]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - kernel/futex.c
futex: Rework inconsistent rt_mutex/futex_q state
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
... / ...
CommitLineData
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/export.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62#include <linux/ptrace.h>
63#include <linux/sched/rt.h>
64#include <linux/sched/wake_q.h>
65#include <linux/sched/mm.h>
66#include <linux/hugetlb.h>
67#include <linux/freezer.h>
68#include <linux/bootmem.h>
69#include <linux/fault-inject.h>
70
71#include <asm/futex.h>
72
73#include "locking/rtmutex_common.h"
74
75/*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177int __read_mostly futex_cmpxchg_enabled;
178#endif
179
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215};
216
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249};
250
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
257/*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266} ____cacheline_aligned_in_smp;
267
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
279
280
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
301static bool should_fail_futex(bool fshared)
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
341static inline void futex_get_mm(union futex_key *key)
342{
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350}
351
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356{
357#ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
376
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381#else
382 return 1;
383#endif
384}
385
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399}
400
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
481/**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in *key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499static int
500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501{
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696 key->shared.inode = inode;
697 key->shared.pgoff = basepage_index(tail);
698 rcu_read_unlock();
699 }
700
701out:
702 put_page(page);
703 return err;
704}
705
706static inline void put_futex_key(union futex_key *key)
707{
708 drop_futex_key_refs(key);
709}
710
711/**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
718 * We have no generic implementation of a non-destructive write to the
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723static int fault_in_user_writeable(u32 __user *uaddr)
724{
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730 FAULT_FLAG_WRITE, NULL);
731 up_read(&mm->mmap_sem);
732
733 return ret < 0 ? ret : 0;
734}
735
736/**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
740 *
741 * Must be called with the hb lock held.
742 */
743static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745{
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753}
754
755static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
757{
758 int ret;
759
760 pagefault_disable();
761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762 pagefault_enable();
763
764 return ret;
765}
766
767static int get_futex_value_locked(u32 *dest, u32 __user *from)
768{
769 int ret;
770
771 pagefault_disable();
772 ret = __get_user(*dest, from);
773 pagefault_enable();
774
775 return ret ? -EFAULT : 0;
776}
777
778
779/*
780 * PI code:
781 */
782static int refill_pi_state_cache(void)
783{
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791 if (!pi_state)
792 return -ENOMEM;
793
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
798 pi_state->key = FUTEX_KEY_INIT;
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803}
804
805static struct futex_pi_state *alloc_pi_state(void)
806{
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813}
814
815static void get_pi_state(struct futex_pi_state *pi_state)
816{
817 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818}
819
820/*
821 * Drops a reference to the pi_state object and frees or caches it
822 * when the last reference is gone.
823 *
824 * Must be called with the hb lock held.
825 */
826static void put_pi_state(struct futex_pi_state *pi_state)
827{
828 if (!pi_state)
829 return;
830
831 if (!atomic_dec_and_test(&pi_state->refcount))
832 return;
833
834 /*
835 * If pi_state->owner is NULL, the owner is most probably dying
836 * and has cleaned up the pi_state already
837 */
838 if (pi_state->owner) {
839 raw_spin_lock_irq(&pi_state->owner->pi_lock);
840 list_del_init(&pi_state->list);
841 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842
843 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844 }
845
846 if (current->pi_state_cache)
847 kfree(pi_state);
848 else {
849 /*
850 * pi_state->list is already empty.
851 * clear pi_state->owner.
852 * refcount is at 0 - put it back to 1.
853 */
854 pi_state->owner = NULL;
855 atomic_set(&pi_state->refcount, 1);
856 current->pi_state_cache = pi_state;
857 }
858}
859
860/*
861 * Look up the task based on what TID userspace gave us.
862 * We dont trust it.
863 */
864static struct task_struct *futex_find_get_task(pid_t pid)
865{
866 struct task_struct *p;
867
868 rcu_read_lock();
869 p = find_task_by_vpid(pid);
870 if (p)
871 get_task_struct(p);
872
873 rcu_read_unlock();
874
875 return p;
876}
877
878/*
879 * This task is holding PI mutexes at exit time => bad.
880 * Kernel cleans up PI-state, but userspace is likely hosed.
881 * (Robust-futex cleanup is separate and might save the day for userspace.)
882 */
883void exit_pi_state_list(struct task_struct *curr)
884{
885 struct list_head *next, *head = &curr->pi_state_list;
886 struct futex_pi_state *pi_state;
887 struct futex_hash_bucket *hb;
888 union futex_key key = FUTEX_KEY_INIT;
889
890 if (!futex_cmpxchg_enabled)
891 return;
892 /*
893 * We are a ZOMBIE and nobody can enqueue itself on
894 * pi_state_list anymore, but we have to be careful
895 * versus waiters unqueueing themselves:
896 */
897 raw_spin_lock_irq(&curr->pi_lock);
898 while (!list_empty(head)) {
899
900 next = head->next;
901 pi_state = list_entry(next, struct futex_pi_state, list);
902 key = pi_state->key;
903 hb = hash_futex(&key);
904 raw_spin_unlock_irq(&curr->pi_lock);
905
906 spin_lock(&hb->lock);
907
908 raw_spin_lock_irq(&curr->pi_lock);
909 /*
910 * We dropped the pi-lock, so re-check whether this
911 * task still owns the PI-state:
912 */
913 if (head->next != next) {
914 spin_unlock(&hb->lock);
915 continue;
916 }
917
918 WARN_ON(pi_state->owner != curr);
919 WARN_ON(list_empty(&pi_state->list));
920 list_del_init(&pi_state->list);
921 pi_state->owner = NULL;
922 raw_spin_unlock_irq(&curr->pi_lock);
923
924 rt_mutex_futex_unlock(&pi_state->pi_mutex);
925
926 spin_unlock(&hb->lock);
927
928 raw_spin_lock_irq(&curr->pi_lock);
929 }
930 raw_spin_unlock_irq(&curr->pi_lock);
931}
932
933/*
934 * We need to check the following states:
935 *
936 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
937 *
938 * [1] NULL | --- | --- | 0 | 0/1 | Valid
939 * [2] NULL | --- | --- | >0 | 0/1 | Valid
940 *
941 * [3] Found | NULL | -- | Any | 0/1 | Invalid
942 *
943 * [4] Found | Found | NULL | 0 | 1 | Valid
944 * [5] Found | Found | NULL | >0 | 1 | Invalid
945 *
946 * [6] Found | Found | task | 0 | 1 | Valid
947 *
948 * [7] Found | Found | NULL | Any | 0 | Invalid
949 *
950 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
951 * [9] Found | Found | task | 0 | 0 | Invalid
952 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
953 *
954 * [1] Indicates that the kernel can acquire the futex atomically. We
955 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
956 *
957 * [2] Valid, if TID does not belong to a kernel thread. If no matching
958 * thread is found then it indicates that the owner TID has died.
959 *
960 * [3] Invalid. The waiter is queued on a non PI futex
961 *
962 * [4] Valid state after exit_robust_list(), which sets the user space
963 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
964 *
965 * [5] The user space value got manipulated between exit_robust_list()
966 * and exit_pi_state_list()
967 *
968 * [6] Valid state after exit_pi_state_list() which sets the new owner in
969 * the pi_state but cannot access the user space value.
970 *
971 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
972 *
973 * [8] Owner and user space value match
974 *
975 * [9] There is no transient state which sets the user space TID to 0
976 * except exit_robust_list(), but this is indicated by the
977 * FUTEX_OWNER_DIED bit. See [4]
978 *
979 * [10] There is no transient state which leaves owner and user space
980 * TID out of sync.
981 *
982 *
983 * Serialization and lifetime rules:
984 *
985 * hb->lock:
986 *
987 * hb -> futex_q, relation
988 * futex_q -> pi_state, relation
989 *
990 * (cannot be raw because hb can contain arbitrary amount
991 * of futex_q's)
992 *
993 * pi_mutex->wait_lock:
994 *
995 * {uval, pi_state}
996 *
997 * (and pi_mutex 'obviously')
998 *
999 * p->pi_lock:
1000 *
1001 * p->pi_state_list -> pi_state->list, relation
1002 *
1003 * pi_state->refcount:
1004 *
1005 * pi_state lifetime
1006 *
1007 *
1008 * Lock order:
1009 *
1010 * hb->lock
1011 * pi_mutex->wait_lock
1012 * p->pi_lock
1013 *
1014 */
1015
1016/*
1017 * Validate that the existing waiter has a pi_state and sanity check
1018 * the pi_state against the user space value. If correct, attach to
1019 * it.
1020 */
1021static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1022 struct futex_pi_state *pi_state,
1023 struct futex_pi_state **ps)
1024{
1025 pid_t pid = uval & FUTEX_TID_MASK;
1026 int ret, uval2;
1027
1028 /*
1029 * Userspace might have messed up non-PI and PI futexes [3]
1030 */
1031 if (unlikely(!pi_state))
1032 return -EINVAL;
1033
1034 /*
1035 * We get here with hb->lock held, and having found a
1036 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1037 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1038 * which in turn means that futex_lock_pi() still has a reference on
1039 * our pi_state.
1040 */
1041 WARN_ON(!atomic_read(&pi_state->refcount));
1042
1043 /*
1044 * Now that we have a pi_state, we can acquire wait_lock
1045 * and do the state validation.
1046 */
1047 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1048
1049 /*
1050 * Since {uval, pi_state} is serialized by wait_lock, and our current
1051 * uval was read without holding it, it can have changed. Verify it
1052 * still is what we expect it to be, otherwise retry the entire
1053 * operation.
1054 */
1055 if (get_futex_value_locked(&uval2, uaddr))
1056 goto out_efault;
1057
1058 if (uval != uval2)
1059 goto out_eagain;
1060
1061 /*
1062 * Handle the owner died case:
1063 */
1064 if (uval & FUTEX_OWNER_DIED) {
1065 /*
1066 * exit_pi_state_list sets owner to NULL and wakes the
1067 * topmost waiter. The task which acquires the
1068 * pi_state->rt_mutex will fixup owner.
1069 */
1070 if (!pi_state->owner) {
1071 /*
1072 * No pi state owner, but the user space TID
1073 * is not 0. Inconsistent state. [5]
1074 */
1075 if (pid)
1076 goto out_einval;
1077 /*
1078 * Take a ref on the state and return success. [4]
1079 */
1080 goto out_attach;
1081 }
1082
1083 /*
1084 * If TID is 0, then either the dying owner has not
1085 * yet executed exit_pi_state_list() or some waiter
1086 * acquired the rtmutex in the pi state, but did not
1087 * yet fixup the TID in user space.
1088 *
1089 * Take a ref on the state and return success. [6]
1090 */
1091 if (!pid)
1092 goto out_attach;
1093 } else {
1094 /*
1095 * If the owner died bit is not set, then the pi_state
1096 * must have an owner. [7]
1097 */
1098 if (!pi_state->owner)
1099 goto out_einval;
1100 }
1101
1102 /*
1103 * Bail out if user space manipulated the futex value. If pi
1104 * state exists then the owner TID must be the same as the
1105 * user space TID. [9/10]
1106 */
1107 if (pid != task_pid_vnr(pi_state->owner))
1108 goto out_einval;
1109
1110out_attach:
1111 get_pi_state(pi_state);
1112 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1113 *ps = pi_state;
1114 return 0;
1115
1116out_einval:
1117 ret = -EINVAL;
1118 goto out_error;
1119
1120out_eagain:
1121 ret = -EAGAIN;
1122 goto out_error;
1123
1124out_efault:
1125 ret = -EFAULT;
1126 goto out_error;
1127
1128out_error:
1129 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1130 return ret;
1131}
1132
1133/*
1134 * Lookup the task for the TID provided from user space and attach to
1135 * it after doing proper sanity checks.
1136 */
1137static int attach_to_pi_owner(u32 uval, union futex_key *key,
1138 struct futex_pi_state **ps)
1139{
1140 pid_t pid = uval & FUTEX_TID_MASK;
1141 struct futex_pi_state *pi_state;
1142 struct task_struct *p;
1143
1144 /*
1145 * We are the first waiter - try to look up the real owner and attach
1146 * the new pi_state to it, but bail out when TID = 0 [1]
1147 */
1148 if (!pid)
1149 return -ESRCH;
1150 p = futex_find_get_task(pid);
1151 if (!p)
1152 return -ESRCH;
1153
1154 if (unlikely(p->flags & PF_KTHREAD)) {
1155 put_task_struct(p);
1156 return -EPERM;
1157 }
1158
1159 /*
1160 * We need to look at the task state flags to figure out,
1161 * whether the task is exiting. To protect against the do_exit
1162 * change of the task flags, we do this protected by
1163 * p->pi_lock:
1164 */
1165 raw_spin_lock_irq(&p->pi_lock);
1166 if (unlikely(p->flags & PF_EXITING)) {
1167 /*
1168 * The task is on the way out. When PF_EXITPIDONE is
1169 * set, we know that the task has finished the
1170 * cleanup:
1171 */
1172 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1173
1174 raw_spin_unlock_irq(&p->pi_lock);
1175 put_task_struct(p);
1176 return ret;
1177 }
1178
1179 /*
1180 * No existing pi state. First waiter. [2]
1181 *
1182 * This creates pi_state, we have hb->lock held, this means nothing can
1183 * observe this state, wait_lock is irrelevant.
1184 */
1185 pi_state = alloc_pi_state();
1186
1187 /*
1188 * Initialize the pi_mutex in locked state and make @p
1189 * the owner of it:
1190 */
1191 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1192
1193 /* Store the key for possible exit cleanups: */
1194 pi_state->key = *key;
1195
1196 WARN_ON(!list_empty(&pi_state->list));
1197 list_add(&pi_state->list, &p->pi_state_list);
1198 pi_state->owner = p;
1199 raw_spin_unlock_irq(&p->pi_lock);
1200
1201 put_task_struct(p);
1202
1203 *ps = pi_state;
1204
1205 return 0;
1206}
1207
1208static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1209 struct futex_hash_bucket *hb,
1210 union futex_key *key, struct futex_pi_state **ps)
1211{
1212 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1213
1214 /*
1215 * If there is a waiter on that futex, validate it and
1216 * attach to the pi_state when the validation succeeds.
1217 */
1218 if (top_waiter)
1219 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1220
1221 /*
1222 * We are the first waiter - try to look up the owner based on
1223 * @uval and attach to it.
1224 */
1225 return attach_to_pi_owner(uval, key, ps);
1226}
1227
1228static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1229{
1230 u32 uninitialized_var(curval);
1231
1232 if (unlikely(should_fail_futex(true)))
1233 return -EFAULT;
1234
1235 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1236 return -EFAULT;
1237
1238 /* If user space value changed, let the caller retry */
1239 return curval != uval ? -EAGAIN : 0;
1240}
1241
1242/**
1243 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1244 * @uaddr: the pi futex user address
1245 * @hb: the pi futex hash bucket
1246 * @key: the futex key associated with uaddr and hb
1247 * @ps: the pi_state pointer where we store the result of the
1248 * lookup
1249 * @task: the task to perform the atomic lock work for. This will
1250 * be "current" except in the case of requeue pi.
1251 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1252 *
1253 * Return:
1254 * 0 - ready to wait;
1255 * 1 - acquired the lock;
1256 * <0 - error
1257 *
1258 * The hb->lock and futex_key refs shall be held by the caller.
1259 */
1260static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1261 union futex_key *key,
1262 struct futex_pi_state **ps,
1263 struct task_struct *task, int set_waiters)
1264{
1265 u32 uval, newval, vpid = task_pid_vnr(task);
1266 struct futex_q *top_waiter;
1267 int ret;
1268
1269 /*
1270 * Read the user space value first so we can validate a few
1271 * things before proceeding further.
1272 */
1273 if (get_futex_value_locked(&uval, uaddr))
1274 return -EFAULT;
1275
1276 if (unlikely(should_fail_futex(true)))
1277 return -EFAULT;
1278
1279 /*
1280 * Detect deadlocks.
1281 */
1282 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1283 return -EDEADLK;
1284
1285 if ((unlikely(should_fail_futex(true))))
1286 return -EDEADLK;
1287
1288 /*
1289 * Lookup existing state first. If it exists, try to attach to
1290 * its pi_state.
1291 */
1292 top_waiter = futex_top_waiter(hb, key);
1293 if (top_waiter)
1294 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1295
1296 /*
1297 * No waiter and user TID is 0. We are here because the
1298 * waiters or the owner died bit is set or called from
1299 * requeue_cmp_pi or for whatever reason something took the
1300 * syscall.
1301 */
1302 if (!(uval & FUTEX_TID_MASK)) {
1303 /*
1304 * We take over the futex. No other waiters and the user space
1305 * TID is 0. We preserve the owner died bit.
1306 */
1307 newval = uval & FUTEX_OWNER_DIED;
1308 newval |= vpid;
1309
1310 /* The futex requeue_pi code can enforce the waiters bit */
1311 if (set_waiters)
1312 newval |= FUTEX_WAITERS;
1313
1314 ret = lock_pi_update_atomic(uaddr, uval, newval);
1315 /* If the take over worked, return 1 */
1316 return ret < 0 ? ret : 1;
1317 }
1318
1319 /*
1320 * First waiter. Set the waiters bit before attaching ourself to
1321 * the owner. If owner tries to unlock, it will be forced into
1322 * the kernel and blocked on hb->lock.
1323 */
1324 newval = uval | FUTEX_WAITERS;
1325 ret = lock_pi_update_atomic(uaddr, uval, newval);
1326 if (ret)
1327 return ret;
1328 /*
1329 * If the update of the user space value succeeded, we try to
1330 * attach to the owner. If that fails, no harm done, we only
1331 * set the FUTEX_WAITERS bit in the user space variable.
1332 */
1333 return attach_to_pi_owner(uval, key, ps);
1334}
1335
1336/**
1337 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1338 * @q: The futex_q to unqueue
1339 *
1340 * The q->lock_ptr must not be NULL and must be held by the caller.
1341 */
1342static void __unqueue_futex(struct futex_q *q)
1343{
1344 struct futex_hash_bucket *hb;
1345
1346 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1347 || WARN_ON(plist_node_empty(&q->list)))
1348 return;
1349
1350 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1351 plist_del(&q->list, &hb->chain);
1352 hb_waiters_dec(hb);
1353}
1354
1355/*
1356 * The hash bucket lock must be held when this is called.
1357 * Afterwards, the futex_q must not be accessed. Callers
1358 * must ensure to later call wake_up_q() for the actual
1359 * wakeups to occur.
1360 */
1361static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1362{
1363 struct task_struct *p = q->task;
1364
1365 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1366 return;
1367
1368 /*
1369 * Queue the task for later wakeup for after we've released
1370 * the hb->lock. wake_q_add() grabs reference to p.
1371 */
1372 wake_q_add(wake_q, p);
1373 __unqueue_futex(q);
1374 /*
1375 * The waiting task can free the futex_q as soon as
1376 * q->lock_ptr = NULL is written, without taking any locks. A
1377 * memory barrier is required here to prevent the following
1378 * store to lock_ptr from getting ahead of the plist_del.
1379 */
1380 smp_store_release(&q->lock_ptr, NULL);
1381}
1382
1383static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *top_waiter,
1384 struct futex_hash_bucket *hb)
1385{
1386 struct task_struct *new_owner;
1387 struct futex_pi_state *pi_state = top_waiter->pi_state;
1388 u32 uninitialized_var(curval), newval;
1389 DEFINE_WAKE_Q(wake_q);
1390 bool deboost;
1391 int ret = 0;
1392
1393 if (!pi_state)
1394 return -EINVAL;
1395
1396 /*
1397 * If current does not own the pi_state then the futex is
1398 * inconsistent and user space fiddled with the futex value.
1399 */
1400 if (pi_state->owner != current)
1401 return -EINVAL;
1402
1403 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1404 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1405
1406 /*
1407 * When we interleave with futex_lock_pi() where it does
1408 * rt_mutex_timed_futex_lock(), we might observe @this futex_q waiter,
1409 * but the rt_mutex's wait_list can be empty (either still, or again,
1410 * depending on which side we land).
1411 *
1412 * When this happens, give up our locks and try again, giving the
1413 * futex_lock_pi() instance time to complete, either by waiting on the
1414 * rtmutex or removing itself from the futex queue.
1415 */
1416 if (!new_owner) {
1417 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1418 return -EAGAIN;
1419 }
1420
1421 /*
1422 * We pass it to the next owner. The WAITERS bit is always
1423 * kept enabled while there is PI state around. We cleanup the
1424 * owner died bit, because we are the owner.
1425 */
1426 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1427
1428 if (unlikely(should_fail_futex(true)))
1429 ret = -EFAULT;
1430
1431 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1432 ret = -EFAULT;
1433
1434 } else if (curval != uval) {
1435 /*
1436 * If a unconditional UNLOCK_PI operation (user space did not
1437 * try the TID->0 transition) raced with a waiter setting the
1438 * FUTEX_WAITERS flag between get_user() and locking the hash
1439 * bucket lock, retry the operation.
1440 */
1441 if ((FUTEX_TID_MASK & curval) == uval)
1442 ret = -EAGAIN;
1443 else
1444 ret = -EINVAL;
1445 }
1446
1447 if (ret) {
1448 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1449 return ret;
1450 }
1451
1452 raw_spin_lock(&pi_state->owner->pi_lock);
1453 WARN_ON(list_empty(&pi_state->list));
1454 list_del_init(&pi_state->list);
1455 raw_spin_unlock(&pi_state->owner->pi_lock);
1456
1457 raw_spin_lock(&new_owner->pi_lock);
1458 WARN_ON(!list_empty(&pi_state->list));
1459 list_add(&pi_state->list, &new_owner->pi_state_list);
1460 pi_state->owner = new_owner;
1461 raw_spin_unlock(&new_owner->pi_lock);
1462
1463 /*
1464 * We've updated the uservalue, this unlock cannot fail.
1465 */
1466 deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1467
1468 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1469 spin_unlock(&hb->lock);
1470
1471 if (deboost) {
1472 wake_up_q(&wake_q);
1473 rt_mutex_adjust_prio(current);
1474 }
1475
1476 return 0;
1477}
1478
1479/*
1480 * Express the locking dependencies for lockdep:
1481 */
1482static inline void
1483double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1484{
1485 if (hb1 <= hb2) {
1486 spin_lock(&hb1->lock);
1487 if (hb1 < hb2)
1488 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1489 } else { /* hb1 > hb2 */
1490 spin_lock(&hb2->lock);
1491 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1492 }
1493}
1494
1495static inline void
1496double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1497{
1498 spin_unlock(&hb1->lock);
1499 if (hb1 != hb2)
1500 spin_unlock(&hb2->lock);
1501}
1502
1503/*
1504 * Wake up waiters matching bitset queued on this futex (uaddr).
1505 */
1506static int
1507futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1508{
1509 struct futex_hash_bucket *hb;
1510 struct futex_q *this, *next;
1511 union futex_key key = FUTEX_KEY_INIT;
1512 int ret;
1513 DEFINE_WAKE_Q(wake_q);
1514
1515 if (!bitset)
1516 return -EINVAL;
1517
1518 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1519 if (unlikely(ret != 0))
1520 goto out;
1521
1522 hb = hash_futex(&key);
1523
1524 /* Make sure we really have tasks to wakeup */
1525 if (!hb_waiters_pending(hb))
1526 goto out_put_key;
1527
1528 spin_lock(&hb->lock);
1529
1530 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1531 if (match_futex (&this->key, &key)) {
1532 if (this->pi_state || this->rt_waiter) {
1533 ret = -EINVAL;
1534 break;
1535 }
1536
1537 /* Check if one of the bits is set in both bitsets */
1538 if (!(this->bitset & bitset))
1539 continue;
1540
1541 mark_wake_futex(&wake_q, this);
1542 if (++ret >= nr_wake)
1543 break;
1544 }
1545 }
1546
1547 spin_unlock(&hb->lock);
1548 wake_up_q(&wake_q);
1549out_put_key:
1550 put_futex_key(&key);
1551out:
1552 return ret;
1553}
1554
1555/*
1556 * Wake up all waiters hashed on the physical page that is mapped
1557 * to this virtual address:
1558 */
1559static int
1560futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1561 int nr_wake, int nr_wake2, int op)
1562{
1563 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1564 struct futex_hash_bucket *hb1, *hb2;
1565 struct futex_q *this, *next;
1566 int ret, op_ret;
1567 DEFINE_WAKE_Q(wake_q);
1568
1569retry:
1570 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1571 if (unlikely(ret != 0))
1572 goto out;
1573 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1574 if (unlikely(ret != 0))
1575 goto out_put_key1;
1576
1577 hb1 = hash_futex(&key1);
1578 hb2 = hash_futex(&key2);
1579
1580retry_private:
1581 double_lock_hb(hb1, hb2);
1582 op_ret = futex_atomic_op_inuser(op, uaddr2);
1583 if (unlikely(op_ret < 0)) {
1584
1585 double_unlock_hb(hb1, hb2);
1586
1587#ifndef CONFIG_MMU
1588 /*
1589 * we don't get EFAULT from MMU faults if we don't have an MMU,
1590 * but we might get them from range checking
1591 */
1592 ret = op_ret;
1593 goto out_put_keys;
1594#endif
1595
1596 if (unlikely(op_ret != -EFAULT)) {
1597 ret = op_ret;
1598 goto out_put_keys;
1599 }
1600
1601 ret = fault_in_user_writeable(uaddr2);
1602 if (ret)
1603 goto out_put_keys;
1604
1605 if (!(flags & FLAGS_SHARED))
1606 goto retry_private;
1607
1608 put_futex_key(&key2);
1609 put_futex_key(&key1);
1610 goto retry;
1611 }
1612
1613 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1614 if (match_futex (&this->key, &key1)) {
1615 if (this->pi_state || this->rt_waiter) {
1616 ret = -EINVAL;
1617 goto out_unlock;
1618 }
1619 mark_wake_futex(&wake_q, this);
1620 if (++ret >= nr_wake)
1621 break;
1622 }
1623 }
1624
1625 if (op_ret > 0) {
1626 op_ret = 0;
1627 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1628 if (match_futex (&this->key, &key2)) {
1629 if (this->pi_state || this->rt_waiter) {
1630 ret = -EINVAL;
1631 goto out_unlock;
1632 }
1633 mark_wake_futex(&wake_q, this);
1634 if (++op_ret >= nr_wake2)
1635 break;
1636 }
1637 }
1638 ret += op_ret;
1639 }
1640
1641out_unlock:
1642 double_unlock_hb(hb1, hb2);
1643 wake_up_q(&wake_q);
1644out_put_keys:
1645 put_futex_key(&key2);
1646out_put_key1:
1647 put_futex_key(&key1);
1648out:
1649 return ret;
1650}
1651
1652/**
1653 * requeue_futex() - Requeue a futex_q from one hb to another
1654 * @q: the futex_q to requeue
1655 * @hb1: the source hash_bucket
1656 * @hb2: the target hash_bucket
1657 * @key2: the new key for the requeued futex_q
1658 */
1659static inline
1660void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1661 struct futex_hash_bucket *hb2, union futex_key *key2)
1662{
1663
1664 /*
1665 * If key1 and key2 hash to the same bucket, no need to
1666 * requeue.
1667 */
1668 if (likely(&hb1->chain != &hb2->chain)) {
1669 plist_del(&q->list, &hb1->chain);
1670 hb_waiters_dec(hb1);
1671 hb_waiters_inc(hb2);
1672 plist_add(&q->list, &hb2->chain);
1673 q->lock_ptr = &hb2->lock;
1674 }
1675 get_futex_key_refs(key2);
1676 q->key = *key2;
1677}
1678
1679/**
1680 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1681 * @q: the futex_q
1682 * @key: the key of the requeue target futex
1683 * @hb: the hash_bucket of the requeue target futex
1684 *
1685 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1686 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1687 * to the requeue target futex so the waiter can detect the wakeup on the right
1688 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1689 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1690 * to protect access to the pi_state to fixup the owner later. Must be called
1691 * with both q->lock_ptr and hb->lock held.
1692 */
1693static inline
1694void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1695 struct futex_hash_bucket *hb)
1696{
1697 get_futex_key_refs(key);
1698 q->key = *key;
1699
1700 __unqueue_futex(q);
1701
1702 WARN_ON(!q->rt_waiter);
1703 q->rt_waiter = NULL;
1704
1705 q->lock_ptr = &hb->lock;
1706
1707 wake_up_state(q->task, TASK_NORMAL);
1708}
1709
1710/**
1711 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1712 * @pifutex: the user address of the to futex
1713 * @hb1: the from futex hash bucket, must be locked by the caller
1714 * @hb2: the to futex hash bucket, must be locked by the caller
1715 * @key1: the from futex key
1716 * @key2: the to futex key
1717 * @ps: address to store the pi_state pointer
1718 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1719 *
1720 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1721 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1722 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1723 * hb1 and hb2 must be held by the caller.
1724 *
1725 * Return:
1726 * 0 - failed to acquire the lock atomically;
1727 * >0 - acquired the lock, return value is vpid of the top_waiter
1728 * <0 - error
1729 */
1730static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1731 struct futex_hash_bucket *hb1,
1732 struct futex_hash_bucket *hb2,
1733 union futex_key *key1, union futex_key *key2,
1734 struct futex_pi_state **ps, int set_waiters)
1735{
1736 struct futex_q *top_waiter = NULL;
1737 u32 curval;
1738 int ret, vpid;
1739
1740 if (get_futex_value_locked(&curval, pifutex))
1741 return -EFAULT;
1742
1743 if (unlikely(should_fail_futex(true)))
1744 return -EFAULT;
1745
1746 /*
1747 * Find the top_waiter and determine if there are additional waiters.
1748 * If the caller intends to requeue more than 1 waiter to pifutex,
1749 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1750 * as we have means to handle the possible fault. If not, don't set
1751 * the bit unecessarily as it will force the subsequent unlock to enter
1752 * the kernel.
1753 */
1754 top_waiter = futex_top_waiter(hb1, key1);
1755
1756 /* There are no waiters, nothing for us to do. */
1757 if (!top_waiter)
1758 return 0;
1759
1760 /* Ensure we requeue to the expected futex. */
1761 if (!match_futex(top_waiter->requeue_pi_key, key2))
1762 return -EINVAL;
1763
1764 /*
1765 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1766 * the contended case or if set_waiters is 1. The pi_state is returned
1767 * in ps in contended cases.
1768 */
1769 vpid = task_pid_vnr(top_waiter->task);
1770 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1771 set_waiters);
1772 if (ret == 1) {
1773 requeue_pi_wake_futex(top_waiter, key2, hb2);
1774 return vpid;
1775 }
1776 return ret;
1777}
1778
1779/**
1780 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1781 * @uaddr1: source futex user address
1782 * @flags: futex flags (FLAGS_SHARED, etc.)
1783 * @uaddr2: target futex user address
1784 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1785 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1786 * @cmpval: @uaddr1 expected value (or %NULL)
1787 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1788 * pi futex (pi to pi requeue is not supported)
1789 *
1790 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1791 * uaddr2 atomically on behalf of the top waiter.
1792 *
1793 * Return:
1794 * >=0 - on success, the number of tasks requeued or woken;
1795 * <0 - on error
1796 */
1797static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1798 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1799 u32 *cmpval, int requeue_pi)
1800{
1801 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1802 int drop_count = 0, task_count = 0, ret;
1803 struct futex_pi_state *pi_state = NULL;
1804 struct futex_hash_bucket *hb1, *hb2;
1805 struct futex_q *this, *next;
1806 DEFINE_WAKE_Q(wake_q);
1807
1808 if (requeue_pi) {
1809 /*
1810 * Requeue PI only works on two distinct uaddrs. This
1811 * check is only valid for private futexes. See below.
1812 */
1813 if (uaddr1 == uaddr2)
1814 return -EINVAL;
1815
1816 /*
1817 * requeue_pi requires a pi_state, try to allocate it now
1818 * without any locks in case it fails.
1819 */
1820 if (refill_pi_state_cache())
1821 return -ENOMEM;
1822 /*
1823 * requeue_pi must wake as many tasks as it can, up to nr_wake
1824 * + nr_requeue, since it acquires the rt_mutex prior to
1825 * returning to userspace, so as to not leave the rt_mutex with
1826 * waiters and no owner. However, second and third wake-ups
1827 * cannot be predicted as they involve race conditions with the
1828 * first wake and a fault while looking up the pi_state. Both
1829 * pthread_cond_signal() and pthread_cond_broadcast() should
1830 * use nr_wake=1.
1831 */
1832 if (nr_wake != 1)
1833 return -EINVAL;
1834 }
1835
1836retry:
1837 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1838 if (unlikely(ret != 0))
1839 goto out;
1840 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1841 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1842 if (unlikely(ret != 0))
1843 goto out_put_key1;
1844
1845 /*
1846 * The check above which compares uaddrs is not sufficient for
1847 * shared futexes. We need to compare the keys:
1848 */
1849 if (requeue_pi && match_futex(&key1, &key2)) {
1850 ret = -EINVAL;
1851 goto out_put_keys;
1852 }
1853
1854 hb1 = hash_futex(&key1);
1855 hb2 = hash_futex(&key2);
1856
1857retry_private:
1858 hb_waiters_inc(hb2);
1859 double_lock_hb(hb1, hb2);
1860
1861 if (likely(cmpval != NULL)) {
1862 u32 curval;
1863
1864 ret = get_futex_value_locked(&curval, uaddr1);
1865
1866 if (unlikely(ret)) {
1867 double_unlock_hb(hb1, hb2);
1868 hb_waiters_dec(hb2);
1869
1870 ret = get_user(curval, uaddr1);
1871 if (ret)
1872 goto out_put_keys;
1873
1874 if (!(flags & FLAGS_SHARED))
1875 goto retry_private;
1876
1877 put_futex_key(&key2);
1878 put_futex_key(&key1);
1879 goto retry;
1880 }
1881 if (curval != *cmpval) {
1882 ret = -EAGAIN;
1883 goto out_unlock;
1884 }
1885 }
1886
1887 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1888 /*
1889 * Attempt to acquire uaddr2 and wake the top waiter. If we
1890 * intend to requeue waiters, force setting the FUTEX_WAITERS
1891 * bit. We force this here where we are able to easily handle
1892 * faults rather in the requeue loop below.
1893 */
1894 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1895 &key2, &pi_state, nr_requeue);
1896
1897 /*
1898 * At this point the top_waiter has either taken uaddr2 or is
1899 * waiting on it. If the former, then the pi_state will not
1900 * exist yet, look it up one more time to ensure we have a
1901 * reference to it. If the lock was taken, ret contains the
1902 * vpid of the top waiter task.
1903 * If the lock was not taken, we have pi_state and an initial
1904 * refcount on it. In case of an error we have nothing.
1905 */
1906 if (ret > 0) {
1907 WARN_ON(pi_state);
1908 drop_count++;
1909 task_count++;
1910 /*
1911 * If we acquired the lock, then the user space value
1912 * of uaddr2 should be vpid. It cannot be changed by
1913 * the top waiter as it is blocked on hb2 lock if it
1914 * tries to do so. If something fiddled with it behind
1915 * our back the pi state lookup might unearth it. So
1916 * we rather use the known value than rereading and
1917 * handing potential crap to lookup_pi_state.
1918 *
1919 * If that call succeeds then we have pi_state and an
1920 * initial refcount on it.
1921 */
1922 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1923 }
1924
1925 switch (ret) {
1926 case 0:
1927 /* We hold a reference on the pi state. */
1928 break;
1929
1930 /* If the above failed, then pi_state is NULL */
1931 case -EFAULT:
1932 double_unlock_hb(hb1, hb2);
1933 hb_waiters_dec(hb2);
1934 put_futex_key(&key2);
1935 put_futex_key(&key1);
1936 ret = fault_in_user_writeable(uaddr2);
1937 if (!ret)
1938 goto retry;
1939 goto out;
1940 case -EAGAIN:
1941 /*
1942 * Two reasons for this:
1943 * - Owner is exiting and we just wait for the
1944 * exit to complete.
1945 * - The user space value changed.
1946 */
1947 double_unlock_hb(hb1, hb2);
1948 hb_waiters_dec(hb2);
1949 put_futex_key(&key2);
1950 put_futex_key(&key1);
1951 cond_resched();
1952 goto retry;
1953 default:
1954 goto out_unlock;
1955 }
1956 }
1957
1958 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1959 if (task_count - nr_wake >= nr_requeue)
1960 break;
1961
1962 if (!match_futex(&this->key, &key1))
1963 continue;
1964
1965 /*
1966 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1967 * be paired with each other and no other futex ops.
1968 *
1969 * We should never be requeueing a futex_q with a pi_state,
1970 * which is awaiting a futex_unlock_pi().
1971 */
1972 if ((requeue_pi && !this->rt_waiter) ||
1973 (!requeue_pi && this->rt_waiter) ||
1974 this->pi_state) {
1975 ret = -EINVAL;
1976 break;
1977 }
1978
1979 /*
1980 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1981 * lock, we already woke the top_waiter. If not, it will be
1982 * woken by futex_unlock_pi().
1983 */
1984 if (++task_count <= nr_wake && !requeue_pi) {
1985 mark_wake_futex(&wake_q, this);
1986 continue;
1987 }
1988
1989 /* Ensure we requeue to the expected futex for requeue_pi. */
1990 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1991 ret = -EINVAL;
1992 break;
1993 }
1994
1995 /*
1996 * Requeue nr_requeue waiters and possibly one more in the case
1997 * of requeue_pi if we couldn't acquire the lock atomically.
1998 */
1999 if (requeue_pi) {
2000 /*
2001 * Prepare the waiter to take the rt_mutex. Take a
2002 * refcount on the pi_state and store the pointer in
2003 * the futex_q object of the waiter.
2004 */
2005 get_pi_state(pi_state);
2006 this->pi_state = pi_state;
2007 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2008 this->rt_waiter,
2009 this->task);
2010 if (ret == 1) {
2011 /*
2012 * We got the lock. We do neither drop the
2013 * refcount on pi_state nor clear
2014 * this->pi_state because the waiter needs the
2015 * pi_state for cleaning up the user space
2016 * value. It will drop the refcount after
2017 * doing so.
2018 */
2019 requeue_pi_wake_futex(this, &key2, hb2);
2020 drop_count++;
2021 continue;
2022 } else if (ret) {
2023 /*
2024 * rt_mutex_start_proxy_lock() detected a
2025 * potential deadlock when we tried to queue
2026 * that waiter. Drop the pi_state reference
2027 * which we took above and remove the pointer
2028 * to the state from the waiters futex_q
2029 * object.
2030 */
2031 this->pi_state = NULL;
2032 put_pi_state(pi_state);
2033 /*
2034 * We stop queueing more waiters and let user
2035 * space deal with the mess.
2036 */
2037 break;
2038 }
2039 }
2040 requeue_futex(this, hb1, hb2, &key2);
2041 drop_count++;
2042 }
2043
2044 /*
2045 * We took an extra initial reference to the pi_state either
2046 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2047 * need to drop it here again.
2048 */
2049 put_pi_state(pi_state);
2050
2051out_unlock:
2052 double_unlock_hb(hb1, hb2);
2053 wake_up_q(&wake_q);
2054 hb_waiters_dec(hb2);
2055
2056 /*
2057 * drop_futex_key_refs() must be called outside the spinlocks. During
2058 * the requeue we moved futex_q's from the hash bucket at key1 to the
2059 * one at key2 and updated their key pointer. We no longer need to
2060 * hold the references to key1.
2061 */
2062 while (--drop_count >= 0)
2063 drop_futex_key_refs(&key1);
2064
2065out_put_keys:
2066 put_futex_key(&key2);
2067out_put_key1:
2068 put_futex_key(&key1);
2069out:
2070 return ret ? ret : task_count;
2071}
2072
2073/* The key must be already stored in q->key. */
2074static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2075 __acquires(&hb->lock)
2076{
2077 struct futex_hash_bucket *hb;
2078
2079 hb = hash_futex(&q->key);
2080
2081 /*
2082 * Increment the counter before taking the lock so that
2083 * a potential waker won't miss a to-be-slept task that is
2084 * waiting for the spinlock. This is safe as all queue_lock()
2085 * users end up calling queue_me(). Similarly, for housekeeping,
2086 * decrement the counter at queue_unlock() when some error has
2087 * occurred and we don't end up adding the task to the list.
2088 */
2089 hb_waiters_inc(hb);
2090
2091 q->lock_ptr = &hb->lock;
2092
2093 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2094 return hb;
2095}
2096
2097static inline void
2098queue_unlock(struct futex_hash_bucket *hb)
2099 __releases(&hb->lock)
2100{
2101 spin_unlock(&hb->lock);
2102 hb_waiters_dec(hb);
2103}
2104
2105/**
2106 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2107 * @q: The futex_q to enqueue
2108 * @hb: The destination hash bucket
2109 *
2110 * The hb->lock must be held by the caller, and is released here. A call to
2111 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2112 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2113 * or nothing if the unqueue is done as part of the wake process and the unqueue
2114 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2115 * an example).
2116 */
2117static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2118 __releases(&hb->lock)
2119{
2120 int prio;
2121
2122 /*
2123 * The priority used to register this element is
2124 * - either the real thread-priority for the real-time threads
2125 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2126 * - or MAX_RT_PRIO for non-RT threads.
2127 * Thus, all RT-threads are woken first in priority order, and
2128 * the others are woken last, in FIFO order.
2129 */
2130 prio = min(current->normal_prio, MAX_RT_PRIO);
2131
2132 plist_node_init(&q->list, prio);
2133 plist_add(&q->list, &hb->chain);
2134 q->task = current;
2135 spin_unlock(&hb->lock);
2136}
2137
2138/**
2139 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2140 * @q: The futex_q to unqueue
2141 *
2142 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2143 * be paired with exactly one earlier call to queue_me().
2144 *
2145 * Return:
2146 * 1 - if the futex_q was still queued (and we removed unqueued it);
2147 * 0 - if the futex_q was already removed by the waking thread
2148 */
2149static int unqueue_me(struct futex_q *q)
2150{
2151 spinlock_t *lock_ptr;
2152 int ret = 0;
2153
2154 /* In the common case we don't take the spinlock, which is nice. */
2155retry:
2156 /*
2157 * q->lock_ptr can change between this read and the following spin_lock.
2158 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2159 * optimizing lock_ptr out of the logic below.
2160 */
2161 lock_ptr = READ_ONCE(q->lock_ptr);
2162 if (lock_ptr != NULL) {
2163 spin_lock(lock_ptr);
2164 /*
2165 * q->lock_ptr can change between reading it and
2166 * spin_lock(), causing us to take the wrong lock. This
2167 * corrects the race condition.
2168 *
2169 * Reasoning goes like this: if we have the wrong lock,
2170 * q->lock_ptr must have changed (maybe several times)
2171 * between reading it and the spin_lock(). It can
2172 * change again after the spin_lock() but only if it was
2173 * already changed before the spin_lock(). It cannot,
2174 * however, change back to the original value. Therefore
2175 * we can detect whether we acquired the correct lock.
2176 */
2177 if (unlikely(lock_ptr != q->lock_ptr)) {
2178 spin_unlock(lock_ptr);
2179 goto retry;
2180 }
2181 __unqueue_futex(q);
2182
2183 BUG_ON(q->pi_state);
2184
2185 spin_unlock(lock_ptr);
2186 ret = 1;
2187 }
2188
2189 drop_futex_key_refs(&q->key);
2190 return ret;
2191}
2192
2193/*
2194 * PI futexes can not be requeued and must remove themself from the
2195 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2196 * and dropped here.
2197 */
2198static void unqueue_me_pi(struct futex_q *q)
2199 __releases(q->lock_ptr)
2200{
2201 __unqueue_futex(q);
2202
2203 BUG_ON(!q->pi_state);
2204 put_pi_state(q->pi_state);
2205 q->pi_state = NULL;
2206
2207 spin_unlock(q->lock_ptr);
2208}
2209
2210/*
2211 * Fixup the pi_state owner with the new owner.
2212 *
2213 * Must be called with hash bucket lock held and mm->sem held for non
2214 * private futexes.
2215 */
2216static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2217 struct task_struct *newowner)
2218{
2219 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2220 struct futex_pi_state *pi_state = q->pi_state;
2221 u32 uval, uninitialized_var(curval), newval;
2222 struct task_struct *oldowner;
2223 int ret;
2224
2225 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2226
2227 oldowner = pi_state->owner;
2228 /* Owner died? */
2229 if (!pi_state->owner)
2230 newtid |= FUTEX_OWNER_DIED;
2231
2232 /*
2233 * We are here either because we stole the rtmutex from the
2234 * previous highest priority waiter or we are the highest priority
2235 * waiter but failed to get the rtmutex the first time.
2236 * We have to replace the newowner TID in the user space variable.
2237 * This must be atomic as we have to preserve the owner died bit here.
2238 *
2239 * Note: We write the user space value _before_ changing the pi_state
2240 * because we can fault here. Imagine swapped out pages or a fork
2241 * that marked all the anonymous memory readonly for cow.
2242 *
2243 * Modifying pi_state _before_ the user space value would leave the
2244 * pi_state in an inconsistent state when we fault here, because we
2245 * need to drop the locks to handle the fault. This might be observed
2246 * in the PID check in lookup_pi_state.
2247 */
2248retry:
2249 if (get_futex_value_locked(&uval, uaddr))
2250 goto handle_fault;
2251
2252 while (1) {
2253 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2254
2255 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2256 goto handle_fault;
2257 if (curval == uval)
2258 break;
2259 uval = curval;
2260 }
2261
2262 /*
2263 * We fixed up user space. Now we need to fix the pi_state
2264 * itself.
2265 */
2266 if (pi_state->owner != NULL) {
2267 raw_spin_lock(&pi_state->owner->pi_lock);
2268 WARN_ON(list_empty(&pi_state->list));
2269 list_del_init(&pi_state->list);
2270 raw_spin_unlock(&pi_state->owner->pi_lock);
2271 }
2272
2273 pi_state->owner = newowner;
2274
2275 raw_spin_lock(&newowner->pi_lock);
2276 WARN_ON(!list_empty(&pi_state->list));
2277 list_add(&pi_state->list, &newowner->pi_state_list);
2278 raw_spin_unlock(&newowner->pi_lock);
2279 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2280
2281 return 0;
2282
2283 /*
2284 * To handle the page fault we need to drop the locks here. That gives
2285 * the other task (either the highest priority waiter itself or the
2286 * task which stole the rtmutex) the chance to try the fixup of the
2287 * pi_state. So once we are back from handling the fault we need to
2288 * check the pi_state after reacquiring the locks and before trying to
2289 * do another fixup. When the fixup has been done already we simply
2290 * return.
2291 *
2292 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2293 * drop hb->lock since the caller owns the hb -> futex_q relation.
2294 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2295 */
2296handle_fault:
2297 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2298 spin_unlock(q->lock_ptr);
2299
2300 ret = fault_in_user_writeable(uaddr);
2301
2302 spin_lock(q->lock_ptr);
2303 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2304
2305 /*
2306 * Check if someone else fixed it for us:
2307 */
2308 if (pi_state->owner != oldowner) {
2309 ret = 0;
2310 goto out_unlock;
2311 }
2312
2313 if (ret)
2314 goto out_unlock;
2315
2316 goto retry;
2317
2318out_unlock:
2319 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2320 return ret;
2321}
2322
2323static long futex_wait_restart(struct restart_block *restart);
2324
2325/**
2326 * fixup_owner() - Post lock pi_state and corner case management
2327 * @uaddr: user address of the futex
2328 * @q: futex_q (contains pi_state and access to the rt_mutex)
2329 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2330 *
2331 * After attempting to lock an rt_mutex, this function is called to cleanup
2332 * the pi_state owner as well as handle race conditions that may allow us to
2333 * acquire the lock. Must be called with the hb lock held.
2334 *
2335 * Return:
2336 * 1 - success, lock taken;
2337 * 0 - success, lock not taken;
2338 * <0 - on error (-EFAULT)
2339 */
2340static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2341{
2342 int ret = 0;
2343
2344 if (locked) {
2345 /*
2346 * Got the lock. We might not be the anticipated owner if we
2347 * did a lock-steal - fix up the PI-state in that case:
2348 */
2349 if (q->pi_state->owner != current)
2350 ret = fixup_pi_state_owner(uaddr, q, current);
2351 goto out;
2352 }
2353
2354 /*
2355 * Paranoia check. If we did not take the lock, then we should not be
2356 * the owner of the rt_mutex.
2357 */
2358 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2359 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2360 "pi-state %p\n", ret,
2361 q->pi_state->pi_mutex.owner,
2362 q->pi_state->owner);
2363 }
2364
2365out:
2366 return ret ? ret : locked;
2367}
2368
2369/**
2370 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2371 * @hb: the futex hash bucket, must be locked by the caller
2372 * @q: the futex_q to queue up on
2373 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2374 */
2375static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2376 struct hrtimer_sleeper *timeout)
2377{
2378 /*
2379 * The task state is guaranteed to be set before another task can
2380 * wake it. set_current_state() is implemented using smp_store_mb() and
2381 * queue_me() calls spin_unlock() upon completion, both serializing
2382 * access to the hash list and forcing another memory barrier.
2383 */
2384 set_current_state(TASK_INTERRUPTIBLE);
2385 queue_me(q, hb);
2386
2387 /* Arm the timer */
2388 if (timeout)
2389 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2390
2391 /*
2392 * If we have been removed from the hash list, then another task
2393 * has tried to wake us, and we can skip the call to schedule().
2394 */
2395 if (likely(!plist_node_empty(&q->list))) {
2396 /*
2397 * If the timer has already expired, current will already be
2398 * flagged for rescheduling. Only call schedule if there
2399 * is no timeout, or if it has yet to expire.
2400 */
2401 if (!timeout || timeout->task)
2402 freezable_schedule();
2403 }
2404 __set_current_state(TASK_RUNNING);
2405}
2406
2407/**
2408 * futex_wait_setup() - Prepare to wait on a futex
2409 * @uaddr: the futex userspace address
2410 * @val: the expected value
2411 * @flags: futex flags (FLAGS_SHARED, etc.)
2412 * @q: the associated futex_q
2413 * @hb: storage for hash_bucket pointer to be returned to caller
2414 *
2415 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2416 * compare it with the expected value. Handle atomic faults internally.
2417 * Return with the hb lock held and a q.key reference on success, and unlocked
2418 * with no q.key reference on failure.
2419 *
2420 * Return:
2421 * 0 - uaddr contains val and hb has been locked;
2422 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2423 */
2424static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2425 struct futex_q *q, struct futex_hash_bucket **hb)
2426{
2427 u32 uval;
2428 int ret;
2429
2430 /*
2431 * Access the page AFTER the hash-bucket is locked.
2432 * Order is important:
2433 *
2434 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2435 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2436 *
2437 * The basic logical guarantee of a futex is that it blocks ONLY
2438 * if cond(var) is known to be true at the time of blocking, for
2439 * any cond. If we locked the hash-bucket after testing *uaddr, that
2440 * would open a race condition where we could block indefinitely with
2441 * cond(var) false, which would violate the guarantee.
2442 *
2443 * On the other hand, we insert q and release the hash-bucket only
2444 * after testing *uaddr. This guarantees that futex_wait() will NOT
2445 * absorb a wakeup if *uaddr does not match the desired values
2446 * while the syscall executes.
2447 */
2448retry:
2449 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2450 if (unlikely(ret != 0))
2451 return ret;
2452
2453retry_private:
2454 *hb = queue_lock(q);
2455
2456 ret = get_futex_value_locked(&uval, uaddr);
2457
2458 if (ret) {
2459 queue_unlock(*hb);
2460
2461 ret = get_user(uval, uaddr);
2462 if (ret)
2463 goto out;
2464
2465 if (!(flags & FLAGS_SHARED))
2466 goto retry_private;
2467
2468 put_futex_key(&q->key);
2469 goto retry;
2470 }
2471
2472 if (uval != val) {
2473 queue_unlock(*hb);
2474 ret = -EWOULDBLOCK;
2475 }
2476
2477out:
2478 if (ret)
2479 put_futex_key(&q->key);
2480 return ret;
2481}
2482
2483static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2484 ktime_t *abs_time, u32 bitset)
2485{
2486 struct hrtimer_sleeper timeout, *to = NULL;
2487 struct restart_block *restart;
2488 struct futex_hash_bucket *hb;
2489 struct futex_q q = futex_q_init;
2490 int ret;
2491
2492 if (!bitset)
2493 return -EINVAL;
2494 q.bitset = bitset;
2495
2496 if (abs_time) {
2497 to = &timeout;
2498
2499 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2500 CLOCK_REALTIME : CLOCK_MONOTONIC,
2501 HRTIMER_MODE_ABS);
2502 hrtimer_init_sleeper(to, current);
2503 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2504 current->timer_slack_ns);
2505 }
2506
2507retry:
2508 /*
2509 * Prepare to wait on uaddr. On success, holds hb lock and increments
2510 * q.key refs.
2511 */
2512 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2513 if (ret)
2514 goto out;
2515
2516 /* queue_me and wait for wakeup, timeout, or a signal. */
2517 futex_wait_queue_me(hb, &q, to);
2518
2519 /* If we were woken (and unqueued), we succeeded, whatever. */
2520 ret = 0;
2521 /* unqueue_me() drops q.key ref */
2522 if (!unqueue_me(&q))
2523 goto out;
2524 ret = -ETIMEDOUT;
2525 if (to && !to->task)
2526 goto out;
2527
2528 /*
2529 * We expect signal_pending(current), but we might be the
2530 * victim of a spurious wakeup as well.
2531 */
2532 if (!signal_pending(current))
2533 goto retry;
2534
2535 ret = -ERESTARTSYS;
2536 if (!abs_time)
2537 goto out;
2538
2539 restart = &current->restart_block;
2540 restart->fn = futex_wait_restart;
2541 restart->futex.uaddr = uaddr;
2542 restart->futex.val = val;
2543 restart->futex.time = *abs_time;
2544 restart->futex.bitset = bitset;
2545 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2546
2547 ret = -ERESTART_RESTARTBLOCK;
2548
2549out:
2550 if (to) {
2551 hrtimer_cancel(&to->timer);
2552 destroy_hrtimer_on_stack(&to->timer);
2553 }
2554 return ret;
2555}
2556
2557
2558static long futex_wait_restart(struct restart_block *restart)
2559{
2560 u32 __user *uaddr = restart->futex.uaddr;
2561 ktime_t t, *tp = NULL;
2562
2563 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2564 t = restart->futex.time;
2565 tp = &t;
2566 }
2567 restart->fn = do_no_restart_syscall;
2568
2569 return (long)futex_wait(uaddr, restart->futex.flags,
2570 restart->futex.val, tp, restart->futex.bitset);
2571}
2572
2573
2574/*
2575 * Userspace tried a 0 -> TID atomic transition of the futex value
2576 * and failed. The kernel side here does the whole locking operation:
2577 * if there are waiters then it will block as a consequence of relying
2578 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2579 * a 0 value of the futex too.).
2580 *
2581 * Also serves as futex trylock_pi()'ing, and due semantics.
2582 */
2583static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2584 ktime_t *time, int trylock)
2585{
2586 struct hrtimer_sleeper timeout, *to = NULL;
2587 struct futex_hash_bucket *hb;
2588 struct futex_q q = futex_q_init;
2589 int res, ret;
2590
2591 if (refill_pi_state_cache())
2592 return -ENOMEM;
2593
2594 if (time) {
2595 to = &timeout;
2596 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2597 HRTIMER_MODE_ABS);
2598 hrtimer_init_sleeper(to, current);
2599 hrtimer_set_expires(&to->timer, *time);
2600 }
2601
2602retry:
2603 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2604 if (unlikely(ret != 0))
2605 goto out;
2606
2607retry_private:
2608 hb = queue_lock(&q);
2609
2610 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2611 if (unlikely(ret)) {
2612 /*
2613 * Atomic work succeeded and we got the lock,
2614 * or failed. Either way, we do _not_ block.
2615 */
2616 switch (ret) {
2617 case 1:
2618 /* We got the lock. */
2619 ret = 0;
2620 goto out_unlock_put_key;
2621 case -EFAULT:
2622 goto uaddr_faulted;
2623 case -EAGAIN:
2624 /*
2625 * Two reasons for this:
2626 * - Task is exiting and we just wait for the
2627 * exit to complete.
2628 * - The user space value changed.
2629 */
2630 queue_unlock(hb);
2631 put_futex_key(&q.key);
2632 cond_resched();
2633 goto retry;
2634 default:
2635 goto out_unlock_put_key;
2636 }
2637 }
2638
2639 /*
2640 * Only actually queue now that the atomic ops are done:
2641 */
2642 queue_me(&q, hb);
2643
2644 WARN_ON(!q.pi_state);
2645 /*
2646 * Block on the PI mutex:
2647 */
2648 if (!trylock) {
2649 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2650 } else {
2651 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2652 /* Fixup the trylock return value: */
2653 ret = ret ? 0 : -EWOULDBLOCK;
2654 }
2655
2656 spin_lock(q.lock_ptr);
2657 /*
2658 * Fixup the pi_state owner and possibly acquire the lock if we
2659 * haven't already.
2660 */
2661 res = fixup_owner(uaddr, &q, !ret);
2662 /*
2663 * If fixup_owner() returned an error, proprogate that. If it acquired
2664 * the lock, clear our -ETIMEDOUT or -EINTR.
2665 */
2666 if (res)
2667 ret = (res < 0) ? res : 0;
2668
2669 /*
2670 * If fixup_owner() faulted and was unable to handle the fault, unlock
2671 * it and return the fault to userspace.
2672 */
2673 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2674 rt_mutex_futex_unlock(&q.pi_state->pi_mutex);
2675
2676 /* Unqueue and drop the lock */
2677 unqueue_me_pi(&q);
2678
2679 goto out_put_key;
2680
2681out_unlock_put_key:
2682 queue_unlock(hb);
2683
2684out_put_key:
2685 put_futex_key(&q.key);
2686out:
2687 if (to)
2688 destroy_hrtimer_on_stack(&to->timer);
2689 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2690
2691uaddr_faulted:
2692 queue_unlock(hb);
2693
2694 ret = fault_in_user_writeable(uaddr);
2695 if (ret)
2696 goto out_put_key;
2697
2698 if (!(flags & FLAGS_SHARED))
2699 goto retry_private;
2700
2701 put_futex_key(&q.key);
2702 goto retry;
2703}
2704
2705/*
2706 * Userspace attempted a TID -> 0 atomic transition, and failed.
2707 * This is the in-kernel slowpath: we look up the PI state (if any),
2708 * and do the rt-mutex unlock.
2709 */
2710static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2711{
2712 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2713 union futex_key key = FUTEX_KEY_INIT;
2714 struct futex_hash_bucket *hb;
2715 struct futex_q *top_waiter;
2716 int ret;
2717
2718retry:
2719 if (get_user(uval, uaddr))
2720 return -EFAULT;
2721 /*
2722 * We release only a lock we actually own:
2723 */
2724 if ((uval & FUTEX_TID_MASK) != vpid)
2725 return -EPERM;
2726
2727 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2728 if (ret)
2729 return ret;
2730
2731 hb = hash_futex(&key);
2732 spin_lock(&hb->lock);
2733
2734 /*
2735 * Check waiters first. We do not trust user space values at
2736 * all and we at least want to know if user space fiddled
2737 * with the futex value instead of blindly unlocking.
2738 */
2739 top_waiter = futex_top_waiter(hb, &key);
2740 if (top_waiter) {
2741 ret = wake_futex_pi(uaddr, uval, top_waiter, hb);
2742 /*
2743 * In case of success wake_futex_pi dropped the hash
2744 * bucket lock.
2745 */
2746 if (!ret)
2747 goto out_putkey;
2748 /*
2749 * The atomic access to the futex value generated a
2750 * pagefault, so retry the user-access and the wakeup:
2751 */
2752 if (ret == -EFAULT)
2753 goto pi_faulted;
2754 /*
2755 * A unconditional UNLOCK_PI op raced against a waiter
2756 * setting the FUTEX_WAITERS bit. Try again.
2757 */
2758 if (ret == -EAGAIN) {
2759 spin_unlock(&hb->lock);
2760 put_futex_key(&key);
2761 goto retry;
2762 }
2763 /*
2764 * wake_futex_pi has detected invalid state. Tell user
2765 * space.
2766 */
2767 goto out_unlock;
2768 }
2769
2770 /*
2771 * We have no kernel internal state, i.e. no waiters in the
2772 * kernel. Waiters which are about to queue themselves are stuck
2773 * on hb->lock. So we can safely ignore them. We do neither
2774 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2775 * owner.
2776 */
2777 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2778 goto pi_faulted;
2779
2780 /*
2781 * If uval has changed, let user space handle it.
2782 */
2783 ret = (curval == uval) ? 0 : -EAGAIN;
2784
2785out_unlock:
2786 spin_unlock(&hb->lock);
2787out_putkey:
2788 put_futex_key(&key);
2789 return ret;
2790
2791pi_faulted:
2792 spin_unlock(&hb->lock);
2793 put_futex_key(&key);
2794
2795 ret = fault_in_user_writeable(uaddr);
2796 if (!ret)
2797 goto retry;
2798
2799 return ret;
2800}
2801
2802/**
2803 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2804 * @hb: the hash_bucket futex_q was original enqueued on
2805 * @q: the futex_q woken while waiting to be requeued
2806 * @key2: the futex_key of the requeue target futex
2807 * @timeout: the timeout associated with the wait (NULL if none)
2808 *
2809 * Detect if the task was woken on the initial futex as opposed to the requeue
2810 * target futex. If so, determine if it was a timeout or a signal that caused
2811 * the wakeup and return the appropriate error code to the caller. Must be
2812 * called with the hb lock held.
2813 *
2814 * Return:
2815 * 0 = no early wakeup detected;
2816 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2817 */
2818static inline
2819int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2820 struct futex_q *q, union futex_key *key2,
2821 struct hrtimer_sleeper *timeout)
2822{
2823 int ret = 0;
2824
2825 /*
2826 * With the hb lock held, we avoid races while we process the wakeup.
2827 * We only need to hold hb (and not hb2) to ensure atomicity as the
2828 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2829 * It can't be requeued from uaddr2 to something else since we don't
2830 * support a PI aware source futex for requeue.
2831 */
2832 if (!match_futex(&q->key, key2)) {
2833 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2834 /*
2835 * We were woken prior to requeue by a timeout or a signal.
2836 * Unqueue the futex_q and determine which it was.
2837 */
2838 plist_del(&q->list, &hb->chain);
2839 hb_waiters_dec(hb);
2840
2841 /* Handle spurious wakeups gracefully */
2842 ret = -EWOULDBLOCK;
2843 if (timeout && !timeout->task)
2844 ret = -ETIMEDOUT;
2845 else if (signal_pending(current))
2846 ret = -ERESTARTNOINTR;
2847 }
2848 return ret;
2849}
2850
2851/**
2852 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2853 * @uaddr: the futex we initially wait on (non-pi)
2854 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2855 * the same type, no requeueing from private to shared, etc.
2856 * @val: the expected value of uaddr
2857 * @abs_time: absolute timeout
2858 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2859 * @uaddr2: the pi futex we will take prior to returning to user-space
2860 *
2861 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2862 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2863 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2864 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2865 * without one, the pi logic would not know which task to boost/deboost, if
2866 * there was a need to.
2867 *
2868 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2869 * via the following--
2870 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2871 * 2) wakeup on uaddr2 after a requeue
2872 * 3) signal
2873 * 4) timeout
2874 *
2875 * If 3, cleanup and return -ERESTARTNOINTR.
2876 *
2877 * If 2, we may then block on trying to take the rt_mutex and return via:
2878 * 5) successful lock
2879 * 6) signal
2880 * 7) timeout
2881 * 8) other lock acquisition failure
2882 *
2883 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2884 *
2885 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2886 *
2887 * Return:
2888 * 0 - On success;
2889 * <0 - On error
2890 */
2891static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2892 u32 val, ktime_t *abs_time, u32 bitset,
2893 u32 __user *uaddr2)
2894{
2895 struct hrtimer_sleeper timeout, *to = NULL;
2896 struct rt_mutex_waiter rt_waiter;
2897 struct futex_hash_bucket *hb;
2898 union futex_key key2 = FUTEX_KEY_INIT;
2899 struct futex_q q = futex_q_init;
2900 int res, ret;
2901
2902 if (uaddr == uaddr2)
2903 return -EINVAL;
2904
2905 if (!bitset)
2906 return -EINVAL;
2907
2908 if (abs_time) {
2909 to = &timeout;
2910 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2911 CLOCK_REALTIME : CLOCK_MONOTONIC,
2912 HRTIMER_MODE_ABS);
2913 hrtimer_init_sleeper(to, current);
2914 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2915 current->timer_slack_ns);
2916 }
2917
2918 /*
2919 * The waiter is allocated on our stack, manipulated by the requeue
2920 * code while we sleep on uaddr.
2921 */
2922 debug_rt_mutex_init_waiter(&rt_waiter);
2923 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2924 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2925 rt_waiter.task = NULL;
2926
2927 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2928 if (unlikely(ret != 0))
2929 goto out;
2930
2931 q.bitset = bitset;
2932 q.rt_waiter = &rt_waiter;
2933 q.requeue_pi_key = &key2;
2934
2935 /*
2936 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2937 * count.
2938 */
2939 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2940 if (ret)
2941 goto out_key2;
2942
2943 /*
2944 * The check above which compares uaddrs is not sufficient for
2945 * shared futexes. We need to compare the keys:
2946 */
2947 if (match_futex(&q.key, &key2)) {
2948 queue_unlock(hb);
2949 ret = -EINVAL;
2950 goto out_put_keys;
2951 }
2952
2953 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2954 futex_wait_queue_me(hb, &q, to);
2955
2956 spin_lock(&hb->lock);
2957 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2958 spin_unlock(&hb->lock);
2959 if (ret)
2960 goto out_put_keys;
2961
2962 /*
2963 * In order for us to be here, we know our q.key == key2, and since
2964 * we took the hb->lock above, we also know that futex_requeue() has
2965 * completed and we no longer have to concern ourselves with a wakeup
2966 * race with the atomic proxy lock acquisition by the requeue code. The
2967 * futex_requeue dropped our key1 reference and incremented our key2
2968 * reference count.
2969 */
2970
2971 /* Check if the requeue code acquired the second futex for us. */
2972 if (!q.rt_waiter) {
2973 /*
2974 * Got the lock. We might not be the anticipated owner if we
2975 * did a lock-steal - fix up the PI-state in that case.
2976 */
2977 if (q.pi_state && (q.pi_state->owner != current)) {
2978 spin_lock(q.lock_ptr);
2979 ret = fixup_pi_state_owner(uaddr2, &q, current);
2980 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2981 rt_mutex_futex_unlock(&q.pi_state->pi_mutex);
2982 /*
2983 * Drop the reference to the pi state which
2984 * the requeue_pi() code acquired for us.
2985 */
2986 put_pi_state(q.pi_state);
2987 spin_unlock(q.lock_ptr);
2988 }
2989 } else {
2990 struct rt_mutex *pi_mutex;
2991
2992 /*
2993 * We have been woken up by futex_unlock_pi(), a timeout, or a
2994 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2995 * the pi_state.
2996 */
2997 WARN_ON(!q.pi_state);
2998 pi_mutex = &q.pi_state->pi_mutex;
2999 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
3000 debug_rt_mutex_free_waiter(&rt_waiter);
3001
3002 spin_lock(q.lock_ptr);
3003 /*
3004 * Fixup the pi_state owner and possibly acquire the lock if we
3005 * haven't already.
3006 */
3007 res = fixup_owner(uaddr2, &q, !ret);
3008 /*
3009 * If fixup_owner() returned an error, proprogate that. If it
3010 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3011 */
3012 if (res)
3013 ret = (res < 0) ? res : 0;
3014
3015 /*
3016 * If fixup_pi_state_owner() faulted and was unable to handle
3017 * the fault, unlock the rt_mutex and return the fault to
3018 * userspace.
3019 */
3020 if (ret && rt_mutex_owner(pi_mutex) == current)
3021 rt_mutex_futex_unlock(pi_mutex);
3022
3023 /* Unqueue and drop the lock. */
3024 unqueue_me_pi(&q);
3025 }
3026
3027 if (ret == -EINTR) {
3028 /*
3029 * We've already been requeued, but cannot restart by calling
3030 * futex_lock_pi() directly. We could restart this syscall, but
3031 * it would detect that the user space "val" changed and return
3032 * -EWOULDBLOCK. Save the overhead of the restart and return
3033 * -EWOULDBLOCK directly.
3034 */
3035 ret = -EWOULDBLOCK;
3036 }
3037
3038out_put_keys:
3039 put_futex_key(&q.key);
3040out_key2:
3041 put_futex_key(&key2);
3042
3043out:
3044 if (to) {
3045 hrtimer_cancel(&to->timer);
3046 destroy_hrtimer_on_stack(&to->timer);
3047 }
3048 return ret;
3049}
3050
3051/*
3052 * Support for robust futexes: the kernel cleans up held futexes at
3053 * thread exit time.
3054 *
3055 * Implementation: user-space maintains a per-thread list of locks it
3056 * is holding. Upon do_exit(), the kernel carefully walks this list,
3057 * and marks all locks that are owned by this thread with the
3058 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3059 * always manipulated with the lock held, so the list is private and
3060 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3061 * field, to allow the kernel to clean up if the thread dies after
3062 * acquiring the lock, but just before it could have added itself to
3063 * the list. There can only be one such pending lock.
3064 */
3065
3066/**
3067 * sys_set_robust_list() - Set the robust-futex list head of a task
3068 * @head: pointer to the list-head
3069 * @len: length of the list-head, as userspace expects
3070 */
3071SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3072 size_t, len)
3073{
3074 if (!futex_cmpxchg_enabled)
3075 return -ENOSYS;
3076 /*
3077 * The kernel knows only one size for now:
3078 */
3079 if (unlikely(len != sizeof(*head)))
3080 return -EINVAL;
3081
3082 current->robust_list = head;
3083
3084 return 0;
3085}
3086
3087/**
3088 * sys_get_robust_list() - Get the robust-futex list head of a task
3089 * @pid: pid of the process [zero for current task]
3090 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3091 * @len_ptr: pointer to a length field, the kernel fills in the header size
3092 */
3093SYSCALL_DEFINE3(get_robust_list, int, pid,
3094 struct robust_list_head __user * __user *, head_ptr,
3095 size_t __user *, len_ptr)
3096{
3097 struct robust_list_head __user *head;
3098 unsigned long ret;
3099 struct task_struct *p;
3100
3101 if (!futex_cmpxchg_enabled)
3102 return -ENOSYS;
3103
3104 rcu_read_lock();
3105
3106 ret = -ESRCH;
3107 if (!pid)
3108 p = current;
3109 else {
3110 p = find_task_by_vpid(pid);
3111 if (!p)
3112 goto err_unlock;
3113 }
3114
3115 ret = -EPERM;
3116 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3117 goto err_unlock;
3118
3119 head = p->robust_list;
3120 rcu_read_unlock();
3121
3122 if (put_user(sizeof(*head), len_ptr))
3123 return -EFAULT;
3124 return put_user(head, head_ptr);
3125
3126err_unlock:
3127 rcu_read_unlock();
3128
3129 return ret;
3130}
3131
3132/*
3133 * Process a futex-list entry, check whether it's owned by the
3134 * dying task, and do notification if so:
3135 */
3136int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3137{
3138 u32 uval, uninitialized_var(nval), mval;
3139
3140retry:
3141 if (get_user(uval, uaddr))
3142 return -1;
3143
3144 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3145 /*
3146 * Ok, this dying thread is truly holding a futex
3147 * of interest. Set the OWNER_DIED bit atomically
3148 * via cmpxchg, and if the value had FUTEX_WAITERS
3149 * set, wake up a waiter (if any). (We have to do a
3150 * futex_wake() even if OWNER_DIED is already set -
3151 * to handle the rare but possible case of recursive
3152 * thread-death.) The rest of the cleanup is done in
3153 * userspace.
3154 */
3155 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3156 /*
3157 * We are not holding a lock here, but we want to have
3158 * the pagefault_disable/enable() protection because
3159 * we want to handle the fault gracefully. If the
3160 * access fails we try to fault in the futex with R/W
3161 * verification via get_user_pages. get_user() above
3162 * does not guarantee R/W access. If that fails we
3163 * give up and leave the futex locked.
3164 */
3165 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3166 if (fault_in_user_writeable(uaddr))
3167 return -1;
3168 goto retry;
3169 }
3170 if (nval != uval)
3171 goto retry;
3172
3173 /*
3174 * Wake robust non-PI futexes here. The wakeup of
3175 * PI futexes happens in exit_pi_state():
3176 */
3177 if (!pi && (uval & FUTEX_WAITERS))
3178 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3179 }
3180 return 0;
3181}
3182
3183/*
3184 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3185 */
3186static inline int fetch_robust_entry(struct robust_list __user **entry,
3187 struct robust_list __user * __user *head,
3188 unsigned int *pi)
3189{
3190 unsigned long uentry;
3191
3192 if (get_user(uentry, (unsigned long __user *)head))
3193 return -EFAULT;
3194
3195 *entry = (void __user *)(uentry & ~1UL);
3196 *pi = uentry & 1;
3197
3198 return 0;
3199}
3200
3201/*
3202 * Walk curr->robust_list (very carefully, it's a userspace list!)
3203 * and mark any locks found there dead, and notify any waiters.
3204 *
3205 * We silently return on any sign of list-walking problem.
3206 */
3207void exit_robust_list(struct task_struct *curr)
3208{
3209 struct robust_list_head __user *head = curr->robust_list;
3210 struct robust_list __user *entry, *next_entry, *pending;
3211 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3212 unsigned int uninitialized_var(next_pi);
3213 unsigned long futex_offset;
3214 int rc;
3215
3216 if (!futex_cmpxchg_enabled)
3217 return;
3218
3219 /*
3220 * Fetch the list head (which was registered earlier, via
3221 * sys_set_robust_list()):
3222 */
3223 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3224 return;
3225 /*
3226 * Fetch the relative futex offset:
3227 */
3228 if (get_user(futex_offset, &head->futex_offset))
3229 return;
3230 /*
3231 * Fetch any possibly pending lock-add first, and handle it
3232 * if it exists:
3233 */
3234 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3235 return;
3236
3237 next_entry = NULL; /* avoid warning with gcc */
3238 while (entry != &head->list) {
3239 /*
3240 * Fetch the next entry in the list before calling
3241 * handle_futex_death:
3242 */
3243 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3244 /*
3245 * A pending lock might already be on the list, so
3246 * don't process it twice:
3247 */
3248 if (entry != pending)
3249 if (handle_futex_death((void __user *)entry + futex_offset,
3250 curr, pi))
3251 return;
3252 if (rc)
3253 return;
3254 entry = next_entry;
3255 pi = next_pi;
3256 /*
3257 * Avoid excessively long or circular lists:
3258 */
3259 if (!--limit)
3260 break;
3261
3262 cond_resched();
3263 }
3264
3265 if (pending)
3266 handle_futex_death((void __user *)pending + futex_offset,
3267 curr, pip);
3268}
3269
3270long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3271 u32 __user *uaddr2, u32 val2, u32 val3)
3272{
3273 int cmd = op & FUTEX_CMD_MASK;
3274 unsigned int flags = 0;
3275
3276 if (!(op & FUTEX_PRIVATE_FLAG))
3277 flags |= FLAGS_SHARED;
3278
3279 if (op & FUTEX_CLOCK_REALTIME) {
3280 flags |= FLAGS_CLOCKRT;
3281 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3282 cmd != FUTEX_WAIT_REQUEUE_PI)
3283 return -ENOSYS;
3284 }
3285
3286 switch (cmd) {
3287 case FUTEX_LOCK_PI:
3288 case FUTEX_UNLOCK_PI:
3289 case FUTEX_TRYLOCK_PI:
3290 case FUTEX_WAIT_REQUEUE_PI:
3291 case FUTEX_CMP_REQUEUE_PI:
3292 if (!futex_cmpxchg_enabled)
3293 return -ENOSYS;
3294 }
3295
3296 switch (cmd) {
3297 case FUTEX_WAIT:
3298 val3 = FUTEX_BITSET_MATCH_ANY;
3299 case FUTEX_WAIT_BITSET:
3300 return futex_wait(uaddr, flags, val, timeout, val3);
3301 case FUTEX_WAKE:
3302 val3 = FUTEX_BITSET_MATCH_ANY;
3303 case FUTEX_WAKE_BITSET:
3304 return futex_wake(uaddr, flags, val, val3);
3305 case FUTEX_REQUEUE:
3306 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3307 case FUTEX_CMP_REQUEUE:
3308 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3309 case FUTEX_WAKE_OP:
3310 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3311 case FUTEX_LOCK_PI:
3312 return futex_lock_pi(uaddr, flags, timeout, 0);
3313 case FUTEX_UNLOCK_PI:
3314 return futex_unlock_pi(uaddr, flags);
3315 case FUTEX_TRYLOCK_PI:
3316 return futex_lock_pi(uaddr, flags, NULL, 1);
3317 case FUTEX_WAIT_REQUEUE_PI:
3318 val3 = FUTEX_BITSET_MATCH_ANY;
3319 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3320 uaddr2);
3321 case FUTEX_CMP_REQUEUE_PI:
3322 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3323 }
3324 return -ENOSYS;
3325}
3326
3327
3328SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3329 struct timespec __user *, utime, u32 __user *, uaddr2,
3330 u32, val3)
3331{
3332 struct timespec ts;
3333 ktime_t t, *tp = NULL;
3334 u32 val2 = 0;
3335 int cmd = op & FUTEX_CMD_MASK;
3336
3337 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3338 cmd == FUTEX_WAIT_BITSET ||
3339 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3340 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3341 return -EFAULT;
3342 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3343 return -EFAULT;
3344 if (!timespec_valid(&ts))
3345 return -EINVAL;
3346
3347 t = timespec_to_ktime(ts);
3348 if (cmd == FUTEX_WAIT)
3349 t = ktime_add_safe(ktime_get(), t);
3350 tp = &t;
3351 }
3352 /*
3353 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3354 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3355 */
3356 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3357 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3358 val2 = (u32) (unsigned long) utime;
3359
3360 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3361}
3362
3363static void __init futex_detect_cmpxchg(void)
3364{
3365#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3366 u32 curval;
3367
3368 /*
3369 * This will fail and we want it. Some arch implementations do
3370 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3371 * functionality. We want to know that before we call in any
3372 * of the complex code paths. Also we want to prevent
3373 * registration of robust lists in that case. NULL is
3374 * guaranteed to fault and we get -EFAULT on functional
3375 * implementation, the non-functional ones will return
3376 * -ENOSYS.
3377 */
3378 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3379 futex_cmpxchg_enabled = 1;
3380#endif
3381}
3382
3383static int __init futex_init(void)
3384{
3385 unsigned int futex_shift;
3386 unsigned long i;
3387
3388#if CONFIG_BASE_SMALL
3389 futex_hashsize = 16;
3390#else
3391 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3392#endif
3393
3394 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3395 futex_hashsize, 0,
3396 futex_hashsize < 256 ? HASH_SMALL : 0,
3397 &futex_shift, NULL,
3398 futex_hashsize, futex_hashsize);
3399 futex_hashsize = 1UL << futex_shift;
3400
3401 futex_detect_cmpxchg();
3402
3403 for (i = 0; i < futex_hashsize; i++) {
3404 atomic_set(&futex_queues[i].waiters, 0);
3405 plist_head_init(&futex_queues[i].chain);
3406 spin_lock_init(&futex_queues[i].lock);
3407 }
3408
3409 return 0;
3410}
3411core_initcall(futex_init);