]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - kernel/cpu.c
x86/speculation/mds: Add sysfs reporting for MDS
[mirror_ubuntu-bionic-kernel.git] / kernel / cpu.c
... / ...
CommitLineData
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/proc_fs.h>
7#include <linux/smp.h>
8#include <linux/init.h>
9#include <linux/notifier.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/hotplug.h>
12#include <linux/sched/task.h>
13#include <linux/sched/smt.h>
14#include <linux/unistd.h>
15#include <linux/cpu.h>
16#include <linux/oom.h>
17#include <linux/rcupdate.h>
18#include <linux/export.h>
19#include <linux/bug.h>
20#include <linux/kthread.h>
21#include <linux/stop_machine.h>
22#include <linux/mutex.h>
23#include <linux/gfp.h>
24#include <linux/suspend.h>
25#include <linux/lockdep.h>
26#include <linux/tick.h>
27#include <linux/irq.h>
28#include <linux/nmi.h>
29#include <linux/smpboot.h>
30#include <linux/relay.h>
31#include <linux/slab.h>
32#include <linux/percpu-rwsem.h>
33
34#include <trace/events/power.h>
35#define CREATE_TRACE_POINTS
36#include <trace/events/cpuhp.h>
37
38#include "smpboot.h"
39
40/**
41 * cpuhp_cpu_state - Per cpu hotplug state storage
42 * @state: The current cpu state
43 * @target: The target state
44 * @thread: Pointer to the hotplug thread
45 * @should_run: Thread should execute
46 * @rollback: Perform a rollback
47 * @single: Single callback invocation
48 * @bringup: Single callback bringup or teardown selector
49 * @cb_state: The state for a single callback (install/uninstall)
50 * @result: Result of the operation
51 * @done_up: Signal completion to the issuer of the task for cpu-up
52 * @done_down: Signal completion to the issuer of the task for cpu-down
53 */
54struct cpuhp_cpu_state {
55 enum cpuhp_state state;
56 enum cpuhp_state target;
57 enum cpuhp_state fail;
58#ifdef CONFIG_SMP
59 struct task_struct *thread;
60 bool should_run;
61 bool rollback;
62 bool single;
63 bool bringup;
64 bool booted_once;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71#endif
72};
73
74static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
76};
77
78#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79static struct lockdep_map cpuhp_state_up_map =
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81static struct lockdep_map cpuhp_state_down_map =
82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83
84
85static inline void cpuhp_lock_acquire(bool bringup)
86{
87 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88}
89
90static inline void cpuhp_lock_release(bool bringup)
91{
92 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93}
94#else
95
96static inline void cpuhp_lock_acquire(bool bringup) { }
97static inline void cpuhp_lock_release(bool bringup) { }
98
99#endif
100
101/**
102 * cpuhp_step - Hotplug state machine step
103 * @name: Name of the step
104 * @startup: Startup function of the step
105 * @teardown: Teardown function of the step
106 * @skip_onerr: Do not invoke the functions on error rollback
107 * Will go away once the notifiers are gone
108 * @cant_stop: Bringup/teardown can't be stopped at this step
109 */
110struct cpuhp_step {
111 const char *name;
112 union {
113 int (*single)(unsigned int cpu);
114 int (*multi)(unsigned int cpu,
115 struct hlist_node *node);
116 } startup;
117 union {
118 int (*single)(unsigned int cpu);
119 int (*multi)(unsigned int cpu,
120 struct hlist_node *node);
121 } teardown;
122 struct hlist_head list;
123 bool skip_onerr;
124 bool cant_stop;
125 bool multi_instance;
126};
127
128static DEFINE_MUTEX(cpuhp_state_mutex);
129static struct cpuhp_step cpuhp_bp_states[];
130static struct cpuhp_step cpuhp_ap_states[];
131
132static bool cpuhp_is_ap_state(enum cpuhp_state state)
133{
134 /*
135 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
136 * purposes as that state is handled explicitly in cpu_down.
137 */
138 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
139}
140
141static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
142{
143 struct cpuhp_step *sp;
144
145 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
146 return sp + state;
147}
148
149/**
150 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
151 * @cpu: The cpu for which the callback should be invoked
152 * @state: The state to do callbacks for
153 * @bringup: True if the bringup callback should be invoked
154 * @node: For multi-instance, do a single entry callback for install/remove
155 * @lastp: For multi-instance rollback, remember how far we got
156 *
157 * Called from cpu hotplug and from the state register machinery.
158 */
159static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
160 bool bringup, struct hlist_node *node,
161 struct hlist_node **lastp)
162{
163 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
164 struct cpuhp_step *step = cpuhp_get_step(state);
165 int (*cbm)(unsigned int cpu, struct hlist_node *node);
166 int (*cb)(unsigned int cpu);
167 int ret, cnt;
168
169 if (st->fail == state) {
170 st->fail = CPUHP_INVALID;
171
172 if (!(bringup ? step->startup.single : step->teardown.single))
173 return 0;
174
175 return -EAGAIN;
176 }
177
178 if (!step->multi_instance) {
179 WARN_ON_ONCE(lastp && *lastp);
180 cb = bringup ? step->startup.single : step->teardown.single;
181 if (!cb)
182 return 0;
183 trace_cpuhp_enter(cpu, st->target, state, cb);
184 ret = cb(cpu);
185 trace_cpuhp_exit(cpu, st->state, state, ret);
186 return ret;
187 }
188 cbm = bringup ? step->startup.multi : step->teardown.multi;
189 if (!cbm)
190 return 0;
191
192 /* Single invocation for instance add/remove */
193 if (node) {
194 WARN_ON_ONCE(lastp && *lastp);
195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 ret = cbm(cpu, node);
197 trace_cpuhp_exit(cpu, st->state, state, ret);
198 return ret;
199 }
200
201 /* State transition. Invoke on all instances */
202 cnt = 0;
203 hlist_for_each(node, &step->list) {
204 if (lastp && node == *lastp)
205 break;
206
207 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
208 ret = cbm(cpu, node);
209 trace_cpuhp_exit(cpu, st->state, state, ret);
210 if (ret) {
211 if (!lastp)
212 goto err;
213
214 *lastp = node;
215 return ret;
216 }
217 cnt++;
218 }
219 if (lastp)
220 *lastp = NULL;
221 return 0;
222err:
223 /* Rollback the instances if one failed */
224 cbm = !bringup ? step->startup.multi : step->teardown.multi;
225 if (!cbm)
226 return ret;
227
228 hlist_for_each(node, &step->list) {
229 if (!cnt--)
230 break;
231
232 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
233 ret = cbm(cpu, node);
234 trace_cpuhp_exit(cpu, st->state, state, ret);
235 /*
236 * Rollback must not fail,
237 */
238 WARN_ON_ONCE(ret);
239 }
240 return ret;
241}
242
243#ifdef CONFIG_SMP
244static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245{
246 struct completion *done = bringup ? &st->done_up : &st->done_down;
247 wait_for_completion(done);
248}
249
250static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
251{
252 struct completion *done = bringup ? &st->done_up : &st->done_down;
253 complete(done);
254}
255
256/*
257 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
258 */
259static bool cpuhp_is_atomic_state(enum cpuhp_state state)
260{
261 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
262}
263
264/* Serializes the updates to cpu_online_mask, cpu_present_mask */
265static DEFINE_MUTEX(cpu_add_remove_lock);
266bool cpuhp_tasks_frozen;
267EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
268
269/*
270 * The following two APIs (cpu_maps_update_begin/done) must be used when
271 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
272 */
273void cpu_maps_update_begin(void)
274{
275 mutex_lock(&cpu_add_remove_lock);
276}
277
278void cpu_maps_update_done(void)
279{
280 mutex_unlock(&cpu_add_remove_lock);
281}
282
283/*
284 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
285 * Should always be manipulated under cpu_add_remove_lock
286 */
287static int cpu_hotplug_disabled;
288
289#ifdef CONFIG_HOTPLUG_CPU
290
291DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
292
293void cpus_read_lock(void)
294{
295 percpu_down_read(&cpu_hotplug_lock);
296}
297EXPORT_SYMBOL_GPL(cpus_read_lock);
298
299void cpus_read_unlock(void)
300{
301 percpu_up_read(&cpu_hotplug_lock);
302}
303EXPORT_SYMBOL_GPL(cpus_read_unlock);
304
305void cpus_write_lock(void)
306{
307 percpu_down_write(&cpu_hotplug_lock);
308}
309
310void cpus_write_unlock(void)
311{
312 percpu_up_write(&cpu_hotplug_lock);
313}
314
315void lockdep_assert_cpus_held(void)
316{
317 percpu_rwsem_assert_held(&cpu_hotplug_lock);
318}
319
320/*
321 * Wait for currently running CPU hotplug operations to complete (if any) and
322 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
323 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
324 * hotplug path before performing hotplug operations. So acquiring that lock
325 * guarantees mutual exclusion from any currently running hotplug operations.
326 */
327void cpu_hotplug_disable(void)
328{
329 cpu_maps_update_begin();
330 cpu_hotplug_disabled++;
331 cpu_maps_update_done();
332}
333EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
334
335static void __cpu_hotplug_enable(void)
336{
337 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
338 return;
339 cpu_hotplug_disabled--;
340}
341
342void cpu_hotplug_enable(void)
343{
344 cpu_maps_update_begin();
345 __cpu_hotplug_enable();
346 cpu_maps_update_done();
347}
348EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
349#endif /* CONFIG_HOTPLUG_CPU */
350
351/*
352 * Architectures that need SMT-specific errata handling during SMT hotplug
353 * should override this.
354 */
355void __weak arch_smt_update(void) { }
356
357#ifdef CONFIG_HOTPLUG_SMT
358enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
359EXPORT_SYMBOL_GPL(cpu_smt_control);
360
361static bool cpu_smt_available __read_mostly;
362
363void __init cpu_smt_disable(bool force)
364{
365 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
366 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
367 return;
368
369 if (force) {
370 pr_info("SMT: Force disabled\n");
371 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
372 } else {
373 cpu_smt_control = CPU_SMT_DISABLED;
374 }
375}
376
377/*
378 * The decision whether SMT is supported can only be done after the full
379 * CPU identification. Called from architecture code before non boot CPUs
380 * are brought up.
381 */
382void __init cpu_smt_check_topology_early(void)
383{
384 if (!topology_smt_supported())
385 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
386}
387
388/*
389 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
390 * brought online. This ensures the smt/l1tf sysfs entries are consistent
391 * with reality. cpu_smt_available is set to true during the bringup of non
392 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
393 * cpu_smt_control's previous setting.
394 */
395void __init cpu_smt_check_topology(void)
396{
397 if (!cpu_smt_available)
398 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
399}
400
401static int __init smt_cmdline_disable(char *str)
402{
403 cpu_smt_disable(str && !strcmp(str, "force"));
404 return 0;
405}
406early_param("nosmt", smt_cmdline_disable);
407
408static inline bool cpu_smt_allowed(unsigned int cpu)
409{
410 if (topology_is_primary_thread(cpu))
411 return true;
412
413 /*
414 * If the CPU is not a 'primary' thread and the booted_once bit is
415 * set then the processor has SMT support. Store this information
416 * for the late check of SMT support in cpu_smt_check_topology().
417 */
418 if (per_cpu(cpuhp_state, cpu).booted_once)
419 cpu_smt_available = true;
420
421 if (cpu_smt_control == CPU_SMT_ENABLED)
422 return true;
423
424 /*
425 * On x86 it's required to boot all logical CPUs at least once so
426 * that the init code can get a chance to set CR4.MCE on each
427 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
428 * core will shutdown the machine.
429 */
430 return !per_cpu(cpuhp_state, cpu).booted_once;
431}
432#else
433static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
434#endif
435
436static inline enum cpuhp_state
437cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
438{
439 enum cpuhp_state prev_state = st->state;
440
441 st->rollback = false;
442 st->last = NULL;
443
444 st->target = target;
445 st->single = false;
446 st->bringup = st->state < target;
447
448 return prev_state;
449}
450
451static inline void
452cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
453{
454 st->rollback = true;
455
456 /*
457 * If we have st->last we need to undo partial multi_instance of this
458 * state first. Otherwise start undo at the previous state.
459 */
460 if (!st->last) {
461 if (st->bringup)
462 st->state--;
463 else
464 st->state++;
465 }
466
467 st->target = prev_state;
468 st->bringup = !st->bringup;
469}
470
471/* Regular hotplug invocation of the AP hotplug thread */
472static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
473{
474 if (!st->single && st->state == st->target)
475 return;
476
477 st->result = 0;
478 /*
479 * Make sure the above stores are visible before should_run becomes
480 * true. Paired with the mb() above in cpuhp_thread_fun()
481 */
482 smp_mb();
483 st->should_run = true;
484 wake_up_process(st->thread);
485 wait_for_ap_thread(st, st->bringup);
486}
487
488static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
489{
490 enum cpuhp_state prev_state;
491 int ret;
492
493 prev_state = cpuhp_set_state(st, target);
494 __cpuhp_kick_ap(st);
495 if ((ret = st->result)) {
496 cpuhp_reset_state(st, prev_state);
497 __cpuhp_kick_ap(st);
498 }
499
500 return ret;
501}
502
503static int bringup_wait_for_ap(unsigned int cpu)
504{
505 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
506
507 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
508 wait_for_ap_thread(st, true);
509 if (WARN_ON_ONCE((!cpu_online(cpu))))
510 return -ECANCELED;
511
512 /* Unpark the stopper thread and the hotplug thread of the target cpu */
513 stop_machine_unpark(cpu);
514 kthread_unpark(st->thread);
515
516 /*
517 * SMT soft disabling on X86 requires to bring the CPU out of the
518 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
519 * CPU marked itself as booted_once in cpu_notify_starting() so the
520 * cpu_smt_allowed() check will now return false if this is not the
521 * primary sibling.
522 */
523 if (!cpu_smt_allowed(cpu))
524 return -ECANCELED;
525
526 if (st->target <= CPUHP_AP_ONLINE_IDLE)
527 return 0;
528
529 return cpuhp_kick_ap(st, st->target);
530}
531
532static int bringup_cpu(unsigned int cpu)
533{
534 struct task_struct *idle = idle_thread_get(cpu);
535 int ret;
536
537 /*
538 * Some architectures have to walk the irq descriptors to
539 * setup the vector space for the cpu which comes online.
540 * Prevent irq alloc/free across the bringup.
541 */
542 irq_lock_sparse();
543
544 /* Arch-specific enabling code. */
545 ret = __cpu_up(cpu, idle);
546 irq_unlock_sparse();
547 if (ret)
548 return ret;
549 return bringup_wait_for_ap(cpu);
550}
551
552/*
553 * Hotplug state machine related functions
554 */
555
556static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
557{
558 for (st->state--; st->state > st->target; st->state--) {
559 struct cpuhp_step *step = cpuhp_get_step(st->state);
560
561 if (!step->skip_onerr)
562 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
563 }
564}
565
566static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
567 enum cpuhp_state target)
568{
569 enum cpuhp_state prev_state = st->state;
570 int ret = 0;
571
572 while (st->state < target) {
573 st->state++;
574 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
575 if (ret) {
576 st->target = prev_state;
577 undo_cpu_up(cpu, st);
578 break;
579 }
580 }
581 return ret;
582}
583
584/*
585 * The cpu hotplug threads manage the bringup and teardown of the cpus
586 */
587static void cpuhp_create(unsigned int cpu)
588{
589 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
590
591 init_completion(&st->done_up);
592 init_completion(&st->done_down);
593}
594
595static int cpuhp_should_run(unsigned int cpu)
596{
597 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
598
599 return st->should_run;
600}
601
602/*
603 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
604 * callbacks when a state gets [un]installed at runtime.
605 *
606 * Each invocation of this function by the smpboot thread does a single AP
607 * state callback.
608 *
609 * It has 3 modes of operation:
610 * - single: runs st->cb_state
611 * - up: runs ++st->state, while st->state < st->target
612 * - down: runs st->state--, while st->state > st->target
613 *
614 * When complete or on error, should_run is cleared and the completion is fired.
615 */
616static void cpuhp_thread_fun(unsigned int cpu)
617{
618 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
619 bool bringup = st->bringup;
620 enum cpuhp_state state;
621
622 /*
623 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
624 * that if we see ->should_run we also see the rest of the state.
625 */
626 smp_mb();
627
628 if (WARN_ON_ONCE(!st->should_run))
629 return;
630
631 cpuhp_lock_acquire(bringup);
632
633 if (st->single) {
634 state = st->cb_state;
635 st->should_run = false;
636 } else {
637 if (bringup) {
638 st->state++;
639 state = st->state;
640 st->should_run = (st->state < st->target);
641 WARN_ON_ONCE(st->state > st->target);
642 } else {
643 state = st->state;
644 st->state--;
645 st->should_run = (st->state > st->target);
646 WARN_ON_ONCE(st->state < st->target);
647 }
648 }
649
650 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
651
652 if (st->rollback) {
653 struct cpuhp_step *step = cpuhp_get_step(state);
654 if (step->skip_onerr)
655 goto next;
656 }
657
658 if (cpuhp_is_atomic_state(state)) {
659 local_irq_disable();
660 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
661 local_irq_enable();
662
663 /*
664 * STARTING/DYING must not fail!
665 */
666 WARN_ON_ONCE(st->result);
667 } else {
668 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
669 }
670
671 if (st->result) {
672 /*
673 * If we fail on a rollback, we're up a creek without no
674 * paddle, no way forward, no way back. We loose, thanks for
675 * playing.
676 */
677 WARN_ON_ONCE(st->rollback);
678 st->should_run = false;
679 }
680
681next:
682 cpuhp_lock_release(bringup);
683
684 if (!st->should_run)
685 complete_ap_thread(st, bringup);
686}
687
688/* Invoke a single callback on a remote cpu */
689static int
690cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
691 struct hlist_node *node)
692{
693 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
694 int ret;
695
696 if (!cpu_online(cpu))
697 return 0;
698
699 cpuhp_lock_acquire(false);
700 cpuhp_lock_release(false);
701
702 cpuhp_lock_acquire(true);
703 cpuhp_lock_release(true);
704
705 /*
706 * If we are up and running, use the hotplug thread. For early calls
707 * we invoke the thread function directly.
708 */
709 if (!st->thread)
710 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
711
712 st->rollback = false;
713 st->last = NULL;
714
715 st->node = node;
716 st->bringup = bringup;
717 st->cb_state = state;
718 st->single = true;
719
720 __cpuhp_kick_ap(st);
721
722 /*
723 * If we failed and did a partial, do a rollback.
724 */
725 if ((ret = st->result) && st->last) {
726 st->rollback = true;
727 st->bringup = !bringup;
728
729 __cpuhp_kick_ap(st);
730 }
731
732 /*
733 * Clean up the leftovers so the next hotplug operation wont use stale
734 * data.
735 */
736 st->node = st->last = NULL;
737 return ret;
738}
739
740static int cpuhp_kick_ap_work(unsigned int cpu)
741{
742 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
743 enum cpuhp_state prev_state = st->state;
744 int ret;
745
746 cpuhp_lock_acquire(false);
747 cpuhp_lock_release(false);
748
749 cpuhp_lock_acquire(true);
750 cpuhp_lock_release(true);
751
752 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
753 ret = cpuhp_kick_ap(st, st->target);
754 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
755
756 return ret;
757}
758
759static struct smp_hotplug_thread cpuhp_threads = {
760 .store = &cpuhp_state.thread,
761 .create = &cpuhp_create,
762 .thread_should_run = cpuhp_should_run,
763 .thread_fn = cpuhp_thread_fun,
764 .thread_comm = "cpuhp/%u",
765 .selfparking = true,
766};
767
768void __init cpuhp_threads_init(void)
769{
770 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
771 kthread_unpark(this_cpu_read(cpuhp_state.thread));
772}
773
774#ifdef CONFIG_HOTPLUG_CPU
775/**
776 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
777 * @cpu: a CPU id
778 *
779 * This function walks all processes, finds a valid mm struct for each one and
780 * then clears a corresponding bit in mm's cpumask. While this all sounds
781 * trivial, there are various non-obvious corner cases, which this function
782 * tries to solve in a safe manner.
783 *
784 * Also note that the function uses a somewhat relaxed locking scheme, so it may
785 * be called only for an already offlined CPU.
786 */
787void clear_tasks_mm_cpumask(int cpu)
788{
789 struct task_struct *p;
790
791 /*
792 * This function is called after the cpu is taken down and marked
793 * offline, so its not like new tasks will ever get this cpu set in
794 * their mm mask. -- Peter Zijlstra
795 * Thus, we may use rcu_read_lock() here, instead of grabbing
796 * full-fledged tasklist_lock.
797 */
798 WARN_ON(cpu_online(cpu));
799 rcu_read_lock();
800 for_each_process(p) {
801 struct task_struct *t;
802
803 /*
804 * Main thread might exit, but other threads may still have
805 * a valid mm. Find one.
806 */
807 t = find_lock_task_mm(p);
808 if (!t)
809 continue;
810 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
811 task_unlock(t);
812 }
813 rcu_read_unlock();
814}
815
816/* Take this CPU down. */
817static int take_cpu_down(void *_param)
818{
819 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
820 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
821 int err, cpu = smp_processor_id();
822 int ret;
823
824 /* Ensure this CPU doesn't handle any more interrupts. */
825 err = __cpu_disable();
826 if (err < 0)
827 return err;
828
829 /*
830 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
831 * do this step again.
832 */
833 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
834 st->state--;
835 /* Invoke the former CPU_DYING callbacks */
836 for (; st->state > target; st->state--) {
837 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
838 /*
839 * DYING must not fail!
840 */
841 WARN_ON_ONCE(ret);
842 }
843
844 /* Give up timekeeping duties */
845 tick_handover_do_timer();
846 /* Park the stopper thread */
847 stop_machine_park(cpu);
848 return 0;
849}
850
851static int takedown_cpu(unsigned int cpu)
852{
853 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
854 int err;
855
856 /* Park the smpboot threads */
857 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
858
859 /*
860 * Prevent irq alloc/free while the dying cpu reorganizes the
861 * interrupt affinities.
862 */
863 irq_lock_sparse();
864
865 /*
866 * So now all preempt/rcu users must observe !cpu_active().
867 */
868 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
869 if (err) {
870 /* CPU refused to die */
871 irq_unlock_sparse();
872 /* Unpark the hotplug thread so we can rollback there */
873 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
874 return err;
875 }
876 BUG_ON(cpu_online(cpu));
877
878 /*
879 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
880 * all runnable tasks from the CPU, there's only the idle task left now
881 * that the migration thread is done doing the stop_machine thing.
882 *
883 * Wait for the stop thread to go away.
884 */
885 wait_for_ap_thread(st, false);
886 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
887
888 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
889 irq_unlock_sparse();
890
891 hotplug_cpu__broadcast_tick_pull(cpu);
892 /* This actually kills the CPU. */
893 __cpu_die(cpu);
894
895 tick_cleanup_dead_cpu(cpu);
896 rcutree_migrate_callbacks(cpu);
897 return 0;
898}
899
900static void cpuhp_complete_idle_dead(void *arg)
901{
902 struct cpuhp_cpu_state *st = arg;
903
904 complete_ap_thread(st, false);
905}
906
907void cpuhp_report_idle_dead(void)
908{
909 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
910
911 BUG_ON(st->state != CPUHP_AP_OFFLINE);
912 rcu_report_dead(smp_processor_id());
913 st->state = CPUHP_AP_IDLE_DEAD;
914 /*
915 * We cannot call complete after rcu_report_dead() so we delegate it
916 * to an online cpu.
917 */
918 smp_call_function_single(cpumask_first(cpu_online_mask),
919 cpuhp_complete_idle_dead, st, 0);
920}
921
922static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
923{
924 for (st->state++; st->state < st->target; st->state++) {
925 struct cpuhp_step *step = cpuhp_get_step(st->state);
926
927 if (!step->skip_onerr)
928 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
929 }
930}
931
932static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
933 enum cpuhp_state target)
934{
935 enum cpuhp_state prev_state = st->state;
936 int ret = 0;
937
938 for (; st->state > target; st->state--) {
939 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
940 if (ret) {
941 st->target = prev_state;
942 undo_cpu_down(cpu, st);
943 break;
944 }
945 }
946 return ret;
947}
948
949/* Requires cpu_add_remove_lock to be held */
950static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
951 enum cpuhp_state target)
952{
953 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
954 int prev_state, ret = 0;
955
956 if (num_online_cpus() == 1)
957 return -EBUSY;
958
959 if (!cpu_present(cpu))
960 return -EINVAL;
961
962 cpus_write_lock();
963
964 cpuhp_tasks_frozen = tasks_frozen;
965
966 prev_state = cpuhp_set_state(st, target);
967 /*
968 * If the current CPU state is in the range of the AP hotplug thread,
969 * then we need to kick the thread.
970 */
971 if (st->state > CPUHP_TEARDOWN_CPU) {
972 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
973 ret = cpuhp_kick_ap_work(cpu);
974 /*
975 * The AP side has done the error rollback already. Just
976 * return the error code..
977 */
978 if (ret)
979 goto out;
980
981 /*
982 * We might have stopped still in the range of the AP hotplug
983 * thread. Nothing to do anymore.
984 */
985 if (st->state > CPUHP_TEARDOWN_CPU)
986 goto out;
987
988 st->target = target;
989 }
990 /*
991 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
992 * to do the further cleanups.
993 */
994 ret = cpuhp_down_callbacks(cpu, st, target);
995 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
996 cpuhp_reset_state(st, prev_state);
997 __cpuhp_kick_ap(st);
998 }
999
1000out:
1001 cpus_write_unlock();
1002 /*
1003 * Do post unplug cleanup. This is still protected against
1004 * concurrent CPU hotplug via cpu_add_remove_lock.
1005 */
1006 lockup_detector_cleanup();
1007 arch_smt_update();
1008 return ret;
1009}
1010
1011static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1012{
1013 if (cpu_hotplug_disabled)
1014 return -EBUSY;
1015 return _cpu_down(cpu, 0, target);
1016}
1017
1018static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1019{
1020 int err;
1021
1022 cpu_maps_update_begin();
1023 err = cpu_down_maps_locked(cpu, target);
1024 cpu_maps_update_done();
1025 return err;
1026}
1027
1028int cpu_down(unsigned int cpu)
1029{
1030 return do_cpu_down(cpu, CPUHP_OFFLINE);
1031}
1032EXPORT_SYMBOL(cpu_down);
1033
1034#else
1035#define takedown_cpu NULL
1036#endif /*CONFIG_HOTPLUG_CPU*/
1037
1038/**
1039 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1040 * @cpu: cpu that just started
1041 *
1042 * It must be called by the arch code on the new cpu, before the new cpu
1043 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1044 */
1045void notify_cpu_starting(unsigned int cpu)
1046{
1047 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1048 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1049 int ret;
1050
1051 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1052 st->booted_once = true;
1053 while (st->state < target) {
1054 st->state++;
1055 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1056 /*
1057 * STARTING must not fail!
1058 */
1059 WARN_ON_ONCE(ret);
1060 }
1061}
1062
1063/*
1064 * Called from the idle task. Wake up the controlling task which brings the
1065 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1066 * the rest of the online bringup to the hotplug thread.
1067 */
1068void cpuhp_online_idle(enum cpuhp_state state)
1069{
1070 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1071
1072 /* Happens for the boot cpu */
1073 if (state != CPUHP_AP_ONLINE_IDLE)
1074 return;
1075
1076 st->state = CPUHP_AP_ONLINE_IDLE;
1077 complete_ap_thread(st, true);
1078}
1079
1080/* Requires cpu_add_remove_lock to be held */
1081static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1082{
1083 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1084 struct task_struct *idle;
1085 int ret = 0;
1086
1087 cpus_write_lock();
1088
1089 if (!cpu_present(cpu)) {
1090 ret = -EINVAL;
1091 goto out;
1092 }
1093
1094 /*
1095 * The caller of do_cpu_up might have raced with another
1096 * caller. Ignore it for now.
1097 */
1098 if (st->state >= target)
1099 goto out;
1100
1101 if (st->state == CPUHP_OFFLINE) {
1102 /* Let it fail before we try to bring the cpu up */
1103 idle = idle_thread_get(cpu);
1104 if (IS_ERR(idle)) {
1105 ret = PTR_ERR(idle);
1106 goto out;
1107 }
1108 }
1109
1110 cpuhp_tasks_frozen = tasks_frozen;
1111
1112 cpuhp_set_state(st, target);
1113 /*
1114 * If the current CPU state is in the range of the AP hotplug thread,
1115 * then we need to kick the thread once more.
1116 */
1117 if (st->state > CPUHP_BRINGUP_CPU) {
1118 ret = cpuhp_kick_ap_work(cpu);
1119 /*
1120 * The AP side has done the error rollback already. Just
1121 * return the error code..
1122 */
1123 if (ret)
1124 goto out;
1125 }
1126
1127 /*
1128 * Try to reach the target state. We max out on the BP at
1129 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1130 * responsible for bringing it up to the target state.
1131 */
1132 target = min((int)target, CPUHP_BRINGUP_CPU);
1133 ret = cpuhp_up_callbacks(cpu, st, target);
1134out:
1135 cpus_write_unlock();
1136 arch_smt_update();
1137 return ret;
1138}
1139
1140static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1141{
1142 int err = 0;
1143
1144 if (!cpu_possible(cpu)) {
1145 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1146 cpu);
1147#if defined(CONFIG_IA64)
1148 pr_err("please check additional_cpus= boot parameter\n");
1149#endif
1150 return -EINVAL;
1151 }
1152
1153 err = try_online_node(cpu_to_node(cpu));
1154 if (err)
1155 return err;
1156
1157 cpu_maps_update_begin();
1158
1159 if (cpu_hotplug_disabled) {
1160 err = -EBUSY;
1161 goto out;
1162 }
1163 if (!cpu_smt_allowed(cpu)) {
1164 err = -EPERM;
1165 goto out;
1166 }
1167
1168 err = _cpu_up(cpu, 0, target);
1169out:
1170 cpu_maps_update_done();
1171 return err;
1172}
1173
1174int cpu_up(unsigned int cpu)
1175{
1176 return do_cpu_up(cpu, CPUHP_ONLINE);
1177}
1178EXPORT_SYMBOL_GPL(cpu_up);
1179
1180#ifdef CONFIG_PM_SLEEP_SMP
1181static cpumask_var_t frozen_cpus;
1182
1183int freeze_secondary_cpus(int primary)
1184{
1185 int cpu, error = 0;
1186
1187 cpu_maps_update_begin();
1188 if (!cpu_online(primary))
1189 primary = cpumask_first(cpu_online_mask);
1190 /*
1191 * We take down all of the non-boot CPUs in one shot to avoid races
1192 * with the userspace trying to use the CPU hotplug at the same time
1193 */
1194 cpumask_clear(frozen_cpus);
1195
1196 pr_info("Disabling non-boot CPUs ...\n");
1197 for_each_online_cpu(cpu) {
1198 if (cpu == primary)
1199 continue;
1200 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1201 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1202 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1203 if (!error)
1204 cpumask_set_cpu(cpu, frozen_cpus);
1205 else {
1206 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1207 break;
1208 }
1209 }
1210
1211 if (!error)
1212 BUG_ON(num_online_cpus() > 1);
1213 else
1214 pr_err("Non-boot CPUs are not disabled\n");
1215
1216 /*
1217 * Make sure the CPUs won't be enabled by someone else. We need to do
1218 * this even in case of failure as all disable_nonboot_cpus() users are
1219 * supposed to do enable_nonboot_cpus() on the failure path.
1220 */
1221 cpu_hotplug_disabled++;
1222
1223 cpu_maps_update_done();
1224 return error;
1225}
1226
1227void __weak arch_enable_nonboot_cpus_begin(void)
1228{
1229}
1230
1231void __weak arch_enable_nonboot_cpus_end(void)
1232{
1233}
1234
1235void enable_nonboot_cpus(void)
1236{
1237 int cpu, error;
1238
1239 /* Allow everyone to use the CPU hotplug again */
1240 cpu_maps_update_begin();
1241 __cpu_hotplug_enable();
1242 if (cpumask_empty(frozen_cpus))
1243 goto out;
1244
1245 pr_info("Enabling non-boot CPUs ...\n");
1246
1247 arch_enable_nonboot_cpus_begin();
1248
1249 for_each_cpu(cpu, frozen_cpus) {
1250 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1251 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1252 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1253 if (!error) {
1254 pr_info("CPU%d is up\n", cpu);
1255 continue;
1256 }
1257 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1258 }
1259
1260 arch_enable_nonboot_cpus_end();
1261
1262 cpumask_clear(frozen_cpus);
1263out:
1264 cpu_maps_update_done();
1265}
1266
1267static int __init alloc_frozen_cpus(void)
1268{
1269 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1270 return -ENOMEM;
1271 return 0;
1272}
1273core_initcall(alloc_frozen_cpus);
1274
1275/*
1276 * When callbacks for CPU hotplug notifications are being executed, we must
1277 * ensure that the state of the system with respect to the tasks being frozen
1278 * or not, as reported by the notification, remains unchanged *throughout the
1279 * duration* of the execution of the callbacks.
1280 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1281 *
1282 * This synchronization is implemented by mutually excluding regular CPU
1283 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1284 * Hibernate notifications.
1285 */
1286static int
1287cpu_hotplug_pm_callback(struct notifier_block *nb,
1288 unsigned long action, void *ptr)
1289{
1290 switch (action) {
1291
1292 case PM_SUSPEND_PREPARE:
1293 case PM_HIBERNATION_PREPARE:
1294 cpu_hotplug_disable();
1295 break;
1296
1297 case PM_POST_SUSPEND:
1298 case PM_POST_HIBERNATION:
1299 cpu_hotplug_enable();
1300 break;
1301
1302 default:
1303 return NOTIFY_DONE;
1304 }
1305
1306 return NOTIFY_OK;
1307}
1308
1309
1310static int __init cpu_hotplug_pm_sync_init(void)
1311{
1312 /*
1313 * cpu_hotplug_pm_callback has higher priority than x86
1314 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1315 * to disable cpu hotplug to avoid cpu hotplug race.
1316 */
1317 pm_notifier(cpu_hotplug_pm_callback, 0);
1318 return 0;
1319}
1320core_initcall(cpu_hotplug_pm_sync_init);
1321
1322#endif /* CONFIG_PM_SLEEP_SMP */
1323
1324int __boot_cpu_id;
1325
1326#endif /* CONFIG_SMP */
1327
1328/* Boot processor state steps */
1329static struct cpuhp_step cpuhp_bp_states[] = {
1330 [CPUHP_OFFLINE] = {
1331 .name = "offline",
1332 .startup.single = NULL,
1333 .teardown.single = NULL,
1334 },
1335#ifdef CONFIG_SMP
1336 [CPUHP_CREATE_THREADS]= {
1337 .name = "threads:prepare",
1338 .startup.single = smpboot_create_threads,
1339 .teardown.single = NULL,
1340 .cant_stop = true,
1341 },
1342 [CPUHP_PERF_PREPARE] = {
1343 .name = "perf:prepare",
1344 .startup.single = perf_event_init_cpu,
1345 .teardown.single = perf_event_exit_cpu,
1346 },
1347 [CPUHP_WORKQUEUE_PREP] = {
1348 .name = "workqueue:prepare",
1349 .startup.single = workqueue_prepare_cpu,
1350 .teardown.single = NULL,
1351 },
1352 [CPUHP_HRTIMERS_PREPARE] = {
1353 .name = "hrtimers:prepare",
1354 .startup.single = hrtimers_prepare_cpu,
1355 .teardown.single = hrtimers_dead_cpu,
1356 },
1357 [CPUHP_SMPCFD_PREPARE] = {
1358 .name = "smpcfd:prepare",
1359 .startup.single = smpcfd_prepare_cpu,
1360 .teardown.single = smpcfd_dead_cpu,
1361 },
1362 [CPUHP_RELAY_PREPARE] = {
1363 .name = "relay:prepare",
1364 .startup.single = relay_prepare_cpu,
1365 .teardown.single = NULL,
1366 },
1367 [CPUHP_SLAB_PREPARE] = {
1368 .name = "slab:prepare",
1369 .startup.single = slab_prepare_cpu,
1370 .teardown.single = slab_dead_cpu,
1371 },
1372 [CPUHP_RCUTREE_PREP] = {
1373 .name = "RCU/tree:prepare",
1374 .startup.single = rcutree_prepare_cpu,
1375 .teardown.single = rcutree_dead_cpu,
1376 },
1377 /*
1378 * On the tear-down path, timers_dead_cpu() must be invoked
1379 * before blk_mq_queue_reinit_notify() from notify_dead(),
1380 * otherwise a RCU stall occurs.
1381 */
1382 [CPUHP_TIMERS_PREPARE] = {
1383 .name = "timers:dead",
1384 .startup.single = timers_prepare_cpu,
1385 .teardown.single = timers_dead_cpu,
1386 },
1387 /* Kicks the plugged cpu into life */
1388 [CPUHP_BRINGUP_CPU] = {
1389 .name = "cpu:bringup",
1390 .startup.single = bringup_cpu,
1391 .teardown.single = NULL,
1392 .cant_stop = true,
1393 },
1394 /*
1395 * Handled on controll processor until the plugged processor manages
1396 * this itself.
1397 */
1398 [CPUHP_TEARDOWN_CPU] = {
1399 .name = "cpu:teardown",
1400 .startup.single = NULL,
1401 .teardown.single = takedown_cpu,
1402 .cant_stop = true,
1403 },
1404#else
1405 [CPUHP_BRINGUP_CPU] = { },
1406#endif
1407};
1408
1409/* Application processor state steps */
1410static struct cpuhp_step cpuhp_ap_states[] = {
1411#ifdef CONFIG_SMP
1412 /* Final state before CPU kills itself */
1413 [CPUHP_AP_IDLE_DEAD] = {
1414 .name = "idle:dead",
1415 },
1416 /*
1417 * Last state before CPU enters the idle loop to die. Transient state
1418 * for synchronization.
1419 */
1420 [CPUHP_AP_OFFLINE] = {
1421 .name = "ap:offline",
1422 .cant_stop = true,
1423 },
1424 /* First state is scheduler control. Interrupts are disabled */
1425 [CPUHP_AP_SCHED_STARTING] = {
1426 .name = "sched:starting",
1427 .startup.single = sched_cpu_starting,
1428 .teardown.single = sched_cpu_dying,
1429 },
1430 [CPUHP_AP_RCUTREE_DYING] = {
1431 .name = "RCU/tree:dying",
1432 .startup.single = NULL,
1433 .teardown.single = rcutree_dying_cpu,
1434 },
1435 [CPUHP_AP_SMPCFD_DYING] = {
1436 .name = "smpcfd:dying",
1437 .startup.single = NULL,
1438 .teardown.single = smpcfd_dying_cpu,
1439 },
1440 /* Entry state on starting. Interrupts enabled from here on. Transient
1441 * state for synchronsization */
1442 [CPUHP_AP_ONLINE] = {
1443 .name = "ap:online",
1444 },
1445 /* Handle smpboot threads park/unpark */
1446 [CPUHP_AP_SMPBOOT_THREADS] = {
1447 .name = "smpboot/threads:online",
1448 .startup.single = smpboot_unpark_threads,
1449 .teardown.single = smpboot_park_threads,
1450 },
1451 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1452 .name = "irq/affinity:online",
1453 .startup.single = irq_affinity_online_cpu,
1454 .teardown.single = NULL,
1455 },
1456 [CPUHP_AP_PERF_ONLINE] = {
1457 .name = "perf:online",
1458 .startup.single = perf_event_init_cpu,
1459 .teardown.single = perf_event_exit_cpu,
1460 },
1461 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1462 .name = "workqueue:online",
1463 .startup.single = workqueue_online_cpu,
1464 .teardown.single = workqueue_offline_cpu,
1465 },
1466 [CPUHP_AP_RCUTREE_ONLINE] = {
1467 .name = "RCU/tree:online",
1468 .startup.single = rcutree_online_cpu,
1469 .teardown.single = rcutree_offline_cpu,
1470 },
1471#endif
1472 /*
1473 * The dynamically registered state space is here
1474 */
1475
1476#ifdef CONFIG_SMP
1477 /* Last state is scheduler control setting the cpu active */
1478 [CPUHP_AP_ACTIVE] = {
1479 .name = "sched:active",
1480 .startup.single = sched_cpu_activate,
1481 .teardown.single = sched_cpu_deactivate,
1482 },
1483#endif
1484
1485 /* CPU is fully up and running. */
1486 [CPUHP_ONLINE] = {
1487 .name = "online",
1488 .startup.single = NULL,
1489 .teardown.single = NULL,
1490 },
1491};
1492
1493/* Sanity check for callbacks */
1494static int cpuhp_cb_check(enum cpuhp_state state)
1495{
1496 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1497 return -EINVAL;
1498 return 0;
1499}
1500
1501/*
1502 * Returns a free for dynamic slot assignment of the Online state. The states
1503 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1504 * by having no name assigned.
1505 */
1506static int cpuhp_reserve_state(enum cpuhp_state state)
1507{
1508 enum cpuhp_state i, end;
1509 struct cpuhp_step *step;
1510
1511 switch (state) {
1512 case CPUHP_AP_ONLINE_DYN:
1513 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1514 end = CPUHP_AP_ONLINE_DYN_END;
1515 break;
1516 case CPUHP_BP_PREPARE_DYN:
1517 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1518 end = CPUHP_BP_PREPARE_DYN_END;
1519 break;
1520 default:
1521 return -EINVAL;
1522 }
1523
1524 for (i = state; i <= end; i++, step++) {
1525 if (!step->name)
1526 return i;
1527 }
1528 WARN(1, "No more dynamic states available for CPU hotplug\n");
1529 return -ENOSPC;
1530}
1531
1532static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1533 int (*startup)(unsigned int cpu),
1534 int (*teardown)(unsigned int cpu),
1535 bool multi_instance)
1536{
1537 /* (Un)Install the callbacks for further cpu hotplug operations */
1538 struct cpuhp_step *sp;
1539 int ret = 0;
1540
1541 /*
1542 * If name is NULL, then the state gets removed.
1543 *
1544 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1545 * the first allocation from these dynamic ranges, so the removal
1546 * would trigger a new allocation and clear the wrong (already
1547 * empty) state, leaving the callbacks of the to be cleared state
1548 * dangling, which causes wreckage on the next hotplug operation.
1549 */
1550 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1551 state == CPUHP_BP_PREPARE_DYN)) {
1552 ret = cpuhp_reserve_state(state);
1553 if (ret < 0)
1554 return ret;
1555 state = ret;
1556 }
1557 sp = cpuhp_get_step(state);
1558 if (name && sp->name)
1559 return -EBUSY;
1560
1561 sp->startup.single = startup;
1562 sp->teardown.single = teardown;
1563 sp->name = name;
1564 sp->multi_instance = multi_instance;
1565 INIT_HLIST_HEAD(&sp->list);
1566 return ret;
1567}
1568
1569static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1570{
1571 return cpuhp_get_step(state)->teardown.single;
1572}
1573
1574/*
1575 * Call the startup/teardown function for a step either on the AP or
1576 * on the current CPU.
1577 */
1578static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1579 struct hlist_node *node)
1580{
1581 struct cpuhp_step *sp = cpuhp_get_step(state);
1582 int ret;
1583
1584 /*
1585 * If there's nothing to do, we done.
1586 * Relies on the union for multi_instance.
1587 */
1588 if ((bringup && !sp->startup.single) ||
1589 (!bringup && !sp->teardown.single))
1590 return 0;
1591 /*
1592 * The non AP bound callbacks can fail on bringup. On teardown
1593 * e.g. module removal we crash for now.
1594 */
1595#ifdef CONFIG_SMP
1596 if (cpuhp_is_ap_state(state))
1597 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1598 else
1599 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1600#else
1601 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1602#endif
1603 BUG_ON(ret && !bringup);
1604 return ret;
1605}
1606
1607/*
1608 * Called from __cpuhp_setup_state on a recoverable failure.
1609 *
1610 * Note: The teardown callbacks for rollback are not allowed to fail!
1611 */
1612static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1613 struct hlist_node *node)
1614{
1615 int cpu;
1616
1617 /* Roll back the already executed steps on the other cpus */
1618 for_each_present_cpu(cpu) {
1619 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1620 int cpustate = st->state;
1621
1622 if (cpu >= failedcpu)
1623 break;
1624
1625 /* Did we invoke the startup call on that cpu ? */
1626 if (cpustate >= state)
1627 cpuhp_issue_call(cpu, state, false, node);
1628 }
1629}
1630
1631int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1632 struct hlist_node *node,
1633 bool invoke)
1634{
1635 struct cpuhp_step *sp;
1636 int cpu;
1637 int ret;
1638
1639 lockdep_assert_cpus_held();
1640
1641 sp = cpuhp_get_step(state);
1642 if (sp->multi_instance == false)
1643 return -EINVAL;
1644
1645 mutex_lock(&cpuhp_state_mutex);
1646
1647 if (!invoke || !sp->startup.multi)
1648 goto add_node;
1649
1650 /*
1651 * Try to call the startup callback for each present cpu
1652 * depending on the hotplug state of the cpu.
1653 */
1654 for_each_present_cpu(cpu) {
1655 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1656 int cpustate = st->state;
1657
1658 if (cpustate < state)
1659 continue;
1660
1661 ret = cpuhp_issue_call(cpu, state, true, node);
1662 if (ret) {
1663 if (sp->teardown.multi)
1664 cpuhp_rollback_install(cpu, state, node);
1665 goto unlock;
1666 }
1667 }
1668add_node:
1669 ret = 0;
1670 hlist_add_head(node, &sp->list);
1671unlock:
1672 mutex_unlock(&cpuhp_state_mutex);
1673 return ret;
1674}
1675
1676int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1677 bool invoke)
1678{
1679 int ret;
1680
1681 cpus_read_lock();
1682 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1683 cpus_read_unlock();
1684 return ret;
1685}
1686EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1687
1688/**
1689 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1690 * @state: The state to setup
1691 * @invoke: If true, the startup function is invoked for cpus where
1692 * cpu state >= @state
1693 * @startup: startup callback function
1694 * @teardown: teardown callback function
1695 * @multi_instance: State is set up for multiple instances which get
1696 * added afterwards.
1697 *
1698 * The caller needs to hold cpus read locked while calling this function.
1699 * Returns:
1700 * On success:
1701 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1702 * 0 for all other states
1703 * On failure: proper (negative) error code
1704 */
1705int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1706 const char *name, bool invoke,
1707 int (*startup)(unsigned int cpu),
1708 int (*teardown)(unsigned int cpu),
1709 bool multi_instance)
1710{
1711 int cpu, ret = 0;
1712 bool dynstate;
1713
1714 lockdep_assert_cpus_held();
1715
1716 if (cpuhp_cb_check(state) || !name)
1717 return -EINVAL;
1718
1719 mutex_lock(&cpuhp_state_mutex);
1720
1721 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1722 multi_instance);
1723
1724 dynstate = state == CPUHP_AP_ONLINE_DYN;
1725 if (ret > 0 && dynstate) {
1726 state = ret;
1727 ret = 0;
1728 }
1729
1730 if (ret || !invoke || !startup)
1731 goto out;
1732
1733 /*
1734 * Try to call the startup callback for each present cpu
1735 * depending on the hotplug state of the cpu.
1736 */
1737 for_each_present_cpu(cpu) {
1738 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1739 int cpustate = st->state;
1740
1741 if (cpustate < state)
1742 continue;
1743
1744 ret = cpuhp_issue_call(cpu, state, true, NULL);
1745 if (ret) {
1746 if (teardown)
1747 cpuhp_rollback_install(cpu, state, NULL);
1748 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1749 goto out;
1750 }
1751 }
1752out:
1753 mutex_unlock(&cpuhp_state_mutex);
1754 /*
1755 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1756 * dynamically allocated state in case of success.
1757 */
1758 if (!ret && dynstate)
1759 return state;
1760 return ret;
1761}
1762EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1763
1764int __cpuhp_setup_state(enum cpuhp_state state,
1765 const char *name, bool invoke,
1766 int (*startup)(unsigned int cpu),
1767 int (*teardown)(unsigned int cpu),
1768 bool multi_instance)
1769{
1770 int ret;
1771
1772 cpus_read_lock();
1773 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1774 teardown, multi_instance);
1775 cpus_read_unlock();
1776 return ret;
1777}
1778EXPORT_SYMBOL(__cpuhp_setup_state);
1779
1780int __cpuhp_state_remove_instance(enum cpuhp_state state,
1781 struct hlist_node *node, bool invoke)
1782{
1783 struct cpuhp_step *sp = cpuhp_get_step(state);
1784 int cpu;
1785
1786 BUG_ON(cpuhp_cb_check(state));
1787
1788 if (!sp->multi_instance)
1789 return -EINVAL;
1790
1791 cpus_read_lock();
1792 mutex_lock(&cpuhp_state_mutex);
1793
1794 if (!invoke || !cpuhp_get_teardown_cb(state))
1795 goto remove;
1796 /*
1797 * Call the teardown callback for each present cpu depending
1798 * on the hotplug state of the cpu. This function is not
1799 * allowed to fail currently!
1800 */
1801 for_each_present_cpu(cpu) {
1802 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1803 int cpustate = st->state;
1804
1805 if (cpustate >= state)
1806 cpuhp_issue_call(cpu, state, false, node);
1807 }
1808
1809remove:
1810 hlist_del(node);
1811 mutex_unlock(&cpuhp_state_mutex);
1812 cpus_read_unlock();
1813
1814 return 0;
1815}
1816EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1817
1818/**
1819 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1820 * @state: The state to remove
1821 * @invoke: If true, the teardown function is invoked for cpus where
1822 * cpu state >= @state
1823 *
1824 * The caller needs to hold cpus read locked while calling this function.
1825 * The teardown callback is currently not allowed to fail. Think
1826 * about module removal!
1827 */
1828void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1829{
1830 struct cpuhp_step *sp = cpuhp_get_step(state);
1831 int cpu;
1832
1833 BUG_ON(cpuhp_cb_check(state));
1834
1835 lockdep_assert_cpus_held();
1836
1837 mutex_lock(&cpuhp_state_mutex);
1838 if (sp->multi_instance) {
1839 WARN(!hlist_empty(&sp->list),
1840 "Error: Removing state %d which has instances left.\n",
1841 state);
1842 goto remove;
1843 }
1844
1845 if (!invoke || !cpuhp_get_teardown_cb(state))
1846 goto remove;
1847
1848 /*
1849 * Call the teardown callback for each present cpu depending
1850 * on the hotplug state of the cpu. This function is not
1851 * allowed to fail currently!
1852 */
1853 for_each_present_cpu(cpu) {
1854 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1855 int cpustate = st->state;
1856
1857 if (cpustate >= state)
1858 cpuhp_issue_call(cpu, state, false, NULL);
1859 }
1860remove:
1861 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1862 mutex_unlock(&cpuhp_state_mutex);
1863}
1864EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1865
1866void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1867{
1868 cpus_read_lock();
1869 __cpuhp_remove_state_cpuslocked(state, invoke);
1870 cpus_read_unlock();
1871}
1872EXPORT_SYMBOL(__cpuhp_remove_state);
1873
1874#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1875static ssize_t show_cpuhp_state(struct device *dev,
1876 struct device_attribute *attr, char *buf)
1877{
1878 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1879
1880 return sprintf(buf, "%d\n", st->state);
1881}
1882static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1883
1884static ssize_t write_cpuhp_target(struct device *dev,
1885 struct device_attribute *attr,
1886 const char *buf, size_t count)
1887{
1888 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1889 struct cpuhp_step *sp;
1890 int target, ret;
1891
1892 ret = kstrtoint(buf, 10, &target);
1893 if (ret)
1894 return ret;
1895
1896#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1897 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1898 return -EINVAL;
1899#else
1900 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1901 return -EINVAL;
1902#endif
1903
1904 ret = lock_device_hotplug_sysfs();
1905 if (ret)
1906 return ret;
1907
1908 mutex_lock(&cpuhp_state_mutex);
1909 sp = cpuhp_get_step(target);
1910 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1911 mutex_unlock(&cpuhp_state_mutex);
1912 if (ret)
1913 goto out;
1914
1915 if (st->state < target)
1916 ret = do_cpu_up(dev->id, target);
1917 else
1918 ret = do_cpu_down(dev->id, target);
1919out:
1920 unlock_device_hotplug();
1921 return ret ? ret : count;
1922}
1923
1924static ssize_t show_cpuhp_target(struct device *dev,
1925 struct device_attribute *attr, char *buf)
1926{
1927 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1928
1929 return sprintf(buf, "%d\n", st->target);
1930}
1931static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1932
1933
1934static ssize_t write_cpuhp_fail(struct device *dev,
1935 struct device_attribute *attr,
1936 const char *buf, size_t count)
1937{
1938 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1939 struct cpuhp_step *sp;
1940 int fail, ret;
1941
1942 ret = kstrtoint(buf, 10, &fail);
1943 if (ret)
1944 return ret;
1945
1946 /*
1947 * Cannot fail STARTING/DYING callbacks.
1948 */
1949 if (cpuhp_is_atomic_state(fail))
1950 return -EINVAL;
1951
1952 /*
1953 * Cannot fail anything that doesn't have callbacks.
1954 */
1955 mutex_lock(&cpuhp_state_mutex);
1956 sp = cpuhp_get_step(fail);
1957 if (!sp->startup.single && !sp->teardown.single)
1958 ret = -EINVAL;
1959 mutex_unlock(&cpuhp_state_mutex);
1960 if (ret)
1961 return ret;
1962
1963 st->fail = fail;
1964
1965 return count;
1966}
1967
1968static ssize_t show_cpuhp_fail(struct device *dev,
1969 struct device_attribute *attr, char *buf)
1970{
1971 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1972
1973 return sprintf(buf, "%d\n", st->fail);
1974}
1975
1976static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1977
1978static struct attribute *cpuhp_cpu_attrs[] = {
1979 &dev_attr_state.attr,
1980 &dev_attr_target.attr,
1981 &dev_attr_fail.attr,
1982 NULL
1983};
1984
1985static const struct attribute_group cpuhp_cpu_attr_group = {
1986 .attrs = cpuhp_cpu_attrs,
1987 .name = "hotplug",
1988 NULL
1989};
1990
1991static ssize_t show_cpuhp_states(struct device *dev,
1992 struct device_attribute *attr, char *buf)
1993{
1994 ssize_t cur, res = 0;
1995 int i;
1996
1997 mutex_lock(&cpuhp_state_mutex);
1998 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1999 struct cpuhp_step *sp = cpuhp_get_step(i);
2000
2001 if (sp->name) {
2002 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2003 buf += cur;
2004 res += cur;
2005 }
2006 }
2007 mutex_unlock(&cpuhp_state_mutex);
2008 return res;
2009}
2010static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2011
2012static struct attribute *cpuhp_cpu_root_attrs[] = {
2013 &dev_attr_states.attr,
2014 NULL
2015};
2016
2017static const struct attribute_group cpuhp_cpu_root_attr_group = {
2018 .attrs = cpuhp_cpu_root_attrs,
2019 .name = "hotplug",
2020 NULL
2021};
2022
2023#ifdef CONFIG_HOTPLUG_SMT
2024
2025static const char *smt_states[] = {
2026 [CPU_SMT_ENABLED] = "on",
2027 [CPU_SMT_DISABLED] = "off",
2028 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2029 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2030};
2031
2032static ssize_t
2033show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2034{
2035 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2036}
2037
2038static void cpuhp_offline_cpu_device(unsigned int cpu)
2039{
2040 struct device *dev = get_cpu_device(cpu);
2041
2042 dev->offline = true;
2043 /* Tell user space about the state change */
2044 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2045}
2046
2047static void cpuhp_online_cpu_device(unsigned int cpu)
2048{
2049 struct device *dev = get_cpu_device(cpu);
2050
2051 dev->offline = false;
2052 /* Tell user space about the state change */
2053 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2054}
2055
2056static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2057{
2058 int cpu, ret = 0;
2059
2060 cpu_maps_update_begin();
2061 for_each_online_cpu(cpu) {
2062 if (topology_is_primary_thread(cpu))
2063 continue;
2064 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2065 if (ret)
2066 break;
2067 /*
2068 * As this needs to hold the cpu maps lock it's impossible
2069 * to call device_offline() because that ends up calling
2070 * cpu_down() which takes cpu maps lock. cpu maps lock
2071 * needs to be held as this might race against in kernel
2072 * abusers of the hotplug machinery (thermal management).
2073 *
2074 * So nothing would update device:offline state. That would
2075 * leave the sysfs entry stale and prevent onlining after
2076 * smt control has been changed to 'off' again. This is
2077 * called under the sysfs hotplug lock, so it is properly
2078 * serialized against the regular offline usage.
2079 */
2080 cpuhp_offline_cpu_device(cpu);
2081 }
2082 if (!ret) {
2083 cpu_smt_control = ctrlval;
2084 arch_smt_update();
2085 }
2086 cpu_maps_update_done();
2087 return ret;
2088}
2089
2090static int cpuhp_smt_enable(void)
2091{
2092 int cpu, ret = 0;
2093
2094 cpu_maps_update_begin();
2095 cpu_smt_control = CPU_SMT_ENABLED;
2096 arch_smt_update();
2097 for_each_present_cpu(cpu) {
2098 /* Skip online CPUs and CPUs on offline nodes */
2099 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2100 continue;
2101 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2102 if (ret)
2103 break;
2104 /* See comment in cpuhp_smt_disable() */
2105 cpuhp_online_cpu_device(cpu);
2106 }
2107 cpu_maps_update_done();
2108 return ret;
2109}
2110
2111static ssize_t
2112store_smt_control(struct device *dev, struct device_attribute *attr,
2113 const char *buf, size_t count)
2114{
2115 int ctrlval, ret;
2116
2117 if (sysfs_streq(buf, "on"))
2118 ctrlval = CPU_SMT_ENABLED;
2119 else if (sysfs_streq(buf, "off"))
2120 ctrlval = CPU_SMT_DISABLED;
2121 else if (sysfs_streq(buf, "forceoff"))
2122 ctrlval = CPU_SMT_FORCE_DISABLED;
2123 else
2124 return -EINVAL;
2125
2126 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2127 return -EPERM;
2128
2129 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2130 return -ENODEV;
2131
2132 ret = lock_device_hotplug_sysfs();
2133 if (ret)
2134 return ret;
2135
2136 if (ctrlval != cpu_smt_control) {
2137 switch (ctrlval) {
2138 case CPU_SMT_ENABLED:
2139 ret = cpuhp_smt_enable();
2140 break;
2141 case CPU_SMT_DISABLED:
2142 case CPU_SMT_FORCE_DISABLED:
2143 ret = cpuhp_smt_disable(ctrlval);
2144 break;
2145 }
2146 }
2147
2148 unlock_device_hotplug();
2149 return ret ? ret : count;
2150}
2151static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2152
2153static ssize_t
2154show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2155{
2156 bool active = topology_max_smt_threads() > 1;
2157
2158 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2159}
2160static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2161
2162static struct attribute *cpuhp_smt_attrs[] = {
2163 &dev_attr_control.attr,
2164 &dev_attr_active.attr,
2165 NULL
2166};
2167
2168static const struct attribute_group cpuhp_smt_attr_group = {
2169 .attrs = cpuhp_smt_attrs,
2170 .name = "smt",
2171 NULL
2172};
2173
2174static int __init cpu_smt_state_init(void)
2175{
2176 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2177 &cpuhp_smt_attr_group);
2178}
2179
2180#else
2181static inline int cpu_smt_state_init(void) { return 0; }
2182#endif
2183
2184static int __init cpuhp_sysfs_init(void)
2185{
2186 int cpu, ret;
2187
2188 ret = cpu_smt_state_init();
2189 if (ret)
2190 return ret;
2191
2192 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2193 &cpuhp_cpu_root_attr_group);
2194 if (ret)
2195 return ret;
2196
2197 for_each_possible_cpu(cpu) {
2198 struct device *dev = get_cpu_device(cpu);
2199
2200 if (!dev)
2201 continue;
2202 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2203 if (ret)
2204 return ret;
2205 }
2206 return 0;
2207}
2208device_initcall(cpuhp_sysfs_init);
2209#endif
2210
2211/*
2212 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2213 * represents all NR_CPUS bits binary values of 1<<nr.
2214 *
2215 * It is used by cpumask_of() to get a constant address to a CPU
2216 * mask value that has a single bit set only.
2217 */
2218
2219/* cpu_bit_bitmap[0] is empty - so we can back into it */
2220#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2221#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2222#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2223#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2224
2225const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2226
2227 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2228 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2229#if BITS_PER_LONG > 32
2230 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2231 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2232#endif
2233};
2234EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2235
2236const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2237EXPORT_SYMBOL(cpu_all_bits);
2238
2239#ifdef CONFIG_INIT_ALL_POSSIBLE
2240struct cpumask __cpu_possible_mask __read_mostly
2241 = {CPU_BITS_ALL};
2242#else
2243struct cpumask __cpu_possible_mask __read_mostly;
2244#endif
2245EXPORT_SYMBOL(__cpu_possible_mask);
2246
2247struct cpumask __cpu_online_mask __read_mostly;
2248EXPORT_SYMBOL(__cpu_online_mask);
2249
2250struct cpumask __cpu_present_mask __read_mostly;
2251EXPORT_SYMBOL(__cpu_present_mask);
2252
2253struct cpumask __cpu_active_mask __read_mostly;
2254EXPORT_SYMBOL(__cpu_active_mask);
2255
2256void init_cpu_present(const struct cpumask *src)
2257{
2258 cpumask_copy(&__cpu_present_mask, src);
2259}
2260
2261void init_cpu_possible(const struct cpumask *src)
2262{
2263 cpumask_copy(&__cpu_possible_mask, src);
2264}
2265
2266void init_cpu_online(const struct cpumask *src)
2267{
2268 cpumask_copy(&__cpu_online_mask, src);
2269}
2270
2271/*
2272 * Activate the first processor.
2273 */
2274void __init boot_cpu_init(void)
2275{
2276 int cpu = smp_processor_id();
2277
2278 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2279 set_cpu_online(cpu, true);
2280 set_cpu_active(cpu, true);
2281 set_cpu_present(cpu, true);
2282 set_cpu_possible(cpu, true);
2283
2284#ifdef CONFIG_SMP
2285 __boot_cpu_id = cpu;
2286#endif
2287}
2288
2289/*
2290 * Must be called _AFTER_ setting up the per_cpu areas
2291 */
2292void __init boot_cpu_state_init(void)
2293{
2294 per_cpu_ptr(&cpuhp_state, smp_processor_id())->booted_once = true;
2295 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2296}