]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame_incremental - kernel/kprobes.c
kprobes: Remove __dummy_buf
[mirror_ubuntu-eoan-kernel.git] / kernel / kprobes.c
... / ...
CommitLineData
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50
51#include <asm-generic/sections.h>
52#include <asm/cacheflush.h>
53#include <asm/errno.h>
54#include <asm/uaccess.h>
55
56#define KPROBE_HASH_BITS 6
57#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58
59
60/*
61 * Some oddball architectures like 64bit powerpc have function descriptors
62 * so this must be overridable.
63 */
64#ifndef kprobe_lookup_name
65#define kprobe_lookup_name(name, addr) \
66 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67#endif
68
69static int kprobes_initialized;
70static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
72
73/* NOTE: change this value only with kprobe_mutex held */
74static bool kprobes_all_disarmed;
75
76static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
77static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78static struct {
79 spinlock_t lock ____cacheline_aligned_in_smp;
80} kretprobe_table_locks[KPROBE_TABLE_SIZE];
81
82static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83{
84 return &(kretprobe_table_locks[hash].lock);
85}
86
87/*
88 * Normally, functions that we'd want to prohibit kprobes in, are marked
89 * __kprobes. But, there are cases where such functions already belong to
90 * a different section (__sched for preempt_schedule)
91 *
92 * For such cases, we now have a blacklist
93 */
94static struct kprobe_blackpoint kprobe_blacklist[] = {
95 {"preempt_schedule",},
96 {"native_get_debugreg",},
97 {"irq_entries_start",},
98 {"common_interrupt",},
99 {"mcount",}, /* mcount can be called from everywhere */
100 {NULL} /* Terminator */
101};
102
103#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
104/*
105 * kprobe->ainsn.insn points to the copy of the instruction to be
106 * single-stepped. x86_64, POWER4 and above have no-exec support and
107 * stepping on the instruction on a vmalloced/kmalloced/data page
108 * is a recipe for disaster
109 */
110struct kprobe_insn_page {
111 struct list_head list;
112 kprobe_opcode_t *insns; /* Page of instruction slots */
113 int nused;
114 int ngarbage;
115 char slot_used[];
116};
117
118#define KPROBE_INSN_PAGE_SIZE(slots) \
119 (offsetof(struct kprobe_insn_page, slot_used) + \
120 (sizeof(char) * (slots)))
121
122struct kprobe_insn_cache {
123 struct list_head pages; /* list of kprobe_insn_page */
124 size_t insn_size; /* size of instruction slot */
125 int nr_garbage;
126};
127
128static int slots_per_page(struct kprobe_insn_cache *c)
129{
130 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
131}
132
133enum kprobe_slot_state {
134 SLOT_CLEAN = 0,
135 SLOT_DIRTY = 1,
136 SLOT_USED = 2,
137};
138
139static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
140static struct kprobe_insn_cache kprobe_insn_slots = {
141 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142 .insn_size = MAX_INSN_SIZE,
143 .nr_garbage = 0,
144};
145static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
146
147/**
148 * __get_insn_slot() - Find a slot on an executable page for an instruction.
149 * We allocate an executable page if there's no room on existing ones.
150 */
151static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
152{
153 struct kprobe_insn_page *kip;
154
155 retry:
156 list_for_each_entry(kip, &c->pages, list) {
157 if (kip->nused < slots_per_page(c)) {
158 int i;
159 for (i = 0; i < slots_per_page(c); i++) {
160 if (kip->slot_used[i] == SLOT_CLEAN) {
161 kip->slot_used[i] = SLOT_USED;
162 kip->nused++;
163 return kip->insns + (i * c->insn_size);
164 }
165 }
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
169 }
170 }
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 return NULL;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = module_alloc(PAGE_SIZE);
187 if (!kip->insns) {
188 kfree(kip);
189 return NULL;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 list_add(&kip->list, &c->pages);
197 return kip->insns;
198}
199
200
201kprobe_opcode_t __kprobes *get_insn_slot(void)
202{
203 kprobe_opcode_t *ret = NULL;
204
205 mutex_lock(&kprobe_insn_mutex);
206 ret = __get_insn_slot(&kprobe_insn_slots);
207 mutex_unlock(&kprobe_insn_mutex);
208
209 return ret;
210}
211
212/* Return 1 if all garbages are collected, otherwise 0. */
213static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214{
215 kip->slot_used[idx] = SLOT_CLEAN;
216 kip->nused--;
217 if (kip->nused == 0) {
218 /*
219 * Page is no longer in use. Free it unless
220 * it's the last one. We keep the last one
221 * so as not to have to set it up again the
222 * next time somebody inserts a probe.
223 */
224 if (!list_is_singular(&kip->list)) {
225 list_del(&kip->list);
226 module_free(NULL, kip->insns);
227 kfree(kip);
228 }
229 return 1;
230 }
231 return 0;
232}
233
234static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
235{
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_sched();
240
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243 if (kip->ngarbage == 0)
244 continue;
245 kip->ngarbage = 0; /* we will collect all garbages */
246 for (i = 0; i < slots_per_page(c); i++) {
247 if (kip->slot_used[i] == SLOT_DIRTY &&
248 collect_one_slot(kip, i))
249 break;
250 }
251 }
252 c->nr_garbage = 0;
253 return 0;
254}
255
256static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
258{
259 struct kprobe_insn_page *kip;
260
261 list_for_each_entry(kip, &c->pages, list) {
262 long idx = ((long)slot - (long)kip->insns) /
263 (c->insn_size * sizeof(kprobe_opcode_t));
264 if (idx >= 0 && idx < slots_per_page(c)) {
265 WARN_ON(kip->slot_used[idx] != SLOT_USED);
266 if (dirty) {
267 kip->slot_used[idx] = SLOT_DIRTY;
268 kip->ngarbage++;
269 if (++c->nr_garbage > slots_per_page(c))
270 collect_garbage_slots(c);
271 } else
272 collect_one_slot(kip, idx);
273 return;
274 }
275 }
276 /* Could not free this slot. */
277 WARN_ON(1);
278}
279
280void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
281{
282 mutex_lock(&kprobe_insn_mutex);
283 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
284 mutex_unlock(&kprobe_insn_mutex);
285}
286#ifdef CONFIG_OPTPROBES
287/* For optimized_kprobe buffer */
288static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
289static struct kprobe_insn_cache kprobe_optinsn_slots = {
290 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291 /* .insn_size is initialized later */
292 .nr_garbage = 0,
293};
294/* Get a slot for optimized_kprobe buffer */
295kprobe_opcode_t __kprobes *get_optinsn_slot(void)
296{
297 kprobe_opcode_t *ret = NULL;
298
299 mutex_lock(&kprobe_optinsn_mutex);
300 ret = __get_insn_slot(&kprobe_optinsn_slots);
301 mutex_unlock(&kprobe_optinsn_mutex);
302
303 return ret;
304}
305
306void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
307{
308 mutex_lock(&kprobe_optinsn_mutex);
309 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
310 mutex_unlock(&kprobe_optinsn_mutex);
311}
312#endif
313#endif
314
315/* We have preemption disabled.. so it is safe to use __ versions */
316static inline void set_kprobe_instance(struct kprobe *kp)
317{
318 __get_cpu_var(kprobe_instance) = kp;
319}
320
321static inline void reset_kprobe_instance(void)
322{
323 __get_cpu_var(kprobe_instance) = NULL;
324}
325
326/*
327 * This routine is called either:
328 * - under the kprobe_mutex - during kprobe_[un]register()
329 * OR
330 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
331 */
332struct kprobe __kprobes *get_kprobe(void *addr)
333{
334 struct hlist_head *head;
335 struct hlist_node *node;
336 struct kprobe *p;
337
338 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
339 hlist_for_each_entry_rcu(p, node, head, hlist) {
340 if (p->addr == addr)
341 return p;
342 }
343
344 return NULL;
345}
346
347static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
348
349/* Return true if the kprobe is an aggregator */
350static inline int kprobe_aggrprobe(struct kprobe *p)
351{
352 return p->pre_handler == aggr_pre_handler;
353}
354
355/*
356 * Keep all fields in the kprobe consistent
357 */
358static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
359{
360 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
361 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
362}
363
364#ifdef CONFIG_OPTPROBES
365/* NOTE: change this value only with kprobe_mutex held */
366static bool kprobes_allow_optimization;
367
368/*
369 * Call all pre_handler on the list, but ignores its return value.
370 * This must be called from arch-dep optimized caller.
371 */
372void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
373{
374 struct kprobe *kp;
375
376 list_for_each_entry_rcu(kp, &p->list, list) {
377 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
378 set_kprobe_instance(kp);
379 kp->pre_handler(kp, regs);
380 }
381 reset_kprobe_instance();
382 }
383}
384
385/* Return true(!0) if the kprobe is ready for optimization. */
386static inline int kprobe_optready(struct kprobe *p)
387{
388 struct optimized_kprobe *op;
389
390 if (kprobe_aggrprobe(p)) {
391 op = container_of(p, struct optimized_kprobe, kp);
392 return arch_prepared_optinsn(&op->optinsn);
393 }
394
395 return 0;
396}
397
398/*
399 * Return an optimized kprobe whose optimizing code replaces
400 * instructions including addr (exclude breakpoint).
401 */
402static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
403{
404 int i;
405 struct kprobe *p = NULL;
406 struct optimized_kprobe *op;
407
408 /* Don't check i == 0, since that is a breakpoint case. */
409 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
410 p = get_kprobe((void *)(addr - i));
411
412 if (p && kprobe_optready(p)) {
413 op = container_of(p, struct optimized_kprobe, kp);
414 if (arch_within_optimized_kprobe(op, addr))
415 return p;
416 }
417
418 return NULL;
419}
420
421/* Optimization staging list, protected by kprobe_mutex */
422static LIST_HEAD(optimizing_list);
423
424static void kprobe_optimizer(struct work_struct *work);
425static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
426#define OPTIMIZE_DELAY 5
427
428/* Kprobe jump optimizer */
429static __kprobes void kprobe_optimizer(struct work_struct *work)
430{
431 struct optimized_kprobe *op, *tmp;
432
433 /* Lock modules while optimizing kprobes */
434 mutex_lock(&module_mutex);
435 mutex_lock(&kprobe_mutex);
436 if (kprobes_all_disarmed || !kprobes_allow_optimization)
437 goto end;
438
439 /*
440 * Wait for quiesence period to ensure all running interrupts
441 * are done. Because optprobe may modify multiple instructions
442 * there is a chance that Nth instruction is interrupted. In that
443 * case, running interrupt can return to 2nd-Nth byte of jump
444 * instruction. This wait is for avoiding it.
445 */
446 synchronize_sched();
447
448 /*
449 * The optimization/unoptimization refers online_cpus via
450 * stop_machine() and cpu-hotplug modifies online_cpus.
451 * And same time, text_mutex will be held in cpu-hotplug and here.
452 * This combination can cause a deadlock (cpu-hotplug try to lock
453 * text_mutex but stop_machine can not be done because online_cpus
454 * has been changed)
455 * To avoid this deadlock, we need to call get_online_cpus()
456 * for preventing cpu-hotplug outside of text_mutex locking.
457 */
458 get_online_cpus();
459 mutex_lock(&text_mutex);
460 list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
461 WARN_ON(kprobe_disabled(&op->kp));
462 if (arch_optimize_kprobe(op) < 0)
463 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
464 list_del_init(&op->list);
465 }
466 mutex_unlock(&text_mutex);
467 put_online_cpus();
468end:
469 mutex_unlock(&kprobe_mutex);
470 mutex_unlock(&module_mutex);
471}
472
473/* Optimize kprobe if p is ready to be optimized */
474static __kprobes void optimize_kprobe(struct kprobe *p)
475{
476 struct optimized_kprobe *op;
477
478 /* Check if the kprobe is disabled or not ready for optimization. */
479 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
480 (kprobe_disabled(p) || kprobes_all_disarmed))
481 return;
482
483 /* Both of break_handler and post_handler are not supported. */
484 if (p->break_handler || p->post_handler)
485 return;
486
487 op = container_of(p, struct optimized_kprobe, kp);
488
489 /* Check there is no other kprobes at the optimized instructions */
490 if (arch_check_optimized_kprobe(op) < 0)
491 return;
492
493 /* Check if it is already optimized. */
494 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
495 return;
496
497 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
498 list_add(&op->list, &optimizing_list);
499 if (!delayed_work_pending(&optimizing_work))
500 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
501}
502
503/* Unoptimize a kprobe if p is optimized */
504static __kprobes void unoptimize_kprobe(struct kprobe *p)
505{
506 struct optimized_kprobe *op;
507
508 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
509 op = container_of(p, struct optimized_kprobe, kp);
510 if (!list_empty(&op->list))
511 /* Dequeue from the optimization queue */
512 list_del_init(&op->list);
513 else
514 /* Replace jump with break */
515 arch_unoptimize_kprobe(op);
516 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
517 }
518}
519
520/* Remove optimized instructions */
521static void __kprobes kill_optimized_kprobe(struct kprobe *p)
522{
523 struct optimized_kprobe *op;
524
525 op = container_of(p, struct optimized_kprobe, kp);
526 if (!list_empty(&op->list)) {
527 /* Dequeue from the optimization queue */
528 list_del_init(&op->list);
529 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
530 }
531 /* Don't unoptimize, because the target code will be freed. */
532 arch_remove_optimized_kprobe(op);
533}
534
535/* Try to prepare optimized instructions */
536static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
537{
538 struct optimized_kprobe *op;
539
540 op = container_of(p, struct optimized_kprobe, kp);
541 arch_prepare_optimized_kprobe(op);
542}
543
544/* Free optimized instructions and optimized_kprobe */
545static __kprobes void free_aggr_kprobe(struct kprobe *p)
546{
547 struct optimized_kprobe *op;
548
549 op = container_of(p, struct optimized_kprobe, kp);
550 arch_remove_optimized_kprobe(op);
551 kfree(op);
552}
553
554/* Allocate new optimized_kprobe and try to prepare optimized instructions */
555static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
556{
557 struct optimized_kprobe *op;
558
559 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
560 if (!op)
561 return NULL;
562
563 INIT_LIST_HEAD(&op->list);
564 op->kp.addr = p->addr;
565 arch_prepare_optimized_kprobe(op);
566
567 return &op->kp;
568}
569
570static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
571
572/*
573 * Prepare an optimized_kprobe and optimize it
574 * NOTE: p must be a normal registered kprobe
575 */
576static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
577{
578 struct kprobe *ap;
579 struct optimized_kprobe *op;
580
581 ap = alloc_aggr_kprobe(p);
582 if (!ap)
583 return;
584
585 op = container_of(ap, struct optimized_kprobe, kp);
586 if (!arch_prepared_optinsn(&op->optinsn)) {
587 /* If failed to setup optimizing, fallback to kprobe */
588 free_aggr_kprobe(ap);
589 return;
590 }
591
592 init_aggr_kprobe(ap, p);
593 optimize_kprobe(ap);
594}
595
596#ifdef CONFIG_SYSCTL
597static void __kprobes optimize_all_kprobes(void)
598{
599 struct hlist_head *head;
600 struct hlist_node *node;
601 struct kprobe *p;
602 unsigned int i;
603
604 /* If optimization is already allowed, just return */
605 if (kprobes_allow_optimization)
606 return;
607
608 kprobes_allow_optimization = true;
609 mutex_lock(&text_mutex);
610 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
611 head = &kprobe_table[i];
612 hlist_for_each_entry_rcu(p, node, head, hlist)
613 if (!kprobe_disabled(p))
614 optimize_kprobe(p);
615 }
616 mutex_unlock(&text_mutex);
617 printk(KERN_INFO "Kprobes globally optimized\n");
618}
619
620static void __kprobes unoptimize_all_kprobes(void)
621{
622 struct hlist_head *head;
623 struct hlist_node *node;
624 struct kprobe *p;
625 unsigned int i;
626
627 /* If optimization is already prohibited, just return */
628 if (!kprobes_allow_optimization)
629 return;
630
631 kprobes_allow_optimization = false;
632 printk(KERN_INFO "Kprobes globally unoptimized\n");
633 get_online_cpus(); /* For avoiding text_mutex deadlock */
634 mutex_lock(&text_mutex);
635 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
636 head = &kprobe_table[i];
637 hlist_for_each_entry_rcu(p, node, head, hlist) {
638 if (!kprobe_disabled(p))
639 unoptimize_kprobe(p);
640 }
641 }
642
643 mutex_unlock(&text_mutex);
644 put_online_cpus();
645 /* Allow all currently running kprobes to complete */
646 synchronize_sched();
647}
648
649int sysctl_kprobes_optimization;
650int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
651 void __user *buffer, size_t *length,
652 loff_t *ppos)
653{
654 int ret;
655
656 mutex_lock(&kprobe_mutex);
657 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
658 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
659
660 if (sysctl_kprobes_optimization)
661 optimize_all_kprobes();
662 else
663 unoptimize_all_kprobes();
664 mutex_unlock(&kprobe_mutex);
665
666 return ret;
667}
668#endif /* CONFIG_SYSCTL */
669
670static void __kprobes __arm_kprobe(struct kprobe *p)
671{
672 struct kprobe *old_p;
673
674 /* Check collision with other optimized kprobes */
675 old_p = get_optimized_kprobe((unsigned long)p->addr);
676 if (unlikely(old_p))
677 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
678
679 arch_arm_kprobe(p);
680 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
681}
682
683static void __kprobes __disarm_kprobe(struct kprobe *p)
684{
685 struct kprobe *old_p;
686
687 unoptimize_kprobe(p); /* Try to unoptimize */
688 arch_disarm_kprobe(p);
689
690 /* If another kprobe was blocked, optimize it. */
691 old_p = get_optimized_kprobe((unsigned long)p->addr);
692 if (unlikely(old_p))
693 optimize_kprobe(old_p);
694}
695
696#else /* !CONFIG_OPTPROBES */
697
698#define optimize_kprobe(p) do {} while (0)
699#define unoptimize_kprobe(p) do {} while (0)
700#define kill_optimized_kprobe(p) do {} while (0)
701#define prepare_optimized_kprobe(p) do {} while (0)
702#define try_to_optimize_kprobe(p) do {} while (0)
703#define __arm_kprobe(p) arch_arm_kprobe(p)
704#define __disarm_kprobe(p) arch_disarm_kprobe(p)
705
706static __kprobes void free_aggr_kprobe(struct kprobe *p)
707{
708 kfree(p);
709}
710
711static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
712{
713 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
714}
715#endif /* CONFIG_OPTPROBES */
716
717/* Arm a kprobe with text_mutex */
718static void __kprobes arm_kprobe(struct kprobe *kp)
719{
720 /*
721 * Here, since __arm_kprobe() doesn't use stop_machine(),
722 * this doesn't cause deadlock on text_mutex. So, we don't
723 * need get_online_cpus().
724 */
725 mutex_lock(&text_mutex);
726 __arm_kprobe(kp);
727 mutex_unlock(&text_mutex);
728}
729
730/* Disarm a kprobe with text_mutex */
731static void __kprobes disarm_kprobe(struct kprobe *kp)
732{
733 get_online_cpus(); /* For avoiding text_mutex deadlock */
734 mutex_lock(&text_mutex);
735 __disarm_kprobe(kp);
736 mutex_unlock(&text_mutex);
737 put_online_cpus();
738}
739
740/*
741 * Aggregate handlers for multiple kprobes support - these handlers
742 * take care of invoking the individual kprobe handlers on p->list
743 */
744static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
745{
746 struct kprobe *kp;
747
748 list_for_each_entry_rcu(kp, &p->list, list) {
749 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
750 set_kprobe_instance(kp);
751 if (kp->pre_handler(kp, regs))
752 return 1;
753 }
754 reset_kprobe_instance();
755 }
756 return 0;
757}
758
759static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
760 unsigned long flags)
761{
762 struct kprobe *kp;
763
764 list_for_each_entry_rcu(kp, &p->list, list) {
765 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
766 set_kprobe_instance(kp);
767 kp->post_handler(kp, regs, flags);
768 reset_kprobe_instance();
769 }
770 }
771}
772
773static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
774 int trapnr)
775{
776 struct kprobe *cur = __get_cpu_var(kprobe_instance);
777
778 /*
779 * if we faulted "during" the execution of a user specified
780 * probe handler, invoke just that probe's fault handler
781 */
782 if (cur && cur->fault_handler) {
783 if (cur->fault_handler(cur, regs, trapnr))
784 return 1;
785 }
786 return 0;
787}
788
789static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
790{
791 struct kprobe *cur = __get_cpu_var(kprobe_instance);
792 int ret = 0;
793
794 if (cur && cur->break_handler) {
795 if (cur->break_handler(cur, regs))
796 ret = 1;
797 }
798 reset_kprobe_instance();
799 return ret;
800}
801
802/* Walks the list and increments nmissed count for multiprobe case */
803void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
804{
805 struct kprobe *kp;
806 if (!kprobe_aggrprobe(p)) {
807 p->nmissed++;
808 } else {
809 list_for_each_entry_rcu(kp, &p->list, list)
810 kp->nmissed++;
811 }
812 return;
813}
814
815void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
816 struct hlist_head *head)
817{
818 struct kretprobe *rp = ri->rp;
819
820 /* remove rp inst off the rprobe_inst_table */
821 hlist_del(&ri->hlist);
822 INIT_HLIST_NODE(&ri->hlist);
823 if (likely(rp)) {
824 spin_lock(&rp->lock);
825 hlist_add_head(&ri->hlist, &rp->free_instances);
826 spin_unlock(&rp->lock);
827 } else
828 /* Unregistering */
829 hlist_add_head(&ri->hlist, head);
830}
831
832void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
833 struct hlist_head **head, unsigned long *flags)
834{
835 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
836 spinlock_t *hlist_lock;
837
838 *head = &kretprobe_inst_table[hash];
839 hlist_lock = kretprobe_table_lock_ptr(hash);
840 spin_lock_irqsave(hlist_lock, *flags);
841}
842
843static void __kprobes kretprobe_table_lock(unsigned long hash,
844 unsigned long *flags)
845{
846 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
847 spin_lock_irqsave(hlist_lock, *flags);
848}
849
850void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
851 unsigned long *flags)
852{
853 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
854 spinlock_t *hlist_lock;
855
856 hlist_lock = kretprobe_table_lock_ptr(hash);
857 spin_unlock_irqrestore(hlist_lock, *flags);
858}
859
860static void __kprobes kretprobe_table_unlock(unsigned long hash,
861 unsigned long *flags)
862{
863 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
864 spin_unlock_irqrestore(hlist_lock, *flags);
865}
866
867/*
868 * This function is called from finish_task_switch when task tk becomes dead,
869 * so that we can recycle any function-return probe instances associated
870 * with this task. These left over instances represent probed functions
871 * that have been called but will never return.
872 */
873void __kprobes kprobe_flush_task(struct task_struct *tk)
874{
875 struct kretprobe_instance *ri;
876 struct hlist_head *head, empty_rp;
877 struct hlist_node *node, *tmp;
878 unsigned long hash, flags = 0;
879
880 if (unlikely(!kprobes_initialized))
881 /* Early boot. kretprobe_table_locks not yet initialized. */
882 return;
883
884 hash = hash_ptr(tk, KPROBE_HASH_BITS);
885 head = &kretprobe_inst_table[hash];
886 kretprobe_table_lock(hash, &flags);
887 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
888 if (ri->task == tk)
889 recycle_rp_inst(ri, &empty_rp);
890 }
891 kretprobe_table_unlock(hash, &flags);
892 INIT_HLIST_HEAD(&empty_rp);
893 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
894 hlist_del(&ri->hlist);
895 kfree(ri);
896 }
897}
898
899static inline void free_rp_inst(struct kretprobe *rp)
900{
901 struct kretprobe_instance *ri;
902 struct hlist_node *pos, *next;
903
904 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
905 hlist_del(&ri->hlist);
906 kfree(ri);
907 }
908}
909
910static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
911{
912 unsigned long flags, hash;
913 struct kretprobe_instance *ri;
914 struct hlist_node *pos, *next;
915 struct hlist_head *head;
916
917 /* No race here */
918 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
919 kretprobe_table_lock(hash, &flags);
920 head = &kretprobe_inst_table[hash];
921 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
922 if (ri->rp == rp)
923 ri->rp = NULL;
924 }
925 kretprobe_table_unlock(hash, &flags);
926 }
927 free_rp_inst(rp);
928}
929
930/*
931* Add the new probe to ap->list. Fail if this is the
932* second jprobe at the address - two jprobes can't coexist
933*/
934static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
935{
936 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
937
938 if (p->break_handler || p->post_handler)
939 unoptimize_kprobe(ap); /* Fall back to normal kprobe */
940
941 if (p->break_handler) {
942 if (ap->break_handler)
943 return -EEXIST;
944 list_add_tail_rcu(&p->list, &ap->list);
945 ap->break_handler = aggr_break_handler;
946 } else
947 list_add_rcu(&p->list, &ap->list);
948 if (p->post_handler && !ap->post_handler)
949 ap->post_handler = aggr_post_handler;
950
951 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
952 ap->flags &= ~KPROBE_FLAG_DISABLED;
953 if (!kprobes_all_disarmed)
954 /* Arm the breakpoint again. */
955 __arm_kprobe(ap);
956 }
957 return 0;
958}
959
960/*
961 * Fill in the required fields of the "manager kprobe". Replace the
962 * earlier kprobe in the hlist with the manager kprobe
963 */
964static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
965{
966 /* Copy p's insn slot to ap */
967 copy_kprobe(p, ap);
968 flush_insn_slot(ap);
969 ap->addr = p->addr;
970 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
971 ap->pre_handler = aggr_pre_handler;
972 ap->fault_handler = aggr_fault_handler;
973 /* We don't care the kprobe which has gone. */
974 if (p->post_handler && !kprobe_gone(p))
975 ap->post_handler = aggr_post_handler;
976 if (p->break_handler && !kprobe_gone(p))
977 ap->break_handler = aggr_break_handler;
978
979 INIT_LIST_HEAD(&ap->list);
980 INIT_HLIST_NODE(&ap->hlist);
981
982 list_add_rcu(&p->list, &ap->list);
983 hlist_replace_rcu(&p->hlist, &ap->hlist);
984}
985
986/*
987 * This is the second or subsequent kprobe at the address - handle
988 * the intricacies
989 */
990static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
991 struct kprobe *p)
992{
993 int ret = 0;
994 struct kprobe *ap = old_p;
995
996 if (!kprobe_aggrprobe(old_p)) {
997 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
998 ap = alloc_aggr_kprobe(old_p);
999 if (!ap)
1000 return -ENOMEM;
1001 init_aggr_kprobe(ap, old_p);
1002 }
1003
1004 if (kprobe_gone(ap)) {
1005 /*
1006 * Attempting to insert new probe at the same location that
1007 * had a probe in the module vaddr area which already
1008 * freed. So, the instruction slot has already been
1009 * released. We need a new slot for the new probe.
1010 */
1011 ret = arch_prepare_kprobe(ap);
1012 if (ret)
1013 /*
1014 * Even if fail to allocate new slot, don't need to
1015 * free aggr_probe. It will be used next time, or
1016 * freed by unregister_kprobe.
1017 */
1018 return ret;
1019
1020 /* Prepare optimized instructions if possible. */
1021 prepare_optimized_kprobe(ap);
1022
1023 /*
1024 * Clear gone flag to prevent allocating new slot again, and
1025 * set disabled flag because it is not armed yet.
1026 */
1027 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1028 | KPROBE_FLAG_DISABLED;
1029 }
1030
1031 /* Copy ap's insn slot to p */
1032 copy_kprobe(ap, p);
1033 return add_new_kprobe(ap, p);
1034}
1035
1036/* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1037static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1038{
1039 struct kprobe *kp;
1040
1041 list_for_each_entry_rcu(kp, &p->list, list) {
1042 if (!kprobe_disabled(kp))
1043 /*
1044 * There is an active probe on the list.
1045 * We can't disable aggr_kprobe.
1046 */
1047 return 0;
1048 }
1049 p->flags |= KPROBE_FLAG_DISABLED;
1050 return 1;
1051}
1052
1053static int __kprobes in_kprobes_functions(unsigned long addr)
1054{
1055 struct kprobe_blackpoint *kb;
1056
1057 if (addr >= (unsigned long)__kprobes_text_start &&
1058 addr < (unsigned long)__kprobes_text_end)
1059 return -EINVAL;
1060 /*
1061 * If there exists a kprobe_blacklist, verify and
1062 * fail any probe registration in the prohibited area
1063 */
1064 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1065 if (kb->start_addr) {
1066 if (addr >= kb->start_addr &&
1067 addr < (kb->start_addr + kb->range))
1068 return -EINVAL;
1069 }
1070 }
1071 return 0;
1072}
1073
1074/*
1075 * If we have a symbol_name argument, look it up and add the offset field
1076 * to it. This way, we can specify a relative address to a symbol.
1077 */
1078static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1079{
1080 kprobe_opcode_t *addr = p->addr;
1081 if (p->symbol_name) {
1082 if (addr)
1083 return NULL;
1084 kprobe_lookup_name(p->symbol_name, addr);
1085 }
1086
1087 if (!addr)
1088 return NULL;
1089 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1090}
1091
1092/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1093static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1094{
1095 struct kprobe *old_p, *list_p;
1096
1097 old_p = get_kprobe(p->addr);
1098 if (unlikely(!old_p))
1099 return NULL;
1100
1101 if (p != old_p) {
1102 list_for_each_entry_rcu(list_p, &old_p->list, list)
1103 if (list_p == p)
1104 /* kprobe p is a valid probe */
1105 goto valid;
1106 return NULL;
1107 }
1108valid:
1109 return old_p;
1110}
1111
1112/* Return error if the kprobe is being re-registered */
1113static inline int check_kprobe_rereg(struct kprobe *p)
1114{
1115 int ret = 0;
1116 struct kprobe *old_p;
1117
1118 mutex_lock(&kprobe_mutex);
1119 old_p = __get_valid_kprobe(p);
1120 if (old_p)
1121 ret = -EINVAL;
1122 mutex_unlock(&kprobe_mutex);
1123 return ret;
1124}
1125
1126int __kprobes register_kprobe(struct kprobe *p)
1127{
1128 int ret = 0;
1129 struct kprobe *old_p;
1130 struct module *probed_mod;
1131 kprobe_opcode_t *addr;
1132
1133 addr = kprobe_addr(p);
1134 if (!addr)
1135 return -EINVAL;
1136 p->addr = addr;
1137
1138 ret = check_kprobe_rereg(p);
1139 if (ret)
1140 return ret;
1141
1142 preempt_disable();
1143 if (!kernel_text_address((unsigned long) p->addr) ||
1144 in_kprobes_functions((unsigned long) p->addr) ||
1145 ftrace_text_reserved(p->addr, p->addr)) {
1146 preempt_enable();
1147 return -EINVAL;
1148 }
1149
1150 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1151 p->flags &= KPROBE_FLAG_DISABLED;
1152
1153 /*
1154 * Check if are we probing a module.
1155 */
1156 probed_mod = __module_text_address((unsigned long) p->addr);
1157 if (probed_mod) {
1158 /*
1159 * We must hold a refcount of the probed module while updating
1160 * its code to prohibit unexpected unloading.
1161 */
1162 if (unlikely(!try_module_get(probed_mod))) {
1163 preempt_enable();
1164 return -EINVAL;
1165 }
1166 /*
1167 * If the module freed .init.text, we couldn't insert
1168 * kprobes in there.
1169 */
1170 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1171 probed_mod->state != MODULE_STATE_COMING) {
1172 module_put(probed_mod);
1173 preempt_enable();
1174 return -EINVAL;
1175 }
1176 }
1177 preempt_enable();
1178
1179 p->nmissed = 0;
1180 INIT_LIST_HEAD(&p->list);
1181 mutex_lock(&kprobe_mutex);
1182
1183 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1184 mutex_lock(&text_mutex);
1185
1186 old_p = get_kprobe(p->addr);
1187 if (old_p) {
1188 /* Since this may unoptimize old_p, locking text_mutex. */
1189 ret = register_aggr_kprobe(old_p, p);
1190 goto out;
1191 }
1192
1193 ret = arch_prepare_kprobe(p);
1194 if (ret)
1195 goto out;
1196
1197 INIT_HLIST_NODE(&p->hlist);
1198 hlist_add_head_rcu(&p->hlist,
1199 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1200
1201 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1202 __arm_kprobe(p);
1203
1204 /* Try to optimize kprobe */
1205 try_to_optimize_kprobe(p);
1206
1207out:
1208 mutex_unlock(&text_mutex);
1209 put_online_cpus();
1210 mutex_unlock(&kprobe_mutex);
1211
1212 if (probed_mod)
1213 module_put(probed_mod);
1214
1215 return ret;
1216}
1217EXPORT_SYMBOL_GPL(register_kprobe);
1218
1219/*
1220 * Unregister a kprobe without a scheduler synchronization.
1221 */
1222static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1223{
1224 struct kprobe *old_p, *list_p;
1225
1226 old_p = __get_valid_kprobe(p);
1227 if (old_p == NULL)
1228 return -EINVAL;
1229
1230 if (old_p == p ||
1231 (kprobe_aggrprobe(old_p) &&
1232 list_is_singular(&old_p->list))) {
1233 /*
1234 * Only probe on the hash list. Disarm only if kprobes are
1235 * enabled and not gone - otherwise, the breakpoint would
1236 * already have been removed. We save on flushing icache.
1237 */
1238 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1239 disarm_kprobe(old_p);
1240 hlist_del_rcu(&old_p->hlist);
1241 } else {
1242 if (p->break_handler && !kprobe_gone(p))
1243 old_p->break_handler = NULL;
1244 if (p->post_handler && !kprobe_gone(p)) {
1245 list_for_each_entry_rcu(list_p, &old_p->list, list) {
1246 if ((list_p != p) && (list_p->post_handler))
1247 goto noclean;
1248 }
1249 old_p->post_handler = NULL;
1250 }
1251noclean:
1252 list_del_rcu(&p->list);
1253 if (!kprobe_disabled(old_p)) {
1254 try_to_disable_aggr_kprobe(old_p);
1255 if (!kprobes_all_disarmed) {
1256 if (kprobe_disabled(old_p))
1257 disarm_kprobe(old_p);
1258 else
1259 /* Try to optimize this probe again */
1260 optimize_kprobe(old_p);
1261 }
1262 }
1263 }
1264 return 0;
1265}
1266
1267static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1268{
1269 struct kprobe *old_p;
1270
1271 if (list_empty(&p->list))
1272 arch_remove_kprobe(p);
1273 else if (list_is_singular(&p->list)) {
1274 /* "p" is the last child of an aggr_kprobe */
1275 old_p = list_entry(p->list.next, struct kprobe, list);
1276 list_del(&p->list);
1277 arch_remove_kprobe(old_p);
1278 free_aggr_kprobe(old_p);
1279 }
1280}
1281
1282int __kprobes register_kprobes(struct kprobe **kps, int num)
1283{
1284 int i, ret = 0;
1285
1286 if (num <= 0)
1287 return -EINVAL;
1288 for (i = 0; i < num; i++) {
1289 ret = register_kprobe(kps[i]);
1290 if (ret < 0) {
1291 if (i > 0)
1292 unregister_kprobes(kps, i);
1293 break;
1294 }
1295 }
1296 return ret;
1297}
1298EXPORT_SYMBOL_GPL(register_kprobes);
1299
1300void __kprobes unregister_kprobe(struct kprobe *p)
1301{
1302 unregister_kprobes(&p, 1);
1303}
1304EXPORT_SYMBOL_GPL(unregister_kprobe);
1305
1306void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1307{
1308 int i;
1309
1310 if (num <= 0)
1311 return;
1312 mutex_lock(&kprobe_mutex);
1313 for (i = 0; i < num; i++)
1314 if (__unregister_kprobe_top(kps[i]) < 0)
1315 kps[i]->addr = NULL;
1316 mutex_unlock(&kprobe_mutex);
1317
1318 synchronize_sched();
1319 for (i = 0; i < num; i++)
1320 if (kps[i]->addr)
1321 __unregister_kprobe_bottom(kps[i]);
1322}
1323EXPORT_SYMBOL_GPL(unregister_kprobes);
1324
1325static struct notifier_block kprobe_exceptions_nb = {
1326 .notifier_call = kprobe_exceptions_notify,
1327 .priority = 0x7fffffff /* we need to be notified first */
1328};
1329
1330unsigned long __weak arch_deref_entry_point(void *entry)
1331{
1332 return (unsigned long)entry;
1333}
1334
1335int __kprobes register_jprobes(struct jprobe **jps, int num)
1336{
1337 struct jprobe *jp;
1338 int ret = 0, i;
1339
1340 if (num <= 0)
1341 return -EINVAL;
1342 for (i = 0; i < num; i++) {
1343 unsigned long addr, offset;
1344 jp = jps[i];
1345 addr = arch_deref_entry_point(jp->entry);
1346
1347 /* Verify probepoint is a function entry point */
1348 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1349 offset == 0) {
1350 jp->kp.pre_handler = setjmp_pre_handler;
1351 jp->kp.break_handler = longjmp_break_handler;
1352 ret = register_kprobe(&jp->kp);
1353 } else
1354 ret = -EINVAL;
1355
1356 if (ret < 0) {
1357 if (i > 0)
1358 unregister_jprobes(jps, i);
1359 break;
1360 }
1361 }
1362 return ret;
1363}
1364EXPORT_SYMBOL_GPL(register_jprobes);
1365
1366int __kprobes register_jprobe(struct jprobe *jp)
1367{
1368 return register_jprobes(&jp, 1);
1369}
1370EXPORT_SYMBOL_GPL(register_jprobe);
1371
1372void __kprobes unregister_jprobe(struct jprobe *jp)
1373{
1374 unregister_jprobes(&jp, 1);
1375}
1376EXPORT_SYMBOL_GPL(unregister_jprobe);
1377
1378void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1379{
1380 int i;
1381
1382 if (num <= 0)
1383 return;
1384 mutex_lock(&kprobe_mutex);
1385 for (i = 0; i < num; i++)
1386 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1387 jps[i]->kp.addr = NULL;
1388 mutex_unlock(&kprobe_mutex);
1389
1390 synchronize_sched();
1391 for (i = 0; i < num; i++) {
1392 if (jps[i]->kp.addr)
1393 __unregister_kprobe_bottom(&jps[i]->kp);
1394 }
1395}
1396EXPORT_SYMBOL_GPL(unregister_jprobes);
1397
1398#ifdef CONFIG_KRETPROBES
1399/*
1400 * This kprobe pre_handler is registered with every kretprobe. When probe
1401 * hits it will set up the return probe.
1402 */
1403static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1404 struct pt_regs *regs)
1405{
1406 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1407 unsigned long hash, flags = 0;
1408 struct kretprobe_instance *ri;
1409
1410 /*TODO: consider to only swap the RA after the last pre_handler fired */
1411 hash = hash_ptr(current, KPROBE_HASH_BITS);
1412 spin_lock_irqsave(&rp->lock, flags);
1413 if (!hlist_empty(&rp->free_instances)) {
1414 ri = hlist_entry(rp->free_instances.first,
1415 struct kretprobe_instance, hlist);
1416 hlist_del(&ri->hlist);
1417 spin_unlock_irqrestore(&rp->lock, flags);
1418
1419 ri->rp = rp;
1420 ri->task = current;
1421
1422 if (rp->entry_handler && rp->entry_handler(ri, regs))
1423 return 0;
1424
1425 arch_prepare_kretprobe(ri, regs);
1426
1427 /* XXX(hch): why is there no hlist_move_head? */
1428 INIT_HLIST_NODE(&ri->hlist);
1429 kretprobe_table_lock(hash, &flags);
1430 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1431 kretprobe_table_unlock(hash, &flags);
1432 } else {
1433 rp->nmissed++;
1434 spin_unlock_irqrestore(&rp->lock, flags);
1435 }
1436 return 0;
1437}
1438
1439int __kprobes register_kretprobe(struct kretprobe *rp)
1440{
1441 int ret = 0;
1442 struct kretprobe_instance *inst;
1443 int i;
1444 void *addr;
1445
1446 if (kretprobe_blacklist_size) {
1447 addr = kprobe_addr(&rp->kp);
1448 if (!addr)
1449 return -EINVAL;
1450
1451 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1452 if (kretprobe_blacklist[i].addr == addr)
1453 return -EINVAL;
1454 }
1455 }
1456
1457 rp->kp.pre_handler = pre_handler_kretprobe;
1458 rp->kp.post_handler = NULL;
1459 rp->kp.fault_handler = NULL;
1460 rp->kp.break_handler = NULL;
1461
1462 /* Pre-allocate memory for max kretprobe instances */
1463 if (rp->maxactive <= 0) {
1464#ifdef CONFIG_PREEMPT
1465 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1466#else
1467 rp->maxactive = num_possible_cpus();
1468#endif
1469 }
1470 spin_lock_init(&rp->lock);
1471 INIT_HLIST_HEAD(&rp->free_instances);
1472 for (i = 0; i < rp->maxactive; i++) {
1473 inst = kmalloc(sizeof(struct kretprobe_instance) +
1474 rp->data_size, GFP_KERNEL);
1475 if (inst == NULL) {
1476 free_rp_inst(rp);
1477 return -ENOMEM;
1478 }
1479 INIT_HLIST_NODE(&inst->hlist);
1480 hlist_add_head(&inst->hlist, &rp->free_instances);
1481 }
1482
1483 rp->nmissed = 0;
1484 /* Establish function entry probe point */
1485 ret = register_kprobe(&rp->kp);
1486 if (ret != 0)
1487 free_rp_inst(rp);
1488 return ret;
1489}
1490EXPORT_SYMBOL_GPL(register_kretprobe);
1491
1492int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1493{
1494 int ret = 0, i;
1495
1496 if (num <= 0)
1497 return -EINVAL;
1498 for (i = 0; i < num; i++) {
1499 ret = register_kretprobe(rps[i]);
1500 if (ret < 0) {
1501 if (i > 0)
1502 unregister_kretprobes(rps, i);
1503 break;
1504 }
1505 }
1506 return ret;
1507}
1508EXPORT_SYMBOL_GPL(register_kretprobes);
1509
1510void __kprobes unregister_kretprobe(struct kretprobe *rp)
1511{
1512 unregister_kretprobes(&rp, 1);
1513}
1514EXPORT_SYMBOL_GPL(unregister_kretprobe);
1515
1516void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1517{
1518 int i;
1519
1520 if (num <= 0)
1521 return;
1522 mutex_lock(&kprobe_mutex);
1523 for (i = 0; i < num; i++)
1524 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1525 rps[i]->kp.addr = NULL;
1526 mutex_unlock(&kprobe_mutex);
1527
1528 synchronize_sched();
1529 for (i = 0; i < num; i++) {
1530 if (rps[i]->kp.addr) {
1531 __unregister_kprobe_bottom(&rps[i]->kp);
1532 cleanup_rp_inst(rps[i]);
1533 }
1534 }
1535}
1536EXPORT_SYMBOL_GPL(unregister_kretprobes);
1537
1538#else /* CONFIG_KRETPROBES */
1539int __kprobes register_kretprobe(struct kretprobe *rp)
1540{
1541 return -ENOSYS;
1542}
1543EXPORT_SYMBOL_GPL(register_kretprobe);
1544
1545int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1546{
1547 return -ENOSYS;
1548}
1549EXPORT_SYMBOL_GPL(register_kretprobes);
1550
1551void __kprobes unregister_kretprobe(struct kretprobe *rp)
1552{
1553}
1554EXPORT_SYMBOL_GPL(unregister_kretprobe);
1555
1556void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1557{
1558}
1559EXPORT_SYMBOL_GPL(unregister_kretprobes);
1560
1561static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1562 struct pt_regs *regs)
1563{
1564 return 0;
1565}
1566
1567#endif /* CONFIG_KRETPROBES */
1568
1569/* Set the kprobe gone and remove its instruction buffer. */
1570static void __kprobes kill_kprobe(struct kprobe *p)
1571{
1572 struct kprobe *kp;
1573
1574 p->flags |= KPROBE_FLAG_GONE;
1575 if (kprobe_aggrprobe(p)) {
1576 /*
1577 * If this is an aggr_kprobe, we have to list all the
1578 * chained probes and mark them GONE.
1579 */
1580 list_for_each_entry_rcu(kp, &p->list, list)
1581 kp->flags |= KPROBE_FLAG_GONE;
1582 p->post_handler = NULL;
1583 p->break_handler = NULL;
1584 kill_optimized_kprobe(p);
1585 }
1586 /*
1587 * Here, we can remove insn_slot safely, because no thread calls
1588 * the original probed function (which will be freed soon) any more.
1589 */
1590 arch_remove_kprobe(p);
1591}
1592
1593/* Disable one kprobe */
1594int __kprobes disable_kprobe(struct kprobe *kp)
1595{
1596 int ret = 0;
1597 struct kprobe *p;
1598
1599 mutex_lock(&kprobe_mutex);
1600
1601 /* Check whether specified probe is valid. */
1602 p = __get_valid_kprobe(kp);
1603 if (unlikely(p == NULL)) {
1604 ret = -EINVAL;
1605 goto out;
1606 }
1607
1608 /* If the probe is already disabled (or gone), just return */
1609 if (kprobe_disabled(kp))
1610 goto out;
1611
1612 kp->flags |= KPROBE_FLAG_DISABLED;
1613 if (p != kp)
1614 /* When kp != p, p is always enabled. */
1615 try_to_disable_aggr_kprobe(p);
1616
1617 if (!kprobes_all_disarmed && kprobe_disabled(p))
1618 disarm_kprobe(p);
1619out:
1620 mutex_unlock(&kprobe_mutex);
1621 return ret;
1622}
1623EXPORT_SYMBOL_GPL(disable_kprobe);
1624
1625/* Enable one kprobe */
1626int __kprobes enable_kprobe(struct kprobe *kp)
1627{
1628 int ret = 0;
1629 struct kprobe *p;
1630
1631 mutex_lock(&kprobe_mutex);
1632
1633 /* Check whether specified probe is valid. */
1634 p = __get_valid_kprobe(kp);
1635 if (unlikely(p == NULL)) {
1636 ret = -EINVAL;
1637 goto out;
1638 }
1639
1640 if (kprobe_gone(kp)) {
1641 /* This kprobe has gone, we couldn't enable it. */
1642 ret = -EINVAL;
1643 goto out;
1644 }
1645
1646 if (p != kp)
1647 kp->flags &= ~KPROBE_FLAG_DISABLED;
1648
1649 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1650 p->flags &= ~KPROBE_FLAG_DISABLED;
1651 arm_kprobe(p);
1652 }
1653out:
1654 mutex_unlock(&kprobe_mutex);
1655 return ret;
1656}
1657EXPORT_SYMBOL_GPL(enable_kprobe);
1658
1659void __kprobes dump_kprobe(struct kprobe *kp)
1660{
1661 printk(KERN_WARNING "Dumping kprobe:\n");
1662 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1663 kp->symbol_name, kp->addr, kp->offset);
1664}
1665
1666/* Module notifier call back, checking kprobes on the module */
1667static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1668 unsigned long val, void *data)
1669{
1670 struct module *mod = data;
1671 struct hlist_head *head;
1672 struct hlist_node *node;
1673 struct kprobe *p;
1674 unsigned int i;
1675 int checkcore = (val == MODULE_STATE_GOING);
1676
1677 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1678 return NOTIFY_DONE;
1679
1680 /*
1681 * When MODULE_STATE_GOING was notified, both of module .text and
1682 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1683 * notified, only .init.text section would be freed. We need to
1684 * disable kprobes which have been inserted in the sections.
1685 */
1686 mutex_lock(&kprobe_mutex);
1687 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1688 head = &kprobe_table[i];
1689 hlist_for_each_entry_rcu(p, node, head, hlist)
1690 if (within_module_init((unsigned long)p->addr, mod) ||
1691 (checkcore &&
1692 within_module_core((unsigned long)p->addr, mod))) {
1693 /*
1694 * The vaddr this probe is installed will soon
1695 * be vfreed buy not synced to disk. Hence,
1696 * disarming the breakpoint isn't needed.
1697 */
1698 kill_kprobe(p);
1699 }
1700 }
1701 mutex_unlock(&kprobe_mutex);
1702 return NOTIFY_DONE;
1703}
1704
1705static struct notifier_block kprobe_module_nb = {
1706 .notifier_call = kprobes_module_callback,
1707 .priority = 0
1708};
1709
1710static int __init init_kprobes(void)
1711{
1712 int i, err = 0;
1713 unsigned long offset = 0, size = 0;
1714 char *modname, namebuf[128];
1715 const char *symbol_name;
1716 void *addr;
1717 struct kprobe_blackpoint *kb;
1718
1719 /* FIXME allocate the probe table, currently defined statically */
1720 /* initialize all list heads */
1721 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1722 INIT_HLIST_HEAD(&kprobe_table[i]);
1723 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1724 spin_lock_init(&(kretprobe_table_locks[i].lock));
1725 }
1726
1727 /*
1728 * Lookup and populate the kprobe_blacklist.
1729 *
1730 * Unlike the kretprobe blacklist, we'll need to determine
1731 * the range of addresses that belong to the said functions,
1732 * since a kprobe need not necessarily be at the beginning
1733 * of a function.
1734 */
1735 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1736 kprobe_lookup_name(kb->name, addr);
1737 if (!addr)
1738 continue;
1739
1740 kb->start_addr = (unsigned long)addr;
1741 symbol_name = kallsyms_lookup(kb->start_addr,
1742 &size, &offset, &modname, namebuf);
1743 if (!symbol_name)
1744 kb->range = 0;
1745 else
1746 kb->range = size;
1747 }
1748
1749 if (kretprobe_blacklist_size) {
1750 /* lookup the function address from its name */
1751 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1752 kprobe_lookup_name(kretprobe_blacklist[i].name,
1753 kretprobe_blacklist[i].addr);
1754 if (!kretprobe_blacklist[i].addr)
1755 printk("kretprobe: lookup failed: %s\n",
1756 kretprobe_blacklist[i].name);
1757 }
1758 }
1759
1760#if defined(CONFIG_OPTPROBES)
1761#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1762 /* Init kprobe_optinsn_slots */
1763 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1764#endif
1765 /* By default, kprobes can be optimized */
1766 kprobes_allow_optimization = true;
1767#endif
1768
1769 /* By default, kprobes are armed */
1770 kprobes_all_disarmed = false;
1771
1772 err = arch_init_kprobes();
1773 if (!err)
1774 err = register_die_notifier(&kprobe_exceptions_nb);
1775 if (!err)
1776 err = register_module_notifier(&kprobe_module_nb);
1777
1778 kprobes_initialized = (err == 0);
1779
1780 if (!err)
1781 init_test_probes();
1782 return err;
1783}
1784
1785#ifdef CONFIG_DEBUG_FS
1786static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1787 const char *sym, int offset, char *modname, struct kprobe *pp)
1788{
1789 char *kprobe_type;
1790
1791 if (p->pre_handler == pre_handler_kretprobe)
1792 kprobe_type = "r";
1793 else if (p->pre_handler == setjmp_pre_handler)
1794 kprobe_type = "j";
1795 else
1796 kprobe_type = "k";
1797
1798 if (sym)
1799 seq_printf(pi, "%p %s %s+0x%x %s ",
1800 p->addr, kprobe_type, sym, offset,
1801 (modname ? modname : " "));
1802 else
1803 seq_printf(pi, "%p %s %p ",
1804 p->addr, kprobe_type, p->addr);
1805
1806 if (!pp)
1807 pp = p;
1808 seq_printf(pi, "%s%s%s\n",
1809 (kprobe_gone(p) ? "[GONE]" : ""),
1810 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
1811 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1812}
1813
1814static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1815{
1816 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1817}
1818
1819static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1820{
1821 (*pos)++;
1822 if (*pos >= KPROBE_TABLE_SIZE)
1823 return NULL;
1824 return pos;
1825}
1826
1827static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1828{
1829 /* Nothing to do */
1830}
1831
1832static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1833{
1834 struct hlist_head *head;
1835 struct hlist_node *node;
1836 struct kprobe *p, *kp;
1837 const char *sym = NULL;
1838 unsigned int i = *(loff_t *) v;
1839 unsigned long offset = 0;
1840 char *modname, namebuf[128];
1841
1842 head = &kprobe_table[i];
1843 preempt_disable();
1844 hlist_for_each_entry_rcu(p, node, head, hlist) {
1845 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1846 &offset, &modname, namebuf);
1847 if (kprobe_aggrprobe(p)) {
1848 list_for_each_entry_rcu(kp, &p->list, list)
1849 report_probe(pi, kp, sym, offset, modname, p);
1850 } else
1851 report_probe(pi, p, sym, offset, modname, NULL);
1852 }
1853 preempt_enable();
1854 return 0;
1855}
1856
1857static const struct seq_operations kprobes_seq_ops = {
1858 .start = kprobe_seq_start,
1859 .next = kprobe_seq_next,
1860 .stop = kprobe_seq_stop,
1861 .show = show_kprobe_addr
1862};
1863
1864static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1865{
1866 return seq_open(filp, &kprobes_seq_ops);
1867}
1868
1869static const struct file_operations debugfs_kprobes_operations = {
1870 .open = kprobes_open,
1871 .read = seq_read,
1872 .llseek = seq_lseek,
1873 .release = seq_release,
1874};
1875
1876static void __kprobes arm_all_kprobes(void)
1877{
1878 struct hlist_head *head;
1879 struct hlist_node *node;
1880 struct kprobe *p;
1881 unsigned int i;
1882
1883 mutex_lock(&kprobe_mutex);
1884
1885 /* If kprobes are armed, just return */
1886 if (!kprobes_all_disarmed)
1887 goto already_enabled;
1888
1889 /* Arming kprobes doesn't optimize kprobe itself */
1890 mutex_lock(&text_mutex);
1891 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1892 head = &kprobe_table[i];
1893 hlist_for_each_entry_rcu(p, node, head, hlist)
1894 if (!kprobe_disabled(p))
1895 __arm_kprobe(p);
1896 }
1897 mutex_unlock(&text_mutex);
1898
1899 kprobes_all_disarmed = false;
1900 printk(KERN_INFO "Kprobes globally enabled\n");
1901
1902already_enabled:
1903 mutex_unlock(&kprobe_mutex);
1904 return;
1905}
1906
1907static void __kprobes disarm_all_kprobes(void)
1908{
1909 struct hlist_head *head;
1910 struct hlist_node *node;
1911 struct kprobe *p;
1912 unsigned int i;
1913
1914 mutex_lock(&kprobe_mutex);
1915
1916 /* If kprobes are already disarmed, just return */
1917 if (kprobes_all_disarmed)
1918 goto already_disabled;
1919
1920 kprobes_all_disarmed = true;
1921 printk(KERN_INFO "Kprobes globally disabled\n");
1922
1923 /*
1924 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1925 * because disarming may also unoptimize kprobes.
1926 */
1927 get_online_cpus();
1928 mutex_lock(&text_mutex);
1929 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1930 head = &kprobe_table[i];
1931 hlist_for_each_entry_rcu(p, node, head, hlist) {
1932 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1933 __disarm_kprobe(p);
1934 }
1935 }
1936
1937 mutex_unlock(&text_mutex);
1938 put_online_cpus();
1939 mutex_unlock(&kprobe_mutex);
1940 /* Allow all currently running kprobes to complete */
1941 synchronize_sched();
1942 return;
1943
1944already_disabled:
1945 mutex_unlock(&kprobe_mutex);
1946 return;
1947}
1948
1949/*
1950 * XXX: The debugfs bool file interface doesn't allow for callbacks
1951 * when the bool state is switched. We can reuse that facility when
1952 * available
1953 */
1954static ssize_t read_enabled_file_bool(struct file *file,
1955 char __user *user_buf, size_t count, loff_t *ppos)
1956{
1957 char buf[3];
1958
1959 if (!kprobes_all_disarmed)
1960 buf[0] = '1';
1961 else
1962 buf[0] = '0';
1963 buf[1] = '\n';
1964 buf[2] = 0x00;
1965 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1966}
1967
1968static ssize_t write_enabled_file_bool(struct file *file,
1969 const char __user *user_buf, size_t count, loff_t *ppos)
1970{
1971 char buf[32];
1972 int buf_size;
1973
1974 buf_size = min(count, (sizeof(buf)-1));
1975 if (copy_from_user(buf, user_buf, buf_size))
1976 return -EFAULT;
1977
1978 switch (buf[0]) {
1979 case 'y':
1980 case 'Y':
1981 case '1':
1982 arm_all_kprobes();
1983 break;
1984 case 'n':
1985 case 'N':
1986 case '0':
1987 disarm_all_kprobes();
1988 break;
1989 }
1990
1991 return count;
1992}
1993
1994static const struct file_operations fops_kp = {
1995 .read = read_enabled_file_bool,
1996 .write = write_enabled_file_bool,
1997};
1998
1999static int __kprobes debugfs_kprobe_init(void)
2000{
2001 struct dentry *dir, *file;
2002 unsigned int value = 1;
2003
2004 dir = debugfs_create_dir("kprobes", NULL);
2005 if (!dir)
2006 return -ENOMEM;
2007
2008 file = debugfs_create_file("list", 0444, dir, NULL,
2009 &debugfs_kprobes_operations);
2010 if (!file) {
2011 debugfs_remove(dir);
2012 return -ENOMEM;
2013 }
2014
2015 file = debugfs_create_file("enabled", 0600, dir,
2016 &value, &fops_kp);
2017 if (!file) {
2018 debugfs_remove(dir);
2019 return -ENOMEM;
2020 }
2021
2022 return 0;
2023}
2024
2025late_initcall(debugfs_kprobe_init);
2026#endif /* CONFIG_DEBUG_FS */
2027
2028module_init(init_kprobes);
2029
2030/* defined in arch/.../kernel/kprobes.c */
2031EXPORT_SYMBOL_GPL(jprobe_return);