys *ss;
4897 struct kernfs_node *kn;
4898 int level, ssid, ret;
4899
4900 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4901 */
4902 if (strchr(name, '\n'))
4903 return -EINVAL;
4904
4905 parent = cgroup_kn_lock_live(parent_kn);
4906 if (!parent)
4907 return -ENODEV;
4908 root = parent->root;
4909 level = parent->level + 1;
4910
4911 /* allocate the cgroup and its ID, 0 is reserved for the root */
4912 cgrp = kzalloc(sizeof(*cgrp) +
4913 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4914 if (!cgrp) {
4915 ret = -ENOMEM;
4916 goto out_unlock;
4917 }
4918
4919 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4920 if (ret)
4921 goto out_free_cgrp;
4922
4923 /*
4924 * Temporarily set the pointer to NULL, so idr_find() won't return
4925 * a half-baked cgroup.
4926 */
4927 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4928 if (cgrp->id < 0) {
4929 ret = -ENOMEM;
4930 goto out_cancel_ref;
4931 }
4932
4933 init_cgroup_housekeeping(cgrp);
4934
4935 cgrp->self.parent = &parent->self;
4936 cgrp->root = root;
4937 cgrp->level = level;
4938
4939 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4940 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4941
4942 if (notify_on_release(parent))
4943 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4944
4945 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4946 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4947
4948 /* create the directory */
4949 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4950 if (IS_ERR(kn)) {
4951 ret = PTR_ERR(kn);
4952 goto out_free_id;
4953 }
4954 cgrp->kn = kn;
4955
4956 /*
4957 * This extra ref will be put in cgroup_free_fn() and guarantees
4958 * that @cgrp->kn is always accessible.
4959 */
4960 kernfs_get(kn);
4961
4962 cgrp->self.serial_nr = css_serial_nr_next++;
4963
4964 /* allocation complete, commit to creation */
4965 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4966 atomic_inc(&root->nr_cgrps);
4967 cgroup_get(parent);
4968
4969 /*
4970 * @cgrp is now fully operational. If something fails after this
4971 * point, it'll be released via the normal destruction path.
4972 */
4973 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4974
4975 ret = cgroup_kn_set_ugid(kn);
4976 if (ret)
4977 goto out_destroy;
4978
4979 ret = css_populate_dir(&cgrp->self, NULL);
4980 if (ret)
4981 goto out_destroy;
4982
4983 /* let's create and online css's */
4984 do_each_subsys_mask(ss, ssid, parent->subtree_ss_mask) {
4985 struct cgroup_subsys_state *css;
4986
4987 css = css_create(cgrp, ss);
4988 if (IS_ERR(css)) {
4989 ret = PTR_ERR(css);
4990 goto out_destroy;
4991 }
4992
4993 if (parent->subtree_control & (1 << ssid)) {
4994 ret = css_populate_dir(css, NULL);
4995 if (ret)
4996 goto out_destroy;
4997 }
4998 } while_each_subsys_mask();
4999
5000 /*
5001 * On the default hierarchy, a child doesn't automatically inherit
5002 * subtree_control from the parent. Each is configured manually.
5003 */
5004 if (!cgroup_on_dfl(cgrp)) {
5005 cgrp->subtree_control = parent->subtree_control;
5006 cgroup_refresh_subtree_ss_mask(cgrp);
5007 }
5008
5009 kernfs_activate(kn);
5010
5011 ret = 0;
5012 goto out_unlock;
5013
5014out_free_id:
5015 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5016out_cancel_ref:
5017 percpu_ref_exit(&cgrp->self.refcnt);
5018out_free_cgrp:
5019 kfree(cgrp);
5020out_unlock:
5021 cgroup_kn_unlock(parent_kn);
5022 return ret;
5023
5024out_destroy:
5025 cgroup_destroy_locked(cgrp);
5026 goto out_unlock;
5027}
5028
5029/*
5030 * This is called when the refcnt of a css is confirmed to be killed.
5031 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5032 * initate destruction and put the css ref from kill_css().
5033 */
5034static void css_killed_work_fn(struct work_struct *work)
5035{
5036 struct cgroup_subsys_state *css =
5037 container_of(work, struct cgroup_subsys_state, destroy_work);
5038
5039 mutex_lock(&cgroup_mutex);
5040
5041 do {
5042 offline_css(css);
5043 css_put(css);
5044 /* @css can't go away while we're holding cgroup_mutex */
5045 css = css->parent;
5046 } while (css && atomic_dec_and_test(&css->online_cnt));
5047
5048 mutex_unlock(&cgroup_mutex);
5049}
5050
5051/* css kill confirmation processing requires process context, bounce */
5052static void css_killed_ref_fn(struct percpu_ref *ref)
5053{
5054 struct cgroup_subsys_state *css =
5055 container_of(ref, struct cgroup_subsys_state, refcnt);
5056
5057 if (atomic_dec_and_test(&css->online_cnt)) {
5058 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5059 queue_work(cgroup_destroy_wq, &css->destroy_work);
5060 }
5061}
5062
5063/**
5064 * kill_css - destroy a css
5065 * @css: css to destroy
5066 *
5067 * This function initiates destruction of @css by removing cgroup interface
5068 * files and putting its base reference. ->css_offline() will be invoked
5069 * asynchronously once css_tryget_online() is guaranteed to fail and when
5070 * the reference count reaches zero, @css will be released.
5071 */
5072static void kill_css(struct cgroup_subsys_state *css)
5073{
5074 lockdep_assert_held(&cgroup_mutex);
5075
5076 /*
5077 * This must happen before css is disassociated with its cgroup.
5078 * See seq_css() for details.
5079 */
5080 css_clear_dir(css, NULL);
5081
5082 /*
5083 * Killing would put the base ref, but we need to keep it alive
5084 * until after ->css_offline().
5085 */
5086 css_get(css);
5087
5088 /*
5089 * cgroup core guarantees that, by the time ->css_offline() is
5090 * invoked, no new css reference will be given out via
5091 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5092 * proceed to offlining css's because percpu_ref_kill() doesn't
5093 * guarantee that the ref is seen as killed on all CPUs on return.
5094 *
5095 * Use percpu_ref_kill_and_confirm() to get notifications as each
5096 * css is confirmed to be seen as killed on all CPUs.
5097 */
5098 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5099}
5100
5101/**
5102 * cgroup_destroy_locked - the first stage of cgroup destruction
5103 * @cgrp: cgroup to be destroyed
5104 *
5105 * css's make use of percpu refcnts whose killing latency shouldn't be
5106 * exposed to userland and are RCU protected. Also, cgroup core needs to
5107 * guarantee that css_tryget_online() won't succeed by the time
5108 * ->css_offline() is invoked. To satisfy all the requirements,
5109 * destruction is implemented in the following two steps.
5110 *
5111 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5112 * userland visible parts and start killing the percpu refcnts of
5113 * css's. Set up so that the next stage will be kicked off once all
5114 * the percpu refcnts are confirmed to be killed.
5115 *
5116 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5117 * rest of destruction. Once all cgroup references are gone, the
5118 * cgroup is RCU-freed.
5119 *
5120 * This function implements s1. After this step, @cgrp is gone as far as
5121 * the userland is concerned and a new cgroup with the same name may be
5122 * created. As cgroup doesn't care about the names internally, this
5123 * doesn't cause any problem.
5124 */
5125static int cgroup_destroy_locked(struct cgroup *cgrp)
5126 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5127{
5128 struct cgroup_subsys_state *css;
5129 int ssid;
5130
5131 lockdep_assert_held(&cgroup_mutex);
5132
5133 /*
5134 * Only migration can raise populated from zero and we're already
5135 * holding cgroup_mutex.
5136 */
5137 if (cgroup_is_populated(cgrp))
5138 return -EBUSY;
5139
5140 /*
5141 * Make sure there's no live children. We can't test emptiness of
5142 * ->self.children as dead children linger on it while being
5143 * drained; otherwise, "rmdir parent/child parent" may fail.
5144 */
5145 if (css_has_online_children(&cgrp->self))
5146 return -EBUSY;
5147
5148 /*
5149 * Mark @cgrp dead. This prevents further task migration and child
5150 * creation by disabling cgroup_lock_live_group().
5151 */
5152 cgrp->self.flags &= ~CSS_ONLINE;
5153
5154 /* initiate massacre of all css's */
5155 for_each_css(css, ssid, cgrp)
5156 kill_css(css);
5157
5158 /*
5159 * Remove @cgrp directory along with the base files. @cgrp has an
5160 * extra ref on its kn.
5161 */
5162 kernfs_remove(cgrp->kn);
5163
5164 check_for_release(cgroup_parent(cgrp));
5165
5166 /* put the base reference */
5167 percpu_ref_kill(&cgrp->self.refcnt);
5168
5169 return 0;
5170};
5171
5172static int cgroup_rmdir(struct kernfs_node *kn)
5173{
5174 struct cgroup *cgrp;
5175 int ret = 0;
5176
5177 cgrp = cgroup_kn_lock_live(kn);
5178 if (!cgrp)
5179 return 0;
5180
5181 ret = cgroup_destroy_locked(cgrp);
5182
5183 cgroup_kn_unlock(kn);
5184 return ret;
5185}
5186
5187static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5188 .remount_fs = cgroup_remount,
5189 .show_options = cgroup_show_options,
5190 .mkdir = cgroup_mkdir,
5191 .rmdir = cgroup_rmdir,
5192 .rename = cgroup_rename,
5193};
5194
5195static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5196{
5197 struct cgroup_subsys_state *css;
5198
5199 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5200
5201 mutex_lock(&cgroup_mutex);
5202
5203 idr_init(&ss->css_idr);
5204 INIT_LIST_HEAD(&ss->cfts);
5205
5206 /* Create the root cgroup state for this subsystem */
5207 ss->root = &cgrp_dfl_root;
5208 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5209 /* We don't handle early failures gracefully */
5210 BUG_ON(IS_ERR(css));
5211 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5212
5213 /*
5214 * Root csses are never destroyed and we can't initialize
5215 * percpu_ref during early init. Disable refcnting.
5216 */
5217 css->flags |= CSS_NO_REF;
5218
5219 if (early) {
5220 /* allocation can't be done safely during early init */
5221 css->id = 1;
5222 } else {
5223 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5224 BUG_ON(css->id < 0);
5225 }
5226
5227 /* Update the init_css_set to contain a subsys
5228 * pointer to this state - since the subsystem is
5229 * newly registered, all tasks and hence the
5230 * init_css_set is in the subsystem's root cgroup. */
5231 init_css_set.subsys[ss->id] = css;
5232
5233 have_fork_callback |= (bool)ss->fork << ss->id;
5234 have_exit_callback |= (bool)ss->exit << ss->id;
5235 have_free_callback |= (bool)ss->free << ss->id;
5236 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5237
5238 /* At system boot, before all subsystems have been
5239 * registered, no tasks have been forked, so we don't
5240 * need to invoke fork callbacks here. */
5241 BUG_ON(!list_empty(&init_task.tasks));
5242
5243 BUG_ON(online_css(css));
5244
5245 mutex_unlock(&cgroup_mutex);
5246}
5247
5248/**
5249 * cgroup_init_early - cgroup initialization at system boot
5250 *
5251 * Initialize cgroups at system boot, and initialize any
5252 * subsystems that request early init.
5253 */
5254int __init cgroup_init_early(void)
5255{
5256 static struct cgroup_sb_opts __initdata opts;
5257 struct cgroup_subsys *ss;
5258 int i;
5259
5260 init_cgroup_root(&cgrp_dfl_root, &opts);
5261 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5262
5263 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5264
5265 for_each_subsys(ss, i) {
5266 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5267 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5268 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5269 ss->id, ss->name);
5270 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5271 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5272
5273 ss->id = i;
5274 ss->name = cgroup_subsys_name[i];
5275 if (!ss->legacy_name)
5276 ss->legacy_name = cgroup_subsys_name[i];
5277
5278 if (ss->early_init)
5279 cgroup_init_subsys(ss, true);
5280 }
5281 return 0;
5282}
5283
5284static u16 cgroup_disable_mask __initdata;
5285
5286/**
5287 * cgroup_init - cgroup initialization
5288 *
5289 * Register cgroup filesystem and /proc file, and initialize
5290 * any subsystems that didn't request early init.
5291 */
5292int __init cgroup_init(void)
5293{
5294 struct cgroup_subsys *ss;
5295 int ssid;
5296
5297 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5298 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5299 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5300 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5301
5302 mutex_lock(&cgroup_mutex);
5303
5304 /*
5305 * Add init_css_set to the hash table so that dfl_root can link to
5306 * it during init.
5307 */
5308 hash_add(css_set_table, &init_css_set.hlist,
5309 css_set_hash(init_css_set.subsys));
5310
5311 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5312
5313 mutex_unlock(&cgroup_mutex);
5314
5315 for_each_subsys(ss, ssid) {
5316 if (ss->early_init) {
5317 struct cgroup_subsys_state *css =
5318 init_css_set.subsys[ss->id];
5319
5320 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5321 GFP_KERNEL);
5322 BUG_ON(css->id < 0);
5323 } else {
5324 cgroup_init_subsys(ss, false);
5325 }
5326
5327 list_add_tail(&init_css_set.e_cset_node[ssid],
5328 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5329
5330 /*
5331 * Setting dfl_root subsys_mask needs to consider the
5332 * disabled flag and cftype registration needs kmalloc,
5333 * both of which aren't available during early_init.
5334 */
5335 if (cgroup_disable_mask & (1 << ssid)) {
5336 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5337 printk(KERN_INFO "Disabling %s control group subsystem\n",
5338 ss->name);
5339 continue;
5340 }
5341
5342 if (cgroup_ssid_no_v1(ssid))
5343 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5344 ss->name);
5345
5346 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5347
5348 if (!ss->dfl_cftypes)
5349 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5350
5351 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5352 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5353 } else {
5354 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5355 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5356 }
5357
5358 if (ss->bind)
5359 ss->bind(init_css_set.subsys[ssid]);
5360 }
5361
5362 /* init_css_set.subsys[] has been updated, re-hash */
5363 hash_del(&init_css_set.hlist);
5364 hash_add(css_set_table, &init_css_set.hlist,
5365 css_set_hash(init_css_set.subsys));
5366
5367 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5368 WARN_ON(register_filesystem(&cgroup_fs_type));
5369 WARN_ON(register_filesystem(&cgroup2_fs_type));
5370 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5371
5372 return 0;
5373}
5374
5375static int __init cgroup_wq_init(void)
5376{
5377 /*
5378 * There isn't much point in executing destruction path in
5379 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5380 * Use 1 for @max_active.
5381 *
5382 * We would prefer to do this in cgroup_init() above, but that
5383 * is called before init_workqueues(): so leave this until after.
5384 */
5385 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5386 BUG_ON(!cgroup_destroy_wq);
5387
5388 /*
5389 * Used to destroy pidlists and separate to serve as flush domain.
5390 * Cap @max_active to 1 too.
5391 */
5392 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5393 0, 1);
5394 BUG_ON(!cgroup_pidlist_destroy_wq);
5395
5396 return 0;
5397}
5398core_initcall(cgroup_wq_init);
5399
5400/*
5401 * proc_cgroup_show()
5402 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5403 * - Used for /proc/<pid>/cgroup.
5404 */
5405int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5406 struct pid *pid, struct task_struct *tsk)
5407{
5408 char *buf, *path;
5409 int retval;
5410 struct cgroup_root *root;
5411
5412 retval = -ENOMEM;
5413 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5414 if (!buf)
5415 goto out;
5416
5417 mutex_lock(&cgroup_mutex);
5418 spin_lock_bh(&css_set_lock);
5419
5420 for_each_root(root) {
5421 struct cgroup_subsys *ss;
5422 struct cgroup *cgrp;
5423 int ssid, count = 0;
5424
5425 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5426 continue;
5427
5428 seq_printf(m, "%d:", root->hierarchy_id);
5429 if (root != &cgrp_dfl_root)
5430 for_each_subsys(ss, ssid)
5431 if (root->subsys_mask & (1 << ssid))
5432 seq_printf(m, "%s%s", count++ ? "," : "",
5433 ss->legacy_name);
5434 if (strlen(root->name))
5435 seq_printf(m, "%sname=%s", count ? "," : "",
5436 root->name);
5437 seq_putc(m, ':');
5438
5439 cgrp = task_cgroup_from_root(tsk, root);
5440
5441 /*
5442 * On traditional hierarchies, all zombie tasks show up as
5443 * belonging to the root cgroup. On the default hierarchy,
5444 * while a zombie doesn't show up in "cgroup.procs" and
5445 * thus can't be migrated, its /proc/PID/cgroup keeps
5446 * reporting the cgroup it belonged to before exiting. If
5447 * the cgroup is removed before the zombie is reaped,
5448 * " (deleted)" is appended to the cgroup path.
5449 */
5450 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5451 path = cgroup_path(cgrp, buf, PATH_MAX);
5452 if (!path) {
5453 retval = -ENAMETOOLONG;
5454 goto out_unlock;
5455 }
5456 } else {
5457 path = "/";
5458 }
5459
5460 seq_puts(m, path);
5461
5462 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5463 seq_puts(m, " (deleted)\n");
5464 else
5465 seq_putc(m, '\n');
5466 }
5467
5468 retval = 0;
5469out_unlock:
5470 spin_unlock_bh(&css_set_lock);
5471 mutex_unlock(&cgroup_mutex);
5472 kfree(buf);
5473out:
5474 return retval;
5475}
5476
5477/* Display information about each subsystem and each hierarchy */
5478static int proc_cgroupstats_show(struct seq_file *m, void *v)
5479{
5480 struct cgroup_subsys *ss;
5481 int i;
5482
5483 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5484 /*
5485 * ideally we don't want subsystems moving around while we do this.
5486 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5487 * subsys/hierarchy state.
5488 */
5489 mutex_lock(&cgroup_mutex);
5490
5491 for_each_subsys(ss, i)
5492 seq_printf(m, "%s\t%d\t%d\t%d\n",
5493 ss->legacy_name, ss->root->hierarchy_id,
5494 atomic_read(&ss->root->nr_cgrps),
5495 cgroup_ssid_enabled(i));
5496
5497 mutex_unlock(&cgroup_mutex);
5498 return 0;
5499}
5500
5501static int cgroupstats_open(struct inode *inode, struct file *file)
5502{
5503 return single_open(file, proc_cgroupstats_show, NULL);
5504}
5505
5506static const struct file_operations proc_cgroupstats_operations = {
5507 .open = cgroupstats_open,
5508 .read = seq_read,
5509 .llseek = seq_lseek,
5510 .release = single_release,
5511};
5512
5513/**
5514 * cgroup_fork - initialize cgroup related fields during copy_process()
5515 * @child: pointer to task_struct of forking parent process.
5516 *
5517 * A task is associated with the init_css_set until cgroup_post_fork()
5518 * attaches it to the parent's css_set. Empty cg_list indicates that
5519 * @child isn't holding reference to its css_set.
5520 */
5521void cgroup_fork(struct task_struct *child)
5522{
5523 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5524 INIT_LIST_HEAD(&child->cg_list);
5525}
5526
5527/**
5528 * cgroup_can_fork - called on a new task before the process is exposed
5529 * @child: the task in question.
5530 *
5531 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5532 * returns an error, the fork aborts with that error code. This allows for
5533 * a cgroup subsystem to conditionally allow or deny new forks.
5534 */
5535int cgroup_can_fork(struct task_struct *child)
5536{
5537 struct cgroup_subsys *ss;
5538 int i, j, ret;
5539
5540 do_each_subsys_mask(ss, i, have_canfork_callback) {
5541 ret = ss->can_fork(child);
5542 if (ret)
5543 goto out_revert;
5544 } while_each_subsys_mask();
5545
5546 return 0;
5547
5548out_revert:
5549 for_each_subsys(ss, j) {
5550 if (j >= i)
5551 break;
5552 if (ss->cancel_fork)
5553 ss->cancel_fork(child);
5554 }
5555
5556 return ret;
5557}
5558
5559/**
5560 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5561 * @child: the task in question
5562 *
5563 * This calls the cancel_fork() callbacks if a fork failed *after*
5564 * cgroup_can_fork() succeded.
5565 */
5566void cgroup_cancel_fork(struct task_struct *child)
5567{
5568 struct cgroup_subsys *ss;
5569 int i;
5570
5571 for_each_subsys(ss, i)
5572 if (ss->cancel_fork)
5573 ss->cancel_fork(child);
5574}
5575
5576/**
5577 * cgroup_post_fork - called on a new task after adding it to the task list
5578 * @child: the task in question
5579 *
5580 * Adds the task to the list running through its css_set if necessary and
5581 * call the subsystem fork() callbacks. Has to be after the task is
5582 * visible on the task list in case we race with the first call to
5583 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5584 * list.
5585 */
5586void cgroup_post_fork(struct task_struct *child)
5587{
5588 struct cgroup_subsys *ss;
5589 int i;
5590
5591 /*
5592 * This may race against cgroup_enable_task_cg_lists(). As that
5593 * function sets use_task_css_set_links before grabbing
5594 * tasklist_lock and we just went through tasklist_lock to add
5595 * @child, it's guaranteed that either we see the set
5596 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5597 * @child during its iteration.
5598 *
5599 * If we won the race, @child is associated with %current's
5600 * css_set. Grabbing css_set_lock guarantees both that the
5601 * association is stable, and, on completion of the parent's
5602 * migration, @child is visible in the source of migration or
5603 * already in the destination cgroup. This guarantee is necessary
5604 * when implementing operations which need to migrate all tasks of
5605 * a cgroup to another.
5606 *
5607 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5608 * will remain in init_css_set. This is safe because all tasks are
5609 * in the init_css_set before cg_links is enabled and there's no
5610 * operation which transfers all tasks out of init_css_set.
5611 */
5612 if (use_task_css_set_links) {
5613 struct css_set *cset;
5614
5615 spin_lock_bh(&css_set_lock);
5616 cset = task_css_set(current);
5617 if (list_empty(&child->cg_list)) {
5618 get_css_set(cset);
5619 css_set_move_task(child, NULL, cset, false);
5620 }
5621 spin_unlock_bh(&css_set_lock);
5622 }
5623
5624 /*
5625 * Call ss->fork(). This must happen after @child is linked on
5626 * css_set; otherwise, @child might change state between ->fork()
5627 * and addition to css_set.
5628 */
5629 do_each_subsys_mask(ss, i, have_fork_callback) {
5630 ss->fork(child);
5631 } while_each_subsys_mask();
5632}
5633
5634/**
5635 * cgroup_exit - detach cgroup from exiting task
5636 * @tsk: pointer to task_struct of exiting process
5637 *
5638 * Description: Detach cgroup from @tsk and release it.
5639 *
5640 * Note that cgroups marked notify_on_release force every task in
5641 * them to take the global cgroup_mutex mutex when exiting.
5642 * This could impact scaling on very large systems. Be reluctant to
5643 * use notify_on_release cgroups where very high task exit scaling
5644 * is required on large systems.
5645 *
5646 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5647 * call cgroup_exit() while the task is still competent to handle
5648 * notify_on_release(), then leave the task attached to the root cgroup in
5649 * each hierarchy for the remainder of its exit. No need to bother with
5650 * init_css_set refcnting. init_css_set never goes away and we can't race
5651 * with migration path - PF_EXITING is visible to migration path.
5652 */
5653void cgroup_exit(struct task_struct *tsk)
5654{
5655 struct cgroup_subsys *ss;
5656 struct css_set *cset;
5657 int i;
5658
5659 /*
5660 * Unlink from @tsk from its css_set. As migration path can't race
5661 * with us, we can check css_set and cg_list without synchronization.
5662 */
5663 cset = task_css_set(tsk);
5664
5665 if (!list_empty(&tsk->cg_list)) {
5666 spin_lock_bh(&css_set_lock);
5667 css_set_move_task(tsk, cset, NULL, false);
5668 spin_unlock_bh(&css_set_lock);
5669 } else {
5670 get_css_set(cset);
5671 }
5672
5673 /* see cgroup_post_fork() for details */
5674 do_each_subsys_mask(ss, i, have_exit_callback) {
5675 ss->exit(tsk);
5676 } while_each_subsys_mask();
5677}
5678
5679void cgroup_free(struct task_struct *task)
5680{
5681 struct css_set *cset = task_css_set(task);
5682 struct cgroup_subsys *ss;
5683 int ssid;
5684
5685 do_each_subsys_mask(ss, ssid, have_free_callback) {
5686 ss->free(task);
5687 } while_each_subsys_mask();
5688
5689 put_css_set(cset);
5690}
5691
5692static void check_for_release(struct cgroup *cgrp)
5693{
5694 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5695 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5696 schedule_work(&cgrp->release_agent_work);
5697}
5698
5699/*
5700 * Notify userspace when a cgroup is released, by running the
5701 * configured release agent with the name of the cgroup (path
5702 * relative to the root of cgroup file system) as the argument.
5703 *
5704 * Most likely, this user command will try to rmdir this cgroup.
5705 *
5706 * This races with the possibility that some other task will be
5707 * attached to this cgroup before it is removed, or that some other
5708 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5709 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5710 * unused, and this cgroup will be reprieved from its death sentence,
5711 * to continue to serve a useful existence. Next time it's released,
5712 * we will get notified again, if it still has 'notify_on_release' set.
5713 *
5714 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5715 * means only wait until the task is successfully execve()'d. The
5716 * separate release agent task is forked by call_usermodehelper(),
5717 * then control in this thread returns here, without waiting for the
5718 * release agent task. We don't bother to wait because the caller of
5719 * this routine has no use for the exit status of the release agent
5720 * task, so no sense holding our caller up for that.
5721 */
5722static void cgroup_release_agent(struct work_struct *work)
5723{
5724 struct cgroup *cgrp =
5725 container_of(work, struct cgroup, release_agent_work);
5726 char *pathbuf = NULL, *agentbuf = NULL, *path;
5727 char *argv[3], *envp[3];
5728
5729 mutex_lock(&cgroup_mutex);
5730
5731 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5732 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5733 if (!pathbuf || !agentbuf)
5734 goto out;
5735
5736 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5737 if (!path)
5738 goto out;
5739
5740 argv[0] = agentbuf;
5741 argv[1] = path;
5742 argv[2] = NULL;
5743
5744 /* minimal command environment */
5745 envp[0] = "HOME=/";
5746 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5747 envp[2] = NULL;
5748
5749 mutex_unlock(&cgroup_mutex);
5750 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5751 goto out_free;
5752out:
5753 mutex_unlock(&cgroup_mutex);
5754out_free:
5755 kfree(agentbuf);
5756 kfree(pathbuf);
5757}
5758
5759static int __init cgroup_disable(char *str)
5760{
5761 struct cgroup_subsys *ss;
5762 char *token;
5763 int i;
5764
5765 while ((token = strsep(&str, ",")) != NULL) {
5766 if (!*token)
5767 continue;
5768
5769 for_each_subsys(ss, i) {
5770 if (strcmp(token, ss->name) &&
5771 strcmp(token, ss->legacy_name))
5772 continue;
5773 cgroup_disable_mask |= 1 << i;
5774 }
5775 }
5776 return 1;
5777}
5778__setup("cgroup_disable=", cgroup_disable);
5779
5780static int __init cgroup_no_v1(char *str)
5781{
5782 struct cgroup_subsys *ss;
5783 char *token;
5784 int i;
5785
5786 while ((token = strsep(&str, ",")) != NULL) {
5787 if (!*token)
5788 continue;
5789
5790 if (!strcmp(token, "all")) {
5791 cgroup_no_v1_mask = U16_MAX;
5792 break;
5793 }
5794
5795 for_each_subsys(ss, i) {
5796 if (strcmp(token, ss->name) &&
5797 strcmp(token, ss->legacy_name))
5798 continue;
5799
5800 cgroup_no_v1_mask |= 1 << i;
5801 }
5802 }
5803 return 1;
5804}
5805__setup("cgroup_no_v1=", cgroup_no_v1);
5806
5807/**
5808 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5809 * @dentry: directory dentry of interest
5810 * @ss: subsystem of interest
5811 *
5812 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5813 * to get the corresponding css and return it. If such css doesn't exist
5814 * or can't be pinned, an ERR_PTR value is returned.
5815 */
5816struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5817 struct cgroup_subsys *ss)
5818{
5819 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5820 struct file_system_type *s_type = dentry->d_sb->s_type;
5821 struct cgroup_subsys_state *css = NULL;
5822 struct cgroup *cgrp;
5823
5824 /* is @dentry a cgroup dir? */
5825 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5826 !kn || kernfs_type(kn) != KERNFS_DIR)
5827 return ERR_PTR(-EBADF);
5828
5829 rcu_read_lock();
5830
5831 /*
5832 * This path doesn't originate from kernfs and @kn could already
5833 * have been or be removed at any point. @kn->priv is RCU
5834 * protected for this access. See css_release_work_fn() for details.
5835 */
5836 cgrp = rcu_dereference(kn->priv);
5837 if (cgrp)
5838 css = cgroup_css(cgrp, ss);
5839
5840 if (!css || !css_tryget_online(css))
5841 css = ERR_PTR(-ENOENT);
5842
5843 rcu_read_unlock();
5844 return css;
5845}
5846
5847/**
5848 * css_from_id - lookup css by id
5849 * @id: the cgroup id
5850 * @ss: cgroup subsys to be looked into
5851 *
5852 * Returns the css if there's valid one with @id, otherwise returns NULL.
5853 * Should be called under rcu_read_lock().
5854 */
5855struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5856{
5857 WARN_ON_ONCE(!rcu_read_lock_held());
5858 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5859}
5860
5861/**
5862 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5863 * @path: path on the default hierarchy
5864 *
5865 * Find the cgroup at @path on the default hierarchy, increment its
5866 * reference count and return it. Returns pointer to the found cgroup on
5867 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5868 * if @path points to a non-directory.
5869 */
5870struct cgroup *cgroup_get_from_path(const char *path)
5871{
5872 struct kernfs_node *kn;
5873 struct cgroup *cgrp;
5874
5875 mutex_lock(&cgroup_mutex);
5876
5877 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5878 if (kn) {
5879 if (kernfs_type(kn) == KERNFS_DIR) {
5880 cgrp = kn->priv;
5881 cgroup_get(cgrp);
5882 } else {
5883 cgrp = ERR_PTR(-ENOTDIR);
5884 }
5885 kernfs_put(kn);
5886 } else {
5887 cgrp = ERR_PTR(-ENOENT);
5888 }
5889
5890 mutex_unlock(&cgroup_mutex);
5891 return cgrp;
5892}
5893EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5894
5895/*
5896 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5897 * definition in cgroup-defs.h.
5898 */
5899#ifdef CONFIG_SOCK_CGROUP_DATA
5900
5901#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5902
5903DEFINE_SPINLOCK(cgroup_sk_update_lock);
5904static bool cgroup_sk_alloc_disabled __read_mostly;
5905
5906void cgroup_sk_alloc_disable(void)
5907{
5908 if (cgroup_sk_alloc_disabled)
5909 return;
5910 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5911 cgroup_sk_alloc_disabled = true;
5912}
5913
5914#else
5915
5916#define cgroup_sk_alloc_disabled false
5917
5918#endif
5919
5920void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5921{
5922 if (cgroup_sk_alloc_disabled)
5923 return;
5924
5925 rcu_read_lock();
5926
5927 while (true) {
5928 struct css_set *cset;
5929
5930 cset = task_css_set(current);
5931 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5932 skcd->val = (unsigned long)cset->dfl_cgrp;
5933 break;
5934 }
5935 cpu_relax();
5936 }
5937
5938 rcu_read_unlock();
5939}
5940
5941void cgroup_sk_free(struct sock_cgroup_data *skcd)
5942{
5943 cgroup_put(sock_cgroup_ptr(skcd));
5944}
5945
5946#endif /* CONFIG_SOCK_CGROUP_DATA */
5947
5948#ifdef CONFIG_CGROUP_DEBUG
5949static struct cgroup_subsys_state *
5950debug_css_alloc(struct cgroup_subsys_state *parent_css)
5951{
5952 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5953
5954 if (!css)
5955 return ERR_PTR(-ENOMEM);
5956
5957 return css;
5958}
5959
5960static void debug_css_free(struct cgroup_subsys_state *css)
5961{
5962 kfree(css);
5963}
5964
5965static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5966 struct cftype *cft)
5967{
5968 return cgroup_task_count(css->cgroup);
5969}
5970
5971static u64 current_css_set_read(struct cgroup_subsys_state *css,
5972 struct cftype *cft)
5973{
5974 return (u64)(unsigned long)current->cgroups;
5975}
5976
5977static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5978 struct cftype *cft)
5979{
5980 u64 count;
5981
5982 rcu_read_lock();
5983 count = atomic_read(&task_css_set(current)->refcount);
5984 rcu_read_unlock();
5985 return count;
5986}
5987
5988static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5989{
5990 struct cgrp_cset_link *link;
5991 struct css_set *cset;
5992 char *name_buf;
5993
5994 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5995 if (!name_buf)
5996 return -ENOMEM;
5997
5998 spin_lock_bh(&css_set_lock);
5999 rcu_read_lock();
6000 cset = rcu_dereference(current->cgroups);
6001 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6002 struct cgroup *c = link->cgrp;
6003
6004 cgroup_name(c, name_buf, NAME_MAX + 1);
6005 seq_printf(seq, "Root %d group %s\n",
6006 c->root->hierarchy_id, name_buf);
6007 }
6008 rcu_read_unlock();
6009 spin_unlock_bh(&css_set_lock);
6010 kfree(name_buf);
6011 return 0;
6012}
6013
6014#define MAX_TASKS_SHOWN_PER_CSS 25
6015static int cgroup_css_links_read(struct seq_file *seq, void *v)
6016{
6017 struct cgroup_subsys_state *css = seq_css(seq);
6018 struct cgrp_cset_link *link;
6019
6020 spin_lock_bh(&css_set_lock);
6021 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6022 struct css_set *cset = link->cset;
6023 struct task_struct *task;
6024 int count = 0;
6025
6026 seq_printf(seq, "css_set %p\n", cset);
6027
6028 list_for_each_entry(task, &cset->tasks, cg_list) {
6029 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6030 goto overflow;
6031 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6032 }
6033
6034 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6035 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6036 goto overflow;
6037 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6038 }
6039 continue;
6040 overflow:
6041 seq_puts(seq, " ...\n");
6042 }
6043 spin_unlock_bh(&css_set_lock);
6044 return 0;
6045}
6046
6047static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6048{
6049 return (!cgroup_is_populated(css->cgroup) &&
6050 !css_has_online_children(&css->cgroup->self));
6051}
6052
6053static struct cftype debug_files[] = {
6054 {
6055 .name = "taskcount",
6056 .read_u64 = debug_taskcount_read,
6057 },
6058
6059 {
6060 .name = "current_css_set",
6061 .read_u64 = current_css_set_read,
6062 },
6063
6064 {
6065 .name = "current_css_set_refcount",
6066 .read_u64 = current_css_set_refcount_read,
6067 },
6068
6069 {
6070 .name = "current_css_set_cg_links",
6071 .seq_show = current_css_set_cg_links_read,
6072 },
6073
6074 {
6075 .name = "cgroup_css_links",
6076 .seq_show = cgroup_css_links_read,
6077 },
6078
6079 {
6080 .name = "releasable",
6081 .read_u64 = releasable_read,
6082 },
6083
6084 { } /* terminate */
6085};
6086
6087struct cgroup_subsys debug_cgrp_subsys = {
6088 .css_alloc = debug_css_alloc,
6089 .css_free = debug_css_free,
6090 .legacy_cftypes = debug_files,
6091};
6092#endif /* CONFIG_CGROUP_DEBUG */