]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - kernel/fork.c
platform/x86: dell-smbios: Rename dell-smbios source to dell-smbios-base
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
... / ...
CommitLineData
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14#include <linux/slab.h>
15#include <linux/sched/autogroup.h>
16#include <linux/sched/mm.h>
17#include <linux/sched/coredump.h>
18#include <linux/sched/user.h>
19#include <linux/sched/numa_balancing.h>
20#include <linux/sched/stat.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/sched/cputime.h>
24#include <linux/rtmutex.h>
25#include <linux/init.h>
26#include <linux/unistd.h>
27#include <linux/module.h>
28#include <linux/vmalloc.h>
29#include <linux/completion.h>
30#include <linux/personality.h>
31#include <linux/mempolicy.h>
32#include <linux/sem.h>
33#include <linux/file.h>
34#include <linux/fdtable.h>
35#include <linux/iocontext.h>
36#include <linux/key.h>
37#include <linux/binfmts.h>
38#include <linux/mman.h>
39#include <linux/mmu_notifier.h>
40#include <linux/hmm.h>
41#include <linux/fs.h>
42#include <linux/mm.h>
43#include <linux/vmacache.h>
44#include <linux/nsproxy.h>
45#include <linux/capability.h>
46#include <linux/cpu.h>
47#include <linux/cgroup.h>
48#include <linux/security.h>
49#include <linux/hugetlb.h>
50#include <linux/seccomp.h>
51#include <linux/swap.h>
52#include <linux/syscalls.h>
53#include <linux/jiffies.h>
54#include <linux/futex.h>
55#include <linux/compat.h>
56#include <linux/kthread.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/rcupdate.h>
59#include <linux/ptrace.h>
60#include <linux/mount.h>
61#include <linux/audit.h>
62#include <linux/memcontrol.h>
63#include <linux/ftrace.h>
64#include <linux/proc_fs.h>
65#include <linux/profile.h>
66#include <linux/rmap.h>
67#include <linux/ksm.h>
68#include <linux/acct.h>
69#include <linux/userfaultfd_k.h>
70#include <linux/tsacct_kern.h>
71#include <linux/cn_proc.h>
72#include <linux/freezer.h>
73#include <linux/delayacct.h>
74#include <linux/taskstats_kern.h>
75#include <linux/random.h>
76#include <linux/tty.h>
77#include <linux/blkdev.h>
78#include <linux/fs_struct.h>
79#include <linux/magic.h>
80#include <linux/perf_event.h>
81#include <linux/posix-timers.h>
82#include <linux/user-return-notifier.h>
83#include <linux/oom.h>
84#include <linux/khugepaged.h>
85#include <linux/signalfd.h>
86#include <linux/uprobes.h>
87#include <linux/aio.h>
88#include <linux/compiler.h>
89#include <linux/sysctl.h>
90#include <linux/kcov.h>
91#include <linux/livepatch.h>
92#include <linux/thread_info.h>
93
94#include <asm/pgtable.h>
95#include <asm/pgalloc.h>
96#include <linux/uaccess.h>
97#include <asm/mmu_context.h>
98#include <asm/cacheflush.h>
99#include <asm/tlbflush.h>
100
101#include <trace/events/sched.h>
102
103#define CREATE_TRACE_POINTS
104#include <trace/events/task.h>
105#ifdef CONFIG_USER_NS
106extern int unprivileged_userns_clone;
107#else
108#define unprivileged_userns_clone 0
109#endif
110
111/*
112 * Minimum number of threads to boot the kernel
113 */
114#define MIN_THREADS 20
115
116/*
117 * Maximum number of threads
118 */
119#define MAX_THREADS FUTEX_TID_MASK
120
121/*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124unsigned long total_forks; /* Handle normal Linux uptimes. */
125int nr_threads; /* The idle threads do not count.. */
126
127int max_threads; /* tunable limit on nr_threads */
128
129DEFINE_PER_CPU(unsigned long, process_counts) = 0;
130
131__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
132
133#ifdef CONFIG_PROVE_RCU
134int lockdep_tasklist_lock_is_held(void)
135{
136 return lockdep_is_held(&tasklist_lock);
137}
138EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
139#endif /* #ifdef CONFIG_PROVE_RCU */
140
141int nr_processes(void)
142{
143 int cpu;
144 int total = 0;
145
146 for_each_possible_cpu(cpu)
147 total += per_cpu(process_counts, cpu);
148
149 return total;
150}
151
152void __weak arch_release_task_struct(struct task_struct *tsk)
153{
154}
155
156#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
157static struct kmem_cache *task_struct_cachep;
158
159static inline struct task_struct *alloc_task_struct_node(int node)
160{
161 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
162}
163
164static inline void free_task_struct(struct task_struct *tsk)
165{
166 kmem_cache_free(task_struct_cachep, tsk);
167}
168#endif
169
170void __weak arch_release_thread_stack(unsigned long *stack)
171{
172}
173
174#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
175
176/*
177 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
178 * kmemcache based allocator.
179 */
180# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
181
182#ifdef CONFIG_VMAP_STACK
183/*
184 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
185 * flush. Try to minimize the number of calls by caching stacks.
186 */
187#define NR_CACHED_STACKS 2
188static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
189
190static int free_vm_stack_cache(unsigned int cpu)
191{
192 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
193 int i;
194
195 for (i = 0; i < NR_CACHED_STACKS; i++) {
196 struct vm_struct *vm_stack = cached_vm_stacks[i];
197
198 if (!vm_stack)
199 continue;
200
201 vfree(vm_stack->addr);
202 cached_vm_stacks[i] = NULL;
203 }
204
205 return 0;
206}
207#endif
208
209static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
210{
211#ifdef CONFIG_VMAP_STACK
212 void *stack;
213 int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *s;
217
218 s = this_cpu_xchg(cached_stacks[i], NULL);
219
220 if (!s)
221 continue;
222
223#ifdef CONFIG_DEBUG_KMEMLEAK
224 /* Clear stale pointers from reused stack. */
225 memset(s->addr, 0, THREAD_SIZE);
226#endif
227 tsk->stack_vm_area = s;
228 return s->addr;
229 }
230
231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 VMALLOC_START, VMALLOC_END,
233 THREADINFO_GFP,
234 PAGE_KERNEL,
235 0, node, __builtin_return_address(0));
236
237 /*
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
241 */
242 if (stack)
243 tsk->stack_vm_area = find_vm_area(stack);
244 return stack;
245#else
246 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
247 THREAD_SIZE_ORDER);
248
249 return page ? page_address(page) : NULL;
250#endif
251}
252
253static inline void free_thread_stack(struct task_struct *tsk)
254{
255#ifdef CONFIG_VMAP_STACK
256 if (task_stack_vm_area(tsk)) {
257 int i;
258
259 for (i = 0; i < NR_CACHED_STACKS; i++) {
260 if (this_cpu_cmpxchg(cached_stacks[i],
261 NULL, tsk->stack_vm_area) != NULL)
262 continue;
263
264 return;
265 }
266
267 vfree_atomic(tsk->stack);
268 return;
269 }
270#endif
271
272 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
273}
274# else
275static struct kmem_cache *thread_stack_cache;
276
277static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
278 int node)
279{
280 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
281}
282
283static void free_thread_stack(struct task_struct *tsk)
284{
285 kmem_cache_free(thread_stack_cache, tsk->stack);
286}
287
288void thread_stack_cache_init(void)
289{
290 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
291 THREAD_SIZE, 0, NULL);
292 BUG_ON(thread_stack_cache == NULL);
293}
294# endif
295#endif
296
297/* SLAB cache for signal_struct structures (tsk->signal) */
298static struct kmem_cache *signal_cachep;
299
300/* SLAB cache for sighand_struct structures (tsk->sighand) */
301struct kmem_cache *sighand_cachep;
302
303/* SLAB cache for files_struct structures (tsk->files) */
304struct kmem_cache *files_cachep;
305
306/* SLAB cache for fs_struct structures (tsk->fs) */
307struct kmem_cache *fs_cachep;
308
309/* SLAB cache for vm_area_struct structures */
310struct kmem_cache *vm_area_cachep;
311
312/* SLAB cache for mm_struct structures (tsk->mm) */
313static struct kmem_cache *mm_cachep;
314
315static void account_kernel_stack(struct task_struct *tsk, int account)
316{
317 void *stack = task_stack_page(tsk);
318 struct vm_struct *vm = task_stack_vm_area(tsk);
319
320 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
321
322 if (vm) {
323 int i;
324
325 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
326
327 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
328 mod_zone_page_state(page_zone(vm->pages[i]),
329 NR_KERNEL_STACK_KB,
330 PAGE_SIZE / 1024 * account);
331 }
332
333 /* All stack pages belong to the same memcg. */
334 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
335 account * (THREAD_SIZE / 1024));
336 } else {
337 /*
338 * All stack pages are in the same zone and belong to the
339 * same memcg.
340 */
341 struct page *first_page = virt_to_page(stack);
342
343 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
344 THREAD_SIZE / 1024 * account);
345
346 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
347 account * (THREAD_SIZE / 1024));
348 }
349}
350
351static void release_task_stack(struct task_struct *tsk)
352{
353 if (WARN_ON(tsk->state != TASK_DEAD))
354 return; /* Better to leak the stack than to free prematurely */
355
356 account_kernel_stack(tsk, -1);
357 arch_release_thread_stack(tsk->stack);
358 free_thread_stack(tsk);
359 tsk->stack = NULL;
360#ifdef CONFIG_VMAP_STACK
361 tsk->stack_vm_area = NULL;
362#endif
363}
364
365#ifdef CONFIG_THREAD_INFO_IN_TASK
366void put_task_stack(struct task_struct *tsk)
367{
368 if (atomic_dec_and_test(&tsk->stack_refcount))
369 release_task_stack(tsk);
370}
371#endif
372
373void free_task(struct task_struct *tsk)
374{
375#ifndef CONFIG_THREAD_INFO_IN_TASK
376 /*
377 * The task is finally done with both the stack and thread_info,
378 * so free both.
379 */
380 release_task_stack(tsk);
381#else
382 /*
383 * If the task had a separate stack allocation, it should be gone
384 * by now.
385 */
386 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
387#endif
388 rt_mutex_debug_task_free(tsk);
389 ftrace_graph_exit_task(tsk);
390 put_seccomp_filter(tsk);
391 arch_release_task_struct(tsk);
392 if (tsk->flags & PF_KTHREAD)
393 free_kthread_struct(tsk);
394 free_task_struct(tsk);
395}
396EXPORT_SYMBOL(free_task);
397
398static inline void free_signal_struct(struct signal_struct *sig)
399{
400 taskstats_tgid_free(sig);
401 sched_autogroup_exit(sig);
402 /*
403 * __mmdrop is not safe to call from softirq context on x86 due to
404 * pgd_dtor so postpone it to the async context
405 */
406 if (sig->oom_mm)
407 mmdrop_async(sig->oom_mm);
408 kmem_cache_free(signal_cachep, sig);
409}
410
411static inline void put_signal_struct(struct signal_struct *sig)
412{
413 if (atomic_dec_and_test(&sig->sigcnt))
414 free_signal_struct(sig);
415}
416
417void __put_task_struct(struct task_struct *tsk)
418{
419 WARN_ON(!tsk->exit_state);
420 WARN_ON(atomic_read(&tsk->usage));
421 WARN_ON(tsk == current);
422
423 cgroup_free(tsk);
424 task_numa_free(tsk);
425 security_task_free(tsk);
426 exit_creds(tsk);
427 delayacct_tsk_free(tsk);
428 put_signal_struct(tsk->signal);
429
430 if (!profile_handoff_task(tsk))
431 free_task(tsk);
432}
433EXPORT_SYMBOL_GPL(__put_task_struct);
434
435void __init __weak arch_task_cache_init(void) { }
436
437/*
438 * set_max_threads
439 */
440static void set_max_threads(unsigned int max_threads_suggested)
441{
442 u64 threads;
443
444 /*
445 * The number of threads shall be limited such that the thread
446 * structures may only consume a small part of the available memory.
447 */
448 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
449 threads = MAX_THREADS;
450 else
451 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
452 (u64) THREAD_SIZE * 8UL);
453
454 if (threads > max_threads_suggested)
455 threads = max_threads_suggested;
456
457 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
458}
459
460#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
461/* Initialized by the architecture: */
462int arch_task_struct_size __read_mostly;
463#endif
464
465void __init fork_init(void)
466{
467 int i;
468#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
469#ifndef ARCH_MIN_TASKALIGN
470#define ARCH_MIN_TASKALIGN 0
471#endif
472 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
473
474 /* create a slab on which task_structs can be allocated */
475 task_struct_cachep = kmem_cache_create("task_struct",
476 arch_task_struct_size, align,
477 SLAB_PANIC|SLAB_ACCOUNT, NULL);
478#endif
479
480 /* do the arch specific task caches init */
481 arch_task_cache_init();
482
483 set_max_threads(MAX_THREADS);
484
485 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
486 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
487 init_task.signal->rlim[RLIMIT_SIGPENDING] =
488 init_task.signal->rlim[RLIMIT_NPROC];
489
490 for (i = 0; i < UCOUNT_COUNTS; i++) {
491 init_user_ns.ucount_max[i] = max_threads/2;
492 }
493
494#ifdef CONFIG_VMAP_STACK
495 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
496 NULL, free_vm_stack_cache);
497#endif
498
499 lockdep_init_task(&init_task);
500}
501
502int __weak arch_dup_task_struct(struct task_struct *dst,
503 struct task_struct *src)
504{
505 *dst = *src;
506 return 0;
507}
508
509void set_task_stack_end_magic(struct task_struct *tsk)
510{
511 unsigned long *stackend;
512
513 stackend = end_of_stack(tsk);
514 *stackend = STACK_END_MAGIC; /* for overflow detection */
515}
516
517static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
518{
519 struct task_struct *tsk;
520 unsigned long *stack;
521 struct vm_struct *stack_vm_area;
522 int err;
523
524 if (node == NUMA_NO_NODE)
525 node = tsk_fork_get_node(orig);
526 tsk = alloc_task_struct_node(node);
527 if (!tsk)
528 return NULL;
529
530 stack = alloc_thread_stack_node(tsk, node);
531 if (!stack)
532 goto free_tsk;
533
534 stack_vm_area = task_stack_vm_area(tsk);
535
536 err = arch_dup_task_struct(tsk, orig);
537
538 /*
539 * arch_dup_task_struct() clobbers the stack-related fields. Make
540 * sure they're properly initialized before using any stack-related
541 * functions again.
542 */
543 tsk->stack = stack;
544#ifdef CONFIG_VMAP_STACK
545 tsk->stack_vm_area = stack_vm_area;
546#endif
547#ifdef CONFIG_THREAD_INFO_IN_TASK
548 atomic_set(&tsk->stack_refcount, 1);
549#endif
550
551 if (err)
552 goto free_stack;
553
554#ifdef CONFIG_SECCOMP
555 /*
556 * We must handle setting up seccomp filters once we're under
557 * the sighand lock in case orig has changed between now and
558 * then. Until then, filter must be NULL to avoid messing up
559 * the usage counts on the error path calling free_task.
560 */
561 tsk->seccomp.filter = NULL;
562#endif
563
564 setup_thread_stack(tsk, orig);
565 clear_user_return_notifier(tsk);
566 clear_tsk_need_resched(tsk);
567 set_task_stack_end_magic(tsk);
568
569#ifdef CONFIG_CC_STACKPROTECTOR
570 tsk->stack_canary = get_random_canary();
571#endif
572
573 /*
574 * One for us, one for whoever does the "release_task()" (usually
575 * parent)
576 */
577 atomic_set(&tsk->usage, 2);
578#ifdef CONFIG_BLK_DEV_IO_TRACE
579 tsk->btrace_seq = 0;
580#endif
581 tsk->splice_pipe = NULL;
582 tsk->task_frag.page = NULL;
583 tsk->wake_q.next = NULL;
584
585 account_kernel_stack(tsk, 1);
586
587 kcov_task_init(tsk);
588
589#ifdef CONFIG_FAULT_INJECTION
590 tsk->fail_nth = 0;
591#endif
592
593 return tsk;
594
595free_stack:
596 free_thread_stack(tsk);
597free_tsk:
598 free_task_struct(tsk);
599 return NULL;
600}
601
602#ifdef CONFIG_MMU
603static __latent_entropy int dup_mmap(struct mm_struct *mm,
604 struct mm_struct *oldmm)
605{
606 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
607 struct rb_node **rb_link, *rb_parent;
608 int retval;
609 unsigned long charge;
610 LIST_HEAD(uf);
611
612 uprobe_start_dup_mmap();
613 if (down_write_killable(&oldmm->mmap_sem)) {
614 retval = -EINTR;
615 goto fail_uprobe_end;
616 }
617 flush_cache_dup_mm(oldmm);
618 uprobe_dup_mmap(oldmm, mm);
619 /*
620 * Not linked in yet - no deadlock potential:
621 */
622 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
623
624 /* No ordering required: file already has been exposed. */
625 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
626
627 mm->total_vm = oldmm->total_vm;
628 mm->data_vm = oldmm->data_vm;
629 mm->exec_vm = oldmm->exec_vm;
630 mm->stack_vm = oldmm->stack_vm;
631
632 rb_link = &mm->mm_rb.rb_node;
633 rb_parent = NULL;
634 pprev = &mm->mmap;
635 retval = ksm_fork(mm, oldmm);
636 if (retval)
637 goto out;
638 retval = khugepaged_fork(mm, oldmm);
639 if (retval)
640 goto out;
641
642 prev = NULL;
643 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
644 struct file *file;
645
646 if (mpnt->vm_flags & VM_DONTCOPY) {
647 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
648 continue;
649 }
650 charge = 0;
651 if (mpnt->vm_flags & VM_ACCOUNT) {
652 unsigned long len = vma_pages(mpnt);
653
654 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
655 goto fail_nomem;
656 charge = len;
657 }
658 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
659 if (!tmp)
660 goto fail_nomem;
661 *tmp = *mpnt;
662 INIT_LIST_HEAD(&tmp->anon_vma_chain);
663 retval = vma_dup_policy(mpnt, tmp);
664 if (retval)
665 goto fail_nomem_policy;
666 tmp->vm_mm = mm;
667 retval = dup_userfaultfd(tmp, &uf);
668 if (retval)
669 goto fail_nomem_anon_vma_fork;
670 if (tmp->vm_flags & VM_WIPEONFORK) {
671 /* VM_WIPEONFORK gets a clean slate in the child. */
672 tmp->anon_vma = NULL;
673 if (anon_vma_prepare(tmp))
674 goto fail_nomem_anon_vma_fork;
675 } else if (anon_vma_fork(tmp, mpnt))
676 goto fail_nomem_anon_vma_fork;
677 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
678 tmp->vm_next = tmp->vm_prev = NULL;
679 file = tmp->vm_file;
680 if (file) {
681 struct inode *inode = file_inode(file);
682 struct address_space *mapping = file->f_mapping;
683
684 vma_get_file(tmp);
685 if (tmp->vm_flags & VM_DENYWRITE)
686 atomic_dec(&inode->i_writecount);
687 i_mmap_lock_write(mapping);
688 if (tmp->vm_flags & VM_SHARED)
689 atomic_inc(&mapping->i_mmap_writable);
690 flush_dcache_mmap_lock(mapping);
691 /* insert tmp into the share list, just after mpnt */
692 vma_interval_tree_insert_after(tmp, mpnt,
693 &mapping->i_mmap);
694 flush_dcache_mmap_unlock(mapping);
695 i_mmap_unlock_write(mapping);
696 }
697
698 /*
699 * Clear hugetlb-related page reserves for children. This only
700 * affects MAP_PRIVATE mappings. Faults generated by the child
701 * are not guaranteed to succeed, even if read-only
702 */
703 if (is_vm_hugetlb_page(tmp))
704 reset_vma_resv_huge_pages(tmp);
705
706 /*
707 * Link in the new vma and copy the page table entries.
708 */
709 *pprev = tmp;
710 pprev = &tmp->vm_next;
711 tmp->vm_prev = prev;
712 prev = tmp;
713
714 __vma_link_rb(mm, tmp, rb_link, rb_parent);
715 rb_link = &tmp->vm_rb.rb_right;
716 rb_parent = &tmp->vm_rb;
717
718 mm->map_count++;
719 if (!(tmp->vm_flags & VM_WIPEONFORK))
720 retval = copy_page_range(mm, oldmm, mpnt);
721
722 if (tmp->vm_ops && tmp->vm_ops->open)
723 tmp->vm_ops->open(tmp);
724
725 if (retval)
726 goto out;
727 }
728 /* a new mm has just been created */
729 retval = arch_dup_mmap(oldmm, mm);
730out:
731 up_write(&mm->mmap_sem);
732 flush_tlb_mm(oldmm);
733 up_write(&oldmm->mmap_sem);
734 dup_userfaultfd_complete(&uf);
735fail_uprobe_end:
736 uprobe_end_dup_mmap();
737 return retval;
738fail_nomem_anon_vma_fork:
739 mpol_put(vma_policy(tmp));
740fail_nomem_policy:
741 kmem_cache_free(vm_area_cachep, tmp);
742fail_nomem:
743 retval = -ENOMEM;
744 vm_unacct_memory(charge);
745 goto out;
746}
747
748static inline int mm_alloc_pgd(struct mm_struct *mm)
749{
750 mm->pgd = pgd_alloc(mm);
751 if (unlikely(!mm->pgd))
752 return -ENOMEM;
753 return 0;
754}
755
756static inline void mm_free_pgd(struct mm_struct *mm)
757{
758 pgd_free(mm, mm->pgd);
759}
760#else
761static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
762{
763 down_write(&oldmm->mmap_sem);
764 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
765 up_write(&oldmm->mmap_sem);
766 return 0;
767}
768#define mm_alloc_pgd(mm) (0)
769#define mm_free_pgd(mm)
770#endif /* CONFIG_MMU */
771
772__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
773
774#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
775#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
776
777static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
778
779static int __init coredump_filter_setup(char *s)
780{
781 default_dump_filter =
782 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
783 MMF_DUMP_FILTER_MASK;
784 return 1;
785}
786
787__setup("coredump_filter=", coredump_filter_setup);
788
789#include <linux/init_task.h>
790
791static void mm_init_aio(struct mm_struct *mm)
792{
793#ifdef CONFIG_AIO
794 spin_lock_init(&mm->ioctx_lock);
795 mm->ioctx_table = NULL;
796#endif
797}
798
799static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
800{
801#ifdef CONFIG_MEMCG
802 mm->owner = p;
803#endif
804}
805
806static void mm_init_uprobes_state(struct mm_struct *mm)
807{
808#ifdef CONFIG_UPROBES
809 mm->uprobes_state.xol_area = NULL;
810#endif
811}
812
813static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
814 struct user_namespace *user_ns)
815{
816 mm->mmap = NULL;
817 mm->mm_rb = RB_ROOT;
818 mm->vmacache_seqnum = 0;
819 atomic_set(&mm->mm_users, 1);
820 atomic_set(&mm->mm_count, 1);
821 init_rwsem(&mm->mmap_sem);
822 INIT_LIST_HEAD(&mm->mmlist);
823 mm->core_state = NULL;
824 mm_pgtables_bytes_init(mm);
825 mm->map_count = 0;
826 mm->locked_vm = 0;
827 mm->pinned_vm = 0;
828 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
829 spin_lock_init(&mm->page_table_lock);
830 mm_init_cpumask(mm);
831 mm_init_aio(mm);
832 mm_init_owner(mm, p);
833 RCU_INIT_POINTER(mm->exe_file, NULL);
834 mmu_notifier_mm_init(mm);
835 hmm_mm_init(mm);
836 init_tlb_flush_pending(mm);
837#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838 mm->pmd_huge_pte = NULL;
839#endif
840 mm_init_uprobes_state(mm);
841
842 if (current->mm) {
843 mm->flags = current->mm->flags & MMF_INIT_MASK;
844 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
845 } else {
846 mm->flags = default_dump_filter;
847 mm->def_flags = 0;
848 }
849
850 if (mm_alloc_pgd(mm))
851 goto fail_nopgd;
852
853 if (init_new_context(p, mm))
854 goto fail_nocontext;
855
856 mm->user_ns = get_user_ns(user_ns);
857 return mm;
858
859fail_nocontext:
860 mm_free_pgd(mm);
861fail_nopgd:
862 free_mm(mm);
863 return NULL;
864}
865
866static void check_mm(struct mm_struct *mm)
867{
868 int i;
869
870 for (i = 0; i < NR_MM_COUNTERS; i++) {
871 long x = atomic_long_read(&mm->rss_stat.count[i]);
872
873 if (unlikely(x))
874 printk(KERN_ALERT "BUG: Bad rss-counter state "
875 "mm:%p idx:%d val:%ld\n", mm, i, x);
876 }
877
878 if (mm_pgtables_bytes(mm))
879 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
880 mm_pgtables_bytes(mm));
881
882#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
883 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
884#endif
885}
886
887/*
888 * Allocate and initialize an mm_struct.
889 */
890struct mm_struct *mm_alloc(void)
891{
892 struct mm_struct *mm;
893
894 mm = allocate_mm();
895 if (!mm)
896 return NULL;
897
898 memset(mm, 0, sizeof(*mm));
899 return mm_init(mm, current, current_user_ns());
900}
901
902/*
903 * Called when the last reference to the mm
904 * is dropped: either by a lazy thread or by
905 * mmput. Free the page directory and the mm.
906 */
907void __mmdrop(struct mm_struct *mm)
908{
909 BUG_ON(mm == &init_mm);
910 mm_free_pgd(mm);
911 destroy_context(mm);
912 hmm_mm_destroy(mm);
913 mmu_notifier_mm_destroy(mm);
914 check_mm(mm);
915 put_user_ns(mm->user_ns);
916 free_mm(mm);
917}
918EXPORT_SYMBOL_GPL(__mmdrop);
919
920static inline void __mmput(struct mm_struct *mm)
921{
922 VM_BUG_ON(atomic_read(&mm->mm_users));
923
924 uprobe_clear_state(mm);
925 exit_aio(mm);
926 ksm_exit(mm);
927 khugepaged_exit(mm); /* must run before exit_mmap */
928 exit_mmap(mm);
929 mm_put_huge_zero_page(mm);
930 set_mm_exe_file(mm, NULL);
931 if (!list_empty(&mm->mmlist)) {
932 spin_lock(&mmlist_lock);
933 list_del(&mm->mmlist);
934 spin_unlock(&mmlist_lock);
935 }
936 if (mm->binfmt)
937 module_put(mm->binfmt->module);
938 mmdrop(mm);
939}
940
941/*
942 * Decrement the use count and release all resources for an mm.
943 */
944void mmput(struct mm_struct *mm)
945{
946 might_sleep();
947
948 if (atomic_dec_and_test(&mm->mm_users))
949 __mmput(mm);
950}
951EXPORT_SYMBOL_GPL(mmput);
952
953#ifdef CONFIG_MMU
954static void mmput_async_fn(struct work_struct *work)
955{
956 struct mm_struct *mm = container_of(work, struct mm_struct,
957 async_put_work);
958
959 __mmput(mm);
960}
961
962void mmput_async(struct mm_struct *mm)
963{
964 if (atomic_dec_and_test(&mm->mm_users)) {
965 INIT_WORK(&mm->async_put_work, mmput_async_fn);
966 schedule_work(&mm->async_put_work);
967 }
968}
969#endif
970
971/**
972 * set_mm_exe_file - change a reference to the mm's executable file
973 *
974 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
975 *
976 * Main users are mmput() and sys_execve(). Callers prevent concurrent
977 * invocations: in mmput() nobody alive left, in execve task is single
978 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
979 * mm->exe_file, but does so without using set_mm_exe_file() in order
980 * to do avoid the need for any locks.
981 */
982void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
983{
984 struct file *old_exe_file;
985
986 /*
987 * It is safe to dereference the exe_file without RCU as
988 * this function is only called if nobody else can access
989 * this mm -- see comment above for justification.
990 */
991 old_exe_file = rcu_dereference_raw(mm->exe_file);
992
993 if (new_exe_file)
994 get_file(new_exe_file);
995 rcu_assign_pointer(mm->exe_file, new_exe_file);
996 if (old_exe_file)
997 fput(old_exe_file);
998}
999
1000/**
1001 * get_mm_exe_file - acquire a reference to the mm's executable file
1002 *
1003 * Returns %NULL if mm has no associated executable file.
1004 * User must release file via fput().
1005 */
1006struct file *get_mm_exe_file(struct mm_struct *mm)
1007{
1008 struct file *exe_file;
1009
1010 rcu_read_lock();
1011 exe_file = rcu_dereference(mm->exe_file);
1012 if (exe_file && !get_file_rcu(exe_file))
1013 exe_file = NULL;
1014 rcu_read_unlock();
1015 return exe_file;
1016}
1017EXPORT_SYMBOL(get_mm_exe_file);
1018
1019/**
1020 * get_task_exe_file - acquire a reference to the task's executable file
1021 *
1022 * Returns %NULL if task's mm (if any) has no associated executable file or
1023 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1024 * User must release file via fput().
1025 */
1026struct file *get_task_exe_file(struct task_struct *task)
1027{
1028 struct file *exe_file = NULL;
1029 struct mm_struct *mm;
1030
1031 task_lock(task);
1032 mm = task->mm;
1033 if (mm) {
1034 if (!(task->flags & PF_KTHREAD))
1035 exe_file = get_mm_exe_file(mm);
1036 }
1037 task_unlock(task);
1038 return exe_file;
1039}
1040EXPORT_SYMBOL(get_task_exe_file);
1041
1042/**
1043 * get_task_mm - acquire a reference to the task's mm
1044 *
1045 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1046 * this kernel workthread has transiently adopted a user mm with use_mm,
1047 * to do its AIO) is not set and if so returns a reference to it, after
1048 * bumping up the use count. User must release the mm via mmput()
1049 * after use. Typically used by /proc and ptrace.
1050 */
1051struct mm_struct *get_task_mm(struct task_struct *task)
1052{
1053 struct mm_struct *mm;
1054
1055 task_lock(task);
1056 mm = task->mm;
1057 if (mm) {
1058 if (task->flags & PF_KTHREAD)
1059 mm = NULL;
1060 else
1061 mmget(mm);
1062 }
1063 task_unlock(task);
1064 return mm;
1065}
1066EXPORT_SYMBOL_GPL(get_task_mm);
1067
1068struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1069{
1070 struct mm_struct *mm;
1071 int err;
1072
1073 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1074 if (err)
1075 return ERR_PTR(err);
1076
1077 mm = get_task_mm(task);
1078 if (mm && mm != current->mm &&
1079 !ptrace_may_access(task, mode)) {
1080 mmput(mm);
1081 mm = ERR_PTR(-EACCES);
1082 }
1083 mutex_unlock(&task->signal->cred_guard_mutex);
1084
1085 return mm;
1086}
1087
1088static void complete_vfork_done(struct task_struct *tsk)
1089{
1090 struct completion *vfork;
1091
1092 task_lock(tsk);
1093 vfork = tsk->vfork_done;
1094 if (likely(vfork)) {
1095 tsk->vfork_done = NULL;
1096 complete(vfork);
1097 }
1098 task_unlock(tsk);
1099}
1100
1101static int wait_for_vfork_done(struct task_struct *child,
1102 struct completion *vfork)
1103{
1104 int killed;
1105
1106 freezer_do_not_count();
1107 killed = wait_for_completion_killable(vfork);
1108 freezer_count();
1109
1110 if (killed) {
1111 task_lock(child);
1112 child->vfork_done = NULL;
1113 task_unlock(child);
1114 }
1115
1116 put_task_struct(child);
1117 return killed;
1118}
1119
1120/* Please note the differences between mmput and mm_release.
1121 * mmput is called whenever we stop holding onto a mm_struct,
1122 * error success whatever.
1123 *
1124 * mm_release is called after a mm_struct has been removed
1125 * from the current process.
1126 *
1127 * This difference is important for error handling, when we
1128 * only half set up a mm_struct for a new process and need to restore
1129 * the old one. Because we mmput the new mm_struct before
1130 * restoring the old one. . .
1131 * Eric Biederman 10 January 1998
1132 */
1133void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1134{
1135 /* Get rid of any futexes when releasing the mm */
1136#ifdef CONFIG_FUTEX
1137 if (unlikely(tsk->robust_list)) {
1138 exit_robust_list(tsk);
1139 tsk->robust_list = NULL;
1140 }
1141#ifdef CONFIG_COMPAT
1142 if (unlikely(tsk->compat_robust_list)) {
1143 compat_exit_robust_list(tsk);
1144 tsk->compat_robust_list = NULL;
1145 }
1146#endif
1147 if (unlikely(!list_empty(&tsk->pi_state_list)))
1148 exit_pi_state_list(tsk);
1149#endif
1150
1151 uprobe_free_utask(tsk);
1152
1153 /* Get rid of any cached register state */
1154 deactivate_mm(tsk, mm);
1155
1156 /*
1157 * Signal userspace if we're not exiting with a core dump
1158 * because we want to leave the value intact for debugging
1159 * purposes.
1160 */
1161 if (tsk->clear_child_tid) {
1162 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1163 atomic_read(&mm->mm_users) > 1) {
1164 /*
1165 * We don't check the error code - if userspace has
1166 * not set up a proper pointer then tough luck.
1167 */
1168 put_user(0, tsk->clear_child_tid);
1169 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1170 1, NULL, NULL, 0);
1171 }
1172 tsk->clear_child_tid = NULL;
1173 }
1174
1175 /*
1176 * All done, finally we can wake up parent and return this mm to him.
1177 * Also kthread_stop() uses this completion for synchronization.
1178 */
1179 if (tsk->vfork_done)
1180 complete_vfork_done(tsk);
1181}
1182
1183/*
1184 * Allocate a new mm structure and copy contents from the
1185 * mm structure of the passed in task structure.
1186 */
1187static struct mm_struct *dup_mm(struct task_struct *tsk)
1188{
1189 struct mm_struct *mm, *oldmm = current->mm;
1190 int err;
1191
1192 mm = allocate_mm();
1193 if (!mm)
1194 goto fail_nomem;
1195
1196 memcpy(mm, oldmm, sizeof(*mm));
1197
1198 if (!mm_init(mm, tsk, mm->user_ns))
1199 goto fail_nomem;
1200
1201 err = dup_mmap(mm, oldmm);
1202 if (err)
1203 goto free_pt;
1204
1205 mm->hiwater_rss = get_mm_rss(mm);
1206 mm->hiwater_vm = mm->total_vm;
1207
1208 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1209 goto free_pt;
1210
1211 return mm;
1212
1213free_pt:
1214 /* don't put binfmt in mmput, we haven't got module yet */
1215 mm->binfmt = NULL;
1216 mmput(mm);
1217
1218fail_nomem:
1219 return NULL;
1220}
1221
1222static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1223{
1224 struct mm_struct *mm, *oldmm;
1225 int retval;
1226
1227 tsk->min_flt = tsk->maj_flt = 0;
1228 tsk->nvcsw = tsk->nivcsw = 0;
1229#ifdef CONFIG_DETECT_HUNG_TASK
1230 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1231#endif
1232
1233 tsk->mm = NULL;
1234 tsk->active_mm = NULL;
1235
1236 /*
1237 * Are we cloning a kernel thread?
1238 *
1239 * We need to steal a active VM for that..
1240 */
1241 oldmm = current->mm;
1242 if (!oldmm)
1243 return 0;
1244
1245 /* initialize the new vmacache entries */
1246 vmacache_flush(tsk);
1247
1248 if (clone_flags & CLONE_VM) {
1249 mmget(oldmm);
1250 mm = oldmm;
1251 goto good_mm;
1252 }
1253
1254 retval = -ENOMEM;
1255 mm = dup_mm(tsk);
1256 if (!mm)
1257 goto fail_nomem;
1258
1259good_mm:
1260 tsk->mm = mm;
1261 tsk->active_mm = mm;
1262 return 0;
1263
1264fail_nomem:
1265 return retval;
1266}
1267
1268static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1269{
1270 struct fs_struct *fs = current->fs;
1271 if (clone_flags & CLONE_FS) {
1272 /* tsk->fs is already what we want */
1273 spin_lock(&fs->lock);
1274 if (fs->in_exec) {
1275 spin_unlock(&fs->lock);
1276 return -EAGAIN;
1277 }
1278 fs->users++;
1279 spin_unlock(&fs->lock);
1280 return 0;
1281 }
1282 tsk->fs = copy_fs_struct(fs);
1283 if (!tsk->fs)
1284 return -ENOMEM;
1285 return 0;
1286}
1287
1288static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1289{
1290 struct files_struct *oldf, *newf;
1291 int error = 0;
1292
1293 /*
1294 * A background process may not have any files ...
1295 */
1296 oldf = current->files;
1297 if (!oldf)
1298 goto out;
1299
1300 if (clone_flags & CLONE_FILES) {
1301 atomic_inc(&oldf->count);
1302 goto out;
1303 }
1304
1305 newf = dup_fd(oldf, &error);
1306 if (!newf)
1307 goto out;
1308
1309 tsk->files = newf;
1310 error = 0;
1311out:
1312 return error;
1313}
1314
1315static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1316{
1317#ifdef CONFIG_BLOCK
1318 struct io_context *ioc = current->io_context;
1319 struct io_context *new_ioc;
1320
1321 if (!ioc)
1322 return 0;
1323 /*
1324 * Share io context with parent, if CLONE_IO is set
1325 */
1326 if (clone_flags & CLONE_IO) {
1327 ioc_task_link(ioc);
1328 tsk->io_context = ioc;
1329 } else if (ioprio_valid(ioc->ioprio)) {
1330 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1331 if (unlikely(!new_ioc))
1332 return -ENOMEM;
1333
1334 new_ioc->ioprio = ioc->ioprio;
1335 put_io_context(new_ioc);
1336 }
1337#endif
1338 return 0;
1339}
1340
1341static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1342{
1343 struct sighand_struct *sig;
1344
1345 if (clone_flags & CLONE_SIGHAND) {
1346 atomic_inc(&current->sighand->count);
1347 return 0;
1348 }
1349 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1350 rcu_assign_pointer(tsk->sighand, sig);
1351 if (!sig)
1352 return -ENOMEM;
1353
1354 atomic_set(&sig->count, 1);
1355 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1356 return 0;
1357}
1358
1359void __cleanup_sighand(struct sighand_struct *sighand)
1360{
1361 if (atomic_dec_and_test(&sighand->count)) {
1362 signalfd_cleanup(sighand);
1363 /*
1364 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1365 * without an RCU grace period, see __lock_task_sighand().
1366 */
1367 kmem_cache_free(sighand_cachep, sighand);
1368 }
1369}
1370
1371#ifdef CONFIG_POSIX_TIMERS
1372/*
1373 * Initialize POSIX timer handling for a thread group.
1374 */
1375static void posix_cpu_timers_init_group(struct signal_struct *sig)
1376{
1377 unsigned long cpu_limit;
1378
1379 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1380 if (cpu_limit != RLIM_INFINITY) {
1381 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1382 sig->cputimer.running = true;
1383 }
1384
1385 /* The timer lists. */
1386 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1387 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1388 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1389}
1390#else
1391static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1392#endif
1393
1394static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1395{
1396 struct signal_struct *sig;
1397
1398 if (clone_flags & CLONE_THREAD)
1399 return 0;
1400
1401 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1402 tsk->signal = sig;
1403 if (!sig)
1404 return -ENOMEM;
1405
1406 sig->nr_threads = 1;
1407 atomic_set(&sig->live, 1);
1408 atomic_set(&sig->sigcnt, 1);
1409
1410 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1411 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1412 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1413
1414 init_waitqueue_head(&sig->wait_chldexit);
1415 sig->curr_target = tsk;
1416 init_sigpending(&sig->shared_pending);
1417 seqlock_init(&sig->stats_lock);
1418 prev_cputime_init(&sig->prev_cputime);
1419
1420#ifdef CONFIG_POSIX_TIMERS
1421 INIT_LIST_HEAD(&sig->posix_timers);
1422 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1423 sig->real_timer.function = it_real_fn;
1424#endif
1425
1426 task_lock(current->group_leader);
1427 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1428 task_unlock(current->group_leader);
1429
1430 posix_cpu_timers_init_group(sig);
1431
1432 tty_audit_fork(sig);
1433 sched_autogroup_fork(sig);
1434
1435 sig->oom_score_adj = current->signal->oom_score_adj;
1436 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1437
1438 mutex_init(&sig->cred_guard_mutex);
1439
1440 return 0;
1441}
1442
1443static void copy_seccomp(struct task_struct *p)
1444{
1445#ifdef CONFIG_SECCOMP
1446 /*
1447 * Must be called with sighand->lock held, which is common to
1448 * all threads in the group. Holding cred_guard_mutex is not
1449 * needed because this new task is not yet running and cannot
1450 * be racing exec.
1451 */
1452 assert_spin_locked(&current->sighand->siglock);
1453
1454 /* Ref-count the new filter user, and assign it. */
1455 get_seccomp_filter(current);
1456 p->seccomp = current->seccomp;
1457
1458 /*
1459 * Explicitly enable no_new_privs here in case it got set
1460 * between the task_struct being duplicated and holding the
1461 * sighand lock. The seccomp state and nnp must be in sync.
1462 */
1463 if (task_no_new_privs(current))
1464 task_set_no_new_privs(p);
1465
1466 /*
1467 * If the parent gained a seccomp mode after copying thread
1468 * flags and between before we held the sighand lock, we have
1469 * to manually enable the seccomp thread flag here.
1470 */
1471 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1472 set_tsk_thread_flag(p, TIF_SECCOMP);
1473#endif
1474}
1475
1476SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1477{
1478 current->clear_child_tid = tidptr;
1479
1480 return task_pid_vnr(current);
1481}
1482
1483static void rt_mutex_init_task(struct task_struct *p)
1484{
1485 raw_spin_lock_init(&p->pi_lock);
1486#ifdef CONFIG_RT_MUTEXES
1487 p->pi_waiters = RB_ROOT_CACHED;
1488 p->pi_top_task = NULL;
1489 p->pi_blocked_on = NULL;
1490#endif
1491}
1492
1493#ifdef CONFIG_POSIX_TIMERS
1494/*
1495 * Initialize POSIX timer handling for a single task.
1496 */
1497static void posix_cpu_timers_init(struct task_struct *tsk)
1498{
1499 tsk->cputime_expires.prof_exp = 0;
1500 tsk->cputime_expires.virt_exp = 0;
1501 tsk->cputime_expires.sched_exp = 0;
1502 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1503 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1504 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1505}
1506#else
1507static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1508#endif
1509
1510static inline void
1511init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1512{
1513 task->pids[type].pid = pid;
1514}
1515
1516static inline void rcu_copy_process(struct task_struct *p)
1517{
1518#ifdef CONFIG_PREEMPT_RCU
1519 p->rcu_read_lock_nesting = 0;
1520 p->rcu_read_unlock_special.s = 0;
1521 p->rcu_blocked_node = NULL;
1522 INIT_LIST_HEAD(&p->rcu_node_entry);
1523#endif /* #ifdef CONFIG_PREEMPT_RCU */
1524#ifdef CONFIG_TASKS_RCU
1525 p->rcu_tasks_holdout = false;
1526 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1527 p->rcu_tasks_idle_cpu = -1;
1528#endif /* #ifdef CONFIG_TASKS_RCU */
1529}
1530
1531/*
1532 * This creates a new process as a copy of the old one,
1533 * but does not actually start it yet.
1534 *
1535 * It copies the registers, and all the appropriate
1536 * parts of the process environment (as per the clone
1537 * flags). The actual kick-off is left to the caller.
1538 */
1539static __latent_entropy struct task_struct *copy_process(
1540 unsigned long clone_flags,
1541 unsigned long stack_start,
1542 unsigned long stack_size,
1543 int __user *child_tidptr,
1544 struct pid *pid,
1545 int trace,
1546 unsigned long tls,
1547 int node)
1548{
1549 int retval;
1550 struct task_struct *p;
1551
1552 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1553 return ERR_PTR(-EINVAL);
1554
1555 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1556 return ERR_PTR(-EINVAL);
1557
1558 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1559 if (!capable(CAP_SYS_ADMIN))
1560 return ERR_PTR(-EPERM);
1561
1562 /*
1563 * Thread groups must share signals as well, and detached threads
1564 * can only be started up within the thread group.
1565 */
1566 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1567 return ERR_PTR(-EINVAL);
1568
1569 /*
1570 * Shared signal handlers imply shared VM. By way of the above,
1571 * thread groups also imply shared VM. Blocking this case allows
1572 * for various simplifications in other code.
1573 */
1574 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1575 return ERR_PTR(-EINVAL);
1576
1577 /*
1578 * Siblings of global init remain as zombies on exit since they are
1579 * not reaped by their parent (swapper). To solve this and to avoid
1580 * multi-rooted process trees, prevent global and container-inits
1581 * from creating siblings.
1582 */
1583 if ((clone_flags & CLONE_PARENT) &&
1584 current->signal->flags & SIGNAL_UNKILLABLE)
1585 return ERR_PTR(-EINVAL);
1586
1587 /*
1588 * If the new process will be in a different pid or user namespace
1589 * do not allow it to share a thread group with the forking task.
1590 */
1591 if (clone_flags & CLONE_THREAD) {
1592 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1593 (task_active_pid_ns(current) !=
1594 current->nsproxy->pid_ns_for_children))
1595 return ERR_PTR(-EINVAL);
1596 }
1597
1598 retval = -ENOMEM;
1599 p = dup_task_struct(current, node);
1600 if (!p)
1601 goto fork_out;
1602
1603 /*
1604 * This _must_ happen before we call free_task(), i.e. before we jump
1605 * to any of the bad_fork_* labels. This is to avoid freeing
1606 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1607 * kernel threads (PF_KTHREAD).
1608 */
1609 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1610 /*
1611 * Clear TID on mm_release()?
1612 */
1613 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1614
1615 ftrace_graph_init_task(p);
1616
1617 rt_mutex_init_task(p);
1618
1619#ifdef CONFIG_PROVE_LOCKING
1620 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1621 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1622#endif
1623 retval = -EAGAIN;
1624 if (atomic_read(&p->real_cred->user->processes) >=
1625 task_rlimit(p, RLIMIT_NPROC)) {
1626 if (p->real_cred->user != INIT_USER &&
1627 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1628 goto bad_fork_free;
1629 }
1630 current->flags &= ~PF_NPROC_EXCEEDED;
1631
1632 retval = copy_creds(p, clone_flags);
1633 if (retval < 0)
1634 goto bad_fork_free;
1635
1636 /*
1637 * If multiple threads are within copy_process(), then this check
1638 * triggers too late. This doesn't hurt, the check is only there
1639 * to stop root fork bombs.
1640 */
1641 retval = -EAGAIN;
1642 if (nr_threads >= max_threads)
1643 goto bad_fork_cleanup_count;
1644
1645 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1646 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1647 p->flags |= PF_FORKNOEXEC;
1648 INIT_LIST_HEAD(&p->children);
1649 INIT_LIST_HEAD(&p->sibling);
1650 rcu_copy_process(p);
1651 p->vfork_done = NULL;
1652 spin_lock_init(&p->alloc_lock);
1653
1654 init_sigpending(&p->pending);
1655
1656 p->utime = p->stime = p->gtime = 0;
1657#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1658 p->utimescaled = p->stimescaled = 0;
1659#endif
1660 prev_cputime_init(&p->prev_cputime);
1661
1662#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1663 seqcount_init(&p->vtime.seqcount);
1664 p->vtime.starttime = 0;
1665 p->vtime.state = VTIME_INACTIVE;
1666#endif
1667
1668#if defined(SPLIT_RSS_COUNTING)
1669 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1670#endif
1671
1672 p->default_timer_slack_ns = current->timer_slack_ns;
1673
1674 task_io_accounting_init(&p->ioac);
1675 acct_clear_integrals(p);
1676
1677 posix_cpu_timers_init(p);
1678
1679 p->start_time = ktime_get_ns();
1680 p->real_start_time = ktime_get_boot_ns();
1681 p->io_context = NULL;
1682 p->audit_context = NULL;
1683 cgroup_fork(p);
1684#ifdef CONFIG_NUMA
1685 p->mempolicy = mpol_dup(p->mempolicy);
1686 if (IS_ERR(p->mempolicy)) {
1687 retval = PTR_ERR(p->mempolicy);
1688 p->mempolicy = NULL;
1689 goto bad_fork_cleanup_threadgroup_lock;
1690 }
1691#endif
1692#ifdef CONFIG_CPUSETS
1693 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1694 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1695 seqcount_init(&p->mems_allowed_seq);
1696#endif
1697#ifdef CONFIG_TRACE_IRQFLAGS
1698 p->irq_events = 0;
1699 p->hardirqs_enabled = 0;
1700 p->hardirq_enable_ip = 0;
1701 p->hardirq_enable_event = 0;
1702 p->hardirq_disable_ip = _THIS_IP_;
1703 p->hardirq_disable_event = 0;
1704 p->softirqs_enabled = 1;
1705 p->softirq_enable_ip = _THIS_IP_;
1706 p->softirq_enable_event = 0;
1707 p->softirq_disable_ip = 0;
1708 p->softirq_disable_event = 0;
1709 p->hardirq_context = 0;
1710 p->softirq_context = 0;
1711#endif
1712
1713 p->pagefault_disabled = 0;
1714
1715#ifdef CONFIG_LOCKDEP
1716 p->lockdep_depth = 0; /* no locks held yet */
1717 p->curr_chain_key = 0;
1718 p->lockdep_recursion = 0;
1719 lockdep_init_task(p);
1720#endif
1721
1722#ifdef CONFIG_DEBUG_MUTEXES
1723 p->blocked_on = NULL; /* not blocked yet */
1724#endif
1725#ifdef CONFIG_BCACHE
1726 p->sequential_io = 0;
1727 p->sequential_io_avg = 0;
1728#endif
1729#ifdef CONFIG_SECURITY
1730 p->security = NULL;
1731#endif
1732
1733 /* Perform scheduler related setup. Assign this task to a CPU. */
1734 retval = sched_fork(clone_flags, p);
1735 if (retval)
1736 goto bad_fork_cleanup_policy;
1737
1738 retval = perf_event_init_task(p);
1739 if (retval)
1740 goto bad_fork_cleanup_policy;
1741 retval = audit_alloc(p);
1742 if (retval)
1743 goto bad_fork_cleanup_perf;
1744 /* copy all the process information */
1745 shm_init_task(p);
1746 retval = security_task_alloc(p, clone_flags);
1747 if (retval)
1748 goto bad_fork_cleanup_audit;
1749 retval = copy_semundo(clone_flags, p);
1750 if (retval)
1751 goto bad_fork_cleanup_security;
1752 retval = copy_files(clone_flags, p);
1753 if (retval)
1754 goto bad_fork_cleanup_semundo;
1755 retval = copy_fs(clone_flags, p);
1756 if (retval)
1757 goto bad_fork_cleanup_files;
1758 retval = copy_sighand(clone_flags, p);
1759 if (retval)
1760 goto bad_fork_cleanup_fs;
1761 retval = copy_signal(clone_flags, p);
1762 if (retval)
1763 goto bad_fork_cleanup_sighand;
1764 retval = copy_mm(clone_flags, p);
1765 if (retval)
1766 goto bad_fork_cleanup_signal;
1767 retval = copy_namespaces(clone_flags, p);
1768 if (retval)
1769 goto bad_fork_cleanup_mm;
1770 retval = copy_io(clone_flags, p);
1771 if (retval)
1772 goto bad_fork_cleanup_namespaces;
1773 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1774 if (retval)
1775 goto bad_fork_cleanup_io;
1776
1777 if (pid != &init_struct_pid) {
1778 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1779 if (IS_ERR(pid)) {
1780 retval = PTR_ERR(pid);
1781 goto bad_fork_cleanup_thread;
1782 }
1783 }
1784
1785#ifdef CONFIG_BLOCK
1786 p->plug = NULL;
1787#endif
1788#ifdef CONFIG_FUTEX
1789 p->robust_list = NULL;
1790#ifdef CONFIG_COMPAT
1791 p->compat_robust_list = NULL;
1792#endif
1793 INIT_LIST_HEAD(&p->pi_state_list);
1794 p->pi_state_cache = NULL;
1795#endif
1796 /*
1797 * sigaltstack should be cleared when sharing the same VM
1798 */
1799 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1800 sas_ss_reset(p);
1801
1802 /*
1803 * Syscall tracing and stepping should be turned off in the
1804 * child regardless of CLONE_PTRACE.
1805 */
1806 user_disable_single_step(p);
1807 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1808#ifdef TIF_SYSCALL_EMU
1809 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1810#endif
1811 clear_all_latency_tracing(p);
1812
1813 /* ok, now we should be set up.. */
1814 p->pid = pid_nr(pid);
1815 if (clone_flags & CLONE_THREAD) {
1816 p->exit_signal = -1;
1817 p->group_leader = current->group_leader;
1818 p->tgid = current->tgid;
1819 } else {
1820 if (clone_flags & CLONE_PARENT)
1821 p->exit_signal = current->group_leader->exit_signal;
1822 else
1823 p->exit_signal = (clone_flags & CSIGNAL);
1824 p->group_leader = p;
1825 p->tgid = p->pid;
1826 }
1827
1828 p->nr_dirtied = 0;
1829 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1830 p->dirty_paused_when = 0;
1831
1832 p->pdeath_signal = 0;
1833 INIT_LIST_HEAD(&p->thread_group);
1834 p->task_works = NULL;
1835
1836 cgroup_threadgroup_change_begin(current);
1837 /*
1838 * Ensure that the cgroup subsystem policies allow the new process to be
1839 * forked. It should be noted the the new process's css_set can be changed
1840 * between here and cgroup_post_fork() if an organisation operation is in
1841 * progress.
1842 */
1843 retval = cgroup_can_fork(p);
1844 if (retval)
1845 goto bad_fork_free_pid;
1846
1847 /*
1848 * Make it visible to the rest of the system, but dont wake it up yet.
1849 * Need tasklist lock for parent etc handling!
1850 */
1851 write_lock_irq(&tasklist_lock);
1852
1853 /* CLONE_PARENT re-uses the old parent */
1854 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1855 p->real_parent = current->real_parent;
1856 p->parent_exec_id = current->parent_exec_id;
1857 } else {
1858 p->real_parent = current;
1859 p->parent_exec_id = current->self_exec_id;
1860 }
1861
1862 klp_copy_process(p);
1863
1864 spin_lock(&current->sighand->siglock);
1865
1866 /*
1867 * Copy seccomp details explicitly here, in case they were changed
1868 * before holding sighand lock.
1869 */
1870 copy_seccomp(p);
1871
1872 /*
1873 * Process group and session signals need to be delivered to just the
1874 * parent before the fork or both the parent and the child after the
1875 * fork. Restart if a signal comes in before we add the new process to
1876 * it's process group.
1877 * A fatal signal pending means that current will exit, so the new
1878 * thread can't slip out of an OOM kill (or normal SIGKILL).
1879 */
1880 recalc_sigpending();
1881 if (signal_pending(current)) {
1882 retval = -ERESTARTNOINTR;
1883 goto bad_fork_cancel_cgroup;
1884 }
1885 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1886 retval = -ENOMEM;
1887 goto bad_fork_cancel_cgroup;
1888 }
1889
1890 if (likely(p->pid)) {
1891 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1892
1893 init_task_pid(p, PIDTYPE_PID, pid);
1894 if (thread_group_leader(p)) {
1895 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1896 init_task_pid(p, PIDTYPE_SID, task_session(current));
1897
1898 if (is_child_reaper(pid)) {
1899 ns_of_pid(pid)->child_reaper = p;
1900 p->signal->flags |= SIGNAL_UNKILLABLE;
1901 }
1902
1903 p->signal->leader_pid = pid;
1904 p->signal->tty = tty_kref_get(current->signal->tty);
1905 /*
1906 * Inherit has_child_subreaper flag under the same
1907 * tasklist_lock with adding child to the process tree
1908 * for propagate_has_child_subreaper optimization.
1909 */
1910 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1911 p->real_parent->signal->is_child_subreaper;
1912 list_add_tail(&p->sibling, &p->real_parent->children);
1913 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1914 attach_pid(p, PIDTYPE_PGID);
1915 attach_pid(p, PIDTYPE_SID);
1916 __this_cpu_inc(process_counts);
1917 } else {
1918 current->signal->nr_threads++;
1919 atomic_inc(&current->signal->live);
1920 atomic_inc(&current->signal->sigcnt);
1921 list_add_tail_rcu(&p->thread_group,
1922 &p->group_leader->thread_group);
1923 list_add_tail_rcu(&p->thread_node,
1924 &p->signal->thread_head);
1925 }
1926 attach_pid(p, PIDTYPE_PID);
1927 nr_threads++;
1928 }
1929
1930 total_forks++;
1931 spin_unlock(&current->sighand->siglock);
1932 syscall_tracepoint_update(p);
1933 write_unlock_irq(&tasklist_lock);
1934
1935 proc_fork_connector(p);
1936 cgroup_post_fork(p);
1937 cgroup_threadgroup_change_end(current);
1938 perf_event_fork(p);
1939
1940 trace_task_newtask(p, clone_flags);
1941 uprobe_copy_process(p, clone_flags);
1942
1943 return p;
1944
1945bad_fork_cancel_cgroup:
1946 spin_unlock(&current->sighand->siglock);
1947 write_unlock_irq(&tasklist_lock);
1948 cgroup_cancel_fork(p);
1949bad_fork_free_pid:
1950 cgroup_threadgroup_change_end(current);
1951 if (pid != &init_struct_pid)
1952 free_pid(pid);
1953bad_fork_cleanup_thread:
1954 exit_thread(p);
1955bad_fork_cleanup_io:
1956 if (p->io_context)
1957 exit_io_context(p);
1958bad_fork_cleanup_namespaces:
1959 exit_task_namespaces(p);
1960bad_fork_cleanup_mm:
1961 if (p->mm)
1962 mmput(p->mm);
1963bad_fork_cleanup_signal:
1964 if (!(clone_flags & CLONE_THREAD))
1965 free_signal_struct(p->signal);
1966bad_fork_cleanup_sighand:
1967 __cleanup_sighand(p->sighand);
1968bad_fork_cleanup_fs:
1969 exit_fs(p); /* blocking */
1970bad_fork_cleanup_files:
1971 exit_files(p); /* blocking */
1972bad_fork_cleanup_semundo:
1973 exit_sem(p);
1974bad_fork_cleanup_security:
1975 security_task_free(p);
1976bad_fork_cleanup_audit:
1977 audit_free(p);
1978bad_fork_cleanup_perf:
1979 perf_event_free_task(p);
1980bad_fork_cleanup_policy:
1981 lockdep_free_task(p);
1982#ifdef CONFIG_NUMA
1983 mpol_put(p->mempolicy);
1984bad_fork_cleanup_threadgroup_lock:
1985#endif
1986 delayacct_tsk_free(p);
1987bad_fork_cleanup_count:
1988 atomic_dec(&p->cred->user->processes);
1989 exit_creds(p);
1990bad_fork_free:
1991 p->state = TASK_DEAD;
1992 put_task_stack(p);
1993 free_task(p);
1994fork_out:
1995 return ERR_PTR(retval);
1996}
1997
1998static inline void init_idle_pids(struct pid_link *links)
1999{
2000 enum pid_type type;
2001
2002 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2003 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2004 links[type].pid = &init_struct_pid;
2005 }
2006}
2007
2008struct task_struct *fork_idle(int cpu)
2009{
2010 struct task_struct *task;
2011 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2012 cpu_to_node(cpu));
2013 if (!IS_ERR(task)) {
2014 init_idle_pids(task->pids);
2015 init_idle(task, cpu);
2016 }
2017
2018 return task;
2019}
2020
2021/*
2022 * Ok, this is the main fork-routine.
2023 *
2024 * It copies the process, and if successful kick-starts
2025 * it and waits for it to finish using the VM if required.
2026 */
2027long _do_fork(unsigned long clone_flags,
2028 unsigned long stack_start,
2029 unsigned long stack_size,
2030 int __user *parent_tidptr,
2031 int __user *child_tidptr,
2032 unsigned long tls)
2033{
2034 struct task_struct *p;
2035 int trace = 0;
2036 long nr;
2037
2038 /*
2039 * Determine whether and which event to report to ptracer. When
2040 * called from kernel_thread or CLONE_UNTRACED is explicitly
2041 * requested, no event is reported; otherwise, report if the event
2042 * for the type of forking is enabled.
2043 */
2044 if (!(clone_flags & CLONE_UNTRACED)) {
2045 if (clone_flags & CLONE_VFORK)
2046 trace = PTRACE_EVENT_VFORK;
2047 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2048 trace = PTRACE_EVENT_CLONE;
2049 else
2050 trace = PTRACE_EVENT_FORK;
2051
2052 if (likely(!ptrace_event_enabled(current, trace)))
2053 trace = 0;
2054 }
2055
2056 p = copy_process(clone_flags, stack_start, stack_size,
2057 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2058 add_latent_entropy();
2059 /*
2060 * Do this prior waking up the new thread - the thread pointer
2061 * might get invalid after that point, if the thread exits quickly.
2062 */
2063 if (!IS_ERR(p)) {
2064 struct completion vfork;
2065 struct pid *pid;
2066
2067 trace_sched_process_fork(current, p);
2068
2069 pid = get_task_pid(p, PIDTYPE_PID);
2070 nr = pid_vnr(pid);
2071
2072 if (clone_flags & CLONE_PARENT_SETTID)
2073 put_user(nr, parent_tidptr);
2074
2075 if (clone_flags & CLONE_VFORK) {
2076 p->vfork_done = &vfork;
2077 init_completion(&vfork);
2078 get_task_struct(p);
2079 }
2080
2081 wake_up_new_task(p);
2082
2083 /* forking complete and child started to run, tell ptracer */
2084 if (unlikely(trace))
2085 ptrace_event_pid(trace, pid);
2086
2087 if (clone_flags & CLONE_VFORK) {
2088 if (!wait_for_vfork_done(p, &vfork))
2089 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2090 }
2091
2092 put_pid(pid);
2093 } else {
2094 nr = PTR_ERR(p);
2095 }
2096 return nr;
2097}
2098
2099#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2100/* For compatibility with architectures that call do_fork directly rather than
2101 * using the syscall entry points below. */
2102long do_fork(unsigned long clone_flags,
2103 unsigned long stack_start,
2104 unsigned long stack_size,
2105 int __user *parent_tidptr,
2106 int __user *child_tidptr)
2107{
2108 return _do_fork(clone_flags, stack_start, stack_size,
2109 parent_tidptr, child_tidptr, 0);
2110}
2111#endif
2112
2113/*
2114 * Create a kernel thread.
2115 */
2116pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2117{
2118 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2119 (unsigned long)arg, NULL, NULL, 0);
2120}
2121
2122#ifdef __ARCH_WANT_SYS_FORK
2123SYSCALL_DEFINE0(fork)
2124{
2125#ifdef CONFIG_MMU
2126 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2127#else
2128 /* can not support in nommu mode */
2129 return -EINVAL;
2130#endif
2131}
2132#endif
2133
2134#ifdef __ARCH_WANT_SYS_VFORK
2135SYSCALL_DEFINE0(vfork)
2136{
2137 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2138 0, NULL, NULL, 0);
2139}
2140#endif
2141
2142#ifdef __ARCH_WANT_SYS_CLONE
2143#ifdef CONFIG_CLONE_BACKWARDS
2144SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2145 int __user *, parent_tidptr,
2146 unsigned long, tls,
2147 int __user *, child_tidptr)
2148#elif defined(CONFIG_CLONE_BACKWARDS2)
2149SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2150 int __user *, parent_tidptr,
2151 int __user *, child_tidptr,
2152 unsigned long, tls)
2153#elif defined(CONFIG_CLONE_BACKWARDS3)
2154SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2155 int, stack_size,
2156 int __user *, parent_tidptr,
2157 int __user *, child_tidptr,
2158 unsigned long, tls)
2159#else
2160SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2161 int __user *, parent_tidptr,
2162 int __user *, child_tidptr,
2163 unsigned long, tls)
2164#endif
2165{
2166 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2167}
2168#endif
2169
2170void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2171{
2172 struct task_struct *leader, *parent, *child;
2173 int res;
2174
2175 read_lock(&tasklist_lock);
2176 leader = top = top->group_leader;
2177down:
2178 for_each_thread(leader, parent) {
2179 list_for_each_entry(child, &parent->children, sibling) {
2180 res = visitor(child, data);
2181 if (res) {
2182 if (res < 0)
2183 goto out;
2184 leader = child;
2185 goto down;
2186 }
2187up:
2188 ;
2189 }
2190 }
2191
2192 if (leader != top) {
2193 child = leader;
2194 parent = child->real_parent;
2195 leader = parent->group_leader;
2196 goto up;
2197 }
2198out:
2199 read_unlock(&tasklist_lock);
2200}
2201
2202#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2203#define ARCH_MIN_MMSTRUCT_ALIGN 0
2204#endif
2205
2206static void sighand_ctor(void *data)
2207{
2208 struct sighand_struct *sighand = data;
2209
2210 spin_lock_init(&sighand->siglock);
2211 init_waitqueue_head(&sighand->signalfd_wqh);
2212}
2213
2214void __init proc_caches_init(void)
2215{
2216 sighand_cachep = kmem_cache_create("sighand_cache",
2217 sizeof(struct sighand_struct), 0,
2218 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2219 SLAB_ACCOUNT, sighand_ctor);
2220 signal_cachep = kmem_cache_create("signal_cache",
2221 sizeof(struct signal_struct), 0,
2222 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2223 NULL);
2224 files_cachep = kmem_cache_create("files_cache",
2225 sizeof(struct files_struct), 0,
2226 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2227 NULL);
2228 fs_cachep = kmem_cache_create("fs_cache",
2229 sizeof(struct fs_struct), 0,
2230 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2231 NULL);
2232 /*
2233 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2234 * whole struct cpumask for the OFFSTACK case. We could change
2235 * this to *only* allocate as much of it as required by the
2236 * maximum number of CPU's we can ever have. The cpumask_allocation
2237 * is at the end of the structure, exactly for that reason.
2238 */
2239 mm_cachep = kmem_cache_create("mm_struct",
2240 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2241 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2242 NULL);
2243 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2244 mmap_init();
2245 nsproxy_cache_init();
2246}
2247
2248/*
2249 * Check constraints on flags passed to the unshare system call.
2250 */
2251static int check_unshare_flags(unsigned long unshare_flags)
2252{
2253 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2254 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2255 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2256 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2257 return -EINVAL;
2258 /*
2259 * Not implemented, but pretend it works if there is nothing
2260 * to unshare. Note that unsharing the address space or the
2261 * signal handlers also need to unshare the signal queues (aka
2262 * CLONE_THREAD).
2263 */
2264 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2265 if (!thread_group_empty(current))
2266 return -EINVAL;
2267 }
2268 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2269 if (atomic_read(&current->sighand->count) > 1)
2270 return -EINVAL;
2271 }
2272 if (unshare_flags & CLONE_VM) {
2273 if (!current_is_single_threaded())
2274 return -EINVAL;
2275 }
2276
2277 return 0;
2278}
2279
2280/*
2281 * Unshare the filesystem structure if it is being shared
2282 */
2283static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2284{
2285 struct fs_struct *fs = current->fs;
2286
2287 if (!(unshare_flags & CLONE_FS) || !fs)
2288 return 0;
2289
2290 /* don't need lock here; in the worst case we'll do useless copy */
2291 if (fs->users == 1)
2292 return 0;
2293
2294 *new_fsp = copy_fs_struct(fs);
2295 if (!*new_fsp)
2296 return -ENOMEM;
2297
2298 return 0;
2299}
2300
2301/*
2302 * Unshare file descriptor table if it is being shared
2303 */
2304static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2305{
2306 struct files_struct *fd = current->files;
2307 int error = 0;
2308
2309 if ((unshare_flags & CLONE_FILES) &&
2310 (fd && atomic_read(&fd->count) > 1)) {
2311 *new_fdp = dup_fd(fd, &error);
2312 if (!*new_fdp)
2313 return error;
2314 }
2315
2316 return 0;
2317}
2318
2319/*
2320 * unshare allows a process to 'unshare' part of the process
2321 * context which was originally shared using clone. copy_*
2322 * functions used by do_fork() cannot be used here directly
2323 * because they modify an inactive task_struct that is being
2324 * constructed. Here we are modifying the current, active,
2325 * task_struct.
2326 */
2327SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2328{
2329 struct fs_struct *fs, *new_fs = NULL;
2330 struct files_struct *fd, *new_fd = NULL;
2331 struct cred *new_cred = NULL;
2332 struct nsproxy *new_nsproxy = NULL;
2333 int do_sysvsem = 0;
2334 int err;
2335
2336 /*
2337 * If unsharing a user namespace must also unshare the thread group
2338 * and unshare the filesystem root and working directories.
2339 */
2340 if (unshare_flags & CLONE_NEWUSER)
2341 unshare_flags |= CLONE_THREAD | CLONE_FS;
2342 /*
2343 * If unsharing vm, must also unshare signal handlers.
2344 */
2345 if (unshare_flags & CLONE_VM)
2346 unshare_flags |= CLONE_SIGHAND;
2347 /*
2348 * If unsharing a signal handlers, must also unshare the signal queues.
2349 */
2350 if (unshare_flags & CLONE_SIGHAND)
2351 unshare_flags |= CLONE_THREAD;
2352 /*
2353 * If unsharing namespace, must also unshare filesystem information.
2354 */
2355 if (unshare_flags & CLONE_NEWNS)
2356 unshare_flags |= CLONE_FS;
2357
2358 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2359 err = -EPERM;
2360 if (!capable(CAP_SYS_ADMIN))
2361 goto bad_unshare_out;
2362 }
2363
2364 err = check_unshare_flags(unshare_flags);
2365 if (err)
2366 goto bad_unshare_out;
2367 /*
2368 * CLONE_NEWIPC must also detach from the undolist: after switching
2369 * to a new ipc namespace, the semaphore arrays from the old
2370 * namespace are unreachable.
2371 */
2372 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2373 do_sysvsem = 1;
2374 err = unshare_fs(unshare_flags, &new_fs);
2375 if (err)
2376 goto bad_unshare_out;
2377 err = unshare_fd(unshare_flags, &new_fd);
2378 if (err)
2379 goto bad_unshare_cleanup_fs;
2380 err = unshare_userns(unshare_flags, &new_cred);
2381 if (err)
2382 goto bad_unshare_cleanup_fd;
2383 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2384 new_cred, new_fs);
2385 if (err)
2386 goto bad_unshare_cleanup_cred;
2387
2388 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2389 if (do_sysvsem) {
2390 /*
2391 * CLONE_SYSVSEM is equivalent to sys_exit().
2392 */
2393 exit_sem(current);
2394 }
2395 if (unshare_flags & CLONE_NEWIPC) {
2396 /* Orphan segments in old ns (see sem above). */
2397 exit_shm(current);
2398 shm_init_task(current);
2399 }
2400
2401 if (new_nsproxy)
2402 switch_task_namespaces(current, new_nsproxy);
2403
2404 task_lock(current);
2405
2406 if (new_fs) {
2407 fs = current->fs;
2408 spin_lock(&fs->lock);
2409 current->fs = new_fs;
2410 if (--fs->users)
2411 new_fs = NULL;
2412 else
2413 new_fs = fs;
2414 spin_unlock(&fs->lock);
2415 }
2416
2417 if (new_fd) {
2418 fd = current->files;
2419 current->files = new_fd;
2420 new_fd = fd;
2421 }
2422
2423 task_unlock(current);
2424
2425 if (new_cred) {
2426 /* Install the new user namespace */
2427 commit_creds(new_cred);
2428 new_cred = NULL;
2429 }
2430 }
2431
2432 perf_event_namespaces(current);
2433
2434bad_unshare_cleanup_cred:
2435 if (new_cred)
2436 put_cred(new_cred);
2437bad_unshare_cleanup_fd:
2438 if (new_fd)
2439 put_files_struct(new_fd);
2440
2441bad_unshare_cleanup_fs:
2442 if (new_fs)
2443 free_fs_struct(new_fs);
2444
2445bad_unshare_out:
2446 return err;
2447}
2448
2449/*
2450 * Helper to unshare the files of the current task.
2451 * We don't want to expose copy_files internals to
2452 * the exec layer of the kernel.
2453 */
2454
2455int unshare_files(struct files_struct **displaced)
2456{
2457 struct task_struct *task = current;
2458 struct files_struct *copy = NULL;
2459 int error;
2460
2461 error = unshare_fd(CLONE_FILES, &copy);
2462 if (error || !copy) {
2463 *displaced = NULL;
2464 return error;
2465 }
2466 *displaced = task->files;
2467 task_lock(task);
2468 task->files = copy;
2469 task_unlock(task);
2470 return 0;
2471}
2472
2473int sysctl_max_threads(struct ctl_table *table, int write,
2474 void __user *buffer, size_t *lenp, loff_t *ppos)
2475{
2476 struct ctl_table t;
2477 int ret;
2478 int threads = max_threads;
2479 int min = MIN_THREADS;
2480 int max = MAX_THREADS;
2481
2482 t = *table;
2483 t.data = &threads;
2484 t.extra1 = &min;
2485 t.extra2 = &max;
2486
2487 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2488 if (ret || !write)
2489 return ret;
2490
2491 set_max_threads(threads);
2492
2493 return 0;
2494}