]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - kernel/exit.c
rtc: make rtc_update_irq callable with irqs enabled
[mirror_ubuntu-zesty-kernel.git] / kernel / exit.c
... / ...
CommitLineData
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/mnt_namespace.h>
16#include <linux/iocontext.h>
17#include <linux/key.h>
18#include <linux/security.h>
19#include <linux/cpu.h>
20#include <linux/acct.h>
21#include <linux/tsacct_kern.h>
22#include <linux/file.h>
23#include <linux/fdtable.h>
24#include <linux/binfmts.h>
25#include <linux/nsproxy.h>
26#include <linux/pid_namespace.h>
27#include <linux/ptrace.h>
28#include <linux/profile.h>
29#include <linux/mount.h>
30#include <linux/proc_fs.h>
31#include <linux/kthread.h>
32#include <linux/mempolicy.h>
33#include <linux/taskstats_kern.h>
34#include <linux/delayacct.h>
35#include <linux/freezer.h>
36#include <linux/cgroup.h>
37#include <linux/syscalls.h>
38#include <linux/signal.h>
39#include <linux/posix-timers.h>
40#include <linux/cn_proc.h>
41#include <linux/mutex.h>
42#include <linux/futex.h>
43#include <linux/pipe_fs_i.h>
44#include <linux/audit.h> /* for audit_free() */
45#include <linux/resource.h>
46#include <linux/blkdev.h>
47#include <linux/task_io_accounting_ops.h>
48#include <linux/tracehook.h>
49#include <linux/fs_struct.h>
50#include <linux/init_task.h>
51#include <linux/perf_counter.h>
52#include <trace/events/sched.h>
53
54#include <asm/uaccess.h>
55#include <asm/unistd.h>
56#include <asm/pgtable.h>
57#include <asm/mmu_context.h>
58#include "cred-internals.h"
59
60static void exit_mm(struct task_struct * tsk);
61
62static void __unhash_process(struct task_struct *p)
63{
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 list_del_init(&p->sibling);
75}
76
77/*
78 * This function expects the tasklist_lock write-locked.
79 */
80static void __exit_signal(struct task_struct *tsk)
81{
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
95 /*
96 * If there is any task waiting for the group exit
97 * then notify it:
98 */
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
101
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
104 /*
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
113 */
114 sig->utime = cputime_add(sig->utime, task_utime(tsk));
115 sig->stime = cputime_add(sig->stime, task_stime(tsk));
116 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 task_io_accounting_add(&sig->ioac, &tsk->ioac);
124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 sig = NULL; /* Marker for below. */
126 }
127
128 __unhash_process(tsk);
129
130 /*
131 * Do this under ->siglock, we can race with another thread
132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 */
134 flush_sigqueue(&tsk->pending);
135
136 tsk->signal = NULL;
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 if (sig) {
143 flush_sigqueue(&sig->shared_pending);
144 taskstats_tgid_free(sig);
145 /*
146 * Make sure ->signal can't go away under rq->lock,
147 * see account_group_exec_runtime().
148 */
149 task_rq_unlock_wait(tsk);
150 __cleanup_signal(sig);
151 }
152}
153
154static void delayed_put_task_struct(struct rcu_head *rhp)
155{
156 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
157
158#ifdef CONFIG_PERF_COUNTERS
159 WARN_ON_ONCE(tsk->perf_counter_ctxp);
160#endif
161 trace_sched_process_free(tsk);
162 put_task_struct(tsk);
163}
164
165
166void release_task(struct task_struct * p)
167{
168 struct task_struct *leader;
169 int zap_leader;
170repeat:
171 tracehook_prepare_release_task(p);
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials */
174 atomic_dec(&__task_cred(p)->user->processes);
175
176 proc_flush_task(p);
177
178 write_lock_irq(&tasklist_lock);
179 tracehook_finish_release_task(p);
180 __exit_signal(p);
181
182 /*
183 * If we are the last non-leader member of the thread
184 * group, and the leader is zombie, then notify the
185 * group leader's parent process. (if it wants notification.)
186 */
187 zap_leader = 0;
188 leader = p->group_leader;
189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 BUG_ON(task_detached(leader));
191 do_notify_parent(leader, leader->exit_signal);
192 /*
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
196 *
197 * do_notify_parent() will have marked it self-reaping in
198 * that case.
199 */
200 zap_leader = task_detached(leader);
201
202 /*
203 * This maintains the invariant that release_task()
204 * only runs on a task in EXIT_DEAD, just for sanity.
205 */
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217}
218
219/*
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
223 *
224 * The caller must hold rcu lock or the tasklist lock.
225 */
226struct pid *session_of_pgrp(struct pid *pgrp)
227{
228 struct task_struct *p;
229 struct pid *sid = NULL;
230
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
236
237 return sid;
238}
239
240/*
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
245 *
246 * "I ask you, have you ever known what it is to be an orphan?"
247 */
248static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249{
250 struct task_struct *p;
251
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
257
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263 return 1;
264}
265
266int is_current_pgrp_orphaned(void)
267{
268 int retval;
269
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
273
274 return retval;
275}
276
277static int has_stopped_jobs(struct pid *pgrp)
278{
279 int retval = 0;
280 struct task_struct *p;
281
282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 if (!task_is_stopped(p))
284 continue;
285 retval = 1;
286 break;
287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 return retval;
289}
290
291/*
292 * Check to see if any process groups have become orphaned as
293 * a result of our exiting, and if they have any stopped jobs,
294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295 */
296static void
297kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298{
299 struct pid *pgrp = task_pgrp(tsk);
300 struct task_struct *ignored_task = tsk;
301
302 if (!parent)
303 /* exit: our father is in a different pgrp than
304 * we are and we were the only connection outside.
305 */
306 parent = tsk->real_parent;
307 else
308 /* reparent: our child is in a different pgrp than
309 * we are, and it was the only connection outside.
310 */
311 ignored_task = NULL;
312
313 if (task_pgrp(parent) != pgrp &&
314 task_session(parent) == task_session(tsk) &&
315 will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 has_stopped_jobs(pgrp)) {
317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 }
320}
321
322/**
323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324 *
325 * If a kernel thread is launched as a result of a system call, or if
326 * it ever exits, it should generally reparent itself to kthreadd so it
327 * isn't in the way of other processes and is correctly cleaned up on exit.
328 *
329 * The various task state such as scheduling policy and priority may have
330 * been inherited from a user process, so we reset them to sane values here.
331 *
332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333 */
334static void reparent_to_kthreadd(void)
335{
336 write_lock_irq(&tasklist_lock);
337
338 ptrace_unlink(current);
339 /* Reparent to init */
340 current->real_parent = current->parent = kthreadd_task;
341 list_move_tail(&current->sibling, &current->real_parent->children);
342
343 /* Set the exit signal to SIGCHLD so we signal init on exit */
344 current->exit_signal = SIGCHLD;
345
346 if (task_nice(current) < 0)
347 set_user_nice(current, 0);
348 /* cpus_allowed? */
349 /* rt_priority? */
350 /* signals? */
351 memcpy(current->signal->rlim, init_task.signal->rlim,
352 sizeof(current->signal->rlim));
353
354 atomic_inc(&init_cred.usage);
355 commit_creds(&init_cred);
356 write_unlock_irq(&tasklist_lock);
357}
358
359void __set_special_pids(struct pid *pid)
360{
361 struct task_struct *curr = current->group_leader;
362
363 if (task_session(curr) != pid)
364 change_pid(curr, PIDTYPE_SID, pid);
365
366 if (task_pgrp(curr) != pid)
367 change_pid(curr, PIDTYPE_PGID, pid);
368}
369
370static void set_special_pids(struct pid *pid)
371{
372 write_lock_irq(&tasklist_lock);
373 __set_special_pids(pid);
374 write_unlock_irq(&tasklist_lock);
375}
376
377/*
378 * Let kernel threads use this to say that they allow a certain signal.
379 * Must not be used if kthread was cloned with CLONE_SIGHAND.
380 */
381int allow_signal(int sig)
382{
383 if (!valid_signal(sig) || sig < 1)
384 return -EINVAL;
385
386 spin_lock_irq(&current->sighand->siglock);
387 /* This is only needed for daemonize()'ed kthreads */
388 sigdelset(&current->blocked, sig);
389 /*
390 * Kernel threads handle their own signals. Let the signal code
391 * know it'll be handled, so that they don't get converted to
392 * SIGKILL or just silently dropped.
393 */
394 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
395 recalc_sigpending();
396 spin_unlock_irq(&current->sighand->siglock);
397 return 0;
398}
399
400EXPORT_SYMBOL(allow_signal);
401
402int disallow_signal(int sig)
403{
404 if (!valid_signal(sig) || sig < 1)
405 return -EINVAL;
406
407 spin_lock_irq(&current->sighand->siglock);
408 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
409 recalc_sigpending();
410 spin_unlock_irq(&current->sighand->siglock);
411 return 0;
412}
413
414EXPORT_SYMBOL(disallow_signal);
415
416/*
417 * Put all the gunge required to become a kernel thread without
418 * attached user resources in one place where it belongs.
419 */
420
421void daemonize(const char *name, ...)
422{
423 va_list args;
424 sigset_t blocked;
425
426 va_start(args, name);
427 vsnprintf(current->comm, sizeof(current->comm), name, args);
428 va_end(args);
429
430 /*
431 * If we were started as result of loading a module, close all of the
432 * user space pages. We don't need them, and if we didn't close them
433 * they would be locked into memory.
434 */
435 exit_mm(current);
436 /*
437 * We don't want to have TIF_FREEZE set if the system-wide hibernation
438 * or suspend transition begins right now.
439 */
440 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
441
442 if (current->nsproxy != &init_nsproxy) {
443 get_nsproxy(&init_nsproxy);
444 switch_task_namespaces(current, &init_nsproxy);
445 }
446 set_special_pids(&init_struct_pid);
447 proc_clear_tty(current);
448
449 /* Block and flush all signals */
450 sigfillset(&blocked);
451 sigprocmask(SIG_BLOCK, &blocked, NULL);
452 flush_signals(current);
453
454 /* Become as one with the init task */
455
456 daemonize_fs_struct();
457 exit_files(current);
458 current->files = init_task.files;
459 atomic_inc(&current->files->count);
460
461 reparent_to_kthreadd();
462}
463
464EXPORT_SYMBOL(daemonize);
465
466static void close_files(struct files_struct * files)
467{
468 int i, j;
469 struct fdtable *fdt;
470
471 j = 0;
472
473 /*
474 * It is safe to dereference the fd table without RCU or
475 * ->file_lock because this is the last reference to the
476 * files structure.
477 */
478 fdt = files_fdtable(files);
479 for (;;) {
480 unsigned long set;
481 i = j * __NFDBITS;
482 if (i >= fdt->max_fds)
483 break;
484 set = fdt->open_fds->fds_bits[j++];
485 while (set) {
486 if (set & 1) {
487 struct file * file = xchg(&fdt->fd[i], NULL);
488 if (file) {
489 filp_close(file, files);
490 cond_resched();
491 }
492 }
493 i++;
494 set >>= 1;
495 }
496 }
497}
498
499struct files_struct *get_files_struct(struct task_struct *task)
500{
501 struct files_struct *files;
502
503 task_lock(task);
504 files = task->files;
505 if (files)
506 atomic_inc(&files->count);
507 task_unlock(task);
508
509 return files;
510}
511
512void put_files_struct(struct files_struct *files)
513{
514 struct fdtable *fdt;
515
516 if (atomic_dec_and_test(&files->count)) {
517 close_files(files);
518 /*
519 * Free the fd and fdset arrays if we expanded them.
520 * If the fdtable was embedded, pass files for freeing
521 * at the end of the RCU grace period. Otherwise,
522 * you can free files immediately.
523 */
524 fdt = files_fdtable(files);
525 if (fdt != &files->fdtab)
526 kmem_cache_free(files_cachep, files);
527 free_fdtable(fdt);
528 }
529}
530
531void reset_files_struct(struct files_struct *files)
532{
533 struct task_struct *tsk = current;
534 struct files_struct *old;
535
536 old = tsk->files;
537 task_lock(tsk);
538 tsk->files = files;
539 task_unlock(tsk);
540 put_files_struct(old);
541}
542
543void exit_files(struct task_struct *tsk)
544{
545 struct files_struct * files = tsk->files;
546
547 if (files) {
548 task_lock(tsk);
549 tsk->files = NULL;
550 task_unlock(tsk);
551 put_files_struct(files);
552 }
553}
554
555#ifdef CONFIG_MM_OWNER
556/*
557 * Task p is exiting and it owned mm, lets find a new owner for it
558 */
559static inline int
560mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
561{
562 /*
563 * If there are other users of the mm and the owner (us) is exiting
564 * we need to find a new owner to take on the responsibility.
565 */
566 if (atomic_read(&mm->mm_users) <= 1)
567 return 0;
568 if (mm->owner != p)
569 return 0;
570 return 1;
571}
572
573void mm_update_next_owner(struct mm_struct *mm)
574{
575 struct task_struct *c, *g, *p = current;
576
577retry:
578 if (!mm_need_new_owner(mm, p))
579 return;
580
581 read_lock(&tasklist_lock);
582 /*
583 * Search in the children
584 */
585 list_for_each_entry(c, &p->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
588 }
589
590 /*
591 * Search in the siblings
592 */
593 list_for_each_entry(c, &p->real_parent->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
596 }
597
598 /*
599 * Search through everything else. We should not get
600 * here often
601 */
602 do_each_thread(g, c) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 } while_each_thread(g, c);
606
607 read_unlock(&tasklist_lock);
608 /*
609 * We found no owner yet mm_users > 1: this implies that we are
610 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
612 */
613 mm->owner = NULL;
614 return;
615
616assign_new_owner:
617 BUG_ON(c == p);
618 get_task_struct(c);
619 /*
620 * The task_lock protects c->mm from changing.
621 * We always want mm->owner->mm == mm
622 */
623 task_lock(c);
624 /*
625 * Delay read_unlock() till we have the task_lock()
626 * to ensure that c does not slip away underneath us
627 */
628 read_unlock(&tasklist_lock);
629 if (c->mm != mm) {
630 task_unlock(c);
631 put_task_struct(c);
632 goto retry;
633 }
634 mm->owner = c;
635 task_unlock(c);
636 put_task_struct(c);
637}
638#endif /* CONFIG_MM_OWNER */
639
640/*
641 * Turn us into a lazy TLB process if we
642 * aren't already..
643 */
644static void exit_mm(struct task_struct * tsk)
645{
646 struct mm_struct *mm = tsk->mm;
647 struct core_state *core_state;
648
649 mm_release(tsk, mm);
650 if (!mm)
651 return;
652 /*
653 * Serialize with any possible pending coredump.
654 * We must hold mmap_sem around checking core_state
655 * and clearing tsk->mm. The core-inducing thread
656 * will increment ->nr_threads for each thread in the
657 * group with ->mm != NULL.
658 */
659 down_read(&mm->mmap_sem);
660 core_state = mm->core_state;
661 if (core_state) {
662 struct core_thread self;
663 up_read(&mm->mmap_sem);
664
665 self.task = tsk;
666 self.next = xchg(&core_state->dumper.next, &self);
667 /*
668 * Implies mb(), the result of xchg() must be visible
669 * to core_state->dumper.
670 */
671 if (atomic_dec_and_test(&core_state->nr_threads))
672 complete(&core_state->startup);
673
674 for (;;) {
675 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
676 if (!self.task) /* see coredump_finish() */
677 break;
678 schedule();
679 }
680 __set_task_state(tsk, TASK_RUNNING);
681 down_read(&mm->mmap_sem);
682 }
683 atomic_inc(&mm->mm_count);
684 BUG_ON(mm != tsk->active_mm);
685 /* more a memory barrier than a real lock */
686 task_lock(tsk);
687 tsk->mm = NULL;
688 up_read(&mm->mmap_sem);
689 enter_lazy_tlb(mm, current);
690 /* We don't want this task to be frozen prematurely */
691 clear_freeze_flag(tsk);
692 task_unlock(tsk);
693 mm_update_next_owner(mm);
694 mmput(mm);
695}
696
697/*
698 * When we die, we re-parent all our children.
699 * Try to give them to another thread in our thread
700 * group, and if no such member exists, give it to
701 * the child reaper process (ie "init") in our pid
702 * space.
703 */
704static struct task_struct *find_new_reaper(struct task_struct *father)
705{
706 struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 struct task_struct *thread;
708
709 thread = father;
710 while_each_thread(father, thread) {
711 if (thread->flags & PF_EXITING)
712 continue;
713 if (unlikely(pid_ns->child_reaper == father))
714 pid_ns->child_reaper = thread;
715 return thread;
716 }
717
718 if (unlikely(pid_ns->child_reaper == father)) {
719 write_unlock_irq(&tasklist_lock);
720 if (unlikely(pid_ns == &init_pid_ns))
721 panic("Attempted to kill init!");
722
723 zap_pid_ns_processes(pid_ns);
724 write_lock_irq(&tasklist_lock);
725 /*
726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere.
729 */
730 pid_ns->child_reaper = init_pid_ns.child_reaper;
731 }
732
733 return pid_ns->child_reaper;
734}
735
736/*
737* Any that need to be release_task'd are put on the @dead list.
738 */
739static void reparent_thread(struct task_struct *father, struct task_struct *p,
740 struct list_head *dead)
741{
742 if (p->pdeath_signal)
743 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
744
745 list_move_tail(&p->sibling, &p->real_parent->children);
746
747 if (task_detached(p))
748 return;
749 /*
750 * If this is a threaded reparent there is no need to
751 * notify anyone anything has happened.
752 */
753 if (same_thread_group(p->real_parent, father))
754 return;
755
756 /* We don't want people slaying init. */
757 p->exit_signal = SIGCHLD;
758
759 /* If it has exited notify the new parent about this child's death. */
760 if (!task_ptrace(p) &&
761 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
762 do_notify_parent(p, p->exit_signal);
763 if (task_detached(p)) {
764 p->exit_state = EXIT_DEAD;
765 list_move_tail(&p->sibling, dead);
766 }
767 }
768
769 kill_orphaned_pgrp(p, father);
770}
771
772static void forget_original_parent(struct task_struct *father)
773{
774 struct task_struct *p, *n, *reaper;
775 LIST_HEAD(dead_children);
776
777 exit_ptrace(father);
778
779 write_lock_irq(&tasklist_lock);
780 reaper = find_new_reaper(father);
781
782 list_for_each_entry_safe(p, n, &father->children, sibling) {
783 p->real_parent = reaper;
784 if (p->parent == father) {
785 BUG_ON(task_ptrace(p));
786 p->parent = p->real_parent;
787 }
788 reparent_thread(father, p, &dead_children);
789 }
790 write_unlock_irq(&tasklist_lock);
791
792 BUG_ON(!list_empty(&father->children));
793
794 list_for_each_entry_safe(p, n, &dead_children, sibling) {
795 list_del_init(&p->sibling);
796 release_task(p);
797 }
798}
799
800/*
801 * Send signals to all our closest relatives so that they know
802 * to properly mourn us..
803 */
804static void exit_notify(struct task_struct *tsk, int group_dead)
805{
806 int signal;
807 void *cookie;
808
809 /*
810 * This does two things:
811 *
812 * A. Make init inherit all the child processes
813 * B. Check to see if any process groups have become orphaned
814 * as a result of our exiting, and if they have any stopped
815 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
816 */
817 forget_original_parent(tsk);
818 exit_task_namespaces(tsk);
819
820 write_lock_irq(&tasklist_lock);
821 if (group_dead)
822 kill_orphaned_pgrp(tsk->group_leader, NULL);
823
824 /* Let father know we died
825 *
826 * Thread signals are configurable, but you aren't going to use
827 * that to send signals to arbitary processes.
828 * That stops right now.
829 *
830 * If the parent exec id doesn't match the exec id we saved
831 * when we started then we know the parent has changed security
832 * domain.
833 *
834 * If our self_exec id doesn't match our parent_exec_id then
835 * we have changed execution domain as these two values started
836 * the same after a fork.
837 */
838 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
839 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
840 tsk->self_exec_id != tsk->parent_exec_id))
841 tsk->exit_signal = SIGCHLD;
842
843 signal = tracehook_notify_death(tsk, &cookie, group_dead);
844 if (signal >= 0)
845 signal = do_notify_parent(tsk, signal);
846
847 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
848
849 /* mt-exec, de_thread() is waiting for us */
850 if (thread_group_leader(tsk) &&
851 tsk->signal->group_exit_task &&
852 tsk->signal->notify_count < 0)
853 wake_up_process(tsk->signal->group_exit_task);
854
855 write_unlock_irq(&tasklist_lock);
856
857 tracehook_report_death(tsk, signal, cookie, group_dead);
858
859 /* If the process is dead, release it - nobody will wait for it */
860 if (signal == DEATH_REAP)
861 release_task(tsk);
862}
863
864#ifdef CONFIG_DEBUG_STACK_USAGE
865static void check_stack_usage(void)
866{
867 static DEFINE_SPINLOCK(low_water_lock);
868 static int lowest_to_date = THREAD_SIZE;
869 unsigned long free;
870
871 free = stack_not_used(current);
872
873 if (free >= lowest_to_date)
874 return;
875
876 spin_lock(&low_water_lock);
877 if (free < lowest_to_date) {
878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
879 "left\n",
880 current->comm, free);
881 lowest_to_date = free;
882 }
883 spin_unlock(&low_water_lock);
884}
885#else
886static inline void check_stack_usage(void) {}
887#endif
888
889NORET_TYPE void do_exit(long code)
890{
891 struct task_struct *tsk = current;
892 int group_dead;
893
894 profile_task_exit(tsk);
895
896 WARN_ON(atomic_read(&tsk->fs_excl));
897
898 if (unlikely(in_interrupt()))
899 panic("Aiee, killing interrupt handler!");
900 if (unlikely(!tsk->pid))
901 panic("Attempted to kill the idle task!");
902
903 tracehook_report_exit(&code);
904
905 /*
906 * We're taking recursive faults here in do_exit. Safest is to just
907 * leave this task alone and wait for reboot.
908 */
909 if (unlikely(tsk->flags & PF_EXITING)) {
910 printk(KERN_ALERT
911 "Fixing recursive fault but reboot is needed!\n");
912 /*
913 * We can do this unlocked here. The futex code uses
914 * this flag just to verify whether the pi state
915 * cleanup has been done or not. In the worst case it
916 * loops once more. We pretend that the cleanup was
917 * done as there is no way to return. Either the
918 * OWNER_DIED bit is set by now or we push the blocked
919 * task into the wait for ever nirwana as well.
920 */
921 tsk->flags |= PF_EXITPIDONE;
922 set_current_state(TASK_UNINTERRUPTIBLE);
923 schedule();
924 }
925
926 exit_irq_thread();
927
928 exit_signals(tsk); /* sets PF_EXITING */
929 /*
930 * tsk->flags are checked in the futex code to protect against
931 * an exiting task cleaning up the robust pi futexes.
932 */
933 smp_mb();
934 spin_unlock_wait(&tsk->pi_lock);
935
936 if (unlikely(in_atomic()))
937 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
938 current->comm, task_pid_nr(current),
939 preempt_count());
940
941 acct_update_integrals(tsk);
942
943 group_dead = atomic_dec_and_test(&tsk->signal->live);
944 if (group_dead) {
945 hrtimer_cancel(&tsk->signal->real_timer);
946 exit_itimers(tsk->signal);
947 }
948 acct_collect(code, group_dead);
949 if (group_dead)
950 tty_audit_exit();
951 if (unlikely(tsk->audit_context))
952 audit_free(tsk);
953
954 tsk->exit_code = code;
955 taskstats_exit(tsk, group_dead);
956
957 exit_mm(tsk);
958
959 if (group_dead)
960 acct_process();
961 trace_sched_process_exit(tsk);
962
963 exit_sem(tsk);
964 exit_files(tsk);
965 exit_fs(tsk);
966 check_stack_usage();
967 exit_thread();
968 cgroup_exit(tsk, 1);
969
970 if (group_dead && tsk->signal->leader)
971 disassociate_ctty(1);
972
973 module_put(task_thread_info(tsk)->exec_domain->module);
974 if (tsk->binfmt)
975 module_put(tsk->binfmt->module);
976
977 proc_exit_connector(tsk);
978
979 /*
980 * Flush inherited counters to the parent - before the parent
981 * gets woken up by child-exit notifications.
982 */
983 perf_counter_exit_task(tsk);
984
985 exit_notify(tsk, group_dead);
986#ifdef CONFIG_NUMA
987 mpol_put(tsk->mempolicy);
988 tsk->mempolicy = NULL;
989#endif
990#ifdef CONFIG_FUTEX
991 if (unlikely(!list_empty(&tsk->pi_state_list)))
992 exit_pi_state_list(tsk);
993 if (unlikely(current->pi_state_cache))
994 kfree(current->pi_state_cache);
995#endif
996 /*
997 * Make sure we are holding no locks:
998 */
999 debug_check_no_locks_held(tsk);
1000 /*
1001 * We can do this unlocked here. The futex code uses this flag
1002 * just to verify whether the pi state cleanup has been done
1003 * or not. In the worst case it loops once more.
1004 */
1005 tsk->flags |= PF_EXITPIDONE;
1006
1007 if (tsk->io_context)
1008 exit_io_context();
1009
1010 if (tsk->splice_pipe)
1011 __free_pipe_info(tsk->splice_pipe);
1012
1013 preempt_disable();
1014 /* causes final put_task_struct in finish_task_switch(). */
1015 tsk->state = TASK_DEAD;
1016 schedule();
1017 BUG();
1018 /* Avoid "noreturn function does return". */
1019 for (;;)
1020 cpu_relax(); /* For when BUG is null */
1021}
1022
1023EXPORT_SYMBOL_GPL(do_exit);
1024
1025NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1026{
1027 if (comp)
1028 complete(comp);
1029
1030 do_exit(code);
1031}
1032
1033EXPORT_SYMBOL(complete_and_exit);
1034
1035SYSCALL_DEFINE1(exit, int, error_code)
1036{
1037 do_exit((error_code&0xff)<<8);
1038}
1039
1040/*
1041 * Take down every thread in the group. This is called by fatal signals
1042 * as well as by sys_exit_group (below).
1043 */
1044NORET_TYPE void
1045do_group_exit(int exit_code)
1046{
1047 struct signal_struct *sig = current->signal;
1048
1049 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1050
1051 if (signal_group_exit(sig))
1052 exit_code = sig->group_exit_code;
1053 else if (!thread_group_empty(current)) {
1054 struct sighand_struct *const sighand = current->sighand;
1055 spin_lock_irq(&sighand->siglock);
1056 if (signal_group_exit(sig))
1057 /* Another thread got here before we took the lock. */
1058 exit_code = sig->group_exit_code;
1059 else {
1060 sig->group_exit_code = exit_code;
1061 sig->flags = SIGNAL_GROUP_EXIT;
1062 zap_other_threads(current);
1063 }
1064 spin_unlock_irq(&sighand->siglock);
1065 }
1066
1067 do_exit(exit_code);
1068 /* NOTREACHED */
1069}
1070
1071/*
1072 * this kills every thread in the thread group. Note that any externally
1073 * wait4()-ing process will get the correct exit code - even if this
1074 * thread is not the thread group leader.
1075 */
1076SYSCALL_DEFINE1(exit_group, int, error_code)
1077{
1078 do_group_exit((error_code & 0xff) << 8);
1079 /* NOTREACHED */
1080 return 0;
1081}
1082
1083struct wait_opts {
1084 enum pid_type wo_type;
1085 int wo_flags;
1086 struct pid *wo_pid;
1087
1088 struct siginfo __user *wo_info;
1089 int __user *wo_stat;
1090 struct rusage __user *wo_rusage;
1091
1092 int notask_error;
1093};
1094
1095static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1096{
1097 struct pid *pid = NULL;
1098 if (type == PIDTYPE_PID)
1099 pid = task->pids[type].pid;
1100 else if (type < PIDTYPE_MAX)
1101 pid = task->group_leader->pids[type].pid;
1102 return pid;
1103}
1104
1105static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1106{
1107 int err;
1108
1109 if (wo->wo_type < PIDTYPE_MAX) {
1110 if (task_pid_type(p, wo->wo_type) != wo->wo_pid)
1111 return 0;
1112 }
1113
1114 /* Wait for all children (clone and not) if __WALL is set;
1115 * otherwise, wait for clone children *only* if __WCLONE is
1116 * set; otherwise, wait for non-clone children *only*. (Note:
1117 * A "clone" child here is one that reports to its parent
1118 * using a signal other than SIGCHLD.) */
1119 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1120 && !(wo->wo_flags & __WALL))
1121 return 0;
1122
1123 err = security_task_wait(p);
1124 if (err)
1125 return err;
1126
1127 return 1;
1128}
1129
1130static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1131 pid_t pid, uid_t uid, int why, int status)
1132{
1133 struct siginfo __user *infop;
1134 int retval = wo->wo_rusage
1135 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1136
1137 put_task_struct(p);
1138 infop = wo->wo_info;
1139 if (!retval)
1140 retval = put_user(SIGCHLD, &infop->si_signo);
1141 if (!retval)
1142 retval = put_user(0, &infop->si_errno);
1143 if (!retval)
1144 retval = put_user((short)why, &infop->si_code);
1145 if (!retval)
1146 retval = put_user(pid, &infop->si_pid);
1147 if (!retval)
1148 retval = put_user(uid, &infop->si_uid);
1149 if (!retval)
1150 retval = put_user(status, &infop->si_status);
1151 if (!retval)
1152 retval = pid;
1153 return retval;
1154}
1155
1156/*
1157 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1158 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1159 * the lock and this task is uninteresting. If we return nonzero, we have
1160 * released the lock and the system call should return.
1161 */
1162static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1163{
1164 unsigned long state;
1165 int retval, status, traced;
1166 pid_t pid = task_pid_vnr(p);
1167 uid_t uid = __task_cred(p)->uid;
1168 struct siginfo __user *infop;
1169
1170 if (!likely(wo->wo_flags & WEXITED))
1171 return 0;
1172
1173 if (unlikely(wo->wo_flags & WNOWAIT)) {
1174 int exit_code = p->exit_code;
1175 int why, status;
1176
1177 get_task_struct(p);
1178 read_unlock(&tasklist_lock);
1179 if ((exit_code & 0x7f) == 0) {
1180 why = CLD_EXITED;
1181 status = exit_code >> 8;
1182 } else {
1183 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1184 status = exit_code & 0x7f;
1185 }
1186 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1187 }
1188
1189 /*
1190 * Try to move the task's state to DEAD
1191 * only one thread is allowed to do this:
1192 */
1193 state = xchg(&p->exit_state, EXIT_DEAD);
1194 if (state != EXIT_ZOMBIE) {
1195 BUG_ON(state != EXIT_DEAD);
1196 return 0;
1197 }
1198
1199 traced = ptrace_reparented(p);
1200
1201 if (likely(!traced)) {
1202 struct signal_struct *psig;
1203 struct signal_struct *sig;
1204
1205 /*
1206 * The resource counters for the group leader are in its
1207 * own task_struct. Those for dead threads in the group
1208 * are in its signal_struct, as are those for the child
1209 * processes it has previously reaped. All these
1210 * accumulate in the parent's signal_struct c* fields.
1211 *
1212 * We don't bother to take a lock here to protect these
1213 * p->signal fields, because they are only touched by
1214 * __exit_signal, which runs with tasklist_lock
1215 * write-locked anyway, and so is excluded here. We do
1216 * need to protect the access to parent->signal fields,
1217 * as other threads in the parent group can be right
1218 * here reaping other children at the same time.
1219 */
1220 spin_lock_irq(&p->real_parent->sighand->siglock);
1221 psig = p->real_parent->signal;
1222 sig = p->signal;
1223 psig->cutime =
1224 cputime_add(psig->cutime,
1225 cputime_add(p->utime,
1226 cputime_add(sig->utime,
1227 sig->cutime)));
1228 psig->cstime =
1229 cputime_add(psig->cstime,
1230 cputime_add(p->stime,
1231 cputime_add(sig->stime,
1232 sig->cstime)));
1233 psig->cgtime =
1234 cputime_add(psig->cgtime,
1235 cputime_add(p->gtime,
1236 cputime_add(sig->gtime,
1237 sig->cgtime)));
1238 psig->cmin_flt +=
1239 p->min_flt + sig->min_flt + sig->cmin_flt;
1240 psig->cmaj_flt +=
1241 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1242 psig->cnvcsw +=
1243 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1244 psig->cnivcsw +=
1245 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1246 psig->cinblock +=
1247 task_io_get_inblock(p) +
1248 sig->inblock + sig->cinblock;
1249 psig->coublock +=
1250 task_io_get_oublock(p) +
1251 sig->oublock + sig->coublock;
1252 task_io_accounting_add(&psig->ioac, &p->ioac);
1253 task_io_accounting_add(&psig->ioac, &sig->ioac);
1254 spin_unlock_irq(&p->real_parent->sighand->siglock);
1255 }
1256
1257 /*
1258 * Now we are sure this task is interesting, and no other
1259 * thread can reap it because we set its state to EXIT_DEAD.
1260 */
1261 read_unlock(&tasklist_lock);
1262
1263 retval = wo->wo_rusage
1264 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1265 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1266 ? p->signal->group_exit_code : p->exit_code;
1267 if (!retval && wo->wo_stat)
1268 retval = put_user(status, wo->wo_stat);
1269
1270 infop = wo->wo_info;
1271 if (!retval && infop)
1272 retval = put_user(SIGCHLD, &infop->si_signo);
1273 if (!retval && infop)
1274 retval = put_user(0, &infop->si_errno);
1275 if (!retval && infop) {
1276 int why;
1277
1278 if ((status & 0x7f) == 0) {
1279 why = CLD_EXITED;
1280 status >>= 8;
1281 } else {
1282 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1283 status &= 0x7f;
1284 }
1285 retval = put_user((short)why, &infop->si_code);
1286 if (!retval)
1287 retval = put_user(status, &infop->si_status);
1288 }
1289 if (!retval && infop)
1290 retval = put_user(pid, &infop->si_pid);
1291 if (!retval && infop)
1292 retval = put_user(uid, &infop->si_uid);
1293 if (!retval)
1294 retval = pid;
1295
1296 if (traced) {
1297 write_lock_irq(&tasklist_lock);
1298 /* We dropped tasklist, ptracer could die and untrace */
1299 ptrace_unlink(p);
1300 /*
1301 * If this is not a detached task, notify the parent.
1302 * If it's still not detached after that, don't release
1303 * it now.
1304 */
1305 if (!task_detached(p)) {
1306 do_notify_parent(p, p->exit_signal);
1307 if (!task_detached(p)) {
1308 p->exit_state = EXIT_ZOMBIE;
1309 p = NULL;
1310 }
1311 }
1312 write_unlock_irq(&tasklist_lock);
1313 }
1314 if (p != NULL)
1315 release_task(p);
1316
1317 return retval;
1318}
1319
1320static int *task_stopped_code(struct task_struct *p, bool ptrace)
1321{
1322 if (ptrace) {
1323 if (task_is_stopped_or_traced(p))
1324 return &p->exit_code;
1325 } else {
1326 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1327 return &p->signal->group_exit_code;
1328 }
1329 return NULL;
1330}
1331
1332/*
1333 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1334 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1335 * the lock and this task is uninteresting. If we return nonzero, we have
1336 * released the lock and the system call should return.
1337 */
1338static int wait_task_stopped(struct wait_opts *wo,
1339 int ptrace, struct task_struct *p)
1340{
1341 struct siginfo __user *infop;
1342 int retval, exit_code, *p_code, why;
1343 uid_t uid = 0; /* unneeded, required by compiler */
1344 pid_t pid;
1345
1346 /*
1347 * Traditionally we see ptrace'd stopped tasks regardless of options.
1348 */
1349 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1350 return 0;
1351
1352 exit_code = 0;
1353 spin_lock_irq(&p->sighand->siglock);
1354
1355 p_code = task_stopped_code(p, ptrace);
1356 if (unlikely(!p_code))
1357 goto unlock_sig;
1358
1359 exit_code = *p_code;
1360 if (!exit_code)
1361 goto unlock_sig;
1362
1363 if (!unlikely(wo->wo_flags & WNOWAIT))
1364 *p_code = 0;
1365
1366 /* don't need the RCU readlock here as we're holding a spinlock */
1367 uid = __task_cred(p)->uid;
1368unlock_sig:
1369 spin_unlock_irq(&p->sighand->siglock);
1370 if (!exit_code)
1371 return 0;
1372
1373 /*
1374 * Now we are pretty sure this task is interesting.
1375 * Make sure it doesn't get reaped out from under us while we
1376 * give up the lock and then examine it below. We don't want to
1377 * keep holding onto the tasklist_lock while we call getrusage and
1378 * possibly take page faults for user memory.
1379 */
1380 get_task_struct(p);
1381 pid = task_pid_vnr(p);
1382 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1383 read_unlock(&tasklist_lock);
1384
1385 if (unlikely(wo->wo_flags & WNOWAIT))
1386 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1387
1388 retval = wo->wo_rusage
1389 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1390 if (!retval && wo->wo_stat)
1391 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1392
1393 infop = wo->wo_info;
1394 if (!retval && infop)
1395 retval = put_user(SIGCHLD, &infop->si_signo);
1396 if (!retval && infop)
1397 retval = put_user(0, &infop->si_errno);
1398 if (!retval && infop)
1399 retval = put_user((short)why, &infop->si_code);
1400 if (!retval && infop)
1401 retval = put_user(exit_code, &infop->si_status);
1402 if (!retval && infop)
1403 retval = put_user(pid, &infop->si_pid);
1404 if (!retval && infop)
1405 retval = put_user(uid, &infop->si_uid);
1406 if (!retval)
1407 retval = pid;
1408 put_task_struct(p);
1409
1410 BUG_ON(!retval);
1411 return retval;
1412}
1413
1414/*
1415 * Handle do_wait work for one task in a live, non-stopped state.
1416 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1417 * the lock and this task is uninteresting. If we return nonzero, we have
1418 * released the lock and the system call should return.
1419 */
1420static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1421{
1422 int retval;
1423 pid_t pid;
1424 uid_t uid;
1425
1426 if (!unlikely(wo->wo_flags & WCONTINUED))
1427 return 0;
1428
1429 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1430 return 0;
1431
1432 spin_lock_irq(&p->sighand->siglock);
1433 /* Re-check with the lock held. */
1434 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1435 spin_unlock_irq(&p->sighand->siglock);
1436 return 0;
1437 }
1438 if (!unlikely(wo->wo_flags & WNOWAIT))
1439 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1440 uid = __task_cred(p)->uid;
1441 spin_unlock_irq(&p->sighand->siglock);
1442
1443 pid = task_pid_vnr(p);
1444 get_task_struct(p);
1445 read_unlock(&tasklist_lock);
1446
1447 if (!wo->wo_info) {
1448 retval = wo->wo_rusage
1449 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1450 put_task_struct(p);
1451 if (!retval && wo->wo_stat)
1452 retval = put_user(0xffff, wo->wo_stat);
1453 if (!retval)
1454 retval = pid;
1455 } else {
1456 retval = wait_noreap_copyout(wo, p, pid, uid,
1457 CLD_CONTINUED, SIGCONT);
1458 BUG_ON(retval == 0);
1459 }
1460
1461 return retval;
1462}
1463
1464/*
1465 * Consider @p for a wait by @parent.
1466 *
1467 * -ECHILD should be in ->notask_error before the first call.
1468 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1469 * Returns zero if the search for a child should continue;
1470 * then ->notask_error is 0 if @p is an eligible child,
1471 * or another error from security_task_wait(), or still -ECHILD.
1472 */
1473static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent,
1474 int ptrace, struct task_struct *p)
1475{
1476 int ret = eligible_child(wo, p);
1477 if (!ret)
1478 return ret;
1479
1480 if (unlikely(ret < 0)) {
1481 /*
1482 * If we have not yet seen any eligible child,
1483 * then let this error code replace -ECHILD.
1484 * A permission error will give the user a clue
1485 * to look for security policy problems, rather
1486 * than for mysterious wait bugs.
1487 */
1488 if (wo->notask_error)
1489 wo->notask_error = ret;
1490 return 0;
1491 }
1492
1493 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1494 /*
1495 * This child is hidden by ptrace.
1496 * We aren't allowed to see it now, but eventually we will.
1497 */
1498 wo->notask_error = 0;
1499 return 0;
1500 }
1501
1502 if (p->exit_state == EXIT_DEAD)
1503 return 0;
1504
1505 /*
1506 * We don't reap group leaders with subthreads.
1507 */
1508 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1509 return wait_task_zombie(wo, p);
1510
1511 /*
1512 * It's stopped or running now, so it might
1513 * later continue, exit, or stop again.
1514 */
1515 wo->notask_error = 0;
1516
1517 if (task_stopped_code(p, ptrace))
1518 return wait_task_stopped(wo, ptrace, p);
1519
1520 return wait_task_continued(wo, p);
1521}
1522
1523/*
1524 * Do the work of do_wait() for one thread in the group, @tsk.
1525 *
1526 * -ECHILD should be in ->notask_error before the first call.
1527 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1528 * Returns zero if the search for a child should continue; then
1529 * ->notask_error is 0 if there were any eligible children,
1530 * or another error from security_task_wait(), or still -ECHILD.
1531 */
1532static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1533{
1534 struct task_struct *p;
1535
1536 list_for_each_entry(p, &tsk->children, sibling) {
1537 /*
1538 * Do not consider detached threads.
1539 */
1540 if (!task_detached(p)) {
1541 int ret = wait_consider_task(wo, tsk, 0, p);
1542 if (ret)
1543 return ret;
1544 }
1545 }
1546
1547 return 0;
1548}
1549
1550static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1551{
1552 struct task_struct *p;
1553
1554 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1555 int ret = wait_consider_task(wo, tsk, 1, p);
1556 if (ret)
1557 return ret;
1558 }
1559
1560 return 0;
1561}
1562
1563static long do_wait(struct wait_opts *wo)
1564{
1565 DECLARE_WAITQUEUE(wait, current);
1566 struct task_struct *tsk;
1567 int retval;
1568
1569 trace_sched_process_wait(wo->wo_pid);
1570
1571 add_wait_queue(&current->signal->wait_chldexit,&wait);
1572repeat:
1573 /*
1574 * If there is nothing that can match our critiera just get out.
1575 * We will clear ->notask_error to zero if we see any child that
1576 * might later match our criteria, even if we are not able to reap
1577 * it yet.
1578 */
1579 wo->notask_error = -ECHILD;
1580 if ((wo->wo_type < PIDTYPE_MAX) &&
1581 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1582 goto notask;
1583
1584 set_current_state(TASK_INTERRUPTIBLE);
1585 read_lock(&tasklist_lock);
1586 tsk = current;
1587 do {
1588 retval = do_wait_thread(wo, tsk);
1589 if (retval)
1590 goto end;
1591
1592 retval = ptrace_do_wait(wo, tsk);
1593 if (retval)
1594 goto end;
1595
1596 if (wo->wo_flags & __WNOTHREAD)
1597 break;
1598 } while_each_thread(current, tsk);
1599 read_unlock(&tasklist_lock);
1600
1601notask:
1602 retval = wo->notask_error;
1603 if (!retval && !(wo->wo_flags & WNOHANG)) {
1604 retval = -ERESTARTSYS;
1605 if (!signal_pending(current)) {
1606 schedule();
1607 goto repeat;
1608 }
1609 }
1610end:
1611 __set_current_state(TASK_RUNNING);
1612 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1613 if (wo->wo_info) {
1614 struct siginfo __user *infop = wo->wo_info;
1615
1616 if (retval > 0)
1617 retval = 0;
1618 else {
1619 /*
1620 * For a WNOHANG return, clear out all the fields
1621 * we would set so the user can easily tell the
1622 * difference.
1623 */
1624 if (!retval)
1625 retval = put_user(0, &infop->si_signo);
1626 if (!retval)
1627 retval = put_user(0, &infop->si_errno);
1628 if (!retval)
1629 retval = put_user(0, &infop->si_code);
1630 if (!retval)
1631 retval = put_user(0, &infop->si_pid);
1632 if (!retval)
1633 retval = put_user(0, &infop->si_uid);
1634 if (!retval)
1635 retval = put_user(0, &infop->si_status);
1636 }
1637 }
1638 return retval;
1639}
1640
1641SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1642 infop, int, options, struct rusage __user *, ru)
1643{
1644 struct wait_opts wo;
1645 struct pid *pid = NULL;
1646 enum pid_type type;
1647 long ret;
1648
1649 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1650 return -EINVAL;
1651 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1652 return -EINVAL;
1653
1654 switch (which) {
1655 case P_ALL:
1656 type = PIDTYPE_MAX;
1657 break;
1658 case P_PID:
1659 type = PIDTYPE_PID;
1660 if (upid <= 0)
1661 return -EINVAL;
1662 break;
1663 case P_PGID:
1664 type = PIDTYPE_PGID;
1665 if (upid <= 0)
1666 return -EINVAL;
1667 break;
1668 default:
1669 return -EINVAL;
1670 }
1671
1672 if (type < PIDTYPE_MAX)
1673 pid = find_get_pid(upid);
1674
1675 wo.wo_type = type;
1676 wo.wo_pid = pid;
1677 wo.wo_flags = options;
1678 wo.wo_info = infop;
1679 wo.wo_stat = NULL;
1680 wo.wo_rusage = ru;
1681 ret = do_wait(&wo);
1682 put_pid(pid);
1683
1684 /* avoid REGPARM breakage on x86: */
1685 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1686 return ret;
1687}
1688
1689SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1690 int, options, struct rusage __user *, ru)
1691{
1692 struct wait_opts wo;
1693 struct pid *pid = NULL;
1694 enum pid_type type;
1695 long ret;
1696
1697 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1698 __WNOTHREAD|__WCLONE|__WALL))
1699 return -EINVAL;
1700
1701 if (upid == -1)
1702 type = PIDTYPE_MAX;
1703 else if (upid < 0) {
1704 type = PIDTYPE_PGID;
1705 pid = find_get_pid(-upid);
1706 } else if (upid == 0) {
1707 type = PIDTYPE_PGID;
1708 pid = get_task_pid(current, PIDTYPE_PGID);
1709 } else /* upid > 0 */ {
1710 type = PIDTYPE_PID;
1711 pid = find_get_pid(upid);
1712 }
1713
1714 wo.wo_type = type;
1715 wo.wo_pid = pid;
1716 wo.wo_flags = options | WEXITED;
1717 wo.wo_info = NULL;
1718 wo.wo_stat = stat_addr;
1719 wo.wo_rusage = ru;
1720 ret = do_wait(&wo);
1721 put_pid(pid);
1722
1723 /* avoid REGPARM breakage on x86: */
1724 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1725 return ret;
1726}
1727
1728#ifdef __ARCH_WANT_SYS_WAITPID
1729
1730/*
1731 * sys_waitpid() remains for compatibility. waitpid() should be
1732 * implemented by calling sys_wait4() from libc.a.
1733 */
1734SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735{
1736 return sys_wait4(pid, stat_addr, options, NULL);
1737}
1738
1739#endif