]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame_incremental - kernel/events/core.c
perf: Fix bogus kernel printk
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
... / ...
CommitLineData
1/*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/idr.h>
17#include <linux/file.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/hash.h>
21#include <linux/tick.h>
22#include <linux/sysfs.h>
23#include <linux/dcache.h>
24#include <linux/percpu.h>
25#include <linux/ptrace.h>
26#include <linux/reboot.h>
27#include <linux/vmstat.h>
28#include <linux/device.h>
29#include <linux/export.h>
30#include <linux/vmalloc.h>
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
36#include <linux/kernel_stat.h>
37#include <linux/perf_event.h>
38#include <linux/ftrace_event.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/mm_types.h>
41#include <linux/cgroup.h>
42#include <linux/module.h>
43#include <linux/mman.h>
44#include <linux/compat.h>
45
46#include "internal.h"
47
48#include <asm/irq_regs.h>
49
50static struct workqueue_struct *perf_wq;
51
52struct remote_function_call {
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
136
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
154struct static_key_deferred perf_sched_events __read_mostly;
155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
161static atomic_t nr_freq_events __read_mostly;
162
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
167/*
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
173 */
174int sysctl_perf_event_paranoid __read_mostly = 1;
175
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178
179/*
180 * max perf event sample rate
181 */
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
199 do_div(tmp, 100);
200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201}
202
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
233
234 return 0;
235}
236
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
244static DEFINE_PER_CPU(u64, running_sample_length);
245
246static void perf_duration_warn(struct irq_work *w)
247{
248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 u64 avg_local_sample_len;
250 u64 local_samples_len;
251
252 local_samples_len = __this_cpu_read(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len, allowed_ns >> 1,
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
269
270 if (allowed_ns == 0)
271 return;
272
273 /* decay the counter by 1 average sample */
274 local_samples_len = __this_cpu_read(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __this_cpu_write(running_sample_length, local_samples_len);
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
286 if (avg_local_sample_len <= allowed_ns)
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
296 update_perf_cpu_limits();
297
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
304}
305
306static atomic64_t perf_event_id;
307
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
317
318void __weak perf_event_print_debug(void) { }
319
320extern __weak const char *perf_pmu_name(void)
321{
322 return "pmu";
323}
324
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
352#ifdef CONFIG_CGROUP_PERF
353
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361};
362
363struct perf_cgroup {
364 struct cgroup_subsys_state css;
365 struct perf_cgroup_info __percpu *info;
366};
367
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
376 return container_of(task_css(task, perf_event_cgrp_id),
377 struct perf_cgroup, css);
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
402}
403
404static inline void perf_detach_cgroup(struct perf_event *event)
405{
406 css_put(&event->cgrp->css);
407 event->cgrp = NULL;
408}
409
410static inline int is_cgroup_event(struct perf_event *event)
411{
412 return event->cgrp != NULL;
413}
414
415static inline u64 perf_cgroup_event_time(struct perf_event *event)
416{
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421}
422
423static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424{
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434}
435
436static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437{
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441}
442
443static inline void update_cgrp_time_from_event(struct perf_event *event)
444{
445 struct perf_cgroup *cgrp;
446
447 /*
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
450 */
451 if (!is_cgroup_event(event))
452 return;
453
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
460}
461
462static inline void
463perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
465{
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
479 info->timestamp = ctx->timestamp;
480}
481
482#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485/*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491void perf_cgroup_switch(struct task_struct *task, int mode)
492{
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
514
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
536 WARN_ON_ONCE(cpuctx->cgrp);
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 }
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553}
554
555static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
557{
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580}
581
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584{
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603}
604
605static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608{
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
611 struct fd f = fdget(fd);
612 int ret = 0;
613
614 if (!f.file)
615 return -EBADF;
616
617 css = css_tryget_online_from_dir(f.file->f_dentry,
618 &perf_event_cgrp_subsys);
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
635 }
636out:
637 fdput(f);
638 return ret;
639}
640
641static inline void
642perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643{
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647}
648
649static inline void
650perf_cgroup_defer_enabled(struct perf_event *event)
651{
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660}
661
662static inline void
663perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665{
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681}
682#else /* !CONFIG_CGROUP_PERF */
683
684static inline bool
685perf_cgroup_match(struct perf_event *event)
686{
687 return true;
688}
689
690static inline void perf_detach_cgroup(struct perf_event *event)
691{}
692
693static inline int is_cgroup_event(struct perf_event *event)
694{
695 return 0;
696}
697
698static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699{
700 return 0;
701}
702
703static inline void update_cgrp_time_from_event(struct perf_event *event)
704{
705}
706
707static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708{
709}
710
711static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
713{
714}
715
716static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
718{
719}
720
721static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724{
725 return -EINVAL;
726}
727
728static inline void
729perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
731{
732}
733
734void
735perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736{
737}
738
739static inline void
740perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741{
742}
743
744static inline u64 perf_cgroup_event_time(struct perf_event *event)
745{
746 return 0;
747}
748
749static inline void
750perf_cgroup_defer_enabled(struct perf_event *event)
751{
752}
753
754static inline void
755perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757{
758}
759#endif
760
761/*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765#define PERF_CPU_HRTIMER (1000 / HZ)
766/*
767 * function must be called with interrupts disbled
768 */
769static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770{
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790}
791
792/* CPU is going down */
793void perf_cpu_hrtimer_cancel(int cpu)
794{
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818}
819
820static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821{
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
824 int timer;
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842}
843
844static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845{
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859}
860
861void perf_pmu_disable(struct pmu *pmu)
862{
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
866}
867
868void perf_pmu_enable(struct pmu *pmu)
869{
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
873}
874
875static DEFINE_PER_CPU(struct list_head, rotation_list);
876
877/*
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
881 */
882static void perf_pmu_rotate_start(struct pmu *pmu)
883{
884 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885 struct list_head *head = this_cpu_ptr(&rotation_list);
886
887 WARN_ON(!irqs_disabled());
888
889 if (list_empty(&cpuctx->rotation_list))
890 list_add(&cpuctx->rotation_list, head);
891}
892
893static void get_ctx(struct perf_event_context *ctx)
894{
895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896}
897
898static void put_ctx(struct perf_event_context *ctx)
899{
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
903 if (ctx->task)
904 put_task_struct(ctx->task);
905 kfree_rcu(ctx, rcu_head);
906 }
907}
908
909/*
910 * This must be done under the ctx->lock, such as to serialize against
911 * context_equiv(), therefore we cannot call put_ctx() since that might end up
912 * calling scheduler related locks and ctx->lock nests inside those.
913 */
914static __must_check struct perf_event_context *
915unclone_ctx(struct perf_event_context *ctx)
916{
917 struct perf_event_context *parent_ctx = ctx->parent_ctx;
918
919 lockdep_assert_held(&ctx->lock);
920
921 if (parent_ctx)
922 ctx->parent_ctx = NULL;
923 ctx->generation++;
924
925 return parent_ctx;
926}
927
928static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929{
930 /*
931 * only top level events have the pid namespace they were created in
932 */
933 if (event->parent)
934 event = event->parent;
935
936 return task_tgid_nr_ns(p, event->ns);
937}
938
939static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940{
941 /*
942 * only top level events have the pid namespace they were created in
943 */
944 if (event->parent)
945 event = event->parent;
946
947 return task_pid_nr_ns(p, event->ns);
948}
949
950/*
951 * If we inherit events we want to return the parent event id
952 * to userspace.
953 */
954static u64 primary_event_id(struct perf_event *event)
955{
956 u64 id = event->id;
957
958 if (event->parent)
959 id = event->parent->id;
960
961 return id;
962}
963
964/*
965 * Get the perf_event_context for a task and lock it.
966 * This has to cope with with the fact that until it is locked,
967 * the context could get moved to another task.
968 */
969static struct perf_event_context *
970perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971{
972 struct perf_event_context *ctx;
973
974retry:
975 /*
976 * One of the few rules of preemptible RCU is that one cannot do
977 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 * part of the read side critical section was preemptible -- see
979 * rcu_read_unlock_special().
980 *
981 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 * side critical section is non-preemptible.
983 */
984 preempt_disable();
985 rcu_read_lock();
986 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 if (ctx) {
988 /*
989 * If this context is a clone of another, it might
990 * get swapped for another underneath us by
991 * perf_event_task_sched_out, though the
992 * rcu_read_lock() protects us from any context
993 * getting freed. Lock the context and check if it
994 * got swapped before we could get the lock, and retry
995 * if so. If we locked the right context, then it
996 * can't get swapped on us any more.
997 */
998 raw_spin_lock_irqsave(&ctx->lock, *flags);
999 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 rcu_read_unlock();
1002 preempt_enable();
1003 goto retry;
1004 }
1005
1006 if (!atomic_inc_not_zero(&ctx->refcount)) {
1007 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 ctx = NULL;
1009 }
1010 }
1011 rcu_read_unlock();
1012 preempt_enable();
1013 return ctx;
1014}
1015
1016/*
1017 * Get the context for a task and increment its pin_count so it
1018 * can't get swapped to another task. This also increments its
1019 * reference count so that the context can't get freed.
1020 */
1021static struct perf_event_context *
1022perf_pin_task_context(struct task_struct *task, int ctxn)
1023{
1024 struct perf_event_context *ctx;
1025 unsigned long flags;
1026
1027 ctx = perf_lock_task_context(task, ctxn, &flags);
1028 if (ctx) {
1029 ++ctx->pin_count;
1030 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 }
1032 return ctx;
1033}
1034
1035static void perf_unpin_context(struct perf_event_context *ctx)
1036{
1037 unsigned long flags;
1038
1039 raw_spin_lock_irqsave(&ctx->lock, flags);
1040 --ctx->pin_count;
1041 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042}
1043
1044/*
1045 * Update the record of the current time in a context.
1046 */
1047static void update_context_time(struct perf_event_context *ctx)
1048{
1049 u64 now = perf_clock();
1050
1051 ctx->time += now - ctx->timestamp;
1052 ctx->timestamp = now;
1053}
1054
1055static u64 perf_event_time(struct perf_event *event)
1056{
1057 struct perf_event_context *ctx = event->ctx;
1058
1059 if (is_cgroup_event(event))
1060 return perf_cgroup_event_time(event);
1061
1062 return ctx ? ctx->time : 0;
1063}
1064
1065/*
1066 * Update the total_time_enabled and total_time_running fields for a event.
1067 * The caller of this function needs to hold the ctx->lock.
1068 */
1069static void update_event_times(struct perf_event *event)
1070{
1071 struct perf_event_context *ctx = event->ctx;
1072 u64 run_end;
1073
1074 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076 return;
1077 /*
1078 * in cgroup mode, time_enabled represents
1079 * the time the event was enabled AND active
1080 * tasks were in the monitored cgroup. This is
1081 * independent of the activity of the context as
1082 * there may be a mix of cgroup and non-cgroup events.
1083 *
1084 * That is why we treat cgroup events differently
1085 * here.
1086 */
1087 if (is_cgroup_event(event))
1088 run_end = perf_cgroup_event_time(event);
1089 else if (ctx->is_active)
1090 run_end = ctx->time;
1091 else
1092 run_end = event->tstamp_stopped;
1093
1094 event->total_time_enabled = run_end - event->tstamp_enabled;
1095
1096 if (event->state == PERF_EVENT_STATE_INACTIVE)
1097 run_end = event->tstamp_stopped;
1098 else
1099 run_end = perf_event_time(event);
1100
1101 event->total_time_running = run_end - event->tstamp_running;
1102
1103}
1104
1105/*
1106 * Update total_time_enabled and total_time_running for all events in a group.
1107 */
1108static void update_group_times(struct perf_event *leader)
1109{
1110 struct perf_event *event;
1111
1112 update_event_times(leader);
1113 list_for_each_entry(event, &leader->sibling_list, group_entry)
1114 update_event_times(event);
1115}
1116
1117static struct list_head *
1118ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119{
1120 if (event->attr.pinned)
1121 return &ctx->pinned_groups;
1122 else
1123 return &ctx->flexible_groups;
1124}
1125
1126/*
1127 * Add a event from the lists for its context.
1128 * Must be called with ctx->mutex and ctx->lock held.
1129 */
1130static void
1131list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132{
1133 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134 event->attach_state |= PERF_ATTACH_CONTEXT;
1135
1136 /*
1137 * If we're a stand alone event or group leader, we go to the context
1138 * list, group events are kept attached to the group so that
1139 * perf_group_detach can, at all times, locate all siblings.
1140 */
1141 if (event->group_leader == event) {
1142 struct list_head *list;
1143
1144 if (is_software_event(event))
1145 event->group_flags |= PERF_GROUP_SOFTWARE;
1146
1147 list = ctx_group_list(event, ctx);
1148 list_add_tail(&event->group_entry, list);
1149 }
1150
1151 if (is_cgroup_event(event))
1152 ctx->nr_cgroups++;
1153
1154 if (has_branch_stack(event))
1155 ctx->nr_branch_stack++;
1156
1157 list_add_rcu(&event->event_entry, &ctx->event_list);
1158 if (!ctx->nr_events)
1159 perf_pmu_rotate_start(ctx->pmu);
1160 ctx->nr_events++;
1161 if (event->attr.inherit_stat)
1162 ctx->nr_stat++;
1163
1164 ctx->generation++;
1165}
1166
1167/*
1168 * Initialize event state based on the perf_event_attr::disabled.
1169 */
1170static inline void perf_event__state_init(struct perf_event *event)
1171{
1172 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173 PERF_EVENT_STATE_INACTIVE;
1174}
1175
1176/*
1177 * Called at perf_event creation and when events are attached/detached from a
1178 * group.
1179 */
1180static void perf_event__read_size(struct perf_event *event)
1181{
1182 int entry = sizeof(u64); /* value */
1183 int size = 0;
1184 int nr = 1;
1185
1186 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187 size += sizeof(u64);
1188
1189 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190 size += sizeof(u64);
1191
1192 if (event->attr.read_format & PERF_FORMAT_ID)
1193 entry += sizeof(u64);
1194
1195 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196 nr += event->group_leader->nr_siblings;
1197 size += sizeof(u64);
1198 }
1199
1200 size += entry * nr;
1201 event->read_size = size;
1202}
1203
1204static void perf_event__header_size(struct perf_event *event)
1205{
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
1210 perf_event__read_size(event);
1211
1212 if (sample_type & PERF_SAMPLE_IP)
1213 size += sizeof(data->ip);
1214
1215 if (sample_type & PERF_SAMPLE_ADDR)
1216 size += sizeof(data->addr);
1217
1218 if (sample_type & PERF_SAMPLE_PERIOD)
1219 size += sizeof(data->period);
1220
1221 if (sample_type & PERF_SAMPLE_WEIGHT)
1222 size += sizeof(data->weight);
1223
1224 if (sample_type & PERF_SAMPLE_READ)
1225 size += event->read_size;
1226
1227 if (sample_type & PERF_SAMPLE_DATA_SRC)
1228 size += sizeof(data->data_src.val);
1229
1230 if (sample_type & PERF_SAMPLE_TRANSACTION)
1231 size += sizeof(data->txn);
1232
1233 event->header_size = size;
1234}
1235
1236static void perf_event__id_header_size(struct perf_event *event)
1237{
1238 struct perf_sample_data *data;
1239 u64 sample_type = event->attr.sample_type;
1240 u16 size = 0;
1241
1242 if (sample_type & PERF_SAMPLE_TID)
1243 size += sizeof(data->tid_entry);
1244
1245 if (sample_type & PERF_SAMPLE_TIME)
1246 size += sizeof(data->time);
1247
1248 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249 size += sizeof(data->id);
1250
1251 if (sample_type & PERF_SAMPLE_ID)
1252 size += sizeof(data->id);
1253
1254 if (sample_type & PERF_SAMPLE_STREAM_ID)
1255 size += sizeof(data->stream_id);
1256
1257 if (sample_type & PERF_SAMPLE_CPU)
1258 size += sizeof(data->cpu_entry);
1259
1260 event->id_header_size = size;
1261}
1262
1263static void perf_group_attach(struct perf_event *event)
1264{
1265 struct perf_event *group_leader = event->group_leader, *pos;
1266
1267 /*
1268 * We can have double attach due to group movement in perf_event_open.
1269 */
1270 if (event->attach_state & PERF_ATTACH_GROUP)
1271 return;
1272
1273 event->attach_state |= PERF_ATTACH_GROUP;
1274
1275 if (group_leader == event)
1276 return;
1277
1278 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1279 !is_software_event(event))
1280 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1281
1282 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1283 group_leader->nr_siblings++;
1284
1285 perf_event__header_size(group_leader);
1286
1287 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1288 perf_event__header_size(pos);
1289}
1290
1291/*
1292 * Remove a event from the lists for its context.
1293 * Must be called with ctx->mutex and ctx->lock held.
1294 */
1295static void
1296list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297{
1298 struct perf_cpu_context *cpuctx;
1299 /*
1300 * We can have double detach due to exit/hot-unplug + close.
1301 */
1302 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303 return;
1304
1305 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1306
1307 if (is_cgroup_event(event)) {
1308 ctx->nr_cgroups--;
1309 cpuctx = __get_cpu_context(ctx);
1310 /*
1311 * if there are no more cgroup events
1312 * then cler cgrp to avoid stale pointer
1313 * in update_cgrp_time_from_cpuctx()
1314 */
1315 if (!ctx->nr_cgroups)
1316 cpuctx->cgrp = NULL;
1317 }
1318
1319 if (has_branch_stack(event))
1320 ctx->nr_branch_stack--;
1321
1322 ctx->nr_events--;
1323 if (event->attr.inherit_stat)
1324 ctx->nr_stat--;
1325
1326 list_del_rcu(&event->event_entry);
1327
1328 if (event->group_leader == event)
1329 list_del_init(&event->group_entry);
1330
1331 update_group_times(event);
1332
1333 /*
1334 * If event was in error state, then keep it
1335 * that way, otherwise bogus counts will be
1336 * returned on read(). The only way to get out
1337 * of error state is by explicit re-enabling
1338 * of the event
1339 */
1340 if (event->state > PERF_EVENT_STATE_OFF)
1341 event->state = PERF_EVENT_STATE_OFF;
1342
1343 ctx->generation++;
1344}
1345
1346static void perf_group_detach(struct perf_event *event)
1347{
1348 struct perf_event *sibling, *tmp;
1349 struct list_head *list = NULL;
1350
1351 /*
1352 * We can have double detach due to exit/hot-unplug + close.
1353 */
1354 if (!(event->attach_state & PERF_ATTACH_GROUP))
1355 return;
1356
1357 event->attach_state &= ~PERF_ATTACH_GROUP;
1358
1359 /*
1360 * If this is a sibling, remove it from its group.
1361 */
1362 if (event->group_leader != event) {
1363 list_del_init(&event->group_entry);
1364 event->group_leader->nr_siblings--;
1365 goto out;
1366 }
1367
1368 if (!list_empty(&event->group_entry))
1369 list = &event->group_entry;
1370
1371 /*
1372 * If this was a group event with sibling events then
1373 * upgrade the siblings to singleton events by adding them
1374 * to whatever list we are on.
1375 */
1376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377 if (list)
1378 list_move_tail(&sibling->group_entry, list);
1379 sibling->group_leader = sibling;
1380
1381 /* Inherit group flags from the previous leader */
1382 sibling->group_flags = event->group_flags;
1383 }
1384
1385out:
1386 perf_event__header_size(event->group_leader);
1387
1388 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1389 perf_event__header_size(tmp);
1390}
1391
1392/*
1393 * User event without the task.
1394 */
1395static bool is_orphaned_event(struct perf_event *event)
1396{
1397 return event && !is_kernel_event(event) && !event->owner;
1398}
1399
1400/*
1401 * Event has a parent but parent's task finished and it's
1402 * alive only because of children holding refference.
1403 */
1404static bool is_orphaned_child(struct perf_event *event)
1405{
1406 return is_orphaned_event(event->parent);
1407}
1408
1409static void orphans_remove_work(struct work_struct *work);
1410
1411static void schedule_orphans_remove(struct perf_event_context *ctx)
1412{
1413 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1414 return;
1415
1416 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1417 get_ctx(ctx);
1418 ctx->orphans_remove_sched = true;
1419 }
1420}
1421
1422static int __init perf_workqueue_init(void)
1423{
1424 perf_wq = create_singlethread_workqueue("perf");
1425 WARN(!perf_wq, "failed to create perf workqueue\n");
1426 return perf_wq ? 0 : -1;
1427}
1428
1429core_initcall(perf_workqueue_init);
1430
1431static inline int
1432event_filter_match(struct perf_event *event)
1433{
1434 return (event->cpu == -1 || event->cpu == smp_processor_id())
1435 && perf_cgroup_match(event);
1436}
1437
1438static void
1439event_sched_out(struct perf_event *event,
1440 struct perf_cpu_context *cpuctx,
1441 struct perf_event_context *ctx)
1442{
1443 u64 tstamp = perf_event_time(event);
1444 u64 delta;
1445 /*
1446 * An event which could not be activated because of
1447 * filter mismatch still needs to have its timings
1448 * maintained, otherwise bogus information is return
1449 * via read() for time_enabled, time_running:
1450 */
1451 if (event->state == PERF_EVENT_STATE_INACTIVE
1452 && !event_filter_match(event)) {
1453 delta = tstamp - event->tstamp_stopped;
1454 event->tstamp_running += delta;
1455 event->tstamp_stopped = tstamp;
1456 }
1457
1458 if (event->state != PERF_EVENT_STATE_ACTIVE)
1459 return;
1460
1461 perf_pmu_disable(event->pmu);
1462
1463 event->state = PERF_EVENT_STATE_INACTIVE;
1464 if (event->pending_disable) {
1465 event->pending_disable = 0;
1466 event->state = PERF_EVENT_STATE_OFF;
1467 }
1468 event->tstamp_stopped = tstamp;
1469 event->pmu->del(event, 0);
1470 event->oncpu = -1;
1471
1472 if (!is_software_event(event))
1473 cpuctx->active_oncpu--;
1474 ctx->nr_active--;
1475 if (event->attr.freq && event->attr.sample_freq)
1476 ctx->nr_freq--;
1477 if (event->attr.exclusive || !cpuctx->active_oncpu)
1478 cpuctx->exclusive = 0;
1479
1480 if (is_orphaned_child(event))
1481 schedule_orphans_remove(ctx);
1482
1483 perf_pmu_enable(event->pmu);
1484}
1485
1486static void
1487group_sched_out(struct perf_event *group_event,
1488 struct perf_cpu_context *cpuctx,
1489 struct perf_event_context *ctx)
1490{
1491 struct perf_event *event;
1492 int state = group_event->state;
1493
1494 event_sched_out(group_event, cpuctx, ctx);
1495
1496 /*
1497 * Schedule out siblings (if any):
1498 */
1499 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1500 event_sched_out(event, cpuctx, ctx);
1501
1502 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503 cpuctx->exclusive = 0;
1504}
1505
1506struct remove_event {
1507 struct perf_event *event;
1508 bool detach_group;
1509};
1510
1511/*
1512 * Cross CPU call to remove a performance event
1513 *
1514 * We disable the event on the hardware level first. After that we
1515 * remove it from the context list.
1516 */
1517static int __perf_remove_from_context(void *info)
1518{
1519 struct remove_event *re = info;
1520 struct perf_event *event = re->event;
1521 struct perf_event_context *ctx = event->ctx;
1522 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523
1524 raw_spin_lock(&ctx->lock);
1525 event_sched_out(event, cpuctx, ctx);
1526 if (re->detach_group)
1527 perf_group_detach(event);
1528 list_del_event(event, ctx);
1529 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1530 ctx->is_active = 0;
1531 cpuctx->task_ctx = NULL;
1532 }
1533 raw_spin_unlock(&ctx->lock);
1534
1535 return 0;
1536}
1537
1538
1539/*
1540 * Remove the event from a task's (or a CPU's) list of events.
1541 *
1542 * CPU events are removed with a smp call. For task events we only
1543 * call when the task is on a CPU.
1544 *
1545 * If event->ctx is a cloned context, callers must make sure that
1546 * every task struct that event->ctx->task could possibly point to
1547 * remains valid. This is OK when called from perf_release since
1548 * that only calls us on the top-level context, which can't be a clone.
1549 * When called from perf_event_exit_task, it's OK because the
1550 * context has been detached from its task.
1551 */
1552static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1553{
1554 struct perf_event_context *ctx = event->ctx;
1555 struct task_struct *task = ctx->task;
1556 struct remove_event re = {
1557 .event = event,
1558 .detach_group = detach_group,
1559 };
1560
1561 lockdep_assert_held(&ctx->mutex);
1562
1563 if (!task) {
1564 /*
1565 * Per cpu events are removed via an smp call and
1566 * the removal is always successful.
1567 */
1568 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1569 return;
1570 }
1571
1572retry:
1573 if (!task_function_call(task, __perf_remove_from_context, &re))
1574 return;
1575
1576 raw_spin_lock_irq(&ctx->lock);
1577 /*
1578 * If we failed to find a running task, but find the context active now
1579 * that we've acquired the ctx->lock, retry.
1580 */
1581 if (ctx->is_active) {
1582 raw_spin_unlock_irq(&ctx->lock);
1583 /*
1584 * Reload the task pointer, it might have been changed by
1585 * a concurrent perf_event_context_sched_out().
1586 */
1587 task = ctx->task;
1588 goto retry;
1589 }
1590
1591 /*
1592 * Since the task isn't running, its safe to remove the event, us
1593 * holding the ctx->lock ensures the task won't get scheduled in.
1594 */
1595 if (detach_group)
1596 perf_group_detach(event);
1597 list_del_event(event, ctx);
1598 raw_spin_unlock_irq(&ctx->lock);
1599}
1600
1601/*
1602 * Cross CPU call to disable a performance event
1603 */
1604int __perf_event_disable(void *info)
1605{
1606 struct perf_event *event = info;
1607 struct perf_event_context *ctx = event->ctx;
1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609
1610 /*
1611 * If this is a per-task event, need to check whether this
1612 * event's task is the current task on this cpu.
1613 *
1614 * Can trigger due to concurrent perf_event_context_sched_out()
1615 * flipping contexts around.
1616 */
1617 if (ctx->task && cpuctx->task_ctx != ctx)
1618 return -EINVAL;
1619
1620 raw_spin_lock(&ctx->lock);
1621
1622 /*
1623 * If the event is on, turn it off.
1624 * If it is in error state, leave it in error state.
1625 */
1626 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1627 update_context_time(ctx);
1628 update_cgrp_time_from_event(event);
1629 update_group_times(event);
1630 if (event == event->group_leader)
1631 group_sched_out(event, cpuctx, ctx);
1632 else
1633 event_sched_out(event, cpuctx, ctx);
1634 event->state = PERF_EVENT_STATE_OFF;
1635 }
1636
1637 raw_spin_unlock(&ctx->lock);
1638
1639 return 0;
1640}
1641
1642/*
1643 * Disable a event.
1644 *
1645 * If event->ctx is a cloned context, callers must make sure that
1646 * every task struct that event->ctx->task could possibly point to
1647 * remains valid. This condition is satisifed when called through
1648 * perf_event_for_each_child or perf_event_for_each because they
1649 * hold the top-level event's child_mutex, so any descendant that
1650 * goes to exit will block in sync_child_event.
1651 * When called from perf_pending_event it's OK because event->ctx
1652 * is the current context on this CPU and preemption is disabled,
1653 * hence we can't get into perf_event_task_sched_out for this context.
1654 */
1655void perf_event_disable(struct perf_event *event)
1656{
1657 struct perf_event_context *ctx = event->ctx;
1658 struct task_struct *task = ctx->task;
1659
1660 if (!task) {
1661 /*
1662 * Disable the event on the cpu that it's on
1663 */
1664 cpu_function_call(event->cpu, __perf_event_disable, event);
1665 return;
1666 }
1667
1668retry:
1669 if (!task_function_call(task, __perf_event_disable, event))
1670 return;
1671
1672 raw_spin_lock_irq(&ctx->lock);
1673 /*
1674 * If the event is still active, we need to retry the cross-call.
1675 */
1676 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1677 raw_spin_unlock_irq(&ctx->lock);
1678 /*
1679 * Reload the task pointer, it might have been changed by
1680 * a concurrent perf_event_context_sched_out().
1681 */
1682 task = ctx->task;
1683 goto retry;
1684 }
1685
1686 /*
1687 * Since we have the lock this context can't be scheduled
1688 * in, so we can change the state safely.
1689 */
1690 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1691 update_group_times(event);
1692 event->state = PERF_EVENT_STATE_OFF;
1693 }
1694 raw_spin_unlock_irq(&ctx->lock);
1695}
1696EXPORT_SYMBOL_GPL(perf_event_disable);
1697
1698static void perf_set_shadow_time(struct perf_event *event,
1699 struct perf_event_context *ctx,
1700 u64 tstamp)
1701{
1702 /*
1703 * use the correct time source for the time snapshot
1704 *
1705 * We could get by without this by leveraging the
1706 * fact that to get to this function, the caller
1707 * has most likely already called update_context_time()
1708 * and update_cgrp_time_xx() and thus both timestamp
1709 * are identical (or very close). Given that tstamp is,
1710 * already adjusted for cgroup, we could say that:
1711 * tstamp - ctx->timestamp
1712 * is equivalent to
1713 * tstamp - cgrp->timestamp.
1714 *
1715 * Then, in perf_output_read(), the calculation would
1716 * work with no changes because:
1717 * - event is guaranteed scheduled in
1718 * - no scheduled out in between
1719 * - thus the timestamp would be the same
1720 *
1721 * But this is a bit hairy.
1722 *
1723 * So instead, we have an explicit cgroup call to remain
1724 * within the time time source all along. We believe it
1725 * is cleaner and simpler to understand.
1726 */
1727 if (is_cgroup_event(event))
1728 perf_cgroup_set_shadow_time(event, tstamp);
1729 else
1730 event->shadow_ctx_time = tstamp - ctx->timestamp;
1731}
1732
1733#define MAX_INTERRUPTS (~0ULL)
1734
1735static void perf_log_throttle(struct perf_event *event, int enable);
1736
1737static int
1738event_sched_in(struct perf_event *event,
1739 struct perf_cpu_context *cpuctx,
1740 struct perf_event_context *ctx)
1741{
1742 u64 tstamp = perf_event_time(event);
1743 int ret = 0;
1744
1745 lockdep_assert_held(&ctx->lock);
1746
1747 if (event->state <= PERF_EVENT_STATE_OFF)
1748 return 0;
1749
1750 event->state = PERF_EVENT_STATE_ACTIVE;
1751 event->oncpu = smp_processor_id();
1752
1753 /*
1754 * Unthrottle events, since we scheduled we might have missed several
1755 * ticks already, also for a heavily scheduling task there is little
1756 * guarantee it'll get a tick in a timely manner.
1757 */
1758 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1759 perf_log_throttle(event, 1);
1760 event->hw.interrupts = 0;
1761 }
1762
1763 /*
1764 * The new state must be visible before we turn it on in the hardware:
1765 */
1766 smp_wmb();
1767
1768 perf_pmu_disable(event->pmu);
1769
1770 if (event->pmu->add(event, PERF_EF_START)) {
1771 event->state = PERF_EVENT_STATE_INACTIVE;
1772 event->oncpu = -1;
1773 ret = -EAGAIN;
1774 goto out;
1775 }
1776
1777 event->tstamp_running += tstamp - event->tstamp_stopped;
1778
1779 perf_set_shadow_time(event, ctx, tstamp);
1780
1781 if (!is_software_event(event))
1782 cpuctx->active_oncpu++;
1783 ctx->nr_active++;
1784 if (event->attr.freq && event->attr.sample_freq)
1785 ctx->nr_freq++;
1786
1787 if (event->attr.exclusive)
1788 cpuctx->exclusive = 1;
1789
1790 if (is_orphaned_child(event))
1791 schedule_orphans_remove(ctx);
1792
1793out:
1794 perf_pmu_enable(event->pmu);
1795
1796 return ret;
1797}
1798
1799static int
1800group_sched_in(struct perf_event *group_event,
1801 struct perf_cpu_context *cpuctx,
1802 struct perf_event_context *ctx)
1803{
1804 struct perf_event *event, *partial_group = NULL;
1805 struct pmu *pmu = ctx->pmu;
1806 u64 now = ctx->time;
1807 bool simulate = false;
1808
1809 if (group_event->state == PERF_EVENT_STATE_OFF)
1810 return 0;
1811
1812 pmu->start_txn(pmu);
1813
1814 if (event_sched_in(group_event, cpuctx, ctx)) {
1815 pmu->cancel_txn(pmu);
1816 perf_cpu_hrtimer_restart(cpuctx);
1817 return -EAGAIN;
1818 }
1819
1820 /*
1821 * Schedule in siblings as one group (if any):
1822 */
1823 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1824 if (event_sched_in(event, cpuctx, ctx)) {
1825 partial_group = event;
1826 goto group_error;
1827 }
1828 }
1829
1830 if (!pmu->commit_txn(pmu))
1831 return 0;
1832
1833group_error:
1834 /*
1835 * Groups can be scheduled in as one unit only, so undo any
1836 * partial group before returning:
1837 * The events up to the failed event are scheduled out normally,
1838 * tstamp_stopped will be updated.
1839 *
1840 * The failed events and the remaining siblings need to have
1841 * their timings updated as if they had gone thru event_sched_in()
1842 * and event_sched_out(). This is required to get consistent timings
1843 * across the group. This also takes care of the case where the group
1844 * could never be scheduled by ensuring tstamp_stopped is set to mark
1845 * the time the event was actually stopped, such that time delta
1846 * calculation in update_event_times() is correct.
1847 */
1848 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1849 if (event == partial_group)
1850 simulate = true;
1851
1852 if (simulate) {
1853 event->tstamp_running += now - event->tstamp_stopped;
1854 event->tstamp_stopped = now;
1855 } else {
1856 event_sched_out(event, cpuctx, ctx);
1857 }
1858 }
1859 event_sched_out(group_event, cpuctx, ctx);
1860
1861 pmu->cancel_txn(pmu);
1862
1863 perf_cpu_hrtimer_restart(cpuctx);
1864
1865 return -EAGAIN;
1866}
1867
1868/*
1869 * Work out whether we can put this event group on the CPU now.
1870 */
1871static int group_can_go_on(struct perf_event *event,
1872 struct perf_cpu_context *cpuctx,
1873 int can_add_hw)
1874{
1875 /*
1876 * Groups consisting entirely of software events can always go on.
1877 */
1878 if (event->group_flags & PERF_GROUP_SOFTWARE)
1879 return 1;
1880 /*
1881 * If an exclusive group is already on, no other hardware
1882 * events can go on.
1883 */
1884 if (cpuctx->exclusive)
1885 return 0;
1886 /*
1887 * If this group is exclusive and there are already
1888 * events on the CPU, it can't go on.
1889 */
1890 if (event->attr.exclusive && cpuctx->active_oncpu)
1891 return 0;
1892 /*
1893 * Otherwise, try to add it if all previous groups were able
1894 * to go on.
1895 */
1896 return can_add_hw;
1897}
1898
1899static void add_event_to_ctx(struct perf_event *event,
1900 struct perf_event_context *ctx)
1901{
1902 u64 tstamp = perf_event_time(event);
1903
1904 list_add_event(event, ctx);
1905 perf_group_attach(event);
1906 event->tstamp_enabled = tstamp;
1907 event->tstamp_running = tstamp;
1908 event->tstamp_stopped = tstamp;
1909}
1910
1911static void task_ctx_sched_out(struct perf_event_context *ctx);
1912static void
1913ctx_sched_in(struct perf_event_context *ctx,
1914 struct perf_cpu_context *cpuctx,
1915 enum event_type_t event_type,
1916 struct task_struct *task);
1917
1918static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1919 struct perf_event_context *ctx,
1920 struct task_struct *task)
1921{
1922 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1923 if (ctx)
1924 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1925 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1926 if (ctx)
1927 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1928}
1929
1930/*
1931 * Cross CPU call to install and enable a performance event
1932 *
1933 * Must be called with ctx->mutex held
1934 */
1935static int __perf_install_in_context(void *info)
1936{
1937 struct perf_event *event = info;
1938 struct perf_event_context *ctx = event->ctx;
1939 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1940 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1941 struct task_struct *task = current;
1942
1943 perf_ctx_lock(cpuctx, task_ctx);
1944 perf_pmu_disable(cpuctx->ctx.pmu);
1945
1946 /*
1947 * If there was an active task_ctx schedule it out.
1948 */
1949 if (task_ctx)
1950 task_ctx_sched_out(task_ctx);
1951
1952 /*
1953 * If the context we're installing events in is not the
1954 * active task_ctx, flip them.
1955 */
1956 if (ctx->task && task_ctx != ctx) {
1957 if (task_ctx)
1958 raw_spin_unlock(&task_ctx->lock);
1959 raw_spin_lock(&ctx->lock);
1960 task_ctx = ctx;
1961 }
1962
1963 if (task_ctx) {
1964 cpuctx->task_ctx = task_ctx;
1965 task = task_ctx->task;
1966 }
1967
1968 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1969
1970 update_context_time(ctx);
1971 /*
1972 * update cgrp time only if current cgrp
1973 * matches event->cgrp. Must be done before
1974 * calling add_event_to_ctx()
1975 */
1976 update_cgrp_time_from_event(event);
1977
1978 add_event_to_ctx(event, ctx);
1979
1980 /*
1981 * Schedule everything back in
1982 */
1983 perf_event_sched_in(cpuctx, task_ctx, task);
1984
1985 perf_pmu_enable(cpuctx->ctx.pmu);
1986 perf_ctx_unlock(cpuctx, task_ctx);
1987
1988 return 0;
1989}
1990
1991/*
1992 * Attach a performance event to a context
1993 *
1994 * First we add the event to the list with the hardware enable bit
1995 * in event->hw_config cleared.
1996 *
1997 * If the event is attached to a task which is on a CPU we use a smp
1998 * call to enable it in the task context. The task might have been
1999 * scheduled away, but we check this in the smp call again.
2000 */
2001static void
2002perf_install_in_context(struct perf_event_context *ctx,
2003 struct perf_event *event,
2004 int cpu)
2005{
2006 struct task_struct *task = ctx->task;
2007
2008 lockdep_assert_held(&ctx->mutex);
2009
2010 event->ctx = ctx;
2011 if (event->cpu != -1)
2012 event->cpu = cpu;
2013
2014 if (!task) {
2015 /*
2016 * Per cpu events are installed via an smp call and
2017 * the install is always successful.
2018 */
2019 cpu_function_call(cpu, __perf_install_in_context, event);
2020 return;
2021 }
2022
2023retry:
2024 if (!task_function_call(task, __perf_install_in_context, event))
2025 return;
2026
2027 raw_spin_lock_irq(&ctx->lock);
2028 /*
2029 * If we failed to find a running task, but find the context active now
2030 * that we've acquired the ctx->lock, retry.
2031 */
2032 if (ctx->is_active) {
2033 raw_spin_unlock_irq(&ctx->lock);
2034 /*
2035 * Reload the task pointer, it might have been changed by
2036 * a concurrent perf_event_context_sched_out().
2037 */
2038 task = ctx->task;
2039 goto retry;
2040 }
2041
2042 /*
2043 * Since the task isn't running, its safe to add the event, us holding
2044 * the ctx->lock ensures the task won't get scheduled in.
2045 */
2046 add_event_to_ctx(event, ctx);
2047 raw_spin_unlock_irq(&ctx->lock);
2048}
2049
2050/*
2051 * Put a event into inactive state and update time fields.
2052 * Enabling the leader of a group effectively enables all
2053 * the group members that aren't explicitly disabled, so we
2054 * have to update their ->tstamp_enabled also.
2055 * Note: this works for group members as well as group leaders
2056 * since the non-leader members' sibling_lists will be empty.
2057 */
2058static void __perf_event_mark_enabled(struct perf_event *event)
2059{
2060 struct perf_event *sub;
2061 u64 tstamp = perf_event_time(event);
2062
2063 event->state = PERF_EVENT_STATE_INACTIVE;
2064 event->tstamp_enabled = tstamp - event->total_time_enabled;
2065 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2066 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2067 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2068 }
2069}
2070
2071/*
2072 * Cross CPU call to enable a performance event
2073 */
2074static int __perf_event_enable(void *info)
2075{
2076 struct perf_event *event = info;
2077 struct perf_event_context *ctx = event->ctx;
2078 struct perf_event *leader = event->group_leader;
2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 int err;
2081
2082 /*
2083 * There's a time window between 'ctx->is_active' check
2084 * in perf_event_enable function and this place having:
2085 * - IRQs on
2086 * - ctx->lock unlocked
2087 *
2088 * where the task could be killed and 'ctx' deactivated
2089 * by perf_event_exit_task.
2090 */
2091 if (!ctx->is_active)
2092 return -EINVAL;
2093
2094 raw_spin_lock(&ctx->lock);
2095 update_context_time(ctx);
2096
2097 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2098 goto unlock;
2099
2100 /*
2101 * set current task's cgroup time reference point
2102 */
2103 perf_cgroup_set_timestamp(current, ctx);
2104
2105 __perf_event_mark_enabled(event);
2106
2107 if (!event_filter_match(event)) {
2108 if (is_cgroup_event(event))
2109 perf_cgroup_defer_enabled(event);
2110 goto unlock;
2111 }
2112
2113 /*
2114 * If the event is in a group and isn't the group leader,
2115 * then don't put it on unless the group is on.
2116 */
2117 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2118 goto unlock;
2119
2120 if (!group_can_go_on(event, cpuctx, 1)) {
2121 err = -EEXIST;
2122 } else {
2123 if (event == leader)
2124 err = group_sched_in(event, cpuctx, ctx);
2125 else
2126 err = event_sched_in(event, cpuctx, ctx);
2127 }
2128
2129 if (err) {
2130 /*
2131 * If this event can't go on and it's part of a
2132 * group, then the whole group has to come off.
2133 */
2134 if (leader != event) {
2135 group_sched_out(leader, cpuctx, ctx);
2136 perf_cpu_hrtimer_restart(cpuctx);
2137 }
2138 if (leader->attr.pinned) {
2139 update_group_times(leader);
2140 leader->state = PERF_EVENT_STATE_ERROR;
2141 }
2142 }
2143
2144unlock:
2145 raw_spin_unlock(&ctx->lock);
2146
2147 return 0;
2148}
2149
2150/*
2151 * Enable a event.
2152 *
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
2155 * remains valid. This condition is satisfied when called through
2156 * perf_event_for_each_child or perf_event_for_each as described
2157 * for perf_event_disable.
2158 */
2159void perf_event_enable(struct perf_event *event)
2160{
2161 struct perf_event_context *ctx = event->ctx;
2162 struct task_struct *task = ctx->task;
2163
2164 if (!task) {
2165 /*
2166 * Enable the event on the cpu that it's on
2167 */
2168 cpu_function_call(event->cpu, __perf_event_enable, event);
2169 return;
2170 }
2171
2172 raw_spin_lock_irq(&ctx->lock);
2173 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2174 goto out;
2175
2176 /*
2177 * If the event is in error state, clear that first.
2178 * That way, if we see the event in error state below, we
2179 * know that it has gone back into error state, as distinct
2180 * from the task having been scheduled away before the
2181 * cross-call arrived.
2182 */
2183 if (event->state == PERF_EVENT_STATE_ERROR)
2184 event->state = PERF_EVENT_STATE_OFF;
2185
2186retry:
2187 if (!ctx->is_active) {
2188 __perf_event_mark_enabled(event);
2189 goto out;
2190 }
2191
2192 raw_spin_unlock_irq(&ctx->lock);
2193
2194 if (!task_function_call(task, __perf_event_enable, event))
2195 return;
2196
2197 raw_spin_lock_irq(&ctx->lock);
2198
2199 /*
2200 * If the context is active and the event is still off,
2201 * we need to retry the cross-call.
2202 */
2203 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2204 /*
2205 * task could have been flipped by a concurrent
2206 * perf_event_context_sched_out()
2207 */
2208 task = ctx->task;
2209 goto retry;
2210 }
2211
2212out:
2213 raw_spin_unlock_irq(&ctx->lock);
2214}
2215EXPORT_SYMBOL_GPL(perf_event_enable);
2216
2217int perf_event_refresh(struct perf_event *event, int refresh)
2218{
2219 /*
2220 * not supported on inherited events
2221 */
2222 if (event->attr.inherit || !is_sampling_event(event))
2223 return -EINVAL;
2224
2225 atomic_add(refresh, &event->event_limit);
2226 perf_event_enable(event);
2227
2228 return 0;
2229}
2230EXPORT_SYMBOL_GPL(perf_event_refresh);
2231
2232static void ctx_sched_out(struct perf_event_context *ctx,
2233 struct perf_cpu_context *cpuctx,
2234 enum event_type_t event_type)
2235{
2236 struct perf_event *event;
2237 int is_active = ctx->is_active;
2238
2239 ctx->is_active &= ~event_type;
2240 if (likely(!ctx->nr_events))
2241 return;
2242
2243 update_context_time(ctx);
2244 update_cgrp_time_from_cpuctx(cpuctx);
2245 if (!ctx->nr_active)
2246 return;
2247
2248 perf_pmu_disable(ctx->pmu);
2249 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2250 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2251 group_sched_out(event, cpuctx, ctx);
2252 }
2253
2254 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2255 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2256 group_sched_out(event, cpuctx, ctx);
2257 }
2258 perf_pmu_enable(ctx->pmu);
2259}
2260
2261/*
2262 * Test whether two contexts are equivalent, i.e. whether they have both been
2263 * cloned from the same version of the same context.
2264 *
2265 * Equivalence is measured using a generation number in the context that is
2266 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2267 * and list_del_event().
2268 */
2269static int context_equiv(struct perf_event_context *ctx1,
2270 struct perf_event_context *ctx2)
2271{
2272 lockdep_assert_held(&ctx1->lock);
2273 lockdep_assert_held(&ctx2->lock);
2274
2275 /* Pinning disables the swap optimization */
2276 if (ctx1->pin_count || ctx2->pin_count)
2277 return 0;
2278
2279 /* If ctx1 is the parent of ctx2 */
2280 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2281 return 1;
2282
2283 /* If ctx2 is the parent of ctx1 */
2284 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2285 return 1;
2286
2287 /*
2288 * If ctx1 and ctx2 have the same parent; we flatten the parent
2289 * hierarchy, see perf_event_init_context().
2290 */
2291 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2292 ctx1->parent_gen == ctx2->parent_gen)
2293 return 1;
2294
2295 /* Unmatched */
2296 return 0;
2297}
2298
2299static void __perf_event_sync_stat(struct perf_event *event,
2300 struct perf_event *next_event)
2301{
2302 u64 value;
2303
2304 if (!event->attr.inherit_stat)
2305 return;
2306
2307 /*
2308 * Update the event value, we cannot use perf_event_read()
2309 * because we're in the middle of a context switch and have IRQs
2310 * disabled, which upsets smp_call_function_single(), however
2311 * we know the event must be on the current CPU, therefore we
2312 * don't need to use it.
2313 */
2314 switch (event->state) {
2315 case PERF_EVENT_STATE_ACTIVE:
2316 event->pmu->read(event);
2317 /* fall-through */
2318
2319 case PERF_EVENT_STATE_INACTIVE:
2320 update_event_times(event);
2321 break;
2322
2323 default:
2324 break;
2325 }
2326
2327 /*
2328 * In order to keep per-task stats reliable we need to flip the event
2329 * values when we flip the contexts.
2330 */
2331 value = local64_read(&next_event->count);
2332 value = local64_xchg(&event->count, value);
2333 local64_set(&next_event->count, value);
2334
2335 swap(event->total_time_enabled, next_event->total_time_enabled);
2336 swap(event->total_time_running, next_event->total_time_running);
2337
2338 /*
2339 * Since we swizzled the values, update the user visible data too.
2340 */
2341 perf_event_update_userpage(event);
2342 perf_event_update_userpage(next_event);
2343}
2344
2345static void perf_event_sync_stat(struct perf_event_context *ctx,
2346 struct perf_event_context *next_ctx)
2347{
2348 struct perf_event *event, *next_event;
2349
2350 if (!ctx->nr_stat)
2351 return;
2352
2353 update_context_time(ctx);
2354
2355 event = list_first_entry(&ctx->event_list,
2356 struct perf_event, event_entry);
2357
2358 next_event = list_first_entry(&next_ctx->event_list,
2359 struct perf_event, event_entry);
2360
2361 while (&event->event_entry != &ctx->event_list &&
2362 &next_event->event_entry != &next_ctx->event_list) {
2363
2364 __perf_event_sync_stat(event, next_event);
2365
2366 event = list_next_entry(event, event_entry);
2367 next_event = list_next_entry(next_event, event_entry);
2368 }
2369}
2370
2371static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2372 struct task_struct *next)
2373{
2374 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2375 struct perf_event_context *next_ctx;
2376 struct perf_event_context *parent, *next_parent;
2377 struct perf_cpu_context *cpuctx;
2378 int do_switch = 1;
2379
2380 if (likely(!ctx))
2381 return;
2382
2383 cpuctx = __get_cpu_context(ctx);
2384 if (!cpuctx->task_ctx)
2385 return;
2386
2387 rcu_read_lock();
2388 next_ctx = next->perf_event_ctxp[ctxn];
2389 if (!next_ctx)
2390 goto unlock;
2391
2392 parent = rcu_dereference(ctx->parent_ctx);
2393 next_parent = rcu_dereference(next_ctx->parent_ctx);
2394
2395 /* If neither context have a parent context; they cannot be clones. */
2396 if (!parent && !next_parent)
2397 goto unlock;
2398
2399 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2400 /*
2401 * Looks like the two contexts are clones, so we might be
2402 * able to optimize the context switch. We lock both
2403 * contexts and check that they are clones under the
2404 * lock (including re-checking that neither has been
2405 * uncloned in the meantime). It doesn't matter which
2406 * order we take the locks because no other cpu could
2407 * be trying to lock both of these tasks.
2408 */
2409 raw_spin_lock(&ctx->lock);
2410 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2411 if (context_equiv(ctx, next_ctx)) {
2412 /*
2413 * XXX do we need a memory barrier of sorts
2414 * wrt to rcu_dereference() of perf_event_ctxp
2415 */
2416 task->perf_event_ctxp[ctxn] = next_ctx;
2417 next->perf_event_ctxp[ctxn] = ctx;
2418 ctx->task = next;
2419 next_ctx->task = task;
2420 do_switch = 0;
2421
2422 perf_event_sync_stat(ctx, next_ctx);
2423 }
2424 raw_spin_unlock(&next_ctx->lock);
2425 raw_spin_unlock(&ctx->lock);
2426 }
2427unlock:
2428 rcu_read_unlock();
2429
2430 if (do_switch) {
2431 raw_spin_lock(&ctx->lock);
2432 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2433 cpuctx->task_ctx = NULL;
2434 raw_spin_unlock(&ctx->lock);
2435 }
2436}
2437
2438#define for_each_task_context_nr(ctxn) \
2439 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2440
2441/*
2442 * Called from scheduler to remove the events of the current task,
2443 * with interrupts disabled.
2444 *
2445 * We stop each event and update the event value in event->count.
2446 *
2447 * This does not protect us against NMI, but disable()
2448 * sets the disabled bit in the control field of event _before_
2449 * accessing the event control register. If a NMI hits, then it will
2450 * not restart the event.
2451 */
2452void __perf_event_task_sched_out(struct task_struct *task,
2453 struct task_struct *next)
2454{
2455 int ctxn;
2456
2457 for_each_task_context_nr(ctxn)
2458 perf_event_context_sched_out(task, ctxn, next);
2459
2460 /*
2461 * if cgroup events exist on this CPU, then we need
2462 * to check if we have to switch out PMU state.
2463 * cgroup event are system-wide mode only
2464 */
2465 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2466 perf_cgroup_sched_out(task, next);
2467}
2468
2469static void task_ctx_sched_out(struct perf_event_context *ctx)
2470{
2471 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2472
2473 if (!cpuctx->task_ctx)
2474 return;
2475
2476 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2477 return;
2478
2479 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2480 cpuctx->task_ctx = NULL;
2481}
2482
2483/*
2484 * Called with IRQs disabled
2485 */
2486static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type)
2488{
2489 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2490}
2491
2492static void
2493ctx_pinned_sched_in(struct perf_event_context *ctx,
2494 struct perf_cpu_context *cpuctx)
2495{
2496 struct perf_event *event;
2497
2498 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2499 if (event->state <= PERF_EVENT_STATE_OFF)
2500 continue;
2501 if (!event_filter_match(event))
2502 continue;
2503
2504 /* may need to reset tstamp_enabled */
2505 if (is_cgroup_event(event))
2506 perf_cgroup_mark_enabled(event, ctx);
2507
2508 if (group_can_go_on(event, cpuctx, 1))
2509 group_sched_in(event, cpuctx, ctx);
2510
2511 /*
2512 * If this pinned group hasn't been scheduled,
2513 * put it in error state.
2514 */
2515 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2516 update_group_times(event);
2517 event->state = PERF_EVENT_STATE_ERROR;
2518 }
2519 }
2520}
2521
2522static void
2523ctx_flexible_sched_in(struct perf_event_context *ctx,
2524 struct perf_cpu_context *cpuctx)
2525{
2526 struct perf_event *event;
2527 int can_add_hw = 1;
2528
2529 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2530 /* Ignore events in OFF or ERROR state */
2531 if (event->state <= PERF_EVENT_STATE_OFF)
2532 continue;
2533 /*
2534 * Listen to the 'cpu' scheduling filter constraint
2535 * of events:
2536 */
2537 if (!event_filter_match(event))
2538 continue;
2539
2540 /* may need to reset tstamp_enabled */
2541 if (is_cgroup_event(event))
2542 perf_cgroup_mark_enabled(event, ctx);
2543
2544 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2545 if (group_sched_in(event, cpuctx, ctx))
2546 can_add_hw = 0;
2547 }
2548 }
2549}
2550
2551static void
2552ctx_sched_in(struct perf_event_context *ctx,
2553 struct perf_cpu_context *cpuctx,
2554 enum event_type_t event_type,
2555 struct task_struct *task)
2556{
2557 u64 now;
2558 int is_active = ctx->is_active;
2559
2560 ctx->is_active |= event_type;
2561 if (likely(!ctx->nr_events))
2562 return;
2563
2564 now = perf_clock();
2565 ctx->timestamp = now;
2566 perf_cgroup_set_timestamp(task, ctx);
2567 /*
2568 * First go through the list and put on any pinned groups
2569 * in order to give them the best chance of going on.
2570 */
2571 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2572 ctx_pinned_sched_in(ctx, cpuctx);
2573
2574 /* Then walk through the lower prio flexible groups */
2575 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2576 ctx_flexible_sched_in(ctx, cpuctx);
2577}
2578
2579static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2580 enum event_type_t event_type,
2581 struct task_struct *task)
2582{
2583 struct perf_event_context *ctx = &cpuctx->ctx;
2584
2585 ctx_sched_in(ctx, cpuctx, event_type, task);
2586}
2587
2588static void perf_event_context_sched_in(struct perf_event_context *ctx,
2589 struct task_struct *task)
2590{
2591 struct perf_cpu_context *cpuctx;
2592
2593 cpuctx = __get_cpu_context(ctx);
2594 if (cpuctx->task_ctx == ctx)
2595 return;
2596
2597 perf_ctx_lock(cpuctx, ctx);
2598 perf_pmu_disable(ctx->pmu);
2599 /*
2600 * We want to keep the following priority order:
2601 * cpu pinned (that don't need to move), task pinned,
2602 * cpu flexible, task flexible.
2603 */
2604 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2605
2606 if (ctx->nr_events)
2607 cpuctx->task_ctx = ctx;
2608
2609 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2610
2611 perf_pmu_enable(ctx->pmu);
2612 perf_ctx_unlock(cpuctx, ctx);
2613
2614 /*
2615 * Since these rotations are per-cpu, we need to ensure the
2616 * cpu-context we got scheduled on is actually rotating.
2617 */
2618 perf_pmu_rotate_start(ctx->pmu);
2619}
2620
2621/*
2622 * When sampling the branck stack in system-wide, it may be necessary
2623 * to flush the stack on context switch. This happens when the branch
2624 * stack does not tag its entries with the pid of the current task.
2625 * Otherwise it becomes impossible to associate a branch entry with a
2626 * task. This ambiguity is more likely to appear when the branch stack
2627 * supports priv level filtering and the user sets it to monitor only
2628 * at the user level (which could be a useful measurement in system-wide
2629 * mode). In that case, the risk is high of having a branch stack with
2630 * branch from multiple tasks. Flushing may mean dropping the existing
2631 * entries or stashing them somewhere in the PMU specific code layer.
2632 *
2633 * This function provides the context switch callback to the lower code
2634 * layer. It is invoked ONLY when there is at least one system-wide context
2635 * with at least one active event using taken branch sampling.
2636 */
2637static void perf_branch_stack_sched_in(struct task_struct *prev,
2638 struct task_struct *task)
2639{
2640 struct perf_cpu_context *cpuctx;
2641 struct pmu *pmu;
2642 unsigned long flags;
2643
2644 /* no need to flush branch stack if not changing task */
2645 if (prev == task)
2646 return;
2647
2648 local_irq_save(flags);
2649
2650 rcu_read_lock();
2651
2652 list_for_each_entry_rcu(pmu, &pmus, entry) {
2653 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2654
2655 /*
2656 * check if the context has at least one
2657 * event using PERF_SAMPLE_BRANCH_STACK
2658 */
2659 if (cpuctx->ctx.nr_branch_stack > 0
2660 && pmu->flush_branch_stack) {
2661
2662 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2663
2664 perf_pmu_disable(pmu);
2665
2666 pmu->flush_branch_stack();
2667
2668 perf_pmu_enable(pmu);
2669
2670 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2671 }
2672 }
2673
2674 rcu_read_unlock();
2675
2676 local_irq_restore(flags);
2677}
2678
2679/*
2680 * Called from scheduler to add the events of the current task
2681 * with interrupts disabled.
2682 *
2683 * We restore the event value and then enable it.
2684 *
2685 * This does not protect us against NMI, but enable()
2686 * sets the enabled bit in the control field of event _before_
2687 * accessing the event control register. If a NMI hits, then it will
2688 * keep the event running.
2689 */
2690void __perf_event_task_sched_in(struct task_struct *prev,
2691 struct task_struct *task)
2692{
2693 struct perf_event_context *ctx;
2694 int ctxn;
2695
2696 for_each_task_context_nr(ctxn) {
2697 ctx = task->perf_event_ctxp[ctxn];
2698 if (likely(!ctx))
2699 continue;
2700
2701 perf_event_context_sched_in(ctx, task);
2702 }
2703 /*
2704 * if cgroup events exist on this CPU, then we need
2705 * to check if we have to switch in PMU state.
2706 * cgroup event are system-wide mode only
2707 */
2708 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2709 perf_cgroup_sched_in(prev, task);
2710
2711 /* check for system-wide branch_stack events */
2712 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2713 perf_branch_stack_sched_in(prev, task);
2714}
2715
2716static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2717{
2718 u64 frequency = event->attr.sample_freq;
2719 u64 sec = NSEC_PER_SEC;
2720 u64 divisor, dividend;
2721
2722 int count_fls, nsec_fls, frequency_fls, sec_fls;
2723
2724 count_fls = fls64(count);
2725 nsec_fls = fls64(nsec);
2726 frequency_fls = fls64(frequency);
2727 sec_fls = 30;
2728
2729 /*
2730 * We got @count in @nsec, with a target of sample_freq HZ
2731 * the target period becomes:
2732 *
2733 * @count * 10^9
2734 * period = -------------------
2735 * @nsec * sample_freq
2736 *
2737 */
2738
2739 /*
2740 * Reduce accuracy by one bit such that @a and @b converge
2741 * to a similar magnitude.
2742 */
2743#define REDUCE_FLS(a, b) \
2744do { \
2745 if (a##_fls > b##_fls) { \
2746 a >>= 1; \
2747 a##_fls--; \
2748 } else { \
2749 b >>= 1; \
2750 b##_fls--; \
2751 } \
2752} while (0)
2753
2754 /*
2755 * Reduce accuracy until either term fits in a u64, then proceed with
2756 * the other, so that finally we can do a u64/u64 division.
2757 */
2758 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2759 REDUCE_FLS(nsec, frequency);
2760 REDUCE_FLS(sec, count);
2761 }
2762
2763 if (count_fls + sec_fls > 64) {
2764 divisor = nsec * frequency;
2765
2766 while (count_fls + sec_fls > 64) {
2767 REDUCE_FLS(count, sec);
2768 divisor >>= 1;
2769 }
2770
2771 dividend = count * sec;
2772 } else {
2773 dividend = count * sec;
2774
2775 while (nsec_fls + frequency_fls > 64) {
2776 REDUCE_FLS(nsec, frequency);
2777 dividend >>= 1;
2778 }
2779
2780 divisor = nsec * frequency;
2781 }
2782
2783 if (!divisor)
2784 return dividend;
2785
2786 return div64_u64(dividend, divisor);
2787}
2788
2789static DEFINE_PER_CPU(int, perf_throttled_count);
2790static DEFINE_PER_CPU(u64, perf_throttled_seq);
2791
2792static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2793{
2794 struct hw_perf_event *hwc = &event->hw;
2795 s64 period, sample_period;
2796 s64 delta;
2797
2798 period = perf_calculate_period(event, nsec, count);
2799
2800 delta = (s64)(period - hwc->sample_period);
2801 delta = (delta + 7) / 8; /* low pass filter */
2802
2803 sample_period = hwc->sample_period + delta;
2804
2805 if (!sample_period)
2806 sample_period = 1;
2807
2808 hwc->sample_period = sample_period;
2809
2810 if (local64_read(&hwc->period_left) > 8*sample_period) {
2811 if (disable)
2812 event->pmu->stop(event, PERF_EF_UPDATE);
2813
2814 local64_set(&hwc->period_left, 0);
2815
2816 if (disable)
2817 event->pmu->start(event, PERF_EF_RELOAD);
2818 }
2819}
2820
2821/*
2822 * combine freq adjustment with unthrottling to avoid two passes over the
2823 * events. At the same time, make sure, having freq events does not change
2824 * the rate of unthrottling as that would introduce bias.
2825 */
2826static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2827 int needs_unthr)
2828{
2829 struct perf_event *event;
2830 struct hw_perf_event *hwc;
2831 u64 now, period = TICK_NSEC;
2832 s64 delta;
2833
2834 /*
2835 * only need to iterate over all events iff:
2836 * - context have events in frequency mode (needs freq adjust)
2837 * - there are events to unthrottle on this cpu
2838 */
2839 if (!(ctx->nr_freq || needs_unthr))
2840 return;
2841
2842 raw_spin_lock(&ctx->lock);
2843 perf_pmu_disable(ctx->pmu);
2844
2845 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2846 if (event->state != PERF_EVENT_STATE_ACTIVE)
2847 continue;
2848
2849 if (!event_filter_match(event))
2850 continue;
2851
2852 perf_pmu_disable(event->pmu);
2853
2854 hwc = &event->hw;
2855
2856 if (hwc->interrupts == MAX_INTERRUPTS) {
2857 hwc->interrupts = 0;
2858 perf_log_throttle(event, 1);
2859 event->pmu->start(event, 0);
2860 }
2861
2862 if (!event->attr.freq || !event->attr.sample_freq)
2863 goto next;
2864
2865 /*
2866 * stop the event and update event->count
2867 */
2868 event->pmu->stop(event, PERF_EF_UPDATE);
2869
2870 now = local64_read(&event->count);
2871 delta = now - hwc->freq_count_stamp;
2872 hwc->freq_count_stamp = now;
2873
2874 /*
2875 * restart the event
2876 * reload only if value has changed
2877 * we have stopped the event so tell that
2878 * to perf_adjust_period() to avoid stopping it
2879 * twice.
2880 */
2881 if (delta > 0)
2882 perf_adjust_period(event, period, delta, false);
2883
2884 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2885 next:
2886 perf_pmu_enable(event->pmu);
2887 }
2888
2889 perf_pmu_enable(ctx->pmu);
2890 raw_spin_unlock(&ctx->lock);
2891}
2892
2893/*
2894 * Round-robin a context's events:
2895 */
2896static void rotate_ctx(struct perf_event_context *ctx)
2897{
2898 /*
2899 * Rotate the first entry last of non-pinned groups. Rotation might be
2900 * disabled by the inheritance code.
2901 */
2902 if (!ctx->rotate_disable)
2903 list_rotate_left(&ctx->flexible_groups);
2904}
2905
2906/*
2907 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2908 * because they're strictly cpu affine and rotate_start is called with IRQs
2909 * disabled, while rotate_context is called from IRQ context.
2910 */
2911static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2912{
2913 struct perf_event_context *ctx = NULL;
2914 int rotate = 0, remove = 1;
2915
2916 if (cpuctx->ctx.nr_events) {
2917 remove = 0;
2918 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2919 rotate = 1;
2920 }
2921
2922 ctx = cpuctx->task_ctx;
2923 if (ctx && ctx->nr_events) {
2924 remove = 0;
2925 if (ctx->nr_events != ctx->nr_active)
2926 rotate = 1;
2927 }
2928
2929 if (!rotate)
2930 goto done;
2931
2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 perf_pmu_disable(cpuctx->ctx.pmu);
2934
2935 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2936 if (ctx)
2937 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2938
2939 rotate_ctx(&cpuctx->ctx);
2940 if (ctx)
2941 rotate_ctx(ctx);
2942
2943 perf_event_sched_in(cpuctx, ctx, current);
2944
2945 perf_pmu_enable(cpuctx->ctx.pmu);
2946 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2947done:
2948 if (remove)
2949 list_del_init(&cpuctx->rotation_list);
2950
2951 return rotate;
2952}
2953
2954#ifdef CONFIG_NO_HZ_FULL
2955bool perf_event_can_stop_tick(void)
2956{
2957 if (atomic_read(&nr_freq_events) ||
2958 __this_cpu_read(perf_throttled_count))
2959 return false;
2960 else
2961 return true;
2962}
2963#endif
2964
2965void perf_event_task_tick(void)
2966{
2967 struct list_head *head = this_cpu_ptr(&rotation_list);
2968 struct perf_cpu_context *cpuctx, *tmp;
2969 struct perf_event_context *ctx;
2970 int throttled;
2971
2972 WARN_ON(!irqs_disabled());
2973
2974 __this_cpu_inc(perf_throttled_seq);
2975 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2976
2977 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2978 ctx = &cpuctx->ctx;
2979 perf_adjust_freq_unthr_context(ctx, throttled);
2980
2981 ctx = cpuctx->task_ctx;
2982 if (ctx)
2983 perf_adjust_freq_unthr_context(ctx, throttled);
2984 }
2985}
2986
2987static int event_enable_on_exec(struct perf_event *event,
2988 struct perf_event_context *ctx)
2989{
2990 if (!event->attr.enable_on_exec)
2991 return 0;
2992
2993 event->attr.enable_on_exec = 0;
2994 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2995 return 0;
2996
2997 __perf_event_mark_enabled(event);
2998
2999 return 1;
3000}
3001
3002/*
3003 * Enable all of a task's events that have been marked enable-on-exec.
3004 * This expects task == current.
3005 */
3006static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3007{
3008 struct perf_event_context *clone_ctx = NULL;
3009 struct perf_event *event;
3010 unsigned long flags;
3011 int enabled = 0;
3012 int ret;
3013
3014 local_irq_save(flags);
3015 if (!ctx || !ctx->nr_events)
3016 goto out;
3017
3018 /*
3019 * We must ctxsw out cgroup events to avoid conflict
3020 * when invoking perf_task_event_sched_in() later on
3021 * in this function. Otherwise we end up trying to
3022 * ctxswin cgroup events which are already scheduled
3023 * in.
3024 */
3025 perf_cgroup_sched_out(current, NULL);
3026
3027 raw_spin_lock(&ctx->lock);
3028 task_ctx_sched_out(ctx);
3029
3030 list_for_each_entry(event, &ctx->event_list, event_entry) {
3031 ret = event_enable_on_exec(event, ctx);
3032 if (ret)
3033 enabled = 1;
3034 }
3035
3036 /*
3037 * Unclone this context if we enabled any event.
3038 */
3039 if (enabled)
3040 clone_ctx = unclone_ctx(ctx);
3041
3042 raw_spin_unlock(&ctx->lock);
3043
3044 /*
3045 * Also calls ctxswin for cgroup events, if any:
3046 */
3047 perf_event_context_sched_in(ctx, ctx->task);
3048out:
3049 local_irq_restore(flags);
3050
3051 if (clone_ctx)
3052 put_ctx(clone_ctx);
3053}
3054
3055void perf_event_exec(void)
3056{
3057 struct perf_event_context *ctx;
3058 int ctxn;
3059
3060 rcu_read_lock();
3061 for_each_task_context_nr(ctxn) {
3062 ctx = current->perf_event_ctxp[ctxn];
3063 if (!ctx)
3064 continue;
3065
3066 perf_event_enable_on_exec(ctx);
3067 }
3068 rcu_read_unlock();
3069}
3070
3071/*
3072 * Cross CPU call to read the hardware event
3073 */
3074static void __perf_event_read(void *info)
3075{
3076 struct perf_event *event = info;
3077 struct perf_event_context *ctx = event->ctx;
3078 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3079
3080 /*
3081 * If this is a task context, we need to check whether it is
3082 * the current task context of this cpu. If not it has been
3083 * scheduled out before the smp call arrived. In that case
3084 * event->count would have been updated to a recent sample
3085 * when the event was scheduled out.
3086 */
3087 if (ctx->task && cpuctx->task_ctx != ctx)
3088 return;
3089
3090 raw_spin_lock(&ctx->lock);
3091 if (ctx->is_active) {
3092 update_context_time(ctx);
3093 update_cgrp_time_from_event(event);
3094 }
3095 update_event_times(event);
3096 if (event->state == PERF_EVENT_STATE_ACTIVE)
3097 event->pmu->read(event);
3098 raw_spin_unlock(&ctx->lock);
3099}
3100
3101static inline u64 perf_event_count(struct perf_event *event)
3102{
3103 return local64_read(&event->count) + atomic64_read(&event->child_count);
3104}
3105
3106static u64 perf_event_read(struct perf_event *event)
3107{
3108 /*
3109 * If event is enabled and currently active on a CPU, update the
3110 * value in the event structure:
3111 */
3112 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3113 smp_call_function_single(event->oncpu,
3114 __perf_event_read, event, 1);
3115 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3116 struct perf_event_context *ctx = event->ctx;
3117 unsigned long flags;
3118
3119 raw_spin_lock_irqsave(&ctx->lock, flags);
3120 /*
3121 * may read while context is not active
3122 * (e.g., thread is blocked), in that case
3123 * we cannot update context time
3124 */
3125 if (ctx->is_active) {
3126 update_context_time(ctx);
3127 update_cgrp_time_from_event(event);
3128 }
3129 update_event_times(event);
3130 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3131 }
3132
3133 return perf_event_count(event);
3134}
3135
3136/*
3137 * Initialize the perf_event context in a task_struct:
3138 */
3139static void __perf_event_init_context(struct perf_event_context *ctx)
3140{
3141 raw_spin_lock_init(&ctx->lock);
3142 mutex_init(&ctx->mutex);
3143 INIT_LIST_HEAD(&ctx->pinned_groups);
3144 INIT_LIST_HEAD(&ctx->flexible_groups);
3145 INIT_LIST_HEAD(&ctx->event_list);
3146 atomic_set(&ctx->refcount, 1);
3147 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3148}
3149
3150static struct perf_event_context *
3151alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3152{
3153 struct perf_event_context *ctx;
3154
3155 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3156 if (!ctx)
3157 return NULL;
3158
3159 __perf_event_init_context(ctx);
3160 if (task) {
3161 ctx->task = task;
3162 get_task_struct(task);
3163 }
3164 ctx->pmu = pmu;
3165
3166 return ctx;
3167}
3168
3169static struct task_struct *
3170find_lively_task_by_vpid(pid_t vpid)
3171{
3172 struct task_struct *task;
3173 int err;
3174
3175 rcu_read_lock();
3176 if (!vpid)
3177 task = current;
3178 else
3179 task = find_task_by_vpid(vpid);
3180 if (task)
3181 get_task_struct(task);
3182 rcu_read_unlock();
3183
3184 if (!task)
3185 return ERR_PTR(-ESRCH);
3186
3187 /* Reuse ptrace permission checks for now. */
3188 err = -EACCES;
3189 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3190 goto errout;
3191
3192 return task;
3193errout:
3194 put_task_struct(task);
3195 return ERR_PTR(err);
3196
3197}
3198
3199/*
3200 * Returns a matching context with refcount and pincount.
3201 */
3202static struct perf_event_context *
3203find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3204{
3205 struct perf_event_context *ctx, *clone_ctx = NULL;
3206 struct perf_cpu_context *cpuctx;
3207 unsigned long flags;
3208 int ctxn, err;
3209
3210 if (!task) {
3211 /* Must be root to operate on a CPU event: */
3212 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3213 return ERR_PTR(-EACCES);
3214
3215 /*
3216 * We could be clever and allow to attach a event to an
3217 * offline CPU and activate it when the CPU comes up, but
3218 * that's for later.
3219 */
3220 if (!cpu_online(cpu))
3221 return ERR_PTR(-ENODEV);
3222
3223 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3224 ctx = &cpuctx->ctx;
3225 get_ctx(ctx);
3226 ++ctx->pin_count;
3227
3228 return ctx;
3229 }
3230
3231 err = -EINVAL;
3232 ctxn = pmu->task_ctx_nr;
3233 if (ctxn < 0)
3234 goto errout;
3235
3236retry:
3237 ctx = perf_lock_task_context(task, ctxn, &flags);
3238 if (ctx) {
3239 clone_ctx = unclone_ctx(ctx);
3240 ++ctx->pin_count;
3241 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3242
3243 if (clone_ctx)
3244 put_ctx(clone_ctx);
3245 } else {
3246 ctx = alloc_perf_context(pmu, task);
3247 err = -ENOMEM;
3248 if (!ctx)
3249 goto errout;
3250
3251 err = 0;
3252 mutex_lock(&task->perf_event_mutex);
3253 /*
3254 * If it has already passed perf_event_exit_task().
3255 * we must see PF_EXITING, it takes this mutex too.
3256 */
3257 if (task->flags & PF_EXITING)
3258 err = -ESRCH;
3259 else if (task->perf_event_ctxp[ctxn])
3260 err = -EAGAIN;
3261 else {
3262 get_ctx(ctx);
3263 ++ctx->pin_count;
3264 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3265 }
3266 mutex_unlock(&task->perf_event_mutex);
3267
3268 if (unlikely(err)) {
3269 put_ctx(ctx);
3270
3271 if (err == -EAGAIN)
3272 goto retry;
3273 goto errout;
3274 }
3275 }
3276
3277 return ctx;
3278
3279errout:
3280 return ERR_PTR(err);
3281}
3282
3283static void perf_event_free_filter(struct perf_event *event);
3284
3285static void free_event_rcu(struct rcu_head *head)
3286{
3287 struct perf_event *event;
3288
3289 event = container_of(head, struct perf_event, rcu_head);
3290 if (event->ns)
3291 put_pid_ns(event->ns);
3292 perf_event_free_filter(event);
3293 kfree(event);
3294}
3295
3296static void ring_buffer_put(struct ring_buffer *rb);
3297static void ring_buffer_attach(struct perf_event *event,
3298 struct ring_buffer *rb);
3299
3300static void unaccount_event_cpu(struct perf_event *event, int cpu)
3301{
3302 if (event->parent)
3303 return;
3304
3305 if (has_branch_stack(event)) {
3306 if (!(event->attach_state & PERF_ATTACH_TASK))
3307 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3308 }
3309 if (is_cgroup_event(event))
3310 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3311}
3312
3313static void unaccount_event(struct perf_event *event)
3314{
3315 if (event->parent)
3316 return;
3317
3318 if (event->attach_state & PERF_ATTACH_TASK)
3319 static_key_slow_dec_deferred(&perf_sched_events);
3320 if (event->attr.mmap || event->attr.mmap_data)
3321 atomic_dec(&nr_mmap_events);
3322 if (event->attr.comm)
3323 atomic_dec(&nr_comm_events);
3324 if (event->attr.task)
3325 atomic_dec(&nr_task_events);
3326 if (event->attr.freq)
3327 atomic_dec(&nr_freq_events);
3328 if (is_cgroup_event(event))
3329 static_key_slow_dec_deferred(&perf_sched_events);
3330 if (has_branch_stack(event))
3331 static_key_slow_dec_deferred(&perf_sched_events);
3332
3333 unaccount_event_cpu(event, event->cpu);
3334}
3335
3336static void __free_event(struct perf_event *event)
3337{
3338 if (!event->parent) {
3339 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3340 put_callchain_buffers();
3341 }
3342
3343 if (event->destroy)
3344 event->destroy(event);
3345
3346 if (event->ctx)
3347 put_ctx(event->ctx);
3348
3349 if (event->pmu)
3350 module_put(event->pmu->module);
3351
3352 call_rcu(&event->rcu_head, free_event_rcu);
3353}
3354
3355static void _free_event(struct perf_event *event)
3356{
3357 irq_work_sync(&event->pending);
3358
3359 unaccount_event(event);
3360
3361 if (event->rb) {
3362 /*
3363 * Can happen when we close an event with re-directed output.
3364 *
3365 * Since we have a 0 refcount, perf_mmap_close() will skip
3366 * over us; possibly making our ring_buffer_put() the last.
3367 */
3368 mutex_lock(&event->mmap_mutex);
3369 ring_buffer_attach(event, NULL);
3370 mutex_unlock(&event->mmap_mutex);
3371 }
3372
3373 if (is_cgroup_event(event))
3374 perf_detach_cgroup(event);
3375
3376 __free_event(event);
3377}
3378
3379/*
3380 * Used to free events which have a known refcount of 1, such as in error paths
3381 * where the event isn't exposed yet and inherited events.
3382 */
3383static void free_event(struct perf_event *event)
3384{
3385 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3386 "unexpected event refcount: %ld; ptr=%p\n",
3387 atomic_long_read(&event->refcount), event)) {
3388 /* leak to avoid use-after-free */
3389 return;
3390 }
3391
3392 _free_event(event);
3393}
3394
3395/*
3396 * Remove user event from the owner task.
3397 */
3398static void perf_remove_from_owner(struct perf_event *event)
3399{
3400 struct task_struct *owner;
3401
3402 rcu_read_lock();
3403 owner = ACCESS_ONCE(event->owner);
3404 /*
3405 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3406 * !owner it means the list deletion is complete and we can indeed
3407 * free this event, otherwise we need to serialize on
3408 * owner->perf_event_mutex.
3409 */
3410 smp_read_barrier_depends();
3411 if (owner) {
3412 /*
3413 * Since delayed_put_task_struct() also drops the last
3414 * task reference we can safely take a new reference
3415 * while holding the rcu_read_lock().
3416 */
3417 get_task_struct(owner);
3418 }
3419 rcu_read_unlock();
3420
3421 if (owner) {
3422 mutex_lock(&owner->perf_event_mutex);
3423 /*
3424 * We have to re-check the event->owner field, if it is cleared
3425 * we raced with perf_event_exit_task(), acquiring the mutex
3426 * ensured they're done, and we can proceed with freeing the
3427 * event.
3428 */
3429 if (event->owner)
3430 list_del_init(&event->owner_entry);
3431 mutex_unlock(&owner->perf_event_mutex);
3432 put_task_struct(owner);
3433 }
3434}
3435
3436/*
3437 * Called when the last reference to the file is gone.
3438 */
3439static void put_event(struct perf_event *event)
3440{
3441 struct perf_event_context *ctx = event->ctx;
3442
3443 if (!atomic_long_dec_and_test(&event->refcount))
3444 return;
3445
3446 if (!is_kernel_event(event))
3447 perf_remove_from_owner(event);
3448
3449 WARN_ON_ONCE(ctx->parent_ctx);
3450 /*
3451 * There are two ways this annotation is useful:
3452 *
3453 * 1) there is a lock recursion from perf_event_exit_task
3454 * see the comment there.
3455 *
3456 * 2) there is a lock-inversion with mmap_sem through
3457 * perf_event_read_group(), which takes faults while
3458 * holding ctx->mutex, however this is called after
3459 * the last filedesc died, so there is no possibility
3460 * to trigger the AB-BA case.
3461 */
3462 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3463 perf_remove_from_context(event, true);
3464 mutex_unlock(&ctx->mutex);
3465
3466 _free_event(event);
3467}
3468
3469int perf_event_release_kernel(struct perf_event *event)
3470{
3471 put_event(event);
3472 return 0;
3473}
3474EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3475
3476static int perf_release(struct inode *inode, struct file *file)
3477{
3478 put_event(file->private_data);
3479 return 0;
3480}
3481
3482/*
3483 * Remove all orphanes events from the context.
3484 */
3485static void orphans_remove_work(struct work_struct *work)
3486{
3487 struct perf_event_context *ctx;
3488 struct perf_event *event, *tmp;
3489
3490 ctx = container_of(work, struct perf_event_context,
3491 orphans_remove.work);
3492
3493 mutex_lock(&ctx->mutex);
3494 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3495 struct perf_event *parent_event = event->parent;
3496
3497 if (!is_orphaned_child(event))
3498 continue;
3499
3500 perf_remove_from_context(event, true);
3501
3502 mutex_lock(&parent_event->child_mutex);
3503 list_del_init(&event->child_list);
3504 mutex_unlock(&parent_event->child_mutex);
3505
3506 free_event(event);
3507 put_event(parent_event);
3508 }
3509
3510 raw_spin_lock_irq(&ctx->lock);
3511 ctx->orphans_remove_sched = false;
3512 raw_spin_unlock_irq(&ctx->lock);
3513 mutex_unlock(&ctx->mutex);
3514
3515 put_ctx(ctx);
3516}
3517
3518u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3519{
3520 struct perf_event *child;
3521 u64 total = 0;
3522
3523 *enabled = 0;
3524 *running = 0;
3525
3526 mutex_lock(&event->child_mutex);
3527 total += perf_event_read(event);
3528 *enabled += event->total_time_enabled +
3529 atomic64_read(&event->child_total_time_enabled);
3530 *running += event->total_time_running +
3531 atomic64_read(&event->child_total_time_running);
3532
3533 list_for_each_entry(child, &event->child_list, child_list) {
3534 total += perf_event_read(child);
3535 *enabled += child->total_time_enabled;
3536 *running += child->total_time_running;
3537 }
3538 mutex_unlock(&event->child_mutex);
3539
3540 return total;
3541}
3542EXPORT_SYMBOL_GPL(perf_event_read_value);
3543
3544static int perf_event_read_group(struct perf_event *event,
3545 u64 read_format, char __user *buf)
3546{
3547 struct perf_event *leader = event->group_leader, *sub;
3548 int n = 0, size = 0, ret = -EFAULT;
3549 struct perf_event_context *ctx = leader->ctx;
3550 u64 values[5];
3551 u64 count, enabled, running;
3552
3553 mutex_lock(&ctx->mutex);
3554 count = perf_event_read_value(leader, &enabled, &running);
3555
3556 values[n++] = 1 + leader->nr_siblings;
3557 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3558 values[n++] = enabled;
3559 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3560 values[n++] = running;
3561 values[n++] = count;
3562 if (read_format & PERF_FORMAT_ID)
3563 values[n++] = primary_event_id(leader);
3564
3565 size = n * sizeof(u64);
3566
3567 if (copy_to_user(buf, values, size))
3568 goto unlock;
3569
3570 ret = size;
3571
3572 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3573 n = 0;
3574
3575 values[n++] = perf_event_read_value(sub, &enabled, &running);
3576 if (read_format & PERF_FORMAT_ID)
3577 values[n++] = primary_event_id(sub);
3578
3579 size = n * sizeof(u64);
3580
3581 if (copy_to_user(buf + ret, values, size)) {
3582 ret = -EFAULT;
3583 goto unlock;
3584 }
3585
3586 ret += size;
3587 }
3588unlock:
3589 mutex_unlock(&ctx->mutex);
3590
3591 return ret;
3592}
3593
3594static int perf_event_read_one(struct perf_event *event,
3595 u64 read_format, char __user *buf)
3596{
3597 u64 enabled, running;
3598 u64 values[4];
3599 int n = 0;
3600
3601 values[n++] = perf_event_read_value(event, &enabled, &running);
3602 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3603 values[n++] = enabled;
3604 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3605 values[n++] = running;
3606 if (read_format & PERF_FORMAT_ID)
3607 values[n++] = primary_event_id(event);
3608
3609 if (copy_to_user(buf, values, n * sizeof(u64)))
3610 return -EFAULT;
3611
3612 return n * sizeof(u64);
3613}
3614
3615static bool is_event_hup(struct perf_event *event)
3616{
3617 bool no_children;
3618
3619 if (event->state != PERF_EVENT_STATE_EXIT)
3620 return false;
3621
3622 mutex_lock(&event->child_mutex);
3623 no_children = list_empty(&event->child_list);
3624 mutex_unlock(&event->child_mutex);
3625 return no_children;
3626}
3627
3628/*
3629 * Read the performance event - simple non blocking version for now
3630 */
3631static ssize_t
3632perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3633{
3634 u64 read_format = event->attr.read_format;
3635 int ret;
3636
3637 /*
3638 * Return end-of-file for a read on a event that is in
3639 * error state (i.e. because it was pinned but it couldn't be
3640 * scheduled on to the CPU at some point).
3641 */
3642 if (event->state == PERF_EVENT_STATE_ERROR)
3643 return 0;
3644
3645 if (count < event->read_size)
3646 return -ENOSPC;
3647
3648 WARN_ON_ONCE(event->ctx->parent_ctx);
3649 if (read_format & PERF_FORMAT_GROUP)
3650 ret = perf_event_read_group(event, read_format, buf);
3651 else
3652 ret = perf_event_read_one(event, read_format, buf);
3653
3654 return ret;
3655}
3656
3657static ssize_t
3658perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3659{
3660 struct perf_event *event = file->private_data;
3661
3662 return perf_read_hw(event, buf, count);
3663}
3664
3665static unsigned int perf_poll(struct file *file, poll_table *wait)
3666{
3667 struct perf_event *event = file->private_data;
3668 struct ring_buffer *rb;
3669 unsigned int events = POLLHUP;
3670
3671 poll_wait(file, &event->waitq, wait);
3672
3673 if (is_event_hup(event))
3674 return events;
3675
3676 /*
3677 * Pin the event->rb by taking event->mmap_mutex; otherwise
3678 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3679 */
3680 mutex_lock(&event->mmap_mutex);
3681 rb = event->rb;
3682 if (rb)
3683 events = atomic_xchg(&rb->poll, 0);
3684 mutex_unlock(&event->mmap_mutex);
3685 return events;
3686}
3687
3688static void perf_event_reset(struct perf_event *event)
3689{
3690 (void)perf_event_read(event);
3691 local64_set(&event->count, 0);
3692 perf_event_update_userpage(event);
3693}
3694
3695/*
3696 * Holding the top-level event's child_mutex means that any
3697 * descendant process that has inherited this event will block
3698 * in sync_child_event if it goes to exit, thus satisfying the
3699 * task existence requirements of perf_event_enable/disable.
3700 */
3701static void perf_event_for_each_child(struct perf_event *event,
3702 void (*func)(struct perf_event *))
3703{
3704 struct perf_event *child;
3705
3706 WARN_ON_ONCE(event->ctx->parent_ctx);
3707 mutex_lock(&event->child_mutex);
3708 func(event);
3709 list_for_each_entry(child, &event->child_list, child_list)
3710 func(child);
3711 mutex_unlock(&event->child_mutex);
3712}
3713
3714static void perf_event_for_each(struct perf_event *event,
3715 void (*func)(struct perf_event *))
3716{
3717 struct perf_event_context *ctx = event->ctx;
3718 struct perf_event *sibling;
3719
3720 WARN_ON_ONCE(ctx->parent_ctx);
3721 mutex_lock(&ctx->mutex);
3722 event = event->group_leader;
3723
3724 perf_event_for_each_child(event, func);
3725 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3726 perf_event_for_each_child(sibling, func);
3727 mutex_unlock(&ctx->mutex);
3728}
3729
3730static int perf_event_period(struct perf_event *event, u64 __user *arg)
3731{
3732 struct perf_event_context *ctx = event->ctx;
3733 int ret = 0, active;
3734 u64 value;
3735
3736 if (!is_sampling_event(event))
3737 return -EINVAL;
3738
3739 if (copy_from_user(&value, arg, sizeof(value)))
3740 return -EFAULT;
3741
3742 if (!value)
3743 return -EINVAL;
3744
3745 raw_spin_lock_irq(&ctx->lock);
3746 if (event->attr.freq) {
3747 if (value > sysctl_perf_event_sample_rate) {
3748 ret = -EINVAL;
3749 goto unlock;
3750 }
3751
3752 event->attr.sample_freq = value;
3753 } else {
3754 event->attr.sample_period = value;
3755 event->hw.sample_period = value;
3756 }
3757
3758 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3759 if (active) {
3760 perf_pmu_disable(ctx->pmu);
3761 event->pmu->stop(event, PERF_EF_UPDATE);
3762 }
3763
3764 local64_set(&event->hw.period_left, 0);
3765
3766 if (active) {
3767 event->pmu->start(event, PERF_EF_RELOAD);
3768 perf_pmu_enable(ctx->pmu);
3769 }
3770
3771unlock:
3772 raw_spin_unlock_irq(&ctx->lock);
3773
3774 return ret;
3775}
3776
3777static const struct file_operations perf_fops;
3778
3779static inline int perf_fget_light(int fd, struct fd *p)
3780{
3781 struct fd f = fdget(fd);
3782 if (!f.file)
3783 return -EBADF;
3784
3785 if (f.file->f_op != &perf_fops) {
3786 fdput(f);
3787 return -EBADF;
3788 }
3789 *p = f;
3790 return 0;
3791}
3792
3793static int perf_event_set_output(struct perf_event *event,
3794 struct perf_event *output_event);
3795static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3796
3797static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3798{
3799 struct perf_event *event = file->private_data;
3800 void (*func)(struct perf_event *);
3801 u32 flags = arg;
3802
3803 switch (cmd) {
3804 case PERF_EVENT_IOC_ENABLE:
3805 func = perf_event_enable;
3806 break;
3807 case PERF_EVENT_IOC_DISABLE:
3808 func = perf_event_disable;
3809 break;
3810 case PERF_EVENT_IOC_RESET:
3811 func = perf_event_reset;
3812 break;
3813
3814 case PERF_EVENT_IOC_REFRESH:
3815 return perf_event_refresh(event, arg);
3816
3817 case PERF_EVENT_IOC_PERIOD:
3818 return perf_event_period(event, (u64 __user *)arg);
3819
3820 case PERF_EVENT_IOC_ID:
3821 {
3822 u64 id = primary_event_id(event);
3823
3824 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3825 return -EFAULT;
3826 return 0;
3827 }
3828
3829 case PERF_EVENT_IOC_SET_OUTPUT:
3830 {
3831 int ret;
3832 if (arg != -1) {
3833 struct perf_event *output_event;
3834 struct fd output;
3835 ret = perf_fget_light(arg, &output);
3836 if (ret)
3837 return ret;
3838 output_event = output.file->private_data;
3839 ret = perf_event_set_output(event, output_event);
3840 fdput(output);
3841 } else {
3842 ret = perf_event_set_output(event, NULL);
3843 }
3844 return ret;
3845 }
3846
3847 case PERF_EVENT_IOC_SET_FILTER:
3848 return perf_event_set_filter(event, (void __user *)arg);
3849
3850 default:
3851 return -ENOTTY;
3852 }
3853
3854 if (flags & PERF_IOC_FLAG_GROUP)
3855 perf_event_for_each(event, func);
3856 else
3857 perf_event_for_each_child(event, func);
3858
3859 return 0;
3860}
3861
3862#ifdef CONFIG_COMPAT
3863static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3864 unsigned long arg)
3865{
3866 switch (_IOC_NR(cmd)) {
3867 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3868 case _IOC_NR(PERF_EVENT_IOC_ID):
3869 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3870 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3871 cmd &= ~IOCSIZE_MASK;
3872 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3873 }
3874 break;
3875 }
3876 return perf_ioctl(file, cmd, arg);
3877}
3878#else
3879# define perf_compat_ioctl NULL
3880#endif
3881
3882int perf_event_task_enable(void)
3883{
3884 struct perf_event *event;
3885
3886 mutex_lock(&current->perf_event_mutex);
3887 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3888 perf_event_for_each_child(event, perf_event_enable);
3889 mutex_unlock(&current->perf_event_mutex);
3890
3891 return 0;
3892}
3893
3894int perf_event_task_disable(void)
3895{
3896 struct perf_event *event;
3897
3898 mutex_lock(&current->perf_event_mutex);
3899 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3900 perf_event_for_each_child(event, perf_event_disable);
3901 mutex_unlock(&current->perf_event_mutex);
3902
3903 return 0;
3904}
3905
3906static int perf_event_index(struct perf_event *event)
3907{
3908 if (event->hw.state & PERF_HES_STOPPED)
3909 return 0;
3910
3911 if (event->state != PERF_EVENT_STATE_ACTIVE)
3912 return 0;
3913
3914 return event->pmu->event_idx(event);
3915}
3916
3917static void calc_timer_values(struct perf_event *event,
3918 u64 *now,
3919 u64 *enabled,
3920 u64 *running)
3921{
3922 u64 ctx_time;
3923
3924 *now = perf_clock();
3925 ctx_time = event->shadow_ctx_time + *now;
3926 *enabled = ctx_time - event->tstamp_enabled;
3927 *running = ctx_time - event->tstamp_running;
3928}
3929
3930static void perf_event_init_userpage(struct perf_event *event)
3931{
3932 struct perf_event_mmap_page *userpg;
3933 struct ring_buffer *rb;
3934
3935 rcu_read_lock();
3936 rb = rcu_dereference(event->rb);
3937 if (!rb)
3938 goto unlock;
3939
3940 userpg = rb->user_page;
3941
3942 /* Allow new userspace to detect that bit 0 is deprecated */
3943 userpg->cap_bit0_is_deprecated = 1;
3944 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3945
3946unlock:
3947 rcu_read_unlock();
3948}
3949
3950void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3951{
3952}
3953
3954/*
3955 * Callers need to ensure there can be no nesting of this function, otherwise
3956 * the seqlock logic goes bad. We can not serialize this because the arch
3957 * code calls this from NMI context.
3958 */
3959void perf_event_update_userpage(struct perf_event *event)
3960{
3961 struct perf_event_mmap_page *userpg;
3962 struct ring_buffer *rb;
3963 u64 enabled, running, now;
3964
3965 rcu_read_lock();
3966 rb = rcu_dereference(event->rb);
3967 if (!rb)
3968 goto unlock;
3969
3970 /*
3971 * compute total_time_enabled, total_time_running
3972 * based on snapshot values taken when the event
3973 * was last scheduled in.
3974 *
3975 * we cannot simply called update_context_time()
3976 * because of locking issue as we can be called in
3977 * NMI context
3978 */
3979 calc_timer_values(event, &now, &enabled, &running);
3980
3981 userpg = rb->user_page;
3982 /*
3983 * Disable preemption so as to not let the corresponding user-space
3984 * spin too long if we get preempted.
3985 */
3986 preempt_disable();
3987 ++userpg->lock;
3988 barrier();
3989 userpg->index = perf_event_index(event);
3990 userpg->offset = perf_event_count(event);
3991 if (userpg->index)
3992 userpg->offset -= local64_read(&event->hw.prev_count);
3993
3994 userpg->time_enabled = enabled +
3995 atomic64_read(&event->child_total_time_enabled);
3996
3997 userpg->time_running = running +
3998 atomic64_read(&event->child_total_time_running);
3999
4000 arch_perf_update_userpage(userpg, now);
4001
4002 barrier();
4003 ++userpg->lock;
4004 preempt_enable();
4005unlock:
4006 rcu_read_unlock();
4007}
4008
4009static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4010{
4011 struct perf_event *event = vma->vm_file->private_data;
4012 struct ring_buffer *rb;
4013 int ret = VM_FAULT_SIGBUS;
4014
4015 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4016 if (vmf->pgoff == 0)
4017 ret = 0;
4018 return ret;
4019 }
4020
4021 rcu_read_lock();
4022 rb = rcu_dereference(event->rb);
4023 if (!rb)
4024 goto unlock;
4025
4026 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4027 goto unlock;
4028
4029 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4030 if (!vmf->page)
4031 goto unlock;
4032
4033 get_page(vmf->page);
4034 vmf->page->mapping = vma->vm_file->f_mapping;
4035 vmf->page->index = vmf->pgoff;
4036
4037 ret = 0;
4038unlock:
4039 rcu_read_unlock();
4040
4041 return ret;
4042}
4043
4044static void ring_buffer_attach(struct perf_event *event,
4045 struct ring_buffer *rb)
4046{
4047 struct ring_buffer *old_rb = NULL;
4048 unsigned long flags;
4049
4050 if (event->rb) {
4051 /*
4052 * Should be impossible, we set this when removing
4053 * event->rb_entry and wait/clear when adding event->rb_entry.
4054 */
4055 WARN_ON_ONCE(event->rcu_pending);
4056
4057 old_rb = event->rb;
4058 event->rcu_batches = get_state_synchronize_rcu();
4059 event->rcu_pending = 1;
4060
4061 spin_lock_irqsave(&old_rb->event_lock, flags);
4062 list_del_rcu(&event->rb_entry);
4063 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4064 }
4065
4066 if (event->rcu_pending && rb) {
4067 cond_synchronize_rcu(event->rcu_batches);
4068 event->rcu_pending = 0;
4069 }
4070
4071 if (rb) {
4072 spin_lock_irqsave(&rb->event_lock, flags);
4073 list_add_rcu(&event->rb_entry, &rb->event_list);
4074 spin_unlock_irqrestore(&rb->event_lock, flags);
4075 }
4076
4077 rcu_assign_pointer(event->rb, rb);
4078
4079 if (old_rb) {
4080 ring_buffer_put(old_rb);
4081 /*
4082 * Since we detached before setting the new rb, so that we
4083 * could attach the new rb, we could have missed a wakeup.
4084 * Provide it now.
4085 */
4086 wake_up_all(&event->waitq);
4087 }
4088}
4089
4090static void ring_buffer_wakeup(struct perf_event *event)
4091{
4092 struct ring_buffer *rb;
4093
4094 rcu_read_lock();
4095 rb = rcu_dereference(event->rb);
4096 if (rb) {
4097 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4098 wake_up_all(&event->waitq);
4099 }
4100 rcu_read_unlock();
4101}
4102
4103static void rb_free_rcu(struct rcu_head *rcu_head)
4104{
4105 struct ring_buffer *rb;
4106
4107 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4108 rb_free(rb);
4109}
4110
4111static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4112{
4113 struct ring_buffer *rb;
4114
4115 rcu_read_lock();
4116 rb = rcu_dereference(event->rb);
4117 if (rb) {
4118 if (!atomic_inc_not_zero(&rb->refcount))
4119 rb = NULL;
4120 }
4121 rcu_read_unlock();
4122
4123 return rb;
4124}
4125
4126static void ring_buffer_put(struct ring_buffer *rb)
4127{
4128 if (!atomic_dec_and_test(&rb->refcount))
4129 return;
4130
4131 WARN_ON_ONCE(!list_empty(&rb->event_list));
4132
4133 call_rcu(&rb->rcu_head, rb_free_rcu);
4134}
4135
4136static void perf_mmap_open(struct vm_area_struct *vma)
4137{
4138 struct perf_event *event = vma->vm_file->private_data;
4139
4140 atomic_inc(&event->mmap_count);
4141 atomic_inc(&event->rb->mmap_count);
4142}
4143
4144/*
4145 * A buffer can be mmap()ed multiple times; either directly through the same
4146 * event, or through other events by use of perf_event_set_output().
4147 *
4148 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4149 * the buffer here, where we still have a VM context. This means we need
4150 * to detach all events redirecting to us.
4151 */
4152static void perf_mmap_close(struct vm_area_struct *vma)
4153{
4154 struct perf_event *event = vma->vm_file->private_data;
4155
4156 struct ring_buffer *rb = ring_buffer_get(event);
4157 struct user_struct *mmap_user = rb->mmap_user;
4158 int mmap_locked = rb->mmap_locked;
4159 unsigned long size = perf_data_size(rb);
4160
4161 atomic_dec(&rb->mmap_count);
4162
4163 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4164 goto out_put;
4165
4166 ring_buffer_attach(event, NULL);
4167 mutex_unlock(&event->mmap_mutex);
4168
4169 /* If there's still other mmap()s of this buffer, we're done. */
4170 if (atomic_read(&rb->mmap_count))
4171 goto out_put;
4172
4173 /*
4174 * No other mmap()s, detach from all other events that might redirect
4175 * into the now unreachable buffer. Somewhat complicated by the
4176 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4177 */
4178again:
4179 rcu_read_lock();
4180 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4181 if (!atomic_long_inc_not_zero(&event->refcount)) {
4182 /*
4183 * This event is en-route to free_event() which will
4184 * detach it and remove it from the list.
4185 */
4186 continue;
4187 }
4188 rcu_read_unlock();
4189
4190 mutex_lock(&event->mmap_mutex);
4191 /*
4192 * Check we didn't race with perf_event_set_output() which can
4193 * swizzle the rb from under us while we were waiting to
4194 * acquire mmap_mutex.
4195 *
4196 * If we find a different rb; ignore this event, a next
4197 * iteration will no longer find it on the list. We have to
4198 * still restart the iteration to make sure we're not now
4199 * iterating the wrong list.
4200 */
4201 if (event->rb == rb)
4202 ring_buffer_attach(event, NULL);
4203
4204 mutex_unlock(&event->mmap_mutex);
4205 put_event(event);
4206
4207 /*
4208 * Restart the iteration; either we're on the wrong list or
4209 * destroyed its integrity by doing a deletion.
4210 */
4211 goto again;
4212 }
4213 rcu_read_unlock();
4214
4215 /*
4216 * It could be there's still a few 0-ref events on the list; they'll
4217 * get cleaned up by free_event() -- they'll also still have their
4218 * ref on the rb and will free it whenever they are done with it.
4219 *
4220 * Aside from that, this buffer is 'fully' detached and unmapped,
4221 * undo the VM accounting.
4222 */
4223
4224 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4225 vma->vm_mm->pinned_vm -= mmap_locked;
4226 free_uid(mmap_user);
4227
4228out_put:
4229 ring_buffer_put(rb); /* could be last */
4230}
4231
4232static const struct vm_operations_struct perf_mmap_vmops = {
4233 .open = perf_mmap_open,
4234 .close = perf_mmap_close,
4235 .fault = perf_mmap_fault,
4236 .page_mkwrite = perf_mmap_fault,
4237};
4238
4239static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4240{
4241 struct perf_event *event = file->private_data;
4242 unsigned long user_locked, user_lock_limit;
4243 struct user_struct *user = current_user();
4244 unsigned long locked, lock_limit;
4245 struct ring_buffer *rb;
4246 unsigned long vma_size;
4247 unsigned long nr_pages;
4248 long user_extra, extra;
4249 int ret = 0, flags = 0;
4250
4251 /*
4252 * Don't allow mmap() of inherited per-task counters. This would
4253 * create a performance issue due to all children writing to the
4254 * same rb.
4255 */
4256 if (event->cpu == -1 && event->attr.inherit)
4257 return -EINVAL;
4258
4259 if (!(vma->vm_flags & VM_SHARED))
4260 return -EINVAL;
4261
4262 vma_size = vma->vm_end - vma->vm_start;
4263 nr_pages = (vma_size / PAGE_SIZE) - 1;
4264
4265 /*
4266 * If we have rb pages ensure they're a power-of-two number, so we
4267 * can do bitmasks instead of modulo.
4268 */
4269 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4270 return -EINVAL;
4271
4272 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4273 return -EINVAL;
4274
4275 if (vma->vm_pgoff != 0)
4276 return -EINVAL;
4277
4278 WARN_ON_ONCE(event->ctx->parent_ctx);
4279again:
4280 mutex_lock(&event->mmap_mutex);
4281 if (event->rb) {
4282 if (event->rb->nr_pages != nr_pages) {
4283 ret = -EINVAL;
4284 goto unlock;
4285 }
4286
4287 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4288 /*
4289 * Raced against perf_mmap_close() through
4290 * perf_event_set_output(). Try again, hope for better
4291 * luck.
4292 */
4293 mutex_unlock(&event->mmap_mutex);
4294 goto again;
4295 }
4296
4297 goto unlock;
4298 }
4299
4300 user_extra = nr_pages + 1;
4301 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4302
4303 /*
4304 * Increase the limit linearly with more CPUs:
4305 */
4306 user_lock_limit *= num_online_cpus();
4307
4308 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4309
4310 extra = 0;
4311 if (user_locked > user_lock_limit)
4312 extra = user_locked - user_lock_limit;
4313
4314 lock_limit = rlimit(RLIMIT_MEMLOCK);
4315 lock_limit >>= PAGE_SHIFT;
4316 locked = vma->vm_mm->pinned_vm + extra;
4317
4318 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4319 !capable(CAP_IPC_LOCK)) {
4320 ret = -EPERM;
4321 goto unlock;
4322 }
4323
4324 WARN_ON(event->rb);
4325
4326 if (vma->vm_flags & VM_WRITE)
4327 flags |= RING_BUFFER_WRITABLE;
4328
4329 rb = rb_alloc(nr_pages,
4330 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4331 event->cpu, flags);
4332
4333 if (!rb) {
4334 ret = -ENOMEM;
4335 goto unlock;
4336 }
4337
4338 atomic_set(&rb->mmap_count, 1);
4339 rb->mmap_locked = extra;
4340 rb->mmap_user = get_current_user();
4341
4342 atomic_long_add(user_extra, &user->locked_vm);
4343 vma->vm_mm->pinned_vm += extra;
4344
4345 ring_buffer_attach(event, rb);
4346
4347 perf_event_init_userpage(event);
4348 perf_event_update_userpage(event);
4349
4350unlock:
4351 if (!ret)
4352 atomic_inc(&event->mmap_count);
4353 mutex_unlock(&event->mmap_mutex);
4354
4355 /*
4356 * Since pinned accounting is per vm we cannot allow fork() to copy our
4357 * vma.
4358 */
4359 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4360 vma->vm_ops = &perf_mmap_vmops;
4361
4362 return ret;
4363}
4364
4365static int perf_fasync(int fd, struct file *filp, int on)
4366{
4367 struct inode *inode = file_inode(filp);
4368 struct perf_event *event = filp->private_data;
4369 int retval;
4370
4371 mutex_lock(&inode->i_mutex);
4372 retval = fasync_helper(fd, filp, on, &event->fasync);
4373 mutex_unlock(&inode->i_mutex);
4374
4375 if (retval < 0)
4376 return retval;
4377
4378 return 0;
4379}
4380
4381static const struct file_operations perf_fops = {
4382 .llseek = no_llseek,
4383 .release = perf_release,
4384 .read = perf_read,
4385 .poll = perf_poll,
4386 .unlocked_ioctl = perf_ioctl,
4387 .compat_ioctl = perf_compat_ioctl,
4388 .mmap = perf_mmap,
4389 .fasync = perf_fasync,
4390};
4391
4392/*
4393 * Perf event wakeup
4394 *
4395 * If there's data, ensure we set the poll() state and publish everything
4396 * to user-space before waking everybody up.
4397 */
4398
4399void perf_event_wakeup(struct perf_event *event)
4400{
4401 ring_buffer_wakeup(event);
4402
4403 if (event->pending_kill) {
4404 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4405 event->pending_kill = 0;
4406 }
4407}
4408
4409static void perf_pending_event(struct irq_work *entry)
4410{
4411 struct perf_event *event = container_of(entry,
4412 struct perf_event, pending);
4413
4414 if (event->pending_disable) {
4415 event->pending_disable = 0;
4416 __perf_event_disable(event);
4417 }
4418
4419 if (event->pending_wakeup) {
4420 event->pending_wakeup = 0;
4421 perf_event_wakeup(event);
4422 }
4423}
4424
4425/*
4426 * We assume there is only KVM supporting the callbacks.
4427 * Later on, we might change it to a list if there is
4428 * another virtualization implementation supporting the callbacks.
4429 */
4430struct perf_guest_info_callbacks *perf_guest_cbs;
4431
4432int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4433{
4434 perf_guest_cbs = cbs;
4435 return 0;
4436}
4437EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4438
4439int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4440{
4441 perf_guest_cbs = NULL;
4442 return 0;
4443}
4444EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4445
4446static void
4447perf_output_sample_regs(struct perf_output_handle *handle,
4448 struct pt_regs *regs, u64 mask)
4449{
4450 int bit;
4451
4452 for_each_set_bit(bit, (const unsigned long *) &mask,
4453 sizeof(mask) * BITS_PER_BYTE) {
4454 u64 val;
4455
4456 val = perf_reg_value(regs, bit);
4457 perf_output_put(handle, val);
4458 }
4459}
4460
4461static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4462 struct pt_regs *regs)
4463{
4464 if (!user_mode(regs)) {
4465 if (current->mm)
4466 regs = task_pt_regs(current);
4467 else
4468 regs = NULL;
4469 }
4470
4471 if (regs) {
4472 regs_user->regs = regs;
4473 regs_user->abi = perf_reg_abi(current);
4474 }
4475}
4476
4477/*
4478 * Get remaining task size from user stack pointer.
4479 *
4480 * It'd be better to take stack vma map and limit this more
4481 * precisly, but there's no way to get it safely under interrupt,
4482 * so using TASK_SIZE as limit.
4483 */
4484static u64 perf_ustack_task_size(struct pt_regs *regs)
4485{
4486 unsigned long addr = perf_user_stack_pointer(regs);
4487
4488 if (!addr || addr >= TASK_SIZE)
4489 return 0;
4490
4491 return TASK_SIZE - addr;
4492}
4493
4494static u16
4495perf_sample_ustack_size(u16 stack_size, u16 header_size,
4496 struct pt_regs *regs)
4497{
4498 u64 task_size;
4499
4500 /* No regs, no stack pointer, no dump. */
4501 if (!regs)
4502 return 0;
4503
4504 /*
4505 * Check if we fit in with the requested stack size into the:
4506 * - TASK_SIZE
4507 * If we don't, we limit the size to the TASK_SIZE.
4508 *
4509 * - remaining sample size
4510 * If we don't, we customize the stack size to
4511 * fit in to the remaining sample size.
4512 */
4513
4514 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4515 stack_size = min(stack_size, (u16) task_size);
4516
4517 /* Current header size plus static size and dynamic size. */
4518 header_size += 2 * sizeof(u64);
4519
4520 /* Do we fit in with the current stack dump size? */
4521 if ((u16) (header_size + stack_size) < header_size) {
4522 /*
4523 * If we overflow the maximum size for the sample,
4524 * we customize the stack dump size to fit in.
4525 */
4526 stack_size = USHRT_MAX - header_size - sizeof(u64);
4527 stack_size = round_up(stack_size, sizeof(u64));
4528 }
4529
4530 return stack_size;
4531}
4532
4533static void
4534perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4535 struct pt_regs *regs)
4536{
4537 /* Case of a kernel thread, nothing to dump */
4538 if (!regs) {
4539 u64 size = 0;
4540 perf_output_put(handle, size);
4541 } else {
4542 unsigned long sp;
4543 unsigned int rem;
4544 u64 dyn_size;
4545
4546 /*
4547 * We dump:
4548 * static size
4549 * - the size requested by user or the best one we can fit
4550 * in to the sample max size
4551 * data
4552 * - user stack dump data
4553 * dynamic size
4554 * - the actual dumped size
4555 */
4556
4557 /* Static size. */
4558 perf_output_put(handle, dump_size);
4559
4560 /* Data. */
4561 sp = perf_user_stack_pointer(regs);
4562 rem = __output_copy_user(handle, (void *) sp, dump_size);
4563 dyn_size = dump_size - rem;
4564
4565 perf_output_skip(handle, rem);
4566
4567 /* Dynamic size. */
4568 perf_output_put(handle, dyn_size);
4569 }
4570}
4571
4572static void __perf_event_header__init_id(struct perf_event_header *header,
4573 struct perf_sample_data *data,
4574 struct perf_event *event)
4575{
4576 u64 sample_type = event->attr.sample_type;
4577
4578 data->type = sample_type;
4579 header->size += event->id_header_size;
4580
4581 if (sample_type & PERF_SAMPLE_TID) {
4582 /* namespace issues */
4583 data->tid_entry.pid = perf_event_pid(event, current);
4584 data->tid_entry.tid = perf_event_tid(event, current);
4585 }
4586
4587 if (sample_type & PERF_SAMPLE_TIME)
4588 data->time = perf_clock();
4589
4590 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4591 data->id = primary_event_id(event);
4592
4593 if (sample_type & PERF_SAMPLE_STREAM_ID)
4594 data->stream_id = event->id;
4595
4596 if (sample_type & PERF_SAMPLE_CPU) {
4597 data->cpu_entry.cpu = raw_smp_processor_id();
4598 data->cpu_entry.reserved = 0;
4599 }
4600}
4601
4602void perf_event_header__init_id(struct perf_event_header *header,
4603 struct perf_sample_data *data,
4604 struct perf_event *event)
4605{
4606 if (event->attr.sample_id_all)
4607 __perf_event_header__init_id(header, data, event);
4608}
4609
4610static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4611 struct perf_sample_data *data)
4612{
4613 u64 sample_type = data->type;
4614
4615 if (sample_type & PERF_SAMPLE_TID)
4616 perf_output_put(handle, data->tid_entry);
4617
4618 if (sample_type & PERF_SAMPLE_TIME)
4619 perf_output_put(handle, data->time);
4620
4621 if (sample_type & PERF_SAMPLE_ID)
4622 perf_output_put(handle, data->id);
4623
4624 if (sample_type & PERF_SAMPLE_STREAM_ID)
4625 perf_output_put(handle, data->stream_id);
4626
4627 if (sample_type & PERF_SAMPLE_CPU)
4628 perf_output_put(handle, data->cpu_entry);
4629
4630 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4631 perf_output_put(handle, data->id);
4632}
4633
4634void perf_event__output_id_sample(struct perf_event *event,
4635 struct perf_output_handle *handle,
4636 struct perf_sample_data *sample)
4637{
4638 if (event->attr.sample_id_all)
4639 __perf_event__output_id_sample(handle, sample);
4640}
4641
4642static void perf_output_read_one(struct perf_output_handle *handle,
4643 struct perf_event *event,
4644 u64 enabled, u64 running)
4645{
4646 u64 read_format = event->attr.read_format;
4647 u64 values[4];
4648 int n = 0;
4649
4650 values[n++] = perf_event_count(event);
4651 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4652 values[n++] = enabled +
4653 atomic64_read(&event->child_total_time_enabled);
4654 }
4655 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4656 values[n++] = running +
4657 atomic64_read(&event->child_total_time_running);
4658 }
4659 if (read_format & PERF_FORMAT_ID)
4660 values[n++] = primary_event_id(event);
4661
4662 __output_copy(handle, values, n * sizeof(u64));
4663}
4664
4665/*
4666 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4667 */
4668static void perf_output_read_group(struct perf_output_handle *handle,
4669 struct perf_event *event,
4670 u64 enabled, u64 running)
4671{
4672 struct perf_event *leader = event->group_leader, *sub;
4673 u64 read_format = event->attr.read_format;
4674 u64 values[5];
4675 int n = 0;
4676
4677 values[n++] = 1 + leader->nr_siblings;
4678
4679 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4680 values[n++] = enabled;
4681
4682 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4683 values[n++] = running;
4684
4685 if (leader != event)
4686 leader->pmu->read(leader);
4687
4688 values[n++] = perf_event_count(leader);
4689 if (read_format & PERF_FORMAT_ID)
4690 values[n++] = primary_event_id(leader);
4691
4692 __output_copy(handle, values, n * sizeof(u64));
4693
4694 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4695 n = 0;
4696
4697 if ((sub != event) &&
4698 (sub->state == PERF_EVENT_STATE_ACTIVE))
4699 sub->pmu->read(sub);
4700
4701 values[n++] = perf_event_count(sub);
4702 if (read_format & PERF_FORMAT_ID)
4703 values[n++] = primary_event_id(sub);
4704
4705 __output_copy(handle, values, n * sizeof(u64));
4706 }
4707}
4708
4709#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4710 PERF_FORMAT_TOTAL_TIME_RUNNING)
4711
4712static void perf_output_read(struct perf_output_handle *handle,
4713 struct perf_event *event)
4714{
4715 u64 enabled = 0, running = 0, now;
4716 u64 read_format = event->attr.read_format;
4717
4718 /*
4719 * compute total_time_enabled, total_time_running
4720 * based on snapshot values taken when the event
4721 * was last scheduled in.
4722 *
4723 * we cannot simply called update_context_time()
4724 * because of locking issue as we are called in
4725 * NMI context
4726 */
4727 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4728 calc_timer_values(event, &now, &enabled, &running);
4729
4730 if (event->attr.read_format & PERF_FORMAT_GROUP)
4731 perf_output_read_group(handle, event, enabled, running);
4732 else
4733 perf_output_read_one(handle, event, enabled, running);
4734}
4735
4736void perf_output_sample(struct perf_output_handle *handle,
4737 struct perf_event_header *header,
4738 struct perf_sample_data *data,
4739 struct perf_event *event)
4740{
4741 u64 sample_type = data->type;
4742
4743 perf_output_put(handle, *header);
4744
4745 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4746 perf_output_put(handle, data->id);
4747
4748 if (sample_type & PERF_SAMPLE_IP)
4749 perf_output_put(handle, data->ip);
4750
4751 if (sample_type & PERF_SAMPLE_TID)
4752 perf_output_put(handle, data->tid_entry);
4753
4754 if (sample_type & PERF_SAMPLE_TIME)
4755 perf_output_put(handle, data->time);
4756
4757 if (sample_type & PERF_SAMPLE_ADDR)
4758 perf_output_put(handle, data->addr);
4759
4760 if (sample_type & PERF_SAMPLE_ID)
4761 perf_output_put(handle, data->id);
4762
4763 if (sample_type & PERF_SAMPLE_STREAM_ID)
4764 perf_output_put(handle, data->stream_id);
4765
4766 if (sample_type & PERF_SAMPLE_CPU)
4767 perf_output_put(handle, data->cpu_entry);
4768
4769 if (sample_type & PERF_SAMPLE_PERIOD)
4770 perf_output_put(handle, data->period);
4771
4772 if (sample_type & PERF_SAMPLE_READ)
4773 perf_output_read(handle, event);
4774
4775 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4776 if (data->callchain) {
4777 int size = 1;
4778
4779 if (data->callchain)
4780 size += data->callchain->nr;
4781
4782 size *= sizeof(u64);
4783
4784 __output_copy(handle, data->callchain, size);
4785 } else {
4786 u64 nr = 0;
4787 perf_output_put(handle, nr);
4788 }
4789 }
4790
4791 if (sample_type & PERF_SAMPLE_RAW) {
4792 if (data->raw) {
4793 perf_output_put(handle, data->raw->size);
4794 __output_copy(handle, data->raw->data,
4795 data->raw->size);
4796 } else {
4797 struct {
4798 u32 size;
4799 u32 data;
4800 } raw = {
4801 .size = sizeof(u32),
4802 .data = 0,
4803 };
4804 perf_output_put(handle, raw);
4805 }
4806 }
4807
4808 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4809 if (data->br_stack) {
4810 size_t size;
4811
4812 size = data->br_stack->nr
4813 * sizeof(struct perf_branch_entry);
4814
4815 perf_output_put(handle, data->br_stack->nr);
4816 perf_output_copy(handle, data->br_stack->entries, size);
4817 } else {
4818 /*
4819 * we always store at least the value of nr
4820 */
4821 u64 nr = 0;
4822 perf_output_put(handle, nr);
4823 }
4824 }
4825
4826 if (sample_type & PERF_SAMPLE_REGS_USER) {
4827 u64 abi = data->regs_user.abi;
4828
4829 /*
4830 * If there are no regs to dump, notice it through
4831 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4832 */
4833 perf_output_put(handle, abi);
4834
4835 if (abi) {
4836 u64 mask = event->attr.sample_regs_user;
4837 perf_output_sample_regs(handle,
4838 data->regs_user.regs,
4839 mask);
4840 }
4841 }
4842
4843 if (sample_type & PERF_SAMPLE_STACK_USER) {
4844 perf_output_sample_ustack(handle,
4845 data->stack_user_size,
4846 data->regs_user.regs);
4847 }
4848
4849 if (sample_type & PERF_SAMPLE_WEIGHT)
4850 perf_output_put(handle, data->weight);
4851
4852 if (sample_type & PERF_SAMPLE_DATA_SRC)
4853 perf_output_put(handle, data->data_src.val);
4854
4855 if (sample_type & PERF_SAMPLE_TRANSACTION)
4856 perf_output_put(handle, data->txn);
4857
4858 if (!event->attr.watermark) {
4859 int wakeup_events = event->attr.wakeup_events;
4860
4861 if (wakeup_events) {
4862 struct ring_buffer *rb = handle->rb;
4863 int events = local_inc_return(&rb->events);
4864
4865 if (events >= wakeup_events) {
4866 local_sub(wakeup_events, &rb->events);
4867 local_inc(&rb->wakeup);
4868 }
4869 }
4870 }
4871}
4872
4873void perf_prepare_sample(struct perf_event_header *header,
4874 struct perf_sample_data *data,
4875 struct perf_event *event,
4876 struct pt_regs *regs)
4877{
4878 u64 sample_type = event->attr.sample_type;
4879
4880 header->type = PERF_RECORD_SAMPLE;
4881 header->size = sizeof(*header) + event->header_size;
4882
4883 header->misc = 0;
4884 header->misc |= perf_misc_flags(regs);
4885
4886 __perf_event_header__init_id(header, data, event);
4887
4888 if (sample_type & PERF_SAMPLE_IP)
4889 data->ip = perf_instruction_pointer(regs);
4890
4891 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4892 int size = 1;
4893
4894 data->callchain = perf_callchain(event, regs);
4895
4896 if (data->callchain)
4897 size += data->callchain->nr;
4898
4899 header->size += size * sizeof(u64);
4900 }
4901
4902 if (sample_type & PERF_SAMPLE_RAW) {
4903 int size = sizeof(u32);
4904
4905 if (data->raw)
4906 size += data->raw->size;
4907 else
4908 size += sizeof(u32);
4909
4910 WARN_ON_ONCE(size & (sizeof(u64)-1));
4911 header->size += size;
4912 }
4913
4914 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4915 int size = sizeof(u64); /* nr */
4916 if (data->br_stack) {
4917 size += data->br_stack->nr
4918 * sizeof(struct perf_branch_entry);
4919 }
4920 header->size += size;
4921 }
4922
4923 if (sample_type & PERF_SAMPLE_REGS_USER) {
4924 /* regs dump ABI info */
4925 int size = sizeof(u64);
4926
4927 perf_sample_regs_user(&data->regs_user, regs);
4928
4929 if (data->regs_user.regs) {
4930 u64 mask = event->attr.sample_regs_user;
4931 size += hweight64(mask) * sizeof(u64);
4932 }
4933
4934 header->size += size;
4935 }
4936
4937 if (sample_type & PERF_SAMPLE_STACK_USER) {
4938 /*
4939 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4940 * processed as the last one or have additional check added
4941 * in case new sample type is added, because we could eat
4942 * up the rest of the sample size.
4943 */
4944 struct perf_regs_user *uregs = &data->regs_user;
4945 u16 stack_size = event->attr.sample_stack_user;
4946 u16 size = sizeof(u64);
4947
4948 if (!uregs->abi)
4949 perf_sample_regs_user(uregs, regs);
4950
4951 stack_size = perf_sample_ustack_size(stack_size, header->size,
4952 uregs->regs);
4953
4954 /*
4955 * If there is something to dump, add space for the dump
4956 * itself and for the field that tells the dynamic size,
4957 * which is how many have been actually dumped.
4958 */
4959 if (stack_size)
4960 size += sizeof(u64) + stack_size;
4961
4962 data->stack_user_size = stack_size;
4963 header->size += size;
4964 }
4965}
4966
4967static void perf_event_output(struct perf_event *event,
4968 struct perf_sample_data *data,
4969 struct pt_regs *regs)
4970{
4971 struct perf_output_handle handle;
4972 struct perf_event_header header;
4973
4974 /* protect the callchain buffers */
4975 rcu_read_lock();
4976
4977 perf_prepare_sample(&header, data, event, regs);
4978
4979 if (perf_output_begin(&handle, event, header.size))
4980 goto exit;
4981
4982 perf_output_sample(&handle, &header, data, event);
4983
4984 perf_output_end(&handle);
4985
4986exit:
4987 rcu_read_unlock();
4988}
4989
4990/*
4991 * read event_id
4992 */
4993
4994struct perf_read_event {
4995 struct perf_event_header header;
4996
4997 u32 pid;
4998 u32 tid;
4999};
5000
5001static void
5002perf_event_read_event(struct perf_event *event,
5003 struct task_struct *task)
5004{
5005 struct perf_output_handle handle;
5006 struct perf_sample_data sample;
5007 struct perf_read_event read_event = {
5008 .header = {
5009 .type = PERF_RECORD_READ,
5010 .misc = 0,
5011 .size = sizeof(read_event) + event->read_size,
5012 },
5013 .pid = perf_event_pid(event, task),
5014 .tid = perf_event_tid(event, task),
5015 };
5016 int ret;
5017
5018 perf_event_header__init_id(&read_event.header, &sample, event);
5019 ret = perf_output_begin(&handle, event, read_event.header.size);
5020 if (ret)
5021 return;
5022
5023 perf_output_put(&handle, read_event);
5024 perf_output_read(&handle, event);
5025 perf_event__output_id_sample(event, &handle, &sample);
5026
5027 perf_output_end(&handle);
5028}
5029
5030typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5031
5032static void
5033perf_event_aux_ctx(struct perf_event_context *ctx,
5034 perf_event_aux_output_cb output,
5035 void *data)
5036{
5037 struct perf_event *event;
5038
5039 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5040 if (event->state < PERF_EVENT_STATE_INACTIVE)
5041 continue;
5042 if (!event_filter_match(event))
5043 continue;
5044 output(event, data);
5045 }
5046}
5047
5048static void
5049perf_event_aux(perf_event_aux_output_cb output, void *data,
5050 struct perf_event_context *task_ctx)
5051{
5052 struct perf_cpu_context *cpuctx;
5053 struct perf_event_context *ctx;
5054 struct pmu *pmu;
5055 int ctxn;
5056
5057 rcu_read_lock();
5058 list_for_each_entry_rcu(pmu, &pmus, entry) {
5059 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5060 if (cpuctx->unique_pmu != pmu)
5061 goto next;
5062 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5063 if (task_ctx)
5064 goto next;
5065 ctxn = pmu->task_ctx_nr;
5066 if (ctxn < 0)
5067 goto next;
5068 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5069 if (ctx)
5070 perf_event_aux_ctx(ctx, output, data);
5071next:
5072 put_cpu_ptr(pmu->pmu_cpu_context);
5073 }
5074
5075 if (task_ctx) {
5076 preempt_disable();
5077 perf_event_aux_ctx(task_ctx, output, data);
5078 preempt_enable();
5079 }
5080 rcu_read_unlock();
5081}
5082
5083/*
5084 * task tracking -- fork/exit
5085 *
5086 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5087 */
5088
5089struct perf_task_event {
5090 struct task_struct *task;
5091 struct perf_event_context *task_ctx;
5092
5093 struct {
5094 struct perf_event_header header;
5095
5096 u32 pid;
5097 u32 ppid;
5098 u32 tid;
5099 u32 ptid;
5100 u64 time;
5101 } event_id;
5102};
5103
5104static int perf_event_task_match(struct perf_event *event)
5105{
5106 return event->attr.comm || event->attr.mmap ||
5107 event->attr.mmap2 || event->attr.mmap_data ||
5108 event->attr.task;
5109}
5110
5111static void perf_event_task_output(struct perf_event *event,
5112 void *data)
5113{
5114 struct perf_task_event *task_event = data;
5115 struct perf_output_handle handle;
5116 struct perf_sample_data sample;
5117 struct task_struct *task = task_event->task;
5118 int ret, size = task_event->event_id.header.size;
5119
5120 if (!perf_event_task_match(event))
5121 return;
5122
5123 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5124
5125 ret = perf_output_begin(&handle, event,
5126 task_event->event_id.header.size);
5127 if (ret)
5128 goto out;
5129
5130 task_event->event_id.pid = perf_event_pid(event, task);
5131 task_event->event_id.ppid = perf_event_pid(event, current);
5132
5133 task_event->event_id.tid = perf_event_tid(event, task);
5134 task_event->event_id.ptid = perf_event_tid(event, current);
5135
5136 perf_output_put(&handle, task_event->event_id);
5137
5138 perf_event__output_id_sample(event, &handle, &sample);
5139
5140 perf_output_end(&handle);
5141out:
5142 task_event->event_id.header.size = size;
5143}
5144
5145static void perf_event_task(struct task_struct *task,
5146 struct perf_event_context *task_ctx,
5147 int new)
5148{
5149 struct perf_task_event task_event;
5150
5151 if (!atomic_read(&nr_comm_events) &&
5152 !atomic_read(&nr_mmap_events) &&
5153 !atomic_read(&nr_task_events))
5154 return;
5155
5156 task_event = (struct perf_task_event){
5157 .task = task,
5158 .task_ctx = task_ctx,
5159 .event_id = {
5160 .header = {
5161 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5162 .misc = 0,
5163 .size = sizeof(task_event.event_id),
5164 },
5165 /* .pid */
5166 /* .ppid */
5167 /* .tid */
5168 /* .ptid */
5169 .time = perf_clock(),
5170 },
5171 };
5172
5173 perf_event_aux(perf_event_task_output,
5174 &task_event,
5175 task_ctx);
5176}
5177
5178void perf_event_fork(struct task_struct *task)
5179{
5180 perf_event_task(task, NULL, 1);
5181}
5182
5183/*
5184 * comm tracking
5185 */
5186
5187struct perf_comm_event {
5188 struct task_struct *task;
5189 char *comm;
5190 int comm_size;
5191
5192 struct {
5193 struct perf_event_header header;
5194
5195 u32 pid;
5196 u32 tid;
5197 } event_id;
5198};
5199
5200static int perf_event_comm_match(struct perf_event *event)
5201{
5202 return event->attr.comm;
5203}
5204
5205static void perf_event_comm_output(struct perf_event *event,
5206 void *data)
5207{
5208 struct perf_comm_event *comm_event = data;
5209 struct perf_output_handle handle;
5210 struct perf_sample_data sample;
5211 int size = comm_event->event_id.header.size;
5212 int ret;
5213
5214 if (!perf_event_comm_match(event))
5215 return;
5216
5217 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5218 ret = perf_output_begin(&handle, event,
5219 comm_event->event_id.header.size);
5220
5221 if (ret)
5222 goto out;
5223
5224 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5225 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5226
5227 perf_output_put(&handle, comm_event->event_id);
5228 __output_copy(&handle, comm_event->comm,
5229 comm_event->comm_size);
5230
5231 perf_event__output_id_sample(event, &handle, &sample);
5232
5233 perf_output_end(&handle);
5234out:
5235 comm_event->event_id.header.size = size;
5236}
5237
5238static void perf_event_comm_event(struct perf_comm_event *comm_event)
5239{
5240 char comm[TASK_COMM_LEN];
5241 unsigned int size;
5242
5243 memset(comm, 0, sizeof(comm));
5244 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5245 size = ALIGN(strlen(comm)+1, sizeof(u64));
5246
5247 comm_event->comm = comm;
5248 comm_event->comm_size = size;
5249
5250 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5251
5252 perf_event_aux(perf_event_comm_output,
5253 comm_event,
5254 NULL);
5255}
5256
5257void perf_event_comm(struct task_struct *task, bool exec)
5258{
5259 struct perf_comm_event comm_event;
5260
5261 if (!atomic_read(&nr_comm_events))
5262 return;
5263
5264 comm_event = (struct perf_comm_event){
5265 .task = task,
5266 /* .comm */
5267 /* .comm_size */
5268 .event_id = {
5269 .header = {
5270 .type = PERF_RECORD_COMM,
5271 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5272 /* .size */
5273 },
5274 /* .pid */
5275 /* .tid */
5276 },
5277 };
5278
5279 perf_event_comm_event(&comm_event);
5280}
5281
5282/*
5283 * mmap tracking
5284 */
5285
5286struct perf_mmap_event {
5287 struct vm_area_struct *vma;
5288
5289 const char *file_name;
5290 int file_size;
5291 int maj, min;
5292 u64 ino;
5293 u64 ino_generation;
5294 u32 prot, flags;
5295
5296 struct {
5297 struct perf_event_header header;
5298
5299 u32 pid;
5300 u32 tid;
5301 u64 start;
5302 u64 len;
5303 u64 pgoff;
5304 } event_id;
5305};
5306
5307static int perf_event_mmap_match(struct perf_event *event,
5308 void *data)
5309{
5310 struct perf_mmap_event *mmap_event = data;
5311 struct vm_area_struct *vma = mmap_event->vma;
5312 int executable = vma->vm_flags & VM_EXEC;
5313
5314 return (!executable && event->attr.mmap_data) ||
5315 (executable && (event->attr.mmap || event->attr.mmap2));
5316}
5317
5318static void perf_event_mmap_output(struct perf_event *event,
5319 void *data)
5320{
5321 struct perf_mmap_event *mmap_event = data;
5322 struct perf_output_handle handle;
5323 struct perf_sample_data sample;
5324 int size = mmap_event->event_id.header.size;
5325 int ret;
5326
5327 if (!perf_event_mmap_match(event, data))
5328 return;
5329
5330 if (event->attr.mmap2) {
5331 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5332 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5333 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5334 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5335 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5336 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5337 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5338 }
5339
5340 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5341 ret = perf_output_begin(&handle, event,
5342 mmap_event->event_id.header.size);
5343 if (ret)
5344 goto out;
5345
5346 mmap_event->event_id.pid = perf_event_pid(event, current);
5347 mmap_event->event_id.tid = perf_event_tid(event, current);
5348
5349 perf_output_put(&handle, mmap_event->event_id);
5350
5351 if (event->attr.mmap2) {
5352 perf_output_put(&handle, mmap_event->maj);
5353 perf_output_put(&handle, mmap_event->min);
5354 perf_output_put(&handle, mmap_event->ino);
5355 perf_output_put(&handle, mmap_event->ino_generation);
5356 perf_output_put(&handle, mmap_event->prot);
5357 perf_output_put(&handle, mmap_event->flags);
5358 }
5359
5360 __output_copy(&handle, mmap_event->file_name,
5361 mmap_event->file_size);
5362
5363 perf_event__output_id_sample(event, &handle, &sample);
5364
5365 perf_output_end(&handle);
5366out:
5367 mmap_event->event_id.header.size = size;
5368}
5369
5370static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5371{
5372 struct vm_area_struct *vma = mmap_event->vma;
5373 struct file *file = vma->vm_file;
5374 int maj = 0, min = 0;
5375 u64 ino = 0, gen = 0;
5376 u32 prot = 0, flags = 0;
5377 unsigned int size;
5378 char tmp[16];
5379 char *buf = NULL;
5380 char *name;
5381
5382 if (file) {
5383 struct inode *inode;
5384 dev_t dev;
5385
5386 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5387 if (!buf) {
5388 name = "//enomem";
5389 goto cpy_name;
5390 }
5391 /*
5392 * d_path() works from the end of the rb backwards, so we
5393 * need to add enough zero bytes after the string to handle
5394 * the 64bit alignment we do later.
5395 */
5396 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5397 if (IS_ERR(name)) {
5398 name = "//toolong";
5399 goto cpy_name;
5400 }
5401 inode = file_inode(vma->vm_file);
5402 dev = inode->i_sb->s_dev;
5403 ino = inode->i_ino;
5404 gen = inode->i_generation;
5405 maj = MAJOR(dev);
5406 min = MINOR(dev);
5407
5408 if (vma->vm_flags & VM_READ)
5409 prot |= PROT_READ;
5410 if (vma->vm_flags & VM_WRITE)
5411 prot |= PROT_WRITE;
5412 if (vma->vm_flags & VM_EXEC)
5413 prot |= PROT_EXEC;
5414
5415 if (vma->vm_flags & VM_MAYSHARE)
5416 flags = MAP_SHARED;
5417 else
5418 flags = MAP_PRIVATE;
5419
5420 if (vma->vm_flags & VM_DENYWRITE)
5421 flags |= MAP_DENYWRITE;
5422 if (vma->vm_flags & VM_MAYEXEC)
5423 flags |= MAP_EXECUTABLE;
5424 if (vma->vm_flags & VM_LOCKED)
5425 flags |= MAP_LOCKED;
5426 if (vma->vm_flags & VM_HUGETLB)
5427 flags |= MAP_HUGETLB;
5428
5429 goto got_name;
5430 } else {
5431 if (vma->vm_ops && vma->vm_ops->name) {
5432 name = (char *) vma->vm_ops->name(vma);
5433 if (name)
5434 goto cpy_name;
5435 }
5436
5437 name = (char *)arch_vma_name(vma);
5438 if (name)
5439 goto cpy_name;
5440
5441 if (vma->vm_start <= vma->vm_mm->start_brk &&
5442 vma->vm_end >= vma->vm_mm->brk) {
5443 name = "[heap]";
5444 goto cpy_name;
5445 }
5446 if (vma->vm_start <= vma->vm_mm->start_stack &&
5447 vma->vm_end >= vma->vm_mm->start_stack) {
5448 name = "[stack]";
5449 goto cpy_name;
5450 }
5451
5452 name = "//anon";
5453 goto cpy_name;
5454 }
5455
5456cpy_name:
5457 strlcpy(tmp, name, sizeof(tmp));
5458 name = tmp;
5459got_name:
5460 /*
5461 * Since our buffer works in 8 byte units we need to align our string
5462 * size to a multiple of 8. However, we must guarantee the tail end is
5463 * zero'd out to avoid leaking random bits to userspace.
5464 */
5465 size = strlen(name)+1;
5466 while (!IS_ALIGNED(size, sizeof(u64)))
5467 name[size++] = '\0';
5468
5469 mmap_event->file_name = name;
5470 mmap_event->file_size = size;
5471 mmap_event->maj = maj;
5472 mmap_event->min = min;
5473 mmap_event->ino = ino;
5474 mmap_event->ino_generation = gen;
5475 mmap_event->prot = prot;
5476 mmap_event->flags = flags;
5477
5478 if (!(vma->vm_flags & VM_EXEC))
5479 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5480
5481 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5482
5483 perf_event_aux(perf_event_mmap_output,
5484 mmap_event,
5485 NULL);
5486
5487 kfree(buf);
5488}
5489
5490void perf_event_mmap(struct vm_area_struct *vma)
5491{
5492 struct perf_mmap_event mmap_event;
5493
5494 if (!atomic_read(&nr_mmap_events))
5495 return;
5496
5497 mmap_event = (struct perf_mmap_event){
5498 .vma = vma,
5499 /* .file_name */
5500 /* .file_size */
5501 .event_id = {
5502 .header = {
5503 .type = PERF_RECORD_MMAP,
5504 .misc = PERF_RECORD_MISC_USER,
5505 /* .size */
5506 },
5507 /* .pid */
5508 /* .tid */
5509 .start = vma->vm_start,
5510 .len = vma->vm_end - vma->vm_start,
5511 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5512 },
5513 /* .maj (attr_mmap2 only) */
5514 /* .min (attr_mmap2 only) */
5515 /* .ino (attr_mmap2 only) */
5516 /* .ino_generation (attr_mmap2 only) */
5517 /* .prot (attr_mmap2 only) */
5518 /* .flags (attr_mmap2 only) */
5519 };
5520
5521 perf_event_mmap_event(&mmap_event);
5522}
5523
5524/*
5525 * IRQ throttle logging
5526 */
5527
5528static void perf_log_throttle(struct perf_event *event, int enable)
5529{
5530 struct perf_output_handle handle;
5531 struct perf_sample_data sample;
5532 int ret;
5533
5534 struct {
5535 struct perf_event_header header;
5536 u64 time;
5537 u64 id;
5538 u64 stream_id;
5539 } throttle_event = {
5540 .header = {
5541 .type = PERF_RECORD_THROTTLE,
5542 .misc = 0,
5543 .size = sizeof(throttle_event),
5544 },
5545 .time = perf_clock(),
5546 .id = primary_event_id(event),
5547 .stream_id = event->id,
5548 };
5549
5550 if (enable)
5551 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5552
5553 perf_event_header__init_id(&throttle_event.header, &sample, event);
5554
5555 ret = perf_output_begin(&handle, event,
5556 throttle_event.header.size);
5557 if (ret)
5558 return;
5559
5560 perf_output_put(&handle, throttle_event);
5561 perf_event__output_id_sample(event, &handle, &sample);
5562 perf_output_end(&handle);
5563}
5564
5565/*
5566 * Generic event overflow handling, sampling.
5567 */
5568
5569static int __perf_event_overflow(struct perf_event *event,
5570 int throttle, struct perf_sample_data *data,
5571 struct pt_regs *regs)
5572{
5573 int events = atomic_read(&event->event_limit);
5574 struct hw_perf_event *hwc = &event->hw;
5575 u64 seq;
5576 int ret = 0;
5577
5578 /*
5579 * Non-sampling counters might still use the PMI to fold short
5580 * hardware counters, ignore those.
5581 */
5582 if (unlikely(!is_sampling_event(event)))
5583 return 0;
5584
5585 seq = __this_cpu_read(perf_throttled_seq);
5586 if (seq != hwc->interrupts_seq) {
5587 hwc->interrupts_seq = seq;
5588 hwc->interrupts = 1;
5589 } else {
5590 hwc->interrupts++;
5591 if (unlikely(throttle
5592 && hwc->interrupts >= max_samples_per_tick)) {
5593 __this_cpu_inc(perf_throttled_count);
5594 hwc->interrupts = MAX_INTERRUPTS;
5595 perf_log_throttle(event, 0);
5596 tick_nohz_full_kick();
5597 ret = 1;
5598 }
5599 }
5600
5601 if (event->attr.freq) {
5602 u64 now = perf_clock();
5603 s64 delta = now - hwc->freq_time_stamp;
5604
5605 hwc->freq_time_stamp = now;
5606
5607 if (delta > 0 && delta < 2*TICK_NSEC)
5608 perf_adjust_period(event, delta, hwc->last_period, true);
5609 }
5610
5611 /*
5612 * XXX event_limit might not quite work as expected on inherited
5613 * events
5614 */
5615
5616 event->pending_kill = POLL_IN;
5617 if (events && atomic_dec_and_test(&event->event_limit)) {
5618 ret = 1;
5619 event->pending_kill = POLL_HUP;
5620 event->pending_disable = 1;
5621 irq_work_queue(&event->pending);
5622 }
5623
5624 if (event->overflow_handler)
5625 event->overflow_handler(event, data, regs);
5626 else
5627 perf_event_output(event, data, regs);
5628
5629 if (event->fasync && event->pending_kill) {
5630 event->pending_wakeup = 1;
5631 irq_work_queue(&event->pending);
5632 }
5633
5634 return ret;
5635}
5636
5637int perf_event_overflow(struct perf_event *event,
5638 struct perf_sample_data *data,
5639 struct pt_regs *regs)
5640{
5641 return __perf_event_overflow(event, 1, data, regs);
5642}
5643
5644/*
5645 * Generic software event infrastructure
5646 */
5647
5648struct swevent_htable {
5649 struct swevent_hlist *swevent_hlist;
5650 struct mutex hlist_mutex;
5651 int hlist_refcount;
5652
5653 /* Recursion avoidance in each contexts */
5654 int recursion[PERF_NR_CONTEXTS];
5655
5656 /* Keeps track of cpu being initialized/exited */
5657 bool online;
5658};
5659
5660static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5661
5662/*
5663 * We directly increment event->count and keep a second value in
5664 * event->hw.period_left to count intervals. This period event
5665 * is kept in the range [-sample_period, 0] so that we can use the
5666 * sign as trigger.
5667 */
5668
5669u64 perf_swevent_set_period(struct perf_event *event)
5670{
5671 struct hw_perf_event *hwc = &event->hw;
5672 u64 period = hwc->last_period;
5673 u64 nr, offset;
5674 s64 old, val;
5675
5676 hwc->last_period = hwc->sample_period;
5677
5678again:
5679 old = val = local64_read(&hwc->period_left);
5680 if (val < 0)
5681 return 0;
5682
5683 nr = div64_u64(period + val, period);
5684 offset = nr * period;
5685 val -= offset;
5686 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5687 goto again;
5688
5689 return nr;
5690}
5691
5692static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5693 struct perf_sample_data *data,
5694 struct pt_regs *regs)
5695{
5696 struct hw_perf_event *hwc = &event->hw;
5697 int throttle = 0;
5698
5699 if (!overflow)
5700 overflow = perf_swevent_set_period(event);
5701
5702 if (hwc->interrupts == MAX_INTERRUPTS)
5703 return;
5704
5705 for (; overflow; overflow--) {
5706 if (__perf_event_overflow(event, throttle,
5707 data, regs)) {
5708 /*
5709 * We inhibit the overflow from happening when
5710 * hwc->interrupts == MAX_INTERRUPTS.
5711 */
5712 break;
5713 }
5714 throttle = 1;
5715 }
5716}
5717
5718static void perf_swevent_event(struct perf_event *event, u64 nr,
5719 struct perf_sample_data *data,
5720 struct pt_regs *regs)
5721{
5722 struct hw_perf_event *hwc = &event->hw;
5723
5724 local64_add(nr, &event->count);
5725
5726 if (!regs)
5727 return;
5728
5729 if (!is_sampling_event(event))
5730 return;
5731
5732 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5733 data->period = nr;
5734 return perf_swevent_overflow(event, 1, data, regs);
5735 } else
5736 data->period = event->hw.last_period;
5737
5738 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5739 return perf_swevent_overflow(event, 1, data, regs);
5740
5741 if (local64_add_negative(nr, &hwc->period_left))
5742 return;
5743
5744 perf_swevent_overflow(event, 0, data, regs);
5745}
5746
5747static int perf_exclude_event(struct perf_event *event,
5748 struct pt_regs *regs)
5749{
5750 if (event->hw.state & PERF_HES_STOPPED)
5751 return 1;
5752
5753 if (regs) {
5754 if (event->attr.exclude_user && user_mode(regs))
5755 return 1;
5756
5757 if (event->attr.exclude_kernel && !user_mode(regs))
5758 return 1;
5759 }
5760
5761 return 0;
5762}
5763
5764static int perf_swevent_match(struct perf_event *event,
5765 enum perf_type_id type,
5766 u32 event_id,
5767 struct perf_sample_data *data,
5768 struct pt_regs *regs)
5769{
5770 if (event->attr.type != type)
5771 return 0;
5772
5773 if (event->attr.config != event_id)
5774 return 0;
5775
5776 if (perf_exclude_event(event, regs))
5777 return 0;
5778
5779 return 1;
5780}
5781
5782static inline u64 swevent_hash(u64 type, u32 event_id)
5783{
5784 u64 val = event_id | (type << 32);
5785
5786 return hash_64(val, SWEVENT_HLIST_BITS);
5787}
5788
5789static inline struct hlist_head *
5790__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5791{
5792 u64 hash = swevent_hash(type, event_id);
5793
5794 return &hlist->heads[hash];
5795}
5796
5797/* For the read side: events when they trigger */
5798static inline struct hlist_head *
5799find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5800{
5801 struct swevent_hlist *hlist;
5802
5803 hlist = rcu_dereference(swhash->swevent_hlist);
5804 if (!hlist)
5805 return NULL;
5806
5807 return __find_swevent_head(hlist, type, event_id);
5808}
5809
5810/* For the event head insertion and removal in the hlist */
5811static inline struct hlist_head *
5812find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5813{
5814 struct swevent_hlist *hlist;
5815 u32 event_id = event->attr.config;
5816 u64 type = event->attr.type;
5817
5818 /*
5819 * Event scheduling is always serialized against hlist allocation
5820 * and release. Which makes the protected version suitable here.
5821 * The context lock guarantees that.
5822 */
5823 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5824 lockdep_is_held(&event->ctx->lock));
5825 if (!hlist)
5826 return NULL;
5827
5828 return __find_swevent_head(hlist, type, event_id);
5829}
5830
5831static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5832 u64 nr,
5833 struct perf_sample_data *data,
5834 struct pt_regs *regs)
5835{
5836 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5837 struct perf_event *event;
5838 struct hlist_head *head;
5839
5840 rcu_read_lock();
5841 head = find_swevent_head_rcu(swhash, type, event_id);
5842 if (!head)
5843 goto end;
5844
5845 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5846 if (perf_swevent_match(event, type, event_id, data, regs))
5847 perf_swevent_event(event, nr, data, regs);
5848 }
5849end:
5850 rcu_read_unlock();
5851}
5852
5853int perf_swevent_get_recursion_context(void)
5854{
5855 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5856
5857 return get_recursion_context(swhash->recursion);
5858}
5859EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5860
5861inline void perf_swevent_put_recursion_context(int rctx)
5862{
5863 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5864
5865 put_recursion_context(swhash->recursion, rctx);
5866}
5867
5868void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5869{
5870 struct perf_sample_data data;
5871 int rctx;
5872
5873 preempt_disable_notrace();
5874 rctx = perf_swevent_get_recursion_context();
5875 if (rctx < 0)
5876 return;
5877
5878 perf_sample_data_init(&data, addr, 0);
5879
5880 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5881
5882 perf_swevent_put_recursion_context(rctx);
5883 preempt_enable_notrace();
5884}
5885
5886static void perf_swevent_read(struct perf_event *event)
5887{
5888}
5889
5890static int perf_swevent_add(struct perf_event *event, int flags)
5891{
5892 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5893 struct hw_perf_event *hwc = &event->hw;
5894 struct hlist_head *head;
5895
5896 if (is_sampling_event(event)) {
5897 hwc->last_period = hwc->sample_period;
5898 perf_swevent_set_period(event);
5899 }
5900
5901 hwc->state = !(flags & PERF_EF_START);
5902
5903 head = find_swevent_head(swhash, event);
5904 if (!head) {
5905 /*
5906 * We can race with cpu hotplug code. Do not
5907 * WARN if the cpu just got unplugged.
5908 */
5909 WARN_ON_ONCE(swhash->online);
5910 return -EINVAL;
5911 }
5912
5913 hlist_add_head_rcu(&event->hlist_entry, head);
5914
5915 return 0;
5916}
5917
5918static void perf_swevent_del(struct perf_event *event, int flags)
5919{
5920 hlist_del_rcu(&event->hlist_entry);
5921}
5922
5923static void perf_swevent_start(struct perf_event *event, int flags)
5924{
5925 event->hw.state = 0;
5926}
5927
5928static void perf_swevent_stop(struct perf_event *event, int flags)
5929{
5930 event->hw.state = PERF_HES_STOPPED;
5931}
5932
5933/* Deref the hlist from the update side */
5934static inline struct swevent_hlist *
5935swevent_hlist_deref(struct swevent_htable *swhash)
5936{
5937 return rcu_dereference_protected(swhash->swevent_hlist,
5938 lockdep_is_held(&swhash->hlist_mutex));
5939}
5940
5941static void swevent_hlist_release(struct swevent_htable *swhash)
5942{
5943 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5944
5945 if (!hlist)
5946 return;
5947
5948 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5949 kfree_rcu(hlist, rcu_head);
5950}
5951
5952static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5953{
5954 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5955
5956 mutex_lock(&swhash->hlist_mutex);
5957
5958 if (!--swhash->hlist_refcount)
5959 swevent_hlist_release(swhash);
5960
5961 mutex_unlock(&swhash->hlist_mutex);
5962}
5963
5964static void swevent_hlist_put(struct perf_event *event)
5965{
5966 int cpu;
5967
5968 for_each_possible_cpu(cpu)
5969 swevent_hlist_put_cpu(event, cpu);
5970}
5971
5972static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5973{
5974 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5975 int err = 0;
5976
5977 mutex_lock(&swhash->hlist_mutex);
5978
5979 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5980 struct swevent_hlist *hlist;
5981
5982 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5983 if (!hlist) {
5984 err = -ENOMEM;
5985 goto exit;
5986 }
5987 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5988 }
5989 swhash->hlist_refcount++;
5990exit:
5991 mutex_unlock(&swhash->hlist_mutex);
5992
5993 return err;
5994}
5995
5996static int swevent_hlist_get(struct perf_event *event)
5997{
5998 int err;
5999 int cpu, failed_cpu;
6000
6001 get_online_cpus();
6002 for_each_possible_cpu(cpu) {
6003 err = swevent_hlist_get_cpu(event, cpu);
6004 if (err) {
6005 failed_cpu = cpu;
6006 goto fail;
6007 }
6008 }
6009 put_online_cpus();
6010
6011 return 0;
6012fail:
6013 for_each_possible_cpu(cpu) {
6014 if (cpu == failed_cpu)
6015 break;
6016 swevent_hlist_put_cpu(event, cpu);
6017 }
6018
6019 put_online_cpus();
6020 return err;
6021}
6022
6023struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6024
6025static void sw_perf_event_destroy(struct perf_event *event)
6026{
6027 u64 event_id = event->attr.config;
6028
6029 WARN_ON(event->parent);
6030
6031 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6032 swevent_hlist_put(event);
6033}
6034
6035static int perf_swevent_init(struct perf_event *event)
6036{
6037 u64 event_id = event->attr.config;
6038
6039 if (event->attr.type != PERF_TYPE_SOFTWARE)
6040 return -ENOENT;
6041
6042 /*
6043 * no branch sampling for software events
6044 */
6045 if (has_branch_stack(event))
6046 return -EOPNOTSUPP;
6047
6048 switch (event_id) {
6049 case PERF_COUNT_SW_CPU_CLOCK:
6050 case PERF_COUNT_SW_TASK_CLOCK:
6051 return -ENOENT;
6052
6053 default:
6054 break;
6055 }
6056
6057 if (event_id >= PERF_COUNT_SW_MAX)
6058 return -ENOENT;
6059
6060 if (!event->parent) {
6061 int err;
6062
6063 err = swevent_hlist_get(event);
6064 if (err)
6065 return err;
6066
6067 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6068 event->destroy = sw_perf_event_destroy;
6069 }
6070
6071 return 0;
6072}
6073
6074static int perf_swevent_event_idx(struct perf_event *event)
6075{
6076 return 0;
6077}
6078
6079static struct pmu perf_swevent = {
6080 .task_ctx_nr = perf_sw_context,
6081
6082 .event_init = perf_swevent_init,
6083 .add = perf_swevent_add,
6084 .del = perf_swevent_del,
6085 .start = perf_swevent_start,
6086 .stop = perf_swevent_stop,
6087 .read = perf_swevent_read,
6088
6089 .event_idx = perf_swevent_event_idx,
6090};
6091
6092#ifdef CONFIG_EVENT_TRACING
6093
6094static int perf_tp_filter_match(struct perf_event *event,
6095 struct perf_sample_data *data)
6096{
6097 void *record = data->raw->data;
6098
6099 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6100 return 1;
6101 return 0;
6102}
6103
6104static int perf_tp_event_match(struct perf_event *event,
6105 struct perf_sample_data *data,
6106 struct pt_regs *regs)
6107{
6108 if (event->hw.state & PERF_HES_STOPPED)
6109 return 0;
6110 /*
6111 * All tracepoints are from kernel-space.
6112 */
6113 if (event->attr.exclude_kernel)
6114 return 0;
6115
6116 if (!perf_tp_filter_match(event, data))
6117 return 0;
6118
6119 return 1;
6120}
6121
6122void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6123 struct pt_regs *regs, struct hlist_head *head, int rctx,
6124 struct task_struct *task)
6125{
6126 struct perf_sample_data data;
6127 struct perf_event *event;
6128
6129 struct perf_raw_record raw = {
6130 .size = entry_size,
6131 .data = record,
6132 };
6133
6134 perf_sample_data_init(&data, addr, 0);
6135 data.raw = &raw;
6136
6137 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6138 if (perf_tp_event_match(event, &data, regs))
6139 perf_swevent_event(event, count, &data, regs);
6140 }
6141
6142 /*
6143 * If we got specified a target task, also iterate its context and
6144 * deliver this event there too.
6145 */
6146 if (task && task != current) {
6147 struct perf_event_context *ctx;
6148 struct trace_entry *entry = record;
6149
6150 rcu_read_lock();
6151 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6152 if (!ctx)
6153 goto unlock;
6154
6155 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6156 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6157 continue;
6158 if (event->attr.config != entry->type)
6159 continue;
6160 if (perf_tp_event_match(event, &data, regs))
6161 perf_swevent_event(event, count, &data, regs);
6162 }
6163unlock:
6164 rcu_read_unlock();
6165 }
6166
6167 perf_swevent_put_recursion_context(rctx);
6168}
6169EXPORT_SYMBOL_GPL(perf_tp_event);
6170
6171static void tp_perf_event_destroy(struct perf_event *event)
6172{
6173 perf_trace_destroy(event);
6174}
6175
6176static int perf_tp_event_init(struct perf_event *event)
6177{
6178 int err;
6179
6180 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6181 return -ENOENT;
6182
6183 /*
6184 * no branch sampling for tracepoint events
6185 */
6186 if (has_branch_stack(event))
6187 return -EOPNOTSUPP;
6188
6189 err = perf_trace_init(event);
6190 if (err)
6191 return err;
6192
6193 event->destroy = tp_perf_event_destroy;
6194
6195 return 0;
6196}
6197
6198static struct pmu perf_tracepoint = {
6199 .task_ctx_nr = perf_sw_context,
6200
6201 .event_init = perf_tp_event_init,
6202 .add = perf_trace_add,
6203 .del = perf_trace_del,
6204 .start = perf_swevent_start,
6205 .stop = perf_swevent_stop,
6206 .read = perf_swevent_read,
6207
6208 .event_idx = perf_swevent_event_idx,
6209};
6210
6211static inline void perf_tp_register(void)
6212{
6213 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6214}
6215
6216static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6217{
6218 char *filter_str;
6219 int ret;
6220
6221 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6222 return -EINVAL;
6223
6224 filter_str = strndup_user(arg, PAGE_SIZE);
6225 if (IS_ERR(filter_str))
6226 return PTR_ERR(filter_str);
6227
6228 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6229
6230 kfree(filter_str);
6231 return ret;
6232}
6233
6234static void perf_event_free_filter(struct perf_event *event)
6235{
6236 ftrace_profile_free_filter(event);
6237}
6238
6239#else
6240
6241static inline void perf_tp_register(void)
6242{
6243}
6244
6245static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6246{
6247 return -ENOENT;
6248}
6249
6250static void perf_event_free_filter(struct perf_event *event)
6251{
6252}
6253
6254#endif /* CONFIG_EVENT_TRACING */
6255
6256#ifdef CONFIG_HAVE_HW_BREAKPOINT
6257void perf_bp_event(struct perf_event *bp, void *data)
6258{
6259 struct perf_sample_data sample;
6260 struct pt_regs *regs = data;
6261
6262 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6263
6264 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6265 perf_swevent_event(bp, 1, &sample, regs);
6266}
6267#endif
6268
6269/*
6270 * hrtimer based swevent callback
6271 */
6272
6273static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6274{
6275 enum hrtimer_restart ret = HRTIMER_RESTART;
6276 struct perf_sample_data data;
6277 struct pt_regs *regs;
6278 struct perf_event *event;
6279 u64 period;
6280
6281 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6282
6283 if (event->state != PERF_EVENT_STATE_ACTIVE)
6284 return HRTIMER_NORESTART;
6285
6286 event->pmu->read(event);
6287
6288 perf_sample_data_init(&data, 0, event->hw.last_period);
6289 regs = get_irq_regs();
6290
6291 if (regs && !perf_exclude_event(event, regs)) {
6292 if (!(event->attr.exclude_idle && is_idle_task(current)))
6293 if (__perf_event_overflow(event, 1, &data, regs))
6294 ret = HRTIMER_NORESTART;
6295 }
6296
6297 period = max_t(u64, 10000, event->hw.sample_period);
6298 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6299
6300 return ret;
6301}
6302
6303static void perf_swevent_start_hrtimer(struct perf_event *event)
6304{
6305 struct hw_perf_event *hwc = &event->hw;
6306 s64 period;
6307
6308 if (!is_sampling_event(event))
6309 return;
6310
6311 period = local64_read(&hwc->period_left);
6312 if (period) {
6313 if (period < 0)
6314 period = 10000;
6315
6316 local64_set(&hwc->period_left, 0);
6317 } else {
6318 period = max_t(u64, 10000, hwc->sample_period);
6319 }
6320 __hrtimer_start_range_ns(&hwc->hrtimer,
6321 ns_to_ktime(period), 0,
6322 HRTIMER_MODE_REL_PINNED, 0);
6323}
6324
6325static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6326{
6327 struct hw_perf_event *hwc = &event->hw;
6328
6329 if (is_sampling_event(event)) {
6330 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6331 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6332
6333 hrtimer_cancel(&hwc->hrtimer);
6334 }
6335}
6336
6337static void perf_swevent_init_hrtimer(struct perf_event *event)
6338{
6339 struct hw_perf_event *hwc = &event->hw;
6340
6341 if (!is_sampling_event(event))
6342 return;
6343
6344 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6345 hwc->hrtimer.function = perf_swevent_hrtimer;
6346
6347 /*
6348 * Since hrtimers have a fixed rate, we can do a static freq->period
6349 * mapping and avoid the whole period adjust feedback stuff.
6350 */
6351 if (event->attr.freq) {
6352 long freq = event->attr.sample_freq;
6353
6354 event->attr.sample_period = NSEC_PER_SEC / freq;
6355 hwc->sample_period = event->attr.sample_period;
6356 local64_set(&hwc->period_left, hwc->sample_period);
6357 hwc->last_period = hwc->sample_period;
6358 event->attr.freq = 0;
6359 }
6360}
6361
6362/*
6363 * Software event: cpu wall time clock
6364 */
6365
6366static void cpu_clock_event_update(struct perf_event *event)
6367{
6368 s64 prev;
6369 u64 now;
6370
6371 now = local_clock();
6372 prev = local64_xchg(&event->hw.prev_count, now);
6373 local64_add(now - prev, &event->count);
6374}
6375
6376static void cpu_clock_event_start(struct perf_event *event, int flags)
6377{
6378 local64_set(&event->hw.prev_count, local_clock());
6379 perf_swevent_start_hrtimer(event);
6380}
6381
6382static void cpu_clock_event_stop(struct perf_event *event, int flags)
6383{
6384 perf_swevent_cancel_hrtimer(event);
6385 cpu_clock_event_update(event);
6386}
6387
6388static int cpu_clock_event_add(struct perf_event *event, int flags)
6389{
6390 if (flags & PERF_EF_START)
6391 cpu_clock_event_start(event, flags);
6392
6393 return 0;
6394}
6395
6396static void cpu_clock_event_del(struct perf_event *event, int flags)
6397{
6398 cpu_clock_event_stop(event, flags);
6399}
6400
6401static void cpu_clock_event_read(struct perf_event *event)
6402{
6403 cpu_clock_event_update(event);
6404}
6405
6406static int cpu_clock_event_init(struct perf_event *event)
6407{
6408 if (event->attr.type != PERF_TYPE_SOFTWARE)
6409 return -ENOENT;
6410
6411 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6412 return -ENOENT;
6413
6414 /*
6415 * no branch sampling for software events
6416 */
6417 if (has_branch_stack(event))
6418 return -EOPNOTSUPP;
6419
6420 perf_swevent_init_hrtimer(event);
6421
6422 return 0;
6423}
6424
6425static struct pmu perf_cpu_clock = {
6426 .task_ctx_nr = perf_sw_context,
6427
6428 .event_init = cpu_clock_event_init,
6429 .add = cpu_clock_event_add,
6430 .del = cpu_clock_event_del,
6431 .start = cpu_clock_event_start,
6432 .stop = cpu_clock_event_stop,
6433 .read = cpu_clock_event_read,
6434
6435 .event_idx = perf_swevent_event_idx,
6436};
6437
6438/*
6439 * Software event: task time clock
6440 */
6441
6442static void task_clock_event_update(struct perf_event *event, u64 now)
6443{
6444 u64 prev;
6445 s64 delta;
6446
6447 prev = local64_xchg(&event->hw.prev_count, now);
6448 delta = now - prev;
6449 local64_add(delta, &event->count);
6450}
6451
6452static void task_clock_event_start(struct perf_event *event, int flags)
6453{
6454 local64_set(&event->hw.prev_count, event->ctx->time);
6455 perf_swevent_start_hrtimer(event);
6456}
6457
6458static void task_clock_event_stop(struct perf_event *event, int flags)
6459{
6460 perf_swevent_cancel_hrtimer(event);
6461 task_clock_event_update(event, event->ctx->time);
6462}
6463
6464static int task_clock_event_add(struct perf_event *event, int flags)
6465{
6466 if (flags & PERF_EF_START)
6467 task_clock_event_start(event, flags);
6468
6469 return 0;
6470}
6471
6472static void task_clock_event_del(struct perf_event *event, int flags)
6473{
6474 task_clock_event_stop(event, PERF_EF_UPDATE);
6475}
6476
6477static void task_clock_event_read(struct perf_event *event)
6478{
6479 u64 now = perf_clock();
6480 u64 delta = now - event->ctx->timestamp;
6481 u64 time = event->ctx->time + delta;
6482
6483 task_clock_event_update(event, time);
6484}
6485
6486static int task_clock_event_init(struct perf_event *event)
6487{
6488 if (event->attr.type != PERF_TYPE_SOFTWARE)
6489 return -ENOENT;
6490
6491 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6492 return -ENOENT;
6493
6494 /*
6495 * no branch sampling for software events
6496 */
6497 if (has_branch_stack(event))
6498 return -EOPNOTSUPP;
6499
6500 perf_swevent_init_hrtimer(event);
6501
6502 return 0;
6503}
6504
6505static struct pmu perf_task_clock = {
6506 .task_ctx_nr = perf_sw_context,
6507
6508 .event_init = task_clock_event_init,
6509 .add = task_clock_event_add,
6510 .del = task_clock_event_del,
6511 .start = task_clock_event_start,
6512 .stop = task_clock_event_stop,
6513 .read = task_clock_event_read,
6514
6515 .event_idx = perf_swevent_event_idx,
6516};
6517
6518static void perf_pmu_nop_void(struct pmu *pmu)
6519{
6520}
6521
6522static int perf_pmu_nop_int(struct pmu *pmu)
6523{
6524 return 0;
6525}
6526
6527static void perf_pmu_start_txn(struct pmu *pmu)
6528{
6529 perf_pmu_disable(pmu);
6530}
6531
6532static int perf_pmu_commit_txn(struct pmu *pmu)
6533{
6534 perf_pmu_enable(pmu);
6535 return 0;
6536}
6537
6538static void perf_pmu_cancel_txn(struct pmu *pmu)
6539{
6540 perf_pmu_enable(pmu);
6541}
6542
6543static int perf_event_idx_default(struct perf_event *event)
6544{
6545 return event->hw.idx + 1;
6546}
6547
6548/*
6549 * Ensures all contexts with the same task_ctx_nr have the same
6550 * pmu_cpu_context too.
6551 */
6552static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6553{
6554 struct pmu *pmu;
6555
6556 if (ctxn < 0)
6557 return NULL;
6558
6559 list_for_each_entry(pmu, &pmus, entry) {
6560 if (pmu->task_ctx_nr == ctxn)
6561 return pmu->pmu_cpu_context;
6562 }
6563
6564 return NULL;
6565}
6566
6567static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6568{
6569 int cpu;
6570
6571 for_each_possible_cpu(cpu) {
6572 struct perf_cpu_context *cpuctx;
6573
6574 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6575
6576 if (cpuctx->unique_pmu == old_pmu)
6577 cpuctx->unique_pmu = pmu;
6578 }
6579}
6580
6581static void free_pmu_context(struct pmu *pmu)
6582{
6583 struct pmu *i;
6584
6585 mutex_lock(&pmus_lock);
6586 /*
6587 * Like a real lame refcount.
6588 */
6589 list_for_each_entry(i, &pmus, entry) {
6590 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6591 update_pmu_context(i, pmu);
6592 goto out;
6593 }
6594 }
6595
6596 free_percpu(pmu->pmu_cpu_context);
6597out:
6598 mutex_unlock(&pmus_lock);
6599}
6600static struct idr pmu_idr;
6601
6602static ssize_t
6603type_show(struct device *dev, struct device_attribute *attr, char *page)
6604{
6605 struct pmu *pmu = dev_get_drvdata(dev);
6606
6607 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6608}
6609static DEVICE_ATTR_RO(type);
6610
6611static ssize_t
6612perf_event_mux_interval_ms_show(struct device *dev,
6613 struct device_attribute *attr,
6614 char *page)
6615{
6616 struct pmu *pmu = dev_get_drvdata(dev);
6617
6618 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6619}
6620
6621static ssize_t
6622perf_event_mux_interval_ms_store(struct device *dev,
6623 struct device_attribute *attr,
6624 const char *buf, size_t count)
6625{
6626 struct pmu *pmu = dev_get_drvdata(dev);
6627 int timer, cpu, ret;
6628
6629 ret = kstrtoint(buf, 0, &timer);
6630 if (ret)
6631 return ret;
6632
6633 if (timer < 1)
6634 return -EINVAL;
6635
6636 /* same value, noting to do */
6637 if (timer == pmu->hrtimer_interval_ms)
6638 return count;
6639
6640 pmu->hrtimer_interval_ms = timer;
6641
6642 /* update all cpuctx for this PMU */
6643 for_each_possible_cpu(cpu) {
6644 struct perf_cpu_context *cpuctx;
6645 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6646 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6647
6648 if (hrtimer_active(&cpuctx->hrtimer))
6649 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6650 }
6651
6652 return count;
6653}
6654static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6655
6656static struct attribute *pmu_dev_attrs[] = {
6657 &dev_attr_type.attr,
6658 &dev_attr_perf_event_mux_interval_ms.attr,
6659 NULL,
6660};
6661ATTRIBUTE_GROUPS(pmu_dev);
6662
6663static int pmu_bus_running;
6664static struct bus_type pmu_bus = {
6665 .name = "event_source",
6666 .dev_groups = pmu_dev_groups,
6667};
6668
6669static void pmu_dev_release(struct device *dev)
6670{
6671 kfree(dev);
6672}
6673
6674static int pmu_dev_alloc(struct pmu *pmu)
6675{
6676 int ret = -ENOMEM;
6677
6678 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6679 if (!pmu->dev)
6680 goto out;
6681
6682 pmu->dev->groups = pmu->attr_groups;
6683 device_initialize(pmu->dev);
6684 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6685 if (ret)
6686 goto free_dev;
6687
6688 dev_set_drvdata(pmu->dev, pmu);
6689 pmu->dev->bus = &pmu_bus;
6690 pmu->dev->release = pmu_dev_release;
6691 ret = device_add(pmu->dev);
6692 if (ret)
6693 goto free_dev;
6694
6695out:
6696 return ret;
6697
6698free_dev:
6699 put_device(pmu->dev);
6700 goto out;
6701}
6702
6703static struct lock_class_key cpuctx_mutex;
6704static struct lock_class_key cpuctx_lock;
6705
6706int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6707{
6708 int cpu, ret;
6709
6710 mutex_lock(&pmus_lock);
6711 ret = -ENOMEM;
6712 pmu->pmu_disable_count = alloc_percpu(int);
6713 if (!pmu->pmu_disable_count)
6714 goto unlock;
6715
6716 pmu->type = -1;
6717 if (!name)
6718 goto skip_type;
6719 pmu->name = name;
6720
6721 if (type < 0) {
6722 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6723 if (type < 0) {
6724 ret = type;
6725 goto free_pdc;
6726 }
6727 }
6728 pmu->type = type;
6729
6730 if (pmu_bus_running) {
6731 ret = pmu_dev_alloc(pmu);
6732 if (ret)
6733 goto free_idr;
6734 }
6735
6736skip_type:
6737 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6738 if (pmu->pmu_cpu_context)
6739 goto got_cpu_context;
6740
6741 ret = -ENOMEM;
6742 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6743 if (!pmu->pmu_cpu_context)
6744 goto free_dev;
6745
6746 for_each_possible_cpu(cpu) {
6747 struct perf_cpu_context *cpuctx;
6748
6749 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6750 __perf_event_init_context(&cpuctx->ctx);
6751 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6752 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6753 cpuctx->ctx.type = cpu_context;
6754 cpuctx->ctx.pmu = pmu;
6755
6756 __perf_cpu_hrtimer_init(cpuctx, cpu);
6757
6758 INIT_LIST_HEAD(&cpuctx->rotation_list);
6759 cpuctx->unique_pmu = pmu;
6760 }
6761
6762got_cpu_context:
6763 if (!pmu->start_txn) {
6764 if (pmu->pmu_enable) {
6765 /*
6766 * If we have pmu_enable/pmu_disable calls, install
6767 * transaction stubs that use that to try and batch
6768 * hardware accesses.
6769 */
6770 pmu->start_txn = perf_pmu_start_txn;
6771 pmu->commit_txn = perf_pmu_commit_txn;
6772 pmu->cancel_txn = perf_pmu_cancel_txn;
6773 } else {
6774 pmu->start_txn = perf_pmu_nop_void;
6775 pmu->commit_txn = perf_pmu_nop_int;
6776 pmu->cancel_txn = perf_pmu_nop_void;
6777 }
6778 }
6779
6780 if (!pmu->pmu_enable) {
6781 pmu->pmu_enable = perf_pmu_nop_void;
6782 pmu->pmu_disable = perf_pmu_nop_void;
6783 }
6784
6785 if (!pmu->event_idx)
6786 pmu->event_idx = perf_event_idx_default;
6787
6788 list_add_rcu(&pmu->entry, &pmus);
6789 ret = 0;
6790unlock:
6791 mutex_unlock(&pmus_lock);
6792
6793 return ret;
6794
6795free_dev:
6796 device_del(pmu->dev);
6797 put_device(pmu->dev);
6798
6799free_idr:
6800 if (pmu->type >= PERF_TYPE_MAX)
6801 idr_remove(&pmu_idr, pmu->type);
6802
6803free_pdc:
6804 free_percpu(pmu->pmu_disable_count);
6805 goto unlock;
6806}
6807EXPORT_SYMBOL_GPL(perf_pmu_register);
6808
6809void perf_pmu_unregister(struct pmu *pmu)
6810{
6811 mutex_lock(&pmus_lock);
6812 list_del_rcu(&pmu->entry);
6813 mutex_unlock(&pmus_lock);
6814
6815 /*
6816 * We dereference the pmu list under both SRCU and regular RCU, so
6817 * synchronize against both of those.
6818 */
6819 synchronize_srcu(&pmus_srcu);
6820 synchronize_rcu();
6821
6822 free_percpu(pmu->pmu_disable_count);
6823 if (pmu->type >= PERF_TYPE_MAX)
6824 idr_remove(&pmu_idr, pmu->type);
6825 device_del(pmu->dev);
6826 put_device(pmu->dev);
6827 free_pmu_context(pmu);
6828}
6829EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6830
6831struct pmu *perf_init_event(struct perf_event *event)
6832{
6833 struct pmu *pmu = NULL;
6834 int idx;
6835 int ret;
6836
6837 idx = srcu_read_lock(&pmus_srcu);
6838
6839 rcu_read_lock();
6840 pmu = idr_find(&pmu_idr, event->attr.type);
6841 rcu_read_unlock();
6842 if (pmu) {
6843 if (!try_module_get(pmu->module)) {
6844 pmu = ERR_PTR(-ENODEV);
6845 goto unlock;
6846 }
6847 event->pmu = pmu;
6848 ret = pmu->event_init(event);
6849 if (ret)
6850 pmu = ERR_PTR(ret);
6851 goto unlock;
6852 }
6853
6854 list_for_each_entry_rcu(pmu, &pmus, entry) {
6855 if (!try_module_get(pmu->module)) {
6856 pmu = ERR_PTR(-ENODEV);
6857 goto unlock;
6858 }
6859 event->pmu = pmu;
6860 ret = pmu->event_init(event);
6861 if (!ret)
6862 goto unlock;
6863
6864 if (ret != -ENOENT) {
6865 pmu = ERR_PTR(ret);
6866 goto unlock;
6867 }
6868 }
6869 pmu = ERR_PTR(-ENOENT);
6870unlock:
6871 srcu_read_unlock(&pmus_srcu, idx);
6872
6873 return pmu;
6874}
6875
6876static void account_event_cpu(struct perf_event *event, int cpu)
6877{
6878 if (event->parent)
6879 return;
6880
6881 if (has_branch_stack(event)) {
6882 if (!(event->attach_state & PERF_ATTACH_TASK))
6883 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6884 }
6885 if (is_cgroup_event(event))
6886 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6887}
6888
6889static void account_event(struct perf_event *event)
6890{
6891 if (event->parent)
6892 return;
6893
6894 if (event->attach_state & PERF_ATTACH_TASK)
6895 static_key_slow_inc(&perf_sched_events.key);
6896 if (event->attr.mmap || event->attr.mmap_data)
6897 atomic_inc(&nr_mmap_events);
6898 if (event->attr.comm)
6899 atomic_inc(&nr_comm_events);
6900 if (event->attr.task)
6901 atomic_inc(&nr_task_events);
6902 if (event->attr.freq) {
6903 if (atomic_inc_return(&nr_freq_events) == 1)
6904 tick_nohz_full_kick_all();
6905 }
6906 if (has_branch_stack(event))
6907 static_key_slow_inc(&perf_sched_events.key);
6908 if (is_cgroup_event(event))
6909 static_key_slow_inc(&perf_sched_events.key);
6910
6911 account_event_cpu(event, event->cpu);
6912}
6913
6914/*
6915 * Allocate and initialize a event structure
6916 */
6917static struct perf_event *
6918perf_event_alloc(struct perf_event_attr *attr, int cpu,
6919 struct task_struct *task,
6920 struct perf_event *group_leader,
6921 struct perf_event *parent_event,
6922 perf_overflow_handler_t overflow_handler,
6923 void *context)
6924{
6925 struct pmu *pmu;
6926 struct perf_event *event;
6927 struct hw_perf_event *hwc;
6928 long err = -EINVAL;
6929
6930 if ((unsigned)cpu >= nr_cpu_ids) {
6931 if (!task || cpu != -1)
6932 return ERR_PTR(-EINVAL);
6933 }
6934
6935 event = kzalloc(sizeof(*event), GFP_KERNEL);
6936 if (!event)
6937 return ERR_PTR(-ENOMEM);
6938
6939 /*
6940 * Single events are their own group leaders, with an
6941 * empty sibling list:
6942 */
6943 if (!group_leader)
6944 group_leader = event;
6945
6946 mutex_init(&event->child_mutex);
6947 INIT_LIST_HEAD(&event->child_list);
6948
6949 INIT_LIST_HEAD(&event->group_entry);
6950 INIT_LIST_HEAD(&event->event_entry);
6951 INIT_LIST_HEAD(&event->sibling_list);
6952 INIT_LIST_HEAD(&event->rb_entry);
6953 INIT_LIST_HEAD(&event->active_entry);
6954 INIT_HLIST_NODE(&event->hlist_entry);
6955
6956
6957 init_waitqueue_head(&event->waitq);
6958 init_irq_work(&event->pending, perf_pending_event);
6959
6960 mutex_init(&event->mmap_mutex);
6961
6962 atomic_long_set(&event->refcount, 1);
6963 event->cpu = cpu;
6964 event->attr = *attr;
6965 event->group_leader = group_leader;
6966 event->pmu = NULL;
6967 event->oncpu = -1;
6968
6969 event->parent = parent_event;
6970
6971 event->ns = get_pid_ns(task_active_pid_ns(current));
6972 event->id = atomic64_inc_return(&perf_event_id);
6973
6974 event->state = PERF_EVENT_STATE_INACTIVE;
6975
6976 if (task) {
6977 event->attach_state = PERF_ATTACH_TASK;
6978
6979 if (attr->type == PERF_TYPE_TRACEPOINT)
6980 event->hw.tp_target = task;
6981#ifdef CONFIG_HAVE_HW_BREAKPOINT
6982 /*
6983 * hw_breakpoint is a bit difficult here..
6984 */
6985 else if (attr->type == PERF_TYPE_BREAKPOINT)
6986 event->hw.bp_target = task;
6987#endif
6988 }
6989
6990 if (!overflow_handler && parent_event) {
6991 overflow_handler = parent_event->overflow_handler;
6992 context = parent_event->overflow_handler_context;
6993 }
6994
6995 event->overflow_handler = overflow_handler;
6996 event->overflow_handler_context = context;
6997
6998 perf_event__state_init(event);
6999
7000 pmu = NULL;
7001
7002 hwc = &event->hw;
7003 hwc->sample_period = attr->sample_period;
7004 if (attr->freq && attr->sample_freq)
7005 hwc->sample_period = 1;
7006 hwc->last_period = hwc->sample_period;
7007
7008 local64_set(&hwc->period_left, hwc->sample_period);
7009
7010 /*
7011 * we currently do not support PERF_FORMAT_GROUP on inherited events
7012 */
7013 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7014 goto err_ns;
7015
7016 pmu = perf_init_event(event);
7017 if (!pmu)
7018 goto err_ns;
7019 else if (IS_ERR(pmu)) {
7020 err = PTR_ERR(pmu);
7021 goto err_ns;
7022 }
7023
7024 if (!event->parent) {
7025 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7026 err = get_callchain_buffers();
7027 if (err)
7028 goto err_pmu;
7029 }
7030 }
7031
7032 return event;
7033
7034err_pmu:
7035 if (event->destroy)
7036 event->destroy(event);
7037 module_put(pmu->module);
7038err_ns:
7039 if (event->ns)
7040 put_pid_ns(event->ns);
7041 kfree(event);
7042
7043 return ERR_PTR(err);
7044}
7045
7046static int perf_copy_attr(struct perf_event_attr __user *uattr,
7047 struct perf_event_attr *attr)
7048{
7049 u32 size;
7050 int ret;
7051
7052 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7053 return -EFAULT;
7054
7055 /*
7056 * zero the full structure, so that a short copy will be nice.
7057 */
7058 memset(attr, 0, sizeof(*attr));
7059
7060 ret = get_user(size, &uattr->size);
7061 if (ret)
7062 return ret;
7063
7064 if (size > PAGE_SIZE) /* silly large */
7065 goto err_size;
7066
7067 if (!size) /* abi compat */
7068 size = PERF_ATTR_SIZE_VER0;
7069
7070 if (size < PERF_ATTR_SIZE_VER0)
7071 goto err_size;
7072
7073 /*
7074 * If we're handed a bigger struct than we know of,
7075 * ensure all the unknown bits are 0 - i.e. new
7076 * user-space does not rely on any kernel feature
7077 * extensions we dont know about yet.
7078 */
7079 if (size > sizeof(*attr)) {
7080 unsigned char __user *addr;
7081 unsigned char __user *end;
7082 unsigned char val;
7083
7084 addr = (void __user *)uattr + sizeof(*attr);
7085 end = (void __user *)uattr + size;
7086
7087 for (; addr < end; addr++) {
7088 ret = get_user(val, addr);
7089 if (ret)
7090 return ret;
7091 if (val)
7092 goto err_size;
7093 }
7094 size = sizeof(*attr);
7095 }
7096
7097 ret = copy_from_user(attr, uattr, size);
7098 if (ret)
7099 return -EFAULT;
7100
7101 if (attr->__reserved_1)
7102 return -EINVAL;
7103
7104 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7105 return -EINVAL;
7106
7107 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7108 return -EINVAL;
7109
7110 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7111 u64 mask = attr->branch_sample_type;
7112
7113 /* only using defined bits */
7114 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7115 return -EINVAL;
7116
7117 /* at least one branch bit must be set */
7118 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7119 return -EINVAL;
7120
7121 /* propagate priv level, when not set for branch */
7122 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7123
7124 /* exclude_kernel checked on syscall entry */
7125 if (!attr->exclude_kernel)
7126 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7127
7128 if (!attr->exclude_user)
7129 mask |= PERF_SAMPLE_BRANCH_USER;
7130
7131 if (!attr->exclude_hv)
7132 mask |= PERF_SAMPLE_BRANCH_HV;
7133 /*
7134 * adjust user setting (for HW filter setup)
7135 */
7136 attr->branch_sample_type = mask;
7137 }
7138 /* privileged levels capture (kernel, hv): check permissions */
7139 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7140 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7141 return -EACCES;
7142 }
7143
7144 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7145 ret = perf_reg_validate(attr->sample_regs_user);
7146 if (ret)
7147 return ret;
7148 }
7149
7150 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7151 if (!arch_perf_have_user_stack_dump())
7152 return -ENOSYS;
7153
7154 /*
7155 * We have __u32 type for the size, but so far
7156 * we can only use __u16 as maximum due to the
7157 * __u16 sample size limit.
7158 */
7159 if (attr->sample_stack_user >= USHRT_MAX)
7160 ret = -EINVAL;
7161 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7162 ret = -EINVAL;
7163 }
7164
7165out:
7166 return ret;
7167
7168err_size:
7169 put_user(sizeof(*attr), &uattr->size);
7170 ret = -E2BIG;
7171 goto out;
7172}
7173
7174static int
7175perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7176{
7177 struct ring_buffer *rb = NULL;
7178 int ret = -EINVAL;
7179
7180 if (!output_event)
7181 goto set;
7182
7183 /* don't allow circular references */
7184 if (event == output_event)
7185 goto out;
7186
7187 /*
7188 * Don't allow cross-cpu buffers
7189 */
7190 if (output_event->cpu != event->cpu)
7191 goto out;
7192
7193 /*
7194 * If its not a per-cpu rb, it must be the same task.
7195 */
7196 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7197 goto out;
7198
7199set:
7200 mutex_lock(&event->mmap_mutex);
7201 /* Can't redirect output if we've got an active mmap() */
7202 if (atomic_read(&event->mmap_count))
7203 goto unlock;
7204
7205 if (output_event) {
7206 /* get the rb we want to redirect to */
7207 rb = ring_buffer_get(output_event);
7208 if (!rb)
7209 goto unlock;
7210 }
7211
7212 ring_buffer_attach(event, rb);
7213
7214 ret = 0;
7215unlock:
7216 mutex_unlock(&event->mmap_mutex);
7217
7218out:
7219 return ret;
7220}
7221
7222/**
7223 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7224 *
7225 * @attr_uptr: event_id type attributes for monitoring/sampling
7226 * @pid: target pid
7227 * @cpu: target cpu
7228 * @group_fd: group leader event fd
7229 */
7230SYSCALL_DEFINE5(perf_event_open,
7231 struct perf_event_attr __user *, attr_uptr,
7232 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7233{
7234 struct perf_event *group_leader = NULL, *output_event = NULL;
7235 struct perf_event *event, *sibling;
7236 struct perf_event_attr attr;
7237 struct perf_event_context *ctx;
7238 struct file *event_file = NULL;
7239 struct fd group = {NULL, 0};
7240 struct task_struct *task = NULL;
7241 struct pmu *pmu;
7242 int event_fd;
7243 int move_group = 0;
7244 int err;
7245 int f_flags = O_RDWR;
7246
7247 /* for future expandability... */
7248 if (flags & ~PERF_FLAG_ALL)
7249 return -EINVAL;
7250
7251 err = perf_copy_attr(attr_uptr, &attr);
7252 if (err)
7253 return err;
7254
7255 if (!attr.exclude_kernel) {
7256 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7257 return -EACCES;
7258 }
7259
7260 if (attr.freq) {
7261 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7262 return -EINVAL;
7263 } else {
7264 if (attr.sample_period & (1ULL << 63))
7265 return -EINVAL;
7266 }
7267
7268 /*
7269 * In cgroup mode, the pid argument is used to pass the fd
7270 * opened to the cgroup directory in cgroupfs. The cpu argument
7271 * designates the cpu on which to monitor threads from that
7272 * cgroup.
7273 */
7274 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7275 return -EINVAL;
7276
7277 if (flags & PERF_FLAG_FD_CLOEXEC)
7278 f_flags |= O_CLOEXEC;
7279
7280 event_fd = get_unused_fd_flags(f_flags);
7281 if (event_fd < 0)
7282 return event_fd;
7283
7284 if (group_fd != -1) {
7285 err = perf_fget_light(group_fd, &group);
7286 if (err)
7287 goto err_fd;
7288 group_leader = group.file->private_data;
7289 if (flags & PERF_FLAG_FD_OUTPUT)
7290 output_event = group_leader;
7291 if (flags & PERF_FLAG_FD_NO_GROUP)
7292 group_leader = NULL;
7293 }
7294
7295 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7296 task = find_lively_task_by_vpid(pid);
7297 if (IS_ERR(task)) {
7298 err = PTR_ERR(task);
7299 goto err_group_fd;
7300 }
7301 }
7302
7303 if (task && group_leader &&
7304 group_leader->attr.inherit != attr.inherit) {
7305 err = -EINVAL;
7306 goto err_task;
7307 }
7308
7309 get_online_cpus();
7310
7311 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7312 NULL, NULL);
7313 if (IS_ERR(event)) {
7314 err = PTR_ERR(event);
7315 goto err_cpus;
7316 }
7317
7318 if (flags & PERF_FLAG_PID_CGROUP) {
7319 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7320 if (err) {
7321 __free_event(event);
7322 goto err_cpus;
7323 }
7324 }
7325
7326 if (is_sampling_event(event)) {
7327 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7328 err = -ENOTSUPP;
7329 goto err_alloc;
7330 }
7331 }
7332
7333 account_event(event);
7334
7335 /*
7336 * Special case software events and allow them to be part of
7337 * any hardware group.
7338 */
7339 pmu = event->pmu;
7340
7341 if (group_leader &&
7342 (is_software_event(event) != is_software_event(group_leader))) {
7343 if (is_software_event(event)) {
7344 /*
7345 * If event and group_leader are not both a software
7346 * event, and event is, then group leader is not.
7347 *
7348 * Allow the addition of software events to !software
7349 * groups, this is safe because software events never
7350 * fail to schedule.
7351 */
7352 pmu = group_leader->pmu;
7353 } else if (is_software_event(group_leader) &&
7354 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7355 /*
7356 * In case the group is a pure software group, and we
7357 * try to add a hardware event, move the whole group to
7358 * the hardware context.
7359 */
7360 move_group = 1;
7361 }
7362 }
7363
7364 /*
7365 * Get the target context (task or percpu):
7366 */
7367 ctx = find_get_context(pmu, task, event->cpu);
7368 if (IS_ERR(ctx)) {
7369 err = PTR_ERR(ctx);
7370 goto err_alloc;
7371 }
7372
7373 if (task) {
7374 put_task_struct(task);
7375 task = NULL;
7376 }
7377
7378 /*
7379 * Look up the group leader (we will attach this event to it):
7380 */
7381 if (group_leader) {
7382 err = -EINVAL;
7383
7384 /*
7385 * Do not allow a recursive hierarchy (this new sibling
7386 * becoming part of another group-sibling):
7387 */
7388 if (group_leader->group_leader != group_leader)
7389 goto err_context;
7390 /*
7391 * Do not allow to attach to a group in a different
7392 * task or CPU context:
7393 */
7394 if (move_group) {
7395 if (group_leader->ctx->type != ctx->type)
7396 goto err_context;
7397 } else {
7398 if (group_leader->ctx != ctx)
7399 goto err_context;
7400 }
7401
7402 /*
7403 * Only a group leader can be exclusive or pinned
7404 */
7405 if (attr.exclusive || attr.pinned)
7406 goto err_context;
7407 }
7408
7409 if (output_event) {
7410 err = perf_event_set_output(event, output_event);
7411 if (err)
7412 goto err_context;
7413 }
7414
7415 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7416 f_flags);
7417 if (IS_ERR(event_file)) {
7418 err = PTR_ERR(event_file);
7419 goto err_context;
7420 }
7421
7422 if (move_group) {
7423 struct perf_event_context *gctx = group_leader->ctx;
7424
7425 mutex_lock(&gctx->mutex);
7426 perf_remove_from_context(group_leader, false);
7427
7428 /*
7429 * Removing from the context ends up with disabled
7430 * event. What we want here is event in the initial
7431 * startup state, ready to be add into new context.
7432 */
7433 perf_event__state_init(group_leader);
7434 list_for_each_entry(sibling, &group_leader->sibling_list,
7435 group_entry) {
7436 perf_remove_from_context(sibling, false);
7437 perf_event__state_init(sibling);
7438 put_ctx(gctx);
7439 }
7440 mutex_unlock(&gctx->mutex);
7441 put_ctx(gctx);
7442 }
7443
7444 WARN_ON_ONCE(ctx->parent_ctx);
7445 mutex_lock(&ctx->mutex);
7446
7447 if (move_group) {
7448 synchronize_rcu();
7449 perf_install_in_context(ctx, group_leader, event->cpu);
7450 get_ctx(ctx);
7451 list_for_each_entry(sibling, &group_leader->sibling_list,
7452 group_entry) {
7453 perf_install_in_context(ctx, sibling, event->cpu);
7454 get_ctx(ctx);
7455 }
7456 }
7457
7458 perf_install_in_context(ctx, event, event->cpu);
7459 perf_unpin_context(ctx);
7460 mutex_unlock(&ctx->mutex);
7461
7462 put_online_cpus();
7463
7464 event->owner = current;
7465
7466 mutex_lock(&current->perf_event_mutex);
7467 list_add_tail(&event->owner_entry, &current->perf_event_list);
7468 mutex_unlock(&current->perf_event_mutex);
7469
7470 /*
7471 * Precalculate sample_data sizes
7472 */
7473 perf_event__header_size(event);
7474 perf_event__id_header_size(event);
7475
7476 /*
7477 * Drop the reference on the group_event after placing the
7478 * new event on the sibling_list. This ensures destruction
7479 * of the group leader will find the pointer to itself in
7480 * perf_group_detach().
7481 */
7482 fdput(group);
7483 fd_install(event_fd, event_file);
7484 return event_fd;
7485
7486err_context:
7487 perf_unpin_context(ctx);
7488 put_ctx(ctx);
7489err_alloc:
7490 free_event(event);
7491err_cpus:
7492 put_online_cpus();
7493err_task:
7494 if (task)
7495 put_task_struct(task);
7496err_group_fd:
7497 fdput(group);
7498err_fd:
7499 put_unused_fd(event_fd);
7500 return err;
7501}
7502
7503/**
7504 * perf_event_create_kernel_counter
7505 *
7506 * @attr: attributes of the counter to create
7507 * @cpu: cpu in which the counter is bound
7508 * @task: task to profile (NULL for percpu)
7509 */
7510struct perf_event *
7511perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7512 struct task_struct *task,
7513 perf_overflow_handler_t overflow_handler,
7514 void *context)
7515{
7516 struct perf_event_context *ctx;
7517 struct perf_event *event;
7518 int err;
7519
7520 /*
7521 * Get the target context (task or percpu):
7522 */
7523
7524 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7525 overflow_handler, context);
7526 if (IS_ERR(event)) {
7527 err = PTR_ERR(event);
7528 goto err;
7529 }
7530
7531 /* Mark owner so we could distinguish it from user events. */
7532 event->owner = EVENT_OWNER_KERNEL;
7533
7534 account_event(event);
7535
7536 ctx = find_get_context(event->pmu, task, cpu);
7537 if (IS_ERR(ctx)) {
7538 err = PTR_ERR(ctx);
7539 goto err_free;
7540 }
7541
7542 WARN_ON_ONCE(ctx->parent_ctx);
7543 mutex_lock(&ctx->mutex);
7544 perf_install_in_context(ctx, event, cpu);
7545 perf_unpin_context(ctx);
7546 mutex_unlock(&ctx->mutex);
7547
7548 return event;
7549
7550err_free:
7551 free_event(event);
7552err:
7553 return ERR_PTR(err);
7554}
7555EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7556
7557void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7558{
7559 struct perf_event_context *src_ctx;
7560 struct perf_event_context *dst_ctx;
7561 struct perf_event *event, *tmp;
7562 LIST_HEAD(events);
7563
7564 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7565 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7566
7567 mutex_lock(&src_ctx->mutex);
7568 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7569 event_entry) {
7570 perf_remove_from_context(event, false);
7571 unaccount_event_cpu(event, src_cpu);
7572 put_ctx(src_ctx);
7573 list_add(&event->migrate_entry, &events);
7574 }
7575 mutex_unlock(&src_ctx->mutex);
7576
7577 synchronize_rcu();
7578
7579 mutex_lock(&dst_ctx->mutex);
7580 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7581 list_del(&event->migrate_entry);
7582 if (event->state >= PERF_EVENT_STATE_OFF)
7583 event->state = PERF_EVENT_STATE_INACTIVE;
7584 account_event_cpu(event, dst_cpu);
7585 perf_install_in_context(dst_ctx, event, dst_cpu);
7586 get_ctx(dst_ctx);
7587 }
7588 mutex_unlock(&dst_ctx->mutex);
7589}
7590EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7591
7592static void sync_child_event(struct perf_event *child_event,
7593 struct task_struct *child)
7594{
7595 struct perf_event *parent_event = child_event->parent;
7596 u64 child_val;
7597
7598 if (child_event->attr.inherit_stat)
7599 perf_event_read_event(child_event, child);
7600
7601 child_val = perf_event_count(child_event);
7602
7603 /*
7604 * Add back the child's count to the parent's count:
7605 */
7606 atomic64_add(child_val, &parent_event->child_count);
7607 atomic64_add(child_event->total_time_enabled,
7608 &parent_event->child_total_time_enabled);
7609 atomic64_add(child_event->total_time_running,
7610 &parent_event->child_total_time_running);
7611
7612 /*
7613 * Remove this event from the parent's list
7614 */
7615 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7616 mutex_lock(&parent_event->child_mutex);
7617 list_del_init(&child_event->child_list);
7618 mutex_unlock(&parent_event->child_mutex);
7619
7620 /*
7621 * Make sure user/parent get notified, that we just
7622 * lost one event.
7623 */
7624 perf_event_wakeup(parent_event);
7625
7626 /*
7627 * Release the parent event, if this was the last
7628 * reference to it.
7629 */
7630 put_event(parent_event);
7631}
7632
7633static void
7634__perf_event_exit_task(struct perf_event *child_event,
7635 struct perf_event_context *child_ctx,
7636 struct task_struct *child)
7637{
7638 /*
7639 * Do not destroy the 'original' grouping; because of the context
7640 * switch optimization the original events could've ended up in a
7641 * random child task.
7642 *
7643 * If we were to destroy the original group, all group related
7644 * operations would cease to function properly after this random
7645 * child dies.
7646 *
7647 * Do destroy all inherited groups, we don't care about those
7648 * and being thorough is better.
7649 */
7650 perf_remove_from_context(child_event, !!child_event->parent);
7651
7652 /*
7653 * It can happen that the parent exits first, and has events
7654 * that are still around due to the child reference. These
7655 * events need to be zapped.
7656 */
7657 if (child_event->parent) {
7658 sync_child_event(child_event, child);
7659 free_event(child_event);
7660 } else {
7661 child_event->state = PERF_EVENT_STATE_EXIT;
7662 perf_event_wakeup(child_event);
7663 }
7664}
7665
7666static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7667{
7668 struct perf_event *child_event, *next;
7669 struct perf_event_context *child_ctx, *clone_ctx = NULL;
7670 unsigned long flags;
7671
7672 if (likely(!child->perf_event_ctxp[ctxn])) {
7673 perf_event_task(child, NULL, 0);
7674 return;
7675 }
7676
7677 local_irq_save(flags);
7678 /*
7679 * We can't reschedule here because interrupts are disabled,
7680 * and either child is current or it is a task that can't be
7681 * scheduled, so we are now safe from rescheduling changing
7682 * our context.
7683 */
7684 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7685
7686 /*
7687 * Take the context lock here so that if find_get_context is
7688 * reading child->perf_event_ctxp, we wait until it has
7689 * incremented the context's refcount before we do put_ctx below.
7690 */
7691 raw_spin_lock(&child_ctx->lock);
7692 task_ctx_sched_out(child_ctx);
7693 child->perf_event_ctxp[ctxn] = NULL;
7694
7695 /*
7696 * If this context is a clone; unclone it so it can't get
7697 * swapped to another process while we're removing all
7698 * the events from it.
7699 */
7700 clone_ctx = unclone_ctx(child_ctx);
7701 update_context_time(child_ctx);
7702 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7703
7704 if (clone_ctx)
7705 put_ctx(clone_ctx);
7706
7707 /*
7708 * Report the task dead after unscheduling the events so that we
7709 * won't get any samples after PERF_RECORD_EXIT. We can however still
7710 * get a few PERF_RECORD_READ events.
7711 */
7712 perf_event_task(child, child_ctx, 0);
7713
7714 /*
7715 * We can recurse on the same lock type through:
7716 *
7717 * __perf_event_exit_task()
7718 * sync_child_event()
7719 * put_event()
7720 * mutex_lock(&ctx->mutex)
7721 *
7722 * But since its the parent context it won't be the same instance.
7723 */
7724 mutex_lock(&child_ctx->mutex);
7725
7726 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7727 __perf_event_exit_task(child_event, child_ctx, child);
7728
7729 mutex_unlock(&child_ctx->mutex);
7730
7731 put_ctx(child_ctx);
7732}
7733
7734/*
7735 * When a child task exits, feed back event values to parent events.
7736 */
7737void perf_event_exit_task(struct task_struct *child)
7738{
7739 struct perf_event *event, *tmp;
7740 int ctxn;
7741
7742 mutex_lock(&child->perf_event_mutex);
7743 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7744 owner_entry) {
7745 list_del_init(&event->owner_entry);
7746
7747 /*
7748 * Ensure the list deletion is visible before we clear
7749 * the owner, closes a race against perf_release() where
7750 * we need to serialize on the owner->perf_event_mutex.
7751 */
7752 smp_wmb();
7753 event->owner = NULL;
7754 }
7755 mutex_unlock(&child->perf_event_mutex);
7756
7757 for_each_task_context_nr(ctxn)
7758 perf_event_exit_task_context(child, ctxn);
7759}
7760
7761static void perf_free_event(struct perf_event *event,
7762 struct perf_event_context *ctx)
7763{
7764 struct perf_event *parent = event->parent;
7765
7766 if (WARN_ON_ONCE(!parent))
7767 return;
7768
7769 mutex_lock(&parent->child_mutex);
7770 list_del_init(&event->child_list);
7771 mutex_unlock(&parent->child_mutex);
7772
7773 put_event(parent);
7774
7775 perf_group_detach(event);
7776 list_del_event(event, ctx);
7777 free_event(event);
7778}
7779
7780/*
7781 * free an unexposed, unused context as created by inheritance by
7782 * perf_event_init_task below, used by fork() in case of fail.
7783 */
7784void perf_event_free_task(struct task_struct *task)
7785{
7786 struct perf_event_context *ctx;
7787 struct perf_event *event, *tmp;
7788 int ctxn;
7789
7790 for_each_task_context_nr(ctxn) {
7791 ctx = task->perf_event_ctxp[ctxn];
7792 if (!ctx)
7793 continue;
7794
7795 mutex_lock(&ctx->mutex);
7796again:
7797 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7798 group_entry)
7799 perf_free_event(event, ctx);
7800
7801 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7802 group_entry)
7803 perf_free_event(event, ctx);
7804
7805 if (!list_empty(&ctx->pinned_groups) ||
7806 !list_empty(&ctx->flexible_groups))
7807 goto again;
7808
7809 mutex_unlock(&ctx->mutex);
7810
7811 put_ctx(ctx);
7812 }
7813}
7814
7815void perf_event_delayed_put(struct task_struct *task)
7816{
7817 int ctxn;
7818
7819 for_each_task_context_nr(ctxn)
7820 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7821}
7822
7823/*
7824 * inherit a event from parent task to child task:
7825 */
7826static struct perf_event *
7827inherit_event(struct perf_event *parent_event,
7828 struct task_struct *parent,
7829 struct perf_event_context *parent_ctx,
7830 struct task_struct *child,
7831 struct perf_event *group_leader,
7832 struct perf_event_context *child_ctx)
7833{
7834 enum perf_event_active_state parent_state = parent_event->state;
7835 struct perf_event *child_event;
7836 unsigned long flags;
7837
7838 /*
7839 * Instead of creating recursive hierarchies of events,
7840 * we link inherited events back to the original parent,
7841 * which has a filp for sure, which we use as the reference
7842 * count:
7843 */
7844 if (parent_event->parent)
7845 parent_event = parent_event->parent;
7846
7847 child_event = perf_event_alloc(&parent_event->attr,
7848 parent_event->cpu,
7849 child,
7850 group_leader, parent_event,
7851 NULL, NULL);
7852 if (IS_ERR(child_event))
7853 return child_event;
7854
7855 if (is_orphaned_event(parent_event) ||
7856 !atomic_long_inc_not_zero(&parent_event->refcount)) {
7857 free_event(child_event);
7858 return NULL;
7859 }
7860
7861 get_ctx(child_ctx);
7862
7863 /*
7864 * Make the child state follow the state of the parent event,
7865 * not its attr.disabled bit. We hold the parent's mutex,
7866 * so we won't race with perf_event_{en, dis}able_family.
7867 */
7868 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
7869 child_event->state = PERF_EVENT_STATE_INACTIVE;
7870 else
7871 child_event->state = PERF_EVENT_STATE_OFF;
7872
7873 if (parent_event->attr.freq) {
7874 u64 sample_period = parent_event->hw.sample_period;
7875 struct hw_perf_event *hwc = &child_event->hw;
7876
7877 hwc->sample_period = sample_period;
7878 hwc->last_period = sample_period;
7879
7880 local64_set(&hwc->period_left, sample_period);
7881 }
7882
7883 child_event->ctx = child_ctx;
7884 child_event->overflow_handler = parent_event->overflow_handler;
7885 child_event->overflow_handler_context
7886 = parent_event->overflow_handler_context;
7887
7888 /*
7889 * Precalculate sample_data sizes
7890 */
7891 perf_event__header_size(child_event);
7892 perf_event__id_header_size(child_event);
7893
7894 /*
7895 * Link it up in the child's context:
7896 */
7897 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7898 add_event_to_ctx(child_event, child_ctx);
7899 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7900
7901 /*
7902 * Link this into the parent event's child list
7903 */
7904 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7905 mutex_lock(&parent_event->child_mutex);
7906 list_add_tail(&child_event->child_list, &parent_event->child_list);
7907 mutex_unlock(&parent_event->child_mutex);
7908
7909 return child_event;
7910}
7911
7912static int inherit_group(struct perf_event *parent_event,
7913 struct task_struct *parent,
7914 struct perf_event_context *parent_ctx,
7915 struct task_struct *child,
7916 struct perf_event_context *child_ctx)
7917{
7918 struct perf_event *leader;
7919 struct perf_event *sub;
7920 struct perf_event *child_ctr;
7921
7922 leader = inherit_event(parent_event, parent, parent_ctx,
7923 child, NULL, child_ctx);
7924 if (IS_ERR(leader))
7925 return PTR_ERR(leader);
7926 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7927 child_ctr = inherit_event(sub, parent, parent_ctx,
7928 child, leader, child_ctx);
7929 if (IS_ERR(child_ctr))
7930 return PTR_ERR(child_ctr);
7931 }
7932 return 0;
7933}
7934
7935static int
7936inherit_task_group(struct perf_event *event, struct task_struct *parent,
7937 struct perf_event_context *parent_ctx,
7938 struct task_struct *child, int ctxn,
7939 int *inherited_all)
7940{
7941 int ret;
7942 struct perf_event_context *child_ctx;
7943
7944 if (!event->attr.inherit) {
7945 *inherited_all = 0;
7946 return 0;
7947 }
7948
7949 child_ctx = child->perf_event_ctxp[ctxn];
7950 if (!child_ctx) {
7951 /*
7952 * This is executed from the parent task context, so
7953 * inherit events that have been marked for cloning.
7954 * First allocate and initialize a context for the
7955 * child.
7956 */
7957
7958 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7959 if (!child_ctx)
7960 return -ENOMEM;
7961
7962 child->perf_event_ctxp[ctxn] = child_ctx;
7963 }
7964
7965 ret = inherit_group(event, parent, parent_ctx,
7966 child, child_ctx);
7967
7968 if (ret)
7969 *inherited_all = 0;
7970
7971 return ret;
7972}
7973
7974/*
7975 * Initialize the perf_event context in task_struct
7976 */
7977static int perf_event_init_context(struct task_struct *child, int ctxn)
7978{
7979 struct perf_event_context *child_ctx, *parent_ctx;
7980 struct perf_event_context *cloned_ctx;
7981 struct perf_event *event;
7982 struct task_struct *parent = current;
7983 int inherited_all = 1;
7984 unsigned long flags;
7985 int ret = 0;
7986
7987 if (likely(!parent->perf_event_ctxp[ctxn]))
7988 return 0;
7989
7990 /*
7991 * If the parent's context is a clone, pin it so it won't get
7992 * swapped under us.
7993 */
7994 parent_ctx = perf_pin_task_context(parent, ctxn);
7995 if (!parent_ctx)
7996 return 0;
7997
7998 /*
7999 * No need to check if parent_ctx != NULL here; since we saw
8000 * it non-NULL earlier, the only reason for it to become NULL
8001 * is if we exit, and since we're currently in the middle of
8002 * a fork we can't be exiting at the same time.
8003 */
8004
8005 /*
8006 * Lock the parent list. No need to lock the child - not PID
8007 * hashed yet and not running, so nobody can access it.
8008 */
8009 mutex_lock(&parent_ctx->mutex);
8010
8011 /*
8012 * We dont have to disable NMIs - we are only looking at
8013 * the list, not manipulating it:
8014 */
8015 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8016 ret = inherit_task_group(event, parent, parent_ctx,
8017 child, ctxn, &inherited_all);
8018 if (ret)
8019 break;
8020 }
8021
8022 /*
8023 * We can't hold ctx->lock when iterating the ->flexible_group list due
8024 * to allocations, but we need to prevent rotation because
8025 * rotate_ctx() will change the list from interrupt context.
8026 */
8027 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8028 parent_ctx->rotate_disable = 1;
8029 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8030
8031 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8032 ret = inherit_task_group(event, parent, parent_ctx,
8033 child, ctxn, &inherited_all);
8034 if (ret)
8035 break;
8036 }
8037
8038 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8039 parent_ctx->rotate_disable = 0;
8040
8041 child_ctx = child->perf_event_ctxp[ctxn];
8042
8043 if (child_ctx && inherited_all) {
8044 /*
8045 * Mark the child context as a clone of the parent
8046 * context, or of whatever the parent is a clone of.
8047 *
8048 * Note that if the parent is a clone, the holding of
8049 * parent_ctx->lock avoids it from being uncloned.
8050 */
8051 cloned_ctx = parent_ctx->parent_ctx;
8052 if (cloned_ctx) {
8053 child_ctx->parent_ctx = cloned_ctx;
8054 child_ctx->parent_gen = parent_ctx->parent_gen;
8055 } else {
8056 child_ctx->parent_ctx = parent_ctx;
8057 child_ctx->parent_gen = parent_ctx->generation;
8058 }
8059 get_ctx(child_ctx->parent_ctx);
8060 }
8061
8062 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8063 mutex_unlock(&parent_ctx->mutex);
8064
8065 perf_unpin_context(parent_ctx);
8066 put_ctx(parent_ctx);
8067
8068 return ret;
8069}
8070
8071/*
8072 * Initialize the perf_event context in task_struct
8073 */
8074int perf_event_init_task(struct task_struct *child)
8075{
8076 int ctxn, ret;
8077
8078 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8079 mutex_init(&child->perf_event_mutex);
8080 INIT_LIST_HEAD(&child->perf_event_list);
8081
8082 for_each_task_context_nr(ctxn) {
8083 ret = perf_event_init_context(child, ctxn);
8084 if (ret) {
8085 perf_event_free_task(child);
8086 return ret;
8087 }
8088 }
8089
8090 return 0;
8091}
8092
8093static void __init perf_event_init_all_cpus(void)
8094{
8095 struct swevent_htable *swhash;
8096 int cpu;
8097
8098 for_each_possible_cpu(cpu) {
8099 swhash = &per_cpu(swevent_htable, cpu);
8100 mutex_init(&swhash->hlist_mutex);
8101 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8102 }
8103}
8104
8105static void perf_event_init_cpu(int cpu)
8106{
8107 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8108
8109 mutex_lock(&swhash->hlist_mutex);
8110 swhash->online = true;
8111 if (swhash->hlist_refcount > 0) {
8112 struct swevent_hlist *hlist;
8113
8114 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8115 WARN_ON(!hlist);
8116 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8117 }
8118 mutex_unlock(&swhash->hlist_mutex);
8119}
8120
8121#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8122static void perf_pmu_rotate_stop(struct pmu *pmu)
8123{
8124 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8125
8126 WARN_ON(!irqs_disabled());
8127
8128 list_del_init(&cpuctx->rotation_list);
8129}
8130
8131static void __perf_event_exit_context(void *__info)
8132{
8133 struct remove_event re = { .detach_group = false };
8134 struct perf_event_context *ctx = __info;
8135
8136 perf_pmu_rotate_stop(ctx->pmu);
8137
8138 rcu_read_lock();
8139 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8140 __perf_remove_from_context(&re);
8141 rcu_read_unlock();
8142}
8143
8144static void perf_event_exit_cpu_context(int cpu)
8145{
8146 struct perf_event_context *ctx;
8147 struct pmu *pmu;
8148 int idx;
8149
8150 idx = srcu_read_lock(&pmus_srcu);
8151 list_for_each_entry_rcu(pmu, &pmus, entry) {
8152 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8153
8154 mutex_lock(&ctx->mutex);
8155 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8156 mutex_unlock(&ctx->mutex);
8157 }
8158 srcu_read_unlock(&pmus_srcu, idx);
8159}
8160
8161static void perf_event_exit_cpu(int cpu)
8162{
8163 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8164
8165 perf_event_exit_cpu_context(cpu);
8166
8167 mutex_lock(&swhash->hlist_mutex);
8168 swhash->online = false;
8169 swevent_hlist_release(swhash);
8170 mutex_unlock(&swhash->hlist_mutex);
8171}
8172#else
8173static inline void perf_event_exit_cpu(int cpu) { }
8174#endif
8175
8176static int
8177perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8178{
8179 int cpu;
8180
8181 for_each_online_cpu(cpu)
8182 perf_event_exit_cpu(cpu);
8183
8184 return NOTIFY_OK;
8185}
8186
8187/*
8188 * Run the perf reboot notifier at the very last possible moment so that
8189 * the generic watchdog code runs as long as possible.
8190 */
8191static struct notifier_block perf_reboot_notifier = {
8192 .notifier_call = perf_reboot,
8193 .priority = INT_MIN,
8194};
8195
8196static int
8197perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8198{
8199 unsigned int cpu = (long)hcpu;
8200
8201 switch (action & ~CPU_TASKS_FROZEN) {
8202
8203 case CPU_UP_PREPARE:
8204 case CPU_DOWN_FAILED:
8205 perf_event_init_cpu(cpu);
8206 break;
8207
8208 case CPU_UP_CANCELED:
8209 case CPU_DOWN_PREPARE:
8210 perf_event_exit_cpu(cpu);
8211 break;
8212 default:
8213 break;
8214 }
8215
8216 return NOTIFY_OK;
8217}
8218
8219void __init perf_event_init(void)
8220{
8221 int ret;
8222
8223 idr_init(&pmu_idr);
8224
8225 perf_event_init_all_cpus();
8226 init_srcu_struct(&pmus_srcu);
8227 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8228 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8229 perf_pmu_register(&perf_task_clock, NULL, -1);
8230 perf_tp_register();
8231 perf_cpu_notifier(perf_cpu_notify);
8232 register_reboot_notifier(&perf_reboot_notifier);
8233
8234 ret = init_hw_breakpoint();
8235 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8236
8237 /* do not patch jump label more than once per second */
8238 jump_label_rate_limit(&perf_sched_events, HZ);
8239
8240 /*
8241 * Build time assertion that we keep the data_head at the intended
8242 * location. IOW, validation we got the __reserved[] size right.
8243 */
8244 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8245 != 1024);
8246}
8247
8248static int __init perf_event_sysfs_init(void)
8249{
8250 struct pmu *pmu;
8251 int ret;
8252
8253 mutex_lock(&pmus_lock);
8254
8255 ret = bus_register(&pmu_bus);
8256 if (ret)
8257 goto unlock;
8258
8259 list_for_each_entry(pmu, &pmus, entry) {
8260 if (!pmu->name || pmu->type < 0)
8261 continue;
8262
8263 ret = pmu_dev_alloc(pmu);
8264 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8265 }
8266 pmu_bus_running = 1;
8267 ret = 0;
8268
8269unlock:
8270 mutex_unlock(&pmus_lock);
8271
8272 return ret;
8273}
8274device_initcall(perf_event_sysfs_init);
8275
8276#ifdef CONFIG_CGROUP_PERF
8277static struct cgroup_subsys_state *
8278perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8279{
8280 struct perf_cgroup *jc;
8281
8282 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8283 if (!jc)
8284 return ERR_PTR(-ENOMEM);
8285
8286 jc->info = alloc_percpu(struct perf_cgroup_info);
8287 if (!jc->info) {
8288 kfree(jc);
8289 return ERR_PTR(-ENOMEM);
8290 }
8291
8292 return &jc->css;
8293}
8294
8295static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8296{
8297 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8298
8299 free_percpu(jc->info);
8300 kfree(jc);
8301}
8302
8303static int __perf_cgroup_move(void *info)
8304{
8305 struct task_struct *task = info;
8306 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8307 return 0;
8308}
8309
8310static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8311 struct cgroup_taskset *tset)
8312{
8313 struct task_struct *task;
8314
8315 cgroup_taskset_for_each(task, tset)
8316 task_function_call(task, __perf_cgroup_move, task);
8317}
8318
8319static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8320 struct cgroup_subsys_state *old_css,
8321 struct task_struct *task)
8322{
8323 /*
8324 * cgroup_exit() is called in the copy_process() failure path.
8325 * Ignore this case since the task hasn't ran yet, this avoids
8326 * trying to poke a half freed task state from generic code.
8327 */
8328 if (!(task->flags & PF_EXITING))
8329 return;
8330
8331 task_function_call(task, __perf_cgroup_move, task);
8332}
8333
8334struct cgroup_subsys perf_event_cgrp_subsys = {
8335 .css_alloc = perf_cgroup_css_alloc,
8336 .css_free = perf_cgroup_css_free,
8337 .exit = perf_cgroup_exit,
8338 .attach = perf_cgroup_attach,
8339};
8340#endif /* CONFIG_CGROUP_PERF */